]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/micrel/ksz884x.c
Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / micrel / ksz884x.c
CommitLineData
8ca86fd8 1/**
3396c782 2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
8ca86fd8
TH
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
0dc7d2b3
JP
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
8ca86fd8 19#include <linux/init.h>
a6b7a407 20#include <linux/interrupt.h>
8ca86fd8
TH
21#include <linux/kernel.h>
22#include <linux/module.h>
8ca86fd8
TH
23#include <linux/ioport.h>
24#include <linux/pci.h>
25#include <linux/proc_fs.h>
26#include <linux/mii.h>
27#include <linux/platform_device.h>
28#include <linux/ethtool.h>
29#include <linux/etherdevice.h>
30#include <linux/in.h>
31#include <linux/ip.h>
32#include <linux/if_vlan.h>
33#include <linux/crc32.h>
34#include <linux/sched.h>
5a0e3ad6 35#include <linux/slab.h>
8ca86fd8
TH
36
37
38/* DMA Registers */
39
40#define KS_DMA_TX_CTRL 0x0000
41#define DMA_TX_ENABLE 0x00000001
42#define DMA_TX_CRC_ENABLE 0x00000002
43#define DMA_TX_PAD_ENABLE 0x00000004
44#define DMA_TX_LOOPBACK 0x00000100
45#define DMA_TX_FLOW_ENABLE 0x00000200
46#define DMA_TX_CSUM_IP 0x00010000
47#define DMA_TX_CSUM_TCP 0x00020000
48#define DMA_TX_CSUM_UDP 0x00040000
49#define DMA_TX_BURST_SIZE 0x3F000000
50
51#define KS_DMA_RX_CTRL 0x0004
52#define DMA_RX_ENABLE 0x00000001
53#define KS884X_DMA_RX_MULTICAST 0x00000002
54#define DMA_RX_PROMISCUOUS 0x00000004
55#define DMA_RX_ERROR 0x00000008
56#define DMA_RX_UNICAST 0x00000010
57#define DMA_RX_ALL_MULTICAST 0x00000020
58#define DMA_RX_BROADCAST 0x00000040
59#define DMA_RX_FLOW_ENABLE 0x00000200
60#define DMA_RX_CSUM_IP 0x00010000
61#define DMA_RX_CSUM_TCP 0x00020000
62#define DMA_RX_CSUM_UDP 0x00040000
63#define DMA_RX_BURST_SIZE 0x3F000000
64
65#define DMA_BURST_SHIFT 24
66#define DMA_BURST_DEFAULT 8
67
68#define KS_DMA_TX_START 0x0008
69#define KS_DMA_RX_START 0x000C
70#define DMA_START 0x00000001
71
72#define KS_DMA_TX_ADDR 0x0010
73#define KS_DMA_RX_ADDR 0x0014
74
75#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
76#define DMA_ADDR_LIST_SHIFT 2
77
78/* MTR0 */
79#define KS884X_MULTICAST_0_OFFSET 0x0020
80#define KS884X_MULTICAST_1_OFFSET 0x0021
81#define KS884X_MULTICAST_2_OFFSET 0x0022
82#define KS884x_MULTICAST_3_OFFSET 0x0023
83/* MTR1 */
84#define KS884X_MULTICAST_4_OFFSET 0x0024
85#define KS884X_MULTICAST_5_OFFSET 0x0025
86#define KS884X_MULTICAST_6_OFFSET 0x0026
87#define KS884X_MULTICAST_7_OFFSET 0x0027
88
89/* Interrupt Registers */
90
91/* INTEN */
92#define KS884X_INTERRUPTS_ENABLE 0x0028
93/* INTST */
94#define KS884X_INTERRUPTS_STATUS 0x002C
95
96#define KS884X_INT_RX_STOPPED 0x02000000
97#define KS884X_INT_TX_STOPPED 0x04000000
98#define KS884X_INT_RX_OVERRUN 0x08000000
99#define KS884X_INT_TX_EMPTY 0x10000000
100#define KS884X_INT_RX 0x20000000
101#define KS884X_INT_TX 0x40000000
102#define KS884X_INT_PHY 0x80000000
103
104#define KS884X_INT_RX_MASK \
105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106#define KS884X_INT_TX_MASK \
107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109
110/* MAC Additional Station Address */
111
112/* MAAL0 */
113#define KS_ADD_ADDR_0_LO 0x0080
114/* MAAH0 */
115#define KS_ADD_ADDR_0_HI 0x0084
116/* MAAL1 */
117#define KS_ADD_ADDR_1_LO 0x0088
118/* MAAH1 */
119#define KS_ADD_ADDR_1_HI 0x008C
120/* MAAL2 */
121#define KS_ADD_ADDR_2_LO 0x0090
122/* MAAH2 */
123#define KS_ADD_ADDR_2_HI 0x0094
124/* MAAL3 */
125#define KS_ADD_ADDR_3_LO 0x0098
126/* MAAH3 */
127#define KS_ADD_ADDR_3_HI 0x009C
128/* MAAL4 */
129#define KS_ADD_ADDR_4_LO 0x00A0
130/* MAAH4 */
131#define KS_ADD_ADDR_4_HI 0x00A4
132/* MAAL5 */
133#define KS_ADD_ADDR_5_LO 0x00A8
134/* MAAH5 */
135#define KS_ADD_ADDR_5_HI 0x00AC
136/* MAAL6 */
137#define KS_ADD_ADDR_6_LO 0x00B0
138/* MAAH6 */
139#define KS_ADD_ADDR_6_HI 0x00B4
140/* MAAL7 */
141#define KS_ADD_ADDR_7_LO 0x00B8
142/* MAAH7 */
143#define KS_ADD_ADDR_7_HI 0x00BC
144/* MAAL8 */
145#define KS_ADD_ADDR_8_LO 0x00C0
146/* MAAH8 */
147#define KS_ADD_ADDR_8_HI 0x00C4
148/* MAAL9 */
149#define KS_ADD_ADDR_9_LO 0x00C8
150/* MAAH9 */
151#define KS_ADD_ADDR_9_HI 0x00CC
152/* MAAL10 */
153#define KS_ADD_ADDR_A_LO 0x00D0
154/* MAAH10 */
155#define KS_ADD_ADDR_A_HI 0x00D4
156/* MAAL11 */
157#define KS_ADD_ADDR_B_LO 0x00D8
158/* MAAH11 */
159#define KS_ADD_ADDR_B_HI 0x00DC
160/* MAAL12 */
161#define KS_ADD_ADDR_C_LO 0x00E0
162/* MAAH12 */
163#define KS_ADD_ADDR_C_HI 0x00E4
164/* MAAL13 */
165#define KS_ADD_ADDR_D_LO 0x00E8
166/* MAAH13 */
167#define KS_ADD_ADDR_D_HI 0x00EC
168/* MAAL14 */
169#define KS_ADD_ADDR_E_LO 0x00F0
170/* MAAH14 */
171#define KS_ADD_ADDR_E_HI 0x00F4
172/* MAAL15 */
173#define KS_ADD_ADDR_F_LO 0x00F8
174/* MAAH15 */
175#define KS_ADD_ADDR_F_HI 0x00FC
176
177#define ADD_ADDR_HI_MASK 0x0000FFFF
178#define ADD_ADDR_ENABLE 0x80000000
179#define ADD_ADDR_INCR 8
180
181/* Miscellaneous Registers */
182
183/* MARL */
184#define KS884X_ADDR_0_OFFSET 0x0200
185#define KS884X_ADDR_1_OFFSET 0x0201
186/* MARM */
187#define KS884X_ADDR_2_OFFSET 0x0202
188#define KS884X_ADDR_3_OFFSET 0x0203
189/* MARH */
190#define KS884X_ADDR_4_OFFSET 0x0204
191#define KS884X_ADDR_5_OFFSET 0x0205
192
193/* OBCR */
194#define KS884X_BUS_CTRL_OFFSET 0x0210
195
196#define BUS_SPEED_125_MHZ 0x0000
197#define BUS_SPEED_62_5_MHZ 0x0001
198#define BUS_SPEED_41_66_MHZ 0x0002
199#define BUS_SPEED_25_MHZ 0x0003
200
201/* EEPCR */
202#define KS884X_EEPROM_CTRL_OFFSET 0x0212
203
204#define EEPROM_CHIP_SELECT 0x0001
205#define EEPROM_SERIAL_CLOCK 0x0002
206#define EEPROM_DATA_OUT 0x0004
207#define EEPROM_DATA_IN 0x0008
208#define EEPROM_ACCESS_ENABLE 0x0010
209
210/* MBIR */
211#define KS884X_MEM_INFO_OFFSET 0x0214
212
213#define RX_MEM_TEST_FAILED 0x0008
214#define RX_MEM_TEST_FINISHED 0x0010
215#define TX_MEM_TEST_FAILED 0x0800
216#define TX_MEM_TEST_FINISHED 0x1000
217
218/* GCR */
219#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
220#define GLOBAL_SOFTWARE_RESET 0x0001
221
222#define KS8841_POWER_MANAGE_OFFSET 0x0218
223
224/* WFCR */
225#define KS8841_WOL_CTRL_OFFSET 0x021A
226#define KS8841_WOL_MAGIC_ENABLE 0x0080
227#define KS8841_WOL_FRAME3_ENABLE 0x0008
228#define KS8841_WOL_FRAME2_ENABLE 0x0004
229#define KS8841_WOL_FRAME1_ENABLE 0x0002
230#define KS8841_WOL_FRAME0_ENABLE 0x0001
231
232/* WF0 */
233#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
234#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
235#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
236
237/* IACR */
238#define KS884X_IACR_P 0x04A0
239#define KS884X_IACR_OFFSET KS884X_IACR_P
240
241/* IADR1 */
242#define KS884X_IADR1_P 0x04A2
243#define KS884X_IADR2_P 0x04A4
244#define KS884X_IADR3_P 0x04A6
245#define KS884X_IADR4_P 0x04A8
246#define KS884X_IADR5_P 0x04AA
247
248#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
249#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
250
251#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
252#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
253#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
254#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
255#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
256#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
257#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
258#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
259#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
260
261/* P1MBCR */
262#define KS884X_P1MBCR_P 0x04D0
263#define KS884X_P1MBSR_P 0x04D2
264#define KS884X_PHY1ILR_P 0x04D4
265#define KS884X_PHY1IHR_P 0x04D6
266#define KS884X_P1ANAR_P 0x04D8
267#define KS884X_P1ANLPR_P 0x04DA
268
269/* P2MBCR */
270#define KS884X_P2MBCR_P 0x04E0
271#define KS884X_P2MBSR_P 0x04E2
272#define KS884X_PHY2ILR_P 0x04E4
273#define KS884X_PHY2IHR_P 0x04E6
274#define KS884X_P2ANAR_P 0x04E8
275#define KS884X_P2ANLPR_P 0x04EA
276
277#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
278#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279
280#define KS884X_PHY_CTRL_OFFSET 0x00
281
282/* Mode Control Register */
283#define PHY_REG_CTRL 0
284
285#define PHY_RESET 0x8000
286#define PHY_LOOPBACK 0x4000
287#define PHY_SPEED_100MBIT 0x2000
288#define PHY_AUTO_NEG_ENABLE 0x1000
289#define PHY_POWER_DOWN 0x0800
290#define PHY_MII_DISABLE 0x0400
291#define PHY_AUTO_NEG_RESTART 0x0200
292#define PHY_FULL_DUPLEX 0x0100
293#define PHY_COLLISION_TEST 0x0080
294#define PHY_HP_MDIX 0x0020
295#define PHY_FORCE_MDIX 0x0010
296#define PHY_AUTO_MDIX_DISABLE 0x0008
297#define PHY_REMOTE_FAULT_DISABLE 0x0004
298#define PHY_TRANSMIT_DISABLE 0x0002
299#define PHY_LED_DISABLE 0x0001
300
301#define KS884X_PHY_STATUS_OFFSET 0x02
302
303/* Mode Status Register */
304#define PHY_REG_STATUS 1
305
306#define PHY_100BT4_CAPABLE 0x8000
307#define PHY_100BTX_FD_CAPABLE 0x4000
308#define PHY_100BTX_CAPABLE 0x2000
309#define PHY_10BT_FD_CAPABLE 0x1000
310#define PHY_10BT_CAPABLE 0x0800
311#define PHY_MII_SUPPRESS_CAPABLE 0x0040
312#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
313#define PHY_REMOTE_FAULT 0x0010
314#define PHY_AUTO_NEG_CAPABLE 0x0008
315#define PHY_LINK_STATUS 0x0004
316#define PHY_JABBER_DETECT 0x0002
317#define PHY_EXTENDED_CAPABILITY 0x0001
318
319#define KS884X_PHY_ID_1_OFFSET 0x04
320#define KS884X_PHY_ID_2_OFFSET 0x06
321
322/* PHY Identifier Registers */
323#define PHY_REG_ID_1 2
324#define PHY_REG_ID_2 3
325
326#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
327
328/* Auto-Negotiation Advertisement Register */
329#define PHY_REG_AUTO_NEGOTIATION 4
330
331#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
332#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
333/* Not supported. */
334#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
335#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
336#define PHY_AUTO_NEG_100BT4 0x0200
337#define PHY_AUTO_NEG_100BTX_FD 0x0100
338#define PHY_AUTO_NEG_100BTX 0x0080
339#define PHY_AUTO_NEG_10BT_FD 0x0040
340#define PHY_AUTO_NEG_10BT 0x0020
341#define PHY_AUTO_NEG_SELECTOR 0x001F
342#define PHY_AUTO_NEG_802_3 0x0001
343
344#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345
346#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
347
348/* Auto-Negotiation Link Partner Ability Register */
349#define PHY_REG_REMOTE_CAPABILITY 5
350
351#define PHY_REMOTE_NEXT_PAGE 0x8000
352#define PHY_REMOTE_ACKNOWLEDGE 0x4000
353#define PHY_REMOTE_REMOTE_FAULT 0x2000
354#define PHY_REMOTE_SYM_PAUSE 0x0400
355#define PHY_REMOTE_100BTX_FD 0x0100
356#define PHY_REMOTE_100BTX 0x0080
357#define PHY_REMOTE_10BT_FD 0x0040
358#define PHY_REMOTE_10BT 0x0020
359
360/* P1VCT */
361#define KS884X_P1VCT_P 0x04F0
362#define KS884X_P1PHYCTRL_P 0x04F2
363
364/* P2VCT */
365#define KS884X_P2VCT_P 0x04F4
366#define KS884X_P2PHYCTRL_P 0x04F6
367
368#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
369#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
370
371#define KS884X_PHY_LINK_MD_OFFSET 0x00
372
373#define PHY_START_CABLE_DIAG 0x8000
374#define PHY_CABLE_DIAG_RESULT 0x6000
375#define PHY_CABLE_STAT_NORMAL 0x0000
376#define PHY_CABLE_STAT_OPEN 0x2000
377#define PHY_CABLE_STAT_SHORT 0x4000
378#define PHY_CABLE_STAT_FAILED 0x6000
379#define PHY_CABLE_10M_SHORT 0x1000
380#define PHY_CABLE_FAULT_COUNTER 0x01FF
381
382#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
383
384#define PHY_STAT_REVERSED_POLARITY 0x0020
385#define PHY_STAT_MDIX 0x0010
386#define PHY_FORCE_LINK 0x0008
387#define PHY_POWER_SAVING_DISABLE 0x0004
388#define PHY_REMOTE_LOOPBACK 0x0002
389
390/* SIDER */
391#define KS884X_SIDER_P 0x0400
392#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
393#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
394
395#define REG_FAMILY_ID 0x88
396
397#define REG_CHIP_ID_41 0x8810
398#define REG_CHIP_ID_42 0x8800
399
400#define KS884X_CHIP_ID_MASK_41 0xFF10
401#define KS884X_CHIP_ID_MASK 0xFFF0
402#define KS884X_CHIP_ID_SHIFT 4
403#define KS884X_REVISION_MASK 0x000E
404#define KS884X_REVISION_SHIFT 1
405#define KS8842_START 0x0001
406
407#define CHIP_IP_41_M 0x8810
408#define CHIP_IP_42_M 0x8800
409#define CHIP_IP_61_M 0x8890
410#define CHIP_IP_62_M 0x8880
411
412#define CHIP_IP_41_P 0x8850
413#define CHIP_IP_42_P 0x8840
414#define CHIP_IP_61_P 0x88D0
415#define CHIP_IP_62_P 0x88C0
416
417/* SGCR1 */
418#define KS8842_SGCR1_P 0x0402
419#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
420
421#define SWITCH_PASS_ALL 0x8000
422#define SWITCH_TX_FLOW_CTRL 0x2000
423#define SWITCH_RX_FLOW_CTRL 0x1000
424#define SWITCH_CHECK_LENGTH 0x0800
425#define SWITCH_AGING_ENABLE 0x0400
426#define SWITCH_FAST_AGING 0x0200
427#define SWITCH_AGGR_BACKOFF 0x0100
428#define SWITCH_PASS_PAUSE 0x0008
429#define SWITCH_LINK_AUTO_AGING 0x0001
430
431/* SGCR2 */
432#define KS8842_SGCR2_P 0x0404
433#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
434
435#define SWITCH_VLAN_ENABLE 0x8000
436#define SWITCH_IGMP_SNOOP 0x4000
437#define IPV6_MLD_SNOOP_ENABLE 0x2000
438#define IPV6_MLD_SNOOP_OPTION 0x1000
439#define PRIORITY_SCHEME_SELECT 0x0800
440#define SWITCH_MIRROR_RX_TX 0x0100
441#define UNICAST_VLAN_BOUNDARY 0x0080
442#define MULTICAST_STORM_DISABLE 0x0040
443#define SWITCH_BACK_PRESSURE 0x0020
444#define FAIR_FLOW_CTRL 0x0010
445#define NO_EXC_COLLISION_DROP 0x0008
446#define SWITCH_HUGE_PACKET 0x0004
447#define SWITCH_LEGAL_PACKET 0x0002
448#define SWITCH_BUF_RESERVE 0x0001
449
450/* SGCR3 */
451#define KS8842_SGCR3_P 0x0406
452#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
453
454#define BROADCAST_STORM_RATE_LO 0xFF00
455#define SWITCH_REPEATER 0x0080
456#define SWITCH_HALF_DUPLEX 0x0040
457#define SWITCH_FLOW_CTRL 0x0020
458#define SWITCH_10_MBIT 0x0010
459#define SWITCH_REPLACE_NULL_VID 0x0008
460#define BROADCAST_STORM_RATE_HI 0x0007
461
462#define BROADCAST_STORM_RATE 0x07FF
463
464/* SGCR4 */
465#define KS8842_SGCR4_P 0x0408
466
467/* SGCR5 */
468#define KS8842_SGCR5_P 0x040A
469#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
470
471#define LED_MODE 0x8200
472#define LED_SPEED_DUPLEX_ACT 0x0000
473#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
474#define LED_DUPLEX_10_100 0x0200
475
476/* SGCR6 */
477#define KS8842_SGCR6_P 0x0410
478#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
479
480#define KS8842_PRIORITY_MASK 3
481#define KS8842_PRIORITY_SHIFT 2
482
483/* SGCR7 */
484#define KS8842_SGCR7_P 0x0412
485#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
486
487#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
488#define SWITCH_UNK_DEF_PORT_3 0x0004
489#define SWITCH_UNK_DEF_PORT_2 0x0002
490#define SWITCH_UNK_DEF_PORT_1 0x0001
491
492/* MACAR1 */
493#define KS8842_MACAR1_P 0x0470
494#define KS8842_MACAR2_P 0x0472
495#define KS8842_MACAR3_P 0x0474
496#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
497#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
498#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
499#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
500#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
501#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
502
503/* TOSR1 */
504#define KS8842_TOSR1_P 0x0480
505#define KS8842_TOSR2_P 0x0482
506#define KS8842_TOSR3_P 0x0484
507#define KS8842_TOSR4_P 0x0486
508#define KS8842_TOSR5_P 0x0488
509#define KS8842_TOSR6_P 0x048A
510#define KS8842_TOSR7_P 0x0490
511#define KS8842_TOSR8_P 0x0492
512#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
513#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
514#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
515#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
516#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
517#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
518
519#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
520#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
521
522/* P1CR1 */
523#define KS8842_P1CR1_P 0x0500
524#define KS8842_P1CR2_P 0x0502
525#define KS8842_P1VIDR_P 0x0504
526#define KS8842_P1CR3_P 0x0506
527#define KS8842_P1IRCR_P 0x0508
528#define KS8842_P1ERCR_P 0x050A
529#define KS884X_P1SCSLMD_P 0x0510
530#define KS884X_P1CR4_P 0x0512
531#define KS884X_P1SR_P 0x0514
532
533/* P2CR1 */
534#define KS8842_P2CR1_P 0x0520
535#define KS8842_P2CR2_P 0x0522
536#define KS8842_P2VIDR_P 0x0524
537#define KS8842_P2CR3_P 0x0526
538#define KS8842_P2IRCR_P 0x0528
539#define KS8842_P2ERCR_P 0x052A
540#define KS884X_P2SCSLMD_P 0x0530
541#define KS884X_P2CR4_P 0x0532
542#define KS884X_P2SR_P 0x0534
543
544/* P3CR1 */
545#define KS8842_P3CR1_P 0x0540
546#define KS8842_P3CR2_P 0x0542
547#define KS8842_P3VIDR_P 0x0544
548#define KS8842_P3CR3_P 0x0546
549#define KS8842_P3IRCR_P 0x0548
550#define KS8842_P3ERCR_P 0x054A
551
552#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
553#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
554#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
555
556#define PORT_CTRL_ADDR(port, addr) \
557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559
560#define KS8842_PORT_CTRL_1_OFFSET 0x00
561
562#define PORT_BROADCAST_STORM 0x0080
563#define PORT_DIFFSERV_ENABLE 0x0040
564#define PORT_802_1P_ENABLE 0x0020
565#define PORT_BASED_PRIORITY_MASK 0x0018
566#define PORT_BASED_PRIORITY_BASE 0x0003
567#define PORT_BASED_PRIORITY_SHIFT 3
568#define PORT_BASED_PRIORITY_0 0x0000
569#define PORT_BASED_PRIORITY_1 0x0008
570#define PORT_BASED_PRIORITY_2 0x0010
571#define PORT_BASED_PRIORITY_3 0x0018
572#define PORT_INSERT_TAG 0x0004
573#define PORT_REMOVE_TAG 0x0002
574#define PORT_PRIO_QUEUE_ENABLE 0x0001
575
576#define KS8842_PORT_CTRL_2_OFFSET 0x02
577
578#define PORT_INGRESS_VLAN_FILTER 0x4000
579#define PORT_DISCARD_NON_VID 0x2000
580#define PORT_FORCE_FLOW_CTRL 0x1000
581#define PORT_BACK_PRESSURE 0x0800
582#define PORT_TX_ENABLE 0x0400
583#define PORT_RX_ENABLE 0x0200
584#define PORT_LEARN_DISABLE 0x0100
585#define PORT_MIRROR_SNIFFER 0x0080
586#define PORT_MIRROR_RX 0x0040
587#define PORT_MIRROR_TX 0x0020
588#define PORT_USER_PRIORITY_CEILING 0x0008
589#define PORT_VLAN_MEMBERSHIP 0x0007
590
591#define KS8842_PORT_CTRL_VID_OFFSET 0x04
592
593#define PORT_DEFAULT_VID 0x0001
594
595#define KS8842_PORT_CTRL_3_OFFSET 0x06
596
597#define PORT_INGRESS_LIMIT_MODE 0x000C
598#define PORT_INGRESS_ALL 0x0000
599#define PORT_INGRESS_UNICAST 0x0004
600#define PORT_INGRESS_MULTICAST 0x0008
601#define PORT_INGRESS_BROADCAST 0x000C
602#define PORT_COUNT_IFG 0x0002
603#define PORT_COUNT_PREAMBLE 0x0001
604
605#define KS8842_PORT_IN_RATE_OFFSET 0x08
606#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
607
608#define PORT_PRIORITY_RATE 0x0F
609#define PORT_PRIORITY_RATE_SHIFT 4
610
611#define KS884X_PORT_LINK_MD 0x10
612
613#define PORT_CABLE_10M_SHORT 0x8000
614#define PORT_CABLE_DIAG_RESULT 0x6000
615#define PORT_CABLE_STAT_NORMAL 0x0000
616#define PORT_CABLE_STAT_OPEN 0x2000
617#define PORT_CABLE_STAT_SHORT 0x4000
618#define PORT_CABLE_STAT_FAILED 0x6000
619#define PORT_START_CABLE_DIAG 0x1000
620#define PORT_FORCE_LINK 0x0800
621#define PORT_POWER_SAVING_DISABLE 0x0400
622#define PORT_PHY_REMOTE_LOOPBACK 0x0200
623#define PORT_CABLE_FAULT_COUNTER 0x01FF
624
625#define KS884X_PORT_CTRL_4_OFFSET 0x12
626
627#define PORT_LED_OFF 0x8000
628#define PORT_TX_DISABLE 0x4000
629#define PORT_AUTO_NEG_RESTART 0x2000
630#define PORT_REMOTE_FAULT_DISABLE 0x1000
631#define PORT_POWER_DOWN 0x0800
632#define PORT_AUTO_MDIX_DISABLE 0x0400
633#define PORT_FORCE_MDIX 0x0200
634#define PORT_LOOPBACK 0x0100
635#define PORT_AUTO_NEG_ENABLE 0x0080
636#define PORT_FORCE_100_MBIT 0x0040
637#define PORT_FORCE_FULL_DUPLEX 0x0020
638#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
639#define PORT_AUTO_NEG_100BTX_FD 0x0008
640#define PORT_AUTO_NEG_100BTX 0x0004
641#define PORT_AUTO_NEG_10BT_FD 0x0002
642#define PORT_AUTO_NEG_10BT 0x0001
643
644#define KS884X_PORT_STATUS_OFFSET 0x14
645
646#define PORT_HP_MDIX 0x8000
647#define PORT_REVERSED_POLARITY 0x2000
648#define PORT_RX_FLOW_CTRL 0x0800
649#define PORT_TX_FLOW_CTRL 0x1000
650#define PORT_STATUS_SPEED_100MBIT 0x0400
651#define PORT_STATUS_FULL_DUPLEX 0x0200
652#define PORT_REMOTE_FAULT 0x0100
653#define PORT_MDIX_STATUS 0x0080
654#define PORT_AUTO_NEG_COMPLETE 0x0040
655#define PORT_STATUS_LINK_GOOD 0x0020
656#define PORT_REMOTE_SYM_PAUSE 0x0010
657#define PORT_REMOTE_100BTX_FD 0x0008
658#define PORT_REMOTE_100BTX 0x0004
659#define PORT_REMOTE_10BT_FD 0x0002
660#define PORT_REMOTE_10BT 0x0001
661
662/*
663#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
664#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
665#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
666#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
667#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
668#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
669*/
670
671#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
672#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
673#define STATIC_MAC_TABLE_VALID 0x00080000
674#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
675#define STATIC_MAC_TABLE_USE_FID 0x00200000
676#define STATIC_MAC_TABLE_FID 0x03C00000
677
678#define STATIC_MAC_FWD_PORTS_SHIFT 16
679#define STATIC_MAC_FID_SHIFT 22
680
681/*
682#define VLAN_TABLE_VID 00-00000000-00000FFF
683#define VLAN_TABLE_FID 00-00000000-0000F000
684#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
685#define VLAN_TABLE_VALID 00-00000000-00080000
686*/
687
688#define VLAN_TABLE_VID 0x00000FFF
689#define VLAN_TABLE_FID 0x0000F000
690#define VLAN_TABLE_MEMBERSHIP 0x00070000
691#define VLAN_TABLE_VALID 0x00080000
692
693#define VLAN_TABLE_FID_SHIFT 12
694#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
695
696/*
697#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
698#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
699#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
700#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
701#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
