]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
igb: Read register for latch_on without return value
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
441fc6fd 60#include <linux/i2c.h>
9d5c8243
AK
61#include "igb.h"
62
67b1b903
CW
63#define MAJ 5
64#define MIN 0
65#define BUILD 3
0d1fe82d 66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 67__stringify(BUILD) "-k"
9d5c8243
AK
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462
AA
72static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
9d5c8243 74
9d5c8243
AK
75static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77};
78
a3aa1884 79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
ceb5f13b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 /* required last entry */
114 {0, }
115};
116
117MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119void igb_reset(struct igb_adapter *);
120static int igb_setup_all_tx_resources(struct igb_adapter *);
121static int igb_setup_all_rx_resources(struct igb_adapter *);
122static void igb_free_all_tx_resources(struct igb_adapter *);
123static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 124static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 125static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 126static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
127static int igb_sw_init(struct igb_adapter *);
128static int igb_open(struct net_device *);
129static int igb_close(struct net_device *);
53c7d064 130static void igb_configure(struct igb_adapter *);
9d5c8243
AK
131static void igb_configure_tx(struct igb_adapter *);
132static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
133static void igb_clean_all_tx_rings(struct igb_adapter *);
134static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
135static void igb_clean_tx_ring(struct igb_ring *);
136static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 137static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
138static void igb_update_phy_info(unsigned long);
139static void igb_watchdog(unsigned long);
140static void igb_watchdog_task(struct work_struct *);
cd392f5c 141static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 struct rtnl_link_stats64 *stats);
9d5c8243
AK
144static int igb_change_mtu(struct net_device *, int);
145static int igb_set_mac(struct net_device *, void *);
68d480c4 146static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
147static irqreturn_t igb_intr(int irq, void *);
148static irqreturn_t igb_intr_msi(int irq, void *);
149static irqreturn_t igb_msix_other(int irq, void *);
047e0030 150static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 151#ifdef CONFIG_IGB_DCA
047e0030 152static void igb_update_dca(struct igb_q_vector *);
fe4506b6 153static void igb_setup_dca(struct igb_adapter *);
421e02f0 154#endif /* CONFIG_IGB_DCA */
661086df 155static int igb_poll(struct napi_struct *, int);
13fde97a 156static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 157static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
158static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159static void igb_tx_timeout(struct net_device *);
160static void igb_reset_task(struct work_struct *);
c8f44aff 161static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
80d5c368
PM
162static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 164static void igb_restore_vlan(struct igb_adapter *);
26ad9178 165static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
166static void igb_ping_all_vfs(struct igb_adapter *);
167static void igb_msg_task(struct igb_adapter *);
4ae196df 168static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 169static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 170static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
171static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 int vf, u16 vlan, u8 qos);
174static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
70ea4783
LL
175static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 bool setting);
8151d294
WM
177static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 struct ifla_vf_info *ivi);
17dc566c 179static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
180
181#ifdef CONFIG_PCI_IOV
0224d663 182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
46a01698 183#endif
9d5c8243 184
9d5c8243 185#ifdef CONFIG_PM
d9dd966d 186#ifdef CONFIG_PM_SLEEP
749ab2cd 187static int igb_suspend(struct device *);
d9dd966d 188#endif
749ab2cd
YZ
189static int igb_resume(struct device *);
190#ifdef CONFIG_PM_RUNTIME
191static int igb_runtime_suspend(struct device *dev);
192static int igb_runtime_resume(struct device *dev);
193static int igb_runtime_idle(struct device *dev);
194#endif
195static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199};
9d5c8243
AK
200#endif
201static void igb_shutdown(struct pci_dev *);
fa44f2f1 202static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 203#ifdef CONFIG_IGB_DCA
fe4506b6
JC
204static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209};
210#endif
9d5c8243
AK
211#ifdef CONFIG_NET_POLL_CONTROLLER
212/* for netdump / net console */
213static void igb_netpoll(struct net_device *);
214#endif
37680117 215#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
216static unsigned int max_vfs = 0;
217module_param(max_vfs, uint, 0);
218MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219 "per physical function");
220#endif /* CONFIG_PCI_IOV */
221
9d5c8243
AK
222static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223 pci_channel_state_t);
224static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225static void igb_io_resume(struct pci_dev *);
226
3646f0e5 227static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
228 .error_detected = igb_io_error_detected,
229 .slot_reset = igb_io_slot_reset,
230 .resume = igb_io_resume,
231};
232
b6e0c419 233static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
234
235static struct pci_driver igb_driver = {
236 .name = igb_driver_name,
237 .id_table = igb_pci_tbl,
238 .probe = igb_probe,
9f9a12f8 239 .remove = igb_remove,
9d5c8243 240#ifdef CONFIG_PM
749ab2cd 241 .driver.pm = &igb_pm_ops,
9d5c8243
AK
242#endif
243 .shutdown = igb_shutdown,
fa44f2f1 244 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
245 .err_handler = &igb_err_handler
246};
247
248MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250MODULE_LICENSE("GPL");
251MODULE_VERSION(DRV_VERSION);
252
b3f4d599 253#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254static int debug = -1;
255module_param(debug, int, 0);
256MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
c97ec42a
TI
258struct igb_reg_info {
259 u32 ofs;
260 char *name;
261};
262
263static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265 /* General Registers */
266 {E1000_CTRL, "CTRL"},
267 {E1000_STATUS, "STATUS"},
268 {E1000_CTRL_EXT, "CTRL_EXT"},
269
270 /* Interrupt Registers */
271 {E1000_ICR, "ICR"},
272
273 /* RX Registers */
274 {E1000_RCTL, "RCTL"},
275 {E1000_RDLEN(0), "RDLEN"},
276 {E1000_RDH(0), "RDH"},
277 {E1000_RDT(0), "RDT"},
278 {E1000_RXDCTL(0), "RXDCTL"},
279 {E1000_RDBAL(0), "RDBAL"},
280 {E1000_RDBAH(0), "RDBAH"},
281
282 /* TX Registers */
283 {E1000_TCTL, "TCTL"},
284 {E1000_TDBAL(0), "TDBAL"},
285 {E1000_TDBAH(0), "TDBAH"},
286 {E1000_TDLEN(0), "TDLEN"},
287 {E1000_TDH(0), "TDH"},
288 {E1000_TDT(0), "TDT"},
289 {E1000_TXDCTL(0), "TXDCTL"},
290 {E1000_TDFH, "TDFH"},
291 {E1000_TDFT, "TDFT"},
292 {E1000_TDFHS, "TDFHS"},
293 {E1000_TDFPC, "TDFPC"},
294
295 /* List Terminator */
296 {}
297};
298
b980ac18 299/* igb_regdump - register printout routine */
c97ec42a
TI
300static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301{
302 int n = 0;
303 char rname[16];
304 u32 regs[8];
305
306 switch (reginfo->ofs) {
307 case E1000_RDLEN(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDLEN(n));
310 break;
311 case E1000_RDH(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDH(n));
314 break;
315 case E1000_RDT(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDT(n));
318 break;
319 case E1000_RXDCTL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RXDCTL(n));
322 break;
323 case E1000_RDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_RDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAH(n));
330 break;
331 case E1000_TDBAL(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_RDBAL(n));
334 break;
335 case E1000_TDBAH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDBAH(n));
338 break;
339 case E1000_TDLEN(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDLEN(n));
342 break;
343 case E1000_TDH(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDH(n));
346 break;
347 case E1000_TDT(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TDT(n));
350 break;
351 case E1000_TXDCTL(0):
352 for (n = 0; n < 4; n++)
353 regs[n] = rd32(E1000_TXDCTL(n));
354 break;
355 default:
876d2d6f 356 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
357 return;
358 }
359
360 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
361 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362 regs[2], regs[3]);
c97ec42a
TI
363}
364
b980ac18 365/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
366static void igb_dump(struct igb_adapter *adapter)
367{
368 struct net_device *netdev = adapter->netdev;
369 struct e1000_hw *hw = &adapter->hw;
370 struct igb_reg_info *reginfo;
c97ec42a
TI
371 struct igb_ring *tx_ring;
372 union e1000_adv_tx_desc *tx_desc;
373 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
374 struct igb_ring *rx_ring;
375 union e1000_adv_rx_desc *rx_desc;
376 u32 staterr;
6ad4edfc 377 u16 i, n;
c97ec42a
TI
378
379 if (!netif_msg_hw(adapter))
380 return;
381
382 /* Print netdevice Info */
383 if (netdev) {
384 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
385 pr_info("Device Name state trans_start "
386 "last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 393 pr_info(" Register Name Value\n");
c97ec42a
TI
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 405 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 406 struct igb_tx_buffer *buffer_info;
c97ec42a 407 tx_ring = adapter->tx_ring[n];
06034649 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
876d2d6f
JK
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
c97ec42a
TI
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
440 "[bi->dma ] leng ntw timestamp "
441 "bi->skb\n");
c97ec42a
TI
442
443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 444 const char *next_desc;
06034649 445 struct igb_tx_buffer *buffer_info;
60136906 446 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 447 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 448 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
449 if (i == tx_ring->next_to_use &&
450 i == tx_ring->next_to_clean)
451 next_desc = " NTC/U";
452 else if (i == tx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == tx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 pr_info("T [0x%03X] %016llX %016llX %016llX"
460 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
461 le64_to_cpu(u0->a),
462 le64_to_cpu(u0->b),
c9f14bf3
AD
463 (u64)dma_unmap_addr(buffer_info, dma),
464 dma_unmap_len(buffer_info, len),
c97ec42a
TI
465 buffer_info->next_to_watch,
466 (u64)buffer_info->time_stamp,
876d2d6f 467 buffer_info->skb, next_desc);
c97ec42a 468
b669588a 469 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
470 print_hex_dump(KERN_INFO, "",
471 DUMP_PREFIX_ADDRESS,
b669588a 472 16, 1, buffer_info->skb->data,
c9f14bf3
AD
473 dma_unmap_len(buffer_info, len),
474 true);
c97ec42a
TI
475 }
476 }
477
478 /* Print RX Rings Summary */
479rx_ring_summary:
480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 481 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
482 for (n = 0; n < adapter->num_rx_queues; n++) {
483 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
484 pr_info(" %5d %5X %5X\n",
485 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
486 }
487
488 /* Print RX Rings */
489 if (!netif_msg_rx_status(adapter))
490 goto exit;
491
492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494 /* Advanced Receive Descriptor (Read) Format
495 * 63 1 0
496 * +-----------------------------------------------------+
497 * 0 | Packet Buffer Address [63:1] |A0/NSE|
498 * +----------------------------------------------+------+
499 * 8 | Header Buffer Address [63:1] | DD |
500 * +-----------------------------------------------------+
501 *
502 *
503 * Advanced Receive Descriptor (Write-Back) Format
504 *
505 * 63 48 47 32 31 30 21 20 17 16 4 3 0
506 * +------------------------------------------------------+
507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
508 * | Checksum Ident | | | | Type | Type |
509 * +------------------------------------------------------+
510 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 * +------------------------------------------------------+
512 * 63 48 47 32 31 20 19 0
513 */
514
515 for (n = 0; n < adapter->num_rx_queues; n++) {
516 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
517 pr_info("------------------------------------\n");
518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 pr_info("------------------------------------\n");
520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
524
525 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 526 const char *next_desc;
06034649
AD
527 struct igb_rx_buffer *buffer_info;
528 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 529 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
530 u0 = (struct my_u0 *)rx_desc;
531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
532
533 if (i == rx_ring->next_to_use)
534 next_desc = " NTU";
535 else if (i == rx_ring->next_to_clean)
536 next_desc = " NTC";
537 else
538 next_desc = "";
539
c97ec42a
TI
540 if (staterr & E1000_RXD_STAT_DD) {
541 /* Descriptor Done */
1a1c225b
AD
542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 "RWB", i,
c97ec42a
TI
544 le64_to_cpu(u0->a),
545 le64_to_cpu(u0->b),
1a1c225b 546 next_desc);
c97ec42a 547 } else {
1a1c225b
AD
548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
549 "R ", i,
c97ec42a
TI
550 le64_to_cpu(u0->a),
551 le64_to_cpu(u0->b),
552 (u64)buffer_info->dma,
1a1c225b 553 next_desc);
c97ec42a 554
b669588a 555 if (netif_msg_pktdata(adapter) &&
1a1c225b 556 buffer_info->dma && buffer_info->page) {
44390ca6
AD
557 print_hex_dump(KERN_INFO, "",
558 DUMP_PREFIX_ADDRESS,
559 16, 1,
b669588a
ET
560 page_address(buffer_info->page) +
561 buffer_info->page_offset,
de78d1f9 562 IGB_RX_BUFSZ, true);
c97ec42a
TI
563 }
564 }
c97ec42a
TI
565 }
566 }
567
568exit:
569 return;
570}
571
b980ac18
JK
572/**
573 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
574 * @hw: pointer to hardware structure
575 * @i2cctl: Current value of I2CCTL register
576 *
577 * Returns the I2C data bit value
b980ac18 578 **/
441fc6fd
CW
579static int igb_get_i2c_data(void *data)
580{
581 struct igb_adapter *adapter = (struct igb_adapter *)data;
582 struct e1000_hw *hw = &adapter->hw;
583 s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586}
587
b980ac18
JK
588/**
589 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
590 * @data: pointer to hardware structure
591 * @state: I2C data value (0 or 1) to set
592 *
593 * Sets the I2C data bit
b980ac18 594 **/
441fc6fd
CW
595static void igb_set_i2c_data(void *data, int state)
596{
597 struct igb_adapter *adapter = (struct igb_adapter *)data;
598 struct e1000_hw *hw = &adapter->hw;
599 s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601 if (state)
602 i2cctl |= E1000_I2C_DATA_OUT;
603 else
604 i2cctl &= ~E1000_I2C_DATA_OUT;
605
606 i2cctl &= ~E1000_I2C_DATA_OE_N;
607 i2cctl |= E1000_I2C_CLK_OE_N;
608 wr32(E1000_I2CPARAMS, i2cctl);
609 wrfl();
610
611}
612
b980ac18
JK
613/**
614 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
615 * @data: pointer to hardware structure
616 * @state: state to set clock
617 *
618 * Sets the I2C clock line to state
b980ac18 619 **/
441fc6fd
CW
620static void igb_set_i2c_clk(void *data, int state)
621{
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 if (state) {
627 i2cctl |= E1000_I2C_CLK_OUT;
628 i2cctl &= ~E1000_I2C_CLK_OE_N;
629 } else {
630 i2cctl &= ~E1000_I2C_CLK_OUT;
631 i2cctl &= ~E1000_I2C_CLK_OE_N;
632 }
633 wr32(E1000_I2CPARAMS, i2cctl);
634 wrfl();
635}
636
b980ac18
JK
637/**
638 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
639 * @data: pointer to hardware structure
640 *
641 * Gets the I2C clock state
b980ac18 642 **/
441fc6fd
CW
643static int igb_get_i2c_clk(void *data)
644{
645 struct igb_adapter *adapter = (struct igb_adapter *)data;
646 struct e1000_hw *hw = &adapter->hw;
647 s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650}
651
652static const struct i2c_algo_bit_data igb_i2c_algo = {
653 .setsda = igb_set_i2c_data,
654 .setscl = igb_set_i2c_clk,
655 .getsda = igb_get_i2c_data,
656 .getscl = igb_get_i2c_clk,
657 .udelay = 5,
658 .timeout = 20,
659};
660
9d5c8243 661/**
b980ac18
JK
662 * igb_get_hw_dev - return device
663 * @hw: pointer to hardware structure
664 *
665 * used by hardware layer to print debugging information
9d5c8243 666 **/
c041076a 667struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
668{
669 struct igb_adapter *adapter = hw->back;
c041076a 670 return adapter->netdev;
9d5c8243 671}
38c845c7 672
9d5c8243 673/**
b980ac18 674 * igb_init_module - Driver Registration Routine
9d5c8243 675 *
b980ac18
JK
676 * igb_init_module is the first routine called when the driver is
677 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
678 **/
679static int __init igb_init_module(void)
680{
681 int ret;
876d2d6f 682 pr_info("%s - version %s\n",
9d5c8243
AK
683 igb_driver_string, igb_driver_version);
684
876d2d6f 685 pr_info("%s\n", igb_copyright);
9d5c8243 686
421e02f0 687#ifdef CONFIG_IGB_DCA
fe4506b6
JC
688 dca_register_notify(&dca_notifier);
689#endif
bbd98fe4 690 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
691 return ret;
692}
693
694module_init(igb_init_module);
695
696/**
b980ac18 697 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 698 *
b980ac18
JK
699 * igb_exit_module is called just before the driver is removed
700 * from memory.
9d5c8243
AK
701 **/
702static void __exit igb_exit_module(void)
703{
421e02f0 704#ifdef CONFIG_IGB_DCA
fe4506b6
JC
705 dca_unregister_notify(&dca_notifier);
706#endif
9d5c8243
AK
707 pci_unregister_driver(&igb_driver);
708}
709
710module_exit(igb_exit_module);
711
26bc19ec
AD
712#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713/**
b980ac18
JK
714 * igb_cache_ring_register - Descriptor ring to register mapping
715 * @adapter: board private structure to initialize
26bc19ec 716 *
b980ac18
JK
717 * Once we know the feature-set enabled for the device, we'll cache
718 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
719 **/
720static void igb_cache_ring_register(struct igb_adapter *adapter)
721{
ee1b9f06 722 int i = 0, j = 0;
047e0030 723 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
724
725 switch (adapter->hw.mac.type) {
726 case e1000_82576:
727 /* The queues are allocated for virtualization such that VF 0
728 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729 * In order to avoid collision we start at the first free queue
730 * and continue consuming queues in the same sequence
731 */
ee1b9f06 732 if (adapter->vfs_allocated_count) {
a99955fc 733 for (; i < adapter->rss_queues; i++)
3025a446 734 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 735 Q_IDX_82576(i);
ee1b9f06 736 }
26bc19ec 737 case e1000_82575:
55cac248 738 case e1000_82580:
d2ba2ed8 739 case e1000_i350:
ceb5f13b 740 case e1000_i354:
f96a8a0b
CW
741 case e1000_i210:
742 case e1000_i211:
26bc19ec 743 default:
ee1b9f06 744 for (; i < adapter->num_rx_queues; i++)
3025a446 745 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 746 for (; j < adapter->num_tx_queues; j++)
3025a446 747 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
748 break;
749 }
750}
751
4be000c8
AD
752/**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766{
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776}
777
9d5c8243 778#define IGB_N0_QUEUE -1
047e0030 779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 780{
047e0030 781 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 782 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
4be000c8 785 u32 msixbm = 0;
047e0030 786
0ba82994
AD
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
791
792 switch (hw->mac.type) {
793 case e1000_82575:
9d5c8243 794 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
047e0030 799 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 801 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
803 if (!adapter->msix_entries && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
9d5c8243 805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 806 q_vector->eims_value = msixbm;
2d064c06
AD
807 break;
808 case e1000_82576:
b980ac18 809 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
047e0030 822 q_vector->eims_value = 1 << msix_vector;
2d064c06 823 break;
55cac248 824 case e1000_82580:
d2ba2ed8 825 case e1000_i350:
ceb5f13b 826 case e1000_i354:
f96a8a0b
CW
827 case e1000_i210:
828 case e1000_i211:
b980ac18 829 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
843 q_vector->eims_value = 1 << msix_vector;
844 break;
2d064c06
AD
845 default:
846 BUG();
847 break;
848 }
26b39276
AD
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
9d5c8243
AK
855}
856
857/**
b980ac18
JK
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
9d5c8243 860 *
b980ac18
JK
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
9d5c8243
AK
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
9d5c8243
AK
871
872 /* set vector for other causes, i.e. link changes */
2d064c06
AD
873 switch (hw->mac.type) {
874 case e1000_82575:
9d5c8243
AK
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
884
885 /* enable msix_other interrupt */
b980ac18 886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 887 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 888
2d064c06
AD
889 break;
890
891 case e1000_82576:
55cac248 892 case e1000_82580:
d2ba2ed8 893 case e1000_i350:
ceb5f13b 894 case e1000_i354:
f96a8a0b
CW
895 case e1000_i210:
896 case e1000_i211:
047e0030 897 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
898 * won't stick. And it will take days to debug.
899 */
047e0030 900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
047e0030
AD
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = 1 << vector;
2d064c06 906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 907
047e0030 908 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
047e0030
AD
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
26b39276
AD
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 919
9d5c8243
AK
920 wrfl();
921}
922
923/**
b980ac18
JK
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
9d5c8243 926 *
b980ac18
JK
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
9d5c8243
AK
929 **/
930static int igb_request_msix(struct igb_adapter *adapter)
931{
932 struct net_device *netdev = adapter->netdev;
047e0030 933 struct e1000_hw *hw = &adapter->hw;
52285b76 934 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 935
047e0030 936 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 937 igb_msix_other, 0, netdev->name, adapter);
047e0030 938 if (err)
52285b76 939 goto err_out;
047e0030
AD
940
941 for (i = 0; i < adapter->num_q_vectors; i++) {
942 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
52285b76
SA
944 vector++;
945
047e0030
AD
946 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
0ba82994 948 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 949 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
950 q_vector->rx.ring->queue_index);
951 else if (q_vector->tx.ring)
047e0030 952 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
953 q_vector->tx.ring->queue_index);
954 else if (q_vector->rx.ring)
047e0030 955 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 956 q_vector->rx.ring->queue_index);
9d5c8243 957 else
047e0030
AD
958 sprintf(q_vector->name, "%s-unused", netdev->name);
959
9d5c8243 960 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
961 igb_msix_ring, 0, q_vector->name,
962 q_vector);
9d5c8243 963 if (err)
52285b76 964 goto err_free;
9d5c8243
AK
965 }
966
9d5c8243
AK
967 igb_configure_msix(adapter);
968 return 0;
52285b76
SA
969
970err_free:
971 /* free already assigned IRQs */
972 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974 vector--;
975 for (i = 0; i < vector; i++) {
976 free_irq(adapter->msix_entries[free_vector++].vector,
977 adapter->q_vector[i]);
978 }
979err_out:
9d5c8243
AK
980 return err;
981}
982
983static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984{
985 if (adapter->msix_entries) {
986 pci_disable_msix(adapter->pdev);
987 kfree(adapter->msix_entries);
988 adapter->msix_entries = NULL;
047e0030 989 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 990 pci_disable_msi(adapter->pdev);
047e0030 991 }
9d5c8243
AK
992}
993
5536d210 994/**
b980ac18
JK
995 * igb_free_q_vector - Free memory allocated for specific interrupt vector
996 * @adapter: board private structure to initialize
997 * @v_idx: Index of vector to be freed
5536d210 998 *
b980ac18
JK
999 * This function frees the memory allocated to the q_vector. In addition if
1000 * NAPI is enabled it will delete any references to the NAPI struct prior
1001 * to freeing the q_vector.
5536d210
AD
1002 **/
1003static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004{
1005 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007 if (q_vector->tx.ring)
1008 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010 if (q_vector->rx.ring)
1011 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013 adapter->q_vector[v_idx] = NULL;
1014 netif_napi_del(&q_vector->napi);
1015
b980ac18 1016 /* ixgbe_get_stats64() might access the rings on this vector,
5536d210
AD
1017 * we must wait a grace period before freeing it.
1018 */
1019 kfree_rcu(q_vector, rcu);
1020}
1021
047e0030 1022/**
b980ac18
JK
1023 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 * @adapter: board private structure to initialize
047e0030 1025 *
b980ac18
JK
1026 * This function frees the memory allocated to the q_vectors. In addition if
1027 * NAPI is enabled it will delete any references to the NAPI struct prior
1028 * to freeing the q_vector.
047e0030
AD
1029 **/
1030static void igb_free_q_vectors(struct igb_adapter *adapter)
1031{
5536d210
AD
1032 int v_idx = adapter->num_q_vectors;
1033
1034 adapter->num_tx_queues = 0;
1035 adapter->num_rx_queues = 0;
047e0030 1036 adapter->num_q_vectors = 0;
5536d210
AD
1037
1038 while (v_idx--)
1039 igb_free_q_vector(adapter, v_idx);
047e0030
AD
1040}
1041
1042/**
b980ac18
JK
1043 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 * @adapter: board private structure to initialize
047e0030 1045 *
b980ac18
JK
1046 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 * MSI-X interrupts allocated.
047e0030
AD
1048 */
1049static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050{
047e0030
AD
1051 igb_free_q_vectors(adapter);
1052 igb_reset_interrupt_capability(adapter);
1053}
9d5c8243
AK
1054
1055/**
b980ac18
JK
1056 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 * @adapter: board private structure to initialize
1058 * @msix: boolean value of MSIX capability
9d5c8243 1059 *
b980ac18
JK
1060 * Attempt to configure interrupts using the best available
1061 * capabilities of the hardware and kernel.
9d5c8243 1062 **/
53c7d064 1063static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1064{
1065 int err;
1066 int numvecs, i;
1067
53c7d064
SA
1068 if (!msix)
1069 goto msi_only;
1070
83b7180d 1071 /* Number of supported queues. */
a99955fc 1072 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1073 if (adapter->vfs_allocated_count)
1074 adapter->num_tx_queues = 1;
1075 else
1076 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1077
b980ac18 1078 /* start with one vector for every Rx queue */
047e0030
AD
1079 numvecs = adapter->num_rx_queues;
1080
b980ac18 1081 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1082 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083 numvecs += adapter->num_tx_queues;
047e0030
AD
1084
1085 /* store the number of vectors reserved for queues */
1086 adapter->num_q_vectors = numvecs;
1087
1088 /* add 1 vector for link status interrupts */
1089 numvecs++;
9d5c8243
AK
1090 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091 GFP_KERNEL);
f96a8a0b 1092
9d5c8243
AK
1093 if (!adapter->msix_entries)
1094 goto msi_only;
1095
1096 for (i = 0; i < numvecs; i++)
1097 adapter->msix_entries[i].entry = i;
1098
1099 err = pci_enable_msix(adapter->pdev,
1100 adapter->msix_entries,
1101 numvecs);
1102 if (err == 0)
0c2cc02e 1103 return;
9d5c8243
AK
1104
1105 igb_reset_interrupt_capability(adapter);
1106
1107 /* If we can't do MSI-X, try MSI */
1108msi_only:
2a3abf6d
AD
1109#ifdef CONFIG_PCI_IOV
1110 /* disable SR-IOV for non MSI-X configurations */
1111 if (adapter->vf_data) {
1112 struct e1000_hw *hw = &adapter->hw;
1113 /* disable iov and allow time for transactions to clear */
1114 pci_disable_sriov(adapter->pdev);
1115 msleep(500);
1116
1117 kfree(adapter->vf_data);
1118 adapter->vf_data = NULL;
1119 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1120 wrfl();
2a3abf6d
AD
1121 msleep(100);
1122 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123 }
1124#endif
4fc82adf 1125 adapter->vfs_allocated_count = 0;
a99955fc 1126 adapter->rss_queues = 1;
4fc82adf 1127 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1128 adapter->num_rx_queues = 1;
661086df 1129 adapter->num_tx_queues = 1;
047e0030 1130 adapter->num_q_vectors = 1;
9d5c8243 1131 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1132 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1133}
1134
5536d210
AD
1135static void igb_add_ring(struct igb_ring *ring,
1136 struct igb_ring_container *head)
1137{
1138 head->ring = ring;
1139 head->count++;
1140}
1141
047e0030 1142/**
b980ac18
JK
1143 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 * @adapter: board private structure to initialize
1145 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 * @v_idx: index of vector in adapter struct
1147 * @txr_count: total number of Tx rings to allocate
1148 * @txr_idx: index of first Tx ring to allocate
1149 * @rxr_count: total number of Rx rings to allocate
1150 * @rxr_idx: index of first Rx ring to allocate
047e0030 1151 *
b980ac18 1152 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1153 **/
5536d210
AD
1154static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155 int v_count, int v_idx,
1156 int txr_count, int txr_idx,
1157 int rxr_count, int rxr_idx)
047e0030
AD
1158{
1159 struct igb_q_vector *q_vector;
5536d210
AD
1160 struct igb_ring *ring;
1161 int ring_count, size;
047e0030 1162
5536d210
AD
1163 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164 if (txr_count > 1 || rxr_count > 1)
1165 return -ENOMEM;
1166
1167 ring_count = txr_count + rxr_count;
1168 size = sizeof(struct igb_q_vector) +
1169 (sizeof(struct igb_ring) * ring_count);
1170
1171 /* allocate q_vector and rings */
1172 q_vector = kzalloc(size, GFP_KERNEL);
1173 if (!q_vector)
1174 return -ENOMEM;
1175
1176 /* initialize NAPI */
1177 netif_napi_add(adapter->netdev, &q_vector->napi,
1178 igb_poll, 64);
1179
1180 /* tie q_vector and adapter together */
1181 adapter->q_vector[v_idx] = q_vector;
1182 q_vector->adapter = adapter;
1183
1184 /* initialize work limits */
1185 q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187 /* initialize ITR configuration */
1188 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189 q_vector->itr_val = IGB_START_ITR;
1190
1191 /* initialize pointer to rings */
1192 ring = q_vector->ring;
1193
4e227667
AD
1194 /* intialize ITR */
1195 if (rxr_count) {
1196 /* rx or rx/tx vector */
1197 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198 q_vector->itr_val = adapter->rx_itr_setting;
1199 } else {
1200 /* tx only vector */
1201 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202 q_vector->itr_val = adapter->tx_itr_setting;
1203 }
1204
5536d210
AD
1205 if (txr_count) {
1206 /* assign generic ring traits */
1207 ring->dev = &adapter->pdev->dev;
1208 ring->netdev = adapter->netdev;
1209
1210 /* configure backlink on ring */
1211 ring->q_vector = q_vector;
1212
1213 /* update q_vector Tx values */
1214 igb_add_ring(ring, &q_vector->tx);
1215
1216 /* For 82575, context index must be unique per ring. */
1217 if (adapter->hw.mac.type == e1000_82575)
1218 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220 /* apply Tx specific ring traits */
1221 ring->count = adapter->tx_ring_count;
1222 ring->queue_index = txr_idx;
1223
1224 /* assign ring to adapter */
1225 adapter->tx_ring[txr_idx] = ring;
1226
1227 /* push pointer to next ring */
1228 ring++;
047e0030 1229 }
81c2fc22 1230
5536d210
AD
1231 if (rxr_count) {
1232 /* assign generic ring traits */
1233 ring->dev = &adapter->pdev->dev;
1234 ring->netdev = adapter->netdev;
047e0030 1235
5536d210
AD
1236 /* configure backlink on ring */
1237 ring->q_vector = q_vector;
047e0030 1238
5536d210
AD
1239 /* update q_vector Rx values */
1240 igb_add_ring(ring, &q_vector->rx);
047e0030 1241
5536d210
AD
1242 /* set flag indicating ring supports SCTP checksum offload */
1243 if (adapter->hw.mac.type >= e1000_82576)
1244 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1245
ceb5f13b
CW
1246 /*
1247 * On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1248 * have the tag byte-swapped.
b980ac18 1249 */
5536d210
AD
1250 if (adapter->hw.mac.type >= e1000_i350)
1251 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1252
5536d210
AD
1253 /* apply Rx specific ring traits */
1254 ring->count = adapter->rx_ring_count;
1255 ring->queue_index = rxr_idx;
1256
1257 /* assign ring to adapter */
1258 adapter->rx_ring[rxr_idx] = ring;
1259 }
1260
1261 return 0;
047e0030
AD
1262}
1263
5536d210 1264
047e0030 1265/**
b980ac18
JK
1266 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 * @adapter: board private structure to initialize
047e0030 1268 *
b980ac18
JK
1269 * We allocate one q_vector per queue interrupt. If allocation fails we
1270 * return -ENOMEM.
