]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/igbvf/netdev.c
ethernet/intel: use core min/max MTU checking
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
2a06ed92 4 Copyright(c) 2009 - 2012 Intel Corporation.
d4e0fe01
AD
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
0340501b 16 this program; if not, see <http://www.gnu.org/licenses/>.
d4e0fe01
AD
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
a4ba8cbe
JK
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
d4e0fe01
AD
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
5a0e3ad6 39#include <linux/slab.h>
d4e0fe01
AD
40#include <net/checksum.h>
41#include <net/ip6_checksum.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if_vlan.h>
70c71606 45#include <linux/prefetch.h>
ea6ce602 46#include <linux/sctp.h>
d4e0fe01
AD
47
48#include "igbvf.h"
49
3d05fd0a 50#define DRV_VERSION "2.4.0-k"
d4e0fe01
AD
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
10090751 54 "Intel(R) Gigabit Virtual Function Network Driver";
2c20ebba 55static const char igbvf_copyright[] =
2a06ed92 56 "Copyright (c) 2009 - 2012 Intel Corporation.";
d4e0fe01 57
b3f4d599 58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
d4e0fe01 63static int igbvf_poll(struct napi_struct *napi, int budget);
2d165771
AD
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
d4e0fe01
AD
67
68static struct igbvf_info igbvf_vf_info = {
0340501b
JK
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
d4e0fe01
AD
73};
74
031d7952 75static struct igbvf_info igbvf_i350_vf_info = {
0340501b
JK
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
031d7952
WM
80};
81
d4e0fe01 82static const struct igbvf_info *igbvf_info_tbl[] = {
0340501b
JK
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
d4e0fe01
AD
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
0340501b 89 * @rx_ring: address of receive ring structure
d4e0fe01
AD
90 **/
91static int igbvf_desc_unused(struct igbvf_ring *ring)
92{
93 if (ring->next_to_clean > ring->next_to_use)
94 return ring->next_to_clean - ring->next_to_use - 1;
95
96 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
97}
98
99/**
100 * igbvf_receive_skb - helper function to handle Rx indications
101 * @adapter: board private structure
102 * @status: descriptor status field as written by hardware
103 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104 * @skb: pointer to sk_buff to be indicated to stack
105 **/
106static void igbvf_receive_skb(struct igbvf_adapter *adapter,
0340501b
JK
107 struct net_device *netdev,
108 struct sk_buff *skb,
109 u32 status, u16 vlan)
d4e0fe01 110{
2c1a1019
MW
111 u16 vid;
112
a0f1d603 113 if (status & E1000_RXD_STAT_VP) {
2c1a1019
MW
114 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115 (status & E1000_RXDEXT_STATERR_LB))
116 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117 else
118 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4d2d55ac 119 if (test_bit(vid, adapter->active_vlans))
86a9bad3 120 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
a0f1d603 121 }
2c1a1019
MW
122
123 napi_gro_receive(&adapter->rx_ring->napi, skb);
d4e0fe01
AD
124}
125
126static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
0340501b 127 u32 status_err, struct sk_buff *skb)
d4e0fe01 128{
bc8acf2c 129 skb_checksum_none_assert(skb);
d4e0fe01
AD
130
131 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
0364d6fd
AD
132 if ((status_err & E1000_RXD_STAT_IXSM) ||
133 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
d4e0fe01 134 return;
0364d6fd 135
d4e0fe01
AD
136 /* TCP/UDP checksum error bit is set */
137 if (status_err &
138 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139 /* let the stack verify checksum errors */
140 adapter->hw_csum_err++;
141 return;
142 }
0364d6fd 143
d4e0fe01
AD
144 /* It must be a TCP or UDP packet with a valid checksum */
145 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146 skb->ip_summed = CHECKSUM_UNNECESSARY;
147
148 adapter->hw_csum_good++;
149}
150
151/**
152 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153 * @rx_ring: address of ring structure to repopulate
154 * @cleaned_count: number of buffers to repopulate
155 **/
156static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
0340501b 157 int cleaned_count)
d4e0fe01
AD
158{
159 struct igbvf_adapter *adapter = rx_ring->adapter;
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 union e1000_adv_rx_desc *rx_desc;
163 struct igbvf_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 int bufsz;
167
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
170
171 if (adapter->rx_ps_hdr_size)
172 bufsz = adapter->rx_ps_hdr_size;
173 else
174 bufsz = adapter->rx_buffer_len;
d4e0fe01
AD
175
176 while (cleaned_count--) {
177 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
178
179 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180 if (!buffer_info->page) {
181 buffer_info->page = alloc_page(GFP_ATOMIC);
182 if (!buffer_info->page) {
183 adapter->alloc_rx_buff_failed++;
184 goto no_buffers;
185 }
186 buffer_info->page_offset = 0;
187 } else {
188 buffer_info->page_offset ^= PAGE_SIZE / 2;
189 }
190 buffer_info->page_dma =
123e9f1a 191 dma_map_page(&pdev->dev, buffer_info->page,
0340501b
JK
192 buffer_info->page_offset,
193 PAGE_SIZE / 2,
123e9f1a 194 DMA_FROM_DEVICE);
91ffb8e0
GR
195 if (dma_mapping_error(&pdev->dev,
196 buffer_info->page_dma)) {
197 __free_page(buffer_info->page);
198 buffer_info->page = NULL;
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 break;
201 }
d4e0fe01
AD
202 }
203
204 if (!buffer_info->skb) {
89d71a66 205 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
d4e0fe01
AD
206 if (!skb) {
207 adapter->alloc_rx_buff_failed++;
208 goto no_buffers;
209 }
210
d4e0fe01 211 buffer_info->skb = skb;
123e9f1a 212 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
0340501b 213 bufsz,
123e9f1a 214 DMA_FROM_DEVICE);
91ffb8e0
GR
215 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216 dev_kfree_skb(buffer_info->skb);
217 buffer_info->skb = NULL;
218 dev_err(&pdev->dev, "RX DMA map failed\n");
219 goto no_buffers;
220 }
d4e0fe01
AD
221 }
222 /* Refresh the desc even if buffer_addrs didn't change because
0340501b
JK
223 * each write-back erases this info.
224 */
d4e0fe01
AD
225 if (adapter->rx_ps_hdr_size) {
226 rx_desc->read.pkt_addr =
227 cpu_to_le64(buffer_info->page_dma);
228 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229 } else {
0340501b 230 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
d4e0fe01
AD
231 rx_desc->read.hdr_addr = 0;
232 }
233
234 i++;
235 if (i == rx_ring->count)
236 i = 0;
237 buffer_info = &rx_ring->buffer_info[i];
238 }
239
240no_buffers:
241 if (rx_ring->next_to_use != i) {
242 rx_ring->next_to_use = i;
243 if (i == 0)
244 i = (rx_ring->count - 1);
245 else
246 i--;
247
248 /* Force memory writes to complete before letting h/w
249 * know there are new descriptors to fetch. (Only
250 * applicable for weak-ordered memory model archs,
0340501b
JK
251 * such as IA-64).
252 */
d4e0fe01
AD
253 wmb();
254 writel(i, adapter->hw.hw_addr + rx_ring->tail);
255 }
256}
257
258/**
259 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260 * @adapter: board private structure
261 *
262 * the return value indicates whether actual cleaning was done, there
263 * is no guarantee that everything was cleaned
264 **/
265static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
0340501b 266 int *work_done, int work_to_do)
d4e0fe01
AD
267{
268 struct igbvf_ring *rx_ring = adapter->rx_ring;
269 struct net_device *netdev = adapter->netdev;
270 struct pci_dev *pdev = adapter->pdev;
271 union e1000_adv_rx_desc *rx_desc, *next_rxd;
272 struct igbvf_buffer *buffer_info, *next_buffer;
273 struct sk_buff *skb;
274 bool cleaned = false;
275 int cleaned_count = 0;
276 unsigned int total_bytes = 0, total_packets = 0;
277 unsigned int i;
278 u32 length, hlen, staterr;
279
280 i = rx_ring->next_to_clean;
281 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
283
284 while (staterr & E1000_RXD_STAT_DD) {
285 if (*work_done >= work_to_do)
286 break;
287 (*work_done)++;
2d0bb1c1 288 rmb(); /* read descriptor and rx_buffer_info after status DD */
d4e0fe01
AD
289
290 buffer_info = &rx_ring->buffer_info[i];
291
292 /* HW will not DMA in data larger than the given buffer, even
293 * if it parses the (NFS, of course) header to be larger. In
294 * that case, it fills the header buffer and spills the rest
295 * into the page.
296 */
0340501b
JK
297 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298 & E1000_RXDADV_HDRBUFLEN_MASK) >>
299 E1000_RXDADV_HDRBUFLEN_SHIFT;
d4e0fe01
AD
300 if (hlen > adapter->rx_ps_hdr_size)
301 hlen = adapter->rx_ps_hdr_size;
302
303 length = le16_to_cpu(rx_desc->wb.upper.length);
304 cleaned = true;
305 cleaned_count++;
306
307 skb = buffer_info->skb;
308 prefetch(skb->data - NET_IP_ALIGN);
309 buffer_info->skb = NULL;
310 if (!adapter->rx_ps_hdr_size) {
123e9f1a 311 dma_unmap_single(&pdev->dev, buffer_info->dma,
0340501b 312 adapter->rx_buffer_len,
123e9f1a 313 DMA_FROM_DEVICE);
d4e0fe01
AD
314 buffer_info->dma = 0;
315 skb_put(skb, length);
316 goto send_up;
317 }
318
319 if (!skb_shinfo(skb)->nr_frags) {
123e9f1a 320 dma_unmap_single(&pdev->dev, buffer_info->dma,
0340501b 321 adapter->rx_ps_hdr_size,
123e9f1a 322 DMA_FROM_DEVICE);
fae5ecae 323 buffer_info->dma = 0;
d4e0fe01
AD
324 skb_put(skb, hlen);
325 }
326
327 if (length) {
123e9f1a 328 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
0340501b 329 PAGE_SIZE / 2,
123e9f1a 330 DMA_FROM_DEVICE);
d4e0fe01
AD
331 buffer_info->page_dma = 0;
332
ec857fd4 333 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
0340501b
JK
334 buffer_info->page,
335 buffer_info->page_offset,
336 length);
d4e0fe01
AD
337
338 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339 (page_count(buffer_info->page) != 1))
340 buffer_info->page = NULL;
341 else
342 get_page(buffer_info->page);
343
344 skb->len += length;
345 skb->data_len += length;
7b8b5961 346 skb->truesize += PAGE_SIZE / 2;
d4e0fe01
AD
347 }
348send_up:
349 i++;
350 if (i == rx_ring->count)
351 i = 0;
352 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353 prefetch(next_rxd);
354 next_buffer = &rx_ring->buffer_info[i];
355
356 if (!(staterr & E1000_RXD_STAT_EOP)) {
357 buffer_info->skb = next_buffer->skb;
358 buffer_info->dma = next_buffer->dma;
359 next_buffer->skb = skb;
360 next_buffer->dma = 0;
361 goto next_desc;
362 }
363
364 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365 dev_kfree_skb_irq(skb);
366 goto next_desc;
367 }
368
369 total_bytes += skb->len;
370 total_packets++;
371
372 igbvf_rx_checksum_adv(adapter, staterr, skb);
373
374 skb->protocol = eth_type_trans(skb, netdev);
375
376 igbvf_receive_skb(adapter, netdev, skb, staterr,
0340501b 377 rx_desc->wb.upper.vlan);
d4e0fe01 378
d4e0fe01
AD
379next_desc:
380 rx_desc->wb.upper.status_error = 0;
381
382 /* return some buffers to hardware, one at a time is too slow */
