]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/marvell/mvneta.c
net: mvneta: Use default NAPI weight instead of a custom one
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
CommitLineData
c5aff182
TP
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/kernel.h>
c5aff182
TP
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/platform_device.h>
18#include <linux/skbuff.h>
19#include <linux/inetdevice.h>
20#include <linux/mbus.h>
21#include <linux/module.h>
22#include <linux/interrupt.h>
23#include <net/ip.h>
24#include <net/ipv6.h>
c3f0dd38 25#include <linux/io.h>
2adb719d 26#include <net/tso.h>
c5aff182
TP
27#include <linux/of.h>
28#include <linux/of_irq.h>
29#include <linux/of_mdio.h>
30#include <linux/of_net.h>
31#include <linux/of_address.h>
32#include <linux/phy.h>
189dd626 33#include <linux/clk.h>
c5aff182
TP
34
35/* Registers */
36#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
37#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
38#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
39#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
40#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
41#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
42#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
43#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
44#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
45#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
46#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
47#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
48#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
49#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
50#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
51#define MVNETA_PORT_RX_RESET 0x1cc0
52#define MVNETA_PORT_RX_DMA_RESET BIT(0)
53#define MVNETA_PHY_ADDR 0x2000
54#define MVNETA_PHY_ADDR_MASK 0x1f
55#define MVNETA_MBUS_RETRY 0x2010
56#define MVNETA_UNIT_INTR_CAUSE 0x2080
57#define MVNETA_UNIT_CONTROL 0x20B0
58#define MVNETA_PHY_POLLING_ENABLE BIT(1)
59#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
60#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
61#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
62#define MVNETA_BASE_ADDR_ENABLE 0x2290
63#define MVNETA_PORT_CONFIG 0x2400
64#define MVNETA_UNI_PROMISC_MODE BIT(0)
65#define MVNETA_DEF_RXQ(q) ((q) << 1)
66#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
67#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
68#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
69#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
70#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
71#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
72#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
73 MVNETA_DEF_RXQ_ARP(q) | \
74 MVNETA_DEF_RXQ_TCP(q) | \
75 MVNETA_DEF_RXQ_UDP(q) | \
76 MVNETA_DEF_RXQ_BPDU(q) | \
77 MVNETA_TX_UNSET_ERR_SUM | \
78 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
79#define MVNETA_PORT_CONFIG_EXTEND 0x2404
80#define MVNETA_MAC_ADDR_LOW 0x2414
81#define MVNETA_MAC_ADDR_HIGH 0x2418
82#define MVNETA_SDMA_CONFIG 0x241c
83#define MVNETA_SDMA_BRST_SIZE_16 4
c5aff182
TP
84#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
85#define MVNETA_RX_NO_DATA_SWAP BIT(4)
86#define MVNETA_TX_NO_DATA_SWAP BIT(5)
9ad8fef6 87#define MVNETA_DESC_SWAP BIT(6)
c5aff182
TP
88#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
89#define MVNETA_PORT_STATUS 0x2444
90#define MVNETA_TX_IN_PRGRS BIT(1)
91#define MVNETA_TX_FIFO_EMPTY BIT(8)
92#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
3f1dd4bc 93#define MVNETA_SERDES_CFG 0x24A0
5445eaf3 94#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
3f1dd4bc 95#define MVNETA_QSGMII_SERDES_PROTO 0x0667
c5aff182
TP
96#define MVNETA_TYPE_PRIO 0x24bc
97#define MVNETA_FORCE_UNI BIT(21)
98#define MVNETA_TXQ_CMD_1 0x24e4
99#define MVNETA_TXQ_CMD 0x2448
100#define MVNETA_TXQ_DISABLE_SHIFT 8
101#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
102#define MVNETA_ACC_MODE 0x2500
103#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
104#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
105#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
106#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
40ba35e7 107
108/* Exception Interrupt Port/Queue Cause register */
109
c5aff182 110#define MVNETA_INTR_NEW_CAUSE 0x25a0
c5aff182 111#define MVNETA_INTR_NEW_MASK 0x25a4
40ba35e7 112
113/* bits 0..7 = TXQ SENT, one bit per queue.
114 * bits 8..15 = RXQ OCCUP, one bit per queue.
115 * bits 16..23 = RXQ FREE, one bit per queue.
116 * bit 29 = OLD_REG_SUM, see old reg ?
117 * bit 30 = TX_ERR_SUM, one bit for 4 ports
118 * bit 31 = MISC_SUM, one bit for 4 ports
119 */
120#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
121#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
122#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
123#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
124
c5aff182
TP
125#define MVNETA_INTR_OLD_CAUSE 0x25a8
126#define MVNETA_INTR_OLD_MASK 0x25ac
40ba35e7 127
128/* Data Path Port/Queue Cause Register */
c5aff182
TP
129#define MVNETA_INTR_MISC_CAUSE 0x25b0
130#define MVNETA_INTR_MISC_MASK 0x25b4
40ba35e7 131
132#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
133#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
134#define MVNETA_CAUSE_PTP BIT(4)
135
136#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
137#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
138#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
139#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
140#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
141#define MVNETA_CAUSE_PRBS_ERR BIT(12)
142#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
143#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
144
145#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
146#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
147#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
148
149#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
150#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
151#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
152
c5aff182
TP
153#define MVNETA_INTR_ENABLE 0x25b8
154#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
40ba35e7 155#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
156
c5aff182
TP
157#define MVNETA_RXQ_CMD 0x2680
158#define MVNETA_RXQ_DISABLE_SHIFT 8
159#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
160#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
161#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
162#define MVNETA_GMAC_CTRL_0 0x2c00
163#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
164#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
165#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
166#define MVNETA_GMAC_CTRL_2 0x2c08
a79121d3 167#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
c5aff182
TP
168#define MVNETA_GMAC2_PORT_RGMII BIT(4)
169#define MVNETA_GMAC2_PORT_RESET BIT(6)
170#define MVNETA_GMAC_STATUS 0x2c10
171#define MVNETA_GMAC_LINK_UP BIT(0)
172#define MVNETA_GMAC_SPEED_1000 BIT(1)
173#define MVNETA_GMAC_SPEED_100 BIT(2)
174#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
175#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
176#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
177#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
178#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
179#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
180#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
181#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
182#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
183#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
71408602 184#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
c5aff182 185#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
71408602 186#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
c5aff182
TP
187#define MVNETA_MIB_COUNTERS_BASE 0x3080
188#define MVNETA_MIB_LATE_COLLISION 0x7c
189#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
190#define MVNETA_DA_FILT_OTH_MCAST 0x3500
191#define MVNETA_DA_FILT_UCAST_BASE 0x3600
192#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
193#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
194#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
195#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
196#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
197#define MVNETA_TXQ_DEC_SENT_SHIFT 16
198#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
199#define MVNETA_TXQ_SENT_DESC_SHIFT 16
200#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
201#define MVNETA_PORT_TX_RESET 0x3cf0
202#define MVNETA_PORT_TX_DMA_RESET BIT(0)
203#define MVNETA_TX_MTU 0x3e0c
204#define MVNETA_TX_TOKEN_SIZE 0x3e14
205#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
206#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
207#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
208
209#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
210
211/* Descriptor ring Macros */
212#define MVNETA_QUEUE_NEXT_DESC(q, index) \
213 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
214
215/* Various constants */
216
217/* Coalescing */
218#define MVNETA_TXDONE_COAL_PKTS 16
219#define MVNETA_RX_COAL_PKTS 32
220#define MVNETA_RX_COAL_USEC 100
221
6a20c175 222/* The two bytes Marvell header. Either contains a special value used
c5aff182
TP
223 * by Marvell switches when a specific hardware mode is enabled (not
224 * supported by this driver) or is filled automatically by zeroes on
225 * the RX side. Those two bytes being at the front of the Ethernet
226 * header, they allow to have the IP header aligned on a 4 bytes
227 * boundary automatically: the hardware skips those two bytes on its
228 * own.
229 */
230#define MVNETA_MH_SIZE 2
231
232#define MVNETA_VLAN_TAG_LEN 4
233
234#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
235#define MVNETA_TX_CSUM_MAX_SIZE 9800
236#define MVNETA_ACC_MODE_EXT 1
237
238/* Timeout constants */
239#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
240#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
241#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
242
243#define MVNETA_TX_MTU_MAX 0x3ffff
244
2adb719d
EG
245/* TSO header size */
246#define TSO_HEADER_SIZE 128
247
c5aff182
TP
248/* Max number of Rx descriptors */
249#define MVNETA_MAX_RXD 128
250
251/* Max number of Tx descriptors */
252#define MVNETA_MAX_TXD 532
253
254/* descriptor aligned size */
255#define MVNETA_DESC_ALIGNED_SIZE 32
256
257#define MVNETA_RX_PKT_SIZE(mtu) \
258 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
259 ETH_HLEN + ETH_FCS_LEN, \
260 MVNETA_CPU_D_CACHE_LINE_SIZE)
261
262#define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
263
74c41b04 264struct mvneta_pcpu_stats {
c5aff182 265 struct u64_stats_sync syncp;
74c41b04 266 u64 rx_packets;
267 u64 rx_bytes;
268 u64 tx_packets;
269 u64 tx_bytes;
c5aff182
TP
270};
271
272struct mvneta_port {
273 int pkt_size;
8ec2cd48 274 unsigned int frag_size;
c5aff182
TP
275 void __iomem *base;
276 struct mvneta_rx_queue *rxqs;
277 struct mvneta_tx_queue *txqs;
c5aff182
TP
278 struct net_device *dev;
279
280 u32 cause_rx_tx;
281 struct napi_struct napi;
282
c5aff182 283 /* Core clock */
189dd626 284 struct clk *clk;
c5aff182
TP
285 u8 mcast_count[256];
286 u16 tx_ring_size;
287 u16 rx_ring_size;
74c41b04 288 struct mvneta_pcpu_stats *stats;
c5aff182
TP
289
290 struct mii_bus *mii_bus;
291 struct phy_device *phy_dev;
292 phy_interface_t phy_interface;
293 struct device_node *phy_node;
294 unsigned int link;
295 unsigned int duplex;
296 unsigned int speed;
297};
298
6a20c175 299/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
c5aff182
TP
300 * layout of the transmit and reception DMA descriptors, and their
301 * layout is therefore defined by the hardware design
302 */
6083ed44 303
c5aff182
TP
304#define MVNETA_TX_L3_OFF_SHIFT 0
305#define MVNETA_TX_IP_HLEN_SHIFT 8
306#define MVNETA_TX_L4_UDP BIT(16)