047e0030 1271 **/
5536d210 1272static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1273{
5536d210
AD
1274 int q_vectors = adapter->num_q_vectors;
1275 int rxr_remaining = adapter->num_rx_queues;
1276 int txr_remaining = adapter->num_tx_queues;
1277 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278 int err;
047e0030 1279
5536d210
AD
1280 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281 for (; rxr_remaining; v_idx++) {
1282 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283 0, 0, 1, rxr_idx);
047e0030 1284
5536d210
AD
1285 if (err)
1286 goto err_out;
1287
1288 /* update counts and index */
1289 rxr_remaining--;
1290 rxr_idx++;
047e0030 1291 }
047e0030 1292 }
5536d210
AD
1293
1294 for (; v_idx < q_vectors; v_idx++) {
1295 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298 tqpv, txr_idx, rqpv, rxr_idx);
1299
1300 if (err)
1301 goto err_out;
1302
1303 /* update counts and index */
1304 rxr_remaining -= rqpv;
1305 txr_remaining -= tqpv;
1306 rxr_idx++;
1307 txr_idx++;
1308 }
1309
047e0030 1310 return 0;
5536d210
AD
1311
1312err_out:
1313 adapter->num_tx_queues = 0;
1314 adapter->num_rx_queues = 0;
1315 adapter->num_q_vectors = 0;
1316
1317 while (v_idx--)
1318 igb_free_q_vector(adapter, v_idx);
1319
1320 return -ENOMEM;
047e0030
AD
1321}
1322
1323/**
b980ac18
JK
1324 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 * @adapter: board private structure to initialize
1326 * @msix: boolean value of MSIX capability
047e0030 1327 *
b980ac18 1328 * This function initializes the interrupts and allocates all of the queues.
047e0030 1329 **/
53c7d064 1330static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1331{
1332 struct pci_dev *pdev = adapter->pdev;
1333 int err;
1334
53c7d064 1335 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1336
1337 err = igb_alloc_q_vectors(adapter);
1338 if (err) {
1339 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340 goto err_alloc_q_vectors;
1341 }
1342
5536d210 1343 igb_cache_ring_register(adapter);
047e0030
AD
1344
1345 return 0;
5536d210 1346
047e0030
AD
1347err_alloc_q_vectors:
1348 igb_reset_interrupt_capability(adapter);
1349 return err;
1350}
1351
9d5c8243 1352/**
b980ac18
JK
1353 * igb_request_irq - initialize interrupts
1354 * @adapter: board private structure to initialize
9d5c8243 1355 *
b980ac18
JK
1356 * Attempts to configure interrupts using the best available
1357 * capabilities of the hardware and kernel.
9d5c8243
AK
1358 **/
1359static int igb_request_irq(struct igb_adapter *adapter)
1360{
1361 struct net_device *netdev = adapter->netdev;
047e0030 1362 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1363 int err = 0;
1364
1365 if (adapter->msix_entries) {
1366 err = igb_request_msix(adapter);
844290e5 1367 if (!err)
9d5c8243 1368 goto request_done;
9d5c8243 1369 /* fall back to MSI */
5536d210
AD
1370 igb_free_all_tx_resources(adapter);
1371 igb_free_all_rx_resources(adapter);
53c7d064 1372
047e0030 1373 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1374 err = igb_init_interrupt_scheme(adapter, false);
1375 if (err)
047e0030 1376 goto request_done;
53c7d064 1377
047e0030
AD
1378 igb_setup_all_tx_resources(adapter);
1379 igb_setup_all_rx_resources(adapter);
53c7d064 1380 igb_configure(adapter);
9d5c8243 1381 }
844290e5 1382
c74d588e
AD
1383 igb_assign_vector(adapter->q_vector[0], 0);
1384
7dfc16fa 1385 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1386 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1387 netdev->name, adapter);
9d5c8243
AK
1388 if (!err)
1389 goto request_done;
047e0030 1390
9d5c8243
AK
1391 /* fall back to legacy interrupts */
1392 igb_reset_interrupt_capability(adapter);
7dfc16fa 1393 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1394 }
1395
c74d588e 1396 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1397 netdev->name, adapter);
9d5c8243 1398
6cb5e577 1399 if (err)
c74d588e 1400 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1401 err);
9d5c8243
AK
1402
1403request_done:
1404 return err;
1405}
1406
1407static void igb_free_irq(struct igb_adapter *adapter)
1408{
9d5c8243
AK
1409 if (adapter->msix_entries) {
1410 int vector = 0, i;
1411
047e0030 1412 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1413
0d1ae7f4 1414 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1415 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1416 adapter->q_vector[i]);
047e0030
AD
1417 } else {
1418 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1419 }
9d5c8243
AK
1420}
1421
1422/**
b980ac18
JK
1423 * igb_irq_disable - Mask off interrupt generation on the NIC
1424 * @adapter: board private structure
9d5c8243
AK
1425 **/
1426static void igb_irq_disable(struct igb_adapter *adapter)
1427{
1428 struct e1000_hw *hw = &adapter->hw;
1429
b980ac18 1430 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1431 * mapped into these registers and so clearing the bits can cause
1432 * issues on the VF drivers so we only need to clear what we set
1433 */
9d5c8243 1434 if (adapter->msix_entries) {
2dfd1212
AD
1435 u32 regval = rd32(E1000_EIAM);
1436 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437 wr32(E1000_EIMC, adapter->eims_enable_mask);
1438 regval = rd32(E1000_EIAC);
1439 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1440 }
844290e5
PW
1441
1442 wr32(E1000_IAM, 0);
9d5c8243
AK
1443 wr32(E1000_IMC, ~0);
1444 wrfl();
81a61859
ET
1445 if (adapter->msix_entries) {
1446 int i;
1447 for (i = 0; i < adapter->num_q_vectors; i++)
1448 synchronize_irq(adapter->msix_entries[i].vector);
1449 } else {
1450 synchronize_irq(adapter->pdev->irq);
1451 }
9d5c8243
AK
1452}
1453
1454/**
b980ac18
JK
1455 * igb_irq_enable - Enable default interrupt generation settings
1456 * @adapter: board private structure
9d5c8243
AK
1457 **/
1458static void igb_irq_enable(struct igb_adapter *adapter)
1459{
1460 struct e1000_hw *hw = &adapter->hw;
1461
1462 if (adapter->msix_entries) {
06218a8d 1463 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1464 u32 regval = rd32(E1000_EIAC);
1465 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466 regval = rd32(E1000_EIAM);
1467 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1468 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1469 if (adapter->vfs_allocated_count) {
4ae196df 1470 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1471 ims |= E1000_IMS_VMMB;
1472 }
1473 wr32(E1000_IMS, ims);
844290e5 1474 } else {
55cac248
AD
1475 wr32(E1000_IMS, IMS_ENABLE_MASK |
1476 E1000_IMS_DRSTA);
1477 wr32(E1000_IAM, IMS_ENABLE_MASK |
1478 E1000_IMS_DRSTA);
844290e5 1479 }
9d5c8243
AK
1480}
1481
1482static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483{
51466239 1484 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1485 u16 vid = adapter->hw.mng_cookie.vlan_id;
1486 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1487
1488 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 /* add VID to filter table */
1490 igb_vfta_set(hw, vid, true);
1491 adapter->mng_vlan_id = vid;
1492 } else {
1493 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494 }
1495
1496 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497 (vid != old_vid) &&
b2cb09b1 1498 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1499 /* remove VID from filter table */
1500 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1501 }
1502}
1503
1504/**
b980ac18
JK
1505 * igb_release_hw_control - release control of the h/w to f/w
1506 * @adapter: address of board private structure
9d5c8243 1507 *
b980ac18
JK
1508 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 * For ASF and Pass Through versions of f/w this means that the
1510 * driver is no longer loaded.
9d5c8243
AK
1511 **/
1512static void igb_release_hw_control(struct igb_adapter *adapter)
1513{
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 ctrl_ext;
1516
1517 /* Let firmware take over control of h/w */
1518 ctrl_ext = rd32(E1000_CTRL_EXT);
1519 wr32(E1000_CTRL_EXT,
1520 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521}
1522
9d5c8243 1523/**
b980ac18
JK
1524 * igb_get_hw_control - get control of the h/w from f/w
1525 * @adapter: address of board private structure
9d5c8243 1526 *
b980ac18
JK
1527 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 * For ASF and Pass Through versions of f/w this means that
1529 * the driver is loaded.
9d5c8243
AK
1530 **/
1531static void igb_get_hw_control(struct igb_adapter *adapter)
1532{
1533 struct e1000_hw *hw = &adapter->hw;
1534 u32 ctrl_ext;
1535
1536 /* Let firmware know the driver has taken over */
1537 ctrl_ext = rd32(E1000_CTRL_EXT);
1538 wr32(E1000_CTRL_EXT,
1539 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540}
1541
9d5c8243 1542/**
b980ac18
JK
1543 * igb_configure - configure the hardware for RX and TX
1544 * @adapter: private board structure
9d5c8243
AK
1545 **/
1546static void igb_configure(struct igb_adapter *adapter)
1547{
1548 struct net_device *netdev = adapter->netdev;
1549 int i;
1550
1551 igb_get_hw_control(adapter);
ff41f8dc 1552 igb_set_rx_mode(netdev);
9d5c8243
AK
1553
1554 igb_restore_vlan(adapter);
9d5c8243 1555
85b430b4 1556 igb_setup_tctl(adapter);
06cf2666 1557 igb_setup_mrqc(adapter);
9d5c8243 1558 igb_setup_rctl(adapter);
85b430b4
AD
1559
1560 igb_configure_tx(adapter);
9d5c8243 1561 igb_configure_rx(adapter);
662d7205
AD
1562
1563 igb_rx_fifo_flush_82575(&adapter->hw);
1564
c493ea45 1565 /* call igb_desc_unused which always leaves
9d5c8243 1566 * at least 1 descriptor unused to make sure
b980ac18
JK
1567 * next_to_use != next_to_clean
1568 */
9d5c8243 1569 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1570 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1571 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1572 }
9d5c8243
AK
1573}
1574
88a268c1 1575/**
b980ac18
JK
1576 * igb_power_up_link - Power up the phy/serdes link
1577 * @adapter: address of board private structure
88a268c1
NN
1578 **/
1579void igb_power_up_link(struct igb_adapter *adapter)
1580{
76886596
AA
1581 igb_reset_phy(&adapter->hw);
1582
88a268c1
NN
1583 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584 igb_power_up_phy_copper(&adapter->hw);
1585 else
1586 igb_power_up_serdes_link_82575(&adapter->hw);
1587}
1588
1589/**
b980ac18
JK
1590 * igb_power_down_link - Power down the phy/serdes link
1591 * @adapter: address of board private structure
88a268c1
NN
1592 */
1593static void igb_power_down_link(struct igb_adapter *adapter)
1594{
1595 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596 igb_power_down_phy_copper_82575(&adapter->hw);
1597 else
1598 igb_shutdown_serdes_link_82575(&adapter->hw);
1599}
9d5c8243
AK
1600
1601/**
b980ac18
JK
1602 * igb_up - Open the interface and prepare it to handle traffic
1603 * @adapter: board private structure
9d5c8243 1604 **/
9d5c8243
AK
1605int igb_up(struct igb_adapter *adapter)
1606{
1607 struct e1000_hw *hw = &adapter->hw;
1608 int i;
1609
1610 /* hardware has been reset, we need to reload some things */
1611 igb_configure(adapter);
1612
1613 clear_bit(__IGB_DOWN, &adapter->state);
1614
0d1ae7f4
AD
1615 for (i = 0; i < adapter->num_q_vectors; i++)
1616 napi_enable(&(adapter->q_vector[i]->napi));
1617
844290e5 1618 if (adapter->msix_entries)
9d5c8243 1619 igb_configure_msix(adapter);
feeb2721
AD
1620 else
1621 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1622
1623 /* Clear any pending interrupts. */
1624 rd32(E1000_ICR);
1625 igb_irq_enable(adapter);
1626
d4960307
AD
1627 /* notify VFs that reset has been completed */
1628 if (adapter->vfs_allocated_count) {
1629 u32 reg_data = rd32(E1000_CTRL_EXT);
1630 reg_data |= E1000_CTRL_EXT_PFRSTD;
1631 wr32(E1000_CTRL_EXT, reg_data);
1632 }
1633
4cb9be7a
JB
1634 netif_tx_start_all_queues(adapter->netdev);
1635
25568a53
AD
1636 /* start the watchdog. */
1637 hw->mac.get_link_status = 1;
1638 schedule_work(&adapter->watchdog_task);
1639
9d5c8243
AK
1640 return 0;
1641}
1642
1643void igb_down(struct igb_adapter *adapter)
1644{
9d5c8243 1645 struct net_device *netdev = adapter->netdev;
330a6d6a 1646 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1647 u32 tctl, rctl;
1648 int i;
1649
1650 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1651 * reschedule our watchdog timer
1652 */
9d5c8243
AK
1653 set_bit(__IGB_DOWN, &adapter->state);
1654
1655 /* disable receives in the hardware */
1656 rctl = rd32(E1000_RCTL);
1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 /* flush and sleep below */
1659
fd2ea0a7 1660 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1661
1662 /* disable transmits in the hardware */
1663 tctl = rd32(E1000_TCTL);
1664 tctl &= ~E1000_TCTL_EN;
1665 wr32(E1000_TCTL, tctl);
1666 /* flush both disables and wait for them to finish */
1667 wrfl();
1668 msleep(10);
1669
41f149a2
CW
1670 igb_irq_disable(adapter);
1671
1672 for (i = 0; i < adapter->num_q_vectors; i++) {
1673 napi_synchronize(&(adapter->q_vector[i]->napi));
0d1ae7f4 1674 napi_disable(&(adapter->q_vector[i]->napi));
41f149a2 1675 }
9d5c8243 1676
9d5c8243
AK
1677
1678 del_timer_sync(&adapter->watchdog_timer);
1679 del_timer_sync(&adapter->phy_info_timer);
1680
9d5c8243 1681 netif_carrier_off(netdev);
04fe6358
AD
1682
1683 /* record the stats before reset*/
12dcd86b
ED
1684 spin_lock(&adapter->stats64_lock);
1685 igb_update_stats(adapter, &adapter->stats64);
1686 spin_unlock(&adapter->stats64_lock);
04fe6358 1687
9d5c8243
AK
1688 adapter->link_speed = 0;
1689 adapter->link_duplex = 0;
1690
3023682e
JK
1691 if (!pci_channel_offline(adapter->pdev))
1692 igb_reset(adapter);
9d5c8243
AK
1693 igb_clean_all_tx_rings(adapter);
1694 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1695#ifdef CONFIG_IGB_DCA
1696
1697 /* since we reset the hardware DCA settings were cleared */
1698 igb_setup_dca(adapter);
1699#endif
9d5c8243
AK
1700}
1701
1702void igb_reinit_locked(struct igb_adapter *adapter)
1703{
1704 WARN_ON(in_interrupt());
1705 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706 msleep(1);
1707 igb_down(adapter);
1708 igb_up(adapter);
1709 clear_bit(__IGB_RESETTING, &adapter->state);
1710}
1711
1712void igb_reset(struct igb_adapter *adapter)
1713{
090b1795 1714 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1715 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1716 struct e1000_mac_info *mac = &hw->mac;
1717 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1718 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1719
1720 /* Repartition Pba for greater than 9k mtu
1721 * To take effect CTRL.RST is required.
1722 */
fa4dfae0 1723 switch (mac->type) {
d2ba2ed8 1724 case e1000_i350:
ceb5f13b 1725 case e1000_i354:
55cac248
AD
1726 case e1000_82580:
1727 pba = rd32(E1000_RXPBS);
1728 pba = igb_rxpbs_adjust_82580(pba);
1729 break;
fa4dfae0 1730 case e1000_82576:
d249be54
AD
1731 pba = rd32(E1000_RXPBS);
1732 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1733 break;
1734 case e1000_82575:
f96a8a0b
CW
1735 case e1000_i210:
1736 case e1000_i211:
fa4dfae0
AD
1737 default:
1738 pba = E1000_PBA_34K;
1739 break;
2d064c06 1740 }
9d5c8243 1741
2d064c06
AD
1742 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743 (mac->type < e1000_82576)) {
9d5c8243
AK
1744 /* adjust PBA for jumbo frames */
1745 wr32(E1000_PBA, pba);
1746
1747 /* To maintain wire speed transmits, the Tx FIFO should be
1748 * large enough to accommodate two full transmit packets,
1749 * rounded up to the next 1KB and expressed in KB. Likewise,
1750 * the Rx FIFO should be large enough to accommodate at least
1751 * one full receive packet and is similarly rounded up and
b980ac18
JK
1752 * expressed in KB.
1753 */
9d5c8243
AK
1754 pba = rd32(E1000_PBA);
1755 /* upper 16 bits has Tx packet buffer allocation size in KB */
1756 tx_space = pba >> 16;
1757 /* lower 16 bits has Rx packet buffer allocation size in KB */
1758 pba &= 0xffff;
b980ac18
JK
1759 /* the Tx fifo also stores 16 bytes of information about the Tx
1760 * but don't include ethernet FCS because hardware appends it
1761 */
9d5c8243 1762 min_tx_space = (adapter->max_frame_size +
85e8d004 1763 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1764 ETH_FCS_LEN) * 2;
1765 min_tx_space = ALIGN(min_tx_space, 1024);
1766 min_tx_space >>= 10;
1767 /* software strips receive CRC, so leave room for it */
1768 min_rx_space = adapter->max_frame_size;
1769 min_rx_space = ALIGN(min_rx_space, 1024);
1770 min_rx_space >>= 10;
1771
1772 /* If current Tx allocation is less than the min Tx FIFO size,
1773 * and the min Tx FIFO size is less than the current Rx FIFO
b980ac18
JK
1774 * allocation, take space away from current Rx allocation
1775 */
9d5c8243
AK
1776 if (tx_space < min_tx_space &&
1777 ((min_tx_space - tx_space) < pba)) {
1778 pba = pba - (min_tx_space - tx_space);
1779
b980ac18
JK
1780 /* if short on Rx space, Rx wins and must trump Tx
1781 * adjustment
1782 */
9d5c8243
AK
1783 if (pba < min_rx_space)
1784 pba = min_rx_space;
1785 }
2d064c06 1786 wr32(E1000_PBA, pba);
9d5c8243 1787 }
9d5c8243
AK
1788
1789 /* flow control settings */
1790 /* The high water mark must be low enough to fit one full frame
1791 * (or the size used for early receive) above it in the Rx FIFO.
1792 * Set it to the lower of:
1793 * - 90% of the Rx FIFO size, or
b980ac18
JK
1794 * - the full Rx FIFO size minus one full frame
1795 */
9d5c8243 1796 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1797 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1798
d48507fe 1799 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1800 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1801 fc->pause_time = 0xFFFF;
1802 fc->send_xon = 1;
0cce119a 1803 fc->current_mode = fc->requested_mode;
9d5c8243 1804
4ae196df
AD
1805 /* disable receive for all VFs and wait one second */
1806 if (adapter->vfs_allocated_count) {
1807 int i;
1808 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1809 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1810
1811 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1812 igb_ping_all_vfs(adapter);
4ae196df
AD
1813
1814 /* disable transmits and receives */
1815 wr32(E1000_VFRE, 0);
1816 wr32(E1000_VFTE, 0);
1817 }
1818
9d5c8243 1819 /* Allow time for pending master requests to run */
330a6d6a 1820 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1821 wr32(E1000_WUC, 0);
1822
330a6d6a 1823 if (hw->mac.ops.init_hw(hw))
090b1795 1824 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1825
b980ac18 1826 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1827 * control is off when forcing speed.
1828 */
1829 if (!hw->mac.autoneg)
1830 igb_force_mac_fc(hw);
1831
b6e0c419 1832 igb_init_dmac(adapter, pba);
e428893b
CW
1833#ifdef CONFIG_IGB_HWMON
1834 /* Re-initialize the thermal sensor on i350 devices. */
1835 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837 /* If present, re-initialize the external thermal sensor
1838 * interface.
1839 */
1840 if (adapter->ets)
1841 mac->ops.init_thermal_sensor_thresh(hw);
1842 }
1843 }
1844#endif
88a268c1
NN
1845 if (!netif_running(adapter->netdev))
1846 igb_power_down_link(adapter);
1847
9d5c8243
AK
1848 igb_update_mng_vlan(adapter);
1849
1850 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1f6e8178
MV
1853 /* Re-enable PTP, where applicable. */
1854 igb_ptp_reset(adapter);
1f6e8178 1855
330a6d6a 1856 igb_get_phy_info(hw);
9d5c8243
AK
1857}
1858
c8f44aff
MM
1859static netdev_features_t igb_fix_features(struct net_device *netdev,
1860 netdev_features_t features)
b2cb09b1 1861{
b980ac18
JK
1862 /* Since there is no support for separate Rx/Tx vlan accel
1863 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 1864 */
f646968f
PM
1865 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 1867 else
f646968f 1868 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
1869
1870 return features;
1871}
1872
c8f44aff
MM
1873static int igb_set_features(struct net_device *netdev,
1874 netdev_features_t features)
ac52caa3 1875{
c8f44aff 1876 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1877 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1878
f646968f 1879 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
1880 igb_vlan_mode(netdev, features);
1881
89eaefb6
BG
1882 if (!(changed & NETIF_F_RXALL))
1883 return 0;
1884
1885 netdev->features = features;
1886
1887 if (netif_running(netdev))
1888 igb_reinit_locked(adapter);
1889 else
1890 igb_reset(adapter);
1891
ac52caa3
MM
1892 return 0;
1893}
1894
2e5c6922 1895static const struct net_device_ops igb_netdev_ops = {
559e9c49 1896 .ndo_open = igb_open,
2e5c6922 1897 .ndo_stop = igb_close,
cd392f5c 1898 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1899 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1900 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1901 .ndo_set_mac_address = igb_set_mac,
1902 .ndo_change_mtu = igb_change_mtu,
1903 .ndo_do_ioctl = igb_ioctl,
1904 .ndo_tx_timeout = igb_tx_timeout,
1905 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1906 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1907 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1908 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1909 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1910 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
70ea4783 1911 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 1912 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1913#ifdef CONFIG_NET_POLL_CONTROLLER
1914 .ndo_poll_controller = igb_netpoll,
1915#endif
b2cb09b1
JP
1916 .ndo_fix_features = igb_fix_features,
1917 .ndo_set_features = igb_set_features,
2e5c6922
SH
1918};
1919
d67974f0
CW
1920/**
1921 * igb_set_fw_version - Configure version string for ethtool
1922 * @adapter: adapter struct
d67974f0
CW
1923 **/
1924void igb_set_fw_version(struct igb_adapter *adapter)
1925{
1926 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
1927 struct e1000_fw_version fw;
1928
1929 igb_get_fw_version(hw, &fw);
1930
1931 switch (hw->mac.type) {
1932 case e1000_i211:
d67974f0 1933 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
0b1a6f2e
CW
1934 "%2d.%2d-%d",
1935 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936 break;
1937
1938 default:
1939 /* if option is rom valid, display its version too */
1940 if (fw.or_valid) {
1941 snprintf(adapter->fw_version,
1942 sizeof(adapter->fw_version),
1943 "%d.%d, 0x%08x, %d.%d.%d",
1944 fw.eep_major, fw.eep_minor, fw.etrack_id,
1945 fw.or_major, fw.or_build, fw.or_patch);
1946 /* no option rom */
1947 } else {
1948 snprintf(adapter->fw_version,
1949 sizeof(adapter->fw_version),
1950 "%d.%d, 0x%08x",
1951 fw.eep_major, fw.eep_minor, fw.etrack_id);
1952 }
1953 break;
d67974f0 1954 }
d67974f0
CW
1955 return;
1956}
1957
b980ac18
JK
1958/**
1959 * igb_init_i2c - Init I2C interface
441fc6fd 1960 * @adapter: pointer to adapter structure
b980ac18 1961 **/
441fc6fd
CW
1962static s32 igb_init_i2c(struct igb_adapter *adapter)
1963{
1964 s32 status = E1000_SUCCESS;
1965
1966 /* I2C interface supported on i350 devices */
1967 if (adapter->hw.mac.type != e1000_i350)
1968 return E1000_SUCCESS;
1969
1970 /* Initialize the i2c bus which is controlled by the registers.
1971 * This bus will use the i2c_algo_bit structue that implements
1972 * the protocol through toggling of the 4 bits in the register.
1973 */
1974 adapter->i2c_adap.owner = THIS_MODULE;
1975 adapter->i2c_algo = igb_i2c_algo;
1976 adapter->i2c_algo.data = adapter;
1977 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979 strlcpy(adapter->i2c_adap.name, "igb BB",
1980 sizeof(adapter->i2c_adap.name));
1981 status = i2c_bit_add_bus(&adapter->i2c_adap);
1982 return status;
1983}
1984
9d5c8243 1985/**
b980ac18
JK
1986 * igb_probe - Device Initialization Routine
1987 * @pdev: PCI device information struct
1988 * @ent: entry in igb_pci_tbl
9d5c8243 1989 *
b980ac18 1990 * Returns 0 on success, negative on failure
9d5c8243 1991 *
b980ac18
JK
1992 * igb_probe initializes an adapter identified by a pci_dev structure.
1993 * The OS initialization, configuring of the adapter private structure,
1994 * and a hardware reset occur.
9d5c8243 1995 **/
1dd06ae8 1996static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
1997{
1998 struct net_device *netdev;
1999 struct igb_adapter *adapter;
2000 struct e1000_hw *hw;
4337e993 2001 u16 eeprom_data = 0;
9835fd73 2002 s32 ret_val;
4337e993 2003 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
2004 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005 unsigned long mmio_start, mmio_len;
2d6a5e95 2006 int err, pci_using_dac;
9835fd73 2007 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2008
bded64a7
AG
2009 /* Catch broken hardware that put the wrong VF device ID in
2010 * the PCIe SR-IOV capability.
2011 */
2012 if (pdev->is_virtfn) {
2013 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2014 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2015 return -EINVAL;
2016 }
2017
aed5dec3 2018 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2019 if (err)
2020 return err;
2021
2022 pci_using_dac = 0;
59d71989 2023 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2024 if (!err) {
59d71989 2025 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
2026 if (!err)
2027 pci_using_dac = 1;
2028 } else {
59d71989 2029 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2030 if (err) {
b980ac18
JK
2031 err = dma_set_coherent_mask(&pdev->dev,
2032 DMA_BIT_MASK(32));
9d5c8243 2033 if (err) {
b980ac18
JK
2034 dev_err(&pdev->dev,
2035 "No usable DMA configuration, aborting\n");
9d5c8243
AK
2036 goto err_dma;
2037 }
2038 }
2039 }
2040
aed5dec3 2041 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
b980ac18
JK
2042 IORESOURCE_MEM),
2043 igb_driver_name);
9d5c8243
AK
2044 if (err)
2045 goto err_pci_reg;
2046
19d5afd4 2047 pci_enable_pcie_error_reporting(pdev);
40a914fa 2048
9d5c8243 2049 pci_set_master(pdev);
c682fc23 2050 pci_save_state(pdev);
9d5c8243
AK
2051
2052 err = -ENOMEM;
1bfaf07b 2053 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2054 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2055 if (!netdev)
2056 goto err_alloc_etherdev;
2057
2058 SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060 pci_set_drvdata(pdev, netdev);
2061 adapter = netdev_priv(netdev);
2062 adapter->netdev = netdev;
2063 adapter->pdev = pdev;
2064 hw = &adapter->hw;
2065 hw->back = adapter;
b3f4d599 2066 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
2067
2068 mmio_start = pci_resource_start(pdev, 0);
2069 mmio_len = pci_resource_len(pdev, 0);
2070
2071 err = -EIO;
28b0759c
AD
2072 hw->hw_addr = ioremap(mmio_start, mmio_len);
2073 if (!hw->hw_addr)
9d5c8243
AK
2074 goto err_ioremap;
2075
2e5c6922 2076 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2077 igb_set_ethtool_ops(netdev);
9d5c8243 2078 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2079
2080 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082 netdev->mem_start = mmio_start;
2083 netdev->mem_end = mmio_start + mmio_len;
2084
9d5c8243
AK
2085 /* PCI config space info */
2086 hw->vendor_id = pdev->vendor;
2087 hw->device_id = pdev->device;
2088 hw->revision_id = pdev->revision;
2089 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090 hw->subsystem_device_id = pdev->subsystem_device;
2091
9d5c8243
AK
2092 /* Copy the default MAC, PHY and NVM function pointers */
2093 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096 /* Initialize skew-specific constants */
2097 err = ei->get_invariants(hw);
2098 if (err)
450c87c8 2099 goto err_sw_init;
9d5c8243 2100
450c87c8 2101 /* setup the private structure */
9d5c8243
AK
2102 err = igb_sw_init(adapter);
2103 if (err)
2104 goto err_sw_init;
2105
2106 igb_get_bus_info_pcie(hw);
2107
2108 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2109
2110 /* Copper options */
2111 if (hw->phy.media_type == e1000_media_type_copper) {
2112 hw->phy.mdix = AUTO_ALL_MODES;
2113 hw->phy.disable_polarity_correction = false;
2114 hw->phy.ms_type = e1000_ms_hw_default;
2115 }
2116
2117 if (igb_check_reset_block(hw))
2118 dev_info(&pdev->dev,
2119 "PHY reset is blocked due to SOL/IDER session.\n");
2120
b980ac18 2121 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2122 * set by igb_sw_init so we should use an or instead of an
2123 * assignment.