383 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385 cleaned_count = 0;
386 }
387
388 /* use prefetched values */
389 rx_desc = next_rxd;
390 buffer_info = next_buffer;
391
392 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
393 }
394
395 rx_ring->next_to_clean = i;
396 cleaned_count = igbvf_desc_unused(rx_ring);
397
398 if (cleaned_count)
399 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
400
401 adapter->total_rx_packets += total_packets;
402 adapter->total_rx_bytes += total_bytes;
403 adapter->net_stats.rx_bytes += total_bytes;
404 adapter->net_stats.rx_packets += total_packets;
405 return cleaned;
406}
407
408static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
0340501b 409 struct igbvf_buffer *buffer_info)
d4e0fe01 410{
a7d5ca40
AD
411 if (buffer_info->dma) {
412 if (buffer_info->mapped_as_page)
123e9f1a 413 dma_unmap_page(&adapter->pdev->dev,
a7d5ca40
AD
414 buffer_info->dma,
415 buffer_info->length,
123e9f1a 416 DMA_TO_DEVICE);
a7d5ca40 417 else
123e9f1a 418 dma_unmap_single(&adapter->pdev->dev,
a7d5ca40
AD
419 buffer_info->dma,
420 buffer_info->length,
123e9f1a 421 DMA_TO_DEVICE);
a7d5ca40
AD
422 buffer_info->dma = 0;
423 }
d4e0fe01 424 if (buffer_info->skb) {
d4e0fe01
AD
425 dev_kfree_skb_any(buffer_info->skb);
426 buffer_info->skb = NULL;
427 }
428 buffer_info->time_stamp = 0;
429}
430
d4e0fe01
AD
431/**
432 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433 * @adapter: board private structure
434 *
435 * Return 0 on success, negative on failure
436 **/
437int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
0340501b 438 struct igbvf_ring *tx_ring)
d4e0fe01
AD
439{
440 struct pci_dev *pdev = adapter->pdev;
441 int size;
442
443 size = sizeof(struct igbvf_buffer) * tx_ring->count;
89bf67f1 444 tx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
445 if (!tx_ring->buffer_info)
446 goto err;
d4e0fe01
AD
447
448 /* round up to nearest 4K */
449 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450 tx_ring->size = ALIGN(tx_ring->size, 4096);
451
123e9f1a
NN
452 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453 &tx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
454 if (!tx_ring->desc)
455 goto err;
456
457 tx_ring->adapter = adapter;
458 tx_ring->next_to_use = 0;
459 tx_ring->next_to_clean = 0;
460
461 return 0;
462err:
463 vfree(tx_ring->buffer_info);
464 dev_err(&adapter->pdev->dev,
0340501b 465 "Unable to allocate memory for the transmit descriptor ring\n");
d4e0fe01
AD
466 return -ENOMEM;
467}
468
469/**
470 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471 * @adapter: board private structure
472 *
473 * Returns 0 on success, negative on failure
474 **/
475int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476 struct igbvf_ring *rx_ring)
477{
478 struct pci_dev *pdev = adapter->pdev;
479 int size, desc_len;
480
481 size = sizeof(struct igbvf_buffer) * rx_ring->count;
89bf67f1 482 rx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
483 if (!rx_ring->buffer_info)
484 goto err;
d4e0fe01
AD
485
486 desc_len = sizeof(union e1000_adv_rx_desc);
487
488 /* Round up to nearest 4K */
489 rx_ring->size = rx_ring->count * desc_len;
490 rx_ring->size = ALIGN(rx_ring->size, 4096);
491
123e9f1a
NN
492 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493 &rx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
494 if (!rx_ring->desc)
495 goto err;
496
497 rx_ring->next_to_clean = 0;
498 rx_ring->next_to_use = 0;
499
500 rx_ring->adapter = adapter;
501
502 return 0;
503
504err:
505 vfree(rx_ring->buffer_info);
506 rx_ring->buffer_info = NULL;
507 dev_err(&adapter->pdev->dev,
0340501b 508 "Unable to allocate memory for the receive descriptor ring\n");
d4e0fe01
AD
509 return -ENOMEM;
510}
511
512/**
513 * igbvf_clean_tx_ring - Free Tx Buffers
514 * @tx_ring: ring to be cleaned
515 **/
516static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
517{
518 struct igbvf_adapter *adapter = tx_ring->adapter;
519 struct igbvf_buffer *buffer_info;
520 unsigned long size;
521 unsigned int i;
522
523 if (!tx_ring->buffer_info)
524 return;
525
526 /* Free all the Tx ring sk_buffs */
527 for (i = 0; i < tx_ring->count; i++) {
528 buffer_info = &tx_ring->buffer_info[i];
529 igbvf_put_txbuf(adapter, buffer_info);
530 }
531
532 size = sizeof(struct igbvf_buffer) * tx_ring->count;
533 memset(tx_ring->buffer_info, 0, size);
534
535 /* Zero out the descriptor ring */
536 memset(tx_ring->desc, 0, tx_ring->size);
537
538 tx_ring->next_to_use = 0;
539 tx_ring->next_to_clean = 0;
540
541 writel(0, adapter->hw.hw_addr + tx_ring->head);
542 writel(0, adapter->hw.hw_addr + tx_ring->tail);
543}
544
545/**
546 * igbvf_free_tx_resources - Free Tx Resources per Queue
547 * @tx_ring: ring to free resources from
548 *
549 * Free all transmit software resources
550 **/
551void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
552{
553 struct pci_dev *pdev = tx_ring->adapter->pdev;
554
555 igbvf_clean_tx_ring(tx_ring);
556
557 vfree(tx_ring->buffer_info);
558 tx_ring->buffer_info = NULL;
559
123e9f1a
NN
560 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561 tx_ring->dma);
d4e0fe01
AD
562
563 tx_ring->desc = NULL;
564}
565
566/**
567 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568 * @adapter: board private structure
569 **/
570static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
571{
572 struct igbvf_adapter *adapter = rx_ring->adapter;
573 struct igbvf_buffer *buffer_info;
574 struct pci_dev *pdev = adapter->pdev;
575 unsigned long size;
576 unsigned int i;
577
578 if (!rx_ring->buffer_info)
579 return;
580
581 /* Free all the Rx ring sk_buffs */
582 for (i = 0; i < rx_ring->count; i++) {
583 buffer_info = &rx_ring->buffer_info[i];
584 if (buffer_info->dma) {
0340501b 585 if (adapter->rx_ps_hdr_size) {
123e9f1a 586 dma_unmap_single(&pdev->dev, buffer_info->dma,
0340501b 587 adapter->rx_ps_hdr_size,
123e9f1a 588 DMA_FROM_DEVICE);
d4e0fe01 589 } else {
123e9f1a 590 dma_unmap_single(&pdev->dev, buffer_info->dma,
0340501b 591 adapter->rx_buffer_len,
123e9f1a 592 DMA_FROM_DEVICE);
d4e0fe01
AD
593 }
594 buffer_info->dma = 0;
595 }
596
597 if (buffer_info->skb) {
598 dev_kfree_skb(buffer_info->skb);
599 buffer_info->skb = NULL;
600 }
601
602 if (buffer_info->page) {
603 if (buffer_info->page_dma)
123e9f1a
NN
604 dma_unmap_page(&pdev->dev,
605 buffer_info->page_dma,
0340501b 606 PAGE_SIZE / 2,
123e9f1a 607 DMA_FROM_DEVICE);
d4e0fe01
AD
608 put_page(buffer_info->page);
609 buffer_info->page = NULL;
610 buffer_info->page_dma = 0;
611 buffer_info->page_offset = 0;
612 }
613 }
614
615 size = sizeof(struct igbvf_buffer) * rx_ring->count;
616 memset(rx_ring->buffer_info, 0, size);
617
618 /* Zero out the descriptor ring */
619 memset(rx_ring->desc, 0, rx_ring->size);
620
621 rx_ring->next_to_clean = 0;
622 rx_ring->next_to_use = 0;
623
624 writel(0, adapter->hw.hw_addr + rx_ring->head);
625 writel(0, adapter->hw.hw_addr + rx_ring->tail);
626}
627
628/**
629 * igbvf_free_rx_resources - Free Rx Resources
630 * @rx_ring: ring to clean the resources from
631 *
632 * Free all receive software resources
633 **/
634
635void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
636{
637 struct pci_dev *pdev = rx_ring->adapter->pdev;
638
639 igbvf_clean_rx_ring(rx_ring);
640
641 vfree(rx_ring->buffer_info);
642 rx_ring->buffer_info = NULL;
643
644 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
0340501b 645 rx_ring->dma);
d4e0fe01
AD
646 rx_ring->desc = NULL;
647}
648
649/**
650 * igbvf_update_itr - update the dynamic ITR value based on statistics
651 * @adapter: pointer to adapter
652 * @itr_setting: current adapter->itr
653 * @packets: the number of packets during this measurement interval
654 * @bytes: the number of bytes during this measurement interval
655 *
0340501b
JK
656 * Stores a new ITR value based on packets and byte counts during the last
657 * interrupt. The advantage of per interrupt computation is faster updates
658 * and more accurate ITR for the current traffic pattern. Constants in this
659 * function were computed based on theoretical maximum wire speed and thresholds
660 * were set based on testing data as well as attempting to minimize response
661 * time while increasing bulk throughput.
d4e0fe01 662 **/
ab50a2a4
MW
663static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664 enum latency_range itr_setting,
665 int packets, int bytes)
d4e0fe01 666{
ab50a2a4 667 enum latency_range retval = itr_setting;
d4e0fe01
AD
668
669 if (packets == 0)
670 goto update_itr_done;
671
672 switch (itr_setting) {
673 case lowest_latency:
674 /* handle TSO and jumbo frames */
675 if (bytes/packets > 8000)
676 retval = bulk_latency;
677 else if ((packets < 5) && (bytes > 512))
678 retval = low_latency;
679 break;
680 case low_latency: /* 50 usec aka 20000 ints/s */
681 if (bytes > 10000) {
682 /* this if handles the TSO accounting */
683 if (bytes/packets > 8000)
684 retval = bulk_latency;
685 else if ((packets < 10) || ((bytes/packets) > 1200))
686 retval = bulk_latency;
687 else if ((packets > 35))
688 retval = lowest_latency;
689 } else if (bytes/packets > 2000) {
690 retval = bulk_latency;
691 } else if (packets <= 2 && bytes < 512) {
692 retval = lowest_latency;
693 }
694 break;
695 case bulk_latency: /* 250 usec aka 4000 ints/s */
696 if (bytes > 25000) {
697 if (packets > 35)
698 retval = low_latency;
699 } else if (bytes < 6000) {
700 retval = low_latency;
701 }
702 break;
ab50a2a4
MW
703 default:
704 break;
d4e0fe01
AD
705 }
706
707update_itr_done:
708 return retval;
709}
710
ab50a2a4 711static int igbvf_range_to_itr(enum latency_range current_range)
d4e0fe01 712{
ab50a2a4 713 int new_itr;
d4e0fe01 714
ab50a2a4 715 switch (current_range) {
d4e0fe01
AD
716 /* counts and packets in update_itr are dependent on these numbers */
717 case lowest_latency:
ab50a2a4 718 new_itr = IGBVF_70K_ITR;
d4e0fe01
AD
719 break;
720 case low_latency:
ab50a2a4 721 new_itr = IGBVF_20K_ITR;
d4e0fe01
AD
722 break;
723 case bulk_latency:
ab50a2a4 724 new_itr = IGBVF_4K_ITR;
d4e0fe01
AD
725 break;
726 default:
ab50a2a4 727 new_itr = IGBVF_START_ITR;
d4e0fe01
AD
728 break;
729 }
ab50a2a4
MW
730 return new_itr;
731}
732
733static void igbvf_set_itr(struct igbvf_adapter *adapter)
734{
735 u32 new_itr;
736
737 adapter->tx_ring->itr_range =
738 igbvf_update_itr(adapter,
739 adapter->tx_ring->itr_val,
740 adapter->total_tx_packets,
741 adapter->total_tx_bytes);
742
743 /* conservative mode (itr 3) eliminates the lowest_latency setting */
744 if (adapter->requested_itr == 3 &&
745 adapter->tx_ring->itr_range == lowest_latency)
746 adapter->tx_ring->itr_range = low_latency;
d4e0fe01 747
ab50a2a4
MW
748 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
749
ab50a2a4
MW
750 if (new_itr != adapter->tx_ring->itr_val) {
751 u32 current_itr = adapter->tx_ring->itr_val;
0340501b 752 /* this attempts to bias the interrupt rate towards Bulk
d4e0fe01
AD
753 * by adding intermediate steps when interrupt rate is
754 * increasing
755 */
ab50a2a4 756 new_itr = new_itr > current_itr ?