307#define MVNETA_TX_L3_IP6 BIT(17)
308#define MVNETA_TXD_IP_CSUM BIT(18)
309#define MVNETA_TXD_Z_PAD BIT(19)
310#define MVNETA_TXD_L_DESC BIT(20)
311#define MVNETA_TXD_F_DESC BIT(21)
312#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
313 MVNETA_TXD_L_DESC | \
314 MVNETA_TXD_F_DESC)
315#define MVNETA_TX_L4_CSUM_FULL BIT(30)
316#define MVNETA_TX_L4_CSUM_NOT BIT(31)
317
c5aff182
TP
318#define MVNETA_RXD_ERR_CRC 0x0
319#define MVNETA_RXD_ERR_SUMMARY BIT(16)
320#define MVNETA_RXD_ERR_OVERRUN BIT(17)
321#define MVNETA_RXD_ERR_LEN BIT(18)
322#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
323#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
324#define MVNETA_RXD_L3_IP4 BIT(25)
325#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
326#define MVNETA_RXD_L4_CSUM_OK BIT(30)
327
9ad8fef6 328#if defined(__LITTLE_ENDIAN)
6083ed44
TP
329struct mvneta_tx_desc {
330 u32 command; /* Options used by HW for packet transmitting.*/
331 u16 reserverd1; /* csum_l4 (for future use) */
332 u16 data_size; /* Data size of transmitted packet in bytes */
333 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
334 u32 reserved2; /* hw_cmd - (for future use, PMT) */
335 u32 reserved3[4]; /* Reserved - (for future use) */
336};
337
338struct mvneta_rx_desc {
339 u32 status; /* Info about received packet */
c5aff182
TP
340 u16 reserved1; /* pnc_info - (for future use, PnC) */
341 u16 data_size; /* Size of received packet in bytes */
6083ed44 342
c5aff182
TP
343 u32 buf_phys_addr; /* Physical address of the buffer */
344 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
6083ed44 345
c5aff182
TP
346 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
347 u16 reserved3; /* prefetch_cmd, for future use */
348 u16 reserved4; /* csum_l4 - (for future use, PnC) */
6083ed44 349
c5aff182
TP
350 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
351 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
352};
9ad8fef6
TP
353#else
354struct mvneta_tx_desc {
355 u16 data_size; /* Data size of transmitted packet in bytes */
356 u16 reserverd1; /* csum_l4 (for future use) */
357 u32 command; /* Options used by HW for packet transmitting.*/
358 u32 reserved2; /* hw_cmd - (for future use, PMT) */
359 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
360 u32 reserved3[4]; /* Reserved - (for future use) */
361};
362
363struct mvneta_rx_desc {
364 u16 data_size; /* Size of received packet in bytes */
365 u16 reserved1; /* pnc_info - (for future use, PnC) */
366 u32 status; /* Info about received packet */
367
368 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
369 u32 buf_phys_addr; /* Physical address of the buffer */
370
371 u16 reserved4; /* csum_l4 - (for future use, PnC) */
372 u16 reserved3; /* prefetch_cmd, for future use */
373 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
374
375 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
376 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
377};
378#endif
c5aff182
TP
379
380struct mvneta_tx_queue {
381 /* Number of this TX queue, in the range 0-7 */
382 u8 id;
383
384 /* Number of TX DMA descriptors in the descriptor ring */
385 int size;
386
387 /* Number of currently used TX DMA descriptor in the
6a20c175
TP
388 * descriptor ring
389 */
c5aff182
TP
390 int count;
391
392 /* Array of transmitted skb */
393 struct sk_buff **tx_skb;
394
395 /* Index of last TX DMA descriptor that was inserted */
396 int txq_put_index;
397
398 /* Index of the TX DMA descriptor to be cleaned up */
399 int txq_get_index;
400
401 u32 done_pkts_coal;
402
403 /* Virtual address of the TX DMA descriptors array */
404 struct mvneta_tx_desc *descs;
405
406 /* DMA address of the TX DMA descriptors array */
407 dma_addr_t descs_phys;
408
409 /* Index of the last TX DMA descriptor */
410 int last_desc;
411
412 /* Index of the next TX DMA descriptor to process */
413 int next_desc_to_proc;
2adb719d
EG
414
415 /* DMA buffers for TSO headers */
416 char *tso_hdrs;
417
418 /* DMA address of TSO headers */
419 dma_addr_t tso_hdrs_phys;
c5aff182
TP
420};
421
422struct mvneta_rx_queue {
423 /* rx queue number, in the range 0-7 */
424 u8 id;
425
426 /* num of rx descriptors in the rx descriptor ring */
427 int size;
428
429 /* counter of times when mvneta_refill() failed */
430 int missed;
431
432 u32 pkts_coal;
433 u32 time_coal;
434
435 /* Virtual address of the RX DMA descriptors array */
436 struct mvneta_rx_desc *descs;
437
438 /* DMA address of the RX DMA descriptors array */
439 dma_addr_t descs_phys;
440
441 /* Index of the last RX DMA descriptor */
442 int last_desc;
443
444 /* Index of the next RX DMA descriptor to process */
445 int next_desc_to_proc;
446};
447
edadb7fa
EG
448/* The hardware supports eight (8) rx queues, but we are only allowing
449 * the first one to be used. Therefore, let's just allocate one queue.
450 */
451static int rxq_number = 1;
c5aff182
TP
452static int txq_number = 8;
453
454static int rxq_def;
c5aff182 455
f19fadfc 456static int rx_copybreak __read_mostly = 256;
457
c5aff182
TP
458#define MVNETA_DRIVER_NAME "mvneta"
459#define MVNETA_DRIVER_VERSION "1.0"
460
461/* Utility/helper methods */
462
463/* Write helper method */
464static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
465{
466 writel(data, pp->base + offset);
467}
468
469/* Read helper method */
470static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
471{
472 return readl(pp->base + offset);
473}
474
475/* Increment txq get counter */
476static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
477{
478 txq->txq_get_index++;
479 if (txq->txq_get_index == txq->size)
480 txq->txq_get_index = 0;
481}
482
483/* Increment txq put counter */
484static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
485{
486 txq->txq_put_index++;
487 if (txq->txq_put_index == txq->size)
488 txq->txq_put_index = 0;
489}
490
491
492/* Clear all MIB counters */
493static void mvneta_mib_counters_clear(struct mvneta_port *pp)
494{
495 int i;
496 u32 dummy;
497
498 /* Perform dummy reads from MIB counters */
499 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
500 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
501}
502
503/* Get System Network Statistics */
504struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
505 struct rtnl_link_stats64 *stats)
506{
507 struct mvneta_port *pp = netdev_priv(dev);
508 unsigned int start;
74c41b04 509 int cpu;
c5aff182 510
74c41b04 511 for_each_possible_cpu(cpu) {
512 struct mvneta_pcpu_stats *cpu_stats;
513 u64 rx_packets;
514 u64 rx_bytes;
515 u64 tx_packets;
516 u64 tx_bytes;
c5aff182 517
74c41b04 518 cpu_stats = per_cpu_ptr(pp->stats, cpu);
519 do {
57a7744e 520 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
74c41b04 521 rx_packets = cpu_stats->rx_packets;
522 rx_bytes = cpu_stats->rx_bytes;
523 tx_packets = cpu_stats->tx_packets;
524 tx_bytes = cpu_stats->tx_bytes;
57a7744e 525 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
c5aff182 526
74c41b04 527 stats->rx_packets += rx_packets;
528 stats->rx_bytes += rx_bytes;
529 stats->tx_packets += tx_packets;
530 stats->tx_bytes += tx_bytes;
531 }
c5aff182
TP
532
533 stats->rx_errors = dev->stats.rx_errors;
534 stats->rx_dropped = dev->stats.rx_dropped;
535
536 stats->tx_dropped = dev->stats.tx_dropped;
537
538 return stats;
539}
540
541/* Rx descriptors helper methods */
542
5428213c 543/* Checks whether the RX descriptor having this status is both the first
544 * and the last descriptor for the RX packet. Each RX packet is currently
c5aff182
TP
545 * received through a single RX descriptor, so not having each RX
546 * descriptor with its first and last bits set is an error
547 */
5428213c 548static int mvneta_rxq_desc_is_first_last(u32 status)
c5aff182 549{
5428213c 550 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
c5aff182
TP
551 MVNETA_RXD_FIRST_LAST_DESC;
552}
553
554/* Add number of descriptors ready to receive new packets */
555static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
556 struct mvneta_rx_queue *rxq,
557 int ndescs)
558{
559 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
6a20c175
TP
560 * be added at once
561 */
c5aff182
TP
562 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
563 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
564 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
565 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
566 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
567 }
568
569 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
570 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
571}
572
573/* Get number of RX descriptors occupied by received packets */
574static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
575 struct mvneta_rx_queue *rxq)
576{
577 u32 val;
578
579 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
580 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
581}
582
6a20c175 583/* Update num of rx desc called upon return from rx path or
c5aff182
TP
584 * from mvneta_rxq_drop_pkts().
585 */
586static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
587 struct mvneta_rx_queue *rxq,
588 int rx_done, int rx_filled)
589{
590 u32 val;
591
592 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
593 val = rx_done |
594 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
595 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
596 return;
597 }
598
599 /* Only 255 descriptors can be added at once */
600 while ((rx_done > 0) || (rx_filled > 0)) {
601 if (rx_done <= 0xff) {
602 val = rx_done;
603 rx_done = 0;
604 } else {
605 val = 0xff;
606 rx_done -= 0xff;
607 }
608 if (rx_filled <= 0xff) {
609 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
610 rx_filled = 0;
611 } else {
612 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
613 rx_filled -= 0xff;
614 }
615 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
616 }
617}
618
619/* Get pointer to next RX descriptor to be processed by SW */
620static struct mvneta_rx_desc *
621mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
622{
623 int rx_desc = rxq->next_desc_to_proc;
624
625 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
34e4179d 626 prefetch(rxq->descs + rxq->next_desc_to_proc);
c5aff182
TP
627 return rxq->descs + rx_desc;
628}
629
630/* Change maximum receive size of the port. */
631static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
632{
633 u32 val;
634
635 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
636 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
637 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
638 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
639 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
640}
641
642
643/* Set rx queue offset */
644static void mvneta_rxq_offset_set(struct mvneta_port *pp,
645 struct mvneta_rx_queue *rxq,
646 int offset)
647{
648 u32 val;
649
650 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
651 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
652
653 /* Offset is in */
654 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
655 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
656}
657
658
659/* Tx descriptors helper methods */
660
661/* Update HW with number of TX descriptors to be sent */
662static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
663 struct mvneta_tx_queue *txq,
664 int pend_desc)
665{
666 u32 val;
667
668 /* Only 255 descriptors can be added at once ; Assume caller
6a20c175
TP
669 * process TX desriptors in quanta less than 256
670 */
c5aff182
TP
671 val = pend_desc;
672 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
673}
674
675/* Get pointer to next TX descriptor to be processed (send) by HW */
676static struct mvneta_tx_desc *
677mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
678{
679 int tx_desc = txq->next_desc_to_proc;
680
681 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
682 return txq->descs + tx_desc;
683}
684
685/* Release the last allocated TX descriptor. Useful to handle DMA
6a20c175
TP
686 * mapping failures in the TX path.