702#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
703#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
704#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
705*/
706
707#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
708#define DYNAMIC_MAC_TABLE_FID 0x000F0000
709#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
710#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
711#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
712
713#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
714#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
715#define DYNAMIC_MAC_TABLE_RESERVED 0x78
716#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
717
718#define DYNAMIC_MAC_FID_SHIFT 16
719#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
720#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
721#define DYNAMIC_MAC_ENTRIES_SHIFT 24
722#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
723
724/*
725#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
726#define MIB_COUNTER_VALID 00-00000000-40000000
727#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
728*/
729
730#define MIB_COUNTER_VALUE 0x3FFFFFFF
731#define MIB_COUNTER_VALID 0x40000000
732#define MIB_COUNTER_OVERFLOW 0x80000000
733
734#define MIB_PACKET_DROPPED 0x0000FFFF
735
736#define KS_MIB_PACKET_DROPPED_TX_0 0x100
737#define KS_MIB_PACKET_DROPPED_TX_1 0x101
738#define KS_MIB_PACKET_DROPPED_TX 0x102
739#define KS_MIB_PACKET_DROPPED_RX_0 0x103
740#define KS_MIB_PACKET_DROPPED_RX_1 0x104
741#define KS_MIB_PACKET_DROPPED_RX 0x105
742
743/* Change default LED mode. */
744#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
745
6a3c910c 746#define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i))
8ca86fd8
TH
747
748#define MAX_ETHERNET_BODY_SIZE 1500
83636580 749#define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN)
8ca86fd8
TH
750
751#define MAX_ETHERNET_PACKET_SIZE \
752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753
754#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
755#define MAX_RX_BUF_SIZE (1912 + 4)
756
757#define ADDITIONAL_ENTRIES 16
758#define MAX_MULTICAST_LIST 32
759
760#define HW_MULTICAST_SIZE 8
761
762#define HW_TO_DEV_PORT(port) (port - 1)
763
764enum {
765 media_connected,
766 media_disconnected
767};
768
769enum {
770 OID_COUNTER_UNKOWN,
771
772 OID_COUNTER_FIRST,
773
774 /* total transmit errors */
775 OID_COUNTER_XMIT_ERROR,
776
777 /* total receive errors */
778 OID_COUNTER_RCV_ERROR,
779
780 OID_COUNTER_LAST
781};
782
783/*
784 * Hardware descriptor definitions
785 */
786
787#define DESC_ALIGNMENT 16
788#define BUFFER_ALIGNMENT 8
789
790#define NUM_OF_RX_DESC 64
791#define NUM_OF_TX_DESC 64
792
793#define KS_DESC_RX_FRAME_LEN 0x000007FF
794#define KS_DESC_RX_FRAME_TYPE 0x00008000
795#define KS_DESC_RX_ERROR_CRC 0x00010000
796#define KS_DESC_RX_ERROR_RUNT 0x00020000
797#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
798#define KS_DESC_RX_ERROR_PHY 0x00080000
799#define KS884X_DESC_RX_PORT_MASK 0x00300000
800#define KS_DESC_RX_MULTICAST 0x01000000
801#define KS_DESC_RX_ERROR 0x02000000
802#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
803#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
804#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
805#define KS_DESC_RX_LAST 0x20000000
806#define KS_DESC_RX_FIRST 0x40000000
807#define KS_DESC_RX_ERROR_COND \
808 (KS_DESC_RX_ERROR_CRC | \
809 KS_DESC_RX_ERROR_RUNT | \
810 KS_DESC_RX_ERROR_PHY | \
811 KS_DESC_RX_ERROR_TOO_LONG)
812
813#define KS_DESC_HW_OWNED 0x80000000
814
815#define KS_DESC_BUF_SIZE 0x000007FF
816#define KS884X_DESC_TX_PORT_MASK 0x00300000
817#define KS_DESC_END_OF_RING 0x02000000
818#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
819#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
820#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
821#define KS_DESC_TX_LAST 0x20000000
822#define KS_DESC_TX_FIRST 0x40000000
823#define KS_DESC_TX_INTERRUPT 0x80000000
824
825#define KS_DESC_PORT_SHIFT 20
826
827#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
828
829#define KS_DESC_TX_MASK \
830 (KS_DESC_TX_INTERRUPT | \
831 KS_DESC_TX_FIRST | \
832 KS_DESC_TX_LAST | \
833 KS_DESC_TX_CSUM_GEN_IP | \
834 KS_DESC_TX_CSUM_GEN_TCP | \
835 KS_DESC_TX_CSUM_GEN_UDP | \
836 KS_DESC_BUF_SIZE)
837
838struct ksz_desc_rx_stat {
839#ifdef __BIG_ENDIAN_BITFIELD
840 u32 hw_owned:1;
841 u32 first_desc:1;
842 u32 last_desc:1;
843 u32 csum_err_ip:1;
844 u32 csum_err_tcp:1;
845 u32 csum_err_udp:1;
846 u32 error:1;
847 u32 multicast:1;
848 u32 src_port:4;
849 u32 err_phy:1;
850 u32 err_too_long:1;
851 u32 err_runt:1;
852 u32 err_crc:1;
853 u32 frame_type:1;
854 u32 reserved1:4;
855 u32 frame_len:11;
856#else
857 u32 frame_len:11;
858 u32 reserved1:4;
859 u32 frame_type:1;
860 u32 err_crc:1;
861 u32 err_runt:1;
862 u32 err_too_long:1;
863 u32 err_phy:1;
864 u32 src_port:4;
865 u32 multicast:1;
866 u32 error:1;
867 u32 csum_err_udp:1;
868 u32 csum_err_tcp:1;
869 u32 csum_err_ip:1;
870 u32 last_desc:1;
871 u32 first_desc:1;
872 u32 hw_owned:1;
873#endif
874};
875
876struct ksz_desc_tx_stat {
877#ifdef __BIG_ENDIAN_BITFIELD
878 u32 hw_owned:1;
879 u32 reserved1:31;
880#else
881 u32 reserved1:31;
882 u32 hw_owned:1;
883#endif
884};
885
886struct ksz_desc_rx_buf {
887#ifdef __BIG_ENDIAN_BITFIELD
888 u32 reserved4:6;
889 u32 end_of_ring:1;
890 u32 reserved3:14;
891 u32 buf_size:11;
892#else
893 u32 buf_size:11;
894 u32 reserved3:14;
895 u32 end_of_ring:1;
896 u32 reserved4:6;
897#endif
898};
899
900struct ksz_desc_tx_buf {
901#ifdef __BIG_ENDIAN_BITFIELD
902 u32 intr:1;
903 u32 first_seg:1;
904 u32 last_seg:1;
905 u32 csum_gen_ip:1;
906 u32 csum_gen_tcp:1;
907 u32 csum_gen_udp:1;
908 u32 end_of_ring:1;
909 u32 reserved4:1;
910 u32 dest_port:4;
911 u32 reserved3:9;
912 u32 buf_size:11;
913#else
914 u32 buf_size:11;
915 u32 reserved3:9;
916 u32 dest_port:4;
917 u32 reserved4:1;
918 u32 end_of_ring:1;
919 u32 csum_gen_udp:1;
920 u32 csum_gen_tcp:1;
921 u32 csum_gen_ip:1;
922 u32 last_seg:1;
923 u32 first_seg:1;
924 u32 intr:1;
925#endif
926};
927
928union desc_stat {
929 struct ksz_desc_rx_stat rx;
930 struct ksz_desc_tx_stat tx;
931 u32 data;
932};
933
934union desc_buf {
935 struct ksz_desc_rx_buf rx;
936 struct ksz_desc_tx_buf tx;
937 u32 data;
938};
939
940/**
941 * struct ksz_hw_desc - Hardware descriptor data structure
942 * @ctrl: Descriptor control value.
943 * @buf: Descriptor buffer value.
944 * @addr: Physical address of memory buffer.
945 * @next: Pointer to next hardware descriptor.
946 */
947struct ksz_hw_desc {
948 union desc_stat ctrl;
949 union desc_buf buf;
950 u32 addr;
951 u32 next;
952};
953
954/**
955 * struct ksz_sw_desc - Software descriptor data structure
956 * @ctrl: Descriptor control value.
957 * @buf: Descriptor buffer value.
958 * @buf_size: Current buffers size value in hardware descriptor.
959 */
960struct ksz_sw_desc {
961 union desc_stat ctrl;
962 union desc_buf buf;
963 u32 buf_size;
964};
965
966/**
967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
968 * @skb: Associated socket buffer.
969 * @dma: Associated physical DMA address.
970 * len: Actual len used.
971 */
972struct ksz_dma_buf {
973 struct sk_buff *skb;
974 dma_addr_t dma;
975 int len;
976};
977
978/**
979 * struct ksz_desc - Descriptor structure
980 * @phw: Hardware descriptor pointer to uncached physical memory.
981 * @sw: Cached memory to hold hardware descriptor values for
982 * manipulation.
983 * @dma_buf: Operating system dependent data structure to hold physical
984 * memory buffer allocation information.
985 */
986struct ksz_desc {
987 struct ksz_hw_desc *phw;
988 struct ksz_sw_desc sw;
989 struct ksz_dma_buf dma_buf;
990};
991
992#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993
994/**
995 * struct ksz_desc_info - Descriptor information data structure
996 * @ring: First descriptor in the ring.
997 * @cur: Current descriptor being manipulated.
998 * @ring_virt: First hardware descriptor in the ring.
999 * @ring_phys: The physical address of the first descriptor of the ring.
1000 * @size: Size of hardware descriptor.
1001 * @alloc: Number of descriptors allocated.
1002 * @avail: Number of descriptors available for use.
1003 * @last: Index for last descriptor released to hardware.
1004 * @next: Index for next descriptor available for use.
1005 * @mask: Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008 struct ksz_desc *ring;
1009 struct ksz_desc *cur;
1010 struct ksz_hw_desc *ring_virt;
1011 u32 ring_phys;
1012 int size;
1013 int alloc;
1014 int avail;
1015 int last;
1016 int next;
1017 int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025 TABLE_STATIC_MAC = 0,
1026 TABLE_VLAN,
1027 TABLE_DYNAMIC_MAC,
1028 TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES 1024
1032#define STATIC_MAC_TABLE_ENTRIES 8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr: MAC address to filter.
1037 * @vid: VID value.
1038 * @fid: FID value.
1039 * @ports: Port membership.
1040 * @override: Override setting.
1041 * @use_fid: FID use setting.
1042 * @valid: Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
6a3c910c 1045 u8 mac_addr[ETH_ALEN];
8ca86fd8
TH
1046 u16 vid;
1047 u8 fid;
1048 u8 ports;
1049 u8 override:1;
1050 u8 use_fid:1;
1051 u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES 16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid: VID value.
1059 * @fid: FID value.
1060 * @member: Port membership.
1061 */
1062struct ksz_vlan_table {
1063 u16 vid;
1064 u8 fid;
1065 u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES 64
1069#define PRIO_802_1P_ENTRIES 8
1070#define PRIO_QUEUES 4
1071
1072#define SWITCH_PORT_NUM 2
1073#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK 7
1076
1077#define MAIN_PORT 0
1078#define OTHER_PORT 1
1079#define HOST_PORT SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM 0x20
1082#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1086#define MIB_COUNTER_RX_UNDERSIZE 0x02
1087#define MIB_COUNTER_RX_FRAGMENT 0x03
1088#define MIB_COUNTER_RX_OVERSIZE 0x04
1089#define MIB_COUNTER_RX_JABBER 0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1091#define MIB_COUNTER_RX_CRC_ERR 0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1093#define MIB_COUNTER_RX_CTRL_8808 0x09
1094#define MIB_COUNTER_RX_PAUSE 0x0A
1095#define MIB_COUNTER_RX_BROADCAST 0x0B
1096#define MIB_COUNTER_RX_MULTICAST 0x0C
1097#define MIB_COUNTER_RX_UNICAST 0x0D
1098#define MIB_COUNTER_RX_OCTET_64 0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255 0x10
1101#define MIB_COUNTER_RX_OCTET_256_511 0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1107#define MIB_COUNTER_TX_PAUSE 0x17
1108#define MIB_COUNTER_TX_BROADCAST 0x18
1109#define MIB_COUNTER_TX_MULTICAST 0x19
1110#define MIB_COUNTER_TX_UNICAST 0x1A
1111#define MIB_COUNTER_TX_DEFERRED 0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr: Current pointer to MIB counter index.
1123 * @link_down: Indication the link has just gone down.
1124 * @state: Connection status of the port.
1125 * @mib_start: The starting counter index. Some ports do not start at 0.
1126 * @counter: 64-bit MIB counter value.
1127 * @dropped: Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values. A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected. The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected. The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140 u8 cnt_ptr;
1141 u8 link_down;
1142 u8 state;
1143 u8 mib_start;
1144
1145 u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid: VID value.
1152 * @member: Port membership.
1153 * @port_prio: Port priority.
1154 * @rx_rate: Receive priority rate.
1155 * @tx_rate: Transmit priority rate.
1156 * @stp_state: Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159 u16 vid;
1160 u8 member;
1161 u8 port_prio;
1162 u32 rx_rate[PRIO_QUEUES];
1163 u32 tx_rate[PRIO_QUEUES];
1164 int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table: MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg: Port configuration information.
1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1173 * (bit7 ~ bit2) field.
1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1175 * Tag priority field.
1176 * @br_addr: Bridge address. Used for STP.
1177 * @other_addr: Other MAC address. Used for multiple network device mode.
1178 * @broad_per: Broadcast storm percentage.
1179 * @member: Current port membership. Used for STP.
1180 */
1181struct ksz_switch {
1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186 u8 diffserv[DIFFSERV_ENTRIES];
1187 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
6a3c910c
JP
1189 u8 br_addr[ETH_ALEN];
1190 u8 other_addr[ETH_ALEN];
8ca86fd8
TH
1191
1192 u8 broad_per;
1193 u8 member;
1194};
1195
1196#define TX_RATE_UNIT 10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state: Connection status of the port.
1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1202 * @duplex: Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1204 * @partner: Auto-negotiation partner setting. Used to determine link.
1205 * @port_id: Port index to access actual hardware register.
1206 * @pdev: Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209 uint state;
1210 uint tx_rate;
1211 u8 duplex;
1212 u8 advertised;
1213 u8 partner;
1214 u8 port_id;
1215 void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE 52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING (1 << 0)
1222#define SMALL_PACKET_TX_BUG (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
8ca86fd8
TH
1224#define RX_HUGE_FRAME (1 << 4)
1225#define STP_SUPPORT (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL (1 << 0)
1229#define FAST_AGING (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io: Virtual address assigned.
1234 * @ksz_switch: Pointer to KSZ8842 switch.
1235 * @port_info: Port information.
1236 * @port_mib: Port MIB information.
1237 * @dev_count: Number of network devices this hardware supports.
1238 * @dst_ports: Destination ports in switch for transmission.
1239 * @id: Hardware ID. Used for display only.
1240 * @mib_cnt: Number of MIB counters this hardware has.
1241 * @mib_port_cnt: Number of ports with MIB counters.
1242 * @tx_cfg: Cached transmit control settings.
1243 * @rx_cfg: Cached receive control settings.
1244 * @intr_mask: Current interrupt mask.
1245 * @intr_set: Current interrup set.
1246 * @intr_blocked: Interrupt blocked.
1247 * @rx_desc_info: Receive descriptor information.
1248 * @tx_desc_info: Transmit descriptor information.
1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1251 * @tx_size: Transmit data size. Used for TX optimization.
1252 * The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr: Permanent MAC address.
1254 * @override_addr: Overrided MAC address.
1255 * @address: Additional MAC address entries.
1256 * @addr_list_size: Additional MAC address list size.
1257 * @mac_override: Indication of MAC address overrided.
1258 * @promiscuous: Counter to keep track of promiscuous mode set.
1259 * @all_multi: Counter to keep track of all multicast mode set.
1260 * @multi_list: Multicast address entries.
1261 * @multi_bits: Cached multicast hash table settings.
1262 * @multi_list_size: Multicast address list size.
1263 * @enabled: Indication of hardware enabled.
1264 * @rx_stop: Indication of receive process stop.
1265 * @features: Hardware features to enable.
1266 * @overrides: Hardware features to override.
1267 * @parent: Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270 void __iomem *io;
1271
1272 struct ksz_switch *ksz_switch;
1273 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 int dev_count;
1276 int dst_ports;
1277 int id;
1278 int mib_cnt;
1279 int mib_port_cnt;
1280
1281 u32 tx_cfg;
1282 u32 rx_cfg;
1283 u32 intr_mask;
1284 u32 intr_set;
1285 uint intr_blocked;
1286
1287 struct ksz_desc_info rx_desc_info;
1288 struct ksz_desc_info tx_desc_info;
1289
1290 int tx_int_cnt;
1291 int tx_int_mask;
1292 int tx_size;
1293
6a3c910c
JP
1294 u8 perm_addr[ETH_ALEN];
1295 u8 override_addr[ETH_ALEN];
1296 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
8ca86fd8
TH
1297 u8 addr_list_size;
1298 u8 mac_override;
1299 u8 promiscuous;
1300 u8 all_multi;
6a3c910c 1301 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
8ca86fd8
TH
1302 u8 multi_bits[HW_MULTICAST_SIZE];
1303 u8 multi_list_size;
1304
1305 u8 enabled;
1306 u8 rx_stop;
1307 u8 reserved2[1];
1308
1309 uint features;
1310 uint overrides;
1311
1312 void *parent;
1313};
1314
1315enum {
1316 PHY_NO_FLOW_CTRL,
1317 PHY_FLOW_CTRL,
1318 PHY_TX_ONLY,
1319 PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1325 * duplex, and 0 for auto, which normally results in full
1326 * duplex.
1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 0 for auto, which normally results in 100 Mbit.
1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1330 * force.
1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1332 * control, and PHY_FLOW_CTRL for flow control.
1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * Mbit PHY.
1335 * @first_port: Index of first port this port supports.
1336 * @mib_port_cnt: Number of ports with MIB counters.
1337 * @port_cnt: Number of ports this port supports.
1338 * @counter: Port statistics counter.
1339 * @hw: Pointer to hardware structure.
1340 * @linked: Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343 u8 duplex;
1344 u8 speed;
1345 u8 force_link;
1346 u8 flow_ctrl;
1347
1348 int first_port;
1349 int mib_port_cnt;
1350 int port_cnt;
1351 u64 counter[OID_COUNTER_LAST];
1352
1353 struct ksz_hw *hw;
1354 struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer: Kernel timer.
1360 * @cnt: Running timer counter.
1361 * @max: Number of times to run timer; -1 for infinity.
1362 * @period: Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365 struct timer_list timer;
1366 int cnt;
1367 int max;
1368 int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr: Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys: Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt: Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380 dma_addr_t dma_addr;
1381 uint alloc_size;
1382 uint phys;
1383 u8 *alloc_virt;
1384 u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter: Wait queue to wakeup after counters are read.
1390 * @time: Next time in jiffies to read counter.
1391 * @read: Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394 wait_queue_head_t counter;
1395 unsigned long time;
1396 int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev: Pointer to network device.
1402 * @pdev: Pointer to PCI device.
1403 * @hw: Hardware structure.
1404 * @desc_pool: Physical memory used for descriptor pool.
1405 * @hwlock: Spinlock to prevent hardware from accessing.
1406 * @lock: Mutex lock to prevent device from accessing.
1407 * @dev_rcv: Receive process function used.
1408 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index: Buffer index for receiving fragments.
1410 * @skb_len: Buffer length for receiving fragments.
1411 * @mib_read: Workqueue to read MIB counters.
1412 * @mib_timer_info: Timer to read MIB counters.
1413 * @counter: Used for MIB reading.
1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1415 * the maximum is MAX_RX_BUF_SIZE.
1416 * @opened: Counter to keep track of device open.
1417 * @rx_tasklet: Receive processing tasklet.
1418 * @tx_tasklet: Transmit processing tasklet.
1419 * @wol_enable: Wake-on-LAN enable set by ethtool.
1420 * @wol_support: Wake-on-LAN support used by ethtool.
1421 * @pme_wait: Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424 struct net_device *dev;
1425 struct pci_dev *pdev;
1426
1427 struct ksz_hw hw;
1428 struct ksz_shared_mem desc_pool;
1429
1430 spinlock_t hwlock;
1431 struct mutex lock;
1432
1433 int (*dev_rcv)(struct dev_info *);
1434
1435 struct sk_buff *last_skb;
1436 int skb_index;
1437 int skb_len;
1438
1439 struct work_struct mib_read;
1440 struct ksz_timer_info mib_timer_info;
1441 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443 int mtu;
1444 int opened;
1445
1446 struct tasklet_struct rx_tasklet;
1447 struct tasklet_struct tx_tasklet;
1448
1449 int wol_enable;
1450 int wol_support;
1451 unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter: Adapter device information.
1457 * @port: Port information.
1458 * @monitor_time_info: Timer to monitor ports.
8ca86fd8
TH
1459 * @proc_sem: Semaphore for proc accessing.
1460 * @id: Device ID.
1461 * @mii_if: MII interface information.
1462 * @advertising: Temporary variable to store advertised settings.
1463 * @msg_enable: The message flags controlling driver output.
1464 * @media_state: The connection status of the device.
1465 * @multicast: The all multicast state of the device.
1466 * @promiscuous: The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469 struct dev_info *adapter;
1470 struct ksz_port port;
1471 struct ksz_timer_info monitor_timer_info;
8ca86fd8
TH
1472
1473 struct semaphore proc_sem;
1474 int id;
1475
1476 struct mii_if_info mii_if;
1477 u32 advertising;
1478
1479 u32 msg_enable;
1480 int media_state;
1481 int multicast;
1482 int promiscuous;
1483};
1484
8ca86fd8
TH
1485#define DRV_NAME "KSZ884X PCI"
1486#define DEVICE_NAME "KSZ884x PCI"
1487#define DRV_VERSION "1.0.0"
1488#define DRV_RELDATE "Feb 8, 2010"
1489
654b8c5c 1490static char version[] =
8ca86fd8
TH
1491 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506 hw->intr_blocked = hw->intr_mask;
1507 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513 hw->intr_set = interrupt;
1514 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519 hw->intr_blocked = 0;
1520 hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525 hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530 u32 read_intr;
1531
1532 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 hw->intr_set = read_intr & ~interrupt;
1534 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: The hardware instance.