0340501b
JK
757 min(current_itr + (new_itr >> 2), new_itr) :
758 new_itr;
ab50a2a4
MW
759 adapter->tx_ring->itr_val = new_itr;
760
761 adapter->tx_ring->set_itr = 1;
762 }
763
764 adapter->rx_ring->itr_range =
765 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766 adapter->total_rx_packets,
767 adapter->total_rx_bytes);
768 if (adapter->requested_itr == 3 &&
769 adapter->rx_ring->itr_range == lowest_latency)
770 adapter->rx_ring->itr_range = low_latency;
771
772 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
773
774 if (new_itr != adapter->rx_ring->itr_val) {
775 u32 current_itr = adapter->rx_ring->itr_val;
0340501b 776
ab50a2a4 777 new_itr = new_itr > current_itr ?
0340501b
JK
778 min(current_itr + (new_itr >> 2), new_itr) :
779 new_itr;
ab50a2a4
MW
780 adapter->rx_ring->itr_val = new_itr;
781
782 adapter->rx_ring->set_itr = 1;
d4e0fe01
AD
783 }
784}
785
786/**
787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788 * @adapter: board private structure
49ce9c2c 789 *
d4e0fe01
AD
790 * returns true if ring is completely cleaned
791 **/
792static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793{
794 struct igbvf_adapter *adapter = tx_ring->adapter;
d4e0fe01
AD
795 struct net_device *netdev = adapter->netdev;
796 struct igbvf_buffer *buffer_info;
797 struct sk_buff *skb;
798 union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 unsigned int total_bytes = 0, total_packets = 0;
3eb1a40f 800 unsigned int i, count = 0;
d4e0fe01
AD
801 bool cleaned = false;
802
803 i = tx_ring->next_to_clean;
3eb1a40f
AD
804 buffer_info = &tx_ring->buffer_info[i];
805 eop_desc = buffer_info->next_to_watch;
806
807 do {
808 /* if next_to_watch is not set then there is no work pending */
809 if (!eop_desc)
810 break;
811
812 /* prevent any other reads prior to eop_desc */
813 read_barrier_depends();
814
815 /* if DD is not set pending work has not been completed */
816 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817 break;
818
819 /* clear next_to_watch to prevent false hangs */
820 buffer_info->next_to_watch = NULL;
d4e0fe01 821
d4e0fe01
AD
822 for (cleaned = false; !cleaned; count++) {
823 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
3eb1a40f 824 cleaned = (tx_desc == eop_desc);
d4e0fe01
AD
825 skb = buffer_info->skb;
826
827 if (skb) {
828 unsigned int segs, bytecount;
829
830 /* gso_segs is currently only valid for tcp */
831 segs = skb_shinfo(skb)->gso_segs ?: 1;
832 /* multiply data chunks by size of headers */
833 bytecount = ((segs - 1) * skb_headlen(skb)) +
0340501b 834 skb->len;
d4e0fe01
AD
835 total_packets += segs;
836 total_bytes += bytecount;
837 }
838
839 igbvf_put_txbuf(adapter, buffer_info);
840 tx_desc->wb.status = 0;
841
842 i++;
843 if (i == tx_ring->count)
844 i = 0;
3eb1a40f
AD
845
846 buffer_info = &tx_ring->buffer_info[i];
d4e0fe01 847 }
3eb1a40f
AD
848
849 eop_desc = buffer_info->next_to_watch;
850 } while (count < tx_ring->count);
d4e0fe01
AD
851
852 tx_ring->next_to_clean = i;
853
0340501b
JK
854 if (unlikely(count && netif_carrier_ok(netdev) &&
855 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
d4e0fe01
AD
856 /* Make sure that anybody stopping the queue after this
857 * sees the new next_to_clean.
858 */
859 smp_mb();
860 if (netif_queue_stopped(netdev) &&
861 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862 netif_wake_queue(netdev);
863 ++adapter->restart_queue;
864 }
865 }
866
d4e0fe01
AD
867 adapter->net_stats.tx_bytes += total_bytes;
868 adapter->net_stats.tx_packets += total_packets;
807540ba 869 return count < tx_ring->count;
d4e0fe01
AD
870}
871
872static irqreturn_t igbvf_msix_other(int irq, void *data)
873{
874 struct net_device *netdev = data;
875 struct igbvf_adapter *adapter = netdev_priv(netdev);
876 struct e1000_hw *hw = &adapter->hw;
877
878 adapter->int_counter1++;
879
d4e0fe01
AD
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887}
888
889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890{
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
ab50a2a4
MW
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
d4e0fe01
AD
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
0340501b
JK
905 /* auto mask will automatically re-enable the interrupt when we write
906 * EICS
907 */
d4e0fe01
AD
908 if (!igbvf_clean_tx_irq(tx_ring))
909 /* Ring was not completely cleaned, so fire another interrupt */
910 ew32(EICS, tx_ring->eims_value);
911 else
912 ew32(EIMS, tx_ring->eims_value);
913
914 return IRQ_HANDLED;
915}
916
917static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918{
919 struct net_device *netdev = data;
920 struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922 adapter->int_counter0++;
923
924 /* Write the ITR value calculated at the end of the
925 * previous interrupt.
926 */
927 if (adapter->rx_ring->set_itr) {
928 writel(adapter->rx_ring->itr_val,
929 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930 adapter->rx_ring->set_itr = 0;
931 }
932
933 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934 adapter->total_rx_bytes = 0;
935 adapter->total_rx_packets = 0;
936 __napi_schedule(&adapter->rx_ring->napi);
937 }
938
939 return IRQ_HANDLED;
940}
941
942#define IGBVF_NO_QUEUE -1
943
944static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
0340501b 945 int tx_queue, int msix_vector)
d4e0fe01
AD
946{
947 struct e1000_hw *hw = &adapter->hw;
948 u32 ivar, index;
949
950 /* 82576 uses a table-based method for assigning vectors.
0340501b
JK
951 * Each queue has a single entry in the table to which we write
952 * a vector number along with a "valid" bit. Sadly, the layout
953 * of the table is somewhat counterintuitive.
954 */
d4e0fe01
AD
955 if (rx_queue > IGBVF_NO_QUEUE) {
956 index = (rx_queue >> 1);
957 ivar = array_er32(IVAR0, index);
958 if (rx_queue & 0x1) {
959 /* vector goes into third byte of register */
960 ivar = ivar & 0xFF00FFFF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962 } else {
963 /* vector goes into low byte of register */
964 ivar = ivar & 0xFFFFFF00;
965 ivar |= msix_vector | E1000_IVAR_VALID;
966 }
0ed2dbf4 967 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
d4e0fe01
AD
968 array_ew32(IVAR0, index, ivar);
969 }
970 if (tx_queue > IGBVF_NO_QUEUE) {
971 index = (tx_queue >> 1);
972 ivar = array_er32(IVAR0, index);
973 if (tx_queue & 0x1) {
974 /* vector goes into high byte of register */
975 ivar = ivar & 0x00FFFFFF;
976 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977 } else {
978 /* vector goes into second byte of register */
979 ivar = ivar & 0xFFFF00FF;
980 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981 }
0ed2dbf4 982 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
d4e0fe01
AD
983 array_ew32(IVAR0, index, ivar);
984 }
985}
986
987/**
988 * igbvf_configure_msix - Configure MSI-X hardware
0340501b 989 * @adapter: board private structure
d4e0fe01
AD
990 *
991 * igbvf_configure_msix sets up the hardware to properly
992 * generate MSI-X interrupts.
993 **/
994static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995{
996 u32 tmp;
997 struct e1000_hw *hw = &adapter->hw;
998 struct igbvf_ring *tx_ring = adapter->tx_ring;
999 struct igbvf_ring *rx_ring = adapter->rx_ring;
1000 int vector = 0;
1001
1002 adapter->eims_enable_mask = 0;
1003
1004 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005 adapter->eims_enable_mask |= tx_ring->eims_value;
ab50a2a4 1006 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
d4e0fe01
AD
1007 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008 adapter->eims_enable_mask |= rx_ring->eims_value;
ab50a2a4 1009 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
d4e0fe01
AD
1010
1011 /* set vector for other causes, i.e. link changes */
1012
1013 tmp = (vector++ | E1000_IVAR_VALID);
1014
1015 ew32(IVAR_MISC, tmp);
1016
0ed2dbf4
JK
1017 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018 adapter->eims_other = BIT(vector - 1);
d4e0fe01
AD
1019 e1e_flush();
1020}
1021
2d165771 1022static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1023{
1024 if (adapter->msix_entries) {
1025 pci_disable_msix(adapter->pdev);
1026 kfree(adapter->msix_entries);
1027 adapter->msix_entries = NULL;
1028 }
1029}
1030
1031/**
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
0340501b 1033 * @adapter: board private structure
d4e0fe01
AD
1034 *
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1037 **/
2d165771 1038static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1039{
1040 int err = -ENOMEM;
1041 int i;
1042
0340501b 1043 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
d4e0fe01 1044 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
0340501b 1045 GFP_KERNEL);
d4e0fe01
AD
1046 if (adapter->msix_entries) {
1047 for (i = 0; i < 3; i++)
1048 adapter->msix_entries[i].entry = i;
1049
4601e759 1050 err = pci_enable_msix_range(adapter->pdev,
0340501b 1051 adapter->msix_entries, 3, 3);
d4e0fe01
AD
1052 }
1053
4601e759 1054 if (err < 0) {
d4e0fe01
AD
1055 /* MSI-X failed */
1056 dev_err(&adapter->pdev->dev,
0340501b 1057 "Failed to initialize MSI-X interrupts.\n");
d4e0fe01
AD
1058 igbvf_reset_interrupt_capability(adapter);
1059 }
1060}
1061
1062/**
1063 * igbvf_request_msix - Initialize MSI-X interrupts
0340501b 1064 * @adapter: board private structure
d4e0fe01
AD
1065 *
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1068 **/
1069static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070{
1071 struct net_device *netdev = adapter->netdev;
1072 int err = 0, vector = 0;
1073
1074 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077 } else {
1078 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080 }
1081
1082 err = request_irq(adapter->msix_entries[vector].vector,
0340501b
JK
1083 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084 netdev);
d4e0fe01
AD
1085 if (err)
1086 goto out;
1087
1088 adapter->tx_ring->itr_register = E1000_EITR(vector);
ab50a2a4 1089 adapter->tx_ring->itr_val = adapter->current_itr;
d4e0fe01
AD
1090 vector++;
1091
1092 err = request_irq(adapter->msix_entries[vector].vector,
0340501b
JK
1093 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094 netdev);
d4e0fe01
AD
1095 if (err)
1096 goto out;
1097
1098 adapter->rx_ring->itr_register = E1000_EITR(vector);
ab50a2a4 1099 adapter->rx_ring->itr_val = adapter->current_itr;
d4e0fe01
AD
1100 vector++;
1101
1102 err = request_irq(adapter->msix_entries[vector].vector,
0340501b 1103 igbvf_msix_other, 0, netdev->name, netdev);
d4e0fe01
AD
1104 if (err)
1105 goto out;
1106
1107 igbvf_configure_msix(adapter);
1108 return 0;
1109out:
1110 return err;
1111}
1112
1113/**
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 **/
9f9a12f8 1117static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
d4e0fe01
AD
1118{
1119 struct net_device *netdev = adapter->netdev;
1120
1121 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122 if (!adapter->tx_ring)
1123 return -ENOMEM;
1124
1125 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126 if (!adapter->rx_ring) {
1127 kfree(adapter->tx_ring);
1128 return -ENOMEM;
1129 }
1130
1131 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133 return 0;
1134}
1135
1136/**
1137 * igbvf_request_irq - initialize interrupts
0340501b 1138 * @adapter: board private structure
d4e0fe01
AD
1139 *
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1142 **/
1143static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144{
1145 int err = -1;
1146
1147 /* igbvf supports msi-x only */
1148 if (adapter->msix_entries)
1149 err = igbvf_request_msix(adapter);
1150
1151 if (!err)
1152 return err;
1153
1154 dev_err(&adapter->pdev->dev,
0340501b 1155 "Unable to allocate interrupt, Error: %d\n", err);
d4e0fe01
AD
1156
1157 return err;
1158}
1159
1160static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161{
1162 struct net_device *netdev = adapter->netdev;
1163 int vector;
1164
1165 if (adapter->msix_entries) {
1166 for (vector = 0; vector < 3; vector++)
1167 free_irq(adapter->msix_entries[vector].vector, netdev);
1168 }
1169}
1170
1171/**
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