687 */
c5aff182
TP
688static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
689{
690 if (txq->next_desc_to_proc == 0)
691 txq->next_desc_to_proc = txq->last_desc - 1;
692 else
693 txq->next_desc_to_proc--;
694}
695
696/* Set rxq buf size */
697static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
698 struct mvneta_rx_queue *rxq,
699 int buf_size)
700{
701 u32 val;
702
703 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
704
705 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
706 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
707
708 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
709}
710
711/* Disable buffer management (BM) */
712static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
713 struct mvneta_rx_queue *rxq)
714{
715 u32 val;
716
717 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
718 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
719 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
720}
721
c5aff182
TP
722/* Start the Ethernet port RX and TX activity */
723static void mvneta_port_up(struct mvneta_port *pp)
724{
725 int queue;
726 u32 q_map;
727
728 /* Enable all initialized TXs. */
729 mvneta_mib_counters_clear(pp);
730 q_map = 0;
731 for (queue = 0; queue < txq_number; queue++) {
732 struct mvneta_tx_queue *txq = &pp->txqs[queue];
733 if (txq->descs != NULL)
734 q_map |= (1 << queue);
735 }
736 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
737
738 /* Enable all initialized RXQs. */
739 q_map = 0;
740 for (queue = 0; queue < rxq_number; queue++) {
741 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
742 if (rxq->descs != NULL)
743 q_map |= (1 << queue);
744 }
745
746 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
747}
748
749/* Stop the Ethernet port activity */
750static void mvneta_port_down(struct mvneta_port *pp)
751{
752 u32 val;
753 int count;
754
755 /* Stop Rx port activity. Check port Rx activity. */
756 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
757
758 /* Issue stop command for active channels only */
759 if (val != 0)
760 mvreg_write(pp, MVNETA_RXQ_CMD,
761 val << MVNETA_RXQ_DISABLE_SHIFT);
762
763 /* Wait for all Rx activity to terminate. */
764 count = 0;
765 do {
766 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
767 netdev_warn(pp->dev,
768 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
769 val);
770 break;
771 }
772 mdelay(1);
773
774 val = mvreg_read(pp, MVNETA_RXQ_CMD);
775 } while (val & 0xff);
776
777 /* Stop Tx port activity. Check port Tx activity. Issue stop
6a20c175
TP
778 * command for active channels only
779 */
c5aff182
TP
780 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
781
782 if (val != 0)
783 mvreg_write(pp, MVNETA_TXQ_CMD,
784 (val << MVNETA_TXQ_DISABLE_SHIFT));
785
786 /* Wait for all Tx activity to terminate. */
787 count = 0;
788 do {
789 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
790 netdev_warn(pp->dev,
791 "TIMEOUT for TX stopped status=0x%08x\n",
792 val);
793 break;
794 }
795 mdelay(1);
796
797 /* Check TX Command reg that all Txqs are stopped */
798 val = mvreg_read(pp, MVNETA_TXQ_CMD);
799
800 } while (val & 0xff);
801
802 /* Double check to verify that TX FIFO is empty */
803 count = 0;
804 do {
805 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
806 netdev_warn(pp->dev,
807 "TX FIFO empty timeout status=0x08%x\n",
808 val);
809 break;
810 }
811 mdelay(1);
812
813 val = mvreg_read(pp, MVNETA_PORT_STATUS);
814 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
815 (val & MVNETA_TX_IN_PRGRS));
816
817 udelay(200);
818}
819
820/* Enable the port by setting the port enable bit of the MAC control register */
821static void mvneta_port_enable(struct mvneta_port *pp)
822{
823 u32 val;
824
825 /* Enable port */
826 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
827 val |= MVNETA_GMAC0_PORT_ENABLE;
828 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
829}
830
831/* Disable the port and wait for about 200 usec before retuning */
832static void mvneta_port_disable(struct mvneta_port *pp)
833{
834 u32 val;
835
836 /* Reset the Enable bit in the Serial Control Register */
837 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
838 val &= ~MVNETA_GMAC0_PORT_ENABLE;
839 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
840
841 udelay(200);
842}
843
844/* Multicast tables methods */
845
846/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
847static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
848{
849 int offset;
850 u32 val;
851
852 if (queue == -1) {
853 val = 0;
854 } else {
855 val = 0x1 | (queue << 1);
856 val |= (val << 24) | (val << 16) | (val << 8);
857 }
858
859 for (offset = 0; offset <= 0xc; offset += 4)
860 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
861}
862
863/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
864static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
865{
866 int offset;
867 u32 val;
868
869 if (queue == -1) {
870 val = 0;
871 } else {
872 val = 0x1 | (queue << 1);
873 val |= (val << 24) | (val << 16) | (val << 8);
874 }
875
876 for (offset = 0; offset <= 0xfc; offset += 4)
877 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
878
879}
880
881/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
882static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
883{
884 int offset;
885 u32 val;
886
887 if (queue == -1) {
888 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
889 val = 0;
890 } else {
891 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
892 val = 0x1 | (queue << 1);
893 val |= (val << 24) | (val << 16) | (val << 8);
894 }
895
896 for (offset = 0; offset <= 0xfc; offset += 4)
897 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
898}
899
900/* This method sets defaults to the NETA port:
901 * Clears interrupt Cause and Mask registers.
902 * Clears all MAC tables.
903 * Sets defaults to all registers.
904 * Resets RX and TX descriptor rings.
905 * Resets PHY.
906 * This method can be called after mvneta_port_down() to return the port
907 * settings to defaults.
908 */
909static void mvneta_defaults_set(struct mvneta_port *pp)
910{
911 int cpu;
912 int queue;
913 u32 val;
914
915 /* Clear all Cause registers */
916 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
917 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
918 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
919
920 /* Mask all interrupts */
921 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
922 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
923 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
924 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
925
926 /* Enable MBUS Retry bit16 */
927 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
928
929 /* Set CPU queue access map - all CPUs have access to all RX
6a20c175
TP
930 * queues and to all TX queues
931 */
c5aff182
TP
932 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
933 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
934 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
935 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
936
937 /* Reset RX and TX DMAs */
938 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
939 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
940
941 /* Disable Legacy WRR, Disable EJP, Release from reset */
942 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
943 for (queue = 0; queue < txq_number; queue++) {
944 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
945 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
946 }
947
948 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
949 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
950
951 /* Set Port Acceleration Mode */
952 val = MVNETA_ACC_MODE_EXT;
953 mvreg_write(pp, MVNETA_ACC_MODE, val);
954
955 /* Update val of portCfg register accordingly with all RxQueue types */
956 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
957 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
958
959 val = 0;
960 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
961 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
962
963 /* Build PORT_SDMA_CONFIG_REG */
964 val = 0;
965
966 /* Default burst size */
967 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
968 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
9ad8fef6 969 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
c5aff182 970
9ad8fef6
TP
971#if defined(__BIG_ENDIAN)
972 val |= MVNETA_DESC_SWAP;
973#endif
c5aff182
TP
974
975 /* Assign port SDMA configuration */
976 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
977
71408602
TP
978 /* Disable PHY polling in hardware, since we're using the
979 * kernel phylib to do this.
980 */
981 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
982 val &= ~MVNETA_PHY_POLLING_ENABLE;
983 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
984
c5aff182
TP
985 mvneta_set_ucast_table(pp, -1);
986 mvneta_set_special_mcast_table(pp, -1);
987 mvneta_set_other_mcast_table(pp, -1);
988
989 /* Set port interrupt enable register - default enable all */
990 mvreg_write(pp, MVNETA_INTR_ENABLE,
991 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
992 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
993}
994
995/* Set max sizes for tx queues */
996static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
997
998{
999 u32 val, size, mtu;
1000 int queue;
1001
1002 mtu = max_tx_size * 8;
1003 if (mtu > MVNETA_TX_MTU_MAX)
1004 mtu = MVNETA_TX_MTU_MAX;
1005
1006 /* Set MTU */
1007 val = mvreg_read(pp, MVNETA_TX_MTU);
1008 val &= ~MVNETA_TX_MTU_MAX;
1009 val |= mtu;
1010 mvreg_write(pp, MVNETA_TX_MTU, val);
1011
1012 /* TX token size and all TXQs token size must be larger that MTU */
1013 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1014
1015 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1016 if (size < mtu) {
1017 size = mtu;
1018 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1019 val |= size;
1020 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1021 }
1022 for (queue = 0; queue < txq_number; queue++) {
1023 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1024
1025 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1026 if (size < mtu) {
1027 size = mtu;
1028 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1029 val |= size;
1030 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1031 }
1032 }
1033}
1034
1035/* Set unicast address */
1036static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1037 int queue)
1038{
1039 unsigned int unicast_reg;
1040 unsigned int tbl_offset;
1041 unsigned int reg_offset;
1042
1043 /* Locate the Unicast table entry */
1044 last_nibble = (0xf & last_nibble);
1045
1046 /* offset from unicast tbl base */
1047 tbl_offset = (last_nibble / 4) * 4;
1048
1049 /* offset within the above reg */
1050 reg_offset = last_nibble % 4;
1051
1052 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1053
1054 if (queue == -1) {
1055 /* Clear accepts frame bit at specified unicast DA tbl entry */
1056 unicast_reg &= ~(0xff << (8 * reg_offset));
1057 } else {
1058 unicast_reg &= ~(0xff << (8 * reg_offset));
1059 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1060 }
1061
1062 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1063}
1064
1065/* Set mac address */
1066static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1067 int queue)
1068{
1069 unsigned int mac_h;
1070 unsigned int mac_l;
1071
1072 if (queue != -1) {
1073 mac_l = (addr[4] << 8) | (addr[5]);
1074 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1075 (addr[2] << 8) | (addr[3] << 0);
1076
1077 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1078 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1079 }
1080
1081 /* Accept frames of this address */
1082 mvneta_set_ucast_addr(pp, addr[5], queue);
1083}
1084
6a20c175
TP
1085/* Set the number of packets that will be received before RX interrupt
1086 * will be generated by HW.
c5aff182
TP
1087 */
1088static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1089 struct mvneta_rx_queue *rxq, u32 value)
1090{
1091 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1092 value | MVNETA_RXQ_NON_OCCUPIED(0));
1093 rxq->pkts_coal = value;
1094}
1095
6a20c175
TP
1096/* Set the time delay in usec before RX interrupt will be generated by
1097 * HW.
c5aff182
TP
1098 */
1099static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1100 struct mvneta_rx_queue *rxq, u32 value)
1101{
189dd626
TP
1102 u32 val;
1103 unsigned long clk_rate;
1104
1105 clk_rate = clk_get_rate(pp->clk);
1106 val = (clk_rate / 1000000) * value;
c5aff182
TP
1107
1108 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1109 rxq->time_coal = value;
1110}
1111
1112/* Set threshold for TX_DONE pkts coalescing */
1113static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1114 struct mvneta_tx_queue *txq, u32 value)
1115{
1116 u32 val;
1117
1118 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1119
1120 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1121 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1122
1123 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1124
1125 txq->done_pkts_coal = value;
1126}
1127
c5aff182
TP
1128/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1129static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1130 u32 phys_addr, u32 cookie)
1131{
1132 rx_desc->buf_cookie = cookie;
1133 rx_desc->buf_phys_addr = phys_addr;
1134}
1135
1136/* Decrement sent descriptors counter */
1137static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1138 struct mvneta_tx_queue *txq,
1139 int sent_desc)
1140{
1141 u32 val;
1142
1143 /* Only 255 TX descriptors can be updated at once */
1144 while (sent_desc > 0xff) {
1145 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1146 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1147 sent_desc = sent_desc - 0xff;
1148 }
1149
1150 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1151 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1152}
1153
1154/* Get number of TX descriptors already sent by HW */
1155static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1156 struct mvneta_tx_queue *txq)
1157{
1158 u32 val;
1159 int sent_desc;
1160
1161 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1162 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1163 MVNETA_TXQ_SENT_DESC_SHIFT;
1164
1165 return sent_desc;
1166}
1167
6a20c175 1168/* Get number of sent descriptors and decrement counter.
c5aff182
TP
1169 * The number of sent descriptors is returned.