1541 * @bit: The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548 hw->intr_mask |= bit;
1549
1550 if (!hw->intr_blocked)
1551 hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556 u32 read_intr;
1557
1558 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 hw->intr_set = read_intr | interrupt;
1560 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 *status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571 if (interrupt)
1572 hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585 uint interrupt = 0;
1586
1587 if (!hw->intr_blocked) {
1588 hw_dis_intr(hw);
1589 interrupt = hw->intr_blocked;
1590 }
1591 return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600 status.rx.hw_owned = 0;
1601 desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606 desc->sw.ctrl.tx.hw_owned = 1;
1607 if (desc->sw.buf_size != desc->sw.buf.data) {
1608 desc->sw.buf_size = desc->sw.buf.data;
1609 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 }
1611 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616 *desc = &info->ring[info->last];
1617 info->last++;
1618 info->last &= info->mask;
1619 info->avail--;
1620 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625 desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630 desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 struct ksz_desc **desc)
1635{
1636 *desc = &info->ring[info->next];
1637 info->next++;
1638 info->next &= info->mask;
1639 info->avail--;
1640 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645 desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650 desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ 0x10
1656#define TABLE_SEL_SHIFT 2
1657
1658#define HW_DELAY(hw, reg) \
1659 do { \
1660 u16 dummy; \
1661 dummy = readw(hw->io + reg); \
1662 } while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw: The hardware instance.
1667 * @table: The table selector.
1668 * @addr: The address of the table entry.
1669 * @data: Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676 u16 ctrl_addr;
1677 uint interrupt;
1678
1679 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681 interrupt = hw_block_intr(hw);
1682
1683 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687 hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw: The hardware instance.
1693 * @table: The table selector.
1694 * @addr: The address of the table entry.
1695 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 u32 data_lo)
1703{
1704 u16 ctrl_addr;
1705 uint interrupt;
1706
1707 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709 interrupt = hw_block_intr(hw);
1710
1711 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717 hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: The hardware instance.
1723 * @addr: The address of the table entry.
1724 * @mac_addr: The MAC address.
1725 * @ports: The port members.
1726 * @override: The flag to override the port receive/transmit settings.
1727 * @valid: The flag to indicate entry is valid.
1728 * @use_fid: The flag to indicate the FID is valid.
1729 * @fid: The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch. It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737 u32 data_hi;
1738 u32 data_lo;
1739
1740 data_lo = ((u32) mac_addr[2] << 24) |
1741 ((u32) mac_addr[3] << 16) |
1742 ((u32) mac_addr[4] << 8) | mac_addr[5];
1743 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746 if (override)
1747 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 if (use_fid) {
1749 data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 }
1752 if (valid)
1753 data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: The hardware instance.
1761 * @addr: The address of the table entry.
1762 * @vid: Buffer to store the VID.
1763 * @fid: Buffer to store the VID.
1764 * @member: Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch. It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 u8 *member)
1773{
1774 u32 data;
1775
1776 sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 if (data & VLAN_TABLE_VALID) {
1778 *vid = (u16)(data & VLAN_TABLE_VID);
1779 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 return 0;
1783 }
1784 return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: The hardware instance.
1790 * @port: The port index.
1791 * @addr: The address of the counter.
1792 * @cnt: Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799 u32 data;
1800 u16 ctrl_addr;
1801 uint interrupt;
1802 int timeout;
1803
1804 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806 interrupt = hw_block_intr(hw);
1807
1808 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812 for (timeout = 100; timeout > 0; timeout--) {
1813 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815 if (data & MIB_COUNTER_VALID) {
1816 if (data & MIB_COUNTER_OVERFLOW)
1817 *cnt += MIB_COUNTER_VALUE + 1;
1818 *cnt += data & MIB_COUNTER_VALUE;
1819 break;
1820 }
1821 }
1822
1823 hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: The hardware instance.
1829 * @port: The port index.
1830 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837 u32 cur;
1838 u32 data;
1839 u16 ctrl_addr;
1840 uint interrupt;
1841 int index;
1842
1843 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 do {
1845 interrupt = hw_block_intr(hw);
1846
1847 ctrl_addr = (u16) index;
1848 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 << 8);
1850 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854 hw_restore_intr(hw, interrupt);
1855
1856 data &= MIB_PACKET_DROPPED;
1857 cur = *last;
1858 if (data != cur) {
1859 *last = data;
1860 if (data < cur)
1861 data += MIB_PACKET_DROPPED + 1;
1862 data -= cur;
1863 *cnt += data;
1864 }
1865 ++last;
1866 ++cnt;
1867 index -= KS_MIB_PACKET_DROPPED_TX -
1868 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: The hardware instance.
1875 * @port: The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow. The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885 struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887 if (mib->mib_start < PORT_COUNTER_NUM)
1888 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 &mib->counter[mib->cnt_ptr]);
1891 ++mib->cnt_ptr;
1892 }
1893 if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 port_r_mib_pkt(hw, port, mib->dropped,
1895 &mib->counter[PORT_COUNTER_NUM]);
1896 mib->cnt_ptr = 0;
1897 return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: The hardware instance.
1903 * @port: The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910 struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912 mib->cnt_ptr = 0;
1913 if (mib->mib_start < PORT_COUNTER_NUM)
1914 do {
1915 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 &mib->counter[mib->cnt_ptr]);
1917 ++mib->cnt_ptr;
1918 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 port_r_mib_pkt(hw, port, mib->dropped,
1921 &mib->counter[PORT_COUNTER_NUM]);
1922 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: The hardware instance.
1933 * @port: The port index.
1934 * @offset: The offset of the port register.
1935 * @bits: The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944 u32 addr;
1945 u16 data;
1946
1947 PORT_CTRL_ADDR(port, addr);
1948 addr += offset;
1949 data = readw(hw->io + addr);
1950 return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: The hardware instance.
1956 * @port: The port index.
1957 * @offset: The offset of the port register.
1958 * @bits: The data bits to set.
1959 * @set: The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 int set)
1965{
1966 u32 addr;
1967 u16 data;
1968
1969 PORT_CTRL_ADDR(port, addr);
1970 addr += offset;
1971 data = readw(hw->io + addr);
1972 if (set)
1973 data |= bits;
1974 else
1975 data &= ~bits;
1976 writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: The hardware instance.
1982 * @port: The port index.
1983 * @offset: The offset of the register.
1984 * @shift: Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993 u16 data;
1994 u16 bit = 1 << port;
1995
1996 data = readw(hw->io + addr);
1997 data >>= shift;
1998 return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: The hardware instance.
2004 * @port: The port index.
2005 * @offset: The offset of the register.
2006 * @shift: Number of bits to shift.
2007 * @set: The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 int set)
2013{
2014 u16 data;
2015 u16 bits = 1 << port;
2016
2017 data = readw(hw->io + addr);
2018 bits <<= shift;
2019 if (set)
2020 data |= bits;
2021 else
2022 data &= ~bits;
2023 writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: The hardware instance.
2029 * @port: The port index.
2030 * @offset: The offset of the port register.
2031 * @data: Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037 u32 addr;
2038
2039 PORT_CTRL_ADDR(port, addr);
2040 addr += offset;
2041 *data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: The hardware instance.
2047 * @port: The port index.
2048 * @offset: The offset of the port register.
2049 * @data: Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055 u32 addr;
2056
2057 PORT_CTRL_ADDR(port, addr);
2058 addr += offset;
2059 *data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: The hardware instance.
2065 * @port: The port index.
2066 * @offset: The offset of the port register.
2067 * @data: Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073 u32 addr;
2074
2075 PORT_CTRL_ADDR(port, addr);
2076 addr += offset;
2077 writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: The hardware instance.
2083 * @addr: The address of the switch register.
2084 * @bits: The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093 u16 data;
2094
2095 data = readw(hw->io + addr);
2096 return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: The hardware instance.
2102 * @addr: The address of the switch register.
2103 * @bits: The data bits to set.
2104 * @set: The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110 u16 data;
2111
2112 data = readw(hw->io + addr);
2113 if (set)
2114 data |= bits;
2115 else
2116 data &= ~bits;
2117 writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124 port_cfg(hw, p,
2125 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130 return port_chk(hw, p,
2131 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE 10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE 9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: The hardware instance.
2143 * @percent: Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149 u16 data;
2150 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152 if (value > BROADCAST_STORM_RATE)
2153 value = BROADCAST_STORM_RATE;
2154
2155 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: The hardware instance.
2164 * @percent: Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170 int num;
2171 u16 data;
2172
2173 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 num = (data & BROADCAST_STORM_RATE_HI);
2175 num <<= 8;
2176 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 *percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: The hardware instance.
2184 * @port: The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190 port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: The hardware instance.
2196 * @port: The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214 int port;
2215
2216 hw->ksz_switch->broad_per = 1;
2217 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 sw_dis_broad_storm(hw, port);
2220 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: The hardware instance.
2226 * @percent: Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions. The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233 if (percent > 100)
2234 percent = 100;
2235
2236 sw_cfg_broad_storm(hw, percent);
2237 sw_get_broad_storm(hw, &percent);
2238 hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: The hardware instance.
2244 * @port: The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250 u32 addr;
2251
2252 PORT_CTRL_ADDR(port, addr);
2253 addr += KS8842_PORT_IN_RATE_OFFSET;
2254 writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265 int port;
2266 int prio;
2267 struct ksz_switch *sw = hw->ksz_switch;
2268
2269 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 sw->port_cfg[port].rx_rate[prio] =
2272 sw->port_cfg[port].tx_rate[prio] = 0;
2273 }
2274 sw_dis_prio_rate(hw, port);
2275 }
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282 port_cfg(hw, p,
2283 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288 port_cfg(hw, p,
2289 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294 return port_chk(hw, p,
2295 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300 return port_chk(hw, p,
2301 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
8ca86fd8
TH
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308 port_cfg(hw, p,
2309 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314 port_cfg(hw, p,
2315 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325 if (!(hw->overrides & FAST_AGING)) {
2326 sw_cfg_fast_aging(hw, 1);
2327 mdelay(1);
2328 sw_cfg_fast_aging(hw, 0);
2329 }
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336 port_cfg(hw, p,
2337 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342 port_cfg(hw, p,
2343 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348 return port_chk(hw, p,
2349 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354 return port_chk(hw, p,
2355 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360 port_cfg(hw, p,
2361 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366 port_cfg(hw, p,
2367 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372 return port_chk(hw, p,
2373 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378 return port_chk(hw, p,
2379 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386 port_cfg(hw, p,
2387 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392 port_cfg(hw, p,
2393 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398 port_cfg(hw, p,
2399 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409 int port;
2410
2411 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412 port_cfg_mirror_sniffer(hw, port, 0);
2413 port_cfg_mirror_rx(hw, port, 0);
2414 port_cfg_mirror_tx(hw, port, 0);
2415 }
2416 sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445 port_cfg(hw, p,
2446 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451 port_cfg(hw, p,
2452 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457 port_cfg(hw, p,
2458 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463 port_cfg(hw, p,
2464 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469 return port_chk(hw, p,
2470 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475 return port_chk(hw, p,
2476 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481 return port_chk(hw, p,
2482 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487 return port_chk(hw, p,
2488 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw: The hardware instance.
2494 * @port: The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500 port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw: The hardware instance.
2506 * @port: The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512 port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw: The hardware instance.
2518 * @set: The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw: The hardware instance.
2529 * @port: The port index.
2530 * @set: The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539 port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw: The hardware instance.
2545 * @port: The port index.
2546 * @prio: The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552 u16 data;
2553
2554 if (prio > PORT_BASED_PRIORITY_BASE)
2555 prio = PORT_BASED_PRIORITY_BASE;
2556
2557 hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560 data &= ~PORT_BASED_PRIORITY_MASK;
2561 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw: The hardware instance.
2568 * @port: The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port. Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575 port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw: The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586 int port;
2587 int tos;
2588 struct ksz_switch *sw = hw->ksz_switch;
2589
2590 /*
2591 * Init all the 802.1p tag priority value to be assigned to different
2592 * priority queue.
2593 */
2594 sw->p_802_1p[0] = 0;
2595 sw->p_802_1p[1] = 0;
2596 sw->p_802_1p[2] = 1;
2597 sw->p_802_1p[3] = 1;
2598 sw->p_802_1p[4] = 2;
2599 sw->p_802_1p[5] = 2;
2600 sw->p_802_1p[6] = 3;
2601 sw->p_802_1p[7] = 3;
2602
2603 /*
2604 * Init all the DiffServ priority value to be assigned to priority
2605 * queue 0.
2606 */
2607 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608 sw->diffserv[tos] = 0;
2609
2610 /* All QoS functions disabled. */
2611 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612 sw_dis_multi_queue(hw, port);
2613 sw_dis_diffserv(hw, port);
2614 sw_dis_802_1p(hw, port);
2615 sw_cfg_replace_vid(hw, port, 0);
2616
2617 sw->port_cfg[port].port_prio = 0;
2618 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619 }
2620 sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw: The hardware instance.
2626 * @port: The port index.
2627 * @vid: Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633 u32 addr;
2634
2635 PORT_CTRL_ADDR(port, addr);
2636 addr += KS8842_PORT_CTRL_VID_OFFSET;
2637 *vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw: The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648 int port;
2649 int entry;
2650 struct ksz_switch *sw = hw->ksz_switch;
2651
2652 /* Read 16 VLAN entries from device's VLAN table. */
2653 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654 sw_r_vlan_table(hw, entry,
2655 &sw->vlan_table[entry].vid,
2656 &sw->vlan_table[entry].fid,
2657 &sw->vlan_table[entry].member);
2658 }
2659
2660 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662 sw->port_cfg[port].member = PORT_MASK;
2663 }
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw: The hardware instance.
2669 * @port: The port index.
2670 * @member: The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676 u32 addr;
2677 u8 data;
2678
2679 PORT_CTRL_ADDR(port, addr);
2680 addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682 data = readb(hw->io + addr);
2683 data &= ~PORT_VLAN_MEMBERSHIP;
2684 data |= (member & PORT_MASK);
2685 writeb(data, hw->io + addr);
2686
2687 hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw: The hardware instance.
2693 * @mac_addr: Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699 int i;
2700
2701 for (i = 0; i < 6; i += 2) {
2702 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704 }
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw: The hardware instance.
2710 * @mac_addr: The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716 int i;
2717
2718 for (i = 0; i < 6; i += 2) {
2719 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721 }
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw: The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732 u16 data;
2733
2734 /* Enable switch MII flow control. */
2735 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736 data |= SWITCH_FLOW_CTRL;
2737 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741 /* Enable aggressive back off algorithm in half duplex mode. */
2742 data |= SWITCH_AGGR_BACKOFF;
2743
2744 /* Enable automatic fast aging when link changed detected. */
2745 data |= SWITCH_AGING_ENABLE;
2746 data |= SWITCH_LINK_AUTO_AGING;
2747
2748 if (hw->overrides & FAST_AGING)
2749 data |= SWITCH_FAST_AGING;
2750 else
2751 data &= ~SWITCH_FAST_AGING;
2752 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756 /* Enable no excessive collision drop. */
2757 data |= NO_EXC_COLLISION_DROP;
2758 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762 STP_STATE_DISABLED = 0,
2763 STP_STATE_LISTENING,
2764 STP_STATE_LEARNING,
2765 STP_STATE_FORWARDING,
2766 STP_STATE_BLOCKED,
2767 STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw: The hardware instance.
2773 * @port: The port index.
2774 * @state: The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780 u16 data;
2781
2782 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783 switch (state) {
2784 case STP_STATE_DISABLED:
2785 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786 data |= PORT_LEARN_DISABLE;
2787 break;
2788 case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793 data &= ~PORT_TX_ENABLE;
2794 data |= PORT_RX_ENABLE;
2795 data |= PORT_LEARN_DISABLE;
2796 break;
2797 case STP_STATE_LEARNING:
2798 data &= ~PORT_TX_ENABLE;
2799 data |= PORT_RX_ENABLE;
2800 data &= ~PORT_LEARN_DISABLE;
2801 break;
2802 case STP_STATE_FORWARDING:
2803 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 data &= ~PORT_LEARN_DISABLE;
2805 break;
2806 case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages. See sw_init_stp routine.
2810 */
2811 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 data |= PORT_LEARN_DISABLE;
2813 break;
2814 case STP_STATE_SIMPLE:
2815 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816 data |= PORT_LEARN_DISABLE;
2817 break;
2818 }
2819 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820 hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY 0
2824#define BROADCAST_ENTRY 1
2825#define BRIDGE_ADDR_ENTRY 2
2826#define IPV6_ADDR_ENTRY 3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw: The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836 struct ksz_mac_table *entry;
2837 int i;
2838
2839 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840 entry = &hw->ksz_switch->mac_table[i];
2841 sw_w_sta_mac_table(hw, i,
2842 entry->mac_addr, entry->ports,
2843 entry->override, 0,
2844 entry->use_fid, entry->fid);
2845 }
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw: The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856 struct ksz_mac_table *entry;
2857
2858 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859 entry->mac_addr[0] = 0x01;
2860 entry->mac_addr[1] = 0x80;
2861 entry->mac_addr[2] = 0xC2;
2862 entry->mac_addr[3] = 0x00;
2863 entry->mac_addr[4] = 0x00;
2864 entry->mac_addr[5] = 0x00;
2865 entry->ports = HOST_MASK;
2866 entry->override = 1;
2867 entry->valid = 1;
2868 sw_w_sta_mac_table(hw, STP_ENTRY,
2869 entry->mac_addr, entry->ports,
2870 entry->override, entry->valid,
2871 entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw: The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882 struct ksz_mac_table *entry;
2883 int i;
2884
2885 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886 entry = &hw->ksz_switch->mac_table[i];
2887 entry->valid = 0;
2888 sw_w_sta_mac_table(hw, i,
2889 entry->mac_addr, entry->ports,
2890 entry->override, entry->valid,
2891 entry->use_fid, entry->fid);
2892 }
2893}
2894
2895#define PHY_LINK_SUPPORT \
2896 (PHY_AUTO_NEG_ASYM_PAUSE | \
2897 PHY_AUTO_NEG_SYM_PAUSE | \
2898 PHY_AUTO_NEG_100BT4 | \
2899 PHY_AUTO_NEG_100BTX_FD | \
2900 PHY_AUTO_NEG_100BTX | \
2901 PHY_AUTO_NEG_10BT_FD | \
2902 PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw: The hardware instance.
2967 * @port: Port to read.
2968 * @reg: PHY register to read.
2969 * @val: Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975 int phy;
2976
2977 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978 *val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw: The hardware instance.
2984 * @port: Port to write.
2985 * @reg: PHY register to write.
2986 * @val: Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992 int phy;
2993
2994 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995 writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE 0
3003#define AT93C_WR_OFF 0x00
3004#define AT93C_WR_ALL 0x10
3005#define AT93C_ER_ALL 0x20
3006#define AT93C_WR_ON 0x30
3007
3008#define AT93C_WRITE 1
3009#define AT93C_READ 2
3010#define AT93C_ERASE 3
3011
3012#define EEPROM_DELAY 4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016 u16 data;
3017
3018 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019 data &= ~gpio;
3020 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025 u16 data;
3026
3027 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 data |= gpio;
3029 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034 u16 data;
3035
3036 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043 udelay(EEPROM_DELAY);
3044 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045 udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050 int i;
3051 u16 temp = 0;
3052
3053 for (i = 15; i >= 0; i--) {
3054 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055 udelay(EEPROM_DELAY);
3056
3057 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060 udelay(EEPROM_DELAY);
3061 }
3062 return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067 int i;
3068
3069 for (i = 15; i >= 0; i--) {
3070 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071 drop_gpio(hw, EEPROM_DATA_OUT);
3072 eeprom_clk(hw);
3073 }
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078 int i;
3079
3080 /* Initial start bit */
3081 raise_gpio(hw, EEPROM_DATA_OUT);
3082 eeprom_clk(hw);
3083
3084 /* AT93C operation */
3085 for (i = 1; i >= 0; i--) {
3086 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087 drop_gpio(hw, EEPROM_DATA_OUT);
3088 eeprom_clk(hw);
3089 }
3090
3091 /* Address location */
3092 for (i = 5; i >= 0; i--) {
3093 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 drop_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3096 }
3097}
3098
3099#define EEPROM_DATA_RESERVED 0
3100#define EEPROM_DATA_MAC_ADDR_0 1
3101#define EEPROM_DATA_MAC_ADDR_1 2
3102#define EEPROM_DATA_MAC_ADDR_2 3
3103#define EEPROM_DATA_SUBSYS_ID 4
3104#define EEPROM_DATA_SUBSYS_VEN_ID 5
3105#define EEPROM_DATA_PM_CAP 6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR 9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw: The hardware instance.
3113 * @reg: The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121 u16 data;
3122
3123 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125 spi_reg(hw, AT93C_READ, reg);
3126 data = spi_r(hw);
3127
3128 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130 return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw: The hardware instance.
3136 * @reg: The register offset.
3137 * @data: The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143 int timeout;
3144
3145 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147 /* Enable write. */
3148 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149 drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 udelay(1);
3151
3152 /* Erase the register. */
3153 raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 spi_reg(hw, AT93C_ERASE, reg);
3155 drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 udelay(1);
3157
3158 /* Check operation complete. */
3159 raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 timeout = 8;
3161 mdelay(2);
3162 do {
3163 mdelay(1);
3164 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165 drop_gpio(hw, EEPROM_CHIP_SELECT);
3166 udelay(1);
3167
3168 /* Write the register. */
3169 raise_gpio(hw, EEPROM_CHIP_SELECT);
3170 spi_reg(hw, AT93C_WRITE, reg);
3171 spi_w(hw, data);
3172 drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 udelay(1);
3174
3175 /* Check operation complete. */
3176 raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 timeout = 8;
3178 mdelay(2);
3179 do {
3180 mdelay(1);
3181 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182 drop_gpio(hw, EEPROM_CHIP_SELECT);
3183 udelay(1);
3184
3185 /* Disable write. */
3186 raise_gpio(hw, EEPROM_CHIP_SELECT);
3187 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199 switch (port->flow_ctrl) {
3200 case PHY_FLOW_CTRL:
3201 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202 break;
3203 /* Not supported. */
3204 case PHY_TX_ONLY:
3205 case PHY_RX_ONLY:
3206 default:
3207 break;
3208 }
3209 return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214 u32 rx_cfg;
3215 u32 tx_cfg;
3216
3217 rx_cfg = hw->rx_cfg;
3218 tx_cfg = hw->tx_cfg;
3219 if (rx)
3220 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221 else
3222 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223 if (tx)
3224 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225 else
3226 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227 if (hw->enabled) {
3228 if (rx_cfg != hw->rx_cfg)
3229 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230 if (tx_cfg != hw->tx_cfg)
3231 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232 }
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236 u16 local, u16 remote)
3237{
3238 int rx;
3239 int tx;
3240
3241 if (hw->overrides & PAUSE_FLOW_CTRL)
3242 return;
3243
3244 rx = tx = 0;
3245 if (port->force_link)
3246 rx = tx = 1;
3247 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249 rx = tx = 1;
3250 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251 (local & PHY_AUTO_NEG_PAUSE) ==
3252 PHY_AUTO_NEG_ASYM_PAUSE) {
3253 tx = 1;
3254 }
3255 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257 rx = 1;
3258 }
3259 if (!hw->ksz_switch)
3260 set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264 struct ksz_port_info *info, u16 link_status)
3265{
3266 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3268 u32 cfg = hw->tx_cfg;
3269
3270 /* Disable flow control in the half duplex mode. */
3271 if (1 == info->duplex)
3272 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273 if (hw->enabled && cfg != hw->tx_cfg)
3274 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275 }
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port: The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287 uint interrupt;
3288 struct ksz_port_info *info;
3289 struct ksz_port_info *linked = NULL;
3290 struct ksz_hw *hw = port->hw;
3291 u16 data;
3292 u16 status;
3293 u8 local;
3294 u8 remote;
3295 int i;
3296 int p;
3297 int change = 0;
3298
3299 interrupt = hw_block_intr(hw);
3300
3301 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302 info = &hw->port_info[p];
3303 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306 /*
3307 * Link status is changing all the time even when there is no
3308 * cable connection!