0340501b 1173 * @adapter: board private structure
d4e0fe01
AD
1174 **/
1175static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176{
1177 struct e1000_hw *hw = &adapter->hw;
1178
1179 ew32(EIMC, ~0);
1180
1181 if (adapter->msix_entries)
1182 ew32(EIAC, 0);
1183}
1184
1185/**
1186 * igbvf_irq_enable - Enable default interrupt generation settings
0340501b 1187 * @adapter: board private structure
d4e0fe01
AD
1188 **/
1189static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190{
1191 struct e1000_hw *hw = &adapter->hw;
1192
1193 ew32(EIAC, adapter->eims_enable_mask);
1194 ew32(EIAM, adapter->eims_enable_mask);
1195 ew32(EIMS, adapter->eims_enable_mask);
1196}
1197
1198/**
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1202 **/
1203static int igbvf_poll(struct napi_struct *napi, int budget)
1204{
1205 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206 struct igbvf_adapter *adapter = rx_ring->adapter;
1207 struct e1000_hw *hw = &adapter->hw;
1208 int work_done = 0;
1209
1210 igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212 /* If not enough Rx work done, exit the polling mode */
1213 if (work_done < budget) {
32b3e08f 1214 napi_complete_done(napi, work_done);
d4e0fe01 1215
ab50a2a4 1216 if (adapter->requested_itr & 3)
d4e0fe01
AD
1217 igbvf_set_itr(adapter);
1218
1219 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220 ew32(EIMS, adapter->rx_ring->eims_value);
1221 }
1222
1223 return work_done;
1224}
1225
1226/**
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1229 *
1230 * Configure the maximum size of packets that will be received
1231 */
1232static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233{
a0f1d603 1234 int max_frame_size;
d4e0fe01
AD
1235 struct e1000_hw *hw = &adapter->hw;
1236
a0f1d603 1237 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
d4e0fe01
AD
1238 e1000_rlpml_set_vf(hw, max_frame_size);
1239}
1240
80d5c368
PM
1241static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242 __be16 proto, u16 vid)
d4e0fe01
AD
1243{
1244 struct igbvf_adapter *adapter = netdev_priv(netdev);
1245 struct e1000_hw *hw = &adapter->hw;
1246
8e586137 1247 if (hw->mac.ops.set_vfta(hw, vid, true)) {
d4e0fe01 1248 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
8e586137
JP
1249 return -EINVAL;
1250 }
1251 set_bit(vid, adapter->active_vlans);
1252 return 0;
d4e0fe01
AD
1253}
1254
80d5c368
PM
1255static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256 __be16 proto, u16 vid)
d4e0fe01
AD
1257{
1258 struct igbvf_adapter *adapter = netdev_priv(netdev);
1259 struct e1000_hw *hw = &adapter->hw;
1260
8e586137 1261 if (hw->mac.ops.set_vfta(hw, vid, false)) {
d4e0fe01 1262 dev_err(&adapter->pdev->dev,
0340501b 1263 "Failed to remove vlan id %d\n", vid);
8e586137
JP
1264 return -EINVAL;
1265 }
1266 clear_bit(vid, adapter->active_vlans);
1267 return 0;
d4e0fe01
AD
1268}
1269
1270static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271{
1272 u16 vid;
1273
a0f1d603 1274 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 1275 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
d4e0fe01
AD
1276}
1277
1278/**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
1284static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285{
1286 struct e1000_hw *hw = &adapter->hw;
1287 struct igbvf_ring *tx_ring = adapter->tx_ring;
1288 u64 tdba;
1289 u32 txdctl, dca_txctrl;
1290
1291 /* disable transmits */
1292 txdctl = er32(TXDCTL(0));
1293 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
945a5151 1294 e1e_flush();
d4e0fe01
AD
1295 msleep(10);
1296
1297 /* Setup the HW Tx Head and Tail descriptor pointers */
1298 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299 tdba = tx_ring->dma;
8e20ce94 1300 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1301 ew32(TDBAH(0), (tdba >> 32));
1302 ew32(TDH(0), 0);
1303 ew32(TDT(0), 0);
1304 tx_ring->head = E1000_TDH(0);
1305 tx_ring->tail = E1000_TDT(0);
1306
1307 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1308 * MUST be delivered in order or it will completely screw up
0340501b 1309 * our bookkeeping.
d4e0fe01
AD
1310 */
1311 dca_txctrl = er32(DCA_TXCTRL(0));
1312 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313 ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315 /* enable transmits */
1316 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317 ew32(TXDCTL(0), txdctl);
1318
1319 /* Setup Transmit Descriptor Settings for eop descriptor */
1320 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322 /* enable Report Status bit */
1323 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
d4e0fe01
AD
1324}
1325
1326/**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
1330static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331{
1332 struct e1000_hw *hw = &adapter->hw;
1333 u32 srrctl = 0;
1334
1335 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
0340501b
JK
1336 E1000_SRRCTL_BSIZEHDR_MASK |
1337 E1000_SRRCTL_BSIZEPKT_MASK);
d4e0fe01
AD
1338
1339 /* Enable queue drop to avoid head of line blocking */
1340 srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342 /* Setup buffer sizes */
1343 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
0340501b 1344 E1000_SRRCTL_BSIZEPKT_SHIFT;
d4e0fe01
AD
1345
1346 if (adapter->rx_buffer_len < 2048) {
1347 adapter->rx_ps_hdr_size = 0;
1348 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349 } else {
1350 adapter->rx_ps_hdr_size = 128;
1351 srrctl |= adapter->rx_ps_hdr_size <<
0340501b 1352 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
d4e0fe01
AD
1353 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354 }
1355
1356 ew32(SRRCTL(0), srrctl);
1357}
1358
1359/**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
1365static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366{
1367 struct e1000_hw *hw = &adapter->hw;
1368 struct igbvf_ring *rx_ring = adapter->rx_ring;
1369 u64 rdba;
12b28b41 1370 u32 rxdctl;
d4e0fe01
AD
1371
1372 /* disable receives */
1373 rxdctl = er32(RXDCTL(0));
1374 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
945a5151 1375 e1e_flush();
d4e0fe01
AD
1376 msleep(10);
1377
0340501b 1378 /* Setup the HW Rx Head and Tail Descriptor Pointers and
d4e0fe01
AD
1379 * the Base and Length of the Rx Descriptor Ring
1380 */
1381 rdba = rx_ring->dma;
8e20ce94 1382 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1383 ew32(RDBAH(0), (rdba >> 32));
1384 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1385 rx_ring->head = E1000_RDH(0);
1386 rx_ring->tail = E1000_RDT(0);
1387 ew32(RDH(0), 0);
1388 ew32(RDT(0), 0);
1389
1390 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1391 rxdctl &= 0xFFF00000;
1392 rxdctl |= IGBVF_RX_PTHRESH;
1393 rxdctl |= IGBVF_RX_HTHRESH << 8;
1394 rxdctl |= IGBVF_RX_WTHRESH << 16;
1395
1396 igbvf_set_rlpml(adapter);
1397
1398 /* enable receives */
1399 ew32(RXDCTL(0), rxdctl);
1400}
1401
1402/**
1403 * igbvf_set_multi - Multicast and Promiscuous mode set
1404 * @netdev: network interface device structure
1405 *
1406 * The set_multi entry point is called whenever the multicast address
1407 * list or the network interface flags are updated. This routine is
1408 * responsible for configuring the hardware for proper multicast,
1409 * promiscuous mode, and all-multi behavior.
1410 **/
1411static void igbvf_set_multi(struct net_device *netdev)
1412{
1413 struct igbvf_adapter *adapter = netdev_priv(netdev);
1414 struct e1000_hw *hw = &adapter->hw;
22bedad3 1415 struct netdev_hw_addr *ha;
d4e0fe01
AD
1416 u8 *mta_list = NULL;
1417 int i;
1418
4cd24eaf 1419 if (!netdev_mc_empty(netdev)) {
b2adaca9
JP
1420 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1421 GFP_ATOMIC);
1422 if (!mta_list)
d4e0fe01 1423 return;
d4e0fe01
AD
1424 }
1425
1426 /* prepare a packed array of only addresses. */
48e2f183 1427 i = 0;
22bedad3
JP
1428 netdev_for_each_mc_addr(ha, netdev)
1429 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
d4e0fe01
AD
1430
1431 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1432 kfree(mta_list);
1433}
1434
1435/**
1436 * igbvf_configure - configure the hardware for Rx and Tx
1437 * @adapter: private board structure
1438 **/
1439static void igbvf_configure(struct igbvf_adapter *adapter)
1440{
1441 igbvf_set_multi(adapter->netdev);
1442
1443 igbvf_restore_vlan(adapter);
1444
1445 igbvf_configure_tx(adapter);
1446 igbvf_setup_srrctl(adapter);
1447 igbvf_configure_rx(adapter);
1448 igbvf_alloc_rx_buffers(adapter->rx_ring,
0340501b 1449 igbvf_desc_unused(adapter->rx_ring));
d4e0fe01
AD
1450}
1451
1452/* igbvf_reset - bring the hardware into a known good state
0340501b 1453 * @adapter: private board structure
d4e0fe01
AD
1454 *
1455 * This function boots the hardware and enables some settings that
1456 * require a configuration cycle of the hardware - those cannot be
1457 * set/changed during runtime. After reset the device needs to be
1458 * properly configured for Rx, Tx etc.
1459 */
2d165771 1460static void igbvf_reset(struct igbvf_adapter *adapter)
d4e0fe01
AD
1461{
1462 struct e1000_mac_info *mac = &adapter->hw.mac;
1463 struct net_device *netdev = adapter->netdev;
1464 struct e1000_hw *hw = &adapter->hw;
1465
1466 /* Allow time for pending master requests to run */
1467 if (mac->ops.reset_hw(hw))
1468 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1469
1470 mac->ops.init_hw(hw);
1471
1472 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1473 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1474 netdev->addr_len);
1475 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1476 netdev->addr_len);
1477 }
72279093
AD
1478
1479 adapter->last_reset = jiffies;
d4e0fe01
AD
1480}
1481
1482int igbvf_up(struct igbvf_adapter *adapter)
1483{
1484 struct e1000_hw *hw = &adapter->hw;
1485
1486 /* hardware has been reset, we need to reload some things */
1487 igbvf_configure(adapter);
1488
1489 clear_bit(__IGBVF_DOWN, &adapter->state);
1490
1491 napi_enable(&adapter->rx_ring->napi);
1492 if (adapter->msix_entries)
1493 igbvf_configure_msix(adapter);
1494
1495 /* Clear any pending interrupts. */
1496 er32(EICR);
1497 igbvf_irq_enable(adapter);
1498
1499 /* start the watchdog */
1500 hw->mac.get_link_status = 1;
1501 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1502
d4e0fe01
AD
1503 return 0;
1504}
1505
1506void igbvf_down(struct igbvf_adapter *adapter)
1507{
1508 struct net_device *netdev = adapter->netdev;
1509 struct e1000_hw *hw = &adapter->hw;
1510 u32 rxdctl, txdctl;
1511
0340501b 1512 /* signal that we're down so the interrupt handler does not
d4e0fe01
AD
1513 * reschedule our watchdog timer
1514 */
1515 set_bit(__IGBVF_DOWN, &adapter->state);
1516
1517 /* disable receives in the hardware */
1518 rxdctl = er32(RXDCTL(0));
1519 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1520
784401bf 1521 netif_carrier_off(netdev);
d4e0fe01
AD
1522 netif_stop_queue(netdev);
1523
1524 /* disable transmits in the hardware */
1525 txdctl = er32(TXDCTL(0));
1526 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1527
1528 /* flush both disables and wait for them to finish */
1529 e1e_flush();
1530 msleep(10);
1531
1532 napi_disable(&adapter->rx_ring->napi);
1533
1534 igbvf_irq_disable(adapter);
1535
1536 del_timer_sync(&adapter->watchdog_timer);
1537
d4e0fe01
AD
1538 /* record the stats before reset*/
1539 igbvf_update_stats(adapter);
1540
1541 adapter->link_speed = 0;
1542 adapter->link_duplex = 0;
1543
1544 igbvf_reset(adapter);
1545 igbvf_clean_tx_ring(adapter->tx_ring);
1546 igbvf_clean_rx_ring(adapter->rx_ring);
1547}
1548
1549void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1550{
1551 might_sleep();
1552 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
5beef769 1553 usleep_range(1000, 2000);
d4e0fe01
AD
1554 igbvf_down(adapter);
1555 igbvf_up(adapter);
1556 clear_bit(__IGBVF_RESETTING, &adapter->state);
1557}
1558
1559/**
1560 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1561 * @adapter: board private structure to initialize
1562 *
1563 * igbvf_sw_init initializes the Adapter private data structure.
