]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/netronome/nfp/nfp_net_common.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / netronome / nfp / nfp_net_common.c
CommitLineData
4c352362
JK
1/*
2 * Copyright (C) 2015 Netronome Systems, Inc.
3 *
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
8 *
9 * The BSD 2-Clause License:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34/*
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
42 */
43
4c352362
JK
44#include <linux/module.h>
45#include <linux/kernel.h>
46#include <linux/init.h>
47#include <linux/fs.h>
48#include <linux/netdevice.h>
49#include <linux/etherdevice.h>
50#include <linux/interrupt.h>
51#include <linux/ip.h>
52#include <linux/ipv6.h>
53#include <linux/pci.h>
54#include <linux/pci_regs.h>
55#include <linux/msi.h>
56#include <linux/ethtool.h>
57#include <linux/log2.h>
58#include <linux/if_vlan.h>
59#include <linux/random.h>
60
61#include <linux/ktime.h>
62
63#include <net/vxlan.h>
64
65#include "nfp_net_ctrl.h"
66#include "nfp_net.h"
67
68/**
69 * nfp_net_get_fw_version() - Read and parse the FW version
70 * @fw_ver: Output fw_version structure to read to
71 * @ctrl_bar: Mapped address of the control BAR
72 */
73void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
74 void __iomem *ctrl_bar)
75{
76 u32 reg;
77
78 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
79 put_unaligned_le32(reg, fw_ver);
80}
81
3d780b92
JK
82/* Firmware reconfig
83 *
84 * Firmware reconfig may take a while so we have two versions of it -
85 * synchronous and asynchronous (posted). All synchronous callers are holding
86 * RTNL so we don't have to worry about serializing them.
87 */
88static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
89{
90 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
91 /* ensure update is written before pinging HW */
92 nn_pci_flush(nn);
93 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
94}
95
96/* Pass 0 as update to run posted reconfigs. */
97static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
98{
99 update |= nn->reconfig_posted;
100 nn->reconfig_posted = 0;
101
102 nfp_net_reconfig_start(nn, update);
103
104 nn->reconfig_timer_active = true;
105 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
106}
107
108static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
109{
110 u32 reg;
111
112 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
113 if (reg == 0)
114 return true;
115 if (reg & NFP_NET_CFG_UPDATE_ERR) {
116 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
117 return true;
118 } else if (last_check) {
119 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
120 return true;
121 }
122
123 return false;
124}
125
126static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
127{
128 bool timed_out = false;
129
130 /* Poll update field, waiting for NFP to ack the config */
131 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
132 msleep(1);
133 timed_out = time_is_before_eq_jiffies(deadline);
134 }
135
136 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
137 return -EIO;
138
139 return timed_out ? -EIO : 0;
140}
141
142static void nfp_net_reconfig_timer(unsigned long data)
143{
144 struct nfp_net *nn = (void *)data;
145
146 spin_lock_bh(&nn->reconfig_lock);
147
148 nn->reconfig_timer_active = false;
149
150 /* If sync caller is present it will take over from us */
151 if (nn->reconfig_sync_present)
152 goto done;
153
154 /* Read reconfig status and report errors */
155 nfp_net_reconfig_check_done(nn, true);
156
157 if (nn->reconfig_posted)
158 nfp_net_reconfig_start_async(nn, 0);
159done:
160 spin_unlock_bh(&nn->reconfig_lock);
161}
162
163/**
164 * nfp_net_reconfig_post() - Post async reconfig request
165 * @nn: NFP Net device to reconfigure
166 * @update: The value for the update field in the BAR config
167 *
168 * Record FW reconfiguration request. Reconfiguration will be kicked off
169 * whenever reconfiguration machinery is idle. Multiple requests can be
170 * merged together!
171 */
172static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
173{
174 spin_lock_bh(&nn->reconfig_lock);
175
176 /* Sync caller will kick off async reconf when it's done, just post */
177 if (nn->reconfig_sync_present) {
178 nn->reconfig_posted |= update;
179 goto done;
180 }
181
182 /* Opportunistically check if the previous command is done */
183 if (!nn->reconfig_timer_active ||
184 nfp_net_reconfig_check_done(nn, false))
185 nfp_net_reconfig_start_async(nn, update);
186 else
187 nn->reconfig_posted |= update;
188done:
189 spin_unlock_bh(&nn->reconfig_lock);
190}
191
4c352362
JK
192/**
193 * nfp_net_reconfig() - Reconfigure the firmware
194 * @nn: NFP Net device to reconfigure
195 * @update: The value for the update field in the BAR config
196 *
197 * Write the update word to the BAR and ping the reconfig queue. The
198 * poll until the firmware has acknowledged the update by zeroing the
199 * update word.
200 *
201 * Return: Negative errno on error, 0 on success
202 */
203int nfp_net_reconfig(struct nfp_net *nn, u32 update)
204{
3d780b92
JK
205 bool cancelled_timer = false;
206 u32 pre_posted_requests;
207 int ret;
4c352362
JK
208
209 spin_lock_bh(&nn->reconfig_lock);
210
3d780b92 211 nn->reconfig_sync_present = true;
4c352362 212
3d780b92
JK
213 if (nn->reconfig_timer_active) {
214 del_timer(&nn->reconfig_timer);
215 nn->reconfig_timer_active = false;
216 cancelled_timer = true;
217 }
218 pre_posted_requests = nn->reconfig_posted;
219 nn->reconfig_posted = 0;
220
221 spin_unlock_bh(&nn->reconfig_lock);
222
223 if (cancelled_timer)
224 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
225
226 /* Run the posted reconfigs which were issued before we started */
227 if (pre_posted_requests) {
228 nfp_net_reconfig_start(nn, pre_posted_requests);
229 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
4c352362
JK
230 }
231
3d780b92
JK
232 nfp_net_reconfig_start(nn, update);
233 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
234
235 spin_lock_bh(&nn->reconfig_lock);
236
237 if (nn->reconfig_posted)
238 nfp_net_reconfig_start_async(nn, 0);
239
240 nn->reconfig_sync_present = false;
241
4c352362 242 spin_unlock_bh(&nn->reconfig_lock);
3d780b92 243
4c352362
JK
244 return ret;
245}
246
247/* Interrupt configuration and handling
248 */
249
250/**
251 * nfp_net_irq_unmask_msix() - Unmask MSI-X after automasking
252 * @nn: NFP Network structure
253 * @entry_nr: MSI-X table entry
254 *
255 * Clear the MSI-X table mask bit for the given entry bypassing Linux irq
256 * handling subsystem. Use *only* to reenable automasked vectors.
257 */
258static void nfp_net_irq_unmask_msix(struct nfp_net *nn, unsigned int entry_nr)
259{
260 struct list_head *msi_head = &nn->pdev->dev.msi_list;
261 struct msi_desc *entry;
262 u32 off;
263
264 /* All MSI-Xs have the same mask_base */
265 entry = list_first_entry(msi_head, struct msi_desc, list);
266
267 off = (PCI_MSIX_ENTRY_SIZE * entry_nr) +
268 PCI_MSIX_ENTRY_VECTOR_CTRL;
269 writel(0, entry->mask_base + off);
270 readl(entry->mask_base);
271}
272
273/**
274 * nfp_net_irq_unmask() - Unmask automasked interrupt
275 * @nn: NFP Network structure
276 * @entry_nr: MSI-X table entry
277 *
278 * If MSI-X auto-masking is enabled clear the mask bit, otherwise
279 * clear the ICR for the entry.