3309 */
3310 remote = status & (PORT_AUTO_NEG_COMPLETE |
3311 PORT_STATUS_LINK_GOOD);
3312 local = (u8) data;
3313
3314 /* No change to status. */
3315 if (local == info->advertised && remote == info->partner)
3316 continue;
3317
3318 info->advertised = local;
3319 info->partner = remote;
3320 if (status & PORT_STATUS_LINK_GOOD) {
3321
3322 /* Remember the first linked port. */
3323 if (!linked)
3324 linked = info;
3325
3326 info->tx_rate = 10 * TX_RATE_UNIT;
3327 if (status & PORT_STATUS_SPEED_100MBIT)
3328 info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330 info->duplex = 1;
3331 if (status & PORT_STATUS_FULL_DUPLEX)
3332 info->duplex = 2;
3333
3334 if (media_connected != info->state) {
3335 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336 &data);
3337 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338 &status);
3339 determine_flow_ctrl(hw, port, data, status);
3340 if (hw->ksz_switch) {
3341 port_cfg_back_pressure(hw, p,
3342 (1 == info->duplex));
3343 }
3344 change |= 1 << i;
3345 port_cfg_change(hw, port, info, status);
3346 }
3347 info->state = media_connected;
3348 } else {
3349 if (media_disconnected != info->state) {
3350 change |= 1 << i;
3351
3352 /* Indicate the link just goes down. */
3353 hw->port_mib[p].link_down = 1;
3354 }
3355 info->state = media_disconnected;
3356 }
3357 hw->port_mib[p].state = (u8) info->state;
3358 }
3359
3360 if (linked && media_disconnected == port->linked->state)
3361 port->linked = linked;
3362
3363 hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT 10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port: The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376 struct ksz_port_info *info;
3377 struct ksz_hw *hw = port->hw;
3378 u16 data;
3379 u16 cfg;
3380 u8 status;
3381 int i;
3382 int p;
3383
3384 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385 info = &hw->port_info[p];
3386
3387 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389
3390 cfg = 0;
3391 if (status & PORT_STATUS_LINK_GOOD)
3392 cfg = data;
3393
3394 data |= PORT_AUTO_NEG_ENABLE;
3395 data = advertised_flow_ctrl(port, data);
3396
3397 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399
3400 /* Check if manual configuration is specified by the user. */
3401 if (port->speed || port->duplex) {
3402 if (10 == port->speed)
3403 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404 PORT_AUTO_NEG_100BTX);
3405 else if (100 == port->speed)
3406 data &= ~(PORT_AUTO_NEG_10BT_FD |
3407 PORT_AUTO_NEG_10BT);
3408 if (1 == port->duplex)
3409 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410 PORT_AUTO_NEG_10BT_FD);
3411 else if (2 == port->duplex)
3412 data &= ~(PORT_AUTO_NEG_100BTX |
3413 PORT_AUTO_NEG_10BT);
3414 }
3415 if (data != cfg) {
3416 data |= PORT_AUTO_NEG_RESTART;
3417 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418 }
3419 }
3420}
3421
3422/**
3423 * port_force_link_speed - force port speed
3424 * @port: The port instance.
3425 *
3426 * This routine forces the link speed of the switch ports.
3427 */
3428static void port_force_link_speed(struct ksz_port *port)
3429{
3430 struct ksz_hw *hw = port->hw;
3431 u16 data;
3432 int i;
3433 int phy;
3434 int p;
3435
3436 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438 hw_r_phy_ctrl(hw, phy, &data);
3439
3440 data &= ~PHY_AUTO_NEG_ENABLE;
3441
3442 if (10 == port->speed)
3443 data &= ~PHY_SPEED_100MBIT;
3444 else if (100 == port->speed)
3445 data |= PHY_SPEED_100MBIT;
3446 if (1 == port->duplex)
3447 data &= ~PHY_FULL_DUPLEX;
3448 else if (2 == port->duplex)
3449 data |= PHY_FULL_DUPLEX;
3450 hw_w_phy_ctrl(hw, phy, data);
3451 }
3452}
3453
3454static void port_set_power_saving(struct ksz_port *port, int enable)
3455{
3456 struct ksz_hw *hw = port->hw;
3457 int i;
3458 int p;
3459
3460 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461 port_cfg(hw, p,
3462 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463}
3464
3465/*
3466 * KSZ8841 power management functions
3467 */
3468
3469/**
3470 * hw_chk_wol_pme_status - check PMEN pin
3471 * @hw: The hardware instance.
3472 *
3473 * This function is used to check PMEN pin is asserted.
3474 *
3475 * Return 1 if PMEN pin is asserted; otherwise, 0.
3476 */
3477static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478{
3479 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480 struct pci_dev *pdev = hw_priv->pdev;
3481 u16 data;
3482
3483 if (!pdev->pm_cap)
3484 return 0;
3485 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487}
3488
3489/**
3490 * hw_clr_wol_pme_status - clear PMEN pin
3491 * @hw: The hardware instance.
3492 *
3493 * This routine is used to clear PME_Status to deassert PMEN pin.
3494 */
3495static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496{
3497 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498 struct pci_dev *pdev = hw_priv->pdev;
3499 u16 data;
3500
3501 if (!pdev->pm_cap)
3502 return;
3503
3504 /* Clear PME_Status to deassert PMEN pin. */
3505 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506 data |= PCI_PM_CTRL_PME_STATUS;
3507 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508}
3509
3510/**
3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512 * @hw: The hardware instance.
3513 * @set: The flag indicating whether to enable or disable.
3514 *
3515 * This routine is used to enable or disable Wake-on-LAN.
3516 */
3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518{
3519 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520 struct pci_dev *pdev = hw_priv->pdev;
3521 u16 data;
3522
3523 if (!pdev->pm_cap)
3524 return;
3525 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526 data &= ~PCI_PM_CTRL_STATE_MASK;
3527 if (set)
3528 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529 else
3530 data &= ~PCI_PM_CTRL_PME_ENABLE;
3531 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532}
3533
3534/**
3535 * hw_cfg_wol - configure Wake-on-LAN features
3536 * @hw: The hardware instance.
3537 * @frame: The pattern frame bit.
3538 * @set: The flag indicating whether to enable or disable.
3539 *
3540 * This routine is used to enable or disable certain Wake-on-LAN features.
3541 */
3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543{
3544 u16 data;
3545
3546 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547 if (set)
3548 data |= frame;
3549 else
3550 data &= ~frame;
3551 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552}
3553
3554/**
3555 * hw_set_wol_frame - program Wake-on-LAN pattern
3556 * @hw: The hardware instance.
3557 * @i: The frame index.
3558 * @mask_size: The size of the mask.
3559 * @mask: Mask to ignore certain bytes in the pattern.
3560 * @frame_size: The size of the frame.
3561 * @pattern: The frame data.
3562 *
3563 * This routine is used to program Wake-on-LAN pattern.
3564 */
3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
b6bc7650 3566 const u8 *mask, uint frame_size, const u8 *pattern)
8ca86fd8
TH
3567{
3568 int bits;
3569 int from;
3570 int len;
3571 int to;
3572 u32 crc;
3573 u8 data[64];
3574 u8 val = 0;
3575
3576 if (frame_size > mask_size * 8)
3577 frame_size = mask_size * 8;
3578 if (frame_size > 64)
3579 frame_size = 64;
3580
3581 i *= 0x10;
3582 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584
3585 bits = len = from = to = 0;
3586 do {
3587 if (bits) {
3588 if ((val & 1))
3589 data[to++] = pattern[from];
3590 val >>= 1;
3591 ++from;
3592 --bits;
3593 } else {
3594 val = mask[len];
3595 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596 + len);
3597 ++len;
3598 if (val)
3599 bits = 8;
3600 else
3601 from += 8;
3602 }
3603 } while (from < (int) frame_size);
3604 if (val) {
3605 bits = mask[len - 1];
3606 val <<= (from % 8);
3607 bits &= ~val;
3608 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609 1);
3610 }
3611 crc = ether_crc(to, data);
3612 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613}
3614
3615/**
3616 * hw_add_wol_arp - add ARP pattern
3617 * @hw: The hardware instance.
3618 * @ip_addr: The IPv4 address assigned to the device.
3619 *
3620 * This routine is used to add ARP pattern for waking up the host.
3621 */
b6bc7650 3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
8ca86fd8 3623{
b6bc7650 3624 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
8ca86fd8
TH
3625 u8 pattern[42] = {
3626 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628 0x08, 0x06,
3629 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631 0x00, 0x00, 0x00, 0x00,
3632 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633 0x00, 0x00, 0x00, 0x00 };
3634
3635 memcpy(&pattern[38], ip_addr, 4);
3636 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637}
3638
3639/**
3640 * hw_add_wol_bcast - add broadcast pattern
3641 * @hw: The hardware instance.
3642 *
3643 * This routine is used to add broadcast pattern for waking up the host.
3644 */
3645static void hw_add_wol_bcast(struct ksz_hw *hw)
3646{
b6bc7650
JP
3647 static const u8 mask[] = { 0x3F };
3648 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
8ca86fd8 3649
6a3c910c 3650 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
8ca86fd8
TH
3651}
3652
3653/**
3654 * hw_add_wol_mcast - add multicast pattern
3655 * @hw: The hardware instance.
3656 *
3657 * This routine is used to add multicast pattern for waking up the host.
3658 *
3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660 * by IPv6 ping command. Note that multicast packets are filtred through the
3661 * multicast hash table, so not all multicast packets can wake up the host.
3662 */
3663static void hw_add_wol_mcast(struct ksz_hw *hw)
3664{
b6bc7650 3665 static const u8 mask[] = { 0x3F };
8ca86fd8
TH
3666 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667
3668 memcpy(&pattern[3], &hw->override_addr[3], 3);
3669 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670}
3671
3672/**
3673 * hw_add_wol_ucast - add unicast pattern
3674 * @hw: The hardware instance.
3675 *
3676 * This routine is used to add unicast pattern to wakeup the host.
3677 *
3678 * It is assumed the unicast packet is directed to the device, as the hardware
3679 * can only receive them in normal case.
3680 */
3681static void hw_add_wol_ucast(struct ksz_hw *hw)
3682{
b6bc7650 3683 static const u8 mask[] = { 0x3F };
8ca86fd8 3684
6a3c910c 3685 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
8ca86fd8
TH
3686}
3687
3688/**
3689 * hw_enable_wol - enable Wake-on-LAN
3690 * @hw: The hardware instance.
3691 * @wol_enable: The Wake-on-LAN settings.
3692 * @net_addr: The IPv4 address assigned to the device.
3693 *
3694 * This routine is used to enable Wake-on-LAN depending on driver settings.
3695 */
b6bc7650 3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
8ca86fd8
TH
3697{
3698 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700 hw_add_wol_ucast(hw);
3701 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702 hw_add_wol_mcast(hw);
3703 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705 hw_add_wol_arp(hw, net_addr);
3706}
3707
3708/**
3709 * hw_init - check driver is correct for the hardware
3710 * @hw: The hardware instance.
3711 *
3712 * This function checks the hardware is correct for this driver and sets the
3713 * hardware up for proper initialization.
3714 *
3715 * Return number of ports or 0 if not right.
3716 */
3717static int hw_init(struct ksz_hw *hw)
3718{
3719 int rc = 0;
3720 u16 data;
3721 u16 revision;
3722
3723 /* Set bus speed to 125MHz. */
3724 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725
3726 /* Check KSZ884x chip ID. */
3727 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728
3729 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730 data &= KS884X_CHIP_ID_MASK_41;
3731 if (REG_CHIP_ID_41 == data)
3732 rc = 1;
3733 else if (REG_CHIP_ID_42 == data)
3734 rc = 2;
3735 else
3736 return 0;
3737
3738 /* Setup hardware features or bug workarounds. */
3739 if (revision <= 1) {
3740 hw->features |= SMALL_PACKET_TX_BUG;
3741 if (1 == rc)
3742 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743 }
8ca86fd8
TH
3744 return rc;
3745}
3746
3747/**
3748 * hw_reset - reset the hardware
3749 * @hw: The hardware instance.
3750 *
3751 * This routine resets the hardware.
3752 */
3753static void hw_reset(struct ksz_hw *hw)
3754{
3755 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756
3757 /* Wait for device to reset. */
3758 mdelay(10);
3759
3760 /* Write 0 to clear device reset. */
3761 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762}
3763
3764/**
3765 * hw_setup - setup the hardware
3766 * @hw: The hardware instance.
3767 *
3768 * This routine setup the hardware for proper operation.
3769 */
3770static void hw_setup(struct ksz_hw *hw)
3771{
3772#if SET_DEFAULT_LED
3773 u16 data;
3774
3775 /* Change default LED mode. */
3776 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777 data &= ~LED_MODE;
3778 data |= SET_DEFAULT_LED;
3779 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780#endif
3781
3782 /* Setup transmit control. */
3783 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785
3786 /* Setup receive control. */
3787 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790
3791 /* Hardware cannot handle UDP packet in IP fragments. */
3792 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793
3794 if (hw->all_multi)
3795 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796 if (hw->promiscuous)
3797 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798}
3799
3800/**
3801 * hw_setup_intr - setup interrupt mask
3802 * @hw: The hardware instance.
3803 *
3804 * This routine setup the interrupt mask for proper operation.
3805 */
3806static void hw_setup_intr(struct ksz_hw *hw)
3807{
3808 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809}
3810
3811static void ksz_check_desc_num(struct ksz_desc_info *info)
3812{
3813#define MIN_DESC_SHIFT 2
3814
3815 int alloc = info->alloc;
3816 int shift;
3817
3818 shift = 0;
3819 while (!(alloc & 1)) {
3820 shift++;
3821 alloc >>= 1;
3822 }
3823 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
0dc7d2b3 3824 pr_alert("Hardware descriptor numbers not right!\n");
8ca86fd8
TH
3825 while (alloc) {
3826 shift++;
3827 alloc >>= 1;
3828 }
3829 if (shift < MIN_DESC_SHIFT)
3830 shift = MIN_DESC_SHIFT;
3831 alloc = 1 << shift;
3832 info->alloc = alloc;
3833 }
3834 info->mask = info->alloc - 1;
3835}
3836
3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838{
3839 int i;
3840 u32 phys = desc_info->ring_phys;
3841 struct ksz_hw_desc *desc = desc_info->ring_virt;
3842 struct ksz_desc *cur = desc_info->ring;
3843 struct ksz_desc *previous = NULL;
3844
3845 for (i = 0; i < desc_info->alloc; i++) {
3846 cur->phw = desc++;
3847 phys += desc_info->size;
3848 previous = cur++;
3849 previous->phw->next = cpu_to_le32(phys);
3850 }
3851 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852 previous->sw.buf.rx.end_of_ring = 1;
3853 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854
3855 desc_info->avail = desc_info->alloc;
3856 desc_info->last = desc_info->next = 0;
3857
3858 desc_info->cur = desc_info->ring;
3859}
3860
3861/**
3862 * hw_set_desc_base - set descriptor base addresses
3863 * @hw: The hardware instance.
3864 * @tx_addr: The transmit descriptor base.
3865 * @rx_addr: The receive descriptor base.
3866 *
3867 * This routine programs the descriptor base addresses after reset.
3868 */
3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870{
3871 /* Set base address of Tx/Rx descriptors. */
3872 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874}
3875
3876static void hw_reset_pkts(struct ksz_desc_info *info)
3877{
3878 info->cur = info->ring;
3879 info->avail = info->alloc;
3880 info->last = info->next = 0;
3881}
3882
3883static inline void hw_resume_rx(struct ksz_hw *hw)
3884{
3885 writel(DMA_START, hw->io + KS_DMA_RX_START);
3886}
3887
3888/**
3889 * hw_start_rx - start receiving
3890 * @hw: The hardware instance.
3891 *
3892 * This routine starts the receive function of the hardware.
3893 */
3894static void hw_start_rx(struct ksz_hw *hw)
3895{
3896 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897
3898 /* Notify when the receive stops. */
3899 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900
3901 writel(DMA_START, hw->io + KS_DMA_RX_START);
3902 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903 hw->rx_stop++;
3904
3905 /* Variable overflows. */
3906 if (0 == hw->rx_stop)
3907 hw->rx_stop = 2;
3908}
3909
49ce9c2c 3910/**
8ca86fd8
TH
3911 * hw_stop_rx - stop receiving
3912 * @hw: The hardware instance.
3913 *
3914 * This routine stops the receive function of the hardware.
3915 */
3916static void hw_stop_rx(struct ksz_hw *hw)
3917{
3918 hw->rx_stop = 0;
3919 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921}
3922
3923/**
3924 * hw_start_tx - start transmitting
3925 * @hw: The hardware instance.
3926 *
3927 * This routine starts the transmit function of the hardware.
3928 */
3929static void hw_start_tx(struct ksz_hw *hw)
3930{
3931 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_stop_tx - stop transmitting
3936 * @hw: The hardware instance.
3937 *
3938 * This routine stops the transmit function of the hardware.
3939 */
3940static void hw_stop_tx(struct ksz_hw *hw)
3941{
3942 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943}
3944
3945/**
3946 * hw_disable - disable hardware
3947 * @hw: The hardware instance.
3948 *
3949 * This routine disables the hardware.
3950 */
3951static void hw_disable(struct ksz_hw *hw)
3952{
3953 hw_stop_rx(hw);
3954 hw_stop_tx(hw);
3955 hw->enabled = 0;
3956}
3957
3958/**
3959 * hw_enable - enable hardware
3960 * @hw: The hardware instance.
3961 *
3962 * This routine enables the hardware.
3963 */
3964static void hw_enable(struct ksz_hw *hw)
3965{
3966 hw_start_tx(hw);
3967 hw_start_rx(hw);
3968 hw->enabled = 1;
3969}
3970
3971/**
3972 * hw_alloc_pkt - allocate enough descriptors for transmission
3973 * @hw: The hardware instance.
3974 * @length: The length of the packet.
3975 * @physical: Number of descriptors required.
3976 *
3977 * This function allocates descriptors for transmission.
3978 *
3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980 */
3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982{
3983 /* Always leave one descriptor free. */
3984 if (hw->tx_desc_info.avail <= 1)
3985 return 0;
3986
3987 /* Allocate a descriptor for transmission and mark it current. */
3988 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990
3991 /* Keep track of number of transmit descriptors used so far. */
3992 ++hw->tx_int_cnt;
3993 hw->tx_size += length;
3994
3995 /* Cannot hold on too much data. */
3996 if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997 hw->tx_int_cnt = hw->tx_int_mask + 1;
3998
3999 if (physical > hw->tx_desc_info.avail)
4000 return 1;
4001
4002 return hw->tx_desc_info.avail;
4003}
4004
4005/**
4006 * hw_send_pkt - mark packet for transmission
4007 * @hw: The hardware instance.
4008 *
4009 * This routine marks the packet for transmission in PCI version.
4010 */
4011static void hw_send_pkt(struct ksz_hw *hw)
4012{
4013 struct ksz_desc *cur = hw->tx_desc_info.cur;
4014
4015 cur->sw.buf.tx.last_seg = 1;
4016
4017 /* Interrupt only after specified number of descriptors used. */
4018 if (hw->tx_int_cnt > hw->tx_int_mask) {
4019 cur->sw.buf.tx.intr = 1;
4020 hw->tx_int_cnt = 0;
4021 hw->tx_size = 0;
4022 }
4023
4024 /* KSZ8842 supports port directed transmission. */
4025 cur->sw.buf.tx.dest_port = hw->dst_ports;
4026
4027 release_desc(cur);
4028
4029 writel(0, hw->io + KS_DMA_TX_START);
4030}
4031
4032static int empty_addr(u8 *addr)
4033{
4034 u32 *addr1 = (u32 *) addr;
4035 u16 *addr2 = (u16 *) &addr[4];
4036
4037 return 0 == *addr1 && 0 == *addr2;
4038}
4039
4040/**
4041 * hw_set_addr - set MAC address
4042 * @hw: The hardware instance.
4043 *
4044 * This routine programs the MAC address of the hardware when the address is
4045 * overrided.
4046 */
4047static void hw_set_addr(struct ksz_hw *hw)
4048{
4049 int i;
4050
6a3c910c 4051 for (i = 0; i < ETH_ALEN; i++)
8ca86fd8
TH
4052 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053 hw->io + KS884X_ADDR_0_OFFSET + i);
4054
4055 sw_set_addr(hw, hw->override_addr);
4056}
4057
4058/**
4059 * hw_read_addr - read MAC address
4060 * @hw: The hardware instance.
4061 *
4062 * This routine retrieves the MAC address of the hardware.
4063 */
4064static void hw_read_addr(struct ksz_hw *hw)
4065{
4066 int i;
4067
6a3c910c 4068 for (i = 0; i < ETH_ALEN; i++)
8ca86fd8
TH
4069 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070 KS884X_ADDR_0_OFFSET + i);
4071
4072 if (!hw->mac_override) {
6a3c910c 4073 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
8ca86fd8 4074 if (empty_addr(hw->override_addr)) {
6a3c910c 4075 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
8ca86fd8 4076 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
6a3c910c 4077 ETH_ALEN);
8ca86fd8
TH
4078 hw->override_addr[5] += hw->id;
4079 hw_set_addr(hw);
4080 }
4081 }
4082}
4083
4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085{
4086 int i;
4087 u32 mac_addr_lo;
4088 u32 mac_addr_hi;
4089
4090 mac_addr_hi = 0;
4091 for (i = 0; i < 2; i++) {
4092 mac_addr_hi <<= 8;
4093 mac_addr_hi |= mac_addr[i];
4094 }
4095 mac_addr_hi |= ADD_ADDR_ENABLE;
4096 mac_addr_lo = 0;
4097 for (i = 2; i < 6; i++) {
4098 mac_addr_lo <<= 8;
4099 mac_addr_lo |= mac_addr[i];
4100 }
4101 index *= ADD_ADDR_INCR;
4102
4103 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105}
4106
4107static void hw_set_add_addr(struct ksz_hw *hw)
4108{
4109 int i;
4110
4111 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112 if (empty_addr(hw->address[i]))
4113 writel(0, hw->io + ADD_ADDR_INCR * i +
4114 KS_ADD_ADDR_0_HI);
4115 else
4116 hw_ena_add_addr(hw, i, hw->address[i]);
4117 }
4118}
4119
4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121{
4122 int i;
4123 int j = ADDITIONAL_ENTRIES;
4124
7ced5440 4125 if (ether_addr_equal(hw->override_addr, mac_addr))
8ca86fd8
TH
4126 return 0;
4127 for (i = 0; i < hw->addr_list_size; i++) {
7ced5440 4128 if (ether_addr_equal(hw->address[i], mac_addr))
8ca86fd8
TH
4129 return 0;
4130 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131 j = i;
4132 }
4133 if (j < ADDITIONAL_ENTRIES) {
6a3c910c 4134 memcpy(hw->address[j], mac_addr, ETH_ALEN);
8ca86fd8
TH
4135 hw_ena_add_addr(hw, j, hw->address[j]);
4136 return 0;
4137 }
4138 return -1;
4139}
4140
4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142{
4143 int i;
4144
4145 for (i = 0; i < hw->addr_list_size; i++) {
7ced5440 4146 if (ether_addr_equal(hw->address[i], mac_addr)) {
6a3c910c 4147 memset(hw->address[i], 0, ETH_ALEN);
8ca86fd8
TH
4148 writel(0, hw->io + ADD_ADDR_INCR * i +
4149 KS_ADD_ADDR_0_HI);
4150 return 0;
4151 }
4152 }
4153 return -1;
4154}
4155
4156/**
4157 * hw_clr_multicast - clear multicast addresses
4158 * @hw: The hardware instance.
4159 *
4160 * This routine removes all multicast addresses set in the hardware.
4161 */
4162static void hw_clr_multicast(struct ksz_hw *hw)
4163{
4164 int i;
4165
4166 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167 hw->multi_bits[i] = 0;
4168
4169 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170 }
4171}
4172
4173/**
4174 * hw_set_grp_addr - set multicast addresses
4175 * @hw: The hardware instance.
4176 *
4177 * This routine programs multicast addresses for the hardware to accept those
4178 * addresses.
4179 */
4180static void hw_set_grp_addr(struct ksz_hw *hw)
4181{
4182 int i;
4183 int index;
4184 int position;
4185 int value;
4186
4187 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188
4189 for (i = 0; i < hw->multi_list_size; i++) {
4190 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191 index = position >> 3;
4192 value = 1 << (position & 7);
4193 hw->multi_bits[index] |= (u8) value;
4194 }
4195
4196 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198 i);
4199}
4200
4201/**
4202 * hw_set_multicast - enable or disable all multicast receiving
4203 * @hw: The hardware instance.
4204 * @multicast: To turn on or off the all multicast feature.
4205 *
4206 * This routine enables/disables the hardware to accept all multicast packets.
4207 */
4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209{
4210 /* Stop receiving for reconfiguration. */
4211 hw_stop_rx(hw);
4212
4213 if (multicast)
4214 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215 else
4216 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217
4218 if (hw->enabled)
4219 hw_start_rx(hw);
4220}
4221
4222/**
4223 * hw_set_promiscuous - enable or disable promiscuous receiving
4224 * @hw: The hardware instance.
4225 * @prom: To turn on or off the promiscuous feature.
4226 *
4227 * This routine enables/disables the hardware to accept all packets.
4228 */
4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230{
4231 /* Stop receiving for reconfiguration. */
4232 hw_stop_rx(hw);
4233
4234 if (prom)
4235 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236 else
4237 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238
4239 if (hw->enabled)
4240 hw_start_rx(hw);
4241}
4242
4243/**
4244 * sw_enable - enable the switch
4245 * @hw: The hardware instance.