1170 */
1171static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1172 struct mvneta_tx_queue *txq)
1173{
1174 int sent_desc;
1175
1176 /* Get number of sent descriptors */
1177 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1178
1179 /* Decrement sent descriptors counter */
1180 if (sent_desc)
1181 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1182
1183 return sent_desc;
1184}
1185
1186/* Set TXQ descriptors fields relevant for CSUM calculation */
1187static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1188 int ip_hdr_len, int l4_proto)
1189{
1190 u32 command;
1191
1192 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
6a20c175
TP
1193 * G_L4_chk, L4_type; required only for checksum
1194 * calculation
1195 */
c5aff182
TP
1196 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1197 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1198
1199 if (l3_proto == swab16(ETH_P_IP))
1200 command |= MVNETA_TXD_IP_CSUM;
1201 else
1202 command |= MVNETA_TX_L3_IP6;
1203
1204 if (l4_proto == IPPROTO_TCP)
1205 command |= MVNETA_TX_L4_CSUM_FULL;
1206 else if (l4_proto == IPPROTO_UDP)
1207 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1208 else
1209 command |= MVNETA_TX_L4_CSUM_NOT;
1210
1211 return command;
1212}
1213
1214
1215/* Display more error info */
1216static void mvneta_rx_error(struct mvneta_port *pp,
1217 struct mvneta_rx_desc *rx_desc)
1218{
1219 u32 status = rx_desc->status;
1220
5428213c 1221 if (!mvneta_rxq_desc_is_first_last(status)) {
c5aff182
TP
1222 netdev_err(pp->dev,
1223 "bad rx status %08x (buffer oversize), size=%d\n",
5428213c 1224 status, rx_desc->data_size);
c5aff182
TP
1225 return;
1226 }
1227
1228 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1229 case MVNETA_RXD_ERR_CRC:
1230 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1231 status, rx_desc->data_size);
1232 break;
1233 case MVNETA_RXD_ERR_OVERRUN:
1234 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1235 status, rx_desc->data_size);
1236 break;
1237 case MVNETA_RXD_ERR_LEN:
1238 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1239 status, rx_desc->data_size);
1240 break;
1241 case MVNETA_RXD_ERR_RESOURCE:
1242 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1243 status, rx_desc->data_size);
1244 break;
1245 }
1246}
1247
5428213c 1248/* Handle RX checksum offload based on the descriptor's status */
1249static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
c5aff182
TP
1250 struct sk_buff *skb)
1251{
5428213c 1252 if ((status & MVNETA_RXD_L3_IP4) &&
1253 (status & MVNETA_RXD_L4_CSUM_OK)) {
c5aff182
TP
1254 skb->csum = 0;
1255 skb->ip_summed = CHECKSUM_UNNECESSARY;
1256 return;
1257 }
1258
1259 skb->ip_summed = CHECKSUM_NONE;
1260}
1261
6c498974 1262/* Return tx queue pointer (find last set bit) according to <cause> returned
1263 * form tx_done reg. <cause> must not be null. The return value is always a
1264 * valid queue for matching the first one found in <cause>.
1265 */
c5aff182
TP
1266static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1267 u32 cause)
1268{
1269 int queue = fls(cause) - 1;
1270
6c498974 1271 return &pp->txqs[queue];
c5aff182
TP
1272}
1273
1274/* Free tx queue skbuffs */
1275static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1276 struct mvneta_tx_queue *txq, int num)
1277{
1278 int i;
1279
1280 for (i = 0; i < num; i++) {
1281 struct mvneta_tx_desc *tx_desc = txq->descs +
1282 txq->txq_get_index;
1283 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1284
1285 mvneta_txq_inc_get(txq);
1286
1287 if (!skb)
1288 continue;
1289
1290 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1291 tx_desc->data_size, DMA_TO_DEVICE);
1292 dev_kfree_skb_any(skb);
1293 }
1294}
1295
1296/* Handle end of transmission */
cd713199 1297static void mvneta_txq_done(struct mvneta_port *pp,
c5aff182
TP
1298 struct mvneta_tx_queue *txq)
1299{
1300 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1301 int tx_done;
1302
1303 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
cd713199
AE
1304 if (!tx_done)
1305 return;
1306
c5aff182
TP
1307 mvneta_txq_bufs_free(pp, txq, tx_done);
1308
1309 txq->count -= tx_done;
1310
1311 if (netif_tx_queue_stopped(nq)) {
1312 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1313 netif_tx_wake_queue(nq);
1314 }
c5aff182
TP
1315}
1316
8ec2cd48 1317static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1318{
1319 if (likely(pp->frag_size <= PAGE_SIZE))
1320 return netdev_alloc_frag(pp->frag_size);
1321 else
1322 return kmalloc(pp->frag_size, GFP_ATOMIC);
1323}
1324
1325static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1326{
1327 if (likely(pp->frag_size <= PAGE_SIZE))
1328 put_page(virt_to_head_page(data));
1329 else
1330 kfree(data);
1331}
1332
c5aff182
TP
1333/* Refill processing */
1334static int mvneta_rx_refill(struct mvneta_port *pp,
1335 struct mvneta_rx_desc *rx_desc)
1336
1337{
1338 dma_addr_t phys_addr;
8ec2cd48 1339 void *data;
c5aff182 1340
8ec2cd48 1341 data = mvneta_frag_alloc(pp);
1342 if (!data)
c5aff182
TP
1343 return -ENOMEM;
1344
8ec2cd48 1345 phys_addr = dma_map_single(pp->dev->dev.parent, data,
c5aff182
TP
1346 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1347 DMA_FROM_DEVICE);
1348 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
8ec2cd48 1349 mvneta_frag_free(pp, data);
c5aff182
TP
1350 return -ENOMEM;
1351 }
1352
8ec2cd48 1353 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
c5aff182
TP
1354 return 0;
1355}
1356
1357/* Handle tx checksum */
1358static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1359{
1360 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1361 int ip_hdr_len = 0;
1362 u8 l4_proto;
1363
1364 if (skb->protocol == htons(ETH_P_IP)) {
1365 struct iphdr *ip4h = ip_hdr(skb);
1366
1367 /* Calculate IPv4 checksum and L4 checksum */
1368 ip_hdr_len = ip4h->ihl;
1369 l4_proto = ip4h->protocol;
1370 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1371 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1372
1373 /* Read l4_protocol from one of IPv6 extra headers */
1374 if (skb_network_header_len(skb) > 0)
1375 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1376 l4_proto = ip6h->nexthdr;
1377 } else
1378 return MVNETA_TX_L4_CSUM_NOT;
1379
1380 return mvneta_txq_desc_csum(skb_network_offset(skb),
1381 skb->protocol, ip_hdr_len, l4_proto);
1382 }
1383
1384 return MVNETA_TX_L4_CSUM_NOT;
1385}
1386
6a20c175 1387/* Returns rx queue pointer (find last set bit) according to causeRxTx
c5aff182
TP
1388 * value
1389 */
1390static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1391 u32 cause)
1392{
1393 int queue = fls(cause >> 8) - 1;
1394
1395 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1396}
1397
1398/* Drop packets received by the RXQ and free buffers */
1399static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1400 struct mvneta_rx_queue *rxq)
1401{
1402 int rx_done, i;
1403
1404 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1405 for (i = 0; i < rxq->size; i++) {
1406 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
8ec2cd48 1407 void *data = (void *)rx_desc->buf_cookie;
c5aff182 1408
8ec2cd48 1409 mvneta_frag_free(pp, data);
c5aff182 1410 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
a328f3a0 1411 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
c5aff182
TP
1412 }
1413
1414 if (rx_done)
1415 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1416}
1417
1418/* Main rx processing */
1419static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1420 struct mvneta_rx_queue *rxq)
1421{
1422 struct net_device *dev = pp->dev;
1423 int rx_done, rx_filled;
dc4277dd 1424 u32 rcvd_pkts = 0;
1425 u32 rcvd_bytes = 0;
c5aff182
TP
1426
1427 /* Get number of received packets */
1428 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1429
1430 if (rx_todo > rx_done)
1431 rx_todo = rx_done;
1432
1433 rx_done = 0;
1434 rx_filled = 0;
1435
1436 /* Fairness NAPI loop */
1437 while (rx_done < rx_todo) {
1438 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1439 struct sk_buff *skb;
8ec2cd48 1440 unsigned char *data;
c5aff182
TP
1441 u32 rx_status;
1442 int rx_bytes, err;
1443
c5aff182
TP
1444 rx_done++;
1445 rx_filled++;
1446 rx_status = rx_desc->status;
f19fadfc 1447 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
8ec2cd48 1448 data = (unsigned char *)rx_desc->buf_cookie;
c5aff182 1449
5428213c 1450 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
f19fadfc 1451 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1452 err_drop_frame:
c5aff182
TP
1453 dev->stats.rx_errors++;
1454 mvneta_rx_error(pp, rx_desc);
8ec2cd48 1455 /* leave the descriptor untouched */
c5aff182
TP
1456 continue;
1457 }
1458
f19fadfc 1459 if (rx_bytes <= rx_copybreak) {
1460 /* better copy a small frame and not unmap the DMA region */
1461 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1462 if (unlikely(!skb))
1463 goto err_drop_frame;
1464
1465 dma_sync_single_range_for_cpu(dev->dev.parent,
1466 rx_desc->buf_phys_addr,
1467 MVNETA_MH_SIZE + NET_SKB_PAD,
1468 rx_bytes,
1469 DMA_FROM_DEVICE);
1470 memcpy(skb_put(skb, rx_bytes),
1471 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1472 rx_bytes);
1473
1474 skb->protocol = eth_type_trans(skb, dev);
1475 mvneta_rx_csum(pp, rx_status, skb);
1476 napi_gro_receive(&pp->napi, skb);
1477
1478 rcvd_pkts++;
1479 rcvd_bytes += rx_bytes;
1480
1481 /* leave the descriptor and buffer untouched */
1482 continue;
1483 }
1484
1485 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1486 if (!skb)
1487 goto err_drop_frame;
1488
1489 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
a328f3a0 1490 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
c5aff182 1491
dc4277dd 1492 rcvd_pkts++;
1493 rcvd_bytes += rx_bytes;
c5aff182
TP
1494
1495 /* Linux processing */
8ec2cd48 1496 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
c5aff182
TP
1497 skb_put(skb, rx_bytes);
1498
1499 skb->protocol = eth_type_trans(skb, dev);
1500
5428213c 1501 mvneta_rx_csum(pp, rx_status, skb);
c5aff182
TP
1502
1503 napi_gro_receive(&pp->napi, skb);
1504
1505 /* Refill processing */
1506 err = mvneta_rx_refill(pp, rx_desc);
1507 if (err) {
f19fadfc 1508 netdev_err(dev, "Linux processing - Can't refill\n");
c5aff182
TP
1509 rxq->missed++;
1510 rx_filled--;
1511 }
1512 }
1513
dc4277dd 1514 if (rcvd_pkts) {
74c41b04 1515 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1516
1517 u64_stats_update_begin(&stats->syncp);
1518 stats->rx_packets += rcvd_pkts;
1519 stats->rx_bytes += rcvd_bytes;
1520 u64_stats_update_end(&stats->syncp);
dc4277dd 1521 }
1522
c5aff182
TP
1523 /* Update rxq management counters */
1524 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1525
1526 return rx_done;
1527}
1528
2adb719d
EG
1529static inline void
1530mvneta_tso_put_hdr(struct sk_buff *skb,
1531 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1532{
1533 struct mvneta_tx_desc *tx_desc;
1534 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1535
1536 txq->tx_skb[txq->txq_put_index] = NULL;
1537 tx_desc = mvneta_txq_next_desc_get(txq);
1538 tx_desc->data_size = hdr_len;
1539 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1540 tx_desc->command |= MVNETA_TXD_F_DESC;
1541 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1542 txq->txq_put_index * TSO_HEADER_SIZE;
1543 mvneta_txq_inc_put(txq);
1544}
1545
1546static inline int
1547mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1548 struct sk_buff *skb, char *data, int size,
1549 bool last_tcp, bool is_last)
1550{
1551 struct mvneta_tx_desc *tx_desc;
1552
1553 tx_desc = mvneta_txq_next_desc_get(txq);
1554 tx_desc->data_size = size;
1555 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1556 size, DMA_TO_DEVICE);
1557 if (unlikely(dma_mapping_error(dev->dev.parent,
1558 tx_desc->buf_phys_addr))) {
1559 mvneta_txq_desc_put(txq);
1560 return -ENOMEM;
1561 }
1562
1563 tx_desc->command = 0;
1564 txq->tx_skb[txq->txq_put_index] = NULL;
1565
1566 if (last_tcp) {
1567 /* last descriptor in the TCP packet */
1568 tx_desc->command = MVNETA_TXD_L_DESC;
1569
1570 /* last descriptor in SKB */
1571 if (is_last)
1572 txq->tx_skb[txq->txq_put_index] = skb;
1573 }
1574 mvneta_txq_inc_put(txq);
1575 return 0;
1576}
1577
1578static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1579 struct mvneta_tx_queue *txq)
1580{
1581 int total_len, data_left;
1582 int desc_count = 0;
1583 struct mvneta_port *pp = netdev_priv(dev);
1584 struct tso_t tso;
1585 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1586 int i;
1587
1588 /* Count needed descriptors */
1589 if ((txq->count + tso_count_descs(skb)) >= txq->size)
1590 return 0;
1591
1592 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1593 pr_info("*** Is this even possible???!?!?\n");
1594 return 0;
1595 }
1596
1597 /* Initialize the TSO handler, and prepare the first payload */
1598 tso_start(skb, &tso);
1599
1600 total_len = skb->len - hdr_len;
1601 while (total_len > 0) {
1602 char *hdr;
1603
1604 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1605 total_len -= data_left;
1606 desc_count++;
1607
1608 /* prepare packet headers: MAC + IP + TCP */
1609 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1610 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1611
1612 mvneta_tso_put_hdr(skb, pp, txq);
1613
1614 while (data_left > 0) {
1615 int size;
1616 desc_count++;
1617
1618 size = min_t(int, tso.size, data_left);
1619
1620 if (mvneta_tso_put_data(dev, txq, skb,
1621 tso.data, size,
1622 size == data_left,
1623 total_len == 0))
1624 goto err_release;
1625 data_left -= size;
1626
1627 tso_build_data(skb, &tso, size);
1628 }
1629 }
1630
1631 return desc_count;
1632
1633err_release:
1634 /* Release all used data descriptors; header descriptors must not
1635 * be DMA-unmapped.