280 */
281static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
282{
283 if (nn->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) {
284 nfp_net_irq_unmask_msix(nn, entry_nr);
285 return;
286 }
287
288 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
289 nn_pci_flush(nn);
290}
291
292/**
293 * nfp_net_msix_alloc() - Try to allocate MSI-X irqs
294 * @nn: NFP Network structure
295 * @nr_vecs: Number of MSI-X vectors to allocate
296 *
297 * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors.
298 *
299 * Return: Number of MSI-X vectors obtained or 0 on error.
300 */
301static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs)
302{
303 struct pci_dev *pdev = nn->pdev;
304 int nvecs;
305 int i;
306
307 for (i = 0; i < nr_vecs; i++)
308 nn->irq_entries[i].entry = i;
309
310 nvecs = pci_enable_msix_range(pdev, nn->irq_entries,
311 NFP_NET_NON_Q_VECTORS + 1, nr_vecs);
312 if (nvecs < 0) {
313 nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n",
314 NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs);
315 return 0;
316 }
317
318 return nvecs;
319}
320
321/**
322 * nfp_net_irqs_wanted() - Work out how many interrupt vectors we want
323 * @nn: NFP Network structure
324 *
325 * We want a vector per CPU (or ring), whatever is smaller plus
326 * NFP_NET_NON_Q_VECTORS for LSC etc.
327 *
328 * Return: Number of interrupts wanted
329 */
330static int nfp_net_irqs_wanted(struct nfp_net *nn)
331{
332 int ncpus;
333 int vecs;
334
335 ncpus = num_online_cpus();
336
337 vecs = max_t(int, nn->num_tx_rings, nn->num_rx_rings);
338 vecs = min_t(int, vecs, ncpus);
339
340 return vecs + NFP_NET_NON_Q_VECTORS;
341}
342
343/**
344 * nfp_net_irqs_alloc() - allocates MSI-X irqs
345 * @nn: NFP Network structure
346 *
347 * Return: Number of irqs obtained or 0 on error.
348 */
349int nfp_net_irqs_alloc(struct nfp_net *nn)
350{
351 int wanted_irqs;
352
353 wanted_irqs = nfp_net_irqs_wanted(nn);
354
355 nn->num_irqs = nfp_net_msix_alloc(nn, wanted_irqs);
356 if (nn->num_irqs == 0) {
357 nn_err(nn, "Failed to allocate MSI-X IRQs\n");
358 return 0;
359 }
360
361 nn->num_r_vecs = nn->num_irqs - NFP_NET_NON_Q_VECTORS;
362
363 if (nn->num_irqs < wanted_irqs)
364 nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n",
365 wanted_irqs, nn->num_irqs);
366
367 return nn->num_irqs;
368}
369
370/**
371 * nfp_net_irqs_disable() - Disable interrupts
372 * @nn: NFP Network structure
373 *
374 * Undoes what @nfp_net_irqs_alloc() does.
375 */
376void nfp_net_irqs_disable(struct nfp_net *nn)
377{
378 pci_disable_msix(nn->pdev);
379}
380
381/**
382 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
383 * @irq: Interrupt
384 * @data: Opaque data structure
385 *
386 * Return: Indicate if the interrupt has been handled.
387 */
388static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
389{
390 struct nfp_net_r_vector *r_vec = data;
391
392 napi_schedule_irqoff(&r_vec->napi);
393
394 /* The FW auto-masks any interrupt, either via the MASK bit in
395 * the MSI-X table or via the per entry ICR field. So there
396 * is no need to disable interrupts here.
397 */
398 return IRQ_HANDLED;
399}
400
401/**
402 * nfp_net_read_link_status() - Reread link status from control BAR
403 * @nn: NFP Network structure
404 */
405static void nfp_net_read_link_status(struct nfp_net *nn)
406{
407 unsigned long flags;
408 bool link_up;
409 u32 sts;
410
411 spin_lock_irqsave(&nn->link_status_lock, flags);
412
413 sts = nn_readl(nn, NFP_NET_CFG_STS);
414 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
415
416 if (nn->link_up == link_up)
417 goto out;
418
419 nn->link_up = link_up;
420
421 if (nn->link_up) {
422 netif_carrier_on(nn->netdev);
423 netdev_info(nn->netdev, "NIC Link is Up\n");
424 } else {
425 netif_carrier_off(nn->netdev);
426 netdev_info(nn->netdev, "NIC Link is Down\n");
427 }
428out:
429 spin_unlock_irqrestore(&nn->link_status_lock, flags);
430}
431
432/**
433 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
434 * @irq: Interrupt
435 * @data: Opaque data structure
436 *
437 * Return: Indicate if the interrupt has been handled.
438 */
439static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
440{
441 struct nfp_net *nn = data;
442
443 nfp_net_read_link_status(nn);
444
445 nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX);
446
447 return IRQ_HANDLED;
448}
449
450/**
451 * nfp_net_irq_exn() - Interrupt service routine for exceptions
452 * @irq: Interrupt
453 * @data: Opaque data structure
454 *
455 * Return: Indicate if the interrupt has been handled.
456 */
457static irqreturn_t nfp_net_irq_exn(int irq, void *data)
458{
459 struct nfp_net *nn = data;
460
461 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
462 /* XXX TO BE IMPLEMENTED */
463 return IRQ_HANDLED;
464}
465
466/**
467 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
468 * @tx_ring: TX ring structure
d79737c2
JK
469 * @r_vec: IRQ vector servicing this ring
470 * @idx: Ring index
4c352362 471 */
d79737c2
JK
472static void
473nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
474 struct nfp_net_r_vector *r_vec, unsigned int idx)
4c352362 475{
4c352362
JK
476 struct nfp_net *nn = r_vec->nfp_net;
477
d79737c2
JK
478 tx_ring->idx = idx;
479 tx_ring->r_vec = r_vec;
480
4c352362
JK
481 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
482 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
483}
484
485/**
486 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
487 * @rx_ring: RX ring structure
d79737c2
JK
488 * @r_vec: IRQ vector servicing this ring
489 * @idx: Ring index
4c352362 490 */
d79737c2
JK
491static void
492nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
493 struct nfp_net_r_vector *r_vec, unsigned int idx)
4c352362 494{
4c352362
JK
495 struct nfp_net *nn = r_vec->nfp_net;
496
d79737c2
JK
497 rx_ring->idx = idx;
498 rx_ring->r_vec = r_vec;
499
4c352362
JK
500 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
501 rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);
502
503 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
504 rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
505}
506
507/**
508 * nfp_net_irqs_assign() - Assign IRQs and setup rvecs.