2124 */
2125 netdev->features |= NETIF_F_SG |
2126 NETIF_F_IP_CSUM |
2127 NETIF_F_IPV6_CSUM |
2128 NETIF_F_TSO |
2129 NETIF_F_TSO6 |
2130 NETIF_F_RXHASH |
2131 NETIF_F_RXCSUM |
f646968f
PM
2132 NETIF_F_HW_VLAN_CTAG_RX |
2133 NETIF_F_HW_VLAN_CTAG_TX;
077887c3
AD
2134
2135 /* copy netdev features into list of user selectable features */
2136 netdev->hw_features |= netdev->features;
89eaefb6 2137 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2138
2139 /* set this bit last since it cannot be part of hw_features */
f646968f 2140 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
077887c3
AD
2141
2142 netdev->vlan_features |= NETIF_F_TSO |
2143 NETIF_F_TSO6 |
2144 NETIF_F_IP_CSUM |
2145 NETIF_F_IPV6_CSUM |
2146 NETIF_F_SG;
48f29ffc 2147
6b8f0922
BG
2148 netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
7b872a55 2150 if (pci_using_dac) {
9d5c8243 2151 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2152 netdev->vlan_features |= NETIF_F_HIGHDMA;
2153 }
9d5c8243 2154
ac52caa3
MM
2155 if (hw->mac.type >= e1000_82576) {
2156 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2157 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2158 }
b9473560 2159
01789349
JP
2160 netdev->priv_flags |= IFF_UNICAST_FLT;
2161
330a6d6a 2162 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2163
2164 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2165 * known good starting state
2166 */
9d5c8243
AK
2167 hw->mac.ops.reset_hw(hw);
2168
b980ac18 2169 /* make sure the NVM is good , i211 parts have special NVM that
f96a8a0b
CW
2170 * doesn't contain a checksum
2171 */
2172 if (hw->mac.type != e1000_i211) {
2173 if (hw->nvm.ops.validate(hw) < 0) {
2174 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175 err = -EIO;
2176 goto err_eeprom;
2177 }
9d5c8243
AK
2178 }
2179
2180 /* copy the MAC address out of the NVM */
2181 if (hw->mac.ops.read_mac_addr(hw))
2182 dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2185
aaeb6cdf 2186 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2187 dev_err(&pdev->dev, "Invalid MAC Address\n");
2188 err = -EIO;
2189 goto err_eeprom;
2190 }
2191
d67974f0
CW
2192 /* get firmware version for ethtool -i */
2193 igb_set_fw_version(adapter);
2194
c061b18d 2195 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2196 (unsigned long) adapter);
c061b18d 2197 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2198 (unsigned long) adapter);
9d5c8243
AK
2199
2200 INIT_WORK(&adapter->reset_task, igb_reset_task);
2201 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
450c87c8 2203 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2204 adapter->fc_autoneg = true;
2205 hw->mac.autoneg = true;
2206 hw->phy.autoneg_advertised = 0x2f;
2207
0cce119a
AD
2208 hw->fc.requested_mode = e1000_fc_default;
2209 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2210
9d5c8243
AK
2211 igb_validate_mdi_setting(hw);
2212
63d4a8f9 2213 /* By default, support wake on port A */
a2cf8b6c 2214 if (hw->bus.func == 0)
63d4a8f9
MV
2215 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217 /* Check the NVM for wake support on non-port A ports */
2218 if (hw->mac.type >= e1000_82580)
55cac248 2219 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2220 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221 &eeprom_data);
a2cf8b6c
AD
2222 else if (hw->bus.func == 1)
2223 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2224
63d4a8f9
MV
2225 if (eeprom_data & IGB_EEPROM_APME)
2226 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2227
2228 /* now that we have the eeprom settings, apply the special cases where
2229 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2230 * lan on a particular port
2231 */
9d5c8243
AK
2232 switch (pdev->device) {
2233 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2234 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2235 break;
2236 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2237 case E1000_DEV_ID_82576_FIBER:
2238 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2239 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2240 * regardless of eeprom setting
2241 */
9d5c8243 2242 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2243 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2244 break;
c8ea5ea9 2245 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2246 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2247 /* if quad port adapter, disable WoL on all but port A */
2248 if (global_quad_port_a != 0)
63d4a8f9 2249 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2250 else
2251 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252 /* Reset for multiple quad port adapters */
2253 if (++global_quad_port_a == 4)
2254 global_quad_port_a = 0;
2255 break;
63d4a8f9
MV
2256 default:
2257 /* If the device can't wake, don't set software support */
2258 if (!device_can_wakeup(&adapter->pdev->dev))
2259 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2260 }
2261
2262 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2263 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264 adapter->wol |= E1000_WUFC_MAG;
2265
2266 /* Some vendors want WoL disabled by default, but still supported */
2267 if ((hw->mac.type == e1000_i350) &&
2268 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270 adapter->wol = 0;
2271 }
2272
2273 device_set_wakeup_enable(&adapter->pdev->dev,
2274 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2275
2276 /* reset the hardware with the new settings */
2277 igb_reset(adapter);
2278
441fc6fd
CW
2279 /* Init the I2C interface */
2280 err = igb_init_i2c(adapter);
2281 if (err) {
2282 dev_err(&pdev->dev, "failed to init i2c interface\n");
2283 goto err_eeprom;
2284 }
2285
9d5c8243
AK
2286 /* let the f/w know that the h/w is now under the control of the
2287 * driver. */
2288 igb_get_hw_control(adapter);
2289
9d5c8243
AK
2290 strcpy(netdev->name, "eth%d");
2291 err = register_netdev(netdev);
2292 if (err)
2293 goto err_register;
2294
b168dfc5
JB
2295 /* carrier off reporting is important to ethtool even BEFORE open */
2296 netif_carrier_off(netdev);
2297
421e02f0 2298#ifdef CONFIG_IGB_DCA
bbd98fe4 2299 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2300 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2301 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2302 igb_setup_dca(adapter);
2303 }
fe4506b6 2304
38c845c7 2305#endif
e428893b
CW
2306#ifdef CONFIG_IGB_HWMON
2307 /* Initialize the thermal sensor on i350 devices. */
2308 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309 u16 ets_word;
3c89f6d0 2310
b980ac18 2311 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2312 * external thermal sensor.
2313 */
2314 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316 adapter->ets = true;
2317 else
2318 adapter->ets = false;
2319 if (igb_sysfs_init(adapter))
2320 dev_err(&pdev->dev,
2321 "failed to allocate sysfs resources\n");
2322 } else {
2323 adapter->ets = false;
2324 }
2325#endif
673b8b70 2326 /* do hw tstamp init after resetting */
7ebae817 2327 igb_ptp_init(adapter);
673b8b70 2328
9d5c8243 2329 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2330 /* print bus type/speed/width info, not applicable to i354 */
2331 if (hw->mac.type != e1000_i354) {
2332 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333 netdev->name,
2334 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336 "unknown"),
2337 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338 "Width x4" :
2339 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340 "Width x2" :
2341 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342 "Width x1" : "unknown"), netdev->dev_addr);
2343 }
9d5c8243 2344
9835fd73
CW
2345 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346 if (ret_val)
2347 strcpy(part_str, "Unknown");
2348 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2349 dev_info(&pdev->dev,
2350 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2352 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2353 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2354 switch (hw->mac.type) {
2355 case e1000_i350:
f96a8a0b
CW
2356 case e1000_i210:
2357 case e1000_i211:
09b068d4
CW
2358 igb_set_eee_i350(hw);
2359 break;
ceb5f13b
CW
2360 case e1000_i354:
2361 if (hw->phy.media_type == e1000_media_type_copper) {
2362 if ((rd32(E1000_CTRL_EXT) &
2363 E1000_CTRL_EXT_LINK_MODE_SGMII))
2364 igb_set_eee_i354(hw);
2365 }
2366 break;
09b068d4
CW
2367 default:
2368 break;
2369 }
749ab2cd
YZ
2370
2371 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2372 return 0;
2373
2374err_register:
2375 igb_release_hw_control(adapter);
441fc6fd 2376 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2377err_eeprom:
2378 if (!igb_check_reset_block(hw))
f5f4cf08 2379 igb_reset_phy(hw);
9d5c8243
AK
2380
2381 if (hw->flash_address)
2382 iounmap(hw->flash_address);
9d5c8243 2383err_sw_init:
047e0030 2384 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2385 iounmap(hw->hw_addr);
2386err_ioremap:
2387 free_netdev(netdev);
2388err_alloc_etherdev:
559e9c49 2389 pci_release_selected_regions(pdev,
b980ac18 2390 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2391err_pci_reg:
2392err_dma:
2393 pci_disable_device(pdev);
2394 return err;
2395}
2396
fa44f2f1
GR
2397#ifdef CONFIG_PCI_IOV
2398static int igb_disable_sriov(struct pci_dev *pdev)
2399{
2400 struct net_device *netdev = pci_get_drvdata(pdev);
2401 struct igb_adapter *adapter = netdev_priv(netdev);
2402 struct e1000_hw *hw = &adapter->hw;
2403
2404 /* reclaim resources allocated to VFs */
2405 if (adapter->vf_data) {
2406 /* disable iov and allow time for transactions to clear */
b09186d2 2407 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2408 dev_warn(&pdev->dev,
2409 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410 return -EPERM;
2411 } else {
2412 pci_disable_sriov(pdev);
2413 msleep(500);
2414 }
2415
2416 kfree(adapter->vf_data);
2417 adapter->vf_data = NULL;
2418 adapter->vfs_allocated_count = 0;
2419 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420 wrfl();
2421 msleep(100);
2422 dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424 /* Re-enable DMA Coalescing flag since IOV is turned off */
2425 adapter->flags |= IGB_FLAG_DMAC;
2426 }
2427
2428 return 0;
2429}
2430
2431static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432{
2433 struct net_device *netdev = pci_get_drvdata(pdev);
2434 struct igb_adapter *adapter = netdev_priv(netdev);
2435 int old_vfs = pci_num_vf(pdev);
2436 int err = 0;
2437 int i;
2438
2439 if (!num_vfs)
2440 goto out;
2441 else if (old_vfs && old_vfs == num_vfs)
2442 goto out;
2443 else if (old_vfs && old_vfs != num_vfs)
2444 err = igb_disable_sriov(pdev);
2445
2446 if (err)
2447 goto out;
2448
2449 if (num_vfs > 7) {
2450 err = -EPERM;
2451 goto out;
2452 }
2453
2454 adapter->vfs_allocated_count = num_vfs;
2455
2456 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457 sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459 /* if allocation failed then we do not support SR-IOV */
2460 if (!adapter->vf_data) {
2461 adapter->vfs_allocated_count = 0;
2462 dev_err(&pdev->dev,
2463 "Unable to allocate memory for VF Data Storage\n");
2464 err = -ENOMEM;
2465 goto out;
2466 }
2467
2468 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469 if (err)
2470 goto err_out;
2471
2472 dev_info(&pdev->dev, "%d VFs allocated\n",
2473 adapter->vfs_allocated_count);
2474 for (i = 0; i < adapter->vfs_allocated_count; i++)
2475 igb_vf_configure(adapter, i);
2476
2477 /* DMA Coalescing is not supported in IOV mode. */
2478 adapter->flags &= ~IGB_FLAG_DMAC;
2479 goto out;
2480
2481err_out:
2482 kfree(adapter->vf_data);
2483 adapter->vf_data = NULL;
2484 adapter->vfs_allocated_count = 0;
2485out:
2486 return err;
2487}
2488
2489#endif
b980ac18 2490/**
441fc6fd
CW
2491 * igb_remove_i2c - Cleanup I2C interface
2492 * @adapter: pointer to adapter structure
b980ac18 2493 **/
441fc6fd
CW
2494static void igb_remove_i2c(struct igb_adapter *adapter)
2495{
441fc6fd
CW
2496 /* free the adapter bus structure */
2497 i2c_del_adapter(&adapter->i2c_adap);
2498}
2499
9d5c8243 2500/**
b980ac18
JK
2501 * igb_remove - Device Removal Routine
2502 * @pdev: PCI device information struct
9d5c8243 2503 *
b980ac18
JK
2504 * igb_remove is called by the PCI subsystem to alert the driver
2505 * that it should release a PCI device. The could be caused by a
2506 * Hot-Plug event, or because the driver is going to be removed from
2507 * memory.
9d5c8243 2508 **/
9f9a12f8 2509static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2510{
2511 struct net_device *netdev = pci_get_drvdata(pdev);
2512 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2513 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2514
749ab2cd 2515 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2516#ifdef CONFIG_IGB_HWMON
2517 igb_sysfs_exit(adapter);
2518#endif
441fc6fd 2519 igb_remove_i2c(adapter);
a79f4f88 2520 igb_ptp_stop(adapter);
b980ac18 2521 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2522 * disable watchdog from being rescheduled.
2523 */
9d5c8243
AK
2524 set_bit(__IGB_DOWN, &adapter->state);
2525 del_timer_sync(&adapter->watchdog_timer);
2526 del_timer_sync(&adapter->phy_info_timer);
2527
760141a5
TH
2528 cancel_work_sync(&adapter->reset_task);
2529 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2530
421e02f0 2531#ifdef CONFIG_IGB_DCA
7dfc16fa 2532 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2533 dev_info(&pdev->dev, "DCA disabled\n");
2534 dca_remove_requester(&pdev->dev);
7dfc16fa 2535 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2536 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2537 }
2538#endif
2539
9d5c8243 2540 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2541 * would have already happened in close and is redundant.
2542 */
9d5c8243
AK
2543 igb_release_hw_control(adapter);
2544
2545 unregister_netdev(netdev);
2546
047e0030 2547 igb_clear_interrupt_scheme(adapter);
9d5c8243 2548
37680117 2549#ifdef CONFIG_PCI_IOV
fa44f2f1 2550 igb_disable_sriov(pdev);
37680117 2551#endif
559e9c49 2552
28b0759c
AD
2553 iounmap(hw->hw_addr);
2554 if (hw->flash_address)
2555 iounmap(hw->flash_address);
559e9c49 2556 pci_release_selected_regions(pdev,
b980ac18 2557 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2558
1128c756 2559 kfree(adapter->shadow_vfta);
9d5c8243
AK
2560 free_netdev(netdev);
2561
19d5afd4 2562 pci_disable_pcie_error_reporting(pdev);
40a914fa 2563
9d5c8243
AK
2564 pci_disable_device(pdev);
2565}
2566
a6b623e0 2567/**
b980ac18
JK
2568 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569 * @adapter: board private structure to initialize
a6b623e0 2570 *
b980ac18
JK
2571 * This function initializes the vf specific data storage and then attempts to
2572 * allocate the VFs. The reason for ordering it this way is because it is much
2573 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2574 * the memory for the VFs.
a6b623e0 2575 **/
9f9a12f8 2576static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2577{
2578#ifdef CONFIG_PCI_IOV
2579 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2580 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2581
f96a8a0b
CW
2582 /* Virtualization features not supported on i210 family. */
2583 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584 return;
2585
fa44f2f1 2586 pci_sriov_set_totalvfs(pdev, 7);
d5e51a10 2587 igb_enable_sriov(pdev, max_vfs);
0224d663 2588
a6b623e0
AD
2589#endif /* CONFIG_PCI_IOV */
2590}
2591
fa44f2f1 2592static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2593{
2594 struct e1000_hw *hw = &adapter->hw;
374a542d 2595 u32 max_rss_queues;
9d5c8243 2596
374a542d 2597 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2598 switch (hw->mac.type) {
374a542d
MV
2599 case e1000_i211:
2600 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601 break;
2602 case e1000_82575:
f96a8a0b 2603 case e1000_i210:
374a542d
MV
2604 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605 break;
2606 case e1000_i350:
2607 /* I350 cannot do RSS and SR-IOV at the same time */
2608 if (!!adapter->vfs_allocated_count) {
2609 max_rss_queues = 1;
2610 break;
2611 }
2612 /* fall through */
2613 case e1000_82576:
2614 if (!!adapter->vfs_allocated_count) {
2615 max_rss_queues = 2;
2616 break;
2617 }
2618 /* fall through */
2619 case e1000_82580:
ceb5f13b 2620 case e1000_i354:
374a542d
MV
2621 default:
2622 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2623 break;
374a542d
MV
2624 }
2625
2626 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628 /* Determine if we need to pair queues. */
2629 switch (hw->mac.type) {
2630 case e1000_82575:
f96a8a0b 2631 case e1000_i211:
374a542d 2632 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2633 break;
374a542d 2634 case e1000_82576:
b980ac18 2635 /* If VFs are going to be allocated with RSS queues then we
374a542d
MV
2636 * should pair the queues in order to conserve interrupts due
2637 * to limited supply.
2638 */
2639 if ((adapter->rss_queues > 1) &&
2640 (adapter->vfs_allocated_count > 6))
2641 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642 /* fall through */
2643 case e1000_82580:
2644 case e1000_i350:
ceb5f13b 2645 case e1000_i354:
374a542d 2646 case e1000_i210:
f96a8a0b 2647 default:
b980ac18 2648 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
2649 * order to conserve interrupts due to limited supply.
2650 */
2651 if (adapter->rss_queues > (max_rss_queues / 2))
2652 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2653 break;
2654 }
fa44f2f1
GR
2655}
2656
2657/**
b980ac18
JK
2658 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2659 * @adapter: board private structure to initialize
fa44f2f1 2660 *
b980ac18
JK
2661 * igb_sw_init initializes the Adapter private data structure.
2662 * Fields are initialized based on PCI device information and
2663 * OS network device settings (MTU size).
fa44f2f1
GR
2664 **/
2665static int igb_sw_init(struct igb_adapter *adapter)
2666{
2667 struct e1000_hw *hw = &adapter->hw;
2668 struct net_device *netdev = adapter->netdev;
2669 struct pci_dev *pdev = adapter->pdev;
2670
2671 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673 /* set default ring sizes */
2674 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677 /* set default ITR values */
2678 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681 /* set default work limits */
2682 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685 VLAN_HLEN;
2686 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688 spin_lock_init(&adapter->stats64_lock);
2689#ifdef CONFIG_PCI_IOV
2690 switch (hw->mac.type) {
2691 case e1000_82576:
2692 case e1000_i350:
2693 if (max_vfs > 7) {
2694 dev_warn(&pdev->dev,
2695 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2696 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2697 } else
2698 adapter->vfs_allocated_count = max_vfs;
2699 if (adapter->vfs_allocated_count)
2700 dev_warn(&pdev->dev,
2701 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702 break;
2703 default:
2704 break;
2705 }
2706#endif /* CONFIG_PCI_IOV */
2707
2708 igb_init_queue_configuration(adapter);
a99955fc 2709
1128c756 2710 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2711 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712 GFP_ATOMIC);
1128c756 2713
a6b623e0 2714 /* This call may decrease the number of queues */
53c7d064 2715 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2716 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717 return -ENOMEM;
2718 }
2719
a6b623e0
AD
2720 igb_probe_vfs(adapter);
2721
9d5c8243
AK
2722 /* Explicitly disable IRQ since the NIC can be in any state. */
2723 igb_irq_disable(adapter);
2724
f96a8a0b 2725 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2726 adapter->flags &= ~IGB_FLAG_DMAC;
2727
9d5c8243
AK
2728 set_bit(__IGB_DOWN, &adapter->state);
2729 return 0;
2730}
2731
2732/**
b980ac18
JK
2733 * igb_open - Called when a network interface is made active
2734 * @netdev: network interface device structure
9d5c8243 2735 *
b980ac18 2736 * Returns 0 on success, negative value on failure
9d5c8243 2737 *
b980ac18
JK
2738 * The open entry point is called when a network interface is made
2739 * active by the system (IFF_UP). At this point all resources needed
2740 * for transmit and receive operations are allocated, the interrupt
2741 * handler is registered with the OS, the watchdog timer is started,
2742 * and the stack is notified that the interface is ready.
9d5c8243 2743 **/
749ab2cd 2744static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2745{
2746 struct igb_adapter *adapter = netdev_priv(netdev);
2747 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2748 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2749 int err;
2750 int i;
2751
2752 /* disallow open during test */
749ab2cd
YZ
2753 if (test_bit(__IGB_TESTING, &adapter->state)) {
2754 WARN_ON(resuming);
9d5c8243 2755 return -EBUSY;
749ab2cd
YZ
2756 }
2757
2758 if (!resuming)
2759 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2760
b168dfc5
JB
2761 netif_carrier_off(netdev);
2762
9d5c8243
AK
2763 /* allocate transmit descriptors */
2764 err = igb_setup_all_tx_resources(adapter);
2765 if (err)
2766 goto err_setup_tx;
2767
2768 /* allocate receive descriptors */
2769 err = igb_setup_all_rx_resources(adapter);
2770 if (err)
2771 goto err_setup_rx;
2772
88a268c1 2773 igb_power_up_link(adapter);
9d5c8243 2774
9d5c8243
AK
2775 /* before we allocate an interrupt, we must be ready to handle it.
2776 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
2778 * clean_rx handler before we do so.
2779 */
9d5c8243
AK
2780 igb_configure(adapter);
2781
2782 err = igb_request_irq(adapter);
2783 if (err)
2784 goto err_req_irq;
2785
0c2cc02e
AD
2786 /* Notify the stack of the actual queue counts. */
2787 err = netif_set_real_num_tx_queues(adapter->netdev,
2788 adapter->num_tx_queues);
2789 if (err)
2790 goto err_set_queues;
2791
2792 err = netif_set_real_num_rx_queues(adapter->netdev,
2793 adapter->num_rx_queues);
2794 if (err)
2795 goto err_set_queues;
2796
9d5c8243
AK
2797 /* From here on the code is the same as igb_up() */
2798 clear_bit(__IGB_DOWN, &adapter->state);
2799
0d1ae7f4
AD
2800 for (i = 0; i < adapter->num_q_vectors; i++)
2801 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2802
2803 /* Clear any pending interrupts. */
2804 rd32(E1000_ICR);
844290e5
PW
2805
2806 igb_irq_enable(adapter);
2807
d4960307
AD
2808 /* notify VFs that reset has been completed */
2809 if (adapter->vfs_allocated_count) {
2810 u32 reg_data = rd32(E1000_CTRL_EXT);
2811 reg_data |= E1000_CTRL_EXT_PFRSTD;
2812 wr32(E1000_CTRL_EXT, reg_data);
2813 }
2814
d55b53ff
JK
2815 netif_tx_start_all_queues(netdev);
2816
749ab2cd
YZ
2817 if (!resuming)
2818 pm_runtime_put(&pdev->dev);
2819
25568a53
AD
2820 /* start the watchdog. */
2821 hw->mac.get_link_status = 1;
2822 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2823
2824 return 0;
2825
0c2cc02e
AD
2826err_set_queues:
2827 igb_free_irq(adapter);
9d5c8243
AK
2828err_req_irq:
2829 igb_release_hw_control(adapter);
88a268c1 2830 igb_power_down_link(adapter);
9d5c8243
AK
2831 igb_free_all_rx_resources(adapter);
2832err_setup_rx:
2833 igb_free_all_tx_resources(adapter);
2834err_setup_tx:
2835 igb_reset(adapter);
749ab2cd
YZ
2836 if (!resuming)
2837 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2838
2839 return err;
2840}
2841
749ab2cd
YZ
2842static int igb_open(struct net_device *netdev)
2843{
2844 return __igb_open(netdev, false);
2845}
2846
9d5c8243 2847/**
b980ac18
JK
2848 * igb_close - Disables a network interface
2849 * @netdev: network interface device structure
9d5c8243 2850 *
b980ac18 2851 * Returns 0, this is not allowed to fail
9d5c8243 2852 *
b980ac18
JK
2853 * The close entry point is called when an interface is de-activated
2854 * by the OS. The hardware is still under the driver's control, but
2855 * needs to be disabled. A global MAC reset is issued to stop the
2856 * hardware, and all transmit and receive resources are freed.
9d5c8243 2857 **/
749ab2cd 2858static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2859{
2860 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2861 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2862
2863 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2864
749ab2cd
YZ
2865 if (!suspending)
2866 pm_runtime_get_sync(&pdev->dev);
2867
2868 igb_down(adapter);
9d5c8243
AK
2869 igb_free_irq(adapter);
2870
2871 igb_free_all_tx_resources(adapter);
2872 igb_free_all_rx_resources(adapter);
2873
749ab2cd
YZ
2874 if (!suspending)
2875 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2876 return 0;
2877}
2878
749ab2cd
YZ
2879static int igb_close(struct net_device *netdev)
2880{
2881 return __igb_close(netdev, false);
2882}
2883
9d5c8243 2884/**
b980ac18
JK
2885 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 2887 *
b980ac18 2888 * Return 0 on success, negative on failure
9d5c8243 2889 **/
80785298 2890int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2891{
59d71989 2892 struct device *dev = tx_ring->dev;
9d5c8243
AK
2893 int size;
2894
06034649 2895 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
2896
2897 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2898 if (!tx_ring->tx_buffer_info)
9d5c8243 2899 goto err;
9d5c8243
AK
2900
2901 /* round up to nearest 4K */
85e8d004 2902 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2903 tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
5536d210
AD
2905 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
2907 if (!tx_ring->desc)
2908 goto err;
2909
9d5c8243
AK
2910 tx_ring->next_to_use = 0;
2911 tx_ring->next_to_clean = 0;
81c2fc22 2912
9d5c8243
AK
2913 return 0;
2914
2915err:
06034649 2916 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
2917 tx_ring->tx_buffer_info = NULL;
2918 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
2919 return -ENOMEM;
2920}
2921
2922/**
b980ac18
JK
2923 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924 * (Descriptors) for all queues
2925 * @adapter: board private structure
9d5c8243 2926 *
b980ac18 2927 * Return 0 on success, negative on failure
9d5c8243
AK
2928 **/
2929static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930{
439705e1 2931 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2932 int i, err = 0;
2933
2934 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2935 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2936 if (err) {
439705e1 2937 dev_err(&pdev->dev,
9d5c8243
AK
2938 "Allocation for Tx Queue %u failed\n", i);
2939 for (i--; i >= 0; i--)
3025a446 2940 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2941 break;
2942 }
2943 }
2944
2945 return err;
2946}
2947
2948/**
b980ac18
JK
2949 * igb_setup_tctl - configure the transmit control registers
2950 * @adapter: Board private structure
9d5c8243 2951 **/
d7ee5b3a 2952void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2953{
9d5c8243
AK
2954 struct e1000_hw *hw = &adapter->hw;
2955 u32 tctl;
9d5c8243 2956
85b430b4
AD
2957 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2958 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2959
2960 /* Program the Transmit Control Register */
9d5c8243
AK
2961 tctl = rd32(E1000_TCTL);
2962 tctl &= ~E1000_TCTL_CT;
2963 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966 igb_config_collision_dist(hw);
2967
9d5c8243
AK
2968 /* Enable transmits */
2969 tctl |= E1000_TCTL_EN;
2970
2971 wr32(E1000_TCTL, tctl);
2972}
2973
85b430b4 2974/**
b980ac18
JK
2975 * igb_configure_tx_ring - Configure transmit ring after Reset
2976 * @adapter: board private structure
2977 * @ring: tx ring to configure
85b430b4 2978 *
b980ac18 2979 * Configure a transmit ring after a reset.
85b430b4 2980 **/
d7ee5b3a
AD
2981void igb_configure_tx_ring(struct igb_adapter *adapter,
2982 struct igb_ring *ring)
85b430b4
AD
2983{
2984 struct e1000_hw *hw = &adapter->hw;
a74420e0 2985 u32 txdctl = 0;
85b430b4
AD
2986 u64 tdba = ring->dma;
2987 int reg_idx = ring->reg_idx;
2988
2989 /* disable the queue */
a74420e0 2990 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2991 wrfl();
2992 mdelay(10);
2993
2994 wr32(E1000_TDLEN(reg_idx),
b980ac18 2995 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 2996 wr32(E1000_TDBAL(reg_idx),
b980ac18 2997 tdba & 0x00000000ffffffffULL);
85b430b4
AD
2998 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
fce99e34 3000 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3001 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3002 writel(0, ring->tail);
85b430b4
AD
3003
3004 txdctl |= IGB_TX_PTHRESH;
3005 txdctl |= IGB_TX_HTHRESH << 8;
3006 txdctl |= IGB_TX_WTHRESH << 16;
3007
3008 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009 wr32(E1000_TXDCTL(reg_idx), txdctl);
3010}
3011
3012/**
b980ac18
JK
3013 * igb_configure_tx - Configure transmit Unit after Reset
3014 * @adapter: board private structure
85b430b4 3015 *
b980ac18 3016 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3017 **/
3018static void igb_configure_tx(struct igb_adapter *adapter)
3019{
3020 int i;
3021
3022 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3023 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3024}
3025
9d5c8243 3026/**
b980ac18
JK
3027 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3029 *
b980ac18 3030 * Returns 0 on success, negative on failure
9d5c8243 3031 **/
80785298 3032int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3033{
59d71989 3034 struct device *dev = rx_ring->dev;
f33005a6 3035 int size;
9d5c8243 3036
06034649 3037 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3038
3039 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3040 if (!rx_ring->rx_buffer_info)
9d5c8243 3041 goto err;
9d5c8243 3042
9d5c8243 3043 /* Round up to nearest 4K */
f33005a6 3044 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3045 rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
5536d210
AD
3047 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3049 if (!rx_ring->desc)
3050 goto err;
3051
cbc8e55f 3052 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3053 rx_ring->next_to_clean = 0;
3054 rx_ring->next_to_use = 0;
9d5c8243 3055
9d5c8243
AK
3056 return 0;
3057
3058err:
06034649
AD
3059 vfree(rx_ring->rx_buffer_info);
3060 rx_ring->rx_buffer_info = NULL;
f33005a6 3061 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3062 return -ENOMEM;
3063}
3064
3065/**
b980ac18
JK
3066 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067 * (Descriptors) for all queues
3068 * @adapter: board private structure
9d5c8243 3069 *
b980ac18 3070 * Return 0 on success, negative on failure
9d5c8243
AK
3071 **/
3072static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073{
439705e1 3074 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3075 int i, err = 0;
3076
3077 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3078 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3079 if (err) {
439705e1 3080 dev_err(&pdev->dev,
9d5c8243
AK
3081 "Allocation for Rx Queue %u failed\n", i);
3082 for (i--; i >= 0; i--)
3025a446 3083 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3084 break;
3085 }
3086 }
3087
3088 return err;
3089}
3090
06cf2666 3091/**
b980ac18
JK
3092 * igb_setup_mrqc - configure the multiple receive queue control registers
3093 * @adapter: Board private structure
06cf2666
AD
3094 **/
3095static void igb_setup_mrqc(struct igb_adapter *adapter)
3096{
3097 struct e1000_hw *hw = &adapter->hw;
3098 u32 mrqc, rxcsum;
797fd4be 3099 u32 j, num_rx_queues, shift = 0;
a57fe23e
AD
3100 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103 0xFA01ACBE };
06cf2666
AD
3104
3105 /* Fill out hash function seeds */
a57fe23e
AD
3106 for (j = 0; j < 10; j++)
3107 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3108
a99955fc 3109 num_rx_queues = adapter->rss_queues;
06cf2666 3110
797fd4be
AD
3111 switch (hw->mac.type) {
3112 case e1000_82575:
3113 shift = 6;
3114 break;
3115 case e1000_82576:
3116 /* 82576 supports 2 RSS queues for SR-IOV */
3117 if (adapter->vfs_allocated_count) {
06cf2666
AD
3118 shift = 3;
3119 num_rx_queues = 2;
06cf2666 3120 }
797fd4be
AD
3121 break;
3122 default:
3123 break;
06cf2666
AD
3124 }
3125
b980ac18 3126 /* Populate the indirection table 4 entries at a time. To do this
797fd4be
AD
3127 * we are generating the results for n and n+2 and then interleaving
3128 * those with the results with n+1 and n+3.