1564 * Fields are initialized based on PCI device information and
1565 * OS network device settings (MTU size).
1566 **/
9f9a12f8 1567static int igbvf_sw_init(struct igbvf_adapter *adapter)
d4e0fe01
AD
1568{
1569 struct net_device *netdev = adapter->netdev;
1570 s32 rc;
1571
1572 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1573 adapter->rx_ps_hdr_size = 0;
1574 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1575 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1576
1577 adapter->tx_int_delay = 8;
1578 adapter->tx_abs_int_delay = 32;
1579 adapter->rx_int_delay = 0;
1580 adapter->rx_abs_int_delay = 8;
ab50a2a4
MW
1581 adapter->requested_itr = 3;
1582 adapter->current_itr = IGBVF_START_ITR;
d4e0fe01
AD
1583
1584 /* Set various function pointers */
1585 adapter->ei->init_ops(&adapter->hw);
1586
1587 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1588 if (rc)
1589 return rc;
1590
1591 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1592 if (rc)
1593 return rc;
1594
1595 igbvf_set_interrupt_capability(adapter);
1596
1597 if (igbvf_alloc_queues(adapter))
1598 return -ENOMEM;
1599
1600 spin_lock_init(&adapter->tx_queue_lock);
1601
1602 /* Explicitly disable IRQ since the NIC can be in any state. */
1603 igbvf_irq_disable(adapter);
1604
1605 spin_lock_init(&adapter->stats_lock);
1606
1607 set_bit(__IGBVF_DOWN, &adapter->state);
1608 return 0;
1609}
1610
1611static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1612{
1613 struct e1000_hw *hw = &adapter->hw;
1614
1615 adapter->stats.last_gprc = er32(VFGPRC);
1616 adapter->stats.last_gorc = er32(VFGORC);
1617 adapter->stats.last_gptc = er32(VFGPTC);
1618 adapter->stats.last_gotc = er32(VFGOTC);
1619 adapter->stats.last_mprc = er32(VFMPRC);
1620 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1621 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1622 adapter->stats.last_gorlbc = er32(VFGORLBC);
1623 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1624
1625 adapter->stats.base_gprc = er32(VFGPRC);
1626 adapter->stats.base_gorc = er32(VFGORC);
1627 adapter->stats.base_gptc = er32(VFGPTC);
1628 adapter->stats.base_gotc = er32(VFGOTC);
1629 adapter->stats.base_mprc = er32(VFMPRC);
1630 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1631 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1632 adapter->stats.base_gorlbc = er32(VFGORLBC);
1633 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1634}
1635
1636/**
1637 * igbvf_open - Called when a network interface is made active
1638 * @netdev: network interface device structure
1639 *
1640 * Returns 0 on success, negative value on failure
1641 *
1642 * The open entry point is called when a network interface is made
1643 * active by the system (IFF_UP). At this point all resources needed
1644 * for transmit and receive operations are allocated, the interrupt
1645 * handler is registered with the OS, the watchdog timer is started,
1646 * and the stack is notified that the interface is ready.
1647 **/
1648static int igbvf_open(struct net_device *netdev)
1649{
1650 struct igbvf_adapter *adapter = netdev_priv(netdev);
1651 struct e1000_hw *hw = &adapter->hw;
1652 int err;
1653
1654 /* disallow open during test */
1655 if (test_bit(__IGBVF_TESTING, &adapter->state))
1656 return -EBUSY;
1657
1658 /* allocate transmit descriptors */
1659 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1660 if (err)
1661 goto err_setup_tx;
1662
1663 /* allocate receive descriptors */
1664 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1665 if (err)
1666 goto err_setup_rx;
1667
0340501b 1668 /* before we allocate an interrupt, we must be ready to handle it.
d4e0fe01
AD
1669 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1670 * as soon as we call pci_request_irq, so we have to setup our
1671 * clean_rx handler before we do so.
1672 */
1673 igbvf_configure(adapter);
1674
1675 err = igbvf_request_irq(adapter);
1676 if (err)
1677 goto err_req_irq;
1678
1679 /* From here on the code is the same as igbvf_up() */
1680 clear_bit(__IGBVF_DOWN, &adapter->state);
1681
1682 napi_enable(&adapter->rx_ring->napi);
1683
1684 /* clear any pending interrupts */
1685 er32(EICR);
1686
1687 igbvf_irq_enable(adapter);
1688
1689 /* start the watchdog */
1690 hw->mac.get_link_status = 1;
1691 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1692
1693 return 0;
1694
1695err_req_irq:
1696 igbvf_free_rx_resources(adapter->rx_ring);
1697err_setup_rx:
1698 igbvf_free_tx_resources(adapter->tx_ring);
1699err_setup_tx:
1700 igbvf_reset(adapter);
1701
1702 return err;
1703}
1704
1705/**
1706 * igbvf_close - Disables a network interface
1707 * @netdev: network interface device structure
1708 *
1709 * Returns 0, this is not allowed to fail
1710 *
1711 * The close entry point is called when an interface is de-activated
1712 * by the OS. The hardware is still under the drivers control, but
1713 * needs to be disabled. A global MAC reset is issued to stop the
1714 * hardware, and all transmit and receive resources are freed.
1715 **/
1716static int igbvf_close(struct net_device *netdev)
1717{
1718 struct igbvf_adapter *adapter = netdev_priv(netdev);
1719
1720 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1721 igbvf_down(adapter);
1722
1723 igbvf_free_irq(adapter);
1724
1725 igbvf_free_tx_resources(adapter->tx_ring);
1726 igbvf_free_rx_resources(adapter->rx_ring);
1727
1728 return 0;
1729}
0340501b 1730
d4e0fe01
AD
1731/**
1732 * igbvf_set_mac - Change the Ethernet Address of the NIC
1733 * @netdev: network interface device structure
1734 * @p: pointer to an address structure
1735 *
1736 * Returns 0 on success, negative on failure
1737 **/
1738static int igbvf_set_mac(struct net_device *netdev, void *p)
1739{
1740 struct igbvf_adapter *adapter = netdev_priv(netdev);
1741 struct e1000_hw *hw = &adapter->hw;
1742 struct sockaddr *addr = p;
1743
1744 if (!is_valid_ether_addr(addr->sa_data))
1745 return -EADDRNOTAVAIL;
1746
1747 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1748
1749 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1750
887fa9d8 1751 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
d4e0fe01
AD
1752 return -EADDRNOTAVAIL;
1753
1754 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1755
1756 return 0;
1757}
1758
0340501b
JK
1759#define UPDATE_VF_COUNTER(reg, name) \
1760{ \
1761 u32 current_counter = er32(reg); \
1762 if (current_counter < adapter->stats.last_##name) \
1763 adapter->stats.name += 0x100000000LL; \
1764 adapter->stats.last_##name = current_counter; \
1765 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1766 adapter->stats.name |= current_counter; \
1767}
d4e0fe01
AD
1768
1769/**
1770 * igbvf_update_stats - Update the board statistics counters
1771 * @adapter: board private structure
1772**/
1773void igbvf_update_stats(struct igbvf_adapter *adapter)
1774{
1775 struct e1000_hw *hw = &adapter->hw;
1776 struct pci_dev *pdev = adapter->pdev;
1777
0340501b 1778 /* Prevent stats update while adapter is being reset, link is down
d4e0fe01
AD
1779 * or if the pci connection is down.
1780 */
1781 if (adapter->link_speed == 0)
1782 return;
1783
1784 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1785 return;
1786
1787 if (pci_channel_offline(pdev))
1788 return;
1789
1790 UPDATE_VF_COUNTER(VFGPRC, gprc);
1791 UPDATE_VF_COUNTER(VFGORC, gorc);
1792 UPDATE_VF_COUNTER(VFGPTC, gptc);
1793 UPDATE_VF_COUNTER(VFGOTC, gotc);
1794 UPDATE_VF_COUNTER(VFMPRC, mprc);
1795 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1796 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1797 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1798 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1799
1800 /* Fill out the OS statistics structure */
1801 adapter->net_stats.multicast = adapter->stats.mprc;
1802}
1803
1804static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1805{
a4ba8cbe
JK
1806 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1807 adapter->link_speed,
1808 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
d4e0fe01
AD
1809}
1810
1811static bool igbvf_has_link(struct igbvf_adapter *adapter)
1812{
1813 struct e1000_hw *hw = &adapter->hw;
1814 s32 ret_val = E1000_SUCCESS;
1815 bool link_active;
1816
72279093
AD
1817 /* If interface is down, stay link down */
1818 if (test_bit(__IGBVF_DOWN, &adapter->state))
1819 return false;
1820
d4e0fe01
AD
1821 ret_val = hw->mac.ops.check_for_link(hw);
1822 link_active = !hw->mac.get_link_status;
1823
1824 /* if check for link returns error we will need to reset */
72279093 1825 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
d4e0fe01
AD
1826 schedule_work(&adapter->reset_task);
1827
1828 return link_active;
1829}
1830
1831/**
1832 * igbvf_watchdog - Timer Call-back
1833 * @data: pointer to adapter cast into an unsigned long
1834 **/
1835static void igbvf_watchdog(unsigned long data)
1836{
0340501b 1837 struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
d4e0fe01
AD
1838
1839 /* Do the rest outside of interrupt context */
1840 schedule_work(&adapter->watchdog_task);
1841}
1842
1843static void igbvf_watchdog_task(struct work_struct *work)
1844{
1845 struct igbvf_adapter *adapter = container_of(work,
0340501b
JK
1846 struct igbvf_adapter,
1847 watchdog_task);
d4e0fe01
AD
1848 struct net_device *netdev = adapter->netdev;
1849 struct e1000_mac_info *mac = &adapter->hw.mac;
1850 struct igbvf_ring *tx_ring = adapter->tx_ring;
1851 struct e1000_hw *hw = &adapter->hw;
1852 u32 link;
1853 int tx_pending = 0;
1854
1855 link = igbvf_has_link(adapter);
1856
1857 if (link) {
1858 if (!netif_carrier_ok(netdev)) {
d4e0fe01 1859 mac->ops.get_link_up_info(&adapter->hw,
0340501b
JK
1860 &adapter->link_speed,
1861 &adapter->link_duplex);
d4e0fe01
AD
1862 igbvf_print_link_info(adapter);
1863
d4e0fe01
AD
1864 netif_carrier_on(netdev);
1865 netif_wake_queue(netdev);
1866 }
1867 } else {
1868 if (netif_carrier_ok(netdev)) {
1869 adapter->link_speed = 0;
1870 adapter->link_duplex = 0;
1871 dev_info(&adapter->pdev->dev, "Link is Down\n");
1872 netif_carrier_off(netdev);
1873 netif_stop_queue(netdev);
1874 }
1875 }
1876
1877 if (netif_carrier_ok(netdev)) {
1878 igbvf_update_stats(adapter);
1879 } else {
1880 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
0340501b 1881 tx_ring->count);
d4e0fe01 1882 if (tx_pending) {
0340501b 1883 /* We've lost link, so the controller stops DMA,
d4e0fe01
AD
1884 * but we've got queued Tx work that's never going
1885 * to get done, so reset controller to flush Tx.
1886 * (Do the reset outside of interrupt context).