509 * @netdev: netdev structure
510 */
511static void nfp_net_irqs_assign(struct net_device *netdev)
512{
513 struct nfp_net *nn = netdev_priv(netdev);
514 struct nfp_net_r_vector *r_vec;
515 int r;
516
517 /* Assumes nn->num_tx_rings == nn->num_rx_rings */
518 if (nn->num_tx_rings > nn->num_r_vecs) {
519 nn_warn(nn, "More rings (%d) than vectors (%d).\n",
520 nn->num_tx_rings, nn->num_r_vecs);
521 nn->num_tx_rings = nn->num_r_vecs;
522 nn->num_rx_rings = nn->num_r_vecs;
523 }
524
525 nn->lsc_handler = nfp_net_irq_lsc;
526 nn->exn_handler = nfp_net_irq_exn;
527
528 for (r = 0; r < nn->num_r_vecs; r++) {
529 r_vec = &nn->r_vecs[r];
530 r_vec->nfp_net = nn;
531 r_vec->handler = nfp_net_irq_rxtx;
532 r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r;
533
534 cpumask_set_cpu(r, &r_vec->affinity_mask);
4c352362
JK
535 }
536}
537
538/**
539 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
540 * @nn: NFP Network structure
541 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
542 * @format: printf-style format to construct the interrupt name
543 * @name: Pointer to allocated space for interrupt name
544 * @name_sz: Size of space for interrupt name
545 * @vector_idx: Index of MSI-X vector used for this interrupt
546 * @handler: IRQ handler to register for this interrupt
547 */
548static int
549nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
550 const char *format, char *name, size_t name_sz,
551 unsigned int vector_idx, irq_handler_t handler)
552{
553 struct msix_entry *entry;
554 int err;
555
556 entry = &nn->irq_entries[vector_idx];
557
558 snprintf(name, name_sz, format, netdev_name(nn->netdev));
559 err = request_irq(entry->vector, handler, 0, name, nn);
560 if (err) {
561 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
562 entry->vector, err);
563 return err;
564 }
565 nn_writeb(nn, ctrl_offset, vector_idx);
566
567 return 0;
568}
569
570/**
571 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
572 * @nn: NFP Network structure
573 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
574 * @vector_idx: Index of MSI-X vector used for this interrupt
575 */
576static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
577 unsigned int vector_idx)
578{
579 nn_writeb(nn, ctrl_offset, 0xff);
580 free_irq(nn->irq_entries[vector_idx].vector, nn);
581}
582
583/* Transmit
584 *
585 * One queue controller peripheral queue is used for transmit. The
586 * driver en-queues packets for transmit by advancing the write
587 * pointer. The device indicates that packets have transmitted by
588 * advancing the read pointer. The driver maintains a local copy of
589 * the read and write pointer in @struct nfp_net_tx_ring. The driver
590 * keeps @wr_p in sync with the queue controller write pointer and can
591 * determine how many packets have been transmitted by comparing its
592 * copy of the read pointer @rd_p with the read pointer maintained by
593 * the queue controller peripheral.
594 */
595
596/**
597 * nfp_net_tx_full() - Check if the TX ring is full
598 * @tx_ring: TX ring to check
599 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
600 *
601 * This function checks, based on the *host copy* of read/write
602 * pointer if a given TX ring is full. The real TX queue may have
603 * some newly made available slots.
604 *
605 * Return: True if the ring is full.
606 */
607static inline int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
608{
609 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
610}
611
612/* Wrappers for deciding when to stop and restart TX queues */
613static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
614{
615 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
616}
617
618static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
619{
620 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
621}
622
623/**
624 * nfp_net_tx_ring_stop() - stop tx ring
625 * @nd_q: netdev queue
626 * @tx_ring: driver tx queue structure
627 *
628 * Safely stop TX ring. Remember that while we are running .start_xmit()
629 * someone else may be cleaning the TX ring completions so we need to be
630 * extra careful here.
631 */
632static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
633 struct nfp_net_tx_ring *tx_ring)
634{
635 netif_tx_stop_queue(nd_q);
636
637 /* We can race with the TX completion out of NAPI so recheck */
638 smp_mb();
639 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
640 netif_tx_start_queue(nd_q);
641}
642
643/**
644 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
645 * @nn: NFP Net device
646 * @r_vec: per-ring structure
647 * @txbuf: Pointer to driver soft TX descriptor
648 * @txd: Pointer to HW TX descriptor
649 * @skb: Pointer to SKB
650 *
651 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
652 * Return error on packet header greater than maximum supported LSO header size.
653 */
654static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
655 struct nfp_net_tx_buf *txbuf,
656 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
657{
658 u32 hdrlen;
659 u16 mss;
660
661 if (!skb_is_gso(skb))
662 return;
663
664 if (!skb->encapsulation)
665 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
666 else
667 hdrlen = skb_inner_transport_header(skb) - skb->data +
668 inner_tcp_hdrlen(skb);
669
670 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
671 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
672
673 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
674 txd->l4_offset = hdrlen;
675 txd->mss = cpu_to_le16(mss);
676 txd->flags |= PCIE_DESC_TX_LSO;
677
678 u64_stats_update_begin(&r_vec->tx_sync);
679 r_vec->tx_lso++;
680 u64_stats_update_end(&r_vec->tx_sync);
681}
682
683/**
684 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
685 * @nn: NFP Net device
686 * @r_vec: per-ring structure
687 * @txbuf: Pointer to driver soft TX descriptor
688 * @txd: Pointer to TX descriptor
689 * @skb: Pointer to SKB
690 *
691 * This function sets the TX checksum flags in the TX descriptor based
692 * on the configuration and the protocol of the packet to be transmitted.
693 */
694static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
695 struct nfp_net_tx_buf *txbuf,
696 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
697{
698 struct ipv6hdr *ipv6h;
699 struct iphdr *iph;
700 u8 l4_hdr;
701
702 if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
703 return;
704
705 if (skb->ip_summed != CHECKSUM_PARTIAL)
706 return;
707
708 txd->flags |= PCIE_DESC_TX_CSUM;
709 if (skb->encapsulation)
710 txd->flags |= PCIE_DESC_TX_ENCAP;
711
712 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
713 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
714
715 if (iph->version == 4) {
716 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
717 l4_hdr = iph->protocol;
718 } else if (ipv6h->version == 6) {
719 l4_hdr = ipv6h->nexthdr;
720 } else {
721 nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
722 iph->version);
723 return;
724 }
725
726 switch (l4_hdr) {
727 case IPPROTO_TCP:
728 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
729 break;
730 case IPPROTO_UDP:
731 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
732 break;
733 default:
734 nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
735 l4_hdr);
736 return;
737 }
738
739 u64_stats_update_begin(&r_vec->tx_sync);
740 if (skb->encapsulation)
741 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
742 else
743 r_vec->hw_csum_tx += txbuf->pkt_cnt;
744 u64_stats_update_end(&r_vec->tx_sync);
745}
746
747/**
748 * nfp_net_tx() - Main transmit entry point
749 * @skb: SKB to transmit
750 * @netdev: netdev structure
751 *
752 * Return: NETDEV_TX_OK on success.