4246 * @enable: The flag to enable or disable the switch
4247 *
4248 * This routine is used to enable/disable the switch in KSZ8842.
4249 */
4250static void sw_enable(struct ksz_hw *hw, int enable)
4251{
4252 int port;
4253
4254 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255 if (hw->dev_count > 1) {
4256 /* Set port-base vlan membership with host port. */
4257 sw_cfg_port_base_vlan(hw, port,
4258 HOST_MASK | (1 << port));
4259 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260 } else {
4261 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263 }
4264 }
4265 if (hw->dev_count > 1)
4266 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267 else
4268 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269
4270 if (enable)
4271 enable = KS8842_START;
4272 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273}
4274
4275/**
4276 * sw_setup - setup the switch
4277 * @hw: The hardware instance.
4278 *
4279 * This routine setup the hardware switch engine for default operation.
4280 */
4281static void sw_setup(struct ksz_hw *hw)
4282{
4283 int port;
4284
4285 sw_set_global_ctrl(hw);
4286
4287 /* Enable switch broadcast storm protection at 10% percent rate. */
4288 sw_init_broad_storm(hw);
4289 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290 for (port = 0; port < SWITCH_PORT_NUM; port++)
4291 sw_ena_broad_storm(hw, port);
4292
4293 sw_init_prio(hw);
4294
4295 sw_init_mirror(hw);
4296
4297 sw_init_prio_rate(hw);
4298
4299 sw_init_vlan(hw);
4300
4301 if (hw->features & STP_SUPPORT)
4302 sw_init_stp(hw);
4303 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305 hw->overrides |= PAUSE_FLOW_CTRL;
4306 sw_enable(hw, 1);
4307}
4308
4309/**
4310 * ksz_start_timer - start kernel timer
4311 * @info: Kernel timer information.
4312 * @time: The time tick.
4313 *
4314 * This routine starts the kernel timer after the specified time tick.
4315 */
4316static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317{
4318 info->cnt = 0;
4319 info->timer.expires = jiffies + time;
4320 add_timer(&info->timer);
4321
4322 /* infinity */
4323 info->max = -1;
4324}
4325
4326/**
4327 * ksz_stop_timer - stop kernel timer
4328 * @info: Kernel timer information.
4329 *
4330 * This routine stops the kernel timer.
4331 */
4332static void ksz_stop_timer(struct ksz_timer_info *info)
4333{
4334 if (info->max) {
4335 info->max = 0;
4336 del_timer_sync(&info->timer);
4337 }
4338}
4339
4340static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341 void (*function)(unsigned long), void *data)
4342{
4343 info->max = 0;
4344 info->period = period;
4345 init_timer(&info->timer);
4346 info->timer.function = function;
4347 info->timer.data = (unsigned long) data;
4348}
4349
4350static void ksz_update_timer(struct ksz_timer_info *info)
4351{
4352 ++info->cnt;
4353 if (info->max > 0) {
4354 if (info->cnt < info->max) {
4355 info->timer.expires = jiffies + info->period;
4356 add_timer(&info->timer);
4357 } else
4358 info->max = 0;
4359 } else if (info->max < 0) {
4360 info->timer.expires = jiffies + info->period;
4361 add_timer(&info->timer);
4362 }
4363}
4364
4365/**
4366 * ksz_alloc_soft_desc - allocate software descriptors
4367 * @desc_info: Descriptor information structure.
4368 * @transmit: Indication that descriptors are for transmit.
4369 *
4370 * This local function allocates software descriptors for manipulation in
4371 * memory.
4372 *
4373 * Return 0 if successful.
4374 */
4375static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4376{
cb508701
TM
4377 desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4378 GFP_KERNEL);
8ca86fd8
TH
4379 if (!desc_info->ring)
4380 return 1;
8ca86fd8
TH
4381 hw_init_desc(desc_info, transmit);
4382 return 0;
4383}
4384
4385/**
4386 * ksz_alloc_desc - allocate hardware descriptors
4387 * @adapter: Adapter information structure.
4388 *
4389 * This local function allocates hardware descriptors for receiving and
4390 * transmitting.
4391 *
4392 * Return 0 if successful.
4393 */
4394static int ksz_alloc_desc(struct dev_info *adapter)
4395{
4396 struct ksz_hw *hw = &adapter->hw;
4397 int offset;
4398
4399 /* Allocate memory for RX & TX descriptors. */
4400 adapter->desc_pool.alloc_size =
4401 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4402 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4403 DESC_ALIGNMENT;
4404
4405 adapter->desc_pool.alloc_virt =
a2d0abc6
JP
4406 pci_zalloc_consistent(adapter->pdev,
4407 adapter->desc_pool.alloc_size,
4408 &adapter->desc_pool.dma_addr);
8ca86fd8
TH
4409 if (adapter->desc_pool.alloc_virt == NULL) {
4410 adapter->desc_pool.alloc_size = 0;
4411 return 1;
4412 }
8ca86fd8
TH
4413
4414 /* Align to the next cache line boundary. */
4415 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4416 (DESC_ALIGNMENT -
4417 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4418 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4419 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4420
4421 /* Allocate receive/transmit descriptors. */
4422 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4423 adapter->desc_pool.virt;
4424 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4425 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4426 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4427 (adapter->desc_pool.virt + offset);
4428 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4429
4430 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4431 return 1;
4432 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4433 return 1;
4434
4435 return 0;
4436}
4437
4438/**
4439 * free_dma_buf - release DMA buffer resources
4440 * @adapter: Adapter information structure.
4441 *
4442 * This routine is just a helper function to release the DMA buffer resources.
4443 */
4444static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4445 int direction)
4446{
4447 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4448 dev_kfree_skb(dma_buf->skb);
4449 dma_buf->skb = NULL;
4450 dma_buf->dma = 0;
4451}
4452
4453/**
4454 * ksz_init_rx_buffers - initialize receive descriptors
4455 * @adapter: Adapter information structure.
4456 *
4457 * This routine initializes DMA buffers for receiving.
4458 */
4459static void ksz_init_rx_buffers(struct dev_info *adapter)
4460{
4461 int i;
4462 struct ksz_desc *desc;
4463 struct ksz_dma_buf *dma_buf;
4464 struct ksz_hw *hw = &adapter->hw;
4465 struct ksz_desc_info *info = &hw->rx_desc_info;
4466
4467 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4468 get_rx_pkt(info, &desc);
4469
4470 dma_buf = DMA_BUFFER(desc);
4471 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4472 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4473 dma_buf->len = adapter->mtu;
4474 if (!dma_buf->skb)
4475 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
b06b66c0 4476 if (dma_buf->skb && !dma_buf->dma)
8ca86fd8
TH
4477 dma_buf->dma = pci_map_single(
4478 adapter->pdev,
4479 skb_tail_pointer(dma_buf->skb),
4480 dma_buf->len,
4481 PCI_DMA_FROMDEVICE);
8ca86fd8
TH
4482
4483 /* Set descriptor. */
4484 set_rx_buf(desc, dma_buf->dma);
4485 set_rx_len(desc, dma_buf->len);
4486 release_desc(desc);
4487 }
4488}
4489
4490/**
4491 * ksz_alloc_mem - allocate memory for hardware descriptors
4492 * @adapter: Adapter information structure.
4493 *
4494 * This function allocates memory for use by hardware descriptors for receiving
4495 * and transmitting.
4496 *
4497 * Return 0 if successful.
4498 */
4499static int ksz_alloc_mem(struct dev_info *adapter)
4500{
4501 struct ksz_hw *hw = &adapter->hw;
4502
4503 /* Determine the number of receive and transmit descriptors. */
4504 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4505 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4506
4507 /* Determine how many descriptors to skip transmit interrupt. */
4508 hw->tx_int_cnt = 0;
4509 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4510 if (hw->tx_int_mask > 8)
4511 hw->tx_int_mask = 8;
4512 while (hw->tx_int_mask) {
4513 hw->tx_int_cnt++;
4514 hw->tx_int_mask >>= 1;
4515 }
4516 if (hw->tx_int_cnt) {
4517 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4518 hw->tx_int_cnt = 0;
4519 }
4520
4521 /* Determine the descriptor size. */
4522 hw->rx_desc_info.size =
4523 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4524 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4525 hw->tx_desc_info.size =
4526 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4527 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4528 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
0dc7d2b3 4529 pr_alert("Hardware descriptor size not right!\n");
8ca86fd8
TH
4530 ksz_check_desc_num(&hw->rx_desc_info);
4531 ksz_check_desc_num(&hw->tx_desc_info);
4532
4533 /* Allocate descriptors. */
4534 if (ksz_alloc_desc(adapter))
4535 return 1;
4536
4537 return 0;
4538}
4539
4540/**
4541 * ksz_free_desc - free software and hardware descriptors
4542 * @adapter: Adapter information structure.
4543 *
4544 * This local routine frees the software and hardware descriptors allocated by
4545 * ksz_alloc_desc().
4546 */
4547static void ksz_free_desc(struct dev_info *adapter)
4548{
4549 struct ksz_hw *hw = &adapter->hw;
4550
4551 /* Reset descriptor. */
4552 hw->rx_desc_info.ring_virt = NULL;
4553 hw->tx_desc_info.ring_virt = NULL;
4554 hw->rx_desc_info.ring_phys = 0;
4555 hw->tx_desc_info.ring_phys = 0;
4556
4557 /* Free memory. */
4558 if (adapter->desc_pool.alloc_virt)
4559 pci_free_consistent(
4560 adapter->pdev,
4561 adapter->desc_pool.alloc_size,
4562 adapter->desc_pool.alloc_virt,
4563 adapter->desc_pool.dma_addr);
4564
4565 /* Reset resource pool. */
4566 adapter->desc_pool.alloc_size = 0;
4567 adapter->desc_pool.alloc_virt = NULL;
4568
4569 kfree(hw->rx_desc_info.ring);
4570 hw->rx_desc_info.ring = NULL;
4571 kfree(hw->tx_desc_info.ring);
4572 hw->tx_desc_info.ring = NULL;
4573}
4574
4575/**
4576 * ksz_free_buffers - free buffers used in the descriptors
4577 * @adapter: Adapter information structure.
4578 * @desc_info: Descriptor information structure.
4579 *
4580 * This local routine frees buffers used in the DMA buffers.
4581 */
4582static void ksz_free_buffers(struct dev_info *adapter,
4583 struct ksz_desc_info *desc_info, int direction)
4584{
4585 int i;
4586 struct ksz_dma_buf *dma_buf;
4587 struct ksz_desc *desc = desc_info->ring;
4588
4589 for (i = 0; i < desc_info->alloc; i++) {
4590 dma_buf = DMA_BUFFER(desc);
4591 if (dma_buf->skb)
4592 free_dma_buf(adapter, dma_buf, direction);
4593 desc++;
4594 }
4595}
4596
4597/**
4598 * ksz_free_mem - free all resources used by descriptors
4599 * @adapter: Adapter information structure.
4600 *
4601 * This local routine frees all the resources allocated by ksz_alloc_mem().
4602 */
4603static void ksz_free_mem(struct dev_info *adapter)
4604{
4605 /* Free transmit buffers. */
4606 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4607 PCI_DMA_TODEVICE);
4608
4609 /* Free receive buffers. */
4610 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4611 PCI_DMA_FROMDEVICE);
4612
4613 /* Free descriptors. */
4614 ksz_free_desc(adapter);
4615}
4616
4617static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4618 u64 *counter)
4619{
4620 int i;
4621 int mib;
4622 int port;
4623 struct ksz_port_mib *port_mib;
4624
4625 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4626 for (i = 0, port = first; i < cnt; i++, port++) {
4627 port_mib = &hw->port_mib[port];
4628 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4629 counter[mib] += port_mib->counter[mib];
4630 }
4631}
4632
4633/**
4634 * send_packet - send packet
4635 * @skb: Socket buffer.
4636 * @dev: Network device.
4637 *
4638 * This routine is used to send a packet out to the network.
4639 */
4640static void send_packet(struct sk_buff *skb, struct net_device *dev)
4641{
4642 struct ksz_desc *desc;
4643 struct ksz_desc *first;
4644 struct dev_priv *priv = netdev_priv(dev);
4645 struct dev_info *hw_priv = priv->adapter;
4646 struct ksz_hw *hw = &hw_priv->hw;
4647 struct ksz_desc_info *info = &hw->tx_desc_info;
4648 struct ksz_dma_buf *dma_buf;
4649 int len;
4650 int last_frag = skb_shinfo(skb)->nr_frags;
4651
4652 /*
4653 * KSZ8842 with multiple device interfaces needs to be told which port
4654 * to send.
4655 */
4656 if (hw->dev_count > 1)
4657 hw->dst_ports = 1 << priv->port.first_port;
4658
4659 /* Hardware will pad the length to 60. */
4660 len = skb->len;
4661
4662 /* Remember the very first descriptor. */
4663 first = info->cur;
4664 desc = first;
4665
4666 dma_buf = DMA_BUFFER(desc);
4667 if (last_frag) {
4668 int frag;
4669 skb_frag_t *this_frag;
4670
e743d313 4671 dma_buf->len = skb_headlen(skb);
8ca86fd8
TH
4672
4673 dma_buf->dma = pci_map_single(
4674 hw_priv->pdev, skb->data, dma_buf->len,
4675 PCI_DMA_TODEVICE);
4676 set_tx_buf(desc, dma_buf->dma);
4677 set_tx_len(desc, dma_buf->len);
4678
4679 frag = 0;
4680 do {
4681 this_frag = &skb_shinfo(skb)->frags[frag];
4682
4683 /* Get a new descriptor. */
4684 get_tx_pkt(info, &desc);
4685
4686 /* Keep track of descriptors used so far. */
4687 ++hw->tx_int_cnt;
4688
4689 dma_buf = DMA_BUFFER(desc);
9e903e08 4690 dma_buf->len = skb_frag_size(this_frag);
8ca86fd8
TH
4691
4692 dma_buf->dma = pci_map_single(
4693 hw_priv->pdev,
787343ad 4694 skb_frag_address(this_frag),
8ca86fd8
TH
4695 dma_buf->len,
4696 PCI_DMA_TODEVICE);
4697 set_tx_buf(desc, dma_buf->dma);
4698 set_tx_len(desc, dma_buf->len);
4699
4700 frag++;
4701 if (frag == last_frag)
4702 break;
4703
4704 /* Do not release the last descriptor here. */
4705 release_desc(desc);
4706 } while (1);
4707
4708 /* current points to the last descriptor. */
4709 info->cur = desc;
4710
4711 /* Release the first descriptor. */
4712 release_desc(first);
4713 } else {
4714 dma_buf->len = len;
4715
4716 dma_buf->dma = pci_map_single(
4717 hw_priv->pdev, skb->data, dma_buf->len,
4718 PCI_DMA_TODEVICE);
4719 set_tx_buf(desc, dma_buf->dma);
4720 set_tx_len(desc, dma_buf->len);
4721 }
4722
4723 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4724 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4725 (desc)->sw.buf.tx.csum_gen_udp = 1;
4726 }
4727
4728 /*
4729 * The last descriptor holds the packet so that it can be returned to
4730 * network subsystem after all descriptors are transmitted.
4731 */
4732 dma_buf->skb = skb;
4733
4734 hw_send_pkt(hw);
4735
4736 /* Update transmit statistics. */
897dd41d
KV
4737 dev->stats.tx_packets++;
4738 dev->stats.tx_bytes += len;
8ca86fd8
TH
4739}
4740
4741/**
4742 * transmit_cleanup - clean up transmit descriptors
4743 * @dev: Network device.
4744 *
4745 * This routine is called to clean up the transmitted buffers.
4746 */
4747static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4748{
4749 int last;
4750 union desc_stat status;
4751 struct ksz_hw *hw = &hw_priv->hw;
4752 struct ksz_desc_info *info = &hw->tx_desc_info;
4753 struct ksz_desc *desc;
4754 struct ksz_dma_buf *dma_buf;
4755 struct net_device *dev = NULL;
4756
4945106d 4757 spin_lock_irq(&hw_priv->hwlock);
8ca86fd8
TH
4758 last = info->last;
4759
4760 while (info->avail < info->alloc) {
4761 /* Get next descriptor which is not hardware owned. */
4762 desc = &info->ring[last];
4763 status.data = le32_to_cpu(desc->phw->ctrl.data);
4764 if (status.tx.hw_owned) {
4765 if (normal)
4766 break;
4767 else
4768 reset_desc(desc, status);
4769 }
4770
4771 dma_buf = DMA_BUFFER(desc);
4772 pci_unmap_single(
4773 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4774 PCI_DMA_TODEVICE);
4775
4776 /* This descriptor contains the last buffer in the packet. */
4777 if (dma_buf->skb) {
4778 dev = dma_buf->skb->dev;
4779
4780 /* Release the packet back to network subsystem. */
4781 dev_kfree_skb_irq(dma_buf->skb);
4782 dma_buf->skb = NULL;
4783 }
4784
4785 /* Free the transmitted descriptor. */
4786 last++;
4787 last &= info->mask;
4788 info->avail++;
4789 }
4790 info->last = last;
4945106d 4791 spin_unlock_irq(&hw_priv->hwlock);
8ca86fd8
TH
4792
4793 /* Notify the network subsystem that the packet has been sent. */
4794 if (dev)
4795 dev->trans_start = jiffies;
4796}
4797
4798/**
4799 * transmit_done - transmit done processing
4800 * @dev: Network device.
4801 *
4802 * This routine is called when the transmit interrupt is triggered, indicating
4803 * either a packet is sent successfully or there are transmit errors.
4804 */
4805static void tx_done(struct dev_info *hw_priv)
4806{
4807 struct ksz_hw *hw = &hw_priv->hw;
4808 int port;
4809
4810 transmit_cleanup(hw_priv, 1);
4811
4812 for (port = 0; port < hw->dev_count; port++) {
4813 struct net_device *dev = hw->port_info[port].pdev;
4814
4815 if (netif_running(dev) && netif_queue_stopped(dev))
4816 netif_wake_queue(dev);
4817 }
4818}
4819
4820static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4821{
4822 skb->dev = old->dev;
4823 skb->protocol = old->protocol;
4824 skb->ip_summed = old->ip_summed;
4825 skb->csum = old->csum;
4826 skb_set_network_header(skb, ETH_HLEN);
4827
641e9b73 4828 dev_consume_skb_any(old);
8ca86fd8
TH
4829}
4830
4831/**
4832 * netdev_tx - send out packet
4833 * @skb: Socket buffer.
4834 * @dev: Network device.
4835 *
4836 * This function is used by the upper network layer to send out a packet.
4837 *
4838 * Return 0 if successful; otherwise an error code indicating failure.
4839 */
5ed83663 4840static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
8ca86fd8
TH
4841{
4842 struct dev_priv *priv = netdev_priv(dev);
4843 struct dev_info *hw_priv = priv->adapter;
4844 struct ksz_hw *hw = &hw_priv->hw;
4845 int left;
4846 int num = 1;
4847 int rc = 0;
4848
4849 if (hw->features & SMALL_PACKET_TX_BUG) {
4850 struct sk_buff *org_skb = skb;
4851
4852 if (skb->len <= 48) {
4853 if (skb_end_pointer(skb) - skb->data >= 50) {
4854 memset(&skb->data[skb->len], 0, 50 - skb->len);
4855 skb->len = 50;
4856 } else {
c056b734 4857 skb = netdev_alloc_skb(dev, 50);
8ca86fd8
TH
4858 if (!skb)
4859 return NETDEV_TX_BUSY;
4860 memcpy(skb->data, org_skb->data, org_skb->len);
4861 memset(&skb->data[org_skb->len], 0,
4862 50 - org_skb->len);
4863 skb->len = 50;
4864 copy_old_skb(org_skb, skb);
4865 }
4866 }
4867 }
4868
4869 spin_lock_irq(&hw_priv->hwlock);
4870
4871 num = skb_shinfo(skb)->nr_frags + 1;
4872 left = hw_alloc_pkt(hw, skb->len, num);
4873 if (left) {
4874 if (left < num ||
5b70ca35
LR
4875 (CHECKSUM_PARTIAL == skb->ip_summed &&
4876 skb->protocol == htons(ETH_P_IPV6))) {
8ca86fd8
TH
4877 struct sk_buff *org_skb = skb;
4878
c056b734 4879 skb = netdev_alloc_skb(dev, org_skb->len);
edee3932
JS
4880 if (!skb) {
4881 rc = NETDEV_TX_BUSY;
4882 goto unlock;
4883 }
8ca86fd8 4884 skb_copy_and_csum_dev(org_skb, skb->data);
3e49e6d5 4885 org_skb->ip_summed = CHECKSUM_NONE;
8ca86fd8
TH
4886 skb->len = org_skb->len;
4887 copy_old_skb(org_skb, skb);
4888 }
4889 send_packet(skb, dev);
4890 if (left <= num)
4891 netif_stop_queue(dev);
4892 } else {
4893 /* Stop the transmit queue until packet is allocated. */
4894 netif_stop_queue(dev);
4895 rc = NETDEV_TX_BUSY;
4896 }
edee3932 4897unlock:
8ca86fd8
TH
4898 spin_unlock_irq(&hw_priv->hwlock);
4899
4900 return rc;
4901}
4902
4903/**
4904 * netdev_tx_timeout - transmit timeout processing
4905 * @dev: Network device.
4906 *
4907 * This routine is called when the transmit timer expires. That indicates the
4908 * hardware is not running correctly because transmit interrupts are not
4909 * triggered to free up resources so that the transmit routine can continue
4910 * sending out packets. The hardware is reset to correct the problem.
4911 */
4912static void netdev_tx_timeout(struct net_device *dev)
4913{
4914 static unsigned long last_reset;
4915
4916 struct dev_priv *priv = netdev_priv(dev);
4917 struct dev_info *hw_priv = priv->adapter;
4918 struct ksz_hw *hw = &hw_priv->hw;
4919 int port;
4920
4921 if (hw->dev_count > 1) {
4922 /*
4923 * Only reset the hardware if time between calls is long
4924 * enough.
4925 */
05e1e76e 4926 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
8ca86fd8
TH
4927 hw_priv = NULL;
4928 }
4929
4930 last_reset = jiffies;
4931 if (hw_priv) {
4932 hw_dis_intr(hw);
4933 hw_disable(hw);
4934
4935 transmit_cleanup(hw_priv, 0);
4936 hw_reset_pkts(&hw->rx_desc_info);
4937 hw_reset_pkts(&hw->tx_desc_info);
4938 ksz_init_rx_buffers(hw_priv);
4939
4940 hw_reset(hw);
4941
4942 hw_set_desc_base(hw,
4943 hw->tx_desc_info.ring_phys,
4944 hw->rx_desc_info.ring_phys);
4945 hw_set_addr(hw);
4946 if (hw->all_multi)
4947 hw_set_multicast(hw, hw->all_multi);
4948 else if (hw->multi_list_size)
4949 hw_set_grp_addr(hw);
4950
4951 if (hw->dev_count > 1) {
4952 hw_set_add_addr(hw);
4953 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4954 struct net_device *port_dev;
4955
4956 port_set_stp_state(hw, port,
4957 STP_STATE_DISABLED);
4958
4959 port_dev = hw->port_info[port].pdev;
4960 if (netif_running(port_dev))
4961 port_set_stp_state(hw, port,
4962 STP_STATE_SIMPLE);
4963 }
4964 }
4965
4966 hw_enable(hw);
4967 hw_ena_intr(hw);
4968 }
4969
4970 dev->trans_start = jiffies;
4971 netif_wake_queue(dev);
4972}
4973
4974static inline void csum_verified(struct sk_buff *skb)
4975{
4976 unsigned short protocol;
4977 struct iphdr *iph;
4978
4979 protocol = skb->protocol;
4980 skb_reset_network_header(skb);
4981 iph = (struct iphdr *) skb_network_header(skb);
4982 if (protocol == htons(ETH_P_8021Q)) {
4983 protocol = iph->tot_len;
4984 skb_set_network_header(skb, VLAN_HLEN);
4985 iph = (struct iphdr *) skb_network_header(skb);
4986 }
4987 if (protocol == htons(ETH_P_IP)) {
4988 if (iph->protocol == IPPROTO_TCP)
4989 skb->ip_summed = CHECKSUM_UNNECESSARY;
4990 }
4991}
4992
4993static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4994 struct ksz_desc *desc, union desc_stat status)
4995{
4996 int packet_len;
4997 struct dev_priv *priv = netdev_priv(dev);
4998 struct dev_info *hw_priv = priv->adapter;
4999 struct ksz_dma_buf *dma_buf;
5000 struct sk_buff *skb;
5001 int rx_status;
5002
5003 /* Received length includes 4-byte CRC. */
5004 packet_len = status.rx.frame_len - 4;
5005
5006 dma_buf = DMA_BUFFER(desc);
5007 pci_dma_sync_single_for_cpu(
5008 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5009 PCI_DMA_FROMDEVICE);
5010
5011 do {
5012 /* skb->data != skb->head */
c056b734 5013 skb = netdev_alloc_skb(dev, packet_len + 2);
8ca86fd8 5014 if (!skb) {
897dd41d 5015 dev->stats.rx_dropped++;
8ca86fd8
TH
5016 return -ENOMEM;
5017 }
5018
5019 /*
5020 * Align socket buffer in 4-byte boundary for better
5021 * performance.