1636 */
1637 for (i = desc_count - 1; i >= 0; i--) {
1638 struct mvneta_tx_desc *tx_desc = txq->descs + i;
1639 if (!(tx_desc->command & MVNETA_TXD_F_DESC))
1640 dma_unmap_single(pp->dev->dev.parent,
1641 tx_desc->buf_phys_addr,
1642 tx_desc->data_size,
1643 DMA_TO_DEVICE);
1644 mvneta_txq_desc_put(txq);
1645 }
1646 return 0;
1647}
1648
c5aff182
TP
1649/* Handle tx fragmentation processing */
1650static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1651 struct mvneta_tx_queue *txq)
1652{
1653 struct mvneta_tx_desc *tx_desc;
3d4ea02f 1654 int i, nr_frags = skb_shinfo(skb)->nr_frags;
c5aff182 1655
3d4ea02f 1656 for (i = 0; i < nr_frags; i++) {
c5aff182
TP
1657 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1658 void *addr = page_address(frag->page.p) + frag->page_offset;
1659
1660 tx_desc = mvneta_txq_next_desc_get(txq);
1661 tx_desc->data_size = frag->size;
1662
1663 tx_desc->buf_phys_addr =
1664 dma_map_single(pp->dev->dev.parent, addr,
1665 tx_desc->data_size, DMA_TO_DEVICE);
1666
1667 if (dma_mapping_error(pp->dev->dev.parent,
1668 tx_desc->buf_phys_addr)) {
1669 mvneta_txq_desc_put(txq);
1670 goto error;
1671 }
1672
3d4ea02f 1673 if (i == nr_frags - 1) {
c5aff182
TP
1674 /* Last descriptor */
1675 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
c5aff182 1676 txq->tx_skb[txq->txq_put_index] = skb;
c5aff182
TP
1677 } else {
1678 /* Descriptor in the middle: Not First, Not Last */
1679 tx_desc->command = 0;
c5aff182 1680 txq->tx_skb[txq->txq_put_index] = NULL;
c5aff182 1681 }
3d4ea02f 1682 mvneta_txq_inc_put(txq);
c5aff182
TP
1683 }
1684
1685 return 0;
1686
1687error:
1688 /* Release all descriptors that were used to map fragments of
6a20c175
TP
1689 * this packet, as well as the corresponding DMA mappings
1690 */
c5aff182
TP
1691 for (i = i - 1; i >= 0; i--) {
1692 tx_desc = txq->descs + i;
1693 dma_unmap_single(pp->dev->dev.parent,
1694 tx_desc->buf_phys_addr,
1695 tx_desc->data_size,
1696 DMA_TO_DEVICE);
1697 mvneta_txq_desc_put(txq);
1698 }
1699
1700 return -ENOMEM;
1701}
1702
1703/* Main tx processing */
1704static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1705{
1706 struct mvneta_port *pp = netdev_priv(dev);
ee40a116
WT
1707 u16 txq_id = skb_get_queue_mapping(skb);
1708 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
c5aff182 1709 struct mvneta_tx_desc *tx_desc;
c5aff182
TP
1710 int frags = 0;
1711 u32 tx_cmd;
1712
1713 if (!netif_running(dev))
1714 goto out;
1715
2adb719d
EG
1716 if (skb_is_gso(skb)) {
1717 frags = mvneta_tx_tso(skb, dev, txq);
1718 goto out;
1719 }
1720
c5aff182 1721 frags = skb_shinfo(skb)->nr_frags + 1;
c5aff182
TP
1722
1723 /* Get a descriptor for the first part of the packet */
1724 tx_desc = mvneta_txq_next_desc_get(txq);
1725
1726 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1727
1728 tx_desc->data_size = skb_headlen(skb);
1729
1730 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1731 tx_desc->data_size,
1732 DMA_TO_DEVICE);
1733 if (unlikely(dma_mapping_error(dev->dev.parent,
1734 tx_desc->buf_phys_addr))) {
1735 mvneta_txq_desc_put(txq);
1736 frags = 0;
1737 goto out;
1738 }
1739
1740 if (frags == 1) {
1741 /* First and Last descriptor */
1742 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1743 tx_desc->command = tx_cmd;
1744 txq->tx_skb[txq->txq_put_index] = skb;
1745 mvneta_txq_inc_put(txq);
1746 } else {
1747 /* First but not Last */
1748 tx_cmd |= MVNETA_TXD_F_DESC;
1749 txq->tx_skb[txq->txq_put_index] = NULL;
1750 mvneta_txq_inc_put(txq);
1751 tx_desc->command = tx_cmd;
1752 /* Continue with other skb fragments */
1753 if (mvneta_tx_frag_process(pp, skb, txq)) {
1754 dma_unmap_single(dev->dev.parent,
1755 tx_desc->buf_phys_addr,
1756 tx_desc->data_size,
1757 DMA_TO_DEVICE);
1758 mvneta_txq_desc_put(txq);
1759 frags = 0;
1760 goto out;
1761 }
1762 }
1763
c5aff182
TP
1764out:
1765 if (frags > 0) {
74c41b04 1766 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
e19d2dda
EG
1767 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1768
1769 txq->count += frags;
1770 mvneta_txq_pend_desc_add(pp, txq, frags);
1771
1772 if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1773 netif_tx_stop_queue(nq);
c5aff182 1774
74c41b04 1775 u64_stats_update_begin(&stats->syncp);
1776 stats->tx_packets++;
1777 stats->tx_bytes += skb->len;
1778 u64_stats_update_end(&stats->syncp);
c5aff182
TP
1779 } else {
1780 dev->stats.tx_dropped++;
1781 dev_kfree_skb_any(skb);
1782 }
1783
c5aff182
TP
1784 return NETDEV_TX_OK;
1785}
1786
1787
1788/* Free tx resources, when resetting a port */
1789static void mvneta_txq_done_force(struct mvneta_port *pp,
1790 struct mvneta_tx_queue *txq)
1791
1792{
1793 int tx_done = txq->count;
1794
1795 mvneta_txq_bufs_free(pp, txq, tx_done);
1796
1797 /* reset txq */
1798 txq->count = 0;
1799 txq->txq_put_index = 0;
1800 txq->txq_get_index = 0;
1801}
1802
6c498974 1803/* Handle tx done - called in softirq context. The <cause_tx_done> argument
1804 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1805 */
0713a86a 1806static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
c5aff182
TP
1807{
1808 struct mvneta_tx_queue *txq;
c5aff182
TP
1809 struct netdev_queue *nq;
1810
6c498974 1811 while (cause_tx_done) {
c5aff182 1812 txq = mvneta_tx_done_policy(pp, cause_tx_done);
c5aff182
TP
1813
1814 nq = netdev_get_tx_queue(pp->dev, txq->id);
1815 __netif_tx_lock(nq, smp_processor_id());
1816
0713a86a
AE
1817 if (txq->count)
1818 mvneta_txq_done(pp, txq);
c5aff182
TP
1819
1820 __netif_tx_unlock(nq);
1821 cause_tx_done &= ~((1 << txq->id));
1822 }
c5aff182
TP
1823}
1824
6a20c175 1825/* Compute crc8 of the specified address, using a unique algorithm ,
c5aff182
TP
1826 * according to hw spec, different than generic crc8 algorithm
1827 */
1828static int mvneta_addr_crc(unsigned char *addr)
1829{
1830 int crc = 0;
1831 int i;
1832
1833 for (i = 0; i < ETH_ALEN; i++) {
1834 int j;
1835
1836 crc = (crc ^ addr[i]) << 8;
1837 for (j = 7; j >= 0; j--) {
1838 if (crc & (0x100 << j))
1839 crc ^= 0x107 << j;
1840 }
1841 }
1842
1843 return crc;
1844}
1845
1846/* This method controls the net device special MAC multicast support.
1847 * The Special Multicast Table for MAC addresses supports MAC of the form
1848 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1849 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1850 * Table entries in the DA-Filter table. This method set the Special
1851 * Multicast Table appropriate entry.
1852 */
1853static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1854 unsigned char last_byte,
1855 int queue)
1856{
1857 unsigned int smc_table_reg;
1858 unsigned int tbl_offset;
1859 unsigned int reg_offset;
1860
1861 /* Register offset from SMC table base */
1862 tbl_offset = (last_byte / 4);
1863 /* Entry offset within the above reg */
1864 reg_offset = last_byte % 4;
1865
1866 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1867 + tbl_offset * 4));
1868
1869 if (queue == -1)
1870 smc_table_reg &= ~(0xff << (8 * reg_offset));
1871 else {
1872 smc_table_reg &= ~(0xff << (8 * reg_offset));
1873 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1874 }
1875
1876 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1877 smc_table_reg);
1878}
1879
1880/* This method controls the network device Other MAC multicast support.
1881 * The Other Multicast Table is used for multicast of another type.
1882 * A CRC-8 is used as an index to the Other Multicast Table entries
1883 * in the DA-Filter table.
1884 * The method gets the CRC-8 value from the calling routine and
1885 * sets the Other Multicast Table appropriate entry according to the
1886 * specified CRC-8 .
1887 */
1888static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1889 unsigned char crc8,
1890 int queue)
1891{
1892 unsigned int omc_table_reg;
1893 unsigned int tbl_offset;
1894 unsigned int reg_offset;
1895
1896 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1897 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1898
1899 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1900
1901 if (queue == -1) {
1902 /* Clear accepts frame bit at specified Other DA table entry */
1903 omc_table_reg &= ~(0xff << (8 * reg_offset));
1904 } else {
1905 omc_table_reg &= ~(0xff << (8 * reg_offset));
1906 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1907 }
1908
1909 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1910}
1911
1912/* The network device supports multicast using two tables:
1913 * 1) Special Multicast Table for MAC addresses of the form
1914 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1915 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1916 * Table entries in the DA-Filter table.
1917 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1918 * is used as an index to the Other Multicast Table entries in the
1919 * DA-Filter table.