753 */
754static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
755{
756 struct nfp_net *nn = netdev_priv(netdev);
757 const struct skb_frag_struct *frag;
758 struct nfp_net_r_vector *r_vec;
759 struct nfp_net_tx_desc *txd, txdg;
760 struct nfp_net_tx_buf *txbuf;
761 struct nfp_net_tx_ring *tx_ring;
762 struct netdev_queue *nd_q;
763 dma_addr_t dma_addr;
764 unsigned int fsize;
765 int f, nr_frags;
766 int wr_idx;
767 u16 qidx;
768
769 qidx = skb_get_queue_mapping(skb);
770 tx_ring = &nn->tx_rings[qidx];
771 r_vec = tx_ring->r_vec;
772 nd_q = netdev_get_tx_queue(nn->netdev, qidx);
773
774 nr_frags = skb_shinfo(skb)->nr_frags;
775
776 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
777 nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
778 qidx, tx_ring->wr_p, tx_ring->rd_p);
779 netif_tx_stop_queue(nd_q);
780 u64_stats_update_begin(&r_vec->tx_sync);
781 r_vec->tx_busy++;
782 u64_stats_update_end(&r_vec->tx_sync);
783 return NETDEV_TX_BUSY;
784 }
785
786 /* Start with the head skbuf */
787 dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb),
788 DMA_TO_DEVICE);
789 if (dma_mapping_error(&nn->pdev->dev, dma_addr))
790 goto err_free;
791
792 wr_idx = tx_ring->wr_p % tx_ring->cnt;
793
794 /* Stash the soft descriptor of the head then initialize it */
795 txbuf = &tx_ring->txbufs[wr_idx];
796 txbuf->skb = skb;
797 txbuf->dma_addr = dma_addr;
798 txbuf->fidx = -1;
799 txbuf->pkt_cnt = 1;
800 txbuf->real_len = skb->len;
801
802 /* Build TX descriptor */
803 txd = &tx_ring->txds[wr_idx];
804 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
805 txd->dma_len = cpu_to_le16(skb_headlen(skb));
806 nfp_desc_set_dma_addr(txd, dma_addr);
807 txd->data_len = cpu_to_le16(skb->len);
808
809 txd->flags = 0;
810 txd->mss = 0;
811 txd->l4_offset = 0;
812
813 nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);
814
815 nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);
816
817 if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
818 txd->flags |= PCIE_DESC_TX_VLAN;
819 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
820 }
821
822 /* Gather DMA */
823 if (nr_frags > 0) {
824 /* all descs must match except for in addr, length and eop */
825 txdg = *txd;
826
827 for (f = 0; f < nr_frags; f++) {
828 frag = &skb_shinfo(skb)->frags[f];
829 fsize = skb_frag_size(frag);
830
831 dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0,
832 fsize, DMA_TO_DEVICE);
833 if (dma_mapping_error(&nn->pdev->dev, dma_addr))
834 goto err_unmap;
835
836 wr_idx = (wr_idx + 1) % tx_ring->cnt;
837 tx_ring->txbufs[wr_idx].skb = skb;
838 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
839 tx_ring->txbufs[wr_idx].fidx = f;
840
841 txd = &tx_ring->txds[wr_idx];
842 *txd = txdg;
843 txd->dma_len = cpu_to_le16(fsize);
844 nfp_desc_set_dma_addr(txd, dma_addr);
845 txd->offset_eop =
846 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
847 }
848
849 u64_stats_update_begin(&r_vec->tx_sync);
850 r_vec->tx_gather++;
851 u64_stats_update_end(&r_vec->tx_sync);
852 }
853
854 netdev_tx_sent_queue(nd_q, txbuf->real_len);
855
856 tx_ring->wr_p += nr_frags + 1;
857 if (nfp_net_tx_ring_should_stop(tx_ring))
858 nfp_net_tx_ring_stop(nd_q, tx_ring);
859
860 tx_ring->wr_ptr_add += nr_frags + 1;
861 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) {
862 /* force memory write before we let HW know */
863 wmb();
864 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
865 tx_ring->wr_ptr_add = 0;
866 }
867
868 skb_tx_timestamp(skb);
869
870 return NETDEV_TX_OK;
871
872err_unmap:
873 --f;
874 while (f >= 0) {
875 frag = &skb_shinfo(skb)->frags[f];
876 dma_unmap_page(&nn->pdev->dev,
877 tx_ring->txbufs[wr_idx].dma_addr,
878 skb_frag_size(frag), DMA_TO_DEVICE);
879 tx_ring->txbufs[wr_idx].skb = NULL;
880 tx_ring->txbufs[wr_idx].dma_addr = 0;
881 tx_ring->txbufs[wr_idx].fidx = -2;
882 wr_idx = wr_idx - 1;
883 if (wr_idx < 0)
884 wr_idx += tx_ring->cnt;
885 }
886 dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr,
887 skb_headlen(skb), DMA_TO_DEVICE);
888 tx_ring->txbufs[wr_idx].skb = NULL;
889 tx_ring->txbufs[wr_idx].dma_addr = 0;
890 tx_ring->txbufs[wr_idx].fidx = -2;
891err_free:
892 nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
893 u64_stats_update_begin(&r_vec->tx_sync);
894 r_vec->tx_errors++;
895 u64_stats_update_end(&r_vec->tx_sync);
896 dev_kfree_skb_any(skb);
897 return NETDEV_TX_OK;
898}
899
900/**
901 * nfp_net_tx_complete() - Handled completed TX packets
902 * @tx_ring: TX ring structure
903 *
904 * Return: Number of completed TX descriptors
905 */
906static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
907{
908 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
909 struct nfp_net *nn = r_vec->nfp_net;
910 const struct skb_frag_struct *frag;
911 struct netdev_queue *nd_q;
912 u32 done_pkts = 0, done_bytes = 0;
913 struct sk_buff *skb;
914 int todo, nr_frags;
915 u32 qcp_rd_p;
916 int fidx;
917 int idx;
918
919 /* Work out how many descriptors have been transmitted */
920 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
921
922 if (qcp_rd_p == tx_ring->qcp_rd_p)
923 return;
924
925 if (qcp_rd_p > tx_ring->qcp_rd_p)
926 todo = qcp_rd_p - tx_ring->qcp_rd_p;
927 else
928 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;
929
930 while (todo--) {
931 idx = tx_ring->rd_p % tx_ring->cnt;
932 tx_ring->rd_p++;
933
934 skb = tx_ring->txbufs[idx].skb;
935 if (!skb)
936 continue;
937
938 nr_frags = skb_shinfo(skb)->nr_frags;
939 fidx = tx_ring->txbufs[idx].fidx;
940
941 if (fidx == -1) {
942 /* unmap head */
943 dma_unmap_single(&nn->pdev->dev,
944 tx_ring->txbufs[idx].dma_addr,
945 skb_headlen(skb), DMA_TO_DEVICE);
946
947 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
948 done_bytes += tx_ring->txbufs[idx].real_len;
949 } else {
950 /* unmap fragment */
951 frag = &skb_shinfo(skb)->frags[fidx];
952 dma_unmap_page(&nn->pdev->dev,
953 tx_ring->txbufs[idx].dma_addr,
954 skb_frag_size(frag), DMA_TO_DEVICE);
955 }
956
957 /* check for last gather fragment */
958 if (fidx == nr_frags - 1)
959 dev_kfree_skb_any(skb);
960
961 tx_ring->txbufs[idx].dma_addr = 0;
962 tx_ring->txbufs[idx].skb = NULL;
963 tx_ring->txbufs[idx].fidx = -2;
964 }
965
966 tx_ring->qcp_rd_p = qcp_rd_p;
967
968 u64_stats_update_begin(&r_vec->tx_sync);
969 r_vec->tx_bytes += done_bytes;
970 r_vec->tx_pkts += done_pkts;
971 u64_stats_update_end(&r_vec->tx_sync);
972
973 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
974 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
975 if (nfp_net_tx_ring_should_wake(tx_ring)) {
976 /* Make sure TX thread will see updated tx_ring->rd_p */
977 smp_mb();
978
979 if (unlikely(netif_tx_queue_stopped(nd_q)))
980 netif_tx_wake_queue(nd_q);
981 }
982
983 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
984 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
985 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
986}
987
988/**
827deea9
JK
989 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
990 * @nn: NFP Net device
991 * @tx_ring: TX ring structure
4c352362
JK
992 *
993 * Assumes that the device is stopped
994 */
827deea9
JK
995static void
996nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
4c352362 997{
4c352362
JK
998 const struct skb_frag_struct *frag;
999 struct netdev_queue *nd_q;
827deea9 1000 struct pci_dev *pdev = nn->pdev;
4c352362
JK
1001
1002 while (tx_ring->rd_p != tx_ring->wr_p) {
827deea9
JK
1003 int nr_frags, fidx, idx;
1004 struct sk_buff *skb;
4c352362 1005
827deea9 1006 idx = tx_ring->rd_p % tx_ring->cnt;
4c352362 1007 skb = tx_ring->txbufs[idx].skb;
827deea9
JK
1008 nr_frags = skb_shinfo(skb)->nr_frags;
1009 fidx = tx_ring->txbufs[idx].fidx;
1010
1011 if (fidx == -1) {
1012 /* unmap head */
1013 dma_unmap_single(&pdev->dev,
1014 tx_ring->txbufs[idx].dma_addr,
1015 skb_headlen(skb), DMA_TO_DEVICE);
1016 } else {
1017 /* unmap fragment */
1018 frag = &skb_shinfo(skb)->frags[fidx];
1019 dma_unmap_page(&pdev->dev,
1020 tx_ring->txbufs[idx].dma_addr,
1021 skb_frag_size(frag), DMA_TO_DEVICE);
4c352362
JK
1022 }
1023
827deea9
JK
1024 /* check for last gather fragment */
1025 if (fidx == nr_frags - 1)
1026 dev_kfree_skb_any(skb);
1027
1028 tx_ring->txbufs[idx].dma_addr = 0;
1029 tx_ring->txbufs[idx].skb = NULL;
1030 tx_ring->txbufs[idx].fidx = -2;
4c352362
JK
1031
1032 tx_ring->qcp_rd_p++;
1033 tx_ring->rd_p++;
1034 }
1035
827deea9
JK
1036 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1037 tx_ring->wr_p = 0;
1038 tx_ring->rd_p = 0;
1039 tx_ring->qcp_rd_p = 0;
1040 tx_ring->wr_ptr_add = 0;
1041
4c352362
JK
1042 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
1043 netdev_tx_reset_queue(nd_q);
1044}
1045
1046static void nfp_net_tx_timeout(struct net_device *netdev)
1047{
1048 struct nfp_net *nn = netdev_priv(netdev);
1049 int i;
1050
1051 for (i = 0; i < nn->num_tx_rings; i++) {
1052 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1053 continue;
1054 nn_warn(nn, "TX timeout on ring: %d\n", i);
1055 }
1056 nn_warn(nn, "TX watchdog timeout\n");
1057}
1058
1059/* Receive processing
1060 */
1061
1062/**
1063 * nfp_net_rx_space() - return the number of free slots on the RX ring
1064 * @rx_ring: RX ring structure
1065 *
1066 * Make sure we leave at least one slot free.