1887 */
1888 adapter->tx_timeout_count++;
1889 schedule_work(&adapter->reset_task);
1890 }
1891 }
1892
1893 /* Cause software interrupt to ensure Rx ring is cleaned */
1894 ew32(EICS, adapter->rx_ring->eims_value);
1895
d4e0fe01
AD
1896 /* Reset the timer */
1897 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1898 mod_timer(&adapter->watchdog_timer,
1899 round_jiffies(jiffies + (2 * HZ)));
1900}
1901
0340501b
JK
1902#define IGBVF_TX_FLAGS_CSUM 0x00000001
1903#define IGBVF_TX_FLAGS_VLAN 0x00000002
1904#define IGBVF_TX_FLAGS_TSO 0x00000004
1905#define IGBVF_TX_FLAGS_IPV4 0x00000008
1906#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1907#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
d4e0fe01 1908
ea6ce602
AD
1909static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1910 u32 type_tucmd, u32 mss_l4len_idx)
1911{
1912 struct e1000_adv_tx_context_desc *context_desc;
1913 struct igbvf_buffer *buffer_info;
1914 u16 i = tx_ring->next_to_use;
1915
1916 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1917 buffer_info = &tx_ring->buffer_info[i];
1918
1919 i++;
1920 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1921
1922 /* set bits to identify this as an advanced context descriptor */
1923 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1924
1925 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1926 context_desc->seqnum_seed = 0;
1927 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1928 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1929
1930 buffer_info->time_stamp = jiffies;
1931 buffer_info->dma = 0;
1932}
1933
e10715d3
AD
1934static int igbvf_tso(struct igbvf_ring *tx_ring,
1935 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1936{
1937 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1938 union {
1939 struct iphdr *v4;
1940 struct ipv6hdr *v6;
1941 unsigned char *hdr;
1942 } ip;
1943 union {
1944 struct tcphdr *tcp;
1945 unsigned char *hdr;
1946 } l4;
1947 u32 paylen, l4_offset;
6b8f07b4
FR
1948 int err;
1949
e10715d3
AD
1950 if (skb->ip_summed != CHECKSUM_PARTIAL)
1951 return 0;
1952
1953 if (!skb_is_gso(skb))
1954 return 0;
d4e0fe01 1955
6b8f07b4 1956 err = skb_cow_head(skb, 0);
e10715d3 1957 if (err < 0)
6b8f07b4 1958 return err;
d4e0fe01 1959
e10715d3
AD
1960 ip.hdr = skb_network_header(skb);
1961 l4.hdr = skb_checksum_start(skb);
d4e0fe01 1962
e10715d3
AD
1963 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1964 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
d4e0fe01 1965
e10715d3
AD
1966 /* initialize outer IP header fields */
1967 if (ip.v4->version == 4) {
1968 /* IP header will have to cancel out any data that
1969 * is not a part of the outer IP header
1970 */
1971 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
1972 csum_unfold(l4.tcp->check)));
1973 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
d4e0fe01 1974
e10715d3
AD
1975 ip.v4->tot_len = 0;
1976 } else {
1977 ip.v6->payload_len = 0;
1978 }
d4e0fe01 1979
e10715d3
AD
1980 /* determine offset of inner transport header */
1981 l4_offset = l4.hdr - skb->data;
d4e0fe01 1982
e10715d3
AD
1983 /* compute length of segmentation header */
1984 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
d4e0fe01 1985
e10715d3
AD
1986 /* remove payload length from inner checksum */
1987 paylen = skb->len - l4_offset;
1988 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
d4e0fe01 1989
e10715d3
AD
1990 /* MSS L4LEN IDX */
1991 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
1992 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
d4e0fe01 1993
e10715d3
AD
1994 /* VLAN MACLEN IPLEN */
1995 vlan_macip_lens = l4.hdr - ip.hdr;
1996 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
1997 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
d4e0fe01 1998
e10715d3 1999 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
d4e0fe01 2000
e10715d3 2001 return 1;
d4e0fe01
AD
2002}
2003
ea6ce602 2004static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
d4e0fe01 2005{
ea6ce602 2006 unsigned int offset = 0;
d4e0fe01 2007
ea6ce602 2008 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
d4e0fe01 2009
ea6ce602
AD
2010 return offset == skb_checksum_start_offset(skb);
2011}
d4e0fe01 2012
ea6ce602
AD
2013static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2014 u32 tx_flags, __be16 protocol)
2015{
2016 u32 vlan_macip_lens = 0;
2017 u32 type_tucmd = 0;
d4e0fe01 2018
ea6ce602
AD
2019 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2020csum_failed:
2021 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2022 return false;
2023 goto no_csum;
2024 }
d4e0fe01 2025
ea6ce602
AD
2026 switch (skb->csum_offset) {
2027 case offsetof(struct tcphdr, check):
2028 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2029 /* fall through */
2030 case offsetof(struct udphdr, check):
2031 break;
2032 case offsetof(struct sctphdr, checksum):
2033 /* validate that this is actually an SCTP request */
2034 if (((protocol == htons(ETH_P_IP)) &&
2035 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2036 ((protocol == htons(ETH_P_IPV6)) &&
2037 igbvf_ipv6_csum_is_sctp(skb))) {
2038 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2039 break;
d4e0fe01 2040 }
ea6ce602
AD
2041 default:
2042 skb_checksum_help(skb);
2043 goto csum_failed;
d4e0fe01
AD
2044 }
2045
ea6ce602
AD
2046 vlan_macip_lens = skb_checksum_start_offset(skb) -
2047 skb_network_offset(skb);
2048no_csum:
2049 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2050 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2051
2052 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2053 return true;
d4e0fe01
AD
2054}
2055
2056static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2057{
2058 struct igbvf_adapter *adapter = netdev_priv(netdev);
2059
2060 /* there is enough descriptors then we don't need to worry */
2061 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2062 return 0;
2063
2064 netif_stop_queue(netdev);
2065
0340501b
JK
2066 /* Herbert's original patch had:
2067 * smp_mb__after_netif_stop_queue();
2068 * but since that doesn't exist yet, just open code it.
2069 */
d4e0fe01
AD
2070 smp_mb();
2071
2072 /* We need to check again just in case room has been made available */
2073 if (igbvf_desc_unused(adapter->tx_ring) < size)
2074 return -EBUSY;
2075
2076 netif_wake_queue(netdev);
2077
2078 ++adapter->restart_queue;
2079 return 0;
2080}
2081
0340501b 2082#define IGBVF_MAX_TXD_PWR 16
0ed2dbf4 2083#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
d4e0fe01
AD
2084
2085static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
0340501b 2086 struct igbvf_ring *tx_ring,
3eb1a40f 2087 struct sk_buff *skb)
d4e0fe01
AD
2088{
2089 struct igbvf_buffer *buffer_info;
a7d5ca40 2090 struct pci_dev *pdev = adapter->pdev;
d4e0fe01
AD
2091 unsigned int len = skb_headlen(skb);
2092 unsigned int count = 0, i;
2093 unsigned int f;
d4e0fe01
AD
2094
2095 i = tx_ring->next_to_use;
2096
d4e0fe01
AD
2097 buffer_info = &tx_ring->buffer_info[i];
2098 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2099 buffer_info->length = len;
2100 /* set time_stamp *before* dma to help avoid a possible race */
2101 buffer_info->time_stamp = jiffies;
ac26d7d6 2102 buffer_info->mapped_as_page = false;
123e9f1a
NN
2103 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2104 DMA_TO_DEVICE);
2105 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40
AD
2106 goto dma_error;
2107
d4e0fe01 2108 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
9e903e08 2109 const struct skb_frag_struct *frag;
d4e0fe01 2110
8581145f 2111 count++;
d4e0fe01
AD
2112 i++;
2113 if (i == tx_ring->count)
2114 i = 0;
2115
2116 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2117 len = skb_frag_size(frag);
d4e0fe01
AD
2118
2119 buffer_info = &tx_ring->buffer_info[i];
2120 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2121 buffer_info->length = len;
2122 buffer_info->time_stamp = jiffies;
a7d5ca40 2123 buffer_info->mapped_as_page = true;
877749bf 2124 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
0340501b 2125 DMA_TO_DEVICE);
123e9f1a 2126 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40 2127 goto dma_error;
d4e0fe01
AD
2128 }
2129
2130 tx_ring->buffer_info[i].skb = skb;
d4e0fe01 2131
a7d5ca40
AD
2132 return ++count;
2133
2134dma_error:
2135 dev_err(&pdev->dev, "TX DMA map failed\n");
2136
2137 /* clear timestamp and dma mappings for failed buffer_info mapping */
2138 buffer_info->dma = 0;
2139 buffer_info->time_stamp = 0;
2140 buffer_info->length = 0;
a7d5ca40 2141 buffer_info->mapped_as_page = false;
c1fa347f
RK
2142 if (count)
2143 count--;
a7d5ca40
AD
2144
2145 /* clear timestamp and dma mappings for remaining portion of packet */
c1fa347f 2146 while (count--) {
0340501b 2147 if (i == 0)
a7d5ca40 2148 i += tx_ring->count;
c1fa347f 2149 i--;
a7d5ca40
AD
2150 buffer_info = &tx_ring->buffer_info[i];
2151 igbvf_put_txbuf(adapter, buffer_info);
2152 }
2153
2154 return 0;
d4e0fe01
AD
2155}
2156
2157static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
0340501b 2158 struct igbvf_ring *tx_ring,
3eb1a40f
AD
2159 int tx_flags, int count,
2160 unsigned int first, u32 paylen,
0340501b 2161 u8 hdr_len)
d4e0fe01
AD
2162{
2163 union e1000_adv_tx_desc *tx_desc = NULL;
2164 struct igbvf_buffer *buffer_info;
2165 u32 olinfo_status = 0, cmd_type_len;
2166 unsigned int i;
2167
2168 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
0340501b 2169 E1000_ADVTXD_DCMD_DEXT);
d4e0fe01
AD
2170
2171 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2172 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2173
2174 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2175 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2176
2177 /* insert tcp checksum */
2178 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2179
2180 /* insert ip checksum */
2181 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2182 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2183
2184 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2185 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2186 }
2187
2188 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2189
2190 i = tx_ring->next_to_use;
2191 while (count--) {
2192 buffer_info = &tx_ring->buffer_info[i];
2193 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2194 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2195 tx_desc->read.cmd_type_len =
0340501b 2196 cpu_to_le32(cmd_type_len | buffer_info->length);
d4e0fe01
AD
2197 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2198 i++;
2199 if (i == tx_ring->count)
2200 i = 0;
2201 }
2202
2203 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2204 /* Force memory writes to complete before letting h/w
2205 * know there are new descriptors to fetch. (Only
2206 * applicable for weak-ordered memory model archs,
0340501b
JK
2207 * such as IA-64).