1920 */
1921static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1922 int queue)
1923{
1924 unsigned char crc_result = 0;
1925
1926 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1927 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1928 return 0;
1929 }
1930
1931 crc_result = mvneta_addr_crc(p_addr);
1932 if (queue == -1) {
1933 if (pp->mcast_count[crc_result] == 0) {
1934 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1935 crc_result);
1936 return -EINVAL;
1937 }
1938
1939 pp->mcast_count[crc_result]--;
1940 if (pp->mcast_count[crc_result] != 0) {
1941 netdev_info(pp->dev,
1942 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1943 pp->mcast_count[crc_result], crc_result);
1944 return -EINVAL;
1945 }
1946 } else
1947 pp->mcast_count[crc_result]++;
1948
1949 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1950
1951 return 0;
1952}
1953
1954/* Configure Fitering mode of Ethernet port */
1955static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1956 int is_promisc)
1957{
1958 u32 port_cfg_reg, val;
1959
1960 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1961
1962 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1963
1964 /* Set / Clear UPM bit in port configuration register */
1965 if (is_promisc) {
1966 /* Accept all Unicast addresses */
1967 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1968 val |= MVNETA_FORCE_UNI;
1969 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1970 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1971 } else {
1972 /* Reject all Unicast addresses */
1973 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1974 val &= ~MVNETA_FORCE_UNI;
1975 }
1976
1977 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1978 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1979}
1980
1981/* register unicast and multicast addresses */
1982static void mvneta_set_rx_mode(struct net_device *dev)
1983{
1984 struct mvneta_port *pp = netdev_priv(dev);
1985 struct netdev_hw_addr *ha;
1986
1987 if (dev->flags & IFF_PROMISC) {
1988 /* Accept all: Multicast + Unicast */
1989 mvneta_rx_unicast_promisc_set(pp, 1);
1990 mvneta_set_ucast_table(pp, rxq_def);
1991 mvneta_set_special_mcast_table(pp, rxq_def);
1992 mvneta_set_other_mcast_table(pp, rxq_def);
1993 } else {
1994 /* Accept single Unicast */
1995 mvneta_rx_unicast_promisc_set(pp, 0);
1996 mvneta_set_ucast_table(pp, -1);
1997 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1998
1999 if (dev->flags & IFF_ALLMULTI) {
2000 /* Accept all multicast */
2001 mvneta_set_special_mcast_table(pp, rxq_def);
2002 mvneta_set_other_mcast_table(pp, rxq_def);
2003 } else {
2004 /* Accept only initialized multicast */
2005 mvneta_set_special_mcast_table(pp, -1);
2006 mvneta_set_other_mcast_table(pp, -1);
2007
2008 if (!netdev_mc_empty(dev)) {
2009 netdev_for_each_mc_addr(ha, dev) {
2010 mvneta_mcast_addr_set(pp, ha->addr,
2011 rxq_def);
2012 }
2013 }
2014 }
2015 }
2016}
2017
2018/* Interrupt handling - the callback for request_irq() */
2019static irqreturn_t mvneta_isr(int irq, void *dev_id)
2020{
2021 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2022
2023 /* Mask all interrupts */
2024 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2025
2026 napi_schedule(&pp->napi);
2027
2028 return IRQ_HANDLED;
2029}
2030
2031/* NAPI handler
2032 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2033 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2034 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2035 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2036 * Each CPU has its own causeRxTx register
2037 */
2038static int mvneta_poll(struct napi_struct *napi, int budget)
2039{
2040 int rx_done = 0;
2041 u32 cause_rx_tx;
2042 unsigned long flags;
2043 struct mvneta_port *pp = netdev_priv(napi->dev);
2044
2045 if (!netif_running(pp->dev)) {
2046 napi_complete(napi);
2047 return rx_done;
2048 }
2049
2050 /* Read cause register */
2051 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
71f6d1b3 2052 (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2053
2054 /* Release Tx descriptors */
2055 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
0713a86a 2056 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
71f6d1b3 2057 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2058 }
c5aff182 2059
6a20c175 2060 /* For the case where the last mvneta_poll did not process all
c5aff182
TP
2061 * RX packets
2062 */
2063 cause_rx_tx |= pp->cause_rx_tx;
2064 if (rxq_number > 1) {
71f6d1b3 2065 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
c5aff182
TP
2066 int count;
2067 struct mvneta_rx_queue *rxq;
2068 /* get rx queue number from cause_rx_tx */
2069 rxq = mvneta_rx_policy(pp, cause_rx_tx);
2070 if (!rxq)
2071 break;
2072
2073 /* process the packet in that rx queue */
2074 count = mvneta_rx(pp, budget, rxq);
2075 rx_done += count;
2076 budget -= count;
2077 if (budget > 0) {
6a20c175
TP
2078 /* set off the rx bit of the
2079 * corresponding bit in the cause rx
2080 * tx register, so that next iteration
2081 * will find the next rx queue where
2082 * packets are received on
2083 */
c5aff182
TP
2084 cause_rx_tx &= ~((1 << rxq->id) << 8);
2085 }
2086 }
2087 } else {
2088 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2089 budget -= rx_done;
2090 }
2091
2092 if (budget > 0) {
2093 cause_rx_tx = 0;
2094 napi_complete(napi);
2095 local_irq_save(flags);
2096 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
71f6d1b3 2097 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
c5aff182
TP
2098 local_irq_restore(flags);
2099 }
2100
2101 pp->cause_rx_tx = cause_rx_tx;
2102 return rx_done;
2103}
2104
c5aff182
TP
2105/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2106static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2107 int num)
2108{
c5aff182
TP
2109 int i;
2110
2111 for (i = 0; i < num; i++) {
a1a65ab1 2112 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2113 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2114 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
c5aff182
TP
2115 __func__, rxq->id, i, num);
2116 break;
2117 }
c5aff182
TP
2118 }
2119
2120 /* Add this number of RX descriptors as non occupied (ready to
6a20c175
TP
2121 * get packets)
2122 */
c5aff182
TP
2123 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2124
2125 return i;
2126}
2127
2128/* Free all packets pending transmit from all TXQs and reset TX port */
2129static void mvneta_tx_reset(struct mvneta_port *pp)
2130{
2131 int queue;
2132
9672850b 2133 /* free the skb's in the tx ring */
c5aff182
TP
2134 for (queue = 0; queue < txq_number; queue++)
2135 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2136
2137 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2138 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2139}
2140
2141static void mvneta_rx_reset(struct mvneta_port *pp)
2142{
2143 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2144 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2145}
2146
2147/* Rx/Tx queue initialization/cleanup methods */
2148
2149/* Create a specified RX queue */
2150static int mvneta_rxq_init(struct mvneta_port *pp,
2151 struct mvneta_rx_queue *rxq)
2152
2153{
2154 rxq->size = pp->rx_ring_size;
2155
2156 /* Allocate memory for RX descriptors */
2157 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2158 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2159 &rxq->descs_phys, GFP_KERNEL);
d0320f75 2160 if (rxq->descs == NULL)
c5aff182 2161 return -ENOMEM;
c5aff182
TP
2162
2163 BUG_ON(rxq->descs !=
2164 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2165
2166 rxq->last_desc = rxq->size - 1;
2167
2168 /* Set Rx descriptors queue starting address */
2169 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2170 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2171
2172 /* Set Offset */
2173 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2174
2175 /* Set coalescing pkts and time */
2176 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2177 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2178
2179 /* Fill RXQ with buffers from RX pool */
2180 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2181 mvneta_rxq_bm_disable(pp, rxq);
2182 mvneta_rxq_fill(pp, rxq, rxq->size);
2183
2184 return 0;
2185}
2186
2187/* Cleanup Rx queue */
2188static void mvneta_rxq_deinit(struct mvneta_port *pp,
2189 struct mvneta_rx_queue *rxq)
2190{
2191 mvneta_rxq_drop_pkts(pp, rxq);
2192
2193 if (rxq->descs)
2194 dma_free_coherent(pp->dev->dev.parent,
2195 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2196 rxq->descs,
2197 rxq->descs_phys);
2198
2199 rxq->descs = NULL;
2200 rxq->last_desc = 0;
2201 rxq->next_desc_to_proc = 0;
2202 rxq->descs_phys = 0;
2203}
2204
2205/* Create and initialize a tx queue */
2206static int mvneta_txq_init(struct mvneta_port *pp,
2207 struct mvneta_tx_queue *txq)
2208{
2209 txq->size = pp->tx_ring_size;
2210
2211 /* Allocate memory for TX descriptors */
2212 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2213 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2214 &txq->descs_phys, GFP_KERNEL);
d0320f75 2215 if (txq->descs == NULL)
c5aff182 2216 return -ENOMEM;
c5aff182
TP
2217
2218 /* Make sure descriptor address is cache line size aligned */
2219 BUG_ON(txq->descs !=
2220 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2221
2222 txq->last_desc = txq->size - 1;
2223
2224 /* Set maximum bandwidth for enabled TXQs */
2225 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2226 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2227
2228 /* Set Tx descriptors queue starting address */
2229 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2230 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2231
2232 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2233 if (txq->tx_skb == NULL) {
2234 dma_free_coherent(pp->dev->dev.parent,
2235 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2236 txq->descs, txq->descs_phys);
2237 return -ENOMEM;
2238 }
2adb719d
EG
2239
2240 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2241 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2242 txq->size * TSO_HEADER_SIZE,
2243 &txq->tso_hdrs_phys, GFP_KERNEL);
2244 if (txq->tso_hdrs == NULL) {
2245 kfree(txq->tx_skb);
2246 dma_free_coherent(pp->dev->dev.parent,
2247 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2248 txq->descs, txq->descs_phys);
2249 return -ENOMEM;
2250 }
c5aff182
TP
2251 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2252
2253 return 0;
2254}
2255
2256/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2257static void mvneta_txq_deinit(struct mvneta_port *pp,
2258 struct mvneta_tx_queue *txq)
2259{
2260 kfree(txq->tx_skb);
2261
2adb719d
EG
2262 if (txq->tso_hdrs)
2263 dma_free_coherent(pp->dev->dev.parent,
2264 txq->size * TSO_HEADER_SIZE,
2265 txq->tso_hdrs, txq->tso_hdrs_phys);
c5aff182
TP
2266 if (txq->descs)
2267 dma_free_coherent(pp->dev->dev.parent,
2268 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2269 txq->descs, txq->descs_phys);
2270
2271 txq->descs = NULL;
2272 txq->last_desc = 0;
2273 txq->next_desc_to_proc = 0;
2274 txq->descs_phys = 0;
2275
2276 /* Set minimum bandwidth for disabled TXQs */
2277 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2278 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2279
2280 /* Set Tx descriptors queue starting address and size */
2281 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2282 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2283}
2284
2285/* Cleanup all Tx queues */
2286static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2287{
2288 int queue;
2289