1067 *
1068 * Return: True if there is space on the RX ring
1069 */
1070static inline int nfp_net_rx_space(struct nfp_net_rx_ring *rx_ring)
1071{
1072 return (rx_ring->cnt - 1) - (rx_ring->wr_p - rx_ring->rd_p);
1073}
1074
1075/**
1076 * nfp_net_rx_alloc_one() - Allocate and map skb for RX
1077 * @rx_ring: RX ring structure of the skb
1078 * @dma_addr: Pointer to storage for DMA address (output param)
30d21171 1079 * @fl_bufsz: size of freelist buffers
4c352362
JK
1080 *
1081 * This function will allcate a new skb, map it for DMA.
1082 *
1083 * Return: allocated skb or NULL on failure.
1084 */
1085static struct sk_buff *
30d21171
JK
1086nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1087 unsigned int fl_bufsz)
4c352362
JK
1088{
1089 struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1090 struct sk_buff *skb;
1091
30d21171 1092 skb = netdev_alloc_skb(nn->netdev, fl_bufsz);
4c352362
JK
1093 if (!skb) {
1094 nn_warn_ratelimit(nn, "Failed to alloc receive SKB\n");
1095 return NULL;
1096 }
1097
1098 *dma_addr = dma_map_single(&nn->pdev->dev, skb->data,
30d21171 1099 fl_bufsz, DMA_FROM_DEVICE);
4c352362
JK
1100 if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1101 dev_kfree_skb_any(skb);
1102 nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
1103 return NULL;
1104 }
1105
1106 return skb;
1107}
1108
1109/**
1110 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1111 * @rx_ring: RX ring structure
1112 * @skb: Skb to put on rings
1113 * @dma_addr: DMA address of skb mapping
1114 */
1115static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1116 struct sk_buff *skb, dma_addr_t dma_addr)
1117{
1118 unsigned int wr_idx;
1119
1120 wr_idx = rx_ring->wr_p % rx_ring->cnt;
1121
1122 /* Stash SKB and DMA address away */
1123 rx_ring->rxbufs[wr_idx].skb = skb;
1124 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1125
1126 /* Fill freelist descriptor */
1127 rx_ring->rxds[wr_idx].fld.reserved = 0;
1128 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1129 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);
1130
1131 rx_ring->wr_p++;
1132 rx_ring->wr_ptr_add++;
1133 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
1134 /* Update write pointer of the freelist queue. Make
1135 * sure all writes are flushed before telling the hardware.
1136 */
1137 wmb();
1138 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
1139 rx_ring->wr_ptr_add = 0;
1140 }
1141}
1142
1143/**
1934680f
JK
1144 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1145 * @rx_ring: RX ring structure
4c352362 1146 *
1934680f
JK
1147 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1148 * (i.e. device was not enabled)!
4c352362 1149 */
1934680f 1150static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
4c352362 1151{
1934680f 1152 unsigned int wr_idx, last_idx;
4c352362 1153
1934680f
JK
1154 /* Move the empty entry to the end of the list */
1155 wr_idx = rx_ring->wr_p % rx_ring->cnt;
1156 last_idx = rx_ring->cnt - 1;
1157 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1158 rx_ring->rxbufs[wr_idx].skb = rx_ring->rxbufs[last_idx].skb;
1159 rx_ring->rxbufs[last_idx].dma_addr = 0;
1160 rx_ring->rxbufs[last_idx].skb = NULL;
4c352362 1161
1934680f
JK
1162 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1163 rx_ring->wr_p = 0;
1164 rx_ring->rd_p = 0;
1165 rx_ring->wr_ptr_add = 0;
1166}
4c352362 1167
1934680f
JK
1168/**
1169 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1170 * @nn: NFP Net device
1171 * @rx_ring: RX ring to remove buffers from
1172 *
1173 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1174 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1175 * to restore required ring geometry.
1176 */
1177static void
1178nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring)
1179{
1180 struct pci_dev *pdev = nn->pdev;
1181 unsigned int i;
4c352362 1182
1934680f
JK
1183 for (i = 0; i < rx_ring->cnt - 1; i++) {
1184 /* NULL skb can only happen when initial filling of the ring
1185 * fails to allocate enough buffers and calls here to free
1186 * already allocated ones.
1187 */
1188 if (!rx_ring->rxbufs[i].skb)
1189 continue;
1190
1191 dma_unmap_single(&pdev->dev, rx_ring->rxbufs[i].dma_addr,
30d21171 1192 rx_ring->bufsz, DMA_FROM_DEVICE);
1934680f
JK
1193 dev_kfree_skb_any(rx_ring->rxbufs[i].skb);
1194 rx_ring->rxbufs[i].dma_addr = 0;
1195 rx_ring->rxbufs[i].skb = NULL;
4c352362
JK
1196 }
1197}
1198
1199/**
1934680f
JK
1200 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1201 * @nn: NFP Net device
1202 * @rx_ring: RX ring to remove buffers from
4c352362 1203 */
1934680f
JK
1204static int
1205nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring)
4c352362 1206{
1934680f
JK
1207 struct nfp_net_rx_buf *rxbufs;
1208 unsigned int i;
1209
1210 rxbufs = rx_ring->rxbufs;
4c352362 1211
1934680f
JK
1212 for (i = 0; i < rx_ring->cnt - 1; i++) {
1213 rxbufs[i].skb =
30d21171
JK
1214 nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
1215 rx_ring->bufsz);
1934680f
JK
1216 if (!rxbufs[i].skb) {
1217 nfp_net_rx_ring_bufs_free(nn, rx_ring);
4c352362
JK
1218 return -ENOMEM;
1219 }
4c352362
JK
1220 }
1221
1222 return 0;
1223}
1224
1934680f
JK
1225/**
1226 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1227 * @rx_ring: RX ring to fill
1228 */
1229static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
1230{
1231 unsigned int i;
1232
1233 for (i = 0; i < rx_ring->cnt - 1; i++)
1234 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].skb,
1235 rx_ring->rxbufs[i].dma_addr);
1236}
1237
4c352362
JK
1238/**
1239 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1240 * @flags: RX descriptor flags field in CPU byte order
1241 */
1242static int nfp_net_rx_csum_has_errors(u16 flags)
1243{
1244 u16 csum_all_checked, csum_all_ok;
1245
1246 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1247 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1248
1249 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1250}
1251
1252/**
1253 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1254 * @nn: NFP Net device
1255 * @r_vec: per-ring structure
1256 * @rxd: Pointer to RX descriptor
1257 * @skb: Pointer to SKB
1258 */
1259static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1260 struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
1261{
1262 skb_checksum_none_assert(skb);
1263
1264 if (!(nn->netdev->features & NETIF_F_RXCSUM))
1265 return;
1266
1267 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1268 u64_stats_update_begin(&r_vec->rx_sync);
1269 r_vec->hw_csum_rx_error++;
1270 u64_stats_update_end(&r_vec->rx_sync);
1271 return;
1272 }
1273
1274 /* Assume that the firmware will never report inner CSUM_OK unless outer
1275 * L4 headers were successfully parsed. FW will always report zero UDP
1276 * checksum as CSUM_OK.