3129 */
3130 for (j = 0; j < 32; j++) {
3131 /* first pass generates n and n+2 */
3132 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133 u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135 /* second pass generates n+1 and n+3 */
3136 base += 0x00010001 * num_rx_queues;
3137 reta |= (base & 0x07800780) << (1 + shift);
3138
3139 wr32(E1000_RETA(j), reta);
06cf2666
AD
3140 }
3141
b980ac18 3142 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3143 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3144 * offloads as they are enabled by default
3145 */
3146 rxcsum = rd32(E1000_RXCSUM);
3147 rxcsum |= E1000_RXCSUM_PCSD;
3148
3149 if (adapter->hw.mac.type >= e1000_82576)
3150 /* Enable Receive Checksum Offload for SCTP */
3151 rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3154 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3155
039454a8
AA
3156 /* Generate RSS hash based on packet types, TCP/UDP
3157 * port numbers and/or IPv4/v6 src and dst addresses
3158 */
f96a8a0b
CW
3159 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161 E1000_MRQC_RSS_FIELD_IPV6 |
3162 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3164
039454a8
AA
3165 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
06cf2666
AD
3170 /* If VMDq is enabled then we set the appropriate mode for that, else
3171 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3172 * if we are only using one queue
3173 */
06cf2666
AD
3174 if (adapter->vfs_allocated_count) {
3175 if (hw->mac.type > e1000_82575) {
3176 /* Set the default pool for the PF's first queue */
3177 u32 vtctl = rd32(E1000_VT_CTL);
3178 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179 E1000_VT_CTL_DISABLE_DEF_POOL);
3180 vtctl |= adapter->vfs_allocated_count <<
3181 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182 wr32(E1000_VT_CTL, vtctl);
3183 }
a99955fc 3184 if (adapter->rss_queues > 1)
f96a8a0b 3185 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3186 else
f96a8a0b 3187 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3188 } else {
f96a8a0b
CW
3189 if (hw->mac.type != e1000_i211)
3190 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3191 }
3192 igb_vmm_control(adapter);
3193
06cf2666
AD
3194 wr32(E1000_MRQC, mrqc);
3195}
3196
9d5c8243 3197/**
b980ac18
JK
3198 * igb_setup_rctl - configure the receive control registers
3199 * @adapter: Board private structure
9d5c8243 3200 **/
d7ee5b3a 3201void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3202{
3203 struct e1000_hw *hw = &adapter->hw;
3204 u32 rctl;
9d5c8243
AK
3205
3206 rctl = rd32(E1000_RCTL);
3207
3208 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3209 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3210
69d728ba 3211 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3212 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3213
b980ac18 3214 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3215 * redirection as it did with e1000. Newer features require
3216 * that the HW strips the CRC.
73cd78f1 3217 */
87cb7e8c 3218 rctl |= E1000_RCTL_SECRC;
9d5c8243 3219
559e9c49 3220 /* disable store bad packets and clear size bits. */
ec54d7d6 3221 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3222
6ec43fe6
AD
3223 /* enable LPE to prevent packets larger than max_frame_size */
3224 rctl |= E1000_RCTL_LPE;
9d5c8243 3225
952f72a8
AD
3226 /* disable queue 0 to prevent tail write w/o re-config */
3227 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3228
e1739522
AD
3229 /* Attention!!! For SR-IOV PF driver operations you must enable
3230 * queue drop for all VF and PF queues to prevent head of line blocking
3231 * if an un-trusted VF does not provide descriptors to hardware.
3232 */
3233 if (adapter->vfs_allocated_count) {
e1739522
AD
3234 /* set all queue drop enable bits */
3235 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3236 }
3237
89eaefb6
BG
3238 /* This is useful for sniffing bad packets. */
3239 if (adapter->netdev->features & NETIF_F_RXALL) {
3240 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3241 * in e1000e_set_rx_mode
3242 */
89eaefb6
BG
3243 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248 E1000_RCTL_DPF | /* Allow filtered pause */
3249 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251 * and that breaks VLANs.
3252 */
3253 }
3254
9d5c8243
AK
3255 wr32(E1000_RCTL, rctl);
3256}
3257
7d5753f0
AD
3258static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259 int vfn)
3260{
3261 struct e1000_hw *hw = &adapter->hw;
3262 u32 vmolr;
3263
3264 /* if it isn't the PF check to see if VFs are enabled and
b980ac18
JK
3265 * increase the size to support vlan tags
3266 */
7d5753f0
AD
3267 if (vfn < adapter->vfs_allocated_count &&
3268 adapter->vf_data[vfn].vlans_enabled)
3269 size += VLAN_TAG_SIZE;
3270
3271 vmolr = rd32(E1000_VMOLR(vfn));
3272 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273 vmolr |= size | E1000_VMOLR_LPE;
3274 wr32(E1000_VMOLR(vfn), vmolr);
3275
3276 return 0;
3277}
3278
e1739522 3279/**
b980ac18
JK
3280 * igb_rlpml_set - set maximum receive packet size
3281 * @adapter: board private structure
e1739522 3282 *
b980ac18 3283 * Configure maximum receivable packet size.
e1739522
AD
3284 **/
3285static void igb_rlpml_set(struct igb_adapter *adapter)
3286{
153285f9 3287 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3288 struct e1000_hw *hw = &adapter->hw;
3289 u16 pf_id = adapter->vfs_allocated_count;
3290
e1739522
AD
3291 if (pf_id) {
3292 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
b980ac18 3293 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
153285f9
AD
3294 * to our max jumbo frame size, in case we need to enable
3295 * jumbo frames on one of the rings later.
3296 * This will not pass over-length frames into the default
3297 * queue because it's gated by the VMOLR.RLPML.
3298 */
7d5753f0 3299 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3300 }
3301
3302 wr32(E1000_RLPML, max_frame_size);
3303}
3304
8151d294
WM
3305static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306 int vfn, bool aupe)
7d5753f0
AD
3307{
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 vmolr;
3310
b980ac18 3311 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3312 * we should exit and do nothing
3313 */
3314 if (hw->mac.type < e1000_82576)
3315 return;
3316
3317 vmolr = rd32(E1000_VMOLR(vfn));
b980ac18 3318 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
8151d294 3319 if (aupe)
b980ac18 3320 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3321 else
3322 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3323
3324 /* clear all bits that might not be set */
3325 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
a99955fc 3327 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3328 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3329 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3330 * multicast packets
3331 */
3332 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3333 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3334
3335 wr32(E1000_VMOLR(vfn), vmolr);
3336}
3337
85b430b4 3338/**
b980ac18
JK
3339 * igb_configure_rx_ring - Configure a receive ring after Reset
3340 * @adapter: board private structure
3341 * @ring: receive ring to be configured
85b430b4 3342 *
b980ac18 3343 * Configure the Rx unit of the MAC after a reset.
85b430b4 3344 **/
d7ee5b3a 3345void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3346 struct igb_ring *ring)
85b430b4
AD
3347{
3348 struct e1000_hw *hw = &adapter->hw;
3349 u64 rdba = ring->dma;
3350 int reg_idx = ring->reg_idx;
a74420e0 3351 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3352
3353 /* disable the queue */
a74420e0 3354 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3355
3356 /* Set DMA base address registers */
3357 wr32(E1000_RDBAL(reg_idx),
3358 rdba & 0x00000000ffffffffULL);
3359 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360 wr32(E1000_RDLEN(reg_idx),
b980ac18 3361 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3362
3363 /* initialize head and tail */
fce99e34 3364 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3365 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3366 writel(0, ring->tail);
85b430b4 3367
952f72a8 3368 /* set descriptor configuration */
44390ca6 3369 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3370 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3371 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3372 if (hw->mac.type >= e1000_82580)
757b77e2 3373 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3374 /* Only set Drop Enable if we are supporting multiple queues */
3375 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3377
3378 wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
7d5753f0 3380 /* set filtering for VMDQ pools */
8151d294 3381 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3382
85b430b4
AD
3383 rxdctl |= IGB_RX_PTHRESH;
3384 rxdctl |= IGB_RX_HTHRESH << 8;
3385 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3386
3387 /* enable receive descriptor fetching */
3388 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3389 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390}
3391
9d5c8243 3392/**
b980ac18
JK
3393 * igb_configure_rx - Configure receive Unit after Reset
3394 * @adapter: board private structure
9d5c8243 3395 *
b980ac18 3396 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3397 **/
3398static void igb_configure_rx(struct igb_adapter *adapter)
3399{
9107584e 3400 int i;
9d5c8243 3401
68d480c4
AD
3402 /* set UTA to appropriate mode */
3403 igb_set_uta(adapter);
3404
26ad9178
AD
3405 /* set the correct pool for the PF default MAC address in entry 0 */
3406 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3407 adapter->vfs_allocated_count);
26ad9178 3408
06cf2666 3409 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3410 * the Base and Length of the Rx Descriptor Ring
3411 */
f9d40f6a
AD
3412 for (i = 0; i < adapter->num_rx_queues; i++)
3413 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3414}
3415
3416/**
b980ac18
JK
3417 * igb_free_tx_resources - Free Tx Resources per Queue
3418 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3419 *
b980ac18 3420 * Free all transmit software resources
9d5c8243 3421 **/
68fd9910 3422void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3423{
3b644cf6 3424 igb_clean_tx_ring(tx_ring);
9d5c8243 3425
06034649
AD
3426 vfree(tx_ring->tx_buffer_info);
3427 tx_ring->tx_buffer_info = NULL;
9d5c8243 3428
439705e1
AD
3429 /* if not set, then don't free */
3430 if (!tx_ring->desc)
3431 return;
3432
59d71989
AD
3433 dma_free_coherent(tx_ring->dev, tx_ring->size,
3434 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3435
3436 tx_ring->desc = NULL;
3437}
3438
3439/**
b980ac18
JK
3440 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3441 * @adapter: board private structure
9d5c8243 3442 *
b980ac18 3443 * Free all transmit software resources
9d5c8243
AK
3444 **/
3445static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446{
3447 int i;
3448
3449 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3450 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3451}
3452
ebe42d16
AD
3453void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454 struct igb_tx_buffer *tx_buffer)
3455{
3456 if (tx_buffer->skb) {
3457 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3458 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3459 dma_unmap_single(ring->dev,
c9f14bf3
AD
3460 dma_unmap_addr(tx_buffer, dma),
3461 dma_unmap_len(tx_buffer, len),
ebe42d16 3462 DMA_TO_DEVICE);
c9f14bf3 3463 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3464 dma_unmap_page(ring->dev,
c9f14bf3
AD
3465 dma_unmap_addr(tx_buffer, dma),
3466 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3467 DMA_TO_DEVICE);
3468 }
3469 tx_buffer->next_to_watch = NULL;
3470 tx_buffer->skb = NULL;
c9f14bf3 3471 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3472 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3473}
3474
3475/**
b980ac18
JK
3476 * igb_clean_tx_ring - Free Tx Buffers
3477 * @tx_ring: ring to be cleaned
9d5c8243 3478 **/
3b644cf6 3479static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3480{
06034649 3481 struct igb_tx_buffer *buffer_info;
9d5c8243 3482 unsigned long size;
6ad4edfc 3483 u16 i;
9d5c8243 3484
06034649 3485 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3486 return;
3487 /* Free all the Tx ring sk_buffs */
3488
3489 for (i = 0; i < tx_ring->count; i++) {
06034649 3490 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3491 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3492 }
3493
dad8a3b3
JF
3494 netdev_tx_reset_queue(txring_txq(tx_ring));
3495
06034649
AD
3496 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3498
3499 /* Zero out the descriptor ring */
9d5c8243
AK
3500 memset(tx_ring->desc, 0, tx_ring->size);
3501
3502 tx_ring->next_to_use = 0;
3503 tx_ring->next_to_clean = 0;
9d5c8243
AK
3504}
3505
3506/**
b980ac18
JK
3507 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508 * @adapter: board private structure
9d5c8243
AK
3509 **/
3510static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511{
3512 int i;
3513
3514 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3515 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3516}
3517
3518/**
b980ac18
JK
3519 * igb_free_rx_resources - Free Rx Resources
3520 * @rx_ring: ring to clean the resources from
9d5c8243 3521 *
b980ac18 3522 * Free all receive software resources
9d5c8243 3523 **/
68fd9910 3524void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3525{
3b644cf6 3526 igb_clean_rx_ring(rx_ring);
9d5c8243 3527
06034649
AD
3528 vfree(rx_ring->rx_buffer_info);
3529 rx_ring->rx_buffer_info = NULL;
9d5c8243 3530
439705e1
AD
3531 /* if not set, then don't free */
3532 if (!rx_ring->desc)
3533 return;
3534
59d71989
AD
3535 dma_free_coherent(rx_ring->dev, rx_ring->size,
3536 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3537
3538 rx_ring->desc = NULL;
3539}
3540
3541/**
b980ac18
JK
3542 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3543 * @adapter: board private structure
9d5c8243 3544 *
b980ac18 3545 * Free all receive software resources
9d5c8243
AK
3546 **/
3547static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548{
3549 int i;
3550
3551 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3552 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3553}
3554
3555/**
b980ac18
JK
3556 * igb_clean_rx_ring - Free Rx Buffers per Queue
3557 * @rx_ring: ring to free buffers from
9d5c8243 3558 **/
3b644cf6 3559static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3560{
9d5c8243 3561 unsigned long size;
c023cd88 3562 u16 i;
9d5c8243 3563
1a1c225b
AD
3564 if (rx_ring->skb)
3565 dev_kfree_skb(rx_ring->skb);
3566 rx_ring->skb = NULL;
3567
06034649 3568 if (!rx_ring->rx_buffer_info)
9d5c8243 3569 return;
439705e1 3570
9d5c8243
AK
3571 /* Free all the Rx ring sk_buffs */
3572 for (i = 0; i < rx_ring->count; i++) {
06034649 3573 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3574
cbc8e55f
AD
3575 if (!buffer_info->page)
3576 continue;
3577
3578 dma_unmap_page(rx_ring->dev,
3579 buffer_info->dma,
3580 PAGE_SIZE,
3581 DMA_FROM_DEVICE);
3582 __free_page(buffer_info->page);
3583
1a1c225b 3584 buffer_info->page = NULL;
9d5c8243
AK
3585 }
3586
06034649
AD
3587 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3589
3590 /* Zero out the descriptor ring */
3591 memset(rx_ring->desc, 0, rx_ring->size);
3592
cbc8e55f 3593 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3594 rx_ring->next_to_clean = 0;
3595 rx_ring->next_to_use = 0;
9d5c8243
AK
3596}
3597
3598/**
b980ac18
JK
3599 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600 * @adapter: board private structure
9d5c8243
AK
3601 **/
3602static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603{
3604 int i;
3605
3606 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3607 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3608}
3609
3610/**
b980ac18
JK
3611 * igb_set_mac - Change the Ethernet Address of the NIC
3612 * @netdev: network interface device structure
3613 * @p: pointer to an address structure
9d5c8243 3614 *
b980ac18 3615 * Returns 0 on success, negative on failure
9d5c8243
AK
3616 **/
3617static int igb_set_mac(struct net_device *netdev, void *p)
3618{
3619 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3620 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3621 struct sockaddr *addr = p;
3622
3623 if (!is_valid_ether_addr(addr->sa_data))
3624 return -EADDRNOTAVAIL;
3625
3626 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3627 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3628
26ad9178
AD
3629 /* set the correct pool for the new PF MAC address in entry 0 */
3630 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 3631 adapter->vfs_allocated_count);
e1739522 3632
9d5c8243
AK
3633 return 0;
3634}
3635
3636/**
b980ac18
JK
3637 * igb_write_mc_addr_list - write multicast addresses to MTA
3638 * @netdev: network interface device structure
9d5c8243 3639 *
b980ac18
JK
3640 * Writes multicast address list to the MTA hash table.
3641 * Returns: -ENOMEM on failure
3642 * 0 on no addresses written
3643 * X on writing X addresses to MTA
9d5c8243 3644 **/
68d480c4 3645static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3646{
3647 struct igb_adapter *adapter = netdev_priv(netdev);
3648 struct e1000_hw *hw = &adapter->hw;
22bedad3 3649 struct netdev_hw_addr *ha;
68d480c4 3650 u8 *mta_list;
9d5c8243
AK
3651 int i;
3652
4cd24eaf 3653 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3654 /* nothing to program, so clear mc list */
3655 igb_update_mc_addr_list(hw, NULL, 0);
3656 igb_restore_vf_multicasts(adapter);
3657 return 0;
3658 }
9d5c8243 3659
4cd24eaf 3660 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3661 if (!mta_list)
3662 return -ENOMEM;
ff41f8dc 3663
68d480c4 3664 /* The shared function expects a packed array of only addresses. */
48e2f183 3665 i = 0;
22bedad3
JP
3666 netdev_for_each_mc_addr(ha, netdev)
3667 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3668
68d480c4
AD
3669 igb_update_mc_addr_list(hw, mta_list, i);
3670 kfree(mta_list);
3671
4cd24eaf 3672 return netdev_mc_count(netdev);
68d480c4
AD
3673}
3674
3675/**
b980ac18
JK
3676 * igb_write_uc_addr_list - write unicast addresses to RAR table
3677 * @netdev: network interface device structure
68d480c4 3678 *
b980ac18
JK
3679 * Writes unicast address list to the RAR table.
3680 * Returns: -ENOMEM on failure/insufficient address space
3681 * 0 on no addresses written
3682 * X on writing X addresses to the RAR table
68d480c4
AD
3683 **/
3684static int igb_write_uc_addr_list(struct net_device *netdev)
3685{
3686 struct igb_adapter *adapter = netdev_priv(netdev);
3687 struct e1000_hw *hw = &adapter->hw;
3688 unsigned int vfn = adapter->vfs_allocated_count;
3689 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690 int count = 0;
3691
3692 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3693 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3694 return -ENOMEM;
9d5c8243 3695
32e7bfc4 3696 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3697 struct netdev_hw_addr *ha;
32e7bfc4
JP
3698
3699 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3700 if (!rar_entries)
3701 break;
26ad9178 3702 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
3703 rar_entries--,
3704 vfn);
68d480c4 3705 count++;
ff41f8dc
AD
3706 }
3707 }
3708 /* write the addresses in reverse order to avoid write combining */
3709 for (; rar_entries > 0 ; rar_entries--) {
3710 wr32(E1000_RAH(rar_entries), 0);
3711 wr32(E1000_RAL(rar_entries), 0);
3712 }
3713 wrfl();
3714
68d480c4
AD
3715 return count;
3716}
3717
3718/**
b980ac18
JK
3719 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720 * @netdev: network interface device structure
68d480c4 3721 *
b980ac18
JK
3722 * The set_rx_mode entry point is called whenever the unicast or multicast
3723 * address lists or the network interface flags are updated. This routine is
3724 * responsible for configuring the hardware for proper unicast, multicast,
3725 * promiscuous mode, and all-multi behavior.
68d480c4
AD
3726 **/
3727static void igb_set_rx_mode(struct net_device *netdev)
3728{
3729 struct igb_adapter *adapter = netdev_priv(netdev);
3730 struct e1000_hw *hw = &adapter->hw;
3731 unsigned int vfn = adapter->vfs_allocated_count;
3732 u32 rctl, vmolr = 0;
3733 int count;
3734
3735 /* Check for Promiscuous and All Multicast modes */
3736 rctl = rd32(E1000_RCTL);
3737
3738 /* clear the effected bits */
3739 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741 if (netdev->flags & IFF_PROMISC) {
6f3dc319 3742 /* retain VLAN HW filtering if in VT mode */
7e44892c 3743 if (adapter->vfs_allocated_count)
6f3dc319 3744 rctl |= E1000_RCTL_VFE;
68d480c4
AD
3745 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3746 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3747 } else {
3748 if (netdev->flags & IFF_ALLMULTI) {
3749 rctl |= E1000_RCTL_MPE;
3750 vmolr |= E1000_VMOLR_MPME;
3751 } else {
b980ac18 3752 /* Write addresses to the MTA, if the attempt fails
25985edc 3753 * then we should just turn on promiscuous mode so
68d480c4
AD
3754 * that we can at least receive multicast traffic
3755 */
3756 count = igb_write_mc_addr_list(netdev);
3757 if (count < 0) {
3758 rctl |= E1000_RCTL_MPE;
3759 vmolr |= E1000_VMOLR_MPME;
3760 } else if (count) {
3761 vmolr |= E1000_VMOLR_ROMPE;
3762 }
3763 }
b980ac18 3764 /* Write addresses to available RAR registers, if there is not
68d480c4 3765 * sufficient space to store all the addresses then enable
25985edc 3766 * unicast promiscuous mode
68d480c4
AD
3767 */
3768 count = igb_write_uc_addr_list(netdev);
3769 if (count < 0) {
3770 rctl |= E1000_RCTL_UPE;
3771 vmolr |= E1000_VMOLR_ROPE;
3772 }
3773 rctl |= E1000_RCTL_VFE;
28fc06f5 3774 }
68d480c4 3775 wr32(E1000_RCTL, rctl);
28fc06f5 3776
b980ac18 3777 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
3778 * the VMOLR to enable the appropriate modes. Without this workaround
3779 * we will have issues with VLAN tag stripping not being done for frames
3780 * that are only arriving because we are the default pool
3781 */
f96a8a0b 3782 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3783 return;
9d5c8243 3784
68d480c4 3785 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 3786 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
68d480c4 3787 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3788 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3789}
3790
13800469
GR
3791static void igb_check_wvbr(struct igb_adapter *adapter)
3792{
3793 struct e1000_hw *hw = &adapter->hw;
3794 u32 wvbr = 0;
3795
3796 switch (hw->mac.type) {
3797 case e1000_82576:
3798 case e1000_i350:
3799 if (!(wvbr = rd32(E1000_WVBR)))
3800 return;
3801 break;
3802 default:
3803 break;
3804 }
3805
3806 adapter->wvbr |= wvbr;
3807}
3808
3809#define IGB_STAGGERED_QUEUE_OFFSET 8
3810
3811static void igb_spoof_check(struct igb_adapter *adapter)
3812{
3813 int j;
3814
3815 if (!adapter->wvbr)
3816 return;
3817
3818 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3819 if (adapter->wvbr & (1 << j) ||
3820 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3821 dev_warn(&adapter->pdev->dev,
3822 "Spoof event(s) detected on VF %d\n", j);
3823 adapter->wvbr &=
3824 ~((1 << j) |
3825 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3826 }
3827 }
3828}
3829
9d5c8243 3830/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
3831 * the phy
3832 */
9d5c8243
AK
3833static void igb_update_phy_info(unsigned long data)
3834{
3835 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3836 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3837}
3838
4d6b725e 3839/**
b980ac18
JK
3840 * igb_has_link - check shared code for link and determine up/down
3841 * @adapter: pointer to driver private info
4d6b725e 3842 **/
3145535a 3843bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3844{
3845 struct e1000_hw *hw = &adapter->hw;
3846 bool link_active = false;
4d6b725e
AD
3847
3848 /* get_link_status is set on LSC (link status) interrupt or
3849 * rx sequence error interrupt. get_link_status will stay
3850 * false until the e1000_check_for_link establishes link
3851 * for copper adapters ONLY
3852 */
3853 switch (hw->phy.media_type) {
3854 case e1000_media_type_copper:
e5c3370f
AA
3855 if (!hw->mac.get_link_status)
3856 return true;
4d6b725e 3857 case e1000_media_type_internal_serdes:
e5c3370f
AA
3858 hw->mac.ops.check_for_link(hw);
3859 link_active = !hw->mac.get_link_status;
4d6b725e
AD
3860 break;
3861 default:
3862 case e1000_media_type_unknown:
3863 break;
3864 }
3865
3866 return link_active;
3867}
3868
563988dc
SA
3869static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3870{
3871 bool ret = false;
3872 u32 ctrl_ext, thstat;
3873
f96a8a0b 3874 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3875 if (hw->mac.type == e1000_i350) {
3876 thstat = rd32(E1000_THSTAT);
3877 ctrl_ext = rd32(E1000_CTRL_EXT);
3878
3879 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 3880 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 3881 ret = !!(thstat & event);
563988dc
SA
3882 }
3883
3884 return ret;
3885}
3886
9d5c8243 3887/**
b980ac18
JK
3888 * igb_watchdog - Timer Call-back
3889 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
3890 **/
3891static void igb_watchdog(unsigned long data)
3892{
3893 struct igb_adapter *adapter = (struct igb_adapter *)data;
3894 /* Do the rest outside of interrupt context */
3895 schedule_work(&adapter->watchdog_task);
3896}
3897
3898static void igb_watchdog_task(struct work_struct *work)
3899{
3900 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
3901 struct igb_adapter,
3902 watchdog_task);
9d5c8243 3903 struct e1000_hw *hw = &adapter->hw;
c0ba4778 3904 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 3905 struct net_device *netdev = adapter->netdev;
563988dc 3906 u32 link;
7a6ea550 3907 int i;
9d5c8243 3908
4d6b725e 3909 link = igb_has_link(adapter);
9d5c8243 3910 if (link) {
749ab2cd
YZ
3911 /* Cancel scheduled suspend requests. */
3912 pm_runtime_resume(netdev->dev.parent);
3913
9d5c8243
AK
3914 if (!netif_carrier_ok(netdev)) {
3915 u32 ctrl;
330a6d6a 3916 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
3917 &adapter->link_speed,
3918 &adapter->link_duplex);
9d5c8243
AK
3919
3920 ctrl = rd32(E1000_CTRL);
527d47c1 3921 /* Links status message must follow this format */
876d2d6f
JK
3922 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3923 "Duplex, Flow Control: %s\n",
559e9c49
AD
3924 netdev->name,
3925 adapter->link_speed,
3926 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3927 "Full" : "Half",
3928 (ctrl & E1000_CTRL_TFCE) &&
3929 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3930 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3931 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3932
c0ba4778
KS
3933 /* check if SmartSpeed worked */
3934 igb_check_downshift(hw);
3935 if (phy->speed_downgraded)
3936 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3937
563988dc 3938 /* check for thermal sensor event */
876d2d6f
JK
3939 if (igb_thermal_sensor_event(hw,
3940 E1000_THSTAT_LINK_THROTTLE)) {
3941 netdev_info(netdev, "The network adapter link "
3942 "speed was downshifted because it "
3943 "overheated\n");
7ef5ed1c 3944 }
563988dc 3945
d07f3e37 3946 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3947 adapter->tx_timeout_factor = 1;
3948 switch (adapter->link_speed) {
3949 case SPEED_10:
9d5c8243
AK
3950 adapter->tx_timeout_factor = 14;
3951 break;
3952 case SPEED_100:
9d5c8243
AK
3953 /* maybe add some timeout factor ? */
3954 break;
3955 }
3956
3957 netif_carrier_on(netdev);
9d5c8243 3958
4ae196df 3959 igb_ping_all_vfs(adapter);
17dc566c 3960 igb_check_vf_rate_limit(adapter);
4ae196df 3961
4b1a9877 3962 /* link state has changed, schedule phy info update */
9d5c8243
AK
3963 if (!test_bit(__IGB_DOWN, &adapter->state))
3964 mod_timer(&adapter->phy_info_timer,
3965 round_jiffies(jiffies + 2 * HZ));
3966 }
3967 } else {
3968 if (netif_carrier_ok(netdev)) {
3969 adapter->link_speed = 0;
3970 adapter->link_duplex = 0;
563988dc
SA
3971
3972 /* check for thermal sensor event */
876d2d6f
JK
3973 if (igb_thermal_sensor_event(hw,
3974 E1000_THSTAT_PWR_DOWN)) {
3975 netdev_err(netdev, "The network adapter was "
3976 "stopped because it overheated\n");
7ef5ed1c 3977 }
563988dc 3978
527d47c1
AD
3979 /* Links status message must follow this format */
3980 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3981 netdev->name);
9d5c8243 3982 netif_carrier_off(netdev);
4b1a9877 3983
4ae196df
AD
3984 igb_ping_all_vfs(adapter);
3985
4b1a9877 3986 /* link state has changed, schedule phy info update */
9d5c8243
AK
3987 if (!test_bit(__IGB_DOWN, &adapter->state))
3988 mod_timer(&adapter->phy_info_timer,
3989 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3990
3991 pm_schedule_suspend(netdev->dev.parent,
3992 MSEC_PER_SEC * 5);
9d5c8243
AK
3993 }
3994 }
3995
12dcd86b
ED
3996 spin_lock(&adapter->stats64_lock);
3997 igb_update_stats(adapter, &adapter->stats64);
3998 spin_unlock(&adapter->stats64_lock);
9d5c8243 3999
dbabb065 4000 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4001 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4002 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4003 /* We've lost link, so the controller stops DMA,
4004 * but we've got queued Tx work that's never going
4005 * to get done, so reset controller to flush Tx.
b980ac18
JK
4006 * (Do the reset outside of interrupt context).