5022 */
5023 skb_reserve(skb, 2);
5024
5025 memcpy(skb_put(skb, packet_len),
5026 dma_buf->skb->data, packet_len);
5027 } while (0);
5028
8ca86fd8
TH
5029 skb->protocol = eth_type_trans(skb, dev);
5030
5031 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5032 csum_verified(skb);
5033
5034 /* Update receive statistics. */
897dd41d
KV
5035 dev->stats.rx_packets++;
5036 dev->stats.rx_bytes += packet_len;
8ca86fd8
TH
5037
5038 /* Notify upper layer for received packet. */
8ca86fd8
TH
5039 rx_status = netif_rx(skb);
5040
5041 return 0;
5042}
5043
5044static int dev_rcv_packets(struct dev_info *hw_priv)
5045{
5046 int next;
5047 union desc_stat status;
5048 struct ksz_hw *hw = &hw_priv->hw;
5049 struct net_device *dev = hw->port_info[0].pdev;
5050 struct ksz_desc_info *info = &hw->rx_desc_info;
5051 int left = info->alloc;
5052 struct ksz_desc *desc;
5053 int received = 0;
5054
5055 next = info->next;
5056 while (left--) {
5057 /* Get next descriptor which is not hardware owned. */
5058 desc = &info->ring[next];
5059 status.data = le32_to_cpu(desc->phw->ctrl.data);
5060 if (status.rx.hw_owned)
5061 break;
5062
5063 /* Status valid only when last descriptor bit is set. */
5064 if (status.rx.last_desc && status.rx.first_desc) {
5065 if (rx_proc(dev, hw, desc, status))
5066 goto release_packet;
5067 received++;
5068 }
5069
5070release_packet:
5071 release_desc(desc);
5072 next++;
5073 next &= info->mask;
5074 }
5075 info->next = next;
5076
5077 return received;
5078}
5079
5080static int port_rcv_packets(struct dev_info *hw_priv)
5081{
5082 int next;
5083 union desc_stat status;
5084 struct ksz_hw *hw = &hw_priv->hw;
5085 struct net_device *dev = hw->port_info[0].pdev;
5086 struct ksz_desc_info *info = &hw->rx_desc_info;
5087 int left = info->alloc;
5088 struct ksz_desc *desc;
5089 int received = 0;
5090
5091 next = info->next;
5092 while (left--) {
5093 /* Get next descriptor which is not hardware owned. */
5094 desc = &info->ring[next];
5095 status.data = le32_to_cpu(desc->phw->ctrl.data);
5096 if (status.rx.hw_owned)
5097 break;
5098
5099 if (hw->dev_count > 1) {
5100 /* Get received port number. */
5101 int p = HW_TO_DEV_PORT(status.rx.src_port);
5102
5103 dev = hw->port_info[p].pdev;
5104 if (!netif_running(dev))
5105 goto release_packet;
5106 }
5107
5108 /* Status valid only when last descriptor bit is set. */
5109 if (status.rx.last_desc && status.rx.first_desc) {
5110 if (rx_proc(dev, hw, desc, status))
5111 goto release_packet;
5112 received++;
5113 }
5114
5115release_packet:
5116 release_desc(desc);
5117 next++;
5118 next &= info->mask;
5119 }
5120 info->next = next;
5121
5122 return received;
5123}
5124
5125static int dev_rcv_special(struct dev_info *hw_priv)
5126{
5127 int next;
5128 union desc_stat status;
5129 struct ksz_hw *hw = &hw_priv->hw;
5130 struct net_device *dev = hw->port_info[0].pdev;
5131 struct ksz_desc_info *info = &hw->rx_desc_info;
5132 int left = info->alloc;
5133 struct ksz_desc *desc;
5134 int received = 0;
5135
5136 next = info->next;
5137 while (left--) {
5138 /* Get next descriptor which is not hardware owned. */
5139 desc = &info->ring[next];
5140 status.data = le32_to_cpu(desc->phw->ctrl.data);
5141 if (status.rx.hw_owned)
5142 break;
5143
5144 if (hw->dev_count > 1) {
5145 /* Get received port number. */
5146 int p = HW_TO_DEV_PORT(status.rx.src_port);
5147
5148 dev = hw->port_info[p].pdev;
5149 if (!netif_running(dev))
5150 goto release_packet;
5151 }
5152
5153 /* Status valid only when last descriptor bit is set. */
5154 if (status.rx.last_desc && status.rx.first_desc) {
5155 /*
5156 * Receive without error. With receive errors
5157 * disabled, packets with receive errors will be
5158 * dropped, so no need to check the error bit.
5159 */
5160 if (!status.rx.error || (status.data &
5161 KS_DESC_RX_ERROR_COND) ==
5162 KS_DESC_RX_ERROR_TOO_LONG) {
5163 if (rx_proc(dev, hw, desc, status))
5164 goto release_packet;
5165 received++;
5166 } else {
5167 struct dev_priv *priv = netdev_priv(dev);
5168
5169 /* Update receive error statistics. */
5170 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5171 }
5172 }
5173
5174release_packet:
5175 release_desc(desc);
5176 next++;
5177 next &= info->mask;
5178 }
5179 info->next = next;
5180
5181 return received;
5182}
5183
5184static void rx_proc_task(unsigned long data)
5185{
5186 struct dev_info *hw_priv = (struct dev_info *) data;
5187 struct ksz_hw *hw = &hw_priv->hw;
5188
5189 if (!hw->enabled)
5190 return;
5191 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5192
5193 /* In case receive process is suspended because of overrun. */
5194 hw_resume_rx(hw);
5195
5196 /* tasklets are interruptible. */
5197 spin_lock_irq(&hw_priv->hwlock);
5198 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5199 spin_unlock_irq(&hw_priv->hwlock);
5200 } else {
5201 hw_ack_intr(hw, KS884X_INT_RX);
5202 tasklet_schedule(&hw_priv->rx_tasklet);
5203 }
5204}
5205
5206static void tx_proc_task(unsigned long data)
5207{
5208 struct dev_info *hw_priv = (struct dev_info *) data;
5209 struct ksz_hw *hw = &hw_priv->hw;
5210
5211 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5212
5213 tx_done(hw_priv);
5214
5215 /* tasklets are interruptible. */
5216 spin_lock_irq(&hw_priv->hwlock);
5217 hw_turn_on_intr(hw, KS884X_INT_TX);
5218 spin_unlock_irq(&hw_priv->hwlock);
5219}
5220
5221static inline void handle_rx_stop(struct ksz_hw *hw)
5222{
5223 /* Receive just has been stopped. */
5224 if (0 == hw->rx_stop)
5225 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5226 else if (hw->rx_stop > 1) {
5227 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5228 hw_start_rx(hw);
5229 } else {
5230 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5231 hw->rx_stop = 0;
5232 }
5233 } else
5234 /* Receive just has been started. */
5235 hw->rx_stop++;
5236}
5237
5238/**
5239 * netdev_intr - interrupt handling
5240 * @irq: Interrupt number.
5241 * @dev_id: Network device.
5242 *
5243 * This function is called by upper network layer to signal interrupt.
5244 *
5245 * Return IRQ_HANDLED if interrupt is handled.
5246 */
5247static irqreturn_t netdev_intr(int irq, void *dev_id)
5248{
5249 uint int_enable = 0;
5250 struct net_device *dev = (struct net_device *) dev_id;
5251 struct dev_priv *priv = netdev_priv(dev);
5252 struct dev_info *hw_priv = priv->adapter;
5253 struct ksz_hw *hw = &hw_priv->hw;
5254
4945106d
LB
5255 spin_lock(&hw_priv->hwlock);
5256
8ca86fd8
TH
5257 hw_read_intr(hw, &int_enable);
5258
5259 /* Not our interrupt! */
4945106d
LB
5260 if (!int_enable) {
5261 spin_unlock(&hw_priv->hwlock);
8ca86fd8 5262 return IRQ_NONE;
4945106d 5263 }
8ca86fd8
TH
5264
5265 do {
5266 hw_ack_intr(hw, int_enable);
5267 int_enable &= hw->intr_mask;
5268
5269 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5270 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5271 tasklet_schedule(&hw_priv->tx_tasklet);
5272 }
5273
5274 if (likely(int_enable & KS884X_INT_RX)) {
5275 hw_dis_intr_bit(hw, KS884X_INT_RX);
5276 tasklet_schedule(&hw_priv->rx_tasklet);
5277 }
5278
5279 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
897dd41d 5280 dev->stats.rx_fifo_errors++;
8ca86fd8
TH
5281 hw_resume_rx(hw);
5282 }
5283
5284 if (unlikely(int_enable & KS884X_INT_PHY)) {
5285 struct ksz_port *port = &priv->port;
5286
5287 hw->features |= LINK_INT_WORKING;
5288 port_get_link_speed(port);
5289 }
5290
5291 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5292 handle_rx_stop(hw);
5293 break;
5294 }
5295
5296 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5297 u32 data;
5298
5299 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
0dc7d2b3 5300 pr_info("Tx stopped\n");
8ca86fd8
TH
5301 data = readl(hw->io + KS_DMA_TX_CTRL);
5302 if (!(data & DMA_TX_ENABLE))
0dc7d2b3 5303 pr_info("Tx disabled\n");
8ca86fd8
TH
5304 break;
5305 }
5306 } while (0);
5307
5308 hw_ena_intr(hw);
5309
4945106d
LB
5310 spin_unlock(&hw_priv->hwlock);
5311
8ca86fd8
TH
5312 return IRQ_HANDLED;
5313}
5314
5315/*
5316 * Linux network device functions
5317 */
5318
5319static unsigned long next_jiffies;
5320
5321#ifdef CONFIG_NET_POLL_CONTROLLER
5322static void netdev_netpoll(struct net_device *dev)
5323{
5324 struct dev_priv *priv = netdev_priv(dev);
5325 struct dev_info *hw_priv = priv->adapter;
5326
5327 hw_dis_intr(&hw_priv->hw);
5328 netdev_intr(dev->irq, dev);
5329}
5330#endif
5331
5332static void bridge_change(struct ksz_hw *hw)
5333{
5334 int port;
5335 u8 member;
5336 struct ksz_switch *sw = hw->ksz_switch;
5337
5338 /* No ports in forwarding state. */
5339 if (!sw->member) {
5340 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5341 sw_block_addr(hw);
5342 }
5343 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5344 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5345 member = HOST_MASK | sw->member;
5346 else
5347 member = HOST_MASK | (1 << port);
5348 if (member != sw->port_cfg[port].member)
5349 sw_cfg_port_base_vlan(hw, port, member);
5350 }
5351}
5352
5353/**
5354 * netdev_close - close network device
5355 * @dev: Network device.
5356 *
5357 * This function process the close operation of network device. This is caused
5358 * by the user command "ifconfig ethX down."
5359 *
5360 * Return 0 if successful; otherwise an error code indicating failure.
5361 */
5362static int netdev_close(struct net_device *dev)
5363{
5364 struct dev_priv *priv = netdev_priv(dev);
5365 struct dev_info *hw_priv = priv->adapter;
5366 struct ksz_port *port = &priv->port;
5367 struct ksz_hw *hw = &hw_priv->hw;
5368 int pi;
5369
5370 netif_stop_queue(dev);
5371
5372 ksz_stop_timer(&priv->monitor_timer_info);
5373
5374 /* Need to shut the port manually in multiple device interfaces mode. */
5375 if (hw->dev_count > 1) {
5376 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5377
5378 /* Port is closed. Need to change bridge setting. */
5379 if (hw->features & STP_SUPPORT) {
5380 pi = 1 << port->first_port;
5381 if (hw->ksz_switch->member & pi) {
5382 hw->ksz_switch->member &= ~pi;
5383 bridge_change(hw);
5384 }
5385 }
5386 }
5387 if (port->first_port > 0)
5388 hw_del_addr(hw, dev->dev_addr);
5389 if (!hw_priv->wol_enable)
5390 port_set_power_saving(port, true);
5391
5392 if (priv->multicast)
5393 --hw->all_multi;
5394 if (priv->promiscuous)
5395 --hw->promiscuous;
5396
5397 hw_priv->opened--;
5398 if (!(hw_priv->opened)) {
5399 ksz_stop_timer(&hw_priv->mib_timer_info);
5400 flush_work(&hw_priv->mib_read);
5401
5402 hw_dis_intr(hw);
5403 hw_disable(hw);
5404 hw_clr_multicast(hw);
5405
5406 /* Delay for receive task to stop scheduling itself. */
5407 msleep(2000 / HZ);
5408
175c0dff
XF
5409 tasklet_kill(&hw_priv->rx_tasklet);
5410 tasklet_kill(&hw_priv->tx_tasklet);
8ca86fd8
TH
5411 free_irq(dev->irq, hw_priv->dev);
5412
5413 transmit_cleanup(hw_priv, 0);
5414 hw_reset_pkts(&hw->rx_desc_info);
5415 hw_reset_pkts(&hw->tx_desc_info);
5416
5417 /* Clean out static MAC table when the switch is shutdown. */
5418 if (hw->features & STP_SUPPORT)
5419 sw_clr_sta_mac_table(hw);
5420 }
5421
5422 return 0;
5423}
5424
5425static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5426{
5427 if (hw->ksz_switch) {
5428 u32 data;
5429
5430 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5431 if (hw->features & RX_HUGE_FRAME)
5432 data |= SWITCH_HUGE_PACKET;
5433 else
5434 data &= ~SWITCH_HUGE_PACKET;
5435 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5436 }
5437 if (hw->features & RX_HUGE_FRAME) {
5438 hw->rx_cfg |= DMA_RX_ERROR;
5439 hw_priv->dev_rcv = dev_rcv_special;
5440 } else {
5441 hw->rx_cfg &= ~DMA_RX_ERROR;
5442 if (hw->dev_count > 1)
5443 hw_priv->dev_rcv = port_rcv_packets;
5444 else
5445 hw_priv->dev_rcv = dev_rcv_packets;
5446 }
5447}
5448
5449static int prepare_hardware(struct net_device *dev)
5450{
5451 struct dev_priv *priv = netdev_priv(dev);
5452 struct dev_info *hw_priv = priv->adapter;
5453 struct ksz_hw *hw = &hw_priv->hw;
5454 int rc = 0;
5455
5456 /* Remember the network device that requests interrupts. */
5457 hw_priv->dev = dev;
5458 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5459 if (rc)
5460 return rc;
71c6c837
XF
5461 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5462 (unsigned long) hw_priv);
5463 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5464 (unsigned long) hw_priv);
8ca86fd8
TH
5465
5466 hw->promiscuous = 0;
5467 hw->all_multi = 0;
5468 hw->multi_list_size = 0;
5469
5470 hw_reset(hw);
5471
5472 hw_set_desc_base(hw,
5473 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5474 hw_set_addr(hw);
5475 hw_cfg_huge_frame(hw_priv, hw);
5476 ksz_init_rx_buffers(hw_priv);
5477 return 0;
5478}
5479
0dc7d2b3
JP
5480static void set_media_state(struct net_device *dev, int media_state)
5481{
5482 struct dev_priv *priv = netdev_priv(dev);
5483
5484 if (media_state == priv->media_state)
5485 netif_carrier_on(dev);
5486 else
5487 netif_carrier_off(dev);
5488 netif_info(priv, link, dev, "link %s\n",
5489 media_state == priv->media_state ? "on" : "off");
5490}
5491
8ca86fd8
TH
5492/**
5493 * netdev_open - open network device
5494 * @dev: Network device.
5495 *
5496 * This function process the open operation of network device. This is caused
5497 * by the user command "ifconfig ethX up."
5498 *
5499 * Return 0 if successful; otherwise an error code indicating failure.
5500 */
5501static int netdev_open(struct net_device *dev)
5502{
5503 struct dev_priv *priv = netdev_priv(dev);
5504 struct dev_info *hw_priv = priv->adapter;
5505 struct ksz_hw *hw = &hw_priv->hw;
5506 struct ksz_port *port = &priv->port;
5507 int i;
5508 int p;
5509 int rc = 0;
5510
5511 priv->multicast = 0;
5512 priv->promiscuous = 0;
5513
5514 /* Reset device statistics. */
897dd41d 5515 memset(&dev->stats, 0, sizeof(struct net_device_stats));
8ca86fd8
TH
5516 memset((void *) port->counter, 0,
5517 (sizeof(u64) * OID_COUNTER_LAST));
5518
5519 if (!(hw_priv->opened)) {
5520 rc = prepare_hardware(dev);
5521 if (rc)
5522 return rc;
5523 for (i = 0; i < hw->mib_port_cnt; i++) {
5524 if (next_jiffies < jiffies)
5525 next_jiffies = jiffies + HZ * 2;
5526 else
5527 next_jiffies += HZ * 1;
5528 hw_priv->counter[i].time = next_jiffies;
5529 hw->port_mib[i].state = media_disconnected;
5530 port_init_cnt(hw, i);
5531 }
5532 if (hw->ksz_switch)
5533 hw->port_mib[HOST_PORT].state = media_connected;
5534 else {
5535 hw_add_wol_bcast(hw);
5536 hw_cfg_wol_pme(hw, 0);
5537 hw_clr_wol_pme_status(&hw_priv->hw);
5538 }
5539 }
5540 port_set_power_saving(port, false);
5541
5542 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5543 /*
5544 * Initialize to invalid value so that link detection
5545 * is done.
5546 */
5547 hw->port_info[p].partner = 0xFF;
5548 hw->port_info[p].state = media_disconnected;
5549 }
5550
5551 /* Need to open the port in multiple device interfaces mode. */
5552 if (hw->dev_count > 1) {
5553 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5554 if (port->first_port > 0)
5555 hw_add_addr(hw, dev->dev_addr);
5556 }
5557
5558 port_get_link_speed(port);
5559 if (port->force_link)
5560 port_force_link_speed(port);
5561 else
5562 port_set_link_speed(port);
5563
5564 if (!(hw_priv->opened)) {
5565 hw_setup_intr(hw);
5566 hw_enable(hw);
5567 hw_ena_intr(hw);
5568
5569 if (hw->mib_port_cnt)
5570 ksz_start_timer(&hw_priv->mib_timer_info,
5571 hw_priv->mib_timer_info.period);
5572 }
5573
5574 hw_priv->opened++;
5575
5576 ksz_start_timer(&priv->monitor_timer_info,
5577 priv->monitor_timer_info.period);
5578
5579 priv->media_state = port->linked->state;
5580
0dc7d2b3 5581 set_media_state(dev, media_connected);
8ca86fd8
TH
5582 netif_start_queue(dev);
5583
5584 return 0;
5585}
5586
5587/* RX errors = rx_errors */
5588/* RX dropped = rx_dropped */
5589/* RX overruns = rx_fifo_errors */
5590/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5591/* TX errors = tx_errors */
5592/* TX dropped = tx_dropped */
5593/* TX overruns = tx_fifo_errors */
5594/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5595/* collisions = collisions */
5596
5597/**
5598 * netdev_query_statistics - query network device statistics
5599 * @dev: Network device.
5600 *
5601 * This function returns the statistics of the network device. The device
5602 * needs not be opened.
5603 *
5604 * Return network device statistics.
5605 */
5606static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5607{
5608 struct dev_priv *priv = netdev_priv(dev);
5609 struct ksz_port *port = &priv->port;
5610 struct ksz_hw *hw = &priv->adapter->hw;
5611 struct ksz_port_mib *mib;
5612 int i;
5613 int p;
5614
897dd41d
KV
5615 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5616 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
8ca86fd8
TH
5617
5618 /* Reset to zero to add count later. */
897dd41d
KV
5619 dev->stats.multicast = 0;
5620 dev->stats.collisions = 0;
5621 dev->stats.rx_length_errors = 0;
5622 dev->stats.rx_crc_errors = 0;
5623 dev->stats.rx_frame_errors = 0;
5624 dev->stats.tx_window_errors = 0;
8ca86fd8
TH
5625
5626 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5627 mib = &hw->port_mib[p];
5628
897dd41d 5629 dev->stats.multicast += (unsigned long)
8ca86fd8
TH
5630 mib->counter[MIB_COUNTER_RX_MULTICAST];
5631
897dd41d 5632 dev->stats.collisions += (unsigned long)
8ca86fd8
TH
5633 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5634
897dd41d 5635 dev->stats.rx_length_errors += (unsigned long)(
8ca86fd8
TH
5636 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5637 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5638 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5639 mib->counter[MIB_COUNTER_RX_JABBER]);
897dd41d 5640 dev->stats.rx_crc_errors += (unsigned long)
8ca86fd8 5641 mib->counter[MIB_COUNTER_RX_CRC_ERR];
897dd41d 5642 dev->stats.rx_frame_errors += (unsigned long)(
8ca86fd8
TH
5643 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5644 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5645
897dd41d 5646 dev->stats.tx_window_errors += (unsigned long)
8ca86fd8
TH
5647 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5648 }
5649
897dd41d 5650 return &dev->stats;
8ca86fd8
TH
5651}
5652
5653/**
5654 * netdev_set_mac_address - set network device MAC address
5655 * @dev: Network device.
5656 * @addr: Buffer of MAC address.
5657 *
5658 * This function is used to set the MAC address of the network device.
5659 *
5660 * Return 0 to indicate success.
5661 */
5662static int netdev_set_mac_address(struct net_device *dev, void *addr)
5663{
5664 struct dev_priv *priv = netdev_priv(dev);
5665 struct dev_info *hw_priv = priv->adapter;
5666 struct ksz_hw *hw = &hw_priv->hw;
5667 struct sockaddr *mac = addr;
5668 uint interrupt;
5669
5670 if (priv->port.first_port > 0)
5671 hw_del_addr(hw, dev->dev_addr);
5672 else {
5673 hw->mac_override = 1;
6a3c910c 5674 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
8ca86fd8
TH
5675 }
5676
716af4ab 5677 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
8ca86fd8
TH
5678
5679 interrupt = hw_block_intr(hw);
5680
5681 if (priv->port.first_port > 0)
5682 hw_add_addr(hw, dev->dev_addr);
5683 else
5684 hw_set_addr(hw);
5685 hw_restore_intr(hw, interrupt);
5686
5687 return 0;
5688}
5689
5690static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5691 struct ksz_hw *hw, int promiscuous)
5692{
5693 if (promiscuous != priv->promiscuous) {
5694 u8 prev_state = hw->promiscuous;
5695
5696 if (promiscuous)
5697 ++hw->promiscuous;
5698 else
5699 --hw->promiscuous;
5700 priv->promiscuous = promiscuous;
5701
5702 /* Turn on/off promiscuous mode. */
5703 if (hw->promiscuous <= 1 && prev_state <= 1)
5704 hw_set_promiscuous(hw, hw->promiscuous);
5705
5706 /*
5707 * Port is not in promiscuous mode, meaning it is released
5708 * from the bridge.
5709 */
5710 if ((hw->features & STP_SUPPORT) && !promiscuous &&
f350a0a8 5711 (dev->priv_flags & IFF_BRIDGE_PORT)) {
8ca86fd8
TH
5712 struct ksz_switch *sw = hw->ksz_switch;
5713 int port = priv->port.first_port;
5714
5715 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5716 port = 1 << port;
5717 if (sw->member & port) {
5718 sw->member &= ~port;
5719 bridge_change(hw);
5720 }
5721 }
5722 }
5723}
5724
5725static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5726 int multicast)
5727{
5728 if (multicast != priv->multicast) {
5729 u8 all_multi = hw->all_multi;
5730
5731 if (multicast)
5732 ++hw->all_multi;
5733 else
5734 --hw->all_multi;
5735 priv->multicast = multicast;
5736
5737 /* Turn on/off all multicast mode. */
5738 if (hw->all_multi <= 1 && all_multi <= 1)
5739 hw_set_multicast(hw, hw->all_multi);
5740 }
5741}
5742
5743/**
5744 * netdev_set_rx_mode
5745 * @dev: Network device.
5746 *
5747 * This routine is used to set multicast addresses or put the network device
5748 * into promiscuous mode.