1277 */
1278 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1279 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1280 __skb_incr_checksum_unnecessary(skb);
1281 u64_stats_update_begin(&r_vec->rx_sync);
1282 r_vec->hw_csum_rx_ok++;
1283 u64_stats_update_end(&r_vec->rx_sync);
1284 }
1285
1286 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1287 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1288 __skb_incr_checksum_unnecessary(skb);
1289 u64_stats_update_begin(&r_vec->rx_sync);
1290 r_vec->hw_csum_rx_inner_ok++;
1291 u64_stats_update_end(&r_vec->rx_sync);
1292 }
1293}
1294
1295/**
1296 * nfp_net_set_hash() - Set SKB hash data
1297 * @netdev: adapter's net_device structure
1298 * @skb: SKB to set the hash data on
1299 * @rxd: RX descriptor
1300 *
1301 * The RSS hash and hash-type are pre-pended to the packet data.
1302 * Extract and decode it and set the skb fields.
1303 */
1304static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1305 struct nfp_net_rx_desc *rxd)
1306{
1307 struct nfp_net_rx_hash *rx_hash;
1308
1309 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS) ||
1310 !(netdev->features & NETIF_F_RXHASH))
1311 return;
1312
1313 rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));
1314
1315 switch (be32_to_cpu(rx_hash->hash_type)) {
1316 case NFP_NET_RSS_IPV4:
1317 case NFP_NET_RSS_IPV6:
1318 case NFP_NET_RSS_IPV6_EX:
1319 skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L3);
1320 break;
1321 default:
1322 skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L4);
1323 break;
1324 }
1325}
1326
1327/**
1328 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1329 * @rx_ring: RX ring to receive from
1330 * @budget: NAPI budget
1331 *
1332 * Note, this function is separated out from the napi poll function to
1333 * more cleanly separate packet receive code from other bookkeeping
1334 * functions performed in the napi poll function.
1335 *
1336 * There are differences between the NFP-3200 firmware and the
1337 * NFP-6000 firmware. The NFP-3200 firmware uses a dedicated RX queue
1338 * to indicate that new packets have arrived. The NFP-6000 does not
1339 * have this queue and uses the DD bit in the RX descriptor. This
1340 * method cannot be used on the NFP-3200 as it causes a race
1341 * condition: The RX ring write pointer on the NFP-3200 is updated
1342 * after packets (and descriptors) have been DMAed. If the DD bit is
1343 * used and subsequently the read pointer is updated this may lead to
1344 * the RX queue to underflow (if the firmware has not yet update the
1345 * write pointer). Therefore we use slightly ugly conditional code
1346 * below to handle the differences. We may, in the future update the
1347 * NFP-3200 firmware to behave the same as the firmware on the
1348 * NFP-6000.
1349 *
1350 * Return: Number of packets received.
1351 */
1352static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1353{
1354 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1355 struct nfp_net *nn = r_vec->nfp_net;
1356 unsigned int data_len, meta_len;
1357 int avail = 0, pkts_polled = 0;
1358 struct sk_buff *skb, *new_skb;
1359 struct nfp_net_rx_desc *rxd;
1360 dma_addr_t new_dma_addr;
1361 u32 qcp_wr_p;
1362 int idx;
1363
1364 if (nn->is_nfp3200) {
1365 /* Work out how many packets arrived */
1366 qcp_wr_p = nfp_qcp_wr_ptr_read(rx_ring->qcp_rx);
1367 idx = rx_ring->rd_p % rx_ring->cnt;
1368
1369 if (qcp_wr_p == idx)
1370 /* No new packets */
1371 return 0;
1372
1373 if (qcp_wr_p > idx)
1374 avail = qcp_wr_p - idx;
1375 else
1376 avail = qcp_wr_p + rx_ring->cnt - idx;
1377 } else {
1378 avail = budget + 1;
1379 }
1380
1381 while (avail > 0 && pkts_polled < budget) {
1382 idx = rx_ring->rd_p % rx_ring->cnt;
1383
1384 rxd = &rx_ring->rxds[idx];
1385 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) {
1386 if (nn->is_nfp3200)
1387 nn_dbg(nn, "RX descriptor not valid (DD)%d:%u rxd[0]=%#x rxd[1]=%#x\n",
1388 rx_ring->idx, idx,
1389 rxd->vals[0], rxd->vals[1]);
1390 break;
1391 }
1392 /* Memory barrier to ensure that we won't do other reads
1393 * before the DD bit.
1394 */
1395 dma_rmb();
1396
1397 rx_ring->rd_p++;
1398 pkts_polled++;
1399 avail--;
1400
1401 skb = rx_ring->rxbufs[idx].skb;
1402
30d21171
JK
1403 new_skb = nfp_net_rx_alloc_one(rx_ring, &new_dma_addr,
1404 nn->fl_bufsz);
4c352362
JK
1405 if (!new_skb) {
1406 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[idx].skb,
1407 rx_ring->rxbufs[idx].dma_addr);
1408 u64_stats_update_begin(&r_vec->rx_sync);
1409 r_vec->rx_drops++;
1410 u64_stats_update_end(&r_vec->rx_sync);
1411 continue;
1412 }
1413
1414 dma_unmap_single(&nn->pdev->dev,
1415 rx_ring->rxbufs[idx].dma_addr,
1416 nn->fl_bufsz, DMA_FROM_DEVICE);
1417
1418 nfp_net_rx_give_one(rx_ring, new_skb, new_dma_addr);
1419
180012dc
JK
1420 /* < meta_len >
1421 * <-- [rx_offset] -->
1422 * ---------------------------------------------------------
1423 * | [XX] | metadata | packet | XXXX |
1424 * ---------------------------------------------------------
1425 * <---------------- data_len --------------->
1426 *
1427 * The rx_offset is fixed for all packets, the meta_len can vary
1428 * on a packet by packet basis. If rx_offset is set to zero
1429 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1430 * buffer and is immediately followed by the packet (no [XX]).