4007 */
dbabb065
AD
4008 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4009 adapter->tx_timeout_count++;
4010 schedule_work(&adapter->reset_task);
4011 /* return immediately since reset is imminent */
4012 return;
4013 }
9d5c8243 4014 }
9d5c8243 4015
dbabb065 4016 /* Force detection of hung controller every watchdog period */
6d095fa8 4017 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4018 }
f7ba205e 4019
b980ac18 4020 /* Cause software interrupt to ensure Rx ring is cleaned */
7a6ea550 4021 if (adapter->msix_entries) {
047e0030 4022 u32 eics = 0;
0d1ae7f4
AD
4023 for (i = 0; i < adapter->num_q_vectors; i++)
4024 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4025 wr32(E1000_EICS, eics);
4026 } else {
4027 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4028 }
9d5c8243 4029
13800469 4030 igb_spoof_check(adapter);
fc580751 4031 igb_ptp_rx_hang(adapter);
13800469 4032
9d5c8243
AK
4033 /* Reset the timer */
4034 if (!test_bit(__IGB_DOWN, &adapter->state))
4035 mod_timer(&adapter->watchdog_timer,
4036 round_jiffies(jiffies + 2 * HZ));
4037}
4038
4039enum latency_range {
4040 lowest_latency = 0,
4041 low_latency = 1,
4042 bulk_latency = 2,
4043 latency_invalid = 255
4044};
4045
6eb5a7f1 4046/**
b980ac18
JK
4047 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4048 * @q_vector: pointer to q_vector
6eb5a7f1 4049 *
b980ac18
JK
4050 * Stores a new ITR value based on strictly on packet size. This
4051 * algorithm is less sophisticated than that used in igb_update_itr,
4052 * due to the difficulty of synchronizing statistics across multiple
4053 * receive rings. The divisors and thresholds used by this function
4054 * were determined based on theoretical maximum wire speed and testing
4055 * data, in order to minimize response time while increasing bulk
4056 * throughput.
4057 * This functionality is controlled by the InterruptThrottleRate module
4058 * parameter (see igb_param.c)
4059 * NOTE: This function is called only when operating in a multiqueue
4060 * receive environment.
6eb5a7f1 4061 **/
047e0030 4062static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4063{
047e0030 4064 int new_val = q_vector->itr_val;
6eb5a7f1 4065 int avg_wire_size = 0;
047e0030 4066 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4067 unsigned int packets;
9d5c8243 4068
6eb5a7f1
AD
4069 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4070 * ints/sec - ITR timer value of 120 ticks.
4071 */
4072 if (adapter->link_speed != SPEED_1000) {
0ba82994 4073 new_val = IGB_4K_ITR;
6eb5a7f1 4074 goto set_itr_val;
9d5c8243 4075 }
047e0030 4076
0ba82994
AD
4077 packets = q_vector->rx.total_packets;
4078 if (packets)
4079 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4080
0ba82994
AD
4081 packets = q_vector->tx.total_packets;
4082 if (packets)
4083 avg_wire_size = max_t(u32, avg_wire_size,
4084 q_vector->tx.total_bytes / packets);
047e0030
AD
4085
4086 /* if avg_wire_size isn't set no work was done */
4087 if (!avg_wire_size)
4088 goto clear_counts;
9d5c8243 4089
6eb5a7f1
AD
4090 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4091 avg_wire_size += 24;
4092
4093 /* Don't starve jumbo frames */
4094 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4095
6eb5a7f1
AD
4096 /* Give a little boost to mid-size frames */
4097 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4098 new_val = avg_wire_size / 3;
4099 else
4100 new_val = avg_wire_size / 2;
9d5c8243 4101
0ba82994
AD
4102 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4103 if (new_val < IGB_20K_ITR &&
4104 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4105 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4106 new_val = IGB_20K_ITR;
abe1c363 4107
6eb5a7f1 4108set_itr_val:
047e0030
AD
4109 if (new_val != q_vector->itr_val) {
4110 q_vector->itr_val = new_val;
4111 q_vector->set_itr = 1;
9d5c8243 4112 }
6eb5a7f1 4113clear_counts:
0ba82994
AD
4114 q_vector->rx.total_bytes = 0;
4115 q_vector->rx.total_packets = 0;
4116 q_vector->tx.total_bytes = 0;
4117 q_vector->tx.total_packets = 0;
9d5c8243
AK
4118}
4119
4120/**
b980ac18
JK
4121 * igb_update_itr - update the dynamic ITR value based on statistics
4122 * @q_vector: pointer to q_vector
4123 * @ring_container: ring info to update the itr for
4124 *
4125 * Stores a new ITR value based on packets and byte
4126 * counts during the last interrupt. The advantage of per interrupt
4127 * computation is faster updates and more accurate ITR for the current
4128 * traffic pattern. Constants in this function were computed
4129 * based on theoretical maximum wire speed and thresholds were set based
4130 * on testing data as well as attempting to minimize response time
4131 * while increasing bulk throughput.
4132 * this functionality is controlled by the InterruptThrottleRate module
4133 * parameter (see igb_param.c)
4134 * NOTE: These calculations are only valid when operating in a single-
4135 * queue environment.
9d5c8243 4136 **/
0ba82994
AD
4137static void igb_update_itr(struct igb_q_vector *q_vector,
4138 struct igb_ring_container *ring_container)
9d5c8243 4139{
0ba82994
AD
4140 unsigned int packets = ring_container->total_packets;
4141 unsigned int bytes = ring_container->total_bytes;
4142 u8 itrval = ring_container->itr;
9d5c8243 4143
0ba82994 4144 /* no packets, exit with status unchanged */
9d5c8243 4145 if (packets == 0)
0ba82994 4146 return;
9d5c8243 4147
0ba82994 4148 switch (itrval) {
9d5c8243
AK
4149 case lowest_latency:
4150 /* handle TSO and jumbo frames */
4151 if (bytes/packets > 8000)
0ba82994 4152 itrval = bulk_latency;
9d5c8243 4153 else if ((packets < 5) && (bytes > 512))
0ba82994 4154 itrval = low_latency;
9d5c8243
AK
4155 break;
4156 case low_latency: /* 50 usec aka 20000 ints/s */
4157 if (bytes > 10000) {
4158 /* this if handles the TSO accounting */
4159 if (bytes/packets > 8000) {
0ba82994 4160 itrval = bulk_latency;
9d5c8243 4161 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 4162 itrval = bulk_latency;
9d5c8243 4163 } else if ((packets > 35)) {
0ba82994 4164 itrval = lowest_latency;
9d5c8243
AK
4165 }
4166 } else if (bytes/packets > 2000) {
0ba82994 4167 itrval = bulk_latency;
9d5c8243 4168 } else if (packets <= 2 && bytes < 512) {
0ba82994 4169 itrval = lowest_latency;
9d5c8243
AK
4170 }
4171 break;
4172 case bulk_latency: /* 250 usec aka 4000 ints/s */
4173 if (bytes > 25000) {
4174 if (packets > 35)
0ba82994 4175 itrval = low_latency;
1e5c3d21 4176 } else if (bytes < 1500) {
0ba82994 4177 itrval = low_latency;
9d5c8243
AK
4178 }
4179 break;
4180 }
4181
0ba82994
AD
4182 /* clear work counters since we have the values we need */
4183 ring_container->total_bytes = 0;
4184 ring_container->total_packets = 0;
4185
4186 /* write updated itr to ring container */
4187 ring_container->itr = itrval;
9d5c8243
AK
4188}
4189
0ba82994 4190static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4191{
0ba82994 4192 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4193 u32 new_itr = q_vector->itr_val;
0ba82994 4194 u8 current_itr = 0;
9d5c8243
AK
4195
4196 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4197 if (adapter->link_speed != SPEED_1000) {
4198 current_itr = 0;
0ba82994 4199 new_itr = IGB_4K_ITR;
9d5c8243
AK
4200 goto set_itr_now;
4201 }
4202
0ba82994
AD
4203 igb_update_itr(q_vector, &q_vector->tx);
4204 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4205
0ba82994 4206 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4207
6eb5a7f1 4208 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4209 if (current_itr == lowest_latency &&
4210 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4211 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4212 current_itr = low_latency;
4213
9d5c8243
AK
4214 switch (current_itr) {
4215 /* counts and packets in update_itr are dependent on these numbers */
4216 case lowest_latency:
0ba82994 4217 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4218 break;
4219 case low_latency:
0ba82994 4220 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4221 break;
4222 case bulk_latency:
0ba82994 4223 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4224 break;
4225 default:
4226 break;
4227 }
4228
4229set_itr_now:
047e0030 4230 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4231 /* this attempts to bias the interrupt rate towards Bulk
4232 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4233 * increasing
4234 */
047e0030 4235 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4236 max((new_itr * q_vector->itr_val) /
4237 (new_itr + (q_vector->itr_val >> 2)),
4238 new_itr) : new_itr;
9d5c8243
AK
4239 /* Don't write the value here; it resets the adapter's
4240 * internal timer, and causes us to delay far longer than
4241 * we should between interrupts. Instead, we write the ITR
4242 * value at the beginning of the next interrupt so the timing
4243 * ends up being correct.
4244 */
047e0030
AD
4245 q_vector->itr_val = new_itr;
4246 q_vector->set_itr = 1;
9d5c8243 4247 }
9d5c8243
AK
4248}
4249
c50b52a0
SH
4250static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4251 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4252{
4253 struct e1000_adv_tx_context_desc *context_desc;
4254 u16 i = tx_ring->next_to_use;
4255
4256 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4257
4258 i++;
4259 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4260
4261 /* set bits to identify this as an advanced context descriptor */
4262 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4263
4264 /* For 82575, context index must be unique per ring. */
866cff06 4265 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4266 mss_l4len_idx |= tx_ring->reg_idx << 4;
4267
4268 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4269 context_desc->seqnum_seed = 0;
4270 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4271 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4272}
4273
7af40ad9
AD
4274static int igb_tso(struct igb_ring *tx_ring,
4275 struct igb_tx_buffer *first,
4276 u8 *hdr_len)
9d5c8243 4277{
7af40ad9 4278 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4279 u32 vlan_macip_lens, type_tucmd;
4280 u32 mss_l4len_idx, l4len;
4281
ed6aa105
AD
4282 if (skb->ip_summed != CHECKSUM_PARTIAL)
4283 return 0;
4284
7d13a7d0
AD
4285 if (!skb_is_gso(skb))
4286 return 0;
9d5c8243
AK
4287
4288 if (skb_header_cloned(skb)) {
7af40ad9 4289 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4290 if (err)
4291 return err;
4292 }
4293
7d13a7d0
AD
4294 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4295 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4296
7af40ad9 4297 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4298 struct iphdr *iph = ip_hdr(skb);
4299 iph->tot_len = 0;
4300 iph->check = 0;
4301 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4302 iph->daddr, 0,
4303 IPPROTO_TCP,
4304 0);
7d13a7d0 4305 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4306 first->tx_flags |= IGB_TX_FLAGS_TSO |
4307 IGB_TX_FLAGS_CSUM |
4308 IGB_TX_FLAGS_IPV4;
8e1e8a47 4309 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4310 ipv6_hdr(skb)->payload_len = 0;
4311 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4312 &ipv6_hdr(skb)->daddr,
4313 0, IPPROTO_TCP, 0);
7af40ad9
AD
4314 first->tx_flags |= IGB_TX_FLAGS_TSO |
4315 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4316 }
4317
7af40ad9 4318 /* compute header lengths */
7d13a7d0
AD
4319 l4len = tcp_hdrlen(skb);
4320 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4321
7af40ad9
AD
4322 /* update gso size and bytecount with header size */
4323 first->gso_segs = skb_shinfo(skb)->gso_segs;
4324 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4325
9d5c8243 4326 /* MSS L4LEN IDX */
7d13a7d0
AD
4327 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4328 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4329
7d13a7d0
AD
4330 /* VLAN MACLEN IPLEN */
4331 vlan_macip_lens = skb_network_header_len(skb);
4332 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4333 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4334
7d13a7d0 4335 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4336
7d13a7d0 4337 return 1;
9d5c8243
AK
4338}
4339
7af40ad9 4340static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4341{
7af40ad9 4342 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4343 u32 vlan_macip_lens = 0;
4344 u32 mss_l4len_idx = 0;
4345 u32 type_tucmd = 0;
9d5c8243 4346
7d13a7d0 4347 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4348 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4349 return;
7d13a7d0
AD
4350 } else {
4351 u8 l4_hdr = 0;
7af40ad9 4352 switch (first->protocol) {
7d13a7d0
AD
4353 case __constant_htons(ETH_P_IP):
4354 vlan_macip_lens |= skb_network_header_len(skb);
4355 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4356 l4_hdr = ip_hdr(skb)->protocol;
4357 break;
4358 case __constant_htons(ETH_P_IPV6):
4359 vlan_macip_lens |= skb_network_header_len(skb);
4360 l4_hdr = ipv6_hdr(skb)->nexthdr;
4361 break;
4362 default:
4363 if (unlikely(net_ratelimit())) {
4364 dev_warn(tx_ring->dev,
b980ac18
JK
4365 "partial checksum but proto=%x!\n",
4366 first->protocol);
fa4a7ef3 4367 }
7d13a7d0
AD
4368 break;
4369 }
fa4a7ef3 4370
7d13a7d0
AD
4371 switch (l4_hdr) {
4372 case IPPROTO_TCP:
4373 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4374 mss_l4len_idx = tcp_hdrlen(skb) <<
4375 E1000_ADVTXD_L4LEN_SHIFT;
4376 break;
4377 case IPPROTO_SCTP:
4378 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4379 mss_l4len_idx = sizeof(struct sctphdr) <<
4380 E1000_ADVTXD_L4LEN_SHIFT;
4381 break;
4382 case IPPROTO_UDP:
4383 mss_l4len_idx = sizeof(struct udphdr) <<
4384 E1000_ADVTXD_L4LEN_SHIFT;
4385 break;
4386 default:
4387 if (unlikely(net_ratelimit())) {
4388 dev_warn(tx_ring->dev,
b980ac18
JK
4389 "partial checksum but l4 proto=%x!\n",
4390 l4_hdr);
44b0cda3 4391 }
7d13a7d0 4392 break;
9d5c8243 4393 }
7af40ad9
AD
4394
4395 /* update TX checksum flag */
4396 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4397 }
9d5c8243 4398
7d13a7d0 4399 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4400 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4401
7d13a7d0 4402 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4403}
4404
1d9daf45
AD
4405#define IGB_SET_FLAG(_input, _flag, _result) \
4406 ((_flag <= _result) ? \
4407 ((u32)(_input & _flag) * (_result / _flag)) : \
4408 ((u32)(_input & _flag) / (_flag / _result)))
4409
4410static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4411{
4412 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4413 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4414 E1000_ADVTXD_DCMD_DEXT |
4415 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4416
4417 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4418 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4419 (E1000_ADVTXD_DCMD_VLE));
4420
4421 /* set segmentation bits for TSO */
4422 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4423 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4424
4425 /* set timestamp bit if present */
1d9daf45
AD
4426 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4427 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4428
1d9daf45
AD
4429 /* insert frame checksum */
4430 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4431
4432 return cmd_type;
4433}
4434
7af40ad9
AD
4435static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4436 union e1000_adv_tx_desc *tx_desc,
4437 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4438{
4439 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4440
1d9daf45
AD
4441 /* 82575 requires a unique index per ring */
4442 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4443 olinfo_status |= tx_ring->reg_idx << 4;
4444
4445 /* insert L4 checksum */
1d9daf45
AD
4446 olinfo_status |= IGB_SET_FLAG(tx_flags,
4447 IGB_TX_FLAGS_CSUM,
4448 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4449
1d9daf45
AD
4450 /* insert IPv4 checksum */
4451 olinfo_status |= IGB_SET_FLAG(tx_flags,
4452 IGB_TX_FLAGS_IPV4,
4453 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4454
7af40ad9 4455 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4456}
4457
7af40ad9
AD
4458static void igb_tx_map(struct igb_ring *tx_ring,
4459 struct igb_tx_buffer *first,
ebe42d16 4460 const u8 hdr_len)
9d5c8243 4461{
7af40ad9 4462 struct sk_buff *skb = first->skb;
c9f14bf3 4463 struct igb_tx_buffer *tx_buffer;
ebe42d16 4464 union e1000_adv_tx_desc *tx_desc;
80d0759e 4465 struct skb_frag_struct *frag;
ebe42d16 4466 dma_addr_t dma;
80d0759e 4467 unsigned int data_len, size;
7af40ad9 4468 u32 tx_flags = first->tx_flags;
1d9daf45 4469 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4470 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4471
4472 tx_desc = IGB_TX_DESC(tx_ring, i);
4473
80d0759e
AD
4474 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4475
4476 size = skb_headlen(skb);
4477 data_len = skb->data_len;
ebe42d16
AD
4478
4479 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4480
80d0759e
AD
4481 tx_buffer = first;
4482
4483 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4484 if (dma_mapping_error(tx_ring->dev, dma))
4485 goto dma_error;
4486
4487 /* record length, and DMA address */
4488 dma_unmap_len_set(tx_buffer, len, size);
4489 dma_unmap_addr_set(tx_buffer, dma, dma);
4490
4491 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4492
ebe42d16
AD
4493 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4494 tx_desc->read.cmd_type_len =
1d9daf45 4495 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4496
4497 i++;
4498 tx_desc++;
4499 if (i == tx_ring->count) {
4500 tx_desc = IGB_TX_DESC(tx_ring, 0);
4501 i = 0;
4502 }
80d0759e 4503 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4504
4505 dma += IGB_MAX_DATA_PER_TXD;
4506 size -= IGB_MAX_DATA_PER_TXD;
4507
ebe42d16
AD
4508 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4509 }
4510
4511 if (likely(!data_len))
4512 break;
2bbfebe2 4513
1d9daf45 4514 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4515
65689fef 4516 i++;
ebe42d16
AD
4517 tx_desc++;
4518 if (i == tx_ring->count) {
4519 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4520 i = 0;
ebe42d16 4521 }
80d0759e 4522 tx_desc->read.olinfo_status = 0;
65689fef 4523
9e903e08 4524 size = skb_frag_size(frag);
ebe42d16
AD
4525 data_len -= size;
4526
4527 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4528 size, DMA_TO_DEVICE);
6366ad33 4529
c9f14bf3 4530 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4531 }
4532
ebe42d16 4533 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4534 cmd_type |= size | IGB_TXD_DCMD;
4535 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4536
80d0759e
AD
4537 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4538
8542db05
AD
4539 /* set the timestamp */
4540 first->time_stamp = jiffies;
4541
b980ac18 4542 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
4543 * are new descriptors to fetch. (Only applicable for weak-ordered
4544 * memory model archs, such as IA-64).
4545 *
4546 * We also need this memory barrier to make certain all of the
4547 * status bits have been updated before next_to_watch is written.
4548 */
4549 wmb();
4550
8542db05 4551 /* set next_to_watch value indicating a packet is present */
ebe42d16 4552 first->next_to_watch = tx_desc;
9d5c8243 4553
ebe42d16
AD
4554 i++;
4555 if (i == tx_ring->count)
4556 i = 0;
6366ad33 4557
ebe42d16 4558 tx_ring->next_to_use = i;
6366ad33 4559
ebe42d16 4560 writel(i, tx_ring->tail);
6366ad33 4561
ebe42d16 4562 /* we need this if more than one processor can write to our tail
b980ac18
JK
4563 * at a time, it synchronizes IO on IA64/Altix systems
4564 */
ebe42d16
AD
4565 mmiowb();
4566
4567 return;
4568
4569dma_error:
4570 dev_err(tx_ring->dev, "TX DMA map failed\n");
4571
4572 /* clear dma mappings for failed tx_buffer_info map */
4573 for (;;) {
c9f14bf3
AD
4574 tx_buffer = &tx_ring->tx_buffer_info[i];
4575 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4576 if (tx_buffer == first)
ebe42d16 4577 break;
a77ff709
NN
4578 if (i == 0)
4579 i = tx_ring->count;
6366ad33 4580 i--;
6366ad33
AD
4581 }
4582
9d5c8243 4583 tx_ring->next_to_use = i;
9d5c8243
AK
4584}
4585
6ad4edfc 4586static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4587{
e694e964
AD
4588 struct net_device *netdev = tx_ring->netdev;
4589
661086df 4590 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4591
9d5c8243
AK
4592 /* Herbert's original patch had:
4593 * smp_mb__after_netif_stop_queue();
b980ac18
JK
4594 * but since that doesn't exist yet, just open code it.
4595 */
9d5c8243
AK
4596 smp_mb();
4597
4598 /* We need to check again in a case another CPU has just
b980ac18
JK
4599 * made room available.
4600 */
c493ea45 4601 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4602 return -EBUSY;
4603
4604 /* A reprieve! */
661086df 4605 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4606
4607 u64_stats_update_begin(&tx_ring->tx_syncp2);
4608 tx_ring->tx_stats.restart_queue2++;
4609 u64_stats_update_end(&tx_ring->tx_syncp2);
4610
9d5c8243
AK
4611 return 0;
4612}
4613
6ad4edfc 4614static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4615{
c493ea45 4616 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4617 return 0;
e694e964 4618 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4619}
4620
cd392f5c
AD
4621netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4622 struct igb_ring *tx_ring)
9d5c8243 4623{
8542db05 4624 struct igb_tx_buffer *first;
ebe42d16 4625 int tso;
91d4ee33 4626 u32 tx_flags = 0;
21ba6fe1 4627 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4628 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4629 u8 hdr_len = 0;
9d5c8243 4630
21ba6fe1
AD
4631 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4632 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 4633 * + 2 desc gap to keep tail from touching head,
9d5c8243 4634 * + 1 desc for context descriptor,
21ba6fe1
AD
4635 * otherwise try next time
4636 */
4637 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4638 unsigned short f;
4639 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4640 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4641 } else {
4642 count += skb_shinfo(skb)->nr_frags;
4643 }
4644
4645 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 4646 /* this is a hard error */
9d5c8243
AK
4647 return NETDEV_TX_BUSY;
4648 }
33af6bcc 4649
7af40ad9
AD
4650 /* record the location of the first descriptor for this packet */
4651 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4652 first->skb = skb;
4653 first->bytecount = skb->len;
4654 first->gso_segs = 1;
4655
b66e2397
MV
4656 skb_tx_timestamp(skb);
4657
b646c22e
AD
4658 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4659 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 4660
b646c22e
AD
4661 if (!(adapter->ptp_tx_skb)) {
4662 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4663 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4664
4665 adapter->ptp_tx_skb = skb_get(skb);
4666 adapter->ptp_tx_start = jiffies;
4667 if (adapter->hw.mac.type == e1000_82576)
4668 schedule_work(&adapter->ptp_tx_work);
4669 }
33af6bcc 4670 }
9d5c8243 4671
eab6d18d 4672 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4673 tx_flags |= IGB_TX_FLAGS_VLAN;
4674 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4675 }
4676
7af40ad9
AD
4677 /* record initial flags and protocol */
4678 first->tx_flags = tx_flags;
4679 first->protocol = protocol;
cdfd01fc 4680
7af40ad9
AD
4681 tso = igb_tso(tx_ring, first, &hdr_len);
4682 if (tso < 0)
7d13a7d0 4683 goto out_drop;
7af40ad9
AD
4684 else if (!tso)
4685 igb_tx_csum(tx_ring, first);
9d5c8243 4686
7af40ad9 4687 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4688
4689 /* Make sure there is space in the ring for the next send. */
21ba6fe1 4690 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
85ad76b2 4691
9d5c8243 4692 return NETDEV_TX_OK;
7d13a7d0
AD
4693
4694out_drop:
7af40ad9
AD
4695 igb_unmap_and_free_tx_resource(tx_ring, first);
4696
7d13a7d0 4697 return NETDEV_TX_OK;
9d5c8243
AK
4698}
4699
1cc3bd87
AD
4700static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4701 struct sk_buff *skb)
4702{
4703 unsigned int r_idx = skb->queue_mapping;
4704
4705 if (r_idx >= adapter->num_tx_queues)
4706 r_idx = r_idx % adapter->num_tx_queues;
4707
4708 return adapter->tx_ring[r_idx];
4709}
4710
cd392f5c
AD
4711static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4712 struct net_device *netdev)
9d5c8243
AK
4713{
4714 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4715
4716 if (test_bit(__IGB_DOWN, &adapter->state)) {
4717 dev_kfree_skb_any(skb);
4718 return NETDEV_TX_OK;
4719 }
4720
4721 if (skb->len <= 0) {
4722 dev_kfree_skb_any(skb);
4723 return NETDEV_TX_OK;
4724 }
4725
b980ac18 4726 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
4727 * in order to meet this minimum size requirement.
4728 */
ea5ceeab
TD
4729 if (unlikely(skb->len < 17)) {
4730 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
4731 return NETDEV_TX_OK;
4732 skb->len = 17;
ea5ceeab 4733 skb_set_tail_pointer(skb, 17);
1cc3bd87 4734 }
9d5c8243 4735
1cc3bd87 4736 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4737}
4738
4739/**
b980ac18
JK
4740 * igb_tx_timeout - Respond to a Tx Hang
4741 * @netdev: network interface device structure
9d5c8243
AK
4742 **/
4743static void igb_tx_timeout(struct net_device *netdev)
4744{
4745 struct igb_adapter *adapter = netdev_priv(netdev);
4746 struct e1000_hw *hw = &adapter->hw;
4747
4748 /* Do the reset outside of interrupt context */
4749 adapter->tx_timeout_count++;
f7ba205e 4750
06218a8d 4751 if (hw->mac.type >= e1000_82580)
55cac248
AD
4752 hw->dev_spec._82575.global_device_reset = true;
4753
9d5c8243 4754 schedule_work(&adapter->reset_task);
265de409
AD
4755 wr32(E1000_EICS,
4756 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4757}
4758
4759static void igb_reset_task(struct work_struct *work)
4760{
4761 struct igb_adapter *adapter;
4762 adapter = container_of(work, struct igb_adapter, reset_task);
4763
c97ec42a
TI
4764 igb_dump(adapter);
4765 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4766 igb_reinit_locked(adapter);
4767}
4768
4769/**
b980ac18
JK
4770 * igb_get_stats64 - Get System Network Statistics
4771 * @netdev: network interface device structure
4772 * @stats: rtnl_link_stats64 pointer
9d5c8243 4773 **/
12dcd86b 4774static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 4775 struct rtnl_link_stats64 *stats)
9d5c8243 4776{
12dcd86b
ED
4777 struct igb_adapter *adapter = netdev_priv(netdev);
4778
4779 spin_lock(&adapter->stats64_lock);
4780 igb_update_stats(adapter, &adapter->stats64);
4781 memcpy(stats, &adapter->stats64, sizeof(*stats));
4782 spin_unlock(&adapter->stats64_lock);
4783
4784 return stats;
9d5c8243
AK
4785}
4786
4787/**
b980ac18
JK
4788 * igb_change_mtu - Change the Maximum Transfer Unit
4789 * @netdev: network interface device structure
4790 * @new_mtu: new value for maximum frame size
9d5c8243 4791 *
b980ac18 4792 * Returns 0 on success, negative on failure
9d5c8243
AK
4793 **/
4794static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4795{
4796 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4797 struct pci_dev *pdev = adapter->pdev;
153285f9 4798 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4799
c809d227 4800 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4801 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4802 return -EINVAL;
4803 }
4804
153285f9 4805#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4806 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4807 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4808 return -EINVAL;
4809 }
4810
4811 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4812 msleep(1);
73cd78f1 4813
9d5c8243
AK
4814 /* igb_down has a dependency on max_frame_size */
4815 adapter->max_frame_size = max_frame;
559e9c49 4816
4c844851
AD
4817 if (netif_running(netdev))
4818 igb_down(adapter);
9d5c8243 4819
090b1795 4820 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4821 netdev->mtu, new_mtu);
4822 netdev->mtu = new_mtu;
4823
4824 if (netif_running(netdev))
4825 igb_up(adapter);
4826 else
4827 igb_reset(adapter);
4828
4829 clear_bit(__IGB_RESETTING, &adapter->state);
4830
4831 return 0;
4832}
4833
4834/**
b980ac18
JK
4835 * igb_update_stats - Update the board statistics counters
4836 * @adapter: board private structure
9d5c8243 4837 **/
12dcd86b
ED
4838void igb_update_stats(struct igb_adapter *adapter,
4839 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4840{
4841 struct e1000_hw *hw = &adapter->hw;
4842 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4843 u32 reg, mpc;
9d5c8243 4844 u16 phy_tmp;
3f9c0164
AD
4845 int i;
4846 u64 bytes, packets;
12dcd86b
ED
4847 unsigned int start;
4848 u64 _bytes, _packets;
9d5c8243
AK
4849
4850#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4851
b980ac18 4852 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
4853 * connection is down.