5749 */
5750static void netdev_set_rx_mode(struct net_device *dev)
5751{
5752 struct dev_priv *priv = netdev_priv(dev);
5753 struct dev_info *hw_priv = priv->adapter;
5754 struct ksz_hw *hw = &hw_priv->hw;
22bedad3 5755 struct netdev_hw_addr *ha;
8ca86fd8
TH
5756 int multicast = (dev->flags & IFF_ALLMULTI);
5757
5758 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5759
5760 if (hw_priv->hw.dev_count > 1)
5761 multicast |= (dev->flags & IFF_MULTICAST);
5762 dev_set_multicast(priv, hw, multicast);
5763
5764 /* Cannot use different hashes in multiple device interfaces mode. */
5765 if (hw_priv->hw.dev_count > 1)
5766 return;
5767
f9dcbcc9 5768 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
8ca86fd8
TH
5769 int i = 0;
5770
5771 /* List too big to support so turn on all multicast mode. */
22bedad3 5772 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
8ca86fd8
TH
5773 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5774 hw->multi_list_size = MAX_MULTICAST_LIST;
5775 ++hw->all_multi;
5776 hw_set_multicast(hw, hw->all_multi);
5777 }
5778 return;
5779 }
5780
22bedad3 5781 netdev_for_each_mc_addr(ha, dev) {
8ca86fd8
TH
5782 if (i >= MAX_MULTICAST_LIST)
5783 break;
6a3c910c 5784 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
8ca86fd8
TH
5785 }
5786 hw->multi_list_size = (u8) i;
5787 hw_set_grp_addr(hw);
5788 } else {
5789 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5790 --hw->all_multi;
5791 hw_set_multicast(hw, hw->all_multi);
5792 }
5793 hw->multi_list_size = 0;
5794 hw_clr_multicast(hw);
5795 }
5796}
5797
5798static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5799{
5800 struct dev_priv *priv = netdev_priv(dev);
5801 struct dev_info *hw_priv = priv->adapter;
5802 struct ksz_hw *hw = &hw_priv->hw;
5803 int hw_mtu;
5804
5805 if (netif_running(dev))
5806 return -EBUSY;
5807
5808 /* Cannot use different MTU in multiple device interfaces mode. */
5809 if (hw->dev_count > 1)
5810 if (dev != hw_priv->dev)
5811 return 0;
5812 if (new_mtu < 60)
5813 return -EINVAL;
5814
5815 if (dev->mtu != new_mtu) {
5816 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5817 if (hw_mtu > MAX_RX_BUF_SIZE)
5818 return -EINVAL;
5819 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5820 hw->features |= RX_HUGE_FRAME;
5821 hw_mtu = MAX_RX_BUF_SIZE;
5822 } else {
5823 hw->features &= ~RX_HUGE_FRAME;
5824 hw_mtu = REGULAR_RX_BUF_SIZE;
5825 }
5826 hw_mtu = (hw_mtu + 3) & ~3;
5827 hw_priv->mtu = hw_mtu;
5828 dev->mtu = new_mtu;
5829 }
5830 return 0;
5831}
5832
5833/**
5834 * netdev_ioctl - I/O control processing
5835 * @dev: Network device.
5836 * @ifr: Interface request structure.
5837 * @cmd: I/O control code.
5838 *
5839 * This function is used to process I/O control calls.
5840 *
5841 * Return 0 to indicate success.
5842 */
5843static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5844{
5845 struct dev_priv *priv = netdev_priv(dev);
5846 struct dev_info *hw_priv = priv->adapter;
5847 struct ksz_hw *hw = &hw_priv->hw;
5848 struct ksz_port *port = &priv->port;
8ca86fd8
TH
5849 int result = 0;
5850 struct mii_ioctl_data *data = if_mii(ifr);
5851
5852 if (down_interruptible(&priv->proc_sem))
5853 return -ERESTARTSYS;
5854
8ca86fd8
TH
5855 switch (cmd) {
5856 /* Get address of MII PHY in use. */
5857 case SIOCGMIIPHY:
5858 data->phy_id = priv->id;
5859
5860 /* Fallthrough... */
5861
5862 /* Read MII PHY register. */
5863 case SIOCGMIIREG:
5864 if (data->phy_id != priv->id || data->reg_num >= 6)
5865 result = -EIO;
5866 else
5867 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5868 &data->val_out);
5869 break;
5870
5871 /* Write MII PHY register. */
5872 case SIOCSMIIREG:
5873 if (!capable(CAP_NET_ADMIN))
5874 result = -EPERM;
5875 else if (data->phy_id != priv->id || data->reg_num >= 6)
5876 result = -EIO;
5877 else
5878 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5879 data->val_in);
5880 break;
5881
5882 default:
5883 result = -EOPNOTSUPP;
5884 }
5885
5886 up(&priv->proc_sem);
5887
5888 return result;
5889}
5890
5891/*
5892 * MII support
5893 */
5894
5895/**
5896 * mdio_read - read PHY register
5897 * @dev: Network device.
5898 * @phy_id: The PHY id.
5899 * @reg_num: The register number.
5900 *
5901 * This function returns the PHY register value.
5902 *
5903 * Return the register value.
5904 */
5905static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5906{
5907 struct dev_priv *priv = netdev_priv(dev);
5908 struct ksz_port *port = &priv->port;
5909 struct ksz_hw *hw = port->hw;
5910 u16 val_out;
5911
5912 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5913 return val_out;
5914}
5915
5916/**
5917 * mdio_write - set PHY register
5918 * @dev: Network device.
5919 * @phy_id: The PHY id.
5920 * @reg_num: The register number.
5921 * @val: The register value.
5922 *
5923 * This procedure sets the PHY register value.
5924 */
5925static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5926{
5927 struct dev_priv *priv = netdev_priv(dev);
5928 struct ksz_port *port = &priv->port;
5929 struct ksz_hw *hw = port->hw;
5930 int i;
5931 int pi;
5932
5933 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5934 hw_w_phy(hw, pi, reg_num << 1, val);
5935}
5936
5937/*
5938 * ethtool support
5939 */
5940
5941#define EEPROM_SIZE 0x40
5942
5943static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5944
5945#define ADVERTISED_ALL \
5946 (ADVERTISED_10baseT_Half | \
5947 ADVERTISED_10baseT_Full | \
5948 ADVERTISED_100baseT_Half | \
5949 ADVERTISED_100baseT_Full)
5950
5951/* These functions use the MII functions in mii.c. */
5952
5953/**
5954 * netdev_get_settings - get network device settings
5955 * @dev: Network device.
5956 * @cmd: Ethtool command.
5957 *
5958 * This function queries the PHY and returns its state in the ethtool command.
5959 *
5960 * Return 0 if successful; otherwise an error code.
5961 */
5962static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5963{
5964 struct dev_priv *priv = netdev_priv(dev);
5965 struct dev_info *hw_priv = priv->adapter;
5966
5967 mutex_lock(&hw_priv->lock);
5968 mii_ethtool_gset(&priv->mii_if, cmd);
5969 cmd->advertising |= SUPPORTED_TP;
5970 mutex_unlock(&hw_priv->lock);
5971
5972 /* Save advertised settings for workaround in next function. */
5973 priv->advertising = cmd->advertising;
5974 return 0;
5975}
5976
5977/**
5978 * netdev_set_settings - set network device settings
5979 * @dev: Network device.
5980 * @cmd: Ethtool command.
5981 *
5982 * This function sets the PHY according to the ethtool command.
5983 *
5984 * Return 0 if successful; otherwise an error code.
5985 */
5986static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5987{
5988 struct dev_priv *priv = netdev_priv(dev);
5989 struct dev_info *hw_priv = priv->adapter;
5990 struct ksz_port *port = &priv->port;
25db0338 5991 u32 speed = ethtool_cmd_speed(cmd);
8ca86fd8
TH
5992 int rc;
5993
5994 /*
5995 * ethtool utility does not change advertised setting if auto
5996 * negotiation is not specified explicitly.
5997 */
5998 if (cmd->autoneg && priv->advertising == cmd->advertising) {
5999 cmd->advertising |= ADVERTISED_ALL;
25db0338 6000 if (10 == speed)
8ca86fd8
TH
6001 cmd->advertising &=
6002 ~(ADVERTISED_100baseT_Full |
6003 ADVERTISED_100baseT_Half);
25db0338 6004 else if (100 == speed)
8ca86fd8
TH
6005 cmd->advertising &=
6006 ~(ADVERTISED_10baseT_Full |
6007 ADVERTISED_10baseT_Half);
6008 if (0 == cmd->duplex)
6009 cmd->advertising &=
6010 ~(ADVERTISED_100baseT_Full |
6011 ADVERTISED_10baseT_Full);
6012 else if (1 == cmd->duplex)
6013 cmd->advertising &=
6014 ~(ADVERTISED_100baseT_Half |
6015 ADVERTISED_10baseT_Half);
6016 }
6017 mutex_lock(&hw_priv->lock);
6018 if (cmd->autoneg &&
6019 (cmd->advertising & ADVERTISED_ALL) ==
6020 ADVERTISED_ALL) {
6021 port->duplex = 0;
6022 port->speed = 0;
6023 port->force_link = 0;
6024 } else {
6025 port->duplex = cmd->duplex + 1;
25db0338
DD
6026 if (1000 != speed)
6027 port->speed = speed;
8ca86fd8
TH
6028 if (cmd->autoneg)
6029 port->force_link = 0;
6030 else
6031 port->force_link = 1;
6032 }
6033 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6034 mutex_unlock(&hw_priv->lock);
6035 return rc;
6036}
6037
6038/**
6039 * netdev_nway_reset - restart auto-negotiation
6040 * @dev: Network device.
6041 *
6042 * This function restarts the PHY for auto-negotiation.
6043 *
6044 * Return 0 if successful; otherwise an error code.
6045 */
6046static int netdev_nway_reset(struct net_device *dev)
6047{
6048 struct dev_priv *priv = netdev_priv(dev);
6049 struct dev_info *hw_priv = priv->adapter;
6050 int rc;
6051
6052 mutex_lock(&hw_priv->lock);
6053 rc = mii_nway_restart(&priv->mii_if);
6054 mutex_unlock(&hw_priv->lock);
6055 return rc;
6056}
6057
6058/**
6059 * netdev_get_link - get network device link status
6060 * @dev: Network device.
6061 *
6062 * This function gets the link status from the PHY.
6063 *
6064 * Return true if PHY is linked and false otherwise.
6065 */
6066static u32 netdev_get_link(struct net_device *dev)
6067{
6068 struct dev_priv *priv = netdev_priv(dev);
6069 int rc;
6070
6071 rc = mii_link_ok(&priv->mii_if);
6072 return rc;
6073}
6074
6075/**
6076 * netdev_get_drvinfo - get network driver information
6077 * @dev: Network device.
6078 * @info: Ethtool driver info data structure.
6079 *
6080 * This procedure returns the driver information.
6081 */
6082static void netdev_get_drvinfo(struct net_device *dev,
6083 struct ethtool_drvinfo *info)
6084{
6085 struct dev_priv *priv = netdev_priv(dev);
6086 struct dev_info *hw_priv = priv->adapter;
6087
23020ab3
RJ
6088 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6089 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6090 strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6091 sizeof(info->bus_info));
8ca86fd8
TH
6092}
6093
6094/**
6095 * netdev_get_regs_len - get length of register dump
6096 * @dev: Network device.
6097 *
6098 * This function returns the length of the register dump.
6099 *
6100 * Return length of the register dump.
6101 */
6102static struct hw_regs {
6103 int start;
6104 int end;
6105} hw_regs_range[] = {
6106 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6107 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6108 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6109 { KS884X_SIDER_P, KS8842_SGCR7_P },
6110 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6111 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6112 { 0, 0 }
6113};
6114
6115static int netdev_get_regs_len(struct net_device *dev)
6116{
6117 struct hw_regs *range = hw_regs_range;
6118 int regs_len = 0x10 * sizeof(u32);
6119
6120 while (range->end > range->start) {
6121 regs_len += (range->end - range->start + 3) / 4 * 4;
6122 range++;
6123 }
6124 return regs_len;
6125}
6126
6127/**
6128 * netdev_get_regs - get register dump
6129 * @dev: Network device.
6130 * @regs: Ethtool registers data structure.
6131 * @ptr: Buffer to store the register values.
6132 *
6133 * This procedure dumps the register values in the provided buffer.
6134 */
6135static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6136 void *ptr)
6137{
6138 struct dev_priv *priv = netdev_priv(dev);
6139 struct dev_info *hw_priv = priv->adapter;
6140 struct ksz_hw *hw = &hw_priv->hw;
6141 int *buf = (int *) ptr;
6142 struct hw_regs *range = hw_regs_range;
6143 int len;
6144
6145 mutex_lock(&hw_priv->lock);
6146 regs->version = 0;
6147 for (len = 0; len < 0x40; len += 4) {
6148 pci_read_config_dword(hw_priv->pdev, len, buf);
6149 buf++;
6150 }
6151 while (range->end > range->start) {
6152 for (len = range->start; len < range->end; len += 4) {
6153 *buf = readl(hw->io + len);
6154 buf++;
6155 }
6156 range++;
6157 }
6158 mutex_unlock(&hw_priv->lock);
6159}
6160
6161#define WOL_SUPPORT \
6162 (WAKE_PHY | WAKE_MAGIC | \
6163 WAKE_UCAST | WAKE_MCAST | \
6164 WAKE_BCAST | WAKE_ARP)
6165
6166/**
6167 * netdev_get_wol - get Wake-on-LAN support
6168 * @dev: Network device.
6169 * @wol: Ethtool Wake-on-LAN data structure.
6170 *
6171 * This procedure returns Wake-on-LAN support.
6172 */
6173static void netdev_get_wol(struct net_device *dev,
6174 struct ethtool_wolinfo *wol)
6175{
6176 struct dev_priv *priv = netdev_priv(dev);
6177 struct dev_info *hw_priv = priv->adapter;
6178
6179 wol->supported = hw_priv->wol_support;
6180 wol->wolopts = hw_priv->wol_enable;
6181 memset(&wol->sopass, 0, sizeof(wol->sopass));
6182}
6183
6184/**
6185 * netdev_set_wol - set Wake-on-LAN support
6186 * @dev: Network device.
6187 * @wol: Ethtool Wake-on-LAN data structure.
6188 *
6189 * This function sets Wake-on-LAN support.
6190 *
6191 * Return 0 if successful; otherwise an error code.
6192 */
6193static int netdev_set_wol(struct net_device *dev,
6194 struct ethtool_wolinfo *wol)
6195{
6196 struct dev_priv *priv = netdev_priv(dev);
6197 struct dev_info *hw_priv = priv->adapter;
6198
6199 /* Need to find a way to retrieve the device IP address. */
b6bc7650 6200 static const u8 net_addr[] = { 192, 168, 1, 1 };
8ca86fd8
TH
6201
6202 if (wol->wolopts & ~hw_priv->wol_support)
6203 return -EINVAL;
6204
6205 hw_priv->wol_enable = wol->wolopts;
6206
6207 /* Link wakeup cannot really be disabled. */
6208 if (wol->wolopts)
6209 hw_priv->wol_enable |= WAKE_PHY;
6210 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6211 return 0;
6212}
6213
6214/**
6215 * netdev_get_msglevel - get debug message level
6216 * @dev: Network device.
6217 *
6218 * This function returns current debug message level.
6219 *
6220 * Return current debug message flags.
6221 */
6222static u32 netdev_get_msglevel(struct net_device *dev)
6223{
6224 struct dev_priv *priv = netdev_priv(dev);
6225
6226 return priv->msg_enable;
6227}
6228
6229/**
6230 * netdev_set_msglevel - set debug message level
6231 * @dev: Network device.
6232 * @value: Debug message flags.
6233 *
6234 * This procedure sets debug message level.
6235 */
6236static void netdev_set_msglevel(struct net_device *dev, u32 value)
6237{
6238 struct dev_priv *priv = netdev_priv(dev);
6239
6240 priv->msg_enable = value;
6241}
6242
6243/**
6244 * netdev_get_eeprom_len - get EEPROM length
6245 * @dev: Network device.
6246 *
6247 * This function returns the length of the EEPROM.
6248 *
6249 * Return length of the EEPROM.
6250 */
6251static int netdev_get_eeprom_len(struct net_device *dev)
6252{
6253 return EEPROM_SIZE * 2;
6254}
6255
6256/**
6257 * netdev_get_eeprom - get EEPROM data
6258 * @dev: Network device.
6259 * @eeprom: Ethtool EEPROM data structure.
6260 * @data: Buffer to store the EEPROM data.
6261 *
6262 * This function dumps the EEPROM data in the provided buffer.
6263 *
6264 * Return 0 if successful; otherwise an error code.
6265 */
6266#define EEPROM_MAGIC 0x10A18842
6267
6268static int netdev_get_eeprom(struct net_device *dev,
6269 struct ethtool_eeprom *eeprom, u8 *data)
6270{
6271 struct dev_priv *priv = netdev_priv(dev);
6272 struct dev_info *hw_priv = priv->adapter;
6273 u8 *eeprom_byte = (u8 *) eeprom_data;
6274 int i;
6275 int len;
6276
6277 len = (eeprom->offset + eeprom->len + 1) / 2;
6278 for (i = eeprom->offset / 2; i < len; i++)
6279 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6280 eeprom->magic = EEPROM_MAGIC;
6281 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6282
6283 return 0;
6284}
6285
6286/**
6287 * netdev_set_eeprom - write EEPROM data
6288 * @dev: Network device.
6289 * @eeprom: Ethtool EEPROM data structure.
6290 * @data: Data buffer.
6291 *
6292 * This function modifies the EEPROM data one byte at a time.
6293 *
6294 * Return 0 if successful; otherwise an error code.
6295 */
6296static int netdev_set_eeprom(struct net_device *dev,
6297 struct ethtool_eeprom *eeprom, u8 *data)
6298{
6299 struct dev_priv *priv = netdev_priv(dev);
6300 struct dev_info *hw_priv = priv->adapter;
6301 u16 eeprom_word[EEPROM_SIZE];
6302 u8 *eeprom_byte = (u8 *) eeprom_word;
6303 int i;
6304 int len;
6305
6306 if (eeprom->magic != EEPROM_MAGIC)
4881a4f8 6307 return -EINVAL;
8ca86fd8
TH
6308
6309 len = (eeprom->offset + eeprom->len + 1) / 2;
6310 for (i = eeprom->offset / 2; i < len; i++)
6311 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6312 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6313 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6314 for (i = 0; i < EEPROM_SIZE; i++)
6315 if (eeprom_word[i] != eeprom_data[i]) {
6316 eeprom_data[i] = eeprom_word[i];
6317 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6318 }
6319
6320 return 0;
6321}
6322
6323/**
6324 * netdev_get_pauseparam - get flow control parameters
6325 * @dev: Network device.
6326 * @pause: Ethtool PAUSE settings data structure.
6327 *
6328 * This procedure returns the PAUSE control flow settings.
6329 */
6330static void netdev_get_pauseparam(struct net_device *dev,
6331 struct ethtool_pauseparam *pause)
6332{
6333 struct dev_priv *priv = netdev_priv(dev);
6334 struct dev_info *hw_priv = priv->adapter;
6335 struct ksz_hw *hw = &hw_priv->hw;
6336
6337 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6338 if (!hw->ksz_switch) {
6339 pause->rx_pause =
6340 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6341 pause->tx_pause =
6342 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6343 } else {
6344 pause->rx_pause =
6345 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6346 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6347 pause->tx_pause =
6348 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6349 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6350 }
6351}
6352
6353/**
6354 * netdev_set_pauseparam - set flow control parameters
6355 * @dev: Network device.
6356 * @pause: Ethtool PAUSE settings data structure.
6357 *
6358 * This function sets the PAUSE control flow settings.
6359 * Not implemented yet.
6360 *
6361 * Return 0 if successful; otherwise an error code.
6362 */
6363static int netdev_set_pauseparam(struct net_device *dev,
6364 struct ethtool_pauseparam *pause)
6365{
6366 struct dev_priv *priv = netdev_priv(dev);
6367 struct dev_info *hw_priv = priv->adapter;
6368 struct ksz_hw *hw = &hw_priv->hw;
6369 struct ksz_port *port = &priv->port;
6370
6371 mutex_lock(&hw_priv->lock);
6372 if (pause->autoneg) {
6373 if (!pause->rx_pause && !pause->tx_pause)
6374 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6375 else
6376 port->flow_ctrl = PHY_FLOW_CTRL;
6377 hw->overrides &= ~PAUSE_FLOW_CTRL;
6378 port->force_link = 0;
6379 if (hw->ksz_switch) {
6380 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6381 SWITCH_RX_FLOW_CTRL, 1);
6382 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6383 SWITCH_TX_FLOW_CTRL, 1);
6384 }
6385 port_set_link_speed(port);
6386 } else {
6387 hw->overrides |= PAUSE_FLOW_CTRL;
6388 if (hw->ksz_switch) {
6389 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6391 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6392 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6393 } else
6394 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6395 }
6396 mutex_unlock(&hw_priv->lock);
6397
6398 return 0;
6399}
6400
6401/**
6402 * netdev_get_ringparam - get tx/rx ring parameters
6403 * @dev: Network device.
6404 * @pause: Ethtool RING settings data structure.
6405 *
6406 * This procedure returns the TX/RX ring settings.
6407 */
6408static void netdev_get_ringparam(struct net_device *dev,
6409 struct ethtool_ringparam *ring)
6410{
6411 struct dev_priv *priv = netdev_priv(dev);
6412 struct dev_info *hw_priv = priv->adapter;
6413 struct ksz_hw *hw = &hw_priv->hw;
6414
6415 ring->tx_max_pending = (1 << 9);
6416 ring->tx_pending = hw->tx_desc_info.alloc;
6417 ring->rx_max_pending = (1 << 9);
6418 ring->rx_pending = hw->rx_desc_info.alloc;
6419}
6420
6421#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6422
6423static struct {
6424 char string[ETH_GSTRING_LEN];
6425} ethtool_stats_keys[STATS_LEN] = {
6426 { "rx_lo_priority_octets" },
6427 { "rx_hi_priority_octets" },
6428 { "rx_undersize_packets" },
6429 { "rx_fragments" },
6430 { "rx_oversize_packets" },
6431 { "rx_jabbers" },
6432 { "rx_symbol_errors" },
6433 { "rx_crc_errors" },
6434 { "rx_align_errors" },
6435 { "rx_mac_ctrl_packets" },
6436 { "rx_pause_packets" },
6437 { "rx_bcast_packets" },
6438 { "rx_mcast_packets" },
6439 { "rx_ucast_packets" },
6440 { "rx_64_or_less_octet_packets" },
6441 { "rx_65_to_127_octet_packets" },
6442 { "rx_128_to_255_octet_packets" },
6443 { "rx_256_to_511_octet_packets" },
6444 { "rx_512_to_1023_octet_packets" },
6445 { "rx_1024_to_1522_octet_packets" },
6446
6447 { "tx_lo_priority_octets" },
6448 { "tx_hi_priority_octets" },
6449 { "tx_late_collisions" },
6450 { "tx_pause_packets" },
6451 { "tx_bcast_packets" },
6452 { "tx_mcast_packets" },
6453 { "tx_ucast_packets" },
6454 { "tx_deferred" },
6455 { "tx_total_collisions" },
6456 { "tx_excessive_collisions" },
6457 { "tx_single_collisions" },
6458 { "tx_mult_collisions" },
6459
6460 { "rx_discards" },
6461 { "tx_discards" },
6462};
6463
6464/**
6465 * netdev_get_strings - get statistics identity strings
6466 * @dev: Network device.
6467 * @stringset: String set identifier.
6468 * @buf: Buffer to store the strings.
6469 *
6470 * This procedure returns the strings used to identify the statistics.
6471 */
6472static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6473{
6474 struct dev_priv *priv = netdev_priv(dev);
6475 struct dev_info *hw_priv = priv->adapter;
6476 struct ksz_hw *hw = &hw_priv->hw;
6477
6478 if (ETH_SS_STATS == stringset)
6479 memcpy(buf, &ethtool_stats_keys,
6480 ETH_GSTRING_LEN * hw->mib_cnt);
6481}
6482
6483/**
6484 * netdev_get_sset_count - get statistics size
6485 * @dev: Network device.
6486 * @sset: The statistics set number.
6487 *
6488 * This function returns the size of the statistics to be reported.
6489 *
6490 * Return size of the statistics to be reported.
6491 */
6492static int netdev_get_sset_count(struct net_device *dev, int sset)
6493{
6494 struct dev_priv *priv = netdev_priv(dev);
6495 struct dev_info *hw_priv = priv->adapter;
6496 struct ksz_hw *hw = &hw_priv->hw;
6497
6498 switch (sset) {
6499 case ETH_SS_STATS:
6500 return hw->mib_cnt;
6501 default:
6502 return -EOPNOTSUPP;
6503 }
6504}
6505
6506/**
6507 * netdev_get_ethtool_stats - get network device statistics
6508 * @dev: Network device.
6509 * @stats: Ethtool statistics data structure.
6510 * @data: Buffer to store the statistics.
6511 *
6512 * This procedure returns the statistics.