1431 */
4c352362
JK
1432 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1433 data_len = le16_to_cpu(rxd->rxd.data_len);
1434
180012dc 1435 if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
4c352362 1436 skb_reserve(skb, meta_len);
180012dc 1437 else
4c352362 1438 skb_reserve(skb, nn->rx_offset);
4c352362
JK
1439 skb_put(skb, data_len - meta_len);
1440
1441 nfp_net_set_hash(nn->netdev, skb, rxd);
1442
4c352362
JK
1443 /* Stats update */
1444 u64_stats_update_begin(&r_vec->rx_sync);
1445 r_vec->rx_pkts++;
1446 r_vec->rx_bytes += skb->len;
1447 u64_stats_update_end(&r_vec->rx_sync);
1448
1449 skb_record_rx_queue(skb, rx_ring->idx);
1450 skb->protocol = eth_type_trans(skb, nn->netdev);
1451
1452 nfp_net_rx_csum(nn, r_vec, rxd, skb);
1453
1454 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1455 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1456 le16_to_cpu(rxd->rxd.vlan));
1457
1458 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1459 }
1460
1461 if (nn->is_nfp3200)
1462 nfp_qcp_rd_ptr_add(rx_ring->qcp_rx, pkts_polled);
1463
1464 return pkts_polled;
1465}
1466
1467/**
1468 * nfp_net_poll() - napi poll function
1469 * @napi: NAPI structure
1470 * @budget: NAPI budget
1471 *
1472 * Return: number of packets polled.
1473 */
1474static int nfp_net_poll(struct napi_struct *napi, int budget)
1475{
1476 struct nfp_net_r_vector *r_vec =
1477 container_of(napi, struct nfp_net_r_vector, napi);
1478 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1479 struct nfp_net_tx_ring *tx_ring = r_vec->tx_ring;
1480 struct nfp_net *nn = r_vec->nfp_net;
1481 struct netdev_queue *txq;
1482 unsigned int pkts_polled;
1483
1484 tx_ring = &nn->tx_rings[rx_ring->idx];
1485 txq = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
1486 nfp_net_tx_complete(tx_ring);
1487
1488 pkts_polled = nfp_net_rx(rx_ring, budget);
1489
1490 if (pkts_polled < budget) {
1491 napi_complete_done(napi, pkts_polled);
1492 nfp_net_irq_unmask(nn, r_vec->irq_idx);
1493 }
1494
1495 return pkts_polled;
1496}
1497
1498/* Setup and Configuration
1499 */
1500
1501/**
1502 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
1503 * @tx_ring: TX ring to free
1504 */
1505static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
1506{
1507 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1508 struct nfp_net *nn = r_vec->nfp_net;
1509 struct pci_dev *pdev = nn->pdev;
1510
4c352362
JK
1511 kfree(tx_ring->txbufs);
1512
1513 if (tx_ring->txds)
1514 dma_free_coherent(&pdev->dev, tx_ring->size,
1515 tx_ring->txds, tx_ring->dma);
1516
1517 tx_ring->cnt = 0;
4c352362
JK
1518 tx_ring->txbufs = NULL;
1519 tx_ring->txds = NULL;
1520 tx_ring->dma = 0;
1521 tx_ring->size = 0;
1522}
1523
1524/**
1525 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1526 * @tx_ring: TX Ring structure to allocate
a98cb258 1527 * @cnt: Ring buffer count
4c352362
JK
1528 *
1529 * Return: 0 on success, negative errno otherwise.
1530 */
a98cb258 1531static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt)
4c352362
JK
1532{
1533 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1534 struct nfp_net *nn = r_vec->nfp_net;
1535 struct pci_dev *pdev = nn->pdev;
1536 int sz;
1537
a98cb258 1538 tx_ring->cnt = cnt;
4c352362
JK
1539
1540 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1541 tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size,
1542 &tx_ring->dma, GFP_KERNEL);
1543 if (!tx_ring->txds)
1544 goto err_alloc;
1545
1546 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
1547 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
1548 if (!tx_ring->txbufs)
1549 goto err_alloc;
1550
4c352362
JK
1551 netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx);
1552
1553 nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n",
1554 tx_ring->idx, tx_ring->qcidx,
1555 tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds);
1556
1557 return 0;
1558
1559err_alloc:
1560 nfp_net_tx_ring_free(tx_ring);
1561 return -ENOMEM;
1562}
1563
cc7c0333
JK
1564static struct nfp_net_tx_ring *
1565nfp_net_shadow_tx_rings_prepare(struct nfp_net *nn, u32 buf_cnt)
1566{
1567 struct nfp_net_tx_ring *rings;
1568 unsigned int r;
1569
1570 rings = kcalloc(nn->num_tx_rings, sizeof(*rings), GFP_KERNEL);
1571 if (!rings)
1572 return NULL;
1573
1574 for (r = 0; r < nn->num_tx_rings; r++) {
1575 nfp_net_tx_ring_init(&rings[r], nn->tx_rings[r].r_vec, r);
1576
1577 if (nfp_net_tx_ring_alloc(&rings[r], buf_cnt))
1578 goto err_free_prev;
1579 }
1580
1581 return rings;
1582
1583err_free_prev:
1584 while (r--)
1585 nfp_net_tx_ring_free(&rings[r]);
1586 kfree(rings);
1587 return NULL;
1588}
1589
1590static struct nfp_net_tx_ring *
1591nfp_net_shadow_tx_rings_swap(struct nfp_net *nn, struct nfp_net_tx_ring *rings)
1592{
1593 struct nfp_net_tx_ring *old = nn->tx_rings;
1594 unsigned int r;
1595
1596 for (r = 0; r < nn->num_tx_rings; r++)
1597 old[r].r_vec->tx_ring = &rings[r];
1598
1599 nn->tx_rings = rings;
1600 return old;
1601}
1602
1603static void
1604nfp_net_shadow_tx_rings_free(struct nfp_net *nn, struct nfp_net_tx_ring *rings)
1605{
1606 unsigned int r;
1607
1608 if (!rings)
1609 return;
1610
1611 for (r = 0; r < nn->num_tx_rings; r++)
1612 nfp_net_tx_ring_free(&rings[r]);
1613
1614 kfree(rings);
1615}
1616
4c352362
JK
1617/**
1618 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
1619 * @rx_ring: RX ring to free
1620 */
1621static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
1622{
1623 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1624 struct nfp_net *nn = r_vec->nfp_net;
1625 struct pci_dev *pdev = nn->pdev;
1626
4c352362
JK
1627 kfree(rx_ring->rxbufs);
1628
1629 if (rx_ring->rxds)
1630 dma_free_coherent(&pdev->dev, rx_ring->size,
1631 rx_ring->rxds, rx_ring->dma);
1632
1633 rx_ring->cnt = 0;
4c352362
JK
1634 rx_ring->rxbufs = NULL;
1635 rx_ring->rxds = NULL;
1636 rx_ring->dma = 0;
1637 rx_ring->size = 0;
1638}
1639
1640/**
1641 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1642 * @rx_ring: RX ring to allocate
30d21171 1643 * @fl_bufsz: Size of buffers to allocate
a98cb258 1644 * @cnt: Ring buffer count
4c352362
JK
1645 *
1646 * Return: 0 on success, negative errno otherwise.