4854 */
4855 if (adapter->link_speed == 0)
4856 return;
4857 if (pci_channel_offline(pdev))
4858 return;
4859
3f9c0164
AD
4860 bytes = 0;
4861 packets = 0;
4862 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 4863 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 4864 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4865
ae1c07a6
AD
4866 if (rqdpc) {
4867 ring->rx_stats.drops += rqdpc;
4868 net_stats->rx_fifo_errors += rqdpc;
4869 }
12dcd86b
ED
4870
4871 do {
4872 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4873 _bytes = ring->rx_stats.bytes;
4874 _packets = ring->rx_stats.packets;
4875 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4876 bytes += _bytes;
4877 packets += _packets;
3f9c0164
AD
4878 }
4879
128e45eb
AD
4880 net_stats->rx_bytes = bytes;
4881 net_stats->rx_packets = packets;
3f9c0164
AD
4882
4883 bytes = 0;
4884 packets = 0;
4885 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4886 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4887 do {
4888 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4889 _bytes = ring->tx_stats.bytes;
4890 _packets = ring->tx_stats.packets;
4891 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4892 bytes += _bytes;
4893 packets += _packets;
3f9c0164 4894 }
128e45eb
AD
4895 net_stats->tx_bytes = bytes;
4896 net_stats->tx_packets = packets;
3f9c0164
AD
4897
4898 /* read stats registers */
9d5c8243
AK
4899 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4900 adapter->stats.gprc += rd32(E1000_GPRC);
4901 adapter->stats.gorc += rd32(E1000_GORCL);
4902 rd32(E1000_GORCH); /* clear GORCL */
4903 adapter->stats.bprc += rd32(E1000_BPRC);
4904 adapter->stats.mprc += rd32(E1000_MPRC);
4905 adapter->stats.roc += rd32(E1000_ROC);
4906
4907 adapter->stats.prc64 += rd32(E1000_PRC64);
4908 adapter->stats.prc127 += rd32(E1000_PRC127);
4909 adapter->stats.prc255 += rd32(E1000_PRC255);
4910 adapter->stats.prc511 += rd32(E1000_PRC511);
4911 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4912 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4913 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4914 adapter->stats.sec += rd32(E1000_SEC);
4915
fa3d9a6d
MW
4916 mpc = rd32(E1000_MPC);
4917 adapter->stats.mpc += mpc;
4918 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4919 adapter->stats.scc += rd32(E1000_SCC);
4920 adapter->stats.ecol += rd32(E1000_ECOL);
4921 adapter->stats.mcc += rd32(E1000_MCC);
4922 adapter->stats.latecol += rd32(E1000_LATECOL);
4923 adapter->stats.dc += rd32(E1000_DC);
4924 adapter->stats.rlec += rd32(E1000_RLEC);
4925 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4926 adapter->stats.xontxc += rd32(E1000_XONTXC);
4927 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4928 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4929 adapter->stats.fcruc += rd32(E1000_FCRUC);
4930 adapter->stats.gptc += rd32(E1000_GPTC);
4931 adapter->stats.gotc += rd32(E1000_GOTCL);
4932 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4933 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4934 adapter->stats.ruc += rd32(E1000_RUC);
4935 adapter->stats.rfc += rd32(E1000_RFC);
4936 adapter->stats.rjc += rd32(E1000_RJC);
4937 adapter->stats.tor += rd32(E1000_TORH);
4938 adapter->stats.tot += rd32(E1000_TOTH);
4939 adapter->stats.tpr += rd32(E1000_TPR);
4940
4941 adapter->stats.ptc64 += rd32(E1000_PTC64);
4942 adapter->stats.ptc127 += rd32(E1000_PTC127);
4943 adapter->stats.ptc255 += rd32(E1000_PTC255);
4944 adapter->stats.ptc511 += rd32(E1000_PTC511);
4945 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4946 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4947
4948 adapter->stats.mptc += rd32(E1000_MPTC);
4949 adapter->stats.bptc += rd32(E1000_BPTC);
4950
2d0b0f69
NN
4951 adapter->stats.tpt += rd32(E1000_TPT);
4952 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4953
4954 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4955 /* read internal phy specific stats */
4956 reg = rd32(E1000_CTRL_EXT);
4957 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4958 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
4959
4960 /* this stat has invalid values on i210/i211 */
4961 if ((hw->mac.type != e1000_i210) &&
4962 (hw->mac.type != e1000_i211))
4963 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
4964 }
4965
9d5c8243
AK
4966 adapter->stats.tsctc += rd32(E1000_TSCTC);
4967 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4968
4969 adapter->stats.iac += rd32(E1000_IAC);
4970 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4971 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4972 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4973 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4974 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4975 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4976 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4977 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4978
4979 /* Fill out the OS statistics structure */
128e45eb
AD
4980 net_stats->multicast = adapter->stats.mprc;
4981 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4982
4983 /* Rx Errors */
4984
4985 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
4986 * our own version based on RUC and ROC
4987 */
128e45eb 4988 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4989 adapter->stats.crcerrs + adapter->stats.algnerrc +
4990 adapter->stats.ruc + adapter->stats.roc +
4991 adapter->stats.cexterr;
128e45eb
AD
4992 net_stats->rx_length_errors = adapter->stats.ruc +
4993 adapter->stats.roc;
4994 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4995 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4996 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4997
4998 /* Tx Errors */
128e45eb
AD
4999 net_stats->tx_errors = adapter->stats.ecol +
5000 adapter->stats.latecol;
5001 net_stats->tx_aborted_errors = adapter->stats.ecol;
5002 net_stats->tx_window_errors = adapter->stats.latecol;
5003 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5004
5005 /* Tx Dropped needs to be maintained elsewhere */
5006
5007 /* Phy Stats */
5008 if (hw->phy.media_type == e1000_media_type_copper) {
5009 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 5010 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
5011 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5012 adapter->phy_stats.idle_errors += phy_tmp;
5013 }
5014 }
5015
5016 /* Management Stats */
5017 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5018 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5019 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5020
5021 /* OS2BMC Stats */
5022 reg = rd32(E1000_MANC);
5023 if (reg & E1000_MANC_EN_BMC2OS) {
5024 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5025 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5026 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5027 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5028 }
9d5c8243
AK
5029}
5030
9d5c8243
AK
5031static irqreturn_t igb_msix_other(int irq, void *data)
5032{
047e0030 5033 struct igb_adapter *adapter = data;
9d5c8243 5034 struct e1000_hw *hw = &adapter->hw;
844290e5 5035 u32 icr = rd32(E1000_ICR);
844290e5 5036 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5037
7f081d40
AD
5038 if (icr & E1000_ICR_DRSTA)
5039 schedule_work(&adapter->reset_task);
5040
047e0030 5041 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5042 /* HW is reporting DMA is out of sync */
5043 adapter->stats.doosync++;
13800469
GR
5044 /* The DMA Out of Sync is also indication of a spoof event
5045 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5046 * see if it is really a spoof event.
5047 */
13800469 5048 igb_check_wvbr(adapter);
dda0e083 5049 }
eebbbdba 5050
4ae196df
AD
5051 /* Check for a mailbox event */
5052 if (icr & E1000_ICR_VMMB)
5053 igb_msg_task(adapter);
5054
5055 if (icr & E1000_ICR_LSC) {
5056 hw->mac.get_link_status = 1;
5057 /* guard against interrupt when we're going down */
5058 if (!test_bit(__IGB_DOWN, &adapter->state))
5059 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5060 }
5061
1f6e8178
MV
5062 if (icr & E1000_ICR_TS) {
5063 u32 tsicr = rd32(E1000_TSICR);
5064
5065 if (tsicr & E1000_TSICR_TXTS) {
5066 /* acknowledge the interrupt */
5067 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5068 /* retrieve hardware timestamp */
5069 schedule_work(&adapter->ptp_tx_work);
5070 }
5071 }
1f6e8178 5072
844290e5 5073 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5074
5075 return IRQ_HANDLED;
5076}
5077
047e0030 5078static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5079{
26b39276 5080 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5081 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5082
047e0030
AD
5083 if (!q_vector->set_itr)
5084 return;
73cd78f1 5085
047e0030
AD
5086 if (!itr_val)
5087 itr_val = 0x4;
661086df 5088
26b39276
AD
5089 if (adapter->hw.mac.type == e1000_82575)
5090 itr_val |= itr_val << 16;
661086df 5091 else
0ba82994 5092 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5093
047e0030
AD
5094 writel(itr_val, q_vector->itr_register);
5095 q_vector->set_itr = 0;
6eb5a7f1
AD
5096}
5097
047e0030 5098static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5099{
047e0030 5100 struct igb_q_vector *q_vector = data;
9d5c8243 5101
047e0030
AD
5102 /* Write the ITR value calculated from the previous interrupt. */
5103 igb_write_itr(q_vector);
9d5c8243 5104
047e0030 5105 napi_schedule(&q_vector->napi);
844290e5 5106
047e0030 5107 return IRQ_HANDLED;
fe4506b6
JC
5108}
5109
421e02f0 5110#ifdef CONFIG_IGB_DCA
6a05004a
AD
5111static void igb_update_tx_dca(struct igb_adapter *adapter,
5112 struct igb_ring *tx_ring,
5113 int cpu)
5114{
5115 struct e1000_hw *hw = &adapter->hw;
5116 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5117
5118 if (hw->mac.type != e1000_82575)
5119 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5120
b980ac18 5121 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5122 * DCA is enabled. This is due to a known issue in some chipsets
5123 * which will cause the DCA tag to be cleared.
5124 */
5125 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5126 E1000_DCA_TXCTRL_DATA_RRO_EN |
5127 E1000_DCA_TXCTRL_DESC_DCA_EN;
5128
5129 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5130}
5131
5132static void igb_update_rx_dca(struct igb_adapter *adapter,
5133 struct igb_ring *rx_ring,
5134 int cpu)
5135{
5136 struct e1000_hw *hw = &adapter->hw;
5137 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5138
5139 if (hw->mac.type != e1000_82575)
5140 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5141
b980ac18 5142 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5143 * DCA is enabled. This is due to a known issue in some chipsets
5144 * which will cause the DCA tag to be cleared.
5145 */
5146 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5147 E1000_DCA_RXCTRL_DESC_DCA_EN;
5148
5149 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5150}
5151
047e0030 5152static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5153{
047e0030 5154 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5155 int cpu = get_cpu();
fe4506b6 5156
047e0030
AD
5157 if (q_vector->cpu == cpu)
5158 goto out_no_update;
5159
6a05004a
AD
5160 if (q_vector->tx.ring)
5161 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5162
5163 if (q_vector->rx.ring)
5164 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5165
047e0030
AD
5166 q_vector->cpu = cpu;
5167out_no_update:
fe4506b6
JC
5168 put_cpu();
5169}
5170
5171static void igb_setup_dca(struct igb_adapter *adapter)
5172{
7e0e99ef 5173 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5174 int i;
5175
7dfc16fa 5176 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5177 return;
5178
7e0e99ef
AD
5179 /* Always use CB2 mode, difference is masked in the CB driver. */
5180 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5181
047e0030 5182 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5183 adapter->q_vector[i]->cpu = -1;
5184 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5185 }
5186}
5187
5188static int __igb_notify_dca(struct device *dev, void *data)
5189{
5190 struct net_device *netdev = dev_get_drvdata(dev);
5191 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5192 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5193 struct e1000_hw *hw = &adapter->hw;
5194 unsigned long event = *(unsigned long *)data;
5195
5196 switch (event) {
5197 case DCA_PROVIDER_ADD:
5198 /* if already enabled, don't do it again */
7dfc16fa 5199 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5200 break;
fe4506b6 5201 if (dca_add_requester(dev) == 0) {
bbd98fe4 5202 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5203 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5204 igb_setup_dca(adapter);
5205 break;
5206 }
5207 /* Fall Through since DCA is disabled. */
5208 case DCA_PROVIDER_REMOVE:
7dfc16fa 5209 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5210 /* without this a class_device is left
b980ac18
JK
5211 * hanging around in the sysfs model
5212 */
fe4506b6 5213 dca_remove_requester(dev);
090b1795 5214 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5215 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5216 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5217 }
5218 break;
5219 }
bbd98fe4 5220
fe4506b6 5221 return 0;
9d5c8243
AK
5222}
5223
fe4506b6 5224static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5225 void *p)
fe4506b6
JC
5226{
5227 int ret_val;
5228
5229 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5230 __igb_notify_dca);
fe4506b6
JC
5231
5232 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5233}
421e02f0 5234#endif /* CONFIG_IGB_DCA */
9d5c8243 5235
0224d663
GR
5236#ifdef CONFIG_PCI_IOV
5237static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5238{
5239 unsigned char mac_addr[ETH_ALEN];
0224d663 5240
5ac6f91d 5241 eth_zero_addr(mac_addr);
0224d663
GR
5242 igb_set_vf_mac(adapter, vf, mac_addr);
5243
70ea4783
LL
5244 /* By default spoof check is enabled for all VFs */
5245 adapter->vf_data[vf].spoofchk_enabled = true;
5246
f557147c 5247 return 0;
0224d663
GR
5248}
5249
0224d663 5250#endif
4ae196df
AD
5251static void igb_ping_all_vfs(struct igb_adapter *adapter)
5252{
5253 struct e1000_hw *hw = &adapter->hw;
5254 u32 ping;
5255 int i;
5256
5257 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5258 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5259 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5260 ping |= E1000_VT_MSGTYPE_CTS;
5261 igb_write_mbx(hw, &ping, 1, i);
5262 }
5263}
5264
7d5753f0
AD
5265static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5266{
5267 struct e1000_hw *hw = &adapter->hw;
5268 u32 vmolr = rd32(E1000_VMOLR(vf));
5269 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5270
d85b9004 5271 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5272 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5273 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5274
5275 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5276 vmolr |= E1000_VMOLR_MPME;
d85b9004 5277 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5278 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5279 } else {
b980ac18 5280 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5281 * flag we need to write the hashes to the MTA as this step
5282 * was previously skipped
5283 */
5284 if (vf_data->num_vf_mc_hashes > 30) {
5285 vmolr |= E1000_VMOLR_MPME;
5286 } else if (vf_data->num_vf_mc_hashes) {
5287 int j;
5288 vmolr |= E1000_VMOLR_ROMPE;
5289 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5290 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5291 }
5292 }
5293
5294 wr32(E1000_VMOLR(vf), vmolr);
5295
5296 /* there are flags left unprocessed, likely not supported */
5297 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5298 return -EINVAL;
5299
5300 return 0;
7d5753f0
AD
5301}
5302
4ae196df
AD
5303static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5304 u32 *msgbuf, u32 vf)
5305{
5306 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5307 u16 *hash_list = (u16 *)&msgbuf[1];
5308 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5309 int i;
5310
7d5753f0 5311 /* salt away the number of multicast addresses assigned
4ae196df
AD
5312 * to this VF for later use to restore when the PF multi cast
5313 * list changes
5314 */
5315 vf_data->num_vf_mc_hashes = n;
5316
7d5753f0
AD
5317 /* only up to 30 hash values supported */
5318 if (n > 30)
5319 n = 30;
5320
5321 /* store the hashes for later use */
4ae196df 5322 for (i = 0; i < n; i++)
a419aef8 5323 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5324
5325 /* Flush and reset the mta with the new values */
ff41f8dc 5326 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5327
5328 return 0;
5329}
5330
5331static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5332{
5333 struct e1000_hw *hw = &adapter->hw;
5334 struct vf_data_storage *vf_data;
5335 int i, j;
5336
5337 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5338 u32 vmolr = rd32(E1000_VMOLR(i));
5339 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5340
4ae196df 5341 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5342
5343 if ((vf_data->num_vf_mc_hashes > 30) ||
5344 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5345 vmolr |= E1000_VMOLR_MPME;
5346 } else if (vf_data->num_vf_mc_hashes) {
5347 vmolr |= E1000_VMOLR_ROMPE;
5348 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5349 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5350 }
5351 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5352 }
5353}
5354
5355static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5356{
5357 struct e1000_hw *hw = &adapter->hw;
5358 u32 pool_mask, reg, vid;
5359 int i;
5360
5361 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5362
5363 /* Find the vlan filter for this id */
5364 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5365 reg = rd32(E1000_VLVF(i));
5366
5367 /* remove the vf from the pool */
5368 reg &= ~pool_mask;
5369
5370 /* if pool is empty then remove entry from vfta */
5371 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5372 (reg & E1000_VLVF_VLANID_ENABLE)) {
5373 reg = 0;
5374 vid = reg & E1000_VLVF_VLANID_MASK;
5375 igb_vfta_set(hw, vid, false);
5376 }
5377
5378 wr32(E1000_VLVF(i), reg);
5379 }
ae641bdc
AD
5380
5381 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5382}
5383
5384static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5385{
5386 struct e1000_hw *hw = &adapter->hw;
5387 u32 reg, i;
5388
51466239
AD
5389 /* The vlvf table only exists on 82576 hardware and newer */
5390 if (hw->mac.type < e1000_82576)
5391 return -1;
5392
5393 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5394 if (!adapter->vfs_allocated_count)
5395 return -1;
5396
5397 /* Find the vlan filter for this id */
5398 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5399 reg = rd32(E1000_VLVF(i));
5400 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5401 vid == (reg & E1000_VLVF_VLANID_MASK))
5402 break;
5403 }
5404
5405 if (add) {
5406 if (i == E1000_VLVF_ARRAY_SIZE) {
5407 /* Did not find a matching VLAN ID entry that was
5408 * enabled. Search for a free filter entry, i.e.
5409 * one without the enable bit set
5410 */
5411 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5412 reg = rd32(E1000_VLVF(i));
5413 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5414 break;
5415 }
5416 }
5417 if (i < E1000_VLVF_ARRAY_SIZE) {
5418 /* Found an enabled/available entry */
5419 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5420
5421 /* if !enabled we need to set this up in vfta */
5422 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5423 /* add VID to filter table */
5424 igb_vfta_set(hw, vid, true);
4ae196df
AD
5425 reg |= E1000_VLVF_VLANID_ENABLE;
5426 }
cad6d05f
AD
5427 reg &= ~E1000_VLVF_VLANID_MASK;
5428 reg |= vid;
4ae196df 5429 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5430
5431 /* do not modify RLPML for PF devices */
5432 if (vf >= adapter->vfs_allocated_count)
5433 return 0;
5434
5435 if (!adapter->vf_data[vf].vlans_enabled) {
5436 u32 size;
5437 reg = rd32(E1000_VMOLR(vf));
5438 size = reg & E1000_VMOLR_RLPML_MASK;
5439 size += 4;
5440 reg &= ~E1000_VMOLR_RLPML_MASK;
5441 reg |= size;
5442 wr32(E1000_VMOLR(vf), reg);
5443 }
ae641bdc 5444
51466239 5445 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5446 }
5447 } else {
5448 if (i < E1000_VLVF_ARRAY_SIZE) {
5449 /* remove vf from the pool */
5450 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5451 /* if pool is empty then remove entry from vfta */
5452 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5453 reg = 0;
5454 igb_vfta_set(hw, vid, false);
5455 }
5456 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5457
5458 /* do not modify RLPML for PF devices */
5459 if (vf >= adapter->vfs_allocated_count)
5460 return 0;
5461
5462 adapter->vf_data[vf].vlans_enabled--;
5463 if (!adapter->vf_data[vf].vlans_enabled) {
5464 u32 size;
5465 reg = rd32(E1000_VMOLR(vf));
5466 size = reg & E1000_VMOLR_RLPML_MASK;
5467 size -= 4;
5468 reg &= ~E1000_VMOLR_RLPML_MASK;
5469 reg |= size;
5470 wr32(E1000_VMOLR(vf), reg);
5471 }
4ae196df
AD
5472 }
5473 }
8151d294
WM
5474 return 0;
5475}
5476
5477static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5478{
5479 struct e1000_hw *hw = &adapter->hw;
5480
5481 if (vid)
5482 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5483 else
5484 wr32(E1000_VMVIR(vf), 0);
5485}
5486
5487static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5488 int vf, u16 vlan, u8 qos)
5489{
5490 int err = 0;
5491 struct igb_adapter *adapter = netdev_priv(netdev);
5492
5493 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5494 return -EINVAL;
5495 if (vlan || qos) {
5496 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5497 if (err)
5498 goto out;
5499 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5500 igb_set_vmolr(adapter, vf, !vlan);
5501 adapter->vf_data[vf].pf_vlan = vlan;
5502 adapter->vf_data[vf].pf_qos = qos;
5503 dev_info(&adapter->pdev->dev,
5504 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5505 if (test_bit(__IGB_DOWN, &adapter->state)) {
5506 dev_warn(&adapter->pdev->dev,
b980ac18 5507 "The VF VLAN has been set, but the PF device is not up.\n");
8151d294 5508 dev_warn(&adapter->pdev->dev,
b980ac18 5509 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
5510 }
5511 } else {
5512 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
b980ac18 5513 false, vf);
8151d294
WM
5514 igb_set_vmvir(adapter, vlan, vf);
5515 igb_set_vmolr(adapter, vf, true);
5516 adapter->vf_data[vf].pf_vlan = 0;
5517 adapter->vf_data[vf].pf_qos = 0;
b980ac18 5518 }
8151d294 5519out:
b980ac18 5520 return err;
4ae196df
AD
5521}
5522
6f3dc319
GR
5523static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5524{
5525 struct e1000_hw *hw = &adapter->hw;
5526 int i;
5527 u32 reg;
5528
5529 /* Find the vlan filter for this id */
5530 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5531 reg = rd32(E1000_VLVF(i));
5532 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5533 vid == (reg & E1000_VLVF_VLANID_MASK))
5534 break;
5535 }
5536
5537 if (i >= E1000_VLVF_ARRAY_SIZE)
5538 i = -1;
5539
5540 return i;
5541}
5542
4ae196df
AD
5543static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5544{
6f3dc319 5545 struct e1000_hw *hw = &adapter->hw;
4ae196df
AD
5546 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5547 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6f3dc319 5548 int err = 0;
4ae196df 5549
6f3dc319
GR
5550 /* If in promiscuous mode we need to make sure the PF also has
5551 * the VLAN filter set.
5552 */
5553 if (add && (adapter->netdev->flags & IFF_PROMISC))
5554 err = igb_vlvf_set(adapter, vid, add,
5555 adapter->vfs_allocated_count);
5556 if (err)
5557 goto out;
5558
5559 err = igb_vlvf_set(adapter, vid, add, vf);
5560
5561 if (err)
5562 goto out;
5563
5564 /* Go through all the checks to see if the VLAN filter should
5565 * be wiped completely.
5566 */
5567 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5568 u32 vlvf, bits;
5569
5570 int regndx = igb_find_vlvf_entry(adapter, vid);
5571 if (regndx < 0)
5572 goto out;
5573 /* See if any other pools are set for this VLAN filter
5574 * entry other than the PF.
5575 */
5576 vlvf = bits = rd32(E1000_VLVF(regndx));
5577 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5578 adapter->vfs_allocated_count);
5579 /* If the filter was removed then ensure PF pool bit
5580 * is cleared if the PF only added itself to the pool
5581 * because the PF is in promiscuous mode.
5582 */
5583 if ((vlvf & VLAN_VID_MASK) == vid &&
5584 !test_bit(vid, adapter->active_vlans) &&
5585 !bits)
5586 igb_vlvf_set(adapter, vid, add,
5587 adapter->vfs_allocated_count);
5588 }
5589
5590out:
5591 return err;
4ae196df
AD
5592}
5593
f2ca0dbe 5594static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5595{
8fa7e0f7
GR
5596 /* clear flags - except flag that indicates PF has set the MAC */
5597 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5598 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5599
5600 /* reset offloads to defaults */
8151d294 5601 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5602
5603 /* reset vlans for device */
5604 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5605 if (adapter->vf_data[vf].pf_vlan)
5606 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5607 adapter->vf_data[vf].pf_vlan,
5608 adapter->vf_data[vf].pf_qos);
5609 else
5610 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5611
5612 /* reset multicast table array for vf */
5613 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5614
5615 /* Flush and reset the mta with the new values */
ff41f8dc 5616 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5617}
5618
f2ca0dbe
AD
5619static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5620{
5621 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5622
5ac6f91d 5623 /* clear mac address as we were hotplug removed/added */
8151d294 5624 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5625 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5626
5627 /* process remaining reset events */
5628 igb_vf_reset(adapter, vf);
5629}
5630
5631static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5632{
5633 struct e1000_hw *hw = &adapter->hw;
5634 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5635 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5636 u32 reg, msgbuf[3];
5637 u8 *addr = (u8 *)(&msgbuf[1]);
5638
5639 /* process all the same items cleared in a function level reset */
f2ca0dbe 5640 igb_vf_reset(adapter, vf);
4ae196df
AD
5641
5642 /* set vf mac address */
26ad9178 5643 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5644
5645 /* enable transmit and receive for vf */
5646 reg = rd32(E1000_VFTE);
5647 wr32(E1000_VFTE, reg | (1 << vf));
5648 reg = rd32(E1000_VFRE);
5649 wr32(E1000_VFRE, reg | (1 << vf));
5650
8fa7e0f7 5651 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5652
5653 /* reply to reset with ack and vf mac address */
5654 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5655 memcpy(addr, vf_mac, 6);
5656 igb_write_mbx(hw, msgbuf, 3, vf);
5657}
5658
5659static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5660{
b980ac18 5661 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
5662 * starting at the second 32 bit word of the msg array
5663 */
f2ca0dbe
AD
5664 unsigned char *addr = (char *)&msg[1];
5665 int err = -1;
4ae196df 5666
f2ca0dbe
AD
5667 if (is_valid_ether_addr(addr))
5668 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5669
f2ca0dbe 5670 return err;
4ae196df
AD
5671}
5672
5673static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5674{
5675 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5676 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5677 u32 msg = E1000_VT_MSGTYPE_NACK;
5678
5679 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5680 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5681 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5682 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5683 vf_data->last_nack = jiffies;
4ae196df
AD
5684 }
5685}
5686
f2ca0dbe 5687static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5688{
f2ca0dbe
AD
5689 struct pci_dev *pdev = adapter->pdev;
5690 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5691 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5692 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5693 s32 retval;
5694
f2ca0dbe 5695 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5696
fef45f4c
AD
5697 if (retval) {
5698 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5699 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5700 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5701 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5702 return;
5703 goto out;
5704 }
4ae196df
AD
5705
5706 /* this is a message we already processed, do nothing */
5707 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5708 return;
4ae196df 5709
b980ac18 5710 /* until the vf completes a reset it should not be
4ae196df
AD
5711 * allowed to start any configuration.
5712 */
4ae196df
AD
5713 if (msgbuf[0] == E1000_VF_RESET) {
5714 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5715 return;
4ae196df
AD
5716 }
5717
f2ca0dbe 5718 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5719 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5720 return;
5721 retval = -1;
5722 goto out;
4ae196df
AD
5723 }
5724
5725 switch ((msgbuf[0] & 0xFFFF)) {
5726 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5727 retval = -EINVAL;
5728 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5729 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5730 else
5731 dev_warn(&pdev->dev,
b980ac18
JK
5732 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5733 vf);
4ae196df 5734 break;
7d5753f0
AD
5735 case E1000_VF_SET_PROMISC:
5736 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5737 break;
4ae196df
AD
5738 case E1000_VF_SET_MULTICAST:
5739 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5740 break;
5741 case E1000_VF_SET_LPE:
5742 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5743 break;
5744 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5745 retval = -1;
5746 if (vf_data->pf_vlan)
5747 dev_warn(&pdev->dev,
b980ac18
JK
5748 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5749 vf);
8151d294
WM
5750 else
5751 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5752 break;
5753 default:
090b1795 5754 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5755 retval = -1;
5756 break;
5757 }
5758
fef45f4c
AD
5759 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5760out:
4ae196df
AD
5761 /* notify the VF of the results of what it sent us */
5762 if (retval)
5763 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5764 else
5765 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5766
4ae196df 5767 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5768}
4ae196df 5769
f2ca0dbe
AD
5770static void igb_msg_task(struct igb_adapter *adapter)
5771{
5772 struct e1000_hw *hw = &adapter->hw;
5773 u32 vf;
5774
5775 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5776 /* process any reset requests */
5777 if (!igb_check_for_rst(hw, vf))
5778 igb_vf_reset_event(adapter, vf);
5779
5780 /* process any messages pending */
5781 if (!igb_check_for_msg(hw, vf))
5782 igb_rcv_msg_from_vf(adapter, vf);
5783
5784 /* process any acks */
5785 if (!igb_check_for_ack(hw, vf))
5786 igb_rcv_ack_from_vf(adapter, vf);
5787 }
4ae196df
AD
5788}
5789
68d480c4
AD
5790/**
5791 * igb_set_uta - Set unicast filter table address
5792 * @adapter: board private structure
5793 *
5794 * The unicast table address is a register array of 32-bit registers.