2290 for (queue = 0; queue < txq_number; queue++)
2291 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2292}
2293
2294/* Cleanup all Rx queues */
2295static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2296{
2297 int queue;
2298
2299 for (queue = 0; queue < rxq_number; queue++)
2300 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2301}
2302
2303
2304/* Init all Rx queues */
2305static int mvneta_setup_rxqs(struct mvneta_port *pp)
2306{
2307 int queue;
2308
2309 for (queue = 0; queue < rxq_number; queue++) {
2310 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2311 if (err) {
2312 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2313 __func__, queue);
2314 mvneta_cleanup_rxqs(pp);
2315 return err;
2316 }
2317 }
2318
2319 return 0;
2320}
2321
2322/* Init all tx queues */
2323static int mvneta_setup_txqs(struct mvneta_port *pp)
2324{
2325 int queue;
2326
2327 for (queue = 0; queue < txq_number; queue++) {
2328 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2329 if (err) {
2330 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2331 __func__, queue);
2332 mvneta_cleanup_txqs(pp);
2333 return err;
2334 }
2335 }
2336
2337 return 0;
2338}
2339
2340static void mvneta_start_dev(struct mvneta_port *pp)
2341{
2342 mvneta_max_rx_size_set(pp, pp->pkt_size);
2343 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2344
2345 /* start the Rx/Tx activity */
2346 mvneta_port_enable(pp);
2347
2348 /* Enable polling on the port */
2349 napi_enable(&pp->napi);
2350
2351 /* Unmask interrupts */
2352 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
71f6d1b3 2353 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
c5aff182
TP
2354
2355 phy_start(pp->phy_dev);
2356 netif_tx_start_all_queues(pp->dev);
2357}
2358
2359static void mvneta_stop_dev(struct mvneta_port *pp)
2360{
2361 phy_stop(pp->phy_dev);
2362
2363 napi_disable(&pp->napi);
2364
2365 netif_carrier_off(pp->dev);
2366
2367 mvneta_port_down(pp);
2368 netif_tx_stop_all_queues(pp->dev);
2369
2370 /* Stop the port activity */
2371 mvneta_port_disable(pp);
2372
2373 /* Clear all ethernet port interrupts */
2374 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2375 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2376
2377 /* Mask all ethernet port interrupts */
2378 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2379 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2380 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2381
2382 mvneta_tx_reset(pp);
2383 mvneta_rx_reset(pp);
2384}
2385
c5aff182
TP
2386/* Return positive if MTU is valid */
2387static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2388{
2389 if (mtu < 68) {
2390 netdev_err(dev, "cannot change mtu to less than 68\n");
2391 return -EINVAL;
2392 }
2393
6a20c175 2394 /* 9676 == 9700 - 20 and rounding to 8 */
c5aff182
TP
2395 if (mtu > 9676) {
2396 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2397 mtu = 9676;
2398 }
2399
2400 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2401 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2402 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2403 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2404 }
2405
2406 return mtu;
2407}
2408
2409/* Change the device mtu */
2410static int mvneta_change_mtu(struct net_device *dev, int mtu)
2411{
2412 struct mvneta_port *pp = netdev_priv(dev);
2413 int ret;
2414
2415 mtu = mvneta_check_mtu_valid(dev, mtu);
2416 if (mtu < 0)
2417 return -EINVAL;
2418
2419 dev->mtu = mtu;
2420
2421 if (!netif_running(dev))
2422 return 0;
2423
6a20c175 2424 /* The interface is running, so we have to force a
a92dbd96 2425 * reallocation of the queues
c5aff182
TP
2426 */
2427 mvneta_stop_dev(pp);
2428
2429 mvneta_cleanup_txqs(pp);
2430 mvneta_cleanup_rxqs(pp);
2431
a92dbd96 2432 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
8ec2cd48 2433 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
c5aff182
TP
2435
2436 ret = mvneta_setup_rxqs(pp);
2437 if (ret) {
a92dbd96 2438 netdev_err(dev, "unable to setup rxqs after MTU change\n");
c5aff182
TP
2439 return ret;
2440 }
2441
a92dbd96
EG
2442 ret = mvneta_setup_txqs(pp);
2443 if (ret) {
2444 netdev_err(dev, "unable to setup txqs after MTU change\n");
2445 return ret;
2446 }
c5aff182
TP
2447
2448 mvneta_start_dev(pp);
2449 mvneta_port_up(pp);
2450
2451 return 0;
2452}
2453
8cc3e439
TP
2454/* Get mac address */
2455static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2456{
2457 u32 mac_addr_l, mac_addr_h;
2458
2459 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2460 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2461 addr[0] = (mac_addr_h >> 24) & 0xFF;
2462 addr[1] = (mac_addr_h >> 16) & 0xFF;
2463 addr[2] = (mac_addr_h >> 8) & 0xFF;
2464 addr[3] = mac_addr_h & 0xFF;
2465 addr[4] = (mac_addr_l >> 8) & 0xFF;
2466 addr[5] = mac_addr_l & 0xFF;
2467}
2468
c5aff182
TP
2469/* Handle setting mac address */
2470static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2471{
2472 struct mvneta_port *pp = netdev_priv(dev);
e68de360
EG
2473 struct sockaddr *sockaddr = addr;
2474 int ret;
c5aff182 2475
e68de360
EG
2476 ret = eth_prepare_mac_addr_change(dev, addr);
2477 if (ret < 0)
2478 return ret;
c5aff182
TP
2479 /* Remove previous address table entry */
2480 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2481
2482 /* Set new addr in hw */
e68de360 2483 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
c5aff182 2484
e68de360 2485 eth_commit_mac_addr_change(dev, addr);
c5aff182
TP
2486 return 0;
2487}
2488
2489static void mvneta_adjust_link(struct net_device *ndev)
2490{
2491 struct mvneta_port *pp = netdev_priv(ndev);
2492 struct phy_device *phydev = pp->phy_dev;
2493 int status_change = 0;
2494
2495 if (phydev->link) {
2496 if ((pp->speed != phydev->speed) ||
2497 (pp->duplex != phydev->duplex)) {
2498 u32 val;
2499
2500 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2501 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2502 MVNETA_GMAC_CONFIG_GMII_SPEED |
71408602
TP
2503 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2504 MVNETA_GMAC_AN_SPEED_EN |
2505 MVNETA_GMAC_AN_DUPLEX_EN);
c5aff182
TP
2506
2507 if (phydev->duplex)
2508 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2509
2510 if (phydev->speed == SPEED_1000)
2511 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2512 else
2513 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2514
2515 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2516
2517 pp->duplex = phydev->duplex;
2518 pp->speed = phydev->speed;
2519 }
2520 }
2521
2522 if (phydev->link != pp->link) {
2523 if (!phydev->link) {
2524 pp->duplex = -1;
2525 pp->speed = 0;
2526 }
2527
2528 pp->link = phydev->link;
2529 status_change = 1;
2530 }
2531
2532 if (status_change) {
2533 if (phydev->link) {
2534 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2535 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2536 MVNETA_GMAC_FORCE_LINK_DOWN);
2537 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2538 mvneta_port_up(pp);
2539 netdev_info(pp->dev, "link up\n");
2540 } else {
2541 mvneta_port_down(pp);
2542 netdev_info(pp->dev, "link down\n");
2543 }
2544 }
2545}
2546
2547static int mvneta_mdio_probe(struct mvneta_port *pp)
2548{
2549 struct phy_device *phy_dev;
2550
2551 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2552 pp->phy_interface);
2553 if (!phy_dev) {
2554 netdev_err(pp->dev, "could not find the PHY\n");
2555 return -ENODEV;
2556 }
2557
2558 phy_dev->supported &= PHY_GBIT_FEATURES;
2559 phy_dev->advertising = phy_dev->supported;
2560
2561 pp->phy_dev = phy_dev;
2562 pp->link = 0;
2563 pp->duplex = 0;
2564 pp->speed = 0;
2565
2566 return 0;
2567}
2568
2569static void mvneta_mdio_remove(struct mvneta_port *pp)
2570{
2571 phy_disconnect(pp->phy_dev);
2572 pp->phy_dev = NULL;
2573}
2574
2575static int mvneta_open(struct net_device *dev)
2576{
2577 struct mvneta_port *pp = netdev_priv(dev);
2578 int ret;
2579
c5aff182 2580 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
8ec2cd48 2581 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2582 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
c5aff182
TP
2583
2584 ret = mvneta_setup_rxqs(pp);
2585 if (ret)
2586 return ret;
2587
2588 ret = mvneta_setup_txqs(pp);
2589 if (ret)
2590 goto err_cleanup_rxqs;
2591
2592 /* Connect to port interrupt line */
2593 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2594 MVNETA_DRIVER_NAME, pp);
2595 if (ret) {
2596 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2597 goto err_cleanup_txqs;
2598 }
2599
2600 /* In default link is down */
2601 netif_carrier_off(pp->dev);
2602
2603 ret = mvneta_mdio_probe(pp);
2604 if (ret < 0) {
2605 netdev_err(dev, "cannot probe MDIO bus\n");
2606 goto err_free_irq;
2607 }
2608
2609 mvneta_start_dev(pp);
2610
2611 return 0;
2612
2613err_free_irq:
2614 free_irq(pp->dev->irq, pp);
2615err_cleanup_txqs:
2616 mvneta_cleanup_txqs(pp);
2617err_cleanup_rxqs:
2618 mvneta_cleanup_rxqs(pp);
2619 return ret;
2620}
2621
2622/* Stop the port, free port interrupt line */
2623static int mvneta_stop(struct net_device *dev)
2624{
2625 struct mvneta_port *pp = netdev_priv(dev);
2626
2627 mvneta_stop_dev(pp);
2628 mvneta_mdio_remove(pp);
2629 free_irq(dev->irq, pp);
2630 mvneta_cleanup_rxqs(pp);
2631 mvneta_cleanup_txqs(pp);
c5aff182
TP
2632
2633 return 0;
2634}
2635
15f59456
TP
2636static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2637{
2638 struct mvneta_port *pp = netdev_priv(dev);
2639 int ret;
2640
2641 if (!pp->phy_dev)
2642 return -ENOTSUPP;
2643
2644 ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2645 if (!ret)
2646 mvneta_adjust_link(dev);
2647
2648 return ret;
2649}
2650
c5aff182
TP
2651/* Ethtool methods */
2652
2653/* Get settings (phy address, speed) for ethtools */
2654int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2655{
2656 struct mvneta_port *pp = netdev_priv(dev);
2657
2658 if (!pp->phy_dev)
2659 return -ENODEV;
2660
2661 return phy_ethtool_gset(pp->phy_dev, cmd);
2662}
2663
2664/* Set settings (phy address, speed) for ethtools */
2665int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2666{
2667 struct mvneta_port *pp = netdev_priv(dev);
2668
2669 if (!pp->phy_dev)
2670 return -ENODEV;
2671
2672 return phy_ethtool_sset(pp->phy_dev, cmd);
2673}
2674
2675/* Set interrupt coalescing for ethtools */
2676static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2677 struct ethtool_coalesce *c)
2678{
2679 struct mvneta_port *pp = netdev_priv(dev);
2680 int queue;
2681
2682 for (queue = 0; queue < rxq_number; queue++) {
2683 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2684 rxq->time_coal = c->rx_coalesce_usecs;
2685 rxq->pkts_coal = c->rx_max_coalesced_frames;
2686 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2687 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2688 }
2689
2690 for (queue = 0; queue < txq_number; queue++) {
2691 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2692 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2693 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2694 }
2695
2696 return 0;
2697}
2698
2699/* get coalescing for ethtools */
2700static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2701 struct ethtool_coalesce *c)
2702{
2703 struct mvneta_port *pp = netdev_priv(dev);
2704
2705 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2706 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2707
2708 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2709 return 0;
2710}
2711
2712
2713static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2714 struct ethtool_drvinfo *drvinfo)
2715{
2716 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2717 sizeof(drvinfo->driver));