2208 */
d4e0fe01
AD
2209 wmb();
2210
3eb1a40f 2211 tx_ring->buffer_info[first].next_to_watch = tx_desc;
d4e0fe01
AD
2212 tx_ring->next_to_use = i;
2213 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2214 /* we need this if more than one processor can write to our tail
0340501b
JK
2215 * at a time, it synchronizes IO on IA64/Altix systems
2216 */
d4e0fe01
AD
2217 mmiowb();
2218}
2219
3b29a56d
SH
2220static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2221 struct net_device *netdev,
2222 struct igbvf_ring *tx_ring)
d4e0fe01
AD
2223{
2224 struct igbvf_adapter *adapter = netdev_priv(netdev);
2225 unsigned int first, tx_flags = 0;
2226 u8 hdr_len = 0;
2227 int count = 0;
2228 int tso = 0;
72b14059 2229 __be16 protocol = vlan_get_protocol(skb);
d4e0fe01
AD
2230
2231 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2232 dev_kfree_skb_any(skb);
2233 return NETDEV_TX_OK;
2234 }
2235
2236 if (skb->len <= 0) {
2237 dev_kfree_skb_any(skb);
2238 return NETDEV_TX_OK;
2239 }
2240
0340501b
JK
2241 /* need: count + 4 desc gap to keep tail from touching
2242 * + 2 desc gap to keep tail from touching head,
2243 * + 1 desc for skb->data,
2244 * + 1 desc for context descriptor,
d4e0fe01
AD
2245 * head, otherwise try next time
2246 */
2247 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2248 /* this is a hard error */
2249 return NETDEV_TX_BUSY;
2250 }
2251
df8a39de 2252 if (skb_vlan_tag_present(skb)) {
d4e0fe01 2253 tx_flags |= IGBVF_TX_FLAGS_VLAN;
df8a39de
JP
2254 tx_flags |= (skb_vlan_tag_get(skb) <<
2255 IGBVF_TX_FLAGS_VLAN_SHIFT);
d4e0fe01
AD
2256 }
2257
72b14059 2258 if (protocol == htons(ETH_P_IP))
d4e0fe01
AD
2259 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2260
2261 first = tx_ring->next_to_use;
2262
e10715d3 2263 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
d4e0fe01
AD
2264 if (unlikely(tso < 0)) {
2265 dev_kfree_skb_any(skb);
2266 return NETDEV_TX_OK;
2267 }
2268
2269 if (tso)
2270 tx_flags |= IGBVF_TX_FLAGS_TSO;
ea6ce602 2271 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
0340501b 2272 (skb->ip_summed == CHECKSUM_PARTIAL))
d4e0fe01
AD
2273 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2274
0340501b 2275 /* count reflects descriptors mapped, if 0 then mapping error
25985edc 2276 * has occurred and we need to rewind the descriptor queue
d4e0fe01 2277 */
3eb1a40f 2278 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
d4e0fe01
AD
2279
2280 if (count) {
2281 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3eb1a40f 2282 first, skb->len, hdr_len);
d4e0fe01
AD
2283 /* Make sure there is space in the ring for the next send. */
2284 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2285 } else {
2286 dev_kfree_skb_any(skb);
2287 tx_ring->buffer_info[first].time_stamp = 0;
2288 tx_ring->next_to_use = first;
2289 }
2290
2291 return NETDEV_TX_OK;
2292}
2293
3b29a56d
SH
2294static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2295 struct net_device *netdev)
d4e0fe01
AD
2296{
2297 struct igbvf_adapter *adapter = netdev_priv(netdev);
2298 struct igbvf_ring *tx_ring;
d4e0fe01
AD
2299
2300 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2301 dev_kfree_skb_any(skb);
2302 return NETDEV_TX_OK;
2303 }
2304
2305 tx_ring = &adapter->tx_ring[0];
2306
3b29a56d 2307 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
d4e0fe01
AD
2308}
2309
2310/**
2311 * igbvf_tx_timeout - Respond to a Tx Hang
2312 * @netdev: network interface device structure
2313 **/
2314static void igbvf_tx_timeout(struct net_device *netdev)
2315{
2316 struct igbvf_adapter *adapter = netdev_priv(netdev);
2317
2318 /* Do the reset outside of interrupt context */
2319 adapter->tx_timeout_count++;
2320 schedule_work(&adapter->reset_task);
2321}
2322
2323static void igbvf_reset_task(struct work_struct *work)
2324{
2325 struct igbvf_adapter *adapter;
0340501b 2326
d4e0fe01
AD
2327 adapter = container_of(work, struct igbvf_adapter, reset_task);
2328
2329 igbvf_reinit_locked(adapter);
2330}
2331
2332/**
2333 * igbvf_get_stats - Get System Network Statistics
2334 * @netdev: network interface device structure
2335 *
2336 * Returns the address of the device statistics structure.
2337 * The statistics are actually updated from the timer callback.
2338 **/
2339static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2340{
2341 struct igbvf_adapter *adapter = netdev_priv(netdev);
2342
2343 /* only return the current stats */
2344 return &adapter->net_stats;
2345}
2346
2347/**
2348 * igbvf_change_mtu - Change the Maximum Transfer Unit
2349 * @netdev: network interface device structure
2350 * @new_mtu: new value for maximum frame size
2351 *
2352 * Returns 0 on success, negative on failure
2353 **/
2354static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2355{
2356 struct igbvf_adapter *adapter = netdev_priv(netdev);
2357 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2358
d4e0fe01 2359 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
0340501b 2360 usleep_range(1000, 2000);
d4e0fe01
AD
2361 /* igbvf_down has a dependency on max_frame_size */
2362 adapter->max_frame_size = max_frame;
2363 if (netif_running(netdev))
2364 igbvf_down(adapter);
2365
0340501b 2366 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
d4e0fe01
AD
2367 * means we reserve 2 more, this pushes us to allocate from the next
2368 * larger slab size.
2369 * i.e. RXBUFFER_2048 --> size-4096 slab
2370 * However with the new *_jumbo_rx* routines, jumbo receives will use
2371 * fragmented skbs
2372 */
2373
2374 if (max_frame <= 1024)
2375 adapter->rx_buffer_len = 1024;
2376 else if (max_frame <= 2048)
2377 adapter->rx_buffer_len = 2048;
2378 else
2379#if (PAGE_SIZE / 2) > 16384
2380 adapter->rx_buffer_len = 16384;
2381#else
2382 adapter->rx_buffer_len = PAGE_SIZE / 2;
2383#endif
2384
d4e0fe01
AD
2385 /* adjust allocation if LPE protects us, and we aren't using SBP */
2386 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
0340501b 2387 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
d4e0fe01 2388 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
0340501b 2389 ETH_FCS_LEN;
d4e0fe01
AD
2390
2391 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
0340501b 2392 netdev->mtu, new_mtu);
d4e0fe01
AD
2393 netdev->mtu = new_mtu;
2394
2395 if (netif_running(netdev))
2396 igbvf_up(adapter);
2397 else
2398 igbvf_reset(adapter);
2399
2400 clear_bit(__IGBVF_RESETTING, &adapter->state);
2401
2402 return 0;
2403}
2404
2405static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2406{
2407 switch (cmd) {
2408 default:
2409 return -EOPNOTSUPP;
2410 }
2411}
2412
2413static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2414{
2415 struct net_device *netdev = pci_get_drvdata(pdev);
2416 struct igbvf_adapter *adapter = netdev_priv(netdev);
2417#ifdef CONFIG_PM
2418 int retval = 0;
2419#endif
2420
2421 netif_device_detach(netdev);
2422
2423 if (netif_running(netdev)) {
2424 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2425 igbvf_down(adapter);
2426 igbvf_free_irq(adapter);
2427 }
2428
2429#ifdef CONFIG_PM
2430 retval = pci_save_state(pdev);
2431 if (retval)
2432 return retval;
2433#endif
2434
2435 pci_disable_device(pdev);
2436
2437 return 0;
2438}
2439
2440#ifdef CONFIG_PM
2441static int igbvf_resume(struct pci_dev *pdev)
2442{
2443 struct net_device *netdev = pci_get_drvdata(pdev);
2444 struct igbvf_adapter *adapter = netdev_priv(netdev);
2445 u32 err;
2446
2447 pci_restore_state(pdev);
2448 err = pci_enable_device_mem(pdev);
2449 if (err) {
2450 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2451 return err;
2452 }
2453
2454 pci_set_master(pdev);
2455
2456 if (netif_running(netdev)) {
2457 err = igbvf_request_irq(adapter);
2458 if (err)
2459 return err;
2460 }
2461
2462 igbvf_reset(adapter);
2463
2464 if (netif_running(netdev))
2465 igbvf_up(adapter);
2466
2467 netif_device_attach(netdev);
2468
2469 return 0;
2470}
2471#endif
2472
2473static void igbvf_shutdown(struct pci_dev *pdev)
2474{
2475 igbvf_suspend(pdev, PMSG_SUSPEND);
2476}
2477
2478#ifdef CONFIG_NET_POLL_CONTROLLER
0340501b 2479/* Polling 'interrupt' - used by things like netconsole to send skbs
d4e0fe01
AD
2480 * without having to re-enable interrupts. It's not called while
2481 * the interrupt routine is executing.
2482 */
2483static void igbvf_netpoll(struct net_device *netdev)
2484{
2485 struct igbvf_adapter *adapter = netdev_priv(netdev);
2486
2487 disable_irq(adapter->pdev->irq);
2488
2489 igbvf_clean_tx_irq(adapter->tx_ring);
2490
2491 enable_irq(adapter->pdev->irq);
2492}
2493#endif
2494
2495/**
2496 * igbvf_io_error_detected - called when PCI error is detected
2497 * @pdev: Pointer to PCI device
2498 * @state: The current pci connection state
2499 *
2500 * This function is called after a PCI bus error affecting
2501 * this device has been detected.
2502 */
2503static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
0340501b 2504 pci_channel_state_t state)
d4e0fe01
AD
2505{
2506 struct net_device *netdev = pci_get_drvdata(pdev);
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509 netif_device_detach(netdev);
2510
c06c430d
DN
2511 if (state == pci_channel_io_perm_failure)
2512 return PCI_ERS_RESULT_DISCONNECT;
2513
d4e0fe01
AD
2514 if (netif_running(netdev))
2515 igbvf_down(adapter);
2516 pci_disable_device(pdev);
2517
2518 /* Request a slot slot reset. */
2519 return PCI_ERS_RESULT_NEED_RESET;
2520}
2521
2522/**
2523 * igbvf_io_slot_reset - called after the pci bus has been reset.
2524 * @pdev: Pointer to PCI device
2525 *
2526 * Restart the card from scratch, as if from a cold-boot. Implementation
2527 * resembles the first-half of the igbvf_resume routine.
2528 */
2529static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2530{
2531 struct net_device *netdev = pci_get_drvdata(pdev);
2532 struct igbvf_adapter *adapter = netdev_priv(netdev);
2533
2534 if (pci_enable_device_mem(pdev)) {
2535 dev_err(&pdev->dev,
2536 "Cannot re-enable PCI device after reset.\n");
2537 return PCI_ERS_RESULT_DISCONNECT;
2538 }
2539 pci_set_master(pdev);
2540
2541 igbvf_reset(adapter);
2542
2543 return PCI_ERS_RESULT_RECOVERED;
2544}
2545
2546/**
2547 * igbvf_io_resume - called when traffic can start flowing again.
2548 * @pdev: Pointer to PCI device
2549 *
2550 * This callback is called when the error recovery driver tells us that
2551 * its OK to resume normal operation. Implementation resembles the
2552 * second-half of the igbvf_resume routine.
2553 */
2554static void igbvf_io_resume(struct pci_dev *pdev)
2555{
2556 struct net_device *netdev = pci_get_drvdata(pdev);
2557 struct igbvf_adapter *adapter = netdev_priv(netdev);
2558
2559 if (netif_running(netdev)) {
2560 if (igbvf_up(adapter)) {
2561 dev_err(&pdev->dev,
2562 "can't bring device back up after reset\n");
2563 return;
2564 }
2565 }
2566
2567 netif_device_attach(netdev);
2568}
2569
2570static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2571{
2572 struct e1000_hw *hw = &adapter->hw;
2573 struct net_device *netdev = adapter->netdev;
2574 struct pci_dev *pdev = adapter->pdev;
2575
10090751
WM
2576 if (hw->mac.type == e1000_vfadapt_i350)
2577 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2578 else
2579 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
753cdc33 2580 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
d4e0fe01
AD
2581}
2582
c8f44aff 2583static int igbvf_set_features(struct net_device *netdev,
0340501b 2584 netdev_features_t features)
fd38f734
MM
2585{
2586 struct igbvf_adapter *adapter = netdev_priv(netdev);
2587
2588 if (features & NETIF_F_RXCSUM)
2589 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2590 else
2591 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2592
2593 return 0;
2594}
2595
e10715d3
AD
2596#define IGBVF_MAX_MAC_HDR_LEN 127
2597#define IGBVF_MAX_NETWORK_HDR_LEN 511
2598
2599static netdev_features_t
2600igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2601 netdev_features_t features)
2602{
2603 unsigned int network_hdr_len, mac_hdr_len;
2604
2605 /* Make certain the headers can be described by a context descriptor */
2606 mac_hdr_len = skb_network_header(skb) - skb->data;
2607 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2608 return features & ~(NETIF_F_HW_CSUM |
2609 NETIF_F_SCTP_CRC |
2610 NETIF_F_HW_VLAN_CTAG_TX |
2611 NETIF_F_TSO |
2612 NETIF_F_TSO6);
2613
2614 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2615 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2616 return features & ~(NETIF_F_HW_CSUM |
2617 NETIF_F_SCTP_CRC |
2618 NETIF_F_TSO |
2619 NETIF_F_TSO6);
2620
2621 /* We can only support IPV4 TSO in tunnels if we can mangle the
2622 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2623 */
2624 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2625 features &= ~NETIF_F_TSO;
2626
2627 return features;
2628}
2629
d4e0fe01 2630static const struct net_device_ops igbvf_netdev_ops = {
0340501b
JK
2631 .ndo_open = igbvf_open,
2632 .ndo_stop = igbvf_close,
2633 .ndo_start_xmit = igbvf_xmit_frame,
2634 .ndo_get_stats = igbvf_get_stats,
2635 .ndo_set_rx_mode = igbvf_set_multi,
2636 .ndo_set_mac_address = igbvf_set_mac,
2637 .ndo_change_mtu = igbvf_change_mtu,
2638 .ndo_do_ioctl = igbvf_ioctl,
2639 .ndo_tx_timeout = igbvf_tx_timeout,
2640 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2641 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
d4e0fe01 2642#ifdef CONFIG_NET_POLL_CONTROLLER
0340501b 2643 .ndo_poll_controller = igbvf_netpoll,
d4e0fe01 2644#endif
0340501b 2645 .ndo_set_features = igbvf_set_features,
e10715d3 2646 .ndo_features_check = igbvf_features_check,
d4e0fe01
AD
2647};
2648
2649/**
2650 * igbvf_probe - Device Initialization Routine
2651 * @pdev: PCI device information struct
2652 * @ent: entry in igbvf_pci_tbl
2653 *
2654 * Returns 0 on success, negative on failure
2655 *
2656 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2657 * The OS initialization, configuring of the adapter private structure,
2658 * and a hardware reset occur.