1647 */
30d21171 1648static int
a98cb258
JK
1649nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
1650 u32 cnt)
4c352362
JK
1651{
1652 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1653 struct nfp_net *nn = r_vec->nfp_net;
1654 struct pci_dev *pdev = nn->pdev;
1655 int sz;
1656
a98cb258 1657 rx_ring->cnt = cnt;
30d21171 1658 rx_ring->bufsz = fl_bufsz;
4c352362
JK
1659
1660 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1661 rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size,
1662 &rx_ring->dma, GFP_KERNEL);
1663 if (!rx_ring->rxds)
1664 goto err_alloc;
1665
1666 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
1667 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
1668 if (!rx_ring->rxbufs)
1669 goto err_alloc;
1670
4c352362
JK
1671 nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n",
1672 rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx,
1673 rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds);
1674
1675 return 0;
1676
1677err_alloc:
1678 nfp_net_rx_ring_free(rx_ring);
1679 return -ENOMEM;
1680}
1681
36a857e4 1682static struct nfp_net_rx_ring *
a98cb258
JK
1683nfp_net_shadow_rx_rings_prepare(struct nfp_net *nn, unsigned int fl_bufsz,
1684 u32 buf_cnt)
36a857e4
JK
1685{
1686 struct nfp_net_rx_ring *rings;
1687 unsigned int r;
1688
1689 rings = kcalloc(nn->num_rx_rings, sizeof(*rings), GFP_KERNEL);
1690 if (!rings)
1691 return NULL;
1692
1693 for (r = 0; r < nn->num_rx_rings; r++) {
1694 nfp_net_rx_ring_init(&rings[r], nn->rx_rings[r].r_vec, r);
1695
a98cb258 1696 if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, buf_cnt))
36a857e4
JK
1697 goto err_free_prev;
1698
1699 if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r]))
1700 goto err_free_ring;
1701 }
1702
1703 return rings;
1704
1705err_free_prev:
1706 while (r--) {
1707 nfp_net_rx_ring_bufs_free(nn, &rings[r]);
1708err_free_ring:
1709 nfp_net_rx_ring_free(&rings[r]);
1710 }
1711 kfree(rings);
1712 return NULL;
1713}
1714
1715static struct nfp_net_rx_ring *
1716nfp_net_shadow_rx_rings_swap(struct nfp_net *nn, struct nfp_net_rx_ring *rings)
1717{
1718 struct nfp_net_rx_ring *old = nn->rx_rings;
1719 unsigned int r;
1720
1721 for (r = 0; r < nn->num_rx_rings; r++)
1722 old[r].r_vec->rx_ring = &rings[r];
1723
1724 nn->rx_rings = rings;
1725 return old;
1726}
1727
1728static void
1729nfp_net_shadow_rx_rings_free(struct nfp_net *nn, struct nfp_net_rx_ring *rings)
1730{
1731 unsigned int r;
1732
cc7c0333
JK
1733 if (!rings)
1734 return;
1735
36a857e4
JK
1736 for (r = 0; r < nn->num_r_vecs; r++) {
1737 nfp_net_rx_ring_bufs_free(nn, &rings[r]);
1738 nfp_net_rx_ring_free(&rings[r]);
1739 }
1740
1741 kfree(rings);
1742}
1743
0afbfb18
JK
1744static int
1745nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1746 int idx)
4c352362 1747{
0afbfb18
JK
1748 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
1749 int err;
4c352362 1750
73725d9d
JK
1751 r_vec->tx_ring = &nn->tx_rings[idx];
1752 nfp_net_tx_ring_init(r_vec->tx_ring, r_vec, idx);
1753
1754 r_vec->rx_ring = &nn->rx_rings[idx];
1755 nfp_net_rx_ring_init(r_vec->rx_ring, r_vec, idx);
1756
0afbfb18
JK
1757 snprintf(r_vec->name, sizeof(r_vec->name),
1758 "%s-rxtx-%d", nn->netdev->name, idx);
1759 err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec);
1760 if (err) {
1761 nn_err(nn, "Error requesting IRQ %d\n", entry->vector);
1762 return err;
1763 }
aba52df8 1764 disable_irq(entry->vector);
4c352362 1765
0afbfb18
JK
1766 /* Setup NAPI */
1767 netif_napi_add(nn->netdev, &r_vec->napi,
1768 nfp_net_poll, NAPI_POLL_WEIGHT);
4c352362 1769
0afbfb18 1770 irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask);
4c352362 1771
0afbfb18 1772 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry);
4c352362 1773
0afbfb18 1774 return 0;
4c352362
JK
1775}
1776
0afbfb18
JK
1777static void
1778nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
4c352362 1779{
0afbfb18 1780 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
4c352362 1781
4c352362 1782 irq_set_affinity_hint(entry->vector, NULL);
4c352362 1783 netif_napi_del(&r_vec->napi);
0afbfb18 1784 free_irq(entry->vector, r_vec);
4c352362
JK
1785}
1786
1787/**
1788 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
1789 * @nn: NFP Net device to reconfigure
1790 */
1791void nfp_net_rss_write_itbl(struct nfp_net *nn)
1792{
1793 int i;
1794
1795 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
1796 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
1797 get_unaligned_le32(nn->rss_itbl + i));
1798}
1799
1800/**
1801 * nfp_net_rss_write_key() - Write RSS hash key to device
1802 * @nn: NFP Net device to reconfigure
1803 */
1804void nfp_net_rss_write_key(struct nfp_net *nn)
1805{
1806 int i;
1807
1808 for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4)
1809 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
1810 get_unaligned_le32(nn->rss_key + i));
1811}
1812
1813/**
1814 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
1815 * @nn: NFP Net device to reconfigure
1816 */
1817void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
1818{
1819 u8 i;
1820 u32 factor;
1821 u32 value;
1822
1823 /* Compute factor used to convert coalesce '_usecs' parameters to
1824 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
1825 * count.
1826 */
1827 factor = nn->me_freq_mhz / 16;
1828
1829 /* copy RX interrupt coalesce parameters */
1830 value = (nn->rx_coalesce_max_frames << 16) |
1831 (factor * nn->rx_coalesce_usecs);
1832 for (i = 0; i < nn->num_r_vecs; i++)
1833 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
1834
1835 /* copy TX interrupt coalesce parameters */
1836 value = (nn->tx_coalesce_max_frames << 16) |
1837 (factor * nn->tx_coalesce_usecs);
1838 for (i = 0; i < nn->num_r_vecs; i++)
1839 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
1840}
1841
1842/**
f642963b 1843 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
4c352362 1844 * @nn: NFP Net device to reconfigure
4c352362 1845 *
f642963b
JK
1846 * Writes the MAC address from the netdev to the device control BAR. Does not
1847 * perform the required reconfig. We do a bit of byte swapping dance because
1848 * firmware is LE.
4c352362 1849 */
f642963b 1850static void nfp_net_write_mac_addr(struct nfp_net *nn)
4c352362
JK
1851{
1852 nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
1853 get_unaligned_be32(nn->netdev->dev_addr));
1854 /* We can't do writew for NFP-3200 compatibility */
1855 nn_writel(nn, NFP_NET_CFG_MACADDR + 4,
1856 get_unaligned_be16(nn->netdev->dev_addr + 4) << 16);
1857}
1858
ca40feab
JK
1859static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
1860{
1861 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
1862 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
1863 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
1864
1865 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
1866 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
1867 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
1868}
1869
4c352362
JK
1870/**
1871 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
1872 * @nn: NFP Net device to reconfigure
1873 */
1874static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
1875{
1876 u32 new_ctrl, update;
ca40feab 1877 unsigned int r;
4c352362
JK
1878 int err;
1879
1880 new_ctrl = nn->ctrl;
1881 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
1882 update = NFP_NET_CFG_UPDATE_GEN;
1883 update |= NFP_NET_CFG_UPDATE_MSIX;
1884 update |= NFP_NET_CFG_UPDATE_RING;
1885
1886 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
1887 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
1888
1889 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
1890 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
1891
1892 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1893 err = nfp_net_reconfig(nn, update);
aba52df8 1894 if (err)
4c352362 1895 nn_err(nn, "Could not disable device: %d\n", err);
4c352362 1896
aba52df8
JK
1897 for (r = 0; r < nn->num_r_vecs; r++) {
1898 nfp_net_rx_ring_reset(nn->r_vecs[r].rx_ring);
1899 nfp_net_tx_ring_reset