6513 */
6514static void netdev_get_ethtool_stats(struct net_device *dev,
6515 struct ethtool_stats *stats, u64 *data)
6516{
6517 struct dev_priv *priv = netdev_priv(dev);
6518 struct dev_info *hw_priv = priv->adapter;
6519 struct ksz_hw *hw = &hw_priv->hw;
6520 struct ksz_port *port = &priv->port;
6521 int n_stats = stats->n_stats;
6522 int i;
6523 int n;
6524 int p;
6525 int rc;
6526 u64 counter[TOTAL_PORT_COUNTER_NUM];
6527
6528 mutex_lock(&hw_priv->lock);
6529 n = SWITCH_PORT_NUM;
6530 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6531 if (media_connected == hw->port_mib[p].state) {
6532 hw_priv->counter[p].read = 1;
6533
6534 /* Remember first port that requests read. */
6535 if (n == SWITCH_PORT_NUM)
6536 n = p;
6537 }
6538 }
6539 mutex_unlock(&hw_priv->lock);
6540
6541 if (n < SWITCH_PORT_NUM)
6542 schedule_work(&hw_priv->mib_read);
6543
6544 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6545 p = n;
6546 rc = wait_event_interruptible_timeout(
6547 hw_priv->counter[p].counter,
6548 2 == hw_priv->counter[p].read,
6549 HZ * 1);
6550 } else
6551 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6552 if (0 == i) {
6553 rc = wait_event_interruptible_timeout(
6554 hw_priv->counter[p].counter,
6555 2 == hw_priv->counter[p].read,
6556 HZ * 2);
6557 } else if (hw->port_mib[p].cnt_ptr) {
6558 rc = wait_event_interruptible_timeout(
6559 hw_priv->counter[p].counter,
6560 2 == hw_priv->counter[p].read,
6561 HZ * 1);
6562 }
6563 }
6564
6565 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6566 n = hw->mib_cnt;
6567 if (n > n_stats)
6568 n = n_stats;
6569 n_stats -= n;
6570 for (i = 0; i < n; i++)
6571 *data++ = counter[i];
6572}
6573
6574/**
e6a46416 6575 * netdev_set_features - set receive checksum support
8ca86fd8 6576 * @dev: Network device.
e6a46416 6577 * @features: New device features (offloads).
8ca86fd8
TH
6578 *
6579 * This function sets receive checksum support setting.
6580 *
6581 * Return 0 if successful; otherwise an error code.
6582 */
c8f44aff
MM
6583static int netdev_set_features(struct net_device *dev,
6584 netdev_features_t features)
8ca86fd8
TH
6585{
6586 struct dev_priv *priv = netdev_priv(dev);
6587 struct dev_info *hw_priv = priv->adapter;
6588 struct ksz_hw *hw = &hw_priv->hw;
8ca86fd8 6589
8ca86fd8 6590 mutex_lock(&hw_priv->lock);
e6a46416
MM
6591
6592 /* see note in hw_setup() */
6593 if (features & NETIF_F_RXCSUM)
6594 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6595 else
6596 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6597
6598 if (hw->enabled)
6599 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6600
8ca86fd8 6601 mutex_unlock(&hw_priv->lock);
e6a46416 6602
8ca86fd8
TH
6603 return 0;
6604}
6605
9b07be4b 6606static const struct ethtool_ops netdev_ethtool_ops = {
8ca86fd8
TH
6607 .get_settings = netdev_get_settings,
6608 .set_settings = netdev_set_settings,
6609 .nway_reset = netdev_nway_reset,
6610 .get_link = netdev_get_link,
6611 .get_drvinfo = netdev_get_drvinfo,
6612 .get_regs_len = netdev_get_regs_len,
6613 .get_regs = netdev_get_regs,
6614 .get_wol = netdev_get_wol,
6615 .set_wol = netdev_set_wol,
6616 .get_msglevel = netdev_get_msglevel,
6617 .set_msglevel = netdev_set_msglevel,
6618 .get_eeprom_len = netdev_get_eeprom_len,
6619 .get_eeprom = netdev_get_eeprom,
6620 .set_eeprom = netdev_set_eeprom,
6621 .get_pauseparam = netdev_get_pauseparam,
6622 .set_pauseparam = netdev_set_pauseparam,
6623 .get_ringparam = netdev_get_ringparam,
6624 .get_strings = netdev_get_strings,
6625 .get_sset_count = netdev_get_sset_count,
6626 .get_ethtool_stats = netdev_get_ethtool_stats,
8ca86fd8
TH
6627};
6628
6629/*
6630 * Hardware monitoring
6631 */
6632
6633static void update_link(struct net_device *dev, struct dev_priv *priv,
6634 struct ksz_port *port)
6635{
6636 if (priv->media_state != port->linked->state) {
6637 priv->media_state = port->linked->state;
0dc7d2b3
JP
6638 if (netif_running(dev))
6639 set_media_state(dev, media_connected);
8ca86fd8
TH
6640 }
6641}
6642
6643static void mib_read_work(struct work_struct *work)
6644{
6645 struct dev_info *hw_priv =
6646 container_of(work, struct dev_info, mib_read);
6647 struct ksz_hw *hw = &hw_priv->hw;
6648 struct ksz_port_mib *mib;
6649 int i;
6650
6651 next_jiffies = jiffies;
6652 for (i = 0; i < hw->mib_port_cnt; i++) {
6653 mib = &hw->port_mib[i];
6654
6655 /* Reading MIB counters or requested to read. */
6656 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6657
6658 /* Need to process receive interrupt. */
6659 if (port_r_cnt(hw, i))
6660 break;
6661 hw_priv->counter[i].read = 0;
6662
6663 /* Finish reading counters. */
6664 if (0 == mib->cnt_ptr) {
6665 hw_priv->counter[i].read = 2;
6666 wake_up_interruptible(
6667 &hw_priv->counter[i].counter);
6668 }
6669 } else if (jiffies >= hw_priv->counter[i].time) {
6670 /* Only read MIB counters when the port is connected. */
6671 if (media_connected == mib->state)
6672 hw_priv->counter[i].read = 1;
6673 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6674 hw_priv->counter[i].time = next_jiffies;
6675
6676 /* Port is just disconnected. */
6677 } else if (mib->link_down) {
6678 mib->link_down = 0;
6679
6680 /* Read counters one last time after link is lost. */
6681 hw_priv->counter[i].read = 1;
6682 }
6683 }
6684}
6685
6686static void mib_monitor(unsigned long ptr)
6687{
6688 struct dev_info *hw_priv = (struct dev_info *) ptr;
6689
6690 mib_read_work(&hw_priv->mib_read);
6691
6692 /* This is used to verify Wake-on-LAN is working. */
6693 if (hw_priv->pme_wait) {
6694 if (hw_priv->pme_wait <= jiffies) {
6695 hw_clr_wol_pme_status(&hw_priv->hw);
6696 hw_priv->pme_wait = 0;
6697 }
6698 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6699
6700 /* PME is asserted. Wait 2 seconds to clear it. */
6701 hw_priv->pme_wait = jiffies + HZ * 2;
6702 }
6703
6704 ksz_update_timer(&hw_priv->mib_timer_info);
6705}
6706
6707/**
6708 * dev_monitor - periodic monitoring
6709 * @ptr: Network device pointer.
6710 *
6711 * This routine is run in a kernel timer to monitor the network device.
6712 */
6713static void dev_monitor(unsigned long ptr)
6714{
6715 struct net_device *dev = (struct net_device *) ptr;
6716 struct dev_priv *priv = netdev_priv(dev);
6717 struct dev_info *hw_priv = priv->adapter;
6718 struct ksz_hw *hw = &hw_priv->hw;
6719 struct ksz_port *port = &priv->port;
6720
6721 if (!(hw->features & LINK_INT_WORKING))
6722 port_get_link_speed(port);
6723 update_link(dev, priv, port);
6724
6725 ksz_update_timer(&priv->monitor_timer_info);
6726}
6727
6728/*
6729 * Linux network device interface functions
6730 */
6731
6732/* Driver exported variables */
6733
6734static int msg_enable;
6735
6736static char *macaddr = ":";
6737static char *mac1addr = ":";
6738
6739/*
6740 * This enables multiple network device mode for KSZ8842, which contains a
6741 * switch with two physical ports. Some users like to take control of the
6742 * ports for running Spanning Tree Protocol. The driver will create an
6743 * additional eth? device for the other port.
6744 *
6745 * Some limitations are the network devices cannot have different MTU and
6746 * multicast hash tables.
6747 */
6748static int multi_dev;
6749
6750/*
6751 * As most users select multiple network device mode to use Spanning Tree
6752 * Protocol, this enables a feature in which most unicast and multicast packets
6753 * are forwarded inside the switch and not passed to the host. Only packets
6754 * that need the host's attention are passed to it. This prevents the host
6755 * wasting CPU time to examine each and every incoming packets and do the
6756 * forwarding itself.
6757 *
6758 * As the hack requires the private bridge header, the driver cannot compile
6759 * with just the kernel headers.
6760 *
6761 * Enabling STP support also turns on multiple network device mode.
6762 */
6763static int stp;
6764
6765/*
6766 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6767 * needs that. However, fast aging is used to flush the dynamic MAC table when
02582e9b 6768 * STP support is enabled.
8ca86fd8
TH
6769 */
6770static int fast_aging;
6771
6772/**
421f91d2 6773 * netdev_init - initialize network device.
8ca86fd8
TH
6774 * @dev: Network device.
6775 *
6776 * This function initializes the network device.
6777 *
6778 * Return 0 if successful; otherwise an error code indicating failure.
6779 */
6780static int __init netdev_init(struct net_device *dev)
6781{
6782 struct dev_priv *priv = netdev_priv(dev);
6783
6784 /* 500 ms timeout */
6785 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6786 dev_monitor, dev);
6787
6788 /* 500 ms timeout */
6789 dev->watchdog_timeo = HZ / 2;
6790
e6a46416 6791 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
8ca86fd8
TH
6792
6793 /*
6794 * Hardware does not really support IPv6 checksum generation, but
e6a46416 6795 * driver actually runs faster with this on.
8ca86fd8 6796 */
e6a46416
MM
6797 dev->hw_features |= NETIF_F_IPV6_CSUM;
6798
6799 dev->features |= dev->hw_features;
8ca86fd8
TH
6800
6801 sema_init(&priv->proc_sem, 1);
6802
6803 priv->mii_if.phy_id_mask = 0x1;
6804 priv->mii_if.reg_num_mask = 0x7;
6805 priv->mii_if.dev = dev;
6806 priv->mii_if.mdio_read = mdio_read;
6807 priv->mii_if.mdio_write = mdio_write;
6808 priv->mii_if.phy_id = priv->port.first_port + 1;
6809
6810 priv->msg_enable = netif_msg_init(msg_enable,
6811 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6812
6813 return 0;
6814}
6815
6816static const struct net_device_ops netdev_ops = {
6817 .ndo_init = netdev_init,
6818 .ndo_open = netdev_open,
6819 .ndo_stop = netdev_close,
6820 .ndo_get_stats = netdev_query_statistics,
6821 .ndo_start_xmit = netdev_tx,
6822 .ndo_tx_timeout = netdev_tx_timeout,
6823 .ndo_change_mtu = netdev_change_mtu,
e6a46416 6824 .ndo_set_features = netdev_set_features,
8ca86fd8 6825 .ndo_set_mac_address = netdev_set_mac_address,
96ed741e 6826 .ndo_validate_addr = eth_validate_addr,
8ca86fd8
TH
6827 .ndo_do_ioctl = netdev_ioctl,
6828 .ndo_set_rx_mode = netdev_set_rx_mode,
6829#ifdef CONFIG_NET_POLL_CONTROLLER
6830 .ndo_poll_controller = netdev_netpoll,
6831#endif
6832};
6833
6834static void netdev_free(struct net_device *dev)
6835{
6836 if (dev->watchdog_timeo)
6837 unregister_netdev(dev);
6838
6839 free_netdev(dev);
6840}
6841
6842struct platform_info {
6843 struct dev_info dev_info;
6844 struct net_device *netdev[SWITCH_PORT_NUM];
6845};
6846
6847static int net_device_present;
6848
6849static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6850{
6851 int i;
6852 int j;
6853 int got_num;
6854 int num;
6855
6856 i = j = num = got_num = 0;
6a3c910c 6857 while (j < ETH_ALEN) {
8ca86fd8 6858 if (macaddr[i]) {
5c4ac8c6
AS
6859 int digit;
6860
8ca86fd8 6861 got_num = 1;
5c4ac8c6
AS
6862 digit = hex_to_bin(macaddr[i]);
6863 if (digit >= 0)
6864 num = num * 16 + digit;
8ca86fd8
TH
6865 else if (':' == macaddr[i])
6866 got_num = 2;
6867 else
6868 break;
6869 } else if (got_num)
6870 got_num = 2;
6871 else
6872 break;
6873 if (2 == got_num) {
6874 if (MAIN_PORT == port) {
6875 hw_priv->hw.override_addr[j++] = (u8) num;
6876 hw_priv->hw.override_addr[5] +=
6877 hw_priv->hw.id;
6878 } else {
6879 hw_priv->hw.ksz_switch->other_addr[j++] =
6880 (u8) num;
6881 hw_priv->hw.ksz_switch->other_addr[5] +=
6882 hw_priv->hw.id;
6883 }
6884 num = got_num = 0;
6885 }
6886 i++;
6887 }
6a3c910c 6888 if (ETH_ALEN == j) {
8ca86fd8
TH
6889 if (MAIN_PORT == port)
6890 hw_priv->hw.mac_override = 1;
6891 }
6892}
6893
6894#define KS884X_DMA_MASK (~0x0UL)
6895
6896static void read_other_addr(struct ksz_hw *hw)
6897{
6898 int i;
6899 u16 data[3];
6900 struct ksz_switch *sw = hw->ksz_switch;
6901
6902 for (i = 0; i < 3; i++)
6903 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6904 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6905 sw->other_addr[5] = (u8) data[0];
6906 sw->other_addr[4] = (u8)(data[0] >> 8);
6907 sw->other_addr[3] = (u8) data[1];
6908 sw->other_addr[2] = (u8)(data[1] >> 8);
6909 sw->other_addr[1] = (u8) data[2];
6910 sw->other_addr[0] = (u8)(data[2] >> 8);
6911 }
6912}
6913
6914#ifndef PCI_VENDOR_ID_MICREL_KS
6915#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6916#endif
6917
1dd06ae8 6918static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
8ca86fd8
TH
6919{
6920 struct net_device *dev;
6921 struct dev_priv *priv;
6922 struct dev_info *hw_priv;
6923 struct ksz_hw *hw;
6924 struct platform_info *info;
6925 struct ksz_port *port;
6926 unsigned long reg_base;
6927 unsigned long reg_len;
6928 int cnt;
6929 int i;
6930 int mib_port_count;
6931 int pi;
6932 int port_count;
6933 int result;
0dc7d2b3 6934 char banner[sizeof(version)];
8ca86fd8
TH
6935 struct ksz_switch *sw = NULL;
6936
6937 result = pci_enable_device(pdev);
6938 if (result)
6939 return result;
6940
6941 result = -ENODEV;
6942
6943 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6944 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6945 return result;
6946
6947 reg_base = pci_resource_start(pdev, 0);
6948 reg_len = pci_resource_len(pdev, 0);
6949 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6950 return result;
6951
6952 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6953 return result;
6954 pci_set_master(pdev);
6955
6956 result = -ENOMEM;
6957
0dc7d2b3 6958 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
8ca86fd8
TH
6959 if (!info)
6960 goto pcidev_init_dev_err;
8ca86fd8
TH
6961
6962 hw_priv = &info->dev_info;
6963 hw_priv->pdev = pdev;
6964
6965 hw = &hw_priv->hw;
6966
6967 hw->io = ioremap(reg_base, reg_len);
6968 if (!hw->io)
6969 goto pcidev_init_io_err;
6970
6971 cnt = hw_init(hw);
6972 if (!cnt) {
6973 if (msg_enable & NETIF_MSG_PROBE)
0dc7d2b3 6974 pr_alert("chip not detected\n");
8ca86fd8
TH
6975 result = -ENODEV;
6976 goto pcidev_init_alloc_err;
6977 }
6978
0dc7d2b3
JP
6979 snprintf(banner, sizeof(banner), "%s", version);
6980 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6981 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6982 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
8ca86fd8
TH
6983
6984 /* Assume device is KSZ8841. */
6985 hw->dev_count = 1;
6986 port_count = 1;
6987 mib_port_count = 1;
6988 hw->addr_list_size = 0;
6989 hw->mib_cnt = PORT_COUNTER_NUM;
6990 hw->mib_port_cnt = 1;
6991
6992 /* KSZ8842 has a switch with multiple ports. */
6993 if (2 == cnt) {
6994 if (fast_aging)
6995 hw->overrides |= FAST_AGING;
6996
6997 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6998
6999 /* Multiple network device interfaces are required. */
7000 if (multi_dev) {
7001 hw->dev_count = SWITCH_PORT_NUM;
7002 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7003 }
7004
7005 /* Single network device has multiple ports. */
7006 if (1 == hw->dev_count) {
7007 port_count = SWITCH_PORT_NUM;
7008 mib_port_count = SWITCH_PORT_NUM;
7009 }
7010 hw->mib_port_cnt = TOTAL_PORT_NUM;
a05abcb5 7011 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
8ca86fd8
TH
7012 if (!hw->ksz_switch)
7013 goto pcidev_init_alloc_err;
8ca86fd8
TH
7014
7015 sw = hw->ksz_switch;
7016 }
7017 for (i = 0; i < hw->mib_port_cnt; i++)
7018 hw->port_mib[i].mib_start = 0;
7019
7020 hw->parent = hw_priv;
7021
7022 /* Default MTU is 1500. */
7023 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7024
7025 if (ksz_alloc_mem(hw_priv))
7026 goto pcidev_init_mem_err;
7027
7028 hw_priv->hw.id = net_device_present;
7029
7030 spin_lock_init(&hw_priv->hwlock);
7031 mutex_init(&hw_priv->lock);
7032
8ca86fd8
TH
7033 for (i = 0; i < TOTAL_PORT_NUM; i++)
7034 init_waitqueue_head(&hw_priv->counter[i].counter);
7035
7036 if (macaddr[0] != ':')
7037 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7038
7039 /* Read MAC address and initialize override address if not overrided. */
7040 hw_read_addr(hw);
7041
7042 /* Multiple device interfaces mode requires a second MAC address. */
7043 if (hw->dev_count > 1) {
6a3c910c 7044 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
8ca86fd8
TH
7045 read_other_addr(hw);
7046 if (mac1addr[0] != ':')
7047 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7048 }
7049
7050 hw_setup(hw);
7051 if (hw->ksz_switch)
7052 sw_setup(hw);
7053 else {
7054 hw_priv->wol_support = WOL_SUPPORT;
7055 hw_priv->wol_enable = 0;
7056 }
7057
7058 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7059
7060 /* 500 ms timeout */
7061 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7062 mib_monitor, hw_priv);
7063
7064 for (i = 0; i < hw->dev_count; i++) {
7065 dev = alloc_etherdev(sizeof(struct dev_priv));
7066 if (!dev)
7067 goto pcidev_init_reg_err;
9dbccc30 7068 SET_NETDEV_DEV(dev, &pdev->dev);
8ca86fd8
TH
7069 info->netdev[i] = dev;
7070
7071 priv = netdev_priv(dev);
7072 priv->adapter = hw_priv;
7073 priv->id = net_device_present++;
7074
7075 port = &priv->port;
7076 port->port_cnt = port_count;
7077 port->mib_port_cnt = mib_port_count;
7078 port->first_port = i;
7079 port->flow_ctrl = PHY_FLOW_CTRL;
7080
7081 port->hw = hw;
7082 port->linked = &hw->port_info[port->first_port];
7083
7084 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7085 hw->port_info[pi].port_id = pi;
7086 hw->port_info[pi].pdev = dev;
7087 hw->port_info[pi].state = media_disconnected;
7088 }
7089
7090 dev->mem_start = (unsigned long) hw->io;
7091 dev->mem_end = dev->mem_start + reg_len - 1;
7092 dev->irq = pdev->irq;
7093 if (MAIN_PORT == i)
7094 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
6a3c910c 7095 ETH_ALEN);
8ca86fd8 7096 else {
6a3c910c 7097 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7ced5440 7098 if (ether_addr_equal(sw->other_addr, hw->override_addr))
8ca86fd8
TH
7099 dev->dev_addr[5] += port->first_port;
7100 }
7101
7102 dev->netdev_ops = &netdev_ops;
7ad24ea4 7103 dev->ethtool_ops = &netdev_ethtool_ops;
8ca86fd8
TH
7104 if (register_netdev(dev))
7105 goto pcidev_init_reg_err;
7106 port_set_power_saving(port, true);
7107 }
7108
7109 pci_dev_get(hw_priv->pdev);
7110 pci_set_drvdata(pdev, info);
7111 return 0;
7112
7113pcidev_init_reg_err:
7114 for (i = 0; i < hw->dev_count; i++) {
7115 if (info->netdev[i]) {
7116 netdev_free(info->netdev[i]);
7117 info->netdev[i] = NULL;
7118 }
7119 }
7120
7121pcidev_init_mem_err:
7122 ksz_free_mem(hw_priv);
7123 kfree(hw->ksz_switch);
7124
7125pcidev_init_alloc_err:
7126 iounmap(hw->io);
7127
7128pcidev_init_io_err:
7129 kfree(info);
7130
7131pcidev_init_dev_err:
7132 release_mem_region(reg_base, reg_len);
7133
7134 return result;
7135}
7136
7137static void pcidev_exit(struct pci_dev *pdev)
7138{
7139 int i;
7140 struct platform_info *info = pci_get_drvdata(pdev);
7141 struct dev_info *hw_priv = &info->dev_info;
7142
8ca86fd8
TH
7143 release_mem_region(pci_resource_start(pdev, 0),
7144 pci_resource_len(pdev, 0));
7145 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7146 if (info->netdev[i])
7147 netdev_free(info->netdev[i]);
7148 }
7149 if (hw_priv->hw.io)
7150 iounmap(hw_priv->hw.io);
7151 ksz_free_mem(hw_priv);
7152 kfree(hw_priv->hw.ksz_switch);
7153 pci_dev_put(hw_priv->pdev);
7154 kfree(info);
7155}
7156
7157#ifdef CONFIG_PM
7158static int pcidev_resume(struct pci_dev *pdev)
7159{
7160 int i;
7161 struct platform_info *info = pci_get_drvdata(pdev);
7162 struct dev_info *hw_priv = &info->dev_info;
7163 struct ksz_hw *hw = &hw_priv->hw;
7164
7165 pci_set_power_state(pdev, PCI_D0);
7166 pci_restore_state(pdev);
7167 pci_enable_wake(pdev, PCI_D0, 0);
7168
7169 if (hw_priv->wol_enable)
7170 hw_cfg_wol_pme(hw, 0);
7171 for (i = 0; i < hw->dev_count; i++) {
7172 if (info->netdev[i]) {
7173 struct net_device *dev = info->netdev[i];
7174
7175 if (netif_running(dev)) {
7176 netdev_open(dev);
7177 netif_device_attach(dev);
7178 }
7179 }
7180 }
7181 return 0;
7182}
7183
7184static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7185{
7186 int i;
7187 struct platform_info *info = pci_get_drvdata(pdev);
7188 struct dev_info *hw_priv = &info->dev_info;
7189 struct ksz_hw *hw = &hw_priv->hw;
7190
7191 /* Need to find a way to retrieve the device IP address. */
b6bc7650 7192 static const u8 net_addr[] = { 192, 168, 1, 1 };
8ca86fd8
TH
7193
7194 for (i = 0; i < hw->dev_count; i++) {
7195 if (info->netdev[i]) {
7196 struct net_device *dev = info->netdev[i];
7197
7198 if (netif_running(dev)) {
7199 netif_device_detach(dev);
7200 netdev_close(dev);
7201 }
7202 }
7203 }
7204 if (hw_priv->wol_enable) {
7205 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7206 hw_cfg_wol_pme(hw, 1);
7207 }
7208
7209 pci_save_state(pdev);
7210 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7211 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7212 return 0;
7213}
7214#endif
7215
7216static char pcidev_name[] = "ksz884xp";
7217
9baa3c34 7218static const struct pci_device_id pcidev_table[] = {
8ca86fd8
TH
7219 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7221 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7223 { 0 }
7224};
7225
7226MODULE_DEVICE_TABLE(pci, pcidev_table);
7227
7228static struct pci_driver pci_device_driver = {
7229#ifdef CONFIG_PM
7230 .suspend = pcidev_suspend,
7231 .resume = pcidev_resume,
7232#endif
7233 .name = pcidev_name,
7234 .id_table = pcidev_table,
7235 .probe = pcidev_init,
7236 .remove = pcidev_exit
7237};
7238
85894866 7239module_pci_driver(pci_device_driver);
8ca86fd8
TH
7240
7241MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7242MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7243MODULE_LICENSE("GPL");
7244
7245module_param_named(message, msg_enable, int, 0);
7246MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7247
7248module_param(macaddr, charp, 0);
7249module_param(mac1addr, charp, 0);
7250module_param(fast_aging, int, 0);
7251module_param(multi_dev, int, 0);
7252module_param(stp, int, 0);
7253MODULE_PARM_DESC(macaddr, "MAC address");
7254MODULE_PARM_DESC(mac1addr, "Second MAC address");
7255MODULE_PARM_DESC(fast_aging, "Fast aging");
7256MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7257MODULE_PARM_DESC(stp, "STP support");