2659 **/
1dd06ae8 2660static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
d4e0fe01
AD
2661{
2662 struct net_device *netdev;
2663 struct igbvf_adapter *adapter;
2664 struct e1000_hw *hw;
2665 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2666
2667 static int cards_found;
2668 int err, pci_using_dac;
2669
2670 err = pci_enable_device_mem(pdev);
2671 if (err)
2672 return err;
2673
2674 pci_using_dac = 0;
c21b8ebc 2675 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01 2676 if (!err) {
c21b8ebc 2677 pci_using_dac = 1;
d4e0fe01 2678 } else {
c21b8ebc 2679 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
d4e0fe01 2680 if (err) {
0340501b
JK
2681 dev_err(&pdev->dev,
2682 "No usable DMA configuration, aborting\n");
c21b8ebc 2683 goto err_dma;
d4e0fe01
AD
2684 }
2685 }
2686
2687 err = pci_request_regions(pdev, igbvf_driver_name);
2688 if (err)
2689 goto err_pci_reg;
2690
2691 pci_set_master(pdev);
2692
2693 err = -ENOMEM;
2694 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2695 if (!netdev)
2696 goto err_alloc_etherdev;
2697
2698 SET_NETDEV_DEV(netdev, &pdev->dev);
2699
2700 pci_set_drvdata(pdev, netdev);
2701 adapter = netdev_priv(netdev);
2702 hw = &adapter->hw;
2703 adapter->netdev = netdev;
2704 adapter->pdev = pdev;
2705 adapter->ei = ei;
2706 adapter->pba = ei->pba;
2707 adapter->flags = ei->flags;
2708 adapter->hw.back = adapter;
2709 adapter->hw.mac.type = ei->mac;
b3f4d599 2710 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
d4e0fe01
AD
2711
2712 /* PCI config space info */
2713
2714 hw->vendor_id = pdev->vendor;
2715 hw->device_id = pdev->device;
2716 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2717 hw->subsystem_device_id = pdev->subsystem_device;
ff938e43 2718 hw->revision_id = pdev->revision;
d4e0fe01
AD
2719
2720 err = -EIO;
2721 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
0340501b 2722 pci_resource_len(pdev, 0));
d4e0fe01
AD
2723
2724 if (!adapter->hw.hw_addr)
2725 goto err_ioremap;
2726
2727 if (ei->get_variants) {
2728 err = ei->get_variants(adapter);
2729 if (err)
de524681 2730 goto err_get_variants;
d4e0fe01
AD
2731 }
2732
2733 /* setup adapter struct */
2734 err = igbvf_sw_init(adapter);
2735 if (err)
2736 goto err_sw_init;
2737
2738 /* construct the net_device struct */
2739 netdev->netdev_ops = &igbvf_netdev_ops;
2740
2741 igbvf_set_ethtool_ops(netdev);
2742 netdev->watchdog_timeo = 5 * HZ;
2743 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2744
2745 adapter->bd_number = cards_found++;
2746
fd38f734 2747 netdev->hw_features = NETIF_F_SG |
ea6ce602
AD
2748 NETIF_F_TSO |
2749 NETIF_F_TSO6 |
2750 NETIF_F_RXCSUM |
2751 NETIF_F_HW_CSUM |
2752 NETIF_F_SCTP_CRC;
fd38f734 2753
e10715d3
AD
2754#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2755 NETIF_F_GSO_GRE_CSUM | \
7e13318d 2756 NETIF_F_GSO_IPXIP4 | \
bf2d1df3 2757 NETIF_F_GSO_IPXIP6 | \
e10715d3
AD
2758 NETIF_F_GSO_UDP_TUNNEL | \
2759 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2760
2761 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2762 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2763 IGBVF_GSO_PARTIAL_FEATURES;
2764
2765 netdev->features = netdev->hw_features;
d4e0fe01 2766
d4e0fe01
AD
2767 if (pci_using_dac)
2768 netdev->features |= NETIF_F_HIGHDMA;
2769
e10715d3 2770 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
ea6ce602 2771 netdev->mpls_features |= NETIF_F_HW_CSUM;
e10715d3
AD
2772 netdev->hw_enc_features |= netdev->vlan_features;
2773
2774 /* set this bit last since it cannot be part of vlan_features */
2775 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2776 NETIF_F_HW_VLAN_CTAG_RX |
2777 NETIF_F_HW_VLAN_CTAG_TX;
d4e0fe01 2778
91c527a5
JW
2779 /* MTU range: 68 - 9216 */
2780 netdev->min_mtu = ETH_MIN_MTU;
2781 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2782
d4e0fe01
AD
2783 /*reset the controller to put the device in a known good state */
2784 err = hw->mac.ops.reset_hw(hw);
2785 if (err) {
2786 dev_info(&pdev->dev,
8d56b6d5 2787 "PF still in reset state. Is the PF interface up?\n");
d4e0fe01
AD
2788 } else {
2789 err = hw->mac.ops.read_mac_addr(hw);
8d56b6d5
MW
2790 if (err)
2791 dev_info(&pdev->dev, "Error reading MAC address.\n");
2792 else if (is_zero_ether_addr(adapter->hw.mac.addr))
0340501b
JK
2793 dev_info(&pdev->dev,
2794 "MAC address not assigned by administrator.\n");
1a0d6ae5 2795 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
8d56b6d5 2796 netdev->addr_len);
d4e0fe01
AD
2797 }
2798
9bd1be45 2799 if (!is_valid_ether_addr(netdev->dev_addr)) {
8d56b6d5
MW
2800 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2801 eth_hw_addr_random(netdev);
2802 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
0340501b 2803 netdev->addr_len);
d4e0fe01
AD
2804 }
2805
2806 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
0340501b 2807 (unsigned long)adapter);
d4e0fe01
AD
2808
2809 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2810 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2811
2812 /* ring size defaults */
2813 adapter->rx_ring->count = 1024;
2814 adapter->tx_ring->count = 1024;
2815
2816 /* reset the hardware with the new settings */
2817 igbvf_reset(adapter);
2818
2c1a1019
MW
2819 /* set hardware-specific flags */
2820 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2821 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2822
d4e0fe01
AD
2823 strcpy(netdev->name, "eth%d");
2824 err = register_netdev(netdev);
2825 if (err)
2826 goto err_hw_init;
2827
de7fe787
ET
2828 /* tell the stack to leave us alone until igbvf_open() is called */
2829 netif_carrier_off(netdev);
2830 netif_stop_queue(netdev);
2831
d4e0fe01
AD
2832 igbvf_print_device_info(adapter);
2833
2834 igbvf_initialize_last_counter_stats(adapter);
2835
2836 return 0;
2837
2838err_hw_init:
2839 kfree(adapter->tx_ring);
2840 kfree(adapter->rx_ring);
2841err_sw_init:
2842 igbvf_reset_interrupt_capability(adapter);
de524681 2843err_get_variants:
d4e0fe01
AD
2844 iounmap(adapter->hw.hw_addr);
2845err_ioremap:
2846 free_netdev(netdev);
2847err_alloc_etherdev:
2848 pci_release_regions(pdev);
2849err_pci_reg:
2850err_dma:
2851 pci_disable_device(pdev);
2852 return err;
2853}
2854
2855/**
2856 * igbvf_remove - Device Removal Routine
2857 * @pdev: PCI device information struct
2858 *
2859 * igbvf_remove is called by the PCI subsystem to alert the driver
2860 * that it should release a PCI device. The could be caused by a
2861 * Hot-Plug event, or because the driver is going to be removed from
2862 * memory.
2863 **/
9f9a12f8 2864static void igbvf_remove(struct pci_dev *pdev)
d4e0fe01
AD
2865{
2866 struct net_device *netdev = pci_get_drvdata(pdev);
2867 struct igbvf_adapter *adapter = netdev_priv(netdev);
2868 struct e1000_hw *hw = &adapter->hw;
2869
0340501b 2870 /* The watchdog timer may be rescheduled, so explicitly
760141a5 2871 * disable it from being rescheduled.
d4e0fe01
AD
2872 */
2873 set_bit(__IGBVF_DOWN, &adapter->state);
2874 del_timer_sync(&adapter->watchdog_timer);
2875
760141a5
TH
2876 cancel_work_sync(&adapter->reset_task);
2877 cancel_work_sync(&adapter->watchdog_task);
d4e0fe01
AD
2878
2879 unregister_netdev(netdev);
2880
2881 igbvf_reset_interrupt_capability(adapter);
2882
0340501b
JK
2883 /* it is important to delete the NAPI struct prior to freeing the
2884 * Rx ring so that you do not end up with null pointer refs
d4e0fe01
AD
2885 */
2886 netif_napi_del(&adapter->rx_ring->napi);
2887 kfree(adapter->tx_ring);
2888 kfree(adapter->rx_ring);
2889
2890 iounmap(hw->hw_addr);
2891 if (hw->flash_address)
2892 iounmap(hw->flash_address);
2893 pci_release_regions(pdev);
2894
2895 free_netdev(netdev);
2896
2897 pci_disable_device(pdev);
2898}
2899
2900/* PCI Error Recovery (ERS) */
3646f0e5 2901static const struct pci_error_handlers igbvf_err_handler = {
d4e0fe01
AD
2902 .error_detected = igbvf_io_error_detected,
2903 .slot_reset = igbvf_io_slot_reset,
2904 .resume = igbvf_io_resume,
2905};
2906
9baa3c34 2907static const struct pci_device_id igbvf_pci_tbl[] = {
d4e0fe01 2908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
031d7952 2909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
d4e0fe01
AD
2910 { } /* terminate list */
2911};
2912MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2913
2914/* PCI Device API Driver */
2915static struct pci_driver igbvf_driver = {
0340501b
JK
2916 .name = igbvf_driver_name,
2917 .id_table = igbvf_pci_tbl,
2918 .probe = igbvf_probe,
2919 .remove = igbvf_remove,
d4e0fe01
AD
2920#ifdef CONFIG_PM
2921 /* Power Management Hooks */
0340501b
JK
2922 .suspend = igbvf_suspend,
2923 .resume = igbvf_resume,
d4e0fe01 2924#endif
0340501b
JK
2925 .shutdown = igbvf_shutdown,
2926 .err_handler = &igbvf_err_handler
d4e0fe01
AD
2927};
2928
2929/**
2930 * igbvf_init_module - Driver Registration Routine
2931 *
2932 * igbvf_init_module is the first routine called when the driver is
2933 * loaded. All it does is register with the PCI subsystem.
2934 **/
2935static int __init igbvf_init_module(void)
2936{
2937 int ret;
0340501b 2938
a4ba8cbe
JK
2939 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2940 pr_info("%s\n", igbvf_copyright);
d4e0fe01
AD
2941
2942 ret = pci_register_driver(&igbvf_driver);
d4e0fe01
AD
2943
2944 return ret;
2945}
2946module_init(igbvf_init_module);
2947
2948/**
2949 * igbvf_exit_module - Driver Exit Cleanup Routine
2950 *
2951 * igbvf_exit_module is called just before the driver is removed
2952 * from memory.
2953 **/
2954static void __exit igbvf_exit_module(void)
2955{
2956 pci_unregister_driver(&igbvf_driver);
d4e0fe01
AD
2957}
2958module_exit(igbvf_exit_module);
2959
d4e0fe01 2960MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
10090751 2961MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
d4e0fe01
AD
2962MODULE_LICENSE("GPL");
2963MODULE_VERSION(DRV_VERSION);
2964
2965/* netdev.c */