5795 * The table is meant to be used in a way similar to how the MTA is used
5796 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5797 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5798 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5799 **/
5800static void igb_set_uta(struct igb_adapter *adapter)
5801{
5802 struct e1000_hw *hw = &adapter->hw;
5803 int i;
5804
5805 /* The UTA table only exists on 82576 hardware and newer */
5806 if (hw->mac.type < e1000_82576)
5807 return;
5808
5809 /* we only need to do this if VMDq is enabled */
5810 if (!adapter->vfs_allocated_count)
5811 return;
5812
5813 for (i = 0; i < hw->mac.uta_reg_count; i++)
5814 array_wr32(E1000_UTA, i, ~0);
5815}
5816
9d5c8243 5817/**
b980ac18
JK
5818 * igb_intr_msi - Interrupt Handler
5819 * @irq: interrupt number
5820 * @data: pointer to a network interface device structure
9d5c8243
AK
5821 **/
5822static irqreturn_t igb_intr_msi(int irq, void *data)
5823{
047e0030
AD
5824 struct igb_adapter *adapter = data;
5825 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5826 struct e1000_hw *hw = &adapter->hw;
5827 /* read ICR disables interrupts using IAM */
5828 u32 icr = rd32(E1000_ICR);
5829
047e0030 5830 igb_write_itr(q_vector);
9d5c8243 5831
7f081d40
AD
5832 if (icr & E1000_ICR_DRSTA)
5833 schedule_work(&adapter->reset_task);
5834
047e0030 5835 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5836 /* HW is reporting DMA is out of sync */
5837 adapter->stats.doosync++;
5838 }
5839
9d5c8243
AK
5840 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5841 hw->mac.get_link_status = 1;
5842 if (!test_bit(__IGB_DOWN, &adapter->state))
5843 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5844 }
5845
1f6e8178
MV
5846 if (icr & E1000_ICR_TS) {
5847 u32 tsicr = rd32(E1000_TSICR);
5848
5849 if (tsicr & E1000_TSICR_TXTS) {
5850 /* acknowledge the interrupt */
5851 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5852 /* retrieve hardware timestamp */
5853 schedule_work(&adapter->ptp_tx_work);
5854 }
5855 }
1f6e8178 5856
047e0030 5857 napi_schedule(&q_vector->napi);
9d5c8243
AK
5858
5859 return IRQ_HANDLED;
5860}
5861
5862/**
b980ac18
JK
5863 * igb_intr - Legacy Interrupt Handler
5864 * @irq: interrupt number
5865 * @data: pointer to a network interface device structure
9d5c8243
AK
5866 **/
5867static irqreturn_t igb_intr(int irq, void *data)
5868{
047e0030
AD
5869 struct igb_adapter *adapter = data;
5870 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5871 struct e1000_hw *hw = &adapter->hw;
5872 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
5873 * need for the IMC write
5874 */
9d5c8243 5875 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5876
5877 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
5878 * not set, then the adapter didn't send an interrupt
5879 */
9d5c8243
AK
5880 if (!(icr & E1000_ICR_INT_ASSERTED))
5881 return IRQ_NONE;
5882
0ba82994
AD
5883 igb_write_itr(q_vector);
5884
7f081d40
AD
5885 if (icr & E1000_ICR_DRSTA)
5886 schedule_work(&adapter->reset_task);
5887
047e0030 5888 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5889 /* HW is reporting DMA is out of sync */
5890 adapter->stats.doosync++;
5891 }
5892
9d5c8243
AK
5893 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5894 hw->mac.get_link_status = 1;
5895 /* guard against interrupt when we're going down */
5896 if (!test_bit(__IGB_DOWN, &adapter->state))
5897 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5898 }
5899
1f6e8178
MV
5900 if (icr & E1000_ICR_TS) {
5901 u32 tsicr = rd32(E1000_TSICR);
5902
5903 if (tsicr & E1000_TSICR_TXTS) {
5904 /* acknowledge the interrupt */
5905 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5906 /* retrieve hardware timestamp */
5907 schedule_work(&adapter->ptp_tx_work);
5908 }
5909 }
1f6e8178 5910
047e0030 5911 napi_schedule(&q_vector->napi);
9d5c8243
AK
5912
5913 return IRQ_HANDLED;
5914}
5915
c50b52a0 5916static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5917{
047e0030 5918 struct igb_adapter *adapter = q_vector->adapter;
46544258 5919 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5920
0ba82994
AD
5921 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5922 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5923 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5924 igb_set_itr(q_vector);
46544258 5925 else
047e0030 5926 igb_update_ring_itr(q_vector);
9d5c8243
AK
5927 }
5928
46544258
AD
5929 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5930 if (adapter->msix_entries)
047e0030 5931 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5932 else
5933 igb_irq_enable(adapter);
5934 }
9d5c8243
AK
5935}
5936
46544258 5937/**
b980ac18
JK
5938 * igb_poll - NAPI Rx polling callback
5939 * @napi: napi polling structure
5940 * @budget: count of how many packets we should handle
46544258
AD
5941 **/
5942static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5943{
047e0030 5944 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
5945 struct igb_q_vector,
5946 napi);
16eb8815 5947 bool clean_complete = true;
9d5c8243 5948
421e02f0 5949#ifdef CONFIG_IGB_DCA
047e0030
AD
5950 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5951 igb_update_dca(q_vector);
fe4506b6 5952#endif
0ba82994 5953 if (q_vector->tx.ring)
13fde97a 5954 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5955
0ba82994 5956 if (q_vector->rx.ring)
cd392f5c 5957 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5958
16eb8815
AD
5959 /* If all work not completed, return budget and keep polling */
5960 if (!clean_complete)
5961 return budget;
46544258 5962
9d5c8243 5963 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5964 napi_complete(napi);
5965 igb_ring_irq_enable(q_vector);
9d5c8243 5966
16eb8815 5967 return 0;
9d5c8243 5968}
6d8126f9 5969
9d5c8243 5970/**
b980ac18
JK
5971 * igb_clean_tx_irq - Reclaim resources after transmit completes
5972 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5973 *
b980ac18 5974 * returns true if ring is completely cleaned
9d5c8243 5975 **/
047e0030 5976static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5977{
047e0030 5978 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5979 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5980 struct igb_tx_buffer *tx_buffer;
f4128785 5981 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5982 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5983 unsigned int budget = q_vector->tx.work_limit;
8542db05 5984 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5985
13fde97a
AD
5986 if (test_bit(__IGB_DOWN, &adapter->state))
5987 return true;
0e014cb1 5988
06034649 5989 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5990 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5991 i -= tx_ring->count;
9d5c8243 5992
f4128785
AD
5993 do {
5994 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
5995
5996 /* if next_to_watch is not set then there is no work pending */
5997 if (!eop_desc)
5998 break;
13fde97a 5999
f4128785 6000 /* prevent any other reads prior to eop_desc */
70d289bc 6001 read_barrier_depends();
f4128785 6002
13fde97a
AD
6003 /* if DD is not set pending work has not been completed */
6004 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6005 break;
6006
8542db05
AD
6007 /* clear next_to_watch to prevent false hangs */
6008 tx_buffer->next_to_watch = NULL;
9d5c8243 6009
ebe42d16
AD
6010 /* update the statistics for this packet */
6011 total_bytes += tx_buffer->bytecount;
6012 total_packets += tx_buffer->gso_segs;
13fde97a 6013
ebe42d16
AD
6014 /* free the skb */
6015 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 6016
ebe42d16
AD
6017 /* unmap skb header data */
6018 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6019 dma_unmap_addr(tx_buffer, dma),
6020 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6021 DMA_TO_DEVICE);
6022
c9f14bf3
AD
6023 /* clear tx_buffer data */
6024 tx_buffer->skb = NULL;
6025 dma_unmap_len_set(tx_buffer, len, 0);
6026
ebe42d16
AD
6027 /* clear last DMA location and unmap remaining buffers */
6028 while (tx_desc != eop_desc) {
13fde97a
AD
6029 tx_buffer++;
6030 tx_desc++;
9d5c8243 6031 i++;
8542db05
AD
6032 if (unlikely(!i)) {
6033 i -= tx_ring->count;
06034649 6034 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6035 tx_desc = IGB_TX_DESC(tx_ring, 0);
6036 }
ebe42d16
AD
6037
6038 /* unmap any remaining paged data */
c9f14bf3 6039 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6040 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6041 dma_unmap_addr(tx_buffer, dma),
6042 dma_unmap_len(tx_buffer, len),
ebe42d16 6043 DMA_TO_DEVICE);
c9f14bf3 6044 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6045 }
6046 }
6047
ebe42d16
AD
6048 /* move us one more past the eop_desc for start of next pkt */
6049 tx_buffer++;
6050 tx_desc++;
6051 i++;
6052 if (unlikely(!i)) {
6053 i -= tx_ring->count;
6054 tx_buffer = tx_ring->tx_buffer_info;
6055 tx_desc = IGB_TX_DESC(tx_ring, 0);
6056 }
f4128785
AD
6057
6058 /* issue prefetch for next Tx descriptor */
6059 prefetch(tx_desc);
6060
6061 /* update budget accounting */
6062 budget--;
6063 } while (likely(budget));
0e014cb1 6064
bdbc0631
ED
6065 netdev_tx_completed_queue(txring_txq(tx_ring),
6066 total_packets, total_bytes);
8542db05 6067 i += tx_ring->count;
9d5c8243 6068 tx_ring->next_to_clean = i;
13fde97a
AD
6069 u64_stats_update_begin(&tx_ring->tx_syncp);
6070 tx_ring->tx_stats.bytes += total_bytes;
6071 tx_ring->tx_stats.packets += total_packets;
6072 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6073 q_vector->tx.total_bytes += total_bytes;
6074 q_vector->tx.total_packets += total_packets;
9d5c8243 6075
6d095fa8 6076 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6077 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6078
9d5c8243 6079 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6080 * check with the clearing of time_stamp and movement of i
6081 */
6d095fa8 6082 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6083 if (tx_buffer->next_to_watch &&
8542db05 6084 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6085 (adapter->tx_timeout_factor * HZ)) &&
6086 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6087
9d5c8243 6088 /* detected Tx unit hang */
59d71989 6089 dev_err(tx_ring->dev,
9d5c8243 6090 "Detected Tx Unit Hang\n"
2d064c06 6091 " Tx Queue <%d>\n"
9d5c8243
AK
6092 " TDH <%x>\n"
6093 " TDT <%x>\n"
6094 " next_to_use <%x>\n"
6095 " next_to_clean <%x>\n"
9d5c8243
AK
6096 "buffer_info[next_to_clean]\n"
6097 " time_stamp <%lx>\n"
8542db05 6098 " next_to_watch <%p>\n"
9d5c8243
AK
6099 " jiffies <%lx>\n"
6100 " desc.status <%x>\n",
2d064c06 6101 tx_ring->queue_index,
238ac817 6102 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6103 readl(tx_ring->tail),
9d5c8243
AK
6104 tx_ring->next_to_use,
6105 tx_ring->next_to_clean,
8542db05 6106 tx_buffer->time_stamp,
f4128785 6107 tx_buffer->next_to_watch,
9d5c8243 6108 jiffies,
f4128785 6109 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6110 netif_stop_subqueue(tx_ring->netdev,
6111 tx_ring->queue_index);
6112
6113 /* we are about to reset, no point in enabling stuff */
6114 return true;
9d5c8243
AK
6115 }
6116 }
13fde97a 6117
21ba6fe1 6118#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6119 if (unlikely(total_packets &&
b980ac18
JK
6120 netif_carrier_ok(tx_ring->netdev) &&
6121 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6122 /* Make sure that anybody stopping the queue after this
6123 * sees the new next_to_clean.
6124 */
6125 smp_mb();
6126 if (__netif_subqueue_stopped(tx_ring->netdev,
6127 tx_ring->queue_index) &&
6128 !(test_bit(__IGB_DOWN, &adapter->state))) {
6129 netif_wake_subqueue(tx_ring->netdev,
6130 tx_ring->queue_index);
6131
6132 u64_stats_update_begin(&tx_ring->tx_syncp);
6133 tx_ring->tx_stats.restart_queue++;
6134 u64_stats_update_end(&tx_ring->tx_syncp);
6135 }
6136 }
6137
6138 return !!budget;
9d5c8243
AK
6139}
6140
cbc8e55f 6141/**
b980ac18
JK
6142 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6143 * @rx_ring: rx descriptor ring to store buffers on
6144 * @old_buff: donor buffer to have page reused
cbc8e55f 6145 *
b980ac18 6146 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6147 **/
6148static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6149 struct igb_rx_buffer *old_buff)
6150{
6151 struct igb_rx_buffer *new_buff;
6152 u16 nta = rx_ring->next_to_alloc;
6153
6154 new_buff = &rx_ring->rx_buffer_info[nta];
6155
6156 /* update, and store next to alloc */
6157 nta++;
6158 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6159
6160 /* transfer page from old buffer to new buffer */
6161 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6162
6163 /* sync the buffer for use by the device */
6164 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6165 old_buff->page_offset,
de78d1f9 6166 IGB_RX_BUFSZ,
cbc8e55f
AD
6167 DMA_FROM_DEVICE);
6168}
6169
74e238ea
AD
6170static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6171 struct page *page,
6172 unsigned int truesize)
6173{
6174 /* avoid re-using remote pages */
6175 if (unlikely(page_to_nid(page) != numa_node_id()))
6176 return false;
6177
6178#if (PAGE_SIZE < 8192)
6179 /* if we are only owner of page we can reuse it */
6180 if (unlikely(page_count(page) != 1))
6181 return false;
6182
6183 /* flip page offset to other buffer */
6184 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6185
6186 /* since we are the only owner of the page and we need to
6187 * increment it, just set the value to 2 in order to avoid
6188 * an unnecessary locked operation
6189 */
6190 atomic_set(&page->_count, 2);
6191#else
6192 /* move offset up to the next cache line */
6193 rx_buffer->page_offset += truesize;
6194
6195 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6196 return false;
6197
6198 /* bump ref count on page before it is given to the stack */
6199 get_page(page);
6200#endif
6201
6202 return true;
6203}
6204
cbc8e55f 6205/**
b980ac18
JK
6206 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6207 * @rx_ring: rx descriptor ring to transact packets on
6208 * @rx_buffer: buffer containing page to add
6209 * @rx_desc: descriptor containing length of buffer written by hardware
6210 * @skb: sk_buff to place the data into
cbc8e55f 6211 *
b980ac18
JK
6212 * This function will add the data contained in rx_buffer->page to the skb.
6213 * This is done either through a direct copy if the data in the buffer is
6214 * less than the skb header size, otherwise it will just attach the page as
6215 * a frag to the skb.
cbc8e55f 6216 *
b980ac18
JK
6217 * The function will then update the page offset if necessary and return
6218 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6219 **/
6220static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6221 struct igb_rx_buffer *rx_buffer,
6222 union e1000_adv_rx_desc *rx_desc,
6223 struct sk_buff *skb)
6224{
6225 struct page *page = rx_buffer->page;
6226 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6227#if (PAGE_SIZE < 8192)
6228 unsigned int truesize = IGB_RX_BUFSZ;
6229#else
6230 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6231#endif
cbc8e55f
AD
6232
6233 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6234 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6235
cbc8e55f
AD
6236 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6237 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6238 va += IGB_TS_HDR_LEN;
6239 size -= IGB_TS_HDR_LEN;
6240 }
6241
cbc8e55f
AD
6242 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6243
6244 /* we can reuse buffer as-is, just make sure it is local */
6245 if (likely(page_to_nid(page) == numa_node_id()))
6246 return true;
6247
6248 /* this page cannot be reused so discard it */
6249 put_page(page);
6250 return false;
6251 }
6252
6253 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6254 rx_buffer->page_offset, size, truesize);
cbc8e55f 6255
74e238ea
AD
6256 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6257}
cbc8e55f 6258
2e334eee
AD
6259static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6260 union e1000_adv_rx_desc *rx_desc,
6261 struct sk_buff *skb)
6262{
6263 struct igb_rx_buffer *rx_buffer;
6264 struct page *page;
6265
6266 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6267
2e334eee
AD
6268 page = rx_buffer->page;
6269 prefetchw(page);
6270
6271 if (likely(!skb)) {
6272 void *page_addr = page_address(page) +
6273 rx_buffer->page_offset;
6274
6275 /* prefetch first cache line of first page */
6276 prefetch(page_addr);
6277#if L1_CACHE_BYTES < 128
6278 prefetch(page_addr + L1_CACHE_BYTES);
6279#endif
6280
6281 /* allocate a skb to store the frags */
6282 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6283 IGB_RX_HDR_LEN);
6284 if (unlikely(!skb)) {
6285 rx_ring->rx_stats.alloc_failed++;
6286 return NULL;
6287 }
6288
b980ac18 6289 /* we will be copying header into skb->data in
2e334eee
AD
6290 * pskb_may_pull so it is in our interest to prefetch
6291 * it now to avoid a possible cache miss
6292 */
6293 prefetchw(skb->data);
6294 }
6295
6296 /* we are reusing so sync this buffer for CPU use */
6297 dma_sync_single_range_for_cpu(rx_ring->dev,
6298 rx_buffer->dma,
6299 rx_buffer->page_offset,
de78d1f9 6300 IGB_RX_BUFSZ,
2e334eee
AD
6301 DMA_FROM_DEVICE);
6302
6303 /* pull page into skb */
6304 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6305 /* hand second half of page back to the ring */
6306 igb_reuse_rx_page(rx_ring, rx_buffer);
6307 } else {
6308 /* we are not reusing the buffer so unmap it */
6309 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6310 PAGE_SIZE, DMA_FROM_DEVICE);
6311 }
6312
6313 /* clear contents of rx_buffer */
6314 rx_buffer->page = NULL;
6315
6316 return skb;
6317}
6318
cd392f5c 6319static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6320 union e1000_adv_rx_desc *rx_desc,
6321 struct sk_buff *skb)
9d5c8243 6322{
bc8acf2c 6323 skb_checksum_none_assert(skb);
9d5c8243 6324
294e7d78 6325 /* Ignore Checksum bit is set */
3ceb90fd 6326 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6327 return;
6328
6329 /* Rx checksum disabled via ethtool */
6330 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6331 return;
85ad76b2 6332
9d5c8243 6333 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6334 if (igb_test_staterr(rx_desc,
6335 E1000_RXDEXT_STATERR_TCPE |
6336 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 6337 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
6338 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6339 * packets, (aka let the stack check the crc32c)
6340 */
866cff06
AD
6341 if (!((skb->len == 60) &&
6342 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6343 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6344 ring->rx_stats.csum_err++;
12dcd86b
ED
6345 u64_stats_update_end(&ring->rx_syncp);
6346 }
9d5c8243 6347 /* let the stack verify checksum errors */
9d5c8243
AK
6348 return;
6349 }
6350 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6351 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6352 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6353 skb->ip_summed = CHECKSUM_UNNECESSARY;
6354
3ceb90fd
AD
6355 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6356 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6357}
6358
077887c3
AD
6359static inline void igb_rx_hash(struct igb_ring *ring,
6360 union e1000_adv_rx_desc *rx_desc,
6361 struct sk_buff *skb)
6362{
6363 if (ring->netdev->features & NETIF_F_RXHASH)
6364 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6365}
6366
2e334eee 6367/**
b980ac18
JK
6368 * igb_is_non_eop - process handling of non-EOP buffers
6369 * @rx_ring: Rx ring being processed
6370 * @rx_desc: Rx descriptor for current buffer
6371 * @skb: current socket buffer containing buffer in progress
2e334eee 6372 *
b980ac18
JK
6373 * This function updates next to clean. If the buffer is an EOP buffer
6374 * this function exits returning false, otherwise it will place the
6375 * sk_buff in the next buffer to be chained and return true indicating
6376 * that this is in fact a non-EOP buffer.
2e334eee
AD
6377 **/
6378static bool igb_is_non_eop(struct igb_ring *rx_ring,
6379 union e1000_adv_rx_desc *rx_desc)
6380{
6381 u32 ntc = rx_ring->next_to_clean + 1;
6382
6383 /* fetch, update, and store next to clean */
6384 ntc = (ntc < rx_ring->count) ? ntc : 0;
6385 rx_ring->next_to_clean = ntc;
6386
6387 prefetch(IGB_RX_DESC(rx_ring, ntc));
6388
6389 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6390 return false;
6391
6392 return true;
6393}
6394
1a1c225b 6395/**
b980ac18
JK
6396 * igb_get_headlen - determine size of header for LRO/GRO
6397 * @data: pointer to the start of the headers
6398 * @max_len: total length of section to find headers in
1a1c225b 6399 *
b980ac18
JK
6400 * This function is meant to determine the length of headers that will
6401 * be recognized by hardware for LRO, and GRO offloads. The main
6402 * motivation of doing this is to only perform one pull for IPv4 TCP
6403 * packets so that we can do basic things like calculating the gso_size
6404 * based on the average data per packet.
1a1c225b
AD
6405 **/
6406static unsigned int igb_get_headlen(unsigned char *data,
6407 unsigned int max_len)
6408{
6409 union {
6410 unsigned char *network;
6411 /* l2 headers */
6412 struct ethhdr *eth;
6413 struct vlan_hdr *vlan;
6414 /* l3 headers */
6415 struct iphdr *ipv4;
6416 struct ipv6hdr *ipv6;
6417 } hdr;
6418 __be16 protocol;
6419 u8 nexthdr = 0; /* default to not TCP */
6420 u8 hlen;
6421
6422 /* this should never happen, but better safe than sorry */
6423 if (max_len < ETH_HLEN)
6424 return max_len;
6425
6426 /* initialize network frame pointer */
6427 hdr.network = data;
6428
6429 /* set first protocol and move network header forward */
6430 protocol = hdr.eth->h_proto;
6431 hdr.network += ETH_HLEN;
6432
6433 /* handle any vlan tag if present */
6434 if (protocol == __constant_htons(ETH_P_8021Q)) {
6435 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6436 return max_len;
6437
6438 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6439 hdr.network += VLAN_HLEN;
6440 }
6441
6442 /* handle L3 protocols */
6443 if (protocol == __constant_htons(ETH_P_IP)) {
6444 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6445 return max_len;
6446
6447 /* access ihl as a u8 to avoid unaligned access on ia64 */
6448 hlen = (hdr.network[0] & 0x0F) << 2;
6449
6450 /* verify hlen meets minimum size requirements */
6451 if (hlen < sizeof(struct iphdr))
6452 return hdr.network - data;
6453
f2fb4ab2 6454 /* record next protocol if header is present */
b9555f66 6455 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
f2fb4ab2 6456 nexthdr = hdr.ipv4->protocol;
1a1c225b
AD
6457 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6458 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6459 return max_len;
6460
6461 /* record next protocol */
6462 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6463 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6464 } else {
6465 return hdr.network - data;
6466 }
6467
f2fb4ab2
AD
6468 /* relocate pointer to start of L4 header */
6469 hdr.network += hlen;
6470
1a1c225b
AD
6471 /* finally sort out TCP */
6472 if (nexthdr == IPPROTO_TCP) {
6473 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6474 return max_len;
6475
6476 /* access doff as a u8 to avoid unaligned access on ia64 */
6477 hlen = (hdr.network[12] & 0xF0) >> 2;
6478
6479 /* verify hlen meets minimum size requirements */
6480 if (hlen < sizeof(struct tcphdr))
6481 return hdr.network - data;
6482
6483 hdr.network += hlen;
6484 } else if (nexthdr == IPPROTO_UDP) {
6485 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6486 return max_len;
6487
6488 hdr.network += sizeof(struct udphdr);
6489 }
6490
b980ac18 6491 /* If everything has gone correctly hdr.network should be the
1a1c225b
AD
6492 * data section of the packet and will be the end of the header.
6493 * If not then it probably represents the end of the last recognized
6494 * header.
6495 */
6496 if ((hdr.network - data) < max_len)
6497 return hdr.network - data;
6498 else
6499 return max_len;
6500}
6501
6502/**
b980ac18
JK
6503 * igb_pull_tail - igb specific version of skb_pull_tail
6504 * @rx_ring: rx descriptor ring packet is being transacted on
6505 * @rx_desc: pointer to the EOP Rx descriptor
6506 * @skb: pointer to current skb being adjusted
1a1c225b 6507 *
b980ac18
JK
6508 * This function is an igb specific version of __pskb_pull_tail. The
6509 * main difference between this version and the original function is that
6510 * this function can make several assumptions about the state of things
6511 * that allow for significant optimizations versus the standard function.
6512 * As a result we can do things like drop a frag and maintain an accurate
6513 * truesize for the skb.
1a1c225b
AD
6514 */
6515static void igb_pull_tail(struct igb_ring *rx_ring,
6516 union e1000_adv_rx_desc *rx_desc,
6517 struct sk_buff *skb)
2d94d8ab 6518{
1a1c225b
AD
6519 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6520 unsigned char *va;
6521 unsigned int pull_len;
6522
b980ac18 6523 /* it is valid to use page_address instead of kmap since we are
1a1c225b
AD
6524 * working with pages allocated out of the lomem pool per
6525 * alloc_page(GFP_ATOMIC)
2d94d8ab 6526 */
1a1c225b
AD
6527 va = skb_frag_address(frag);
6528
1a1c225b
AD
6529 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6530 /* retrieve timestamp from buffer */
6531 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6532
6533 /* update pointers to remove timestamp header */
6534 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6535 frag->page_offset += IGB_TS_HDR_LEN;
6536 skb->data_len -= IGB_TS_HDR_LEN;
6537 skb->len -= IGB_TS_HDR_LEN;
6538
6539 /* move va to start of packet data */
6540 va += IGB_TS_HDR_LEN;
6541 }
6542
b980ac18 6543 /* we need the header to contain the greater of either ETH_HLEN or
1a1c225b
AD
6544 * 60 bytes if the skb->len is less than 60 for skb_pad.
6545 */
6546 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6547
6548 /* align pull length to size of long to optimize memcpy performance */
6549 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6550
6551 /* update all of the pointers */
6552 skb_frag_size_sub(frag, pull_len);
6553 frag->page_offset += pull_len;
6554 skb->data_len -= pull_len;
6555 skb->tail += pull_len;
6556}
6557
6558/**
b980ac18
JK
6559 * igb_cleanup_headers - Correct corrupted or empty headers
6560 * @rx_ring: rx descriptor ring packet is being transacted on
6561 * @rx_desc: pointer to the EOP Rx descriptor
6562 * @skb: pointer to current skb being fixed
1a1c225b 6563 *
b980ac18
JK
6564 * Address the case where we are pulling data in on pages only
6565 * and as such no data is present in the skb header.
1a1c225b 6566 *
b980ac18
JK
6567 * In addition if skb is not at least 60 bytes we need to pad it so that
6568 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 6569 *
b980ac18 6570 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
6571 **/
6572static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6573 union e1000_adv_rx_desc *rx_desc,
6574 struct sk_buff *skb)
6575{
1a1c225b
AD
6576 if (unlikely((igb_test_staterr(rx_desc,
6577 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6578 struct net_device *netdev = rx_ring->netdev;
6579 if (!(netdev->features & NETIF_F_RXALL)) {
6580 dev_kfree_skb_any(skb);
6581 return true;
6582 }
6583 }
6584
6585 /* place header in linear portion of buffer */
6586 if (skb_is_nonlinear(skb))
6587 igb_pull_tail(rx_ring, rx_desc, skb);
6588
6589 /* if skb_pad returns an error the skb was freed */
6590 if (unlikely(skb->len < 60)) {
6591 int pad_len = 60 - skb->len;
6592
6593 if (skb_pad(skb, pad_len))
6594 return true;
6595 __skb_put(skb, pad_len);
6596 }
6597
6598 return false;
2d94d8ab
AD
6599}
6600
db2ee5bd 6601/**
b980ac18
JK
6602 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6603 * @rx_ring: rx descriptor ring packet is being transacted on
6604 * @rx_desc: pointer to the EOP Rx descriptor
6605 * @skb: pointer to current skb being populated
db2ee5bd 6606 *
b980ac18
JK
6607 * This function checks the ring, descriptor, and packet information in
6608 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6609 * other fields within the skb.
db2ee5bd
AD
6610 **/
6611static void igb_process_skb_fields(struct igb_ring *rx_ring,
6612 union e1000_adv_rx_desc *rx_desc,
6613 struct sk_buff *skb)
6614{
6615 struct net_device *dev = rx_ring->netdev;
6616
6617 igb_rx_hash(rx_ring, rx_desc, skb);
6618
6619 igb_rx_checksum(rx_ring, rx_desc, skb);
6620
20a48412 6621 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
db2ee5bd 6622
f646968f 6623 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
6624 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6625 u16 vid;
6626 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6627 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6628 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6629 else
6630 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6631
86a9bad3 6632 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
6633 }
6634
6635 skb_record_rx_queue(skb, rx_ring->queue_index);
6636
6637 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6638}
6639
2e334eee 6640static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6641{
0ba82994 6642 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6643 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6644 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6645 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6646
2e334eee
AD
6647 do {
6648 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6649
2e334eee
AD
6650 /* return some buffers to hardware, one at a time is too slow */
6651 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6652 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6653 cleaned_count = 0;
6654 }
bf36c1a0 6655
2e334eee 6656 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6657
2e334eee
AD
6658 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6659 break;
9d5c8243 6660
74e238ea
AD
6661 /* This memory barrier is needed to keep us from reading
6662 * any other fields out of the rx_desc until we know the
6663 * RXD_STAT_DD bit is set
6664 */
6665 rmb();
6666
2e334eee 6667 /* retrieve a buffer from the ring */
f9d40f6a 6668 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6669
2e334eee
AD
6670 /* exit if we failed to retrieve a buffer */
6671 if (!skb)
6672 break;
1a1c225b 6673
2e334eee 6674 cleaned_count++;
1a1c225b 6675
2e334eee
AD
6676 /* fetch next buffer in frame if non-eop */
6677 if (igb_is_non_eop(rx_ring, rx_desc))
6678 continue;
1a1c225b
AD
6679
6680 /* verify the packet layout is correct */
6681 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6682 skb = NULL;
6683 continue;
9d5c8243 6684 }
9d5c8243 6685
db2ee5bd 6686 /* probably a little skewed due to removing CRC */
3ceb90fd 6687 total_bytes += skb->len;
3ceb90fd 6688
db2ee5bd
AD
6689 /* populate checksum, timestamp, VLAN, and protocol */
6690 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6691
b2cb09b1 6692 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6693
1a1c225b
AD
6694 /* reset skb pointer */
6695 skb = NULL;
6696
2e334eee
AD
6697 /* update budget accounting */
6698 total_packets++;
6699 } while (likely(total_packets < budget));
bf36c1a0 6700
1a1c225b
AD
6701 /* place incomplete frames back on ring for completion */
6702 rx_ring->skb = skb;
6703
12dcd86b 6704 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6705 rx_ring->rx_stats.packets += total_packets;
6706 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6707 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6708 q_vector->rx.total_packets += total_packets;
6709 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6710
6711 if (cleaned_count)
cd392f5c 6712 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6713
2e334eee 6714 return (total_packets < budget);
9d5c8243
AK
6715}
6716
c023cd88 6717static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6718 struct igb_rx_buffer *bi)
c023cd88
AD
6719{
6720 struct page *page = bi->page;
cbc8e55f 6721 dma_addr_t dma;
c023cd88 6722
cbc8e55f
AD
6723 /* since we are recycling buffers we should seldom need to alloc */
6724 if (likely(page))
c023cd88
AD
6725 return true;
6726
cbc8e55f
AD
6727 /* alloc new page for storage */
6728 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6729 if (unlikely(!page)) {
6730 rx_ring->rx_stats.alloc_failed++;
6731 return false;
c023cd88
AD
6732 }
6733
cbc8e55f
AD
6734 /* map page for use */
6735 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 6736
b980ac18 6737 /* if mapping failed free memory back to system since
cbc8e55f
AD
6738 * there isn't much point in holding memory we can't use
6739 */
1a1c225b 6740 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
6741 __free_page(page);
6742
c023cd88
AD
6743 rx_ring->rx_stats.alloc_failed++;
6744 return false;
6745 }
6746
1a1c225b 6747 bi->dma = dma;
cbc8e55f
AD
6748 bi->page = page;
6749 bi->page_offset = 0;
1a1c225b 6750
c023cd88
AD
6751 return true;
6752}
6753
9d5c8243 6754/**
b980ac18
JK
6755 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6756 * @adapter: address of board private structure
9d5c8243 6757 **/
cd392f5c 6758void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6759{
9d5c8243 6760 union e1000_adv_rx_desc *rx_desc;
06034649 6761 struct igb_rx_buffer *bi;
c023cd88 6762 u16 i = rx_ring->next_to_use;
9d5c8243 6763
cbc8e55f
AD
6764 /* nothing to do */
6765 if (!cleaned_count)
6766 return;
6767
60136906 6768 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6769 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6770 i -= rx_ring->count;
9d5c8243 6771
cbc8e55f 6772 do {
1a1c225b 6773 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 6774 break;
9d5c8243 6775
b980ac18 6776 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
6777 * because each write-back erases this info.
6778 */
f9d40f6a 6779 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 6780
c023cd88
AD
6781 rx_desc++;
6782 bi++;
9d5c8243 6783 i++;
c023cd88 6784 if (unlikely(!i)) {
60136906 6785 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6786 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6787 i -= rx_ring->count;
6788 }
6789
6790 /* clear the hdr_addr for the next_to_use descriptor */
6791 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
6792
6793 cleaned_count--;
6794 } while (cleaned_count);
9d5c8243 6795
c023cd88
AD
6796 i += rx_ring->count;
6797
9d5c8243 6798 if (rx_ring->next_to_use != i) {
cbc8e55f 6799 /* record the next descriptor to use */
9d5c8243 6800 rx_ring->next_to_use = i;
9d5c8243 6801
cbc8e55f
AD
6802 /* update next to alloc since we have filled the ring */
6803 rx_ring->next_to_alloc = i;
6804
b980ac18 6805 /* Force memory writes to complete before letting h/w
9d5c8243
AK
6806 * know there are new descriptors to fetch. (Only
6807 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
6808 * such as IA-64).