2718 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2719 sizeof(drvinfo->version));
2720 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2721 sizeof(drvinfo->bus_info));
2722}
2723
2724
2725static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2726 struct ethtool_ringparam *ring)
2727{
2728 struct mvneta_port *pp = netdev_priv(netdev);
2729
2730 ring->rx_max_pending = MVNETA_MAX_RXD;
2731 ring->tx_max_pending = MVNETA_MAX_TXD;
2732 ring->rx_pending = pp->rx_ring_size;
2733 ring->tx_pending = pp->tx_ring_size;
2734}
2735
2736static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2737 struct ethtool_ringparam *ring)
2738{
2739 struct mvneta_port *pp = netdev_priv(dev);
2740
2741 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2742 return -EINVAL;
2743 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2744 ring->rx_pending : MVNETA_MAX_RXD;
2745 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2746 ring->tx_pending : MVNETA_MAX_TXD;
2747
2748 if (netif_running(dev)) {
2749 mvneta_stop(dev);
2750 if (mvneta_open(dev)) {
2751 netdev_err(dev,
2752 "error on opening device after ring param change\n");
2753 return -ENOMEM;
2754 }
2755 }
2756
2757 return 0;
2758}
2759
2760static const struct net_device_ops mvneta_netdev_ops = {
2761 .ndo_open = mvneta_open,
2762 .ndo_stop = mvneta_stop,
2763 .ndo_start_xmit = mvneta_tx,
2764 .ndo_set_rx_mode = mvneta_set_rx_mode,
2765 .ndo_set_mac_address = mvneta_set_mac_addr,
2766 .ndo_change_mtu = mvneta_change_mtu,
c5aff182 2767 .ndo_get_stats64 = mvneta_get_stats64,
15f59456 2768 .ndo_do_ioctl = mvneta_ioctl,
c5aff182
TP
2769};
2770
2771const struct ethtool_ops mvneta_eth_tool_ops = {
2772 .get_link = ethtool_op_get_link,
2773 .get_settings = mvneta_ethtool_get_settings,
2774 .set_settings = mvneta_ethtool_set_settings,
2775 .set_coalesce = mvneta_ethtool_set_coalesce,
2776 .get_coalesce = mvneta_ethtool_get_coalesce,
2777 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2778 .get_ringparam = mvneta_ethtool_get_ringparam,
2779 .set_ringparam = mvneta_ethtool_set_ringparam,
2780};
2781
2782/* Initialize hw */
9672850b 2783static int mvneta_init(struct device *dev, struct mvneta_port *pp)
c5aff182
TP
2784{
2785 int queue;
2786
2787 /* Disable port */
2788 mvneta_port_disable(pp);
2789
2790 /* Set port default values */
2791 mvneta_defaults_set(pp);
2792
9672850b
EG
2793 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2794 GFP_KERNEL);
c5aff182
TP
2795 if (!pp->txqs)
2796 return -ENOMEM;
2797
2798 /* Initialize TX descriptor rings */
2799 for (queue = 0; queue < txq_number; queue++) {
2800 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2801 txq->id = queue;
2802 txq->size = pp->tx_ring_size;
2803 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2804 }
2805
9672850b
EG
2806 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2807 GFP_KERNEL);
2808 if (!pp->rxqs)
c5aff182 2809 return -ENOMEM;
c5aff182
TP
2810
2811 /* Create Rx descriptor rings */
2812 for (queue = 0; queue < rxq_number; queue++) {
2813 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2814 rxq->id = queue;
2815 rxq->size = pp->rx_ring_size;
2816 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2817 rxq->time_coal = MVNETA_RX_COAL_USEC;
2818 }
2819
2820 return 0;
2821}
2822
c5aff182 2823/* platform glue : initialize decoding windows */
03ce758e
GK
2824static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2825 const struct mbus_dram_target_info *dram)
c5aff182
TP
2826{
2827 u32 win_enable;
2828 u32 win_protect;
2829 int i;
2830
2831 for (i = 0; i < 6; i++) {
2832 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2833 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2834
2835 if (i < 4)
2836 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2837 }
2838
2839 win_enable = 0x3f;
2840 win_protect = 0;
2841
2842 for (i = 0; i < dram->num_cs; i++) {
2843 const struct mbus_dram_window *cs = dram->cs + i;
2844 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2845 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2846
2847 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2848 (cs->size - 1) & 0xffff0000);
2849
2850 win_enable &= ~(1 << i);
2851 win_protect |= 3 << (2 * i);
2852 }
2853
2854 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2855}
2856
2857/* Power up the port */
3f1dd4bc 2858static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
c5aff182 2859{
3f1dd4bc 2860 u32 ctrl;
c5aff182
TP
2861
2862 /* MAC Cause register should be cleared */
2863 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2864
3f1dd4bc 2865 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
c5aff182 2866
3f1dd4bc
TP
2867 /* Even though it might look weird, when we're configured in
2868 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2869 */
2870 switch(phy_mode) {
2871 case PHY_INTERFACE_MODE_QSGMII:
2872 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2873 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2874 break;
2875 case PHY_INTERFACE_MODE_SGMII:
2876 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2877 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2878 break;
2879 case PHY_INTERFACE_MODE_RGMII:
2880 case PHY_INTERFACE_MODE_RGMII_ID:
2881 ctrl |= MVNETA_GMAC2_PORT_RGMII;
2882 break;
2883 default:
2884 return -EINVAL;
2885 }
c5aff182
TP
2886
2887 /* Cancel Port Reset */
3f1dd4bc
TP
2888 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2889 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
c5aff182
TP
2890
2891 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2892 MVNETA_GMAC2_PORT_RESET) != 0)
2893 continue;
3f1dd4bc
TP
2894
2895 return 0;
c5aff182
TP
2896}
2897
2898/* Device initialization routine */
03ce758e 2899static int mvneta_probe(struct platform_device *pdev)
c5aff182
TP
2900{
2901 const struct mbus_dram_target_info *dram_target_info;
c3f0dd38 2902 struct resource *res;
c5aff182
TP
2903 struct device_node *dn = pdev->dev.of_node;
2904 struct device_node *phy_node;
c5aff182
TP
2905 struct mvneta_port *pp;
2906 struct net_device *dev;
8cc3e439
TP
2907 const char *dt_mac_addr;
2908 char hw_mac_addr[ETH_ALEN];
2909 const char *mac_from;
c5aff182
TP
2910 int phy_mode;
2911 int err;
2912
6a20c175 2913 /* Our multiqueue support is not complete, so for now, only
c5aff182
TP
2914 * allow the usage of the first RX queue
2915 */
2916 if (rxq_def != 0) {
2917 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2918 return -EINVAL;
2919 }
2920
ee40a116 2921 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
c5aff182
TP
2922 if (!dev)
2923 return -ENOMEM;
2924
2925 dev->irq = irq_of_parse_and_map(dn, 0);
2926 if (dev->irq == 0) {
2927 err = -EINVAL;
2928 goto err_free_netdev;
2929 }
2930
2931 phy_node = of_parse_phandle(dn, "phy", 0);
2932 if (!phy_node) {
83895bed
TP
2933 if (!of_phy_is_fixed_link(dn)) {
2934 dev_err(&pdev->dev, "no PHY specified\n");
2935 err = -ENODEV;
2936 goto err_free_irq;
2937 }
2938
2939 err = of_phy_register_fixed_link(dn);
2940 if (err < 0) {
2941 dev_err(&pdev->dev, "cannot register fixed PHY\n");
2942 goto err_free_irq;
2943 }
2944
2945 /* In the case of a fixed PHY, the DT node associated
2946 * to the PHY is the Ethernet MAC DT node.
2947 */
2948 phy_node = dn;
c5aff182
TP
2949 }
2950
2951 phy_mode = of_get_phy_mode(dn);
2952 if (phy_mode < 0) {
2953 dev_err(&pdev->dev, "incorrect phy-mode\n");
2954 err = -EINVAL;
2955 goto err_free_irq;
2956 }
2957
c5aff182
TP
2958 dev->tx_queue_len = MVNETA_MAX_TXD;
2959 dev->watchdog_timeo = 5 * HZ;
2960 dev->netdev_ops = &mvneta_netdev_ops;
2961
7ad24ea4 2962 dev->ethtool_ops = &mvneta_eth_tool_ops;
c5aff182
TP
2963
2964 pp = netdev_priv(dev);
c5aff182
TP
2965 pp->phy_node = phy_node;
2966 pp->phy_interface = phy_mode;
2967
189dd626
TP
2968 pp->clk = devm_clk_get(&pdev->dev, NULL);
2969 if (IS_ERR(pp->clk)) {
2970 err = PTR_ERR(pp->clk);
5445eaf3 2971 goto err_free_irq;
189dd626
TP
2972 }
2973
2974 clk_prepare_enable(pp->clk);
2975
c3f0dd38
TP
2976 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2977 pp->base = devm_ioremap_resource(&pdev->dev, res);
2978 if (IS_ERR(pp->base)) {
2979 err = PTR_ERR(pp->base);
5445eaf3
AP
2980 goto err_clk;
2981 }
2982
74c41b04 2983 /* Alloc per-cpu stats */
1c213bd2 2984 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
74c41b04 2985 if (!pp->stats) {
2986 err = -ENOMEM;
c3f0dd38 2987 goto err_clk;
74c41b04 2988 }
2989
8cc3e439 2990 dt_mac_addr = of_get_mac_address(dn);
6c7a9a3c 2991 if (dt_mac_addr) {
8cc3e439
TP
2992 mac_from = "device tree";
2993 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2994 } else {
2995 mvneta_get_mac_addr(pp, hw_mac_addr);
2996 if (is_valid_ether_addr(hw_mac_addr)) {
2997 mac_from = "hardware";
2998 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2999 } else {
3000 mac_from = "random";
3001 eth_hw_addr_random(dev);
3002 }
3003 }
3004
c5aff182
TP
3005 pp->tx_ring_size = MVNETA_MAX_TXD;
3006 pp->rx_ring_size = MVNETA_MAX_RXD;
3007
3008 pp->dev = dev;
3009 SET_NETDEV_DEV(dev, &pdev->dev);
3010
9672850b
EG
3011 err = mvneta_init(&pdev->dev, pp);
3012 if (err < 0)
74c41b04 3013 goto err_free_stats;
3f1dd4bc
TP
3014
3015 err = mvneta_port_power_up(pp, phy_mode);
3016 if (err < 0) {
3017 dev_err(&pdev->dev, "can't power up port\n");
9672850b 3018 goto err_free_stats;
3f1dd4bc 3019 }
c5aff182
TP
3020
3021 dram_target_info = mv_mbus_dram_info();
3022 if (dram_target_info)
3023 mvneta_conf_mbus_windows(pp, dram_target_info);
3024
9fa9379d 3025 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
c5aff182 3026
2adb719d 3027 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
01ef26ca
EG
3028 dev->hw_features |= dev->features;
3029 dev->vlan_features |= dev->features;
b50b72de 3030 dev->priv_flags |= IFF_UNICAST_FLT;
3031
c5aff182
TP
3032 err = register_netdev(dev);
3033 if (err < 0) {
3034 dev_err(&pdev->dev, "failed to register\n");
9672850b 3035 goto err_free_stats;
c5aff182
TP
3036 }
3037
8cc3e439
TP
3038 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3039 dev->dev_addr);
c5aff182
TP
3040
3041 platform_set_drvdata(pdev, pp->dev);
3042
3043 return 0;
3044
74c41b04 3045err_free_stats:
3046 free_percpu(pp->stats);
5445eaf3
AP
3047err_clk:
3048 clk_disable_unprepare(pp->clk);
c5aff182
TP
3049err_free_irq:
3050 irq_dispose_mapping(dev->irq);
3051err_free_netdev:
3052 free_netdev(dev);
3053 return err;
3054}
3055
3056/* Device removal routine */
03ce758e 3057static int mvneta_remove(struct platform_device *pdev)
c5aff182
TP
3058{
3059 struct net_device *dev = platform_get_drvdata(pdev);
3060 struct mvneta_port *pp = netdev_priv(dev);
3061
3062 unregister_netdev(dev);
189dd626 3063 clk_disable_unprepare(pp->clk);
74c41b04 3064 free_percpu(pp->stats);
c5aff182
TP
3065 irq_dispose_mapping(dev->irq);
3066 free_netdev(dev);
3067
c5aff182
TP
3068 return 0;
3069}
3070
3071static const struct of_device_id mvneta_match[] = {
3072 { .compatible = "marvell,armada-370-neta" },
3073 { }
3074};
3075MODULE_DEVICE_TABLE(of, mvneta_match);
3076
3077static struct platform_driver mvneta_driver = {
3078 .probe = mvneta_probe,
03ce758e 3079 .remove = mvneta_remove,
c5aff182
TP
3080 .driver = {
3081 .name = MVNETA_DRIVER_NAME,
3082 .of_match_table = mvneta_match,
3083 },
3084};
3085
3086module_platform_driver(mvneta_driver);
3087
3088MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3089MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3090MODULE_LICENSE("GPL");
3091
3092module_param(rxq_number, int, S_IRUGO);
3093module_param(txq_number, int, S_IRUGO);
3094
3095module_param(rxq_def, int, S_IRUGO);
f19fadfc 3096module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);