6809 */
9d5c8243 6810 wmb();
fce99e34 6811 writel(i, rx_ring->tail);
9d5c8243
AK
6812 }
6813}
6814
6815/**
6816 * igb_mii_ioctl -
6817 * @netdev:
6818 * @ifreq:
6819 * @cmd:
6820 **/
6821static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6822{
6823 struct igb_adapter *adapter = netdev_priv(netdev);
6824 struct mii_ioctl_data *data = if_mii(ifr);
6825
6826 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6827 return -EOPNOTSUPP;
6828
6829 switch (cmd) {
6830 case SIOCGMIIPHY:
6831 data->phy_id = adapter->hw.phy.addr;
6832 break;
6833 case SIOCGMIIREG:
f5f4cf08
AD
6834 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6835 &data->val_out))
9d5c8243
AK
6836 return -EIO;
6837 break;
6838 case SIOCSMIIREG:
6839 default:
6840 return -EOPNOTSUPP;
6841 }
6842 return 0;
6843}
6844
6845/**
6846 * igb_ioctl -
6847 * @netdev:
6848 * @ifreq:
6849 * @cmd:
6850 **/
6851static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6852{
6853 switch (cmd) {
6854 case SIOCGMIIPHY:
6855 case SIOCGMIIREG:
6856 case SIOCSMIIREG:
6857 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b 6858 case SIOCSHWTSTAMP:
a79f4f88 6859 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6860 default:
6861 return -EOPNOTSUPP;
6862 }
6863}
6864
009bc06e
AD
6865s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6866{
6867 struct igb_adapter *adapter = hw->back;
009bc06e 6868
23d028cc 6869 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
6870 return -E1000_ERR_CONFIG;
6871
009bc06e
AD
6872 return 0;
6873}
6874
6875s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6876{
6877 struct igb_adapter *adapter = hw->back;
009bc06e 6878
23d028cc 6879 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
6880 return -E1000_ERR_CONFIG;
6881
009bc06e
AD
6882 return 0;
6883}
6884
c8f44aff 6885static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6886{
6887 struct igb_adapter *adapter = netdev_priv(netdev);
6888 struct e1000_hw *hw = &adapter->hw;
6889 u32 ctrl, rctl;
f646968f 6890 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 6891
5faf030c 6892 if (enable) {
9d5c8243
AK
6893 /* enable VLAN tag insert/strip */
6894 ctrl = rd32(E1000_CTRL);
6895 ctrl |= E1000_CTRL_VME;
6896 wr32(E1000_CTRL, ctrl);
6897
51466239 6898 /* Disable CFI check */
9d5c8243 6899 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6900 rctl &= ~E1000_RCTL_CFIEN;
6901 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6902 } else {
6903 /* disable VLAN tag insert/strip */
6904 ctrl = rd32(E1000_CTRL);
6905 ctrl &= ~E1000_CTRL_VME;
6906 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6907 }
6908
e1739522 6909 igb_rlpml_set(adapter);
9d5c8243
AK
6910}
6911
80d5c368
PM
6912static int igb_vlan_rx_add_vid(struct net_device *netdev,
6913 __be16 proto, u16 vid)
9d5c8243
AK
6914{
6915 struct igb_adapter *adapter = netdev_priv(netdev);
6916 struct e1000_hw *hw = &adapter->hw;
4ae196df 6917 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6918
51466239
AD
6919 /* attempt to add filter to vlvf array */
6920 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6921
51466239
AD
6922 /* add the filter since PF can receive vlans w/o entry in vlvf */
6923 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6924
6925 set_bit(vid, adapter->active_vlans);
8e586137
JP
6926
6927 return 0;
9d5c8243
AK
6928}
6929
80d5c368
PM
6930static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6931 __be16 proto, u16 vid)
9d5c8243
AK
6932{
6933 struct igb_adapter *adapter = netdev_priv(netdev);
6934 struct e1000_hw *hw = &adapter->hw;
4ae196df 6935 int pf_id = adapter->vfs_allocated_count;
51466239 6936 s32 err;
9d5c8243 6937
51466239
AD
6938 /* remove vlan from VLVF table array */
6939 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6940
51466239
AD
6941 /* if vid was not present in VLVF just remove it from table */
6942 if (err)
4ae196df 6943 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6944
6945 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6946
6947 return 0;
9d5c8243
AK
6948}
6949
6950static void igb_restore_vlan(struct igb_adapter *adapter)
6951{
b2cb09b1 6952 u16 vid;
9d5c8243 6953
5faf030c
AD
6954 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6955
b2cb09b1 6956 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 6957 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
6958}
6959
14ad2513 6960int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6961{
090b1795 6962 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6963 struct e1000_mac_info *mac = &adapter->hw.mac;
6964
6965 mac->autoneg = 0;
6966
14ad2513 6967 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
6968 * for the switch() below to work
6969 */
14ad2513
DD
6970 if ((spd & 1) || (dplx & ~1))
6971 goto err_inval;
6972
f502ef7d
AA
6973 /* Fiber NIC's only allow 1000 gbps Full duplex
6974 * and 100Mbps Full duplex for 100baseFx sfp
6975 */
6976 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6977 switch (spd + dplx) {
6978 case SPEED_10 + DUPLEX_HALF:
6979 case SPEED_10 + DUPLEX_FULL:
6980 case SPEED_100 + DUPLEX_HALF:
6981 goto err_inval;
6982 default:
6983 break;
6984 }
6985 }
cd2638a8 6986
14ad2513 6987 switch (spd + dplx) {
9d5c8243
AK
6988 case SPEED_10 + DUPLEX_HALF:
6989 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6990 break;
6991 case SPEED_10 + DUPLEX_FULL:
6992 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6993 break;
6994 case SPEED_100 + DUPLEX_HALF:
6995 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6996 break;
6997 case SPEED_100 + DUPLEX_FULL:
6998 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6999 break;
7000 case SPEED_1000 + DUPLEX_FULL:
7001 mac->autoneg = 1;
7002 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7003 break;
7004 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7005 default:
14ad2513 7006 goto err_inval;
9d5c8243 7007 }
8376dad0
JB
7008
7009 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7010 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7011
9d5c8243 7012 return 0;
14ad2513
DD
7013
7014err_inval:
7015 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7016 return -EINVAL;
9d5c8243
AK
7017}
7018
749ab2cd
YZ
7019static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7020 bool runtime)
9d5c8243
AK
7021{
7022 struct net_device *netdev = pci_get_drvdata(pdev);
7023 struct igb_adapter *adapter = netdev_priv(netdev);
7024 struct e1000_hw *hw = &adapter->hw;
2d064c06 7025 u32 ctrl, rctl, status;
749ab2cd 7026 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7027#ifdef CONFIG_PM
7028 int retval = 0;
7029#endif
7030
7031 netif_device_detach(netdev);
7032
a88f10ec 7033 if (netif_running(netdev))
749ab2cd 7034 __igb_close(netdev, true);
a88f10ec 7035
047e0030 7036 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7037
7038#ifdef CONFIG_PM
7039 retval = pci_save_state(pdev);
7040 if (retval)
7041 return retval;
7042#endif
7043
7044 status = rd32(E1000_STATUS);
7045 if (status & E1000_STATUS_LU)
7046 wufc &= ~E1000_WUFC_LNKC;
7047
7048 if (wufc) {
7049 igb_setup_rctl(adapter);
ff41f8dc 7050 igb_set_rx_mode(netdev);
9d5c8243
AK
7051
7052 /* turn on all-multi mode if wake on multicast is enabled */
7053 if (wufc & E1000_WUFC_MC) {
7054 rctl = rd32(E1000_RCTL);
7055 rctl |= E1000_RCTL_MPE;
7056 wr32(E1000_RCTL, rctl);
7057 }
7058
7059 ctrl = rd32(E1000_CTRL);
7060 /* advertise wake from D3Cold */
7061 #define E1000_CTRL_ADVD3WUC 0x00100000
7062 /* phy power management enable */
7063 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7064 ctrl |= E1000_CTRL_ADVD3WUC;
7065 wr32(E1000_CTRL, ctrl);
7066
9d5c8243 7067 /* Allow time for pending master requests to run */
330a6d6a 7068 igb_disable_pcie_master(hw);
9d5c8243
AK
7069
7070 wr32(E1000_WUC, E1000_WUC_PME_EN);
7071 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7072 } else {
7073 wr32(E1000_WUC, 0);
7074 wr32(E1000_WUFC, 0);
9d5c8243
AK
7075 }
7076
3fe7c4c9
RW
7077 *enable_wake = wufc || adapter->en_mng_pt;
7078 if (!*enable_wake)
88a268c1
NN
7079 igb_power_down_link(adapter);
7080 else
7081 igb_power_up_link(adapter);
9d5c8243
AK
7082
7083 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7084 * would have already happened in close and is redundant.
7085 */
9d5c8243
AK
7086 igb_release_hw_control(adapter);
7087
7088 pci_disable_device(pdev);
7089
9d5c8243
AK
7090 return 0;
7091}
7092
7093#ifdef CONFIG_PM
d9dd966d 7094#ifdef CONFIG_PM_SLEEP
749ab2cd 7095static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7096{
7097 int retval;
7098 bool wake;
749ab2cd 7099 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7100
749ab2cd 7101 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7102 if (retval)
7103 return retval;
7104
7105 if (wake) {
7106 pci_prepare_to_sleep(pdev);
7107 } else {
7108 pci_wake_from_d3(pdev, false);
7109 pci_set_power_state(pdev, PCI_D3hot);
7110 }
7111
7112 return 0;
7113}
d9dd966d 7114#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7115
749ab2cd 7116static int igb_resume(struct device *dev)
9d5c8243 7117{
749ab2cd 7118 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7119 struct net_device *netdev = pci_get_drvdata(pdev);
7120 struct igb_adapter *adapter = netdev_priv(netdev);
7121 struct e1000_hw *hw = &adapter->hw;
7122 u32 err;
7123
7124 pci_set_power_state(pdev, PCI_D0);
7125 pci_restore_state(pdev);
b94f2d77 7126 pci_save_state(pdev);
42bfd33a 7127
aed5dec3 7128 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7129 if (err) {
7130 dev_err(&pdev->dev,
7131 "igb: Cannot enable PCI device from suspend\n");
7132 return err;
7133 }
7134 pci_set_master(pdev);
7135
7136 pci_enable_wake(pdev, PCI_D3hot, 0);
7137 pci_enable_wake(pdev, PCI_D3cold, 0);
7138
53c7d064 7139 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7140 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7141 return -ENOMEM;
9d5c8243
AK
7142 }
7143
9d5c8243 7144 igb_reset(adapter);
a8564f03
AD
7145
7146 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7147 * driver.
7148 */
a8564f03
AD
7149 igb_get_hw_control(adapter);
7150
9d5c8243
AK
7151 wr32(E1000_WUS, ~0);
7152
749ab2cd 7153 if (netdev->flags & IFF_UP) {
0c2cc02e 7154 rtnl_lock();
749ab2cd 7155 err = __igb_open(netdev, true);
0c2cc02e 7156 rtnl_unlock();
a88f10ec
AD
7157 if (err)
7158 return err;
7159 }
9d5c8243
AK
7160
7161 netif_device_attach(netdev);
749ab2cd
YZ
7162 return 0;
7163}
7164
7165#ifdef CONFIG_PM_RUNTIME
7166static int igb_runtime_idle(struct device *dev)
7167{
7168 struct pci_dev *pdev = to_pci_dev(dev);
7169 struct net_device *netdev = pci_get_drvdata(pdev);
7170 struct igb_adapter *adapter = netdev_priv(netdev);
7171
7172 if (!igb_has_link(adapter))
7173 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7174
7175 return -EBUSY;
7176}
7177
7178static int igb_runtime_suspend(struct device *dev)
7179{
7180 struct pci_dev *pdev = to_pci_dev(dev);
7181 int retval;
7182 bool wake;
7183
7184 retval = __igb_shutdown(pdev, &wake, 1);
7185 if (retval)
7186 return retval;
7187
7188 if (wake) {
7189 pci_prepare_to_sleep(pdev);
7190 } else {
7191 pci_wake_from_d3(pdev, false);
7192 pci_set_power_state(pdev, PCI_D3hot);
7193 }
9d5c8243 7194
9d5c8243
AK
7195 return 0;
7196}
749ab2cd
YZ
7197
7198static int igb_runtime_resume(struct device *dev)
7199{
7200 return igb_resume(dev);
7201}
7202#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7203#endif
7204
7205static void igb_shutdown(struct pci_dev *pdev)
7206{
3fe7c4c9
RW
7207 bool wake;
7208
749ab2cd 7209 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7210
7211 if (system_state == SYSTEM_POWER_OFF) {
7212 pci_wake_from_d3(pdev, wake);
7213 pci_set_power_state(pdev, PCI_D3hot);
7214 }
9d5c8243
AK
7215}
7216
fa44f2f1
GR
7217#ifdef CONFIG_PCI_IOV
7218static int igb_sriov_reinit(struct pci_dev *dev)
7219{
7220 struct net_device *netdev = pci_get_drvdata(dev);
7221 struct igb_adapter *adapter = netdev_priv(netdev);
7222 struct pci_dev *pdev = adapter->pdev;
7223
7224 rtnl_lock();
7225
7226 if (netif_running(netdev))
7227 igb_close(netdev);
7228
7229 igb_clear_interrupt_scheme(adapter);
7230
7231 igb_init_queue_configuration(adapter);
7232
7233 if (igb_init_interrupt_scheme(adapter, true)) {
7234 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7235 return -ENOMEM;
7236 }
7237
7238 if (netif_running(netdev))
7239 igb_open(netdev);
7240
7241 rtnl_unlock();
7242
7243 return 0;
7244}
7245
7246static int igb_pci_disable_sriov(struct pci_dev *dev)
7247{
7248 int err = igb_disable_sriov(dev);
7249
7250 if (!err)
7251 err = igb_sriov_reinit(dev);
7252
7253 return err;
7254}
7255
7256static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7257{
7258 int err = igb_enable_sriov(dev, num_vfs);
7259
7260 if (err)
7261 goto out;
7262
7263 err = igb_sriov_reinit(dev);
7264 if (!err)
7265 return num_vfs;
7266
7267out:
7268 return err;
7269}
7270
7271#endif
7272static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7273{
7274#ifdef CONFIG_PCI_IOV
7275 if (num_vfs == 0)
7276 return igb_pci_disable_sriov(dev);
7277 else
7278 return igb_pci_enable_sriov(dev, num_vfs);
7279#endif
7280 return 0;
7281}
7282
9d5c8243 7283#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7284/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7285 * without having to re-enable interrupts. It's not called while
7286 * the interrupt routine is executing.
7287 */
7288static void igb_netpoll(struct net_device *netdev)
7289{
7290 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7291 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7292 struct igb_q_vector *q_vector;
9d5c8243 7293 int i;
9d5c8243 7294
047e0030 7295 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
7296 q_vector = adapter->q_vector[i];
7297 if (adapter->msix_entries)
7298 wr32(E1000_EIMC, q_vector->eims_value);
7299 else
7300 igb_irq_disable(adapter);
047e0030 7301 napi_schedule(&q_vector->napi);
eebbbdba 7302 }
9d5c8243
AK
7303}
7304#endif /* CONFIG_NET_POLL_CONTROLLER */
7305
7306/**
b980ac18
JK
7307 * igb_io_error_detected - called when PCI error is detected
7308 * @pdev: Pointer to PCI device
7309 * @state: The current pci connection state
9d5c8243 7310 *
b980ac18
JK
7311 * This function is called after a PCI bus error affecting
7312 * this device has been detected.
7313 **/
9d5c8243
AK
7314static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7315 pci_channel_state_t state)
7316{
7317 struct net_device *netdev = pci_get_drvdata(pdev);
7318 struct igb_adapter *adapter = netdev_priv(netdev);
7319
7320 netif_device_detach(netdev);
7321
59ed6eec
AD
7322 if (state == pci_channel_io_perm_failure)
7323 return PCI_ERS_RESULT_DISCONNECT;
7324
9d5c8243
AK
7325 if (netif_running(netdev))
7326 igb_down(adapter);
7327 pci_disable_device(pdev);
7328
7329 /* Request a slot slot reset. */
7330 return PCI_ERS_RESULT_NEED_RESET;
7331}
7332
7333/**
b980ac18
JK
7334 * igb_io_slot_reset - called after the pci bus has been reset.
7335 * @pdev: Pointer to PCI device
9d5c8243 7336 *
b980ac18
JK
7337 * Restart the card from scratch, as if from a cold-boot. Implementation
7338 * resembles the first-half of the igb_resume routine.
7339 **/
9d5c8243
AK
7340static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7341{
7342 struct net_device *netdev = pci_get_drvdata(pdev);
7343 struct igb_adapter *adapter = netdev_priv(netdev);
7344 struct e1000_hw *hw = &adapter->hw;
40a914fa 7345 pci_ers_result_t result;
42bfd33a 7346 int err;
9d5c8243 7347
aed5dec3 7348 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7349 dev_err(&pdev->dev,
7350 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7351 result = PCI_ERS_RESULT_DISCONNECT;
7352 } else {
7353 pci_set_master(pdev);
7354 pci_restore_state(pdev);
b94f2d77 7355 pci_save_state(pdev);
9d5c8243 7356
40a914fa
AD
7357 pci_enable_wake(pdev, PCI_D3hot, 0);
7358 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7359
40a914fa
AD
7360 igb_reset(adapter);
7361 wr32(E1000_WUS, ~0);
7362 result = PCI_ERS_RESULT_RECOVERED;
7363 }
9d5c8243 7364
ea943d41
JK
7365 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7366 if (err) {
b980ac18
JK
7367 dev_err(&pdev->dev,
7368 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7369 err);
ea943d41
JK
7370 /* non-fatal, continue */
7371 }
40a914fa
AD
7372
7373 return result;
9d5c8243
AK
7374}
7375
7376/**
b980ac18
JK
7377 * igb_io_resume - called when traffic can start flowing again.
7378 * @pdev: Pointer to PCI device
9d5c8243 7379 *
b980ac18
JK
7380 * This callback is called when the error recovery driver tells us that
7381 * its OK to resume normal operation. Implementation resembles the
7382 * second-half of the igb_resume routine.
9d5c8243
AK
7383 */
7384static void igb_io_resume(struct pci_dev *pdev)
7385{
7386 struct net_device *netdev = pci_get_drvdata(pdev);
7387 struct igb_adapter *adapter = netdev_priv(netdev);
7388
9d5c8243
AK
7389 if (netif_running(netdev)) {
7390 if (igb_up(adapter)) {
7391 dev_err(&pdev->dev, "igb_up failed after reset\n");
7392 return;
7393 }
7394 }
7395
7396 netif_device_attach(netdev);
7397
7398 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7399 * driver.
7400 */
9d5c8243 7401 igb_get_hw_control(adapter);
9d5c8243
AK
7402}
7403
26ad9178 7404static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7405 u8 qsel)
26ad9178
AD
7406{
7407 u32 rar_low, rar_high;
7408 struct e1000_hw *hw = &adapter->hw;
7409
7410 /* HW expects these in little endian so we reverse the byte order
7411 * from network order (big endian) to little endian
7412 */
7413 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
b980ac18 7414 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
26ad9178
AD
7415 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7416
7417 /* Indicate to hardware the Address is Valid. */
7418 rar_high |= E1000_RAH_AV;
7419
7420 if (hw->mac.type == e1000_82575)
7421 rar_high |= E1000_RAH_POOL_1 * qsel;
7422 else
7423 rar_high |= E1000_RAH_POOL_1 << qsel;
7424
7425 wr32(E1000_RAL(index), rar_low);
7426 wrfl();
7427 wr32(E1000_RAH(index), rar_high);
7428 wrfl();
7429}
7430
4ae196df 7431static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7432 int vf, unsigned char *mac_addr)
4ae196df
AD
7433{
7434 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7435 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7436 * towards the first, as a result a collision should not be possible
7437 */
ff41f8dc 7438 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7439
37680117 7440 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7441
26ad9178 7442 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7443
7444 return 0;
7445}
7446
8151d294
WM
7447static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7448{
7449 struct igb_adapter *adapter = netdev_priv(netdev);
7450 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7451 return -EINVAL;
7452 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7453 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7454 dev_info(&adapter->pdev->dev,
7455 "Reload the VF driver to make this change effective.");
8151d294 7456 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7457 dev_warn(&adapter->pdev->dev,
7458 "The VF MAC address has been set, but the PF device is not up.\n");
7459 dev_warn(&adapter->pdev->dev,
7460 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7461 }
7462 return igb_set_vf_mac(adapter, vf, mac);
7463}
7464
17dc566c
LL
7465static int igb_link_mbps(int internal_link_speed)
7466{
7467 switch (internal_link_speed) {
7468 case SPEED_100:
7469 return 100;
7470 case SPEED_1000:
7471 return 1000;
7472 default:
7473 return 0;
7474 }
7475}
7476
7477static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7478 int link_speed)
7479{
7480 int rf_dec, rf_int;
7481 u32 bcnrc_val;
7482
7483 if (tx_rate != 0) {
7484 /* Calculate the rate factor values to set */
7485 rf_int = link_speed / tx_rate;
7486 rf_dec = (link_speed - (rf_int * tx_rate));
b980ac18
JK
7487 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7488 tx_rate;
17dc566c
LL
7489
7490 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
7491 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7492 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
7493 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7494 } else {
7495 bcnrc_val = 0;
7496 }
7497
7498 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 7499 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
7500 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7501 */
7502 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7503 wr32(E1000_RTTBCNRC, bcnrc_val);
7504}
7505
7506static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7507{
7508 int actual_link_speed, i;
7509 bool reset_rate = false;
7510
7511 /* VF TX rate limit was not set or not supported */
7512 if ((adapter->vf_rate_link_speed == 0) ||
7513 (adapter->hw.mac.type != e1000_82576))
7514 return;
7515
7516 actual_link_speed = igb_link_mbps(adapter->link_speed);
7517 if (actual_link_speed != adapter->vf_rate_link_speed) {
7518 reset_rate = true;
7519 adapter->vf_rate_link_speed = 0;
7520 dev_info(&adapter->pdev->dev,
b980ac18 7521 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
7522 }
7523
7524 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7525 if (reset_rate)
7526 adapter->vf_data[i].tx_rate = 0;
7527
7528 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
7529 adapter->vf_data[i].tx_rate,
7530 actual_link_speed);
17dc566c
LL
7531 }
7532}
7533
8151d294
WM
7534static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7535{
17dc566c
LL
7536 struct igb_adapter *adapter = netdev_priv(netdev);
7537 struct e1000_hw *hw = &adapter->hw;
7538 int actual_link_speed;
7539
7540 if (hw->mac.type != e1000_82576)
7541 return -EOPNOTSUPP;
7542
7543 actual_link_speed = igb_link_mbps(adapter->link_speed);
7544 if ((vf >= adapter->vfs_allocated_count) ||
7545 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7546 (tx_rate < 0) || (tx_rate > actual_link_speed))
7547 return -EINVAL;
7548
7549 adapter->vf_rate_link_speed = actual_link_speed;
7550 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7551 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7552
7553 return 0;
8151d294
WM
7554}
7555
70ea4783
LL
7556static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7557 bool setting)
7558{
7559 struct igb_adapter *adapter = netdev_priv(netdev);
7560 struct e1000_hw *hw = &adapter->hw;
7561 u32 reg_val, reg_offset;
7562
7563 if (!adapter->vfs_allocated_count)
7564 return -EOPNOTSUPP;
7565
7566 if (vf >= adapter->vfs_allocated_count)
7567 return -EINVAL;
7568
7569 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7570 reg_val = rd32(reg_offset);
7571 if (setting)
7572 reg_val |= ((1 << vf) |
7573 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7574 else
7575 reg_val &= ~((1 << vf) |
7576 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7577 wr32(reg_offset, reg_val);
7578
7579 adapter->vf_data[vf].spoofchk_enabled = setting;
7580 return E1000_SUCCESS;
7581}
7582
8151d294
WM
7583static int igb_ndo_get_vf_config(struct net_device *netdev,
7584 int vf, struct ifla_vf_info *ivi)
7585{
7586 struct igb_adapter *adapter = netdev_priv(netdev);
7587 if (vf >= adapter->vfs_allocated_count)
7588 return -EINVAL;
7589 ivi->vf = vf;
7590 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7591 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7592 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7593 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 7594 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
7595 return 0;
7596}
7597
4ae196df
AD
7598static void igb_vmm_control(struct igb_adapter *adapter)
7599{
7600 struct e1000_hw *hw = &adapter->hw;
10d8e907 7601 u32 reg;
4ae196df 7602
52a1dd4d
AD
7603 switch (hw->mac.type) {
7604 case e1000_82575:
f96a8a0b
CW
7605 case e1000_i210:
7606 case e1000_i211:
ceb5f13b 7607 case e1000_i354:
52a1dd4d
AD
7608 default:
7609 /* replication is not supported for 82575 */
4ae196df 7610 return;
52a1dd4d
AD
7611 case e1000_82576:
7612 /* notify HW that the MAC is adding vlan tags */
7613 reg = rd32(E1000_DTXCTL);
7614 reg |= E1000_DTXCTL_VLAN_ADDED;
7615 wr32(E1000_DTXCTL, reg);
7616 case e1000_82580:
7617 /* enable replication vlan tag stripping */
7618 reg = rd32(E1000_RPLOLR);
7619 reg |= E1000_RPLOLR_STRVLAN;
7620 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7621 case e1000_i350:
7622 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7623 break;
7624 }
10d8e907 7625
d4960307
AD
7626 if (adapter->vfs_allocated_count) {
7627 igb_vmdq_set_loopback_pf(hw, true);
7628 igb_vmdq_set_replication_pf(hw, true);
13800469 7629 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 7630 adapter->vfs_allocated_count);
d4960307
AD
7631 } else {
7632 igb_vmdq_set_loopback_pf(hw, false);
7633 igb_vmdq_set_replication_pf(hw, false);
7634 }
4ae196df
AD
7635}
7636
b6e0c419
CW
7637static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7638{
7639 struct e1000_hw *hw = &adapter->hw;
7640 u32 dmac_thr;
7641 u16 hwm;
7642
7643 if (hw->mac.type > e1000_82580) {
7644 if (adapter->flags & IGB_FLAG_DMAC) {
7645 u32 reg;
7646
7647 /* force threshold to 0. */
7648 wr32(E1000_DMCTXTH, 0);
7649
b980ac18 7650 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
7651 * than the Rx threshold. Set hwm to PBA - max frame
7652 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7653 */
e8c626e9
MV
7654 hwm = 64 * pba - adapter->max_frame_size / 16;
7655 if (hwm < 64 * (pba - 6))
7656 hwm = 64 * (pba - 6);
7657 reg = rd32(E1000_FCRTC);
7658 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7659 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7660 & E1000_FCRTC_RTH_COAL_MASK);
7661 wr32(E1000_FCRTC, reg);
7662
b980ac18 7663 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
7664 * frame size, capping it at PBA - 10KB.
7665 */
7666 dmac_thr = pba - adapter->max_frame_size / 512;
7667 if (dmac_thr < pba - 10)
7668 dmac_thr = pba - 10;
b6e0c419
CW
7669 reg = rd32(E1000_DMACR);
7670 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7671 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7672 & E1000_DMACR_DMACTHR_MASK);
7673
7674 /* transition to L0x or L1 if available..*/
7675 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7676
7677 /* watchdog timer= +-1000 usec in 32usec intervals */
7678 reg |= (1000 >> 5);
0c02dd98
MV
7679
7680 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
7681 if (hw->mac.type != e1000_i354)
7682 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7683
b6e0c419
CW
7684 wr32(E1000_DMACR, reg);
7685
b980ac18 7686 /* no lower threshold to disable
b6e0c419
CW
7687 * coalescing(smart fifb)-UTRESH=0
7688 */
7689 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7690
7691 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7692
7693 wr32(E1000_DMCTLX, reg);
7694
b980ac18 7695 /* free space in tx packet buffer to wake from
b6e0c419
CW
7696 * DMA coal
7697 */
7698 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7699 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7700
b980ac18 7701 /* make low power state decision controlled
b6e0c419
CW
7702 * by DMA coal
7703 */
7704 reg = rd32(E1000_PCIEMISC);
7705 reg &= ~E1000_PCIEMISC_LX_DECISION;
7706 wr32(E1000_PCIEMISC, reg);
7707 } /* endif adapter->dmac is not disabled */
7708 } else if (hw->mac.type == e1000_82580) {
7709 u32 reg = rd32(E1000_PCIEMISC);
7710 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7711 wr32(E1000_DMACR, 0);
7712 }
7713}
7714
b980ac18
JK
7715/**
7716 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
7717 * @hw: pointer to hardware structure
7718 * @byte_offset: byte offset to read
7719 * @dev_addr: device address
7720 * @data: value read
7721 *
7722 * Performs byte read operation over I2C interface at
7723 * a specified device address.
b980ac18 7724 **/
441fc6fd 7725s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 7726 u8 dev_addr, u8 *data)
441fc6fd
CW
7727{
7728 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7729 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7730 s32 status;
7731 u16 swfw_mask = 0;
7732
7733 if (!this_client)
7734 return E1000_ERR_I2C;
7735
7736 swfw_mask = E1000_SWFW_PHY0_SM;
7737
7738 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7739 != E1000_SUCCESS)
7740 return E1000_ERR_SWFW_SYNC;
7741
7742 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7743 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7744
7745 if (status < 0)
7746 return E1000_ERR_I2C;
7747 else {
7748 *data = status;
7749 return E1000_SUCCESS;
7750 }
7751}
7752
b980ac18
JK
7753/**
7754 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
7755 * @hw: pointer to hardware structure
7756 * @byte_offset: byte offset to write
7757 * @dev_addr: device address
7758 * @data: value to write
7759 *
7760 * Performs byte write operation over I2C interface at
7761 * a specified device address.
b980ac18 7762 **/
441fc6fd 7763s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 7764 u8 dev_addr, u8 data)
441fc6fd
CW
7765{
7766 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7767 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7768 s32 status;
7769 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7770
7771 if (!this_client)
7772 return E1000_ERR_I2C;
7773
7774 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7775 return E1000_ERR_SWFW_SYNC;
7776 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7777 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7778
7779 if (status)
7780 return E1000_ERR_I2C;
7781 else
7782 return E1000_SUCCESS;
7783
7784}
9d5c8243 7785/* igb_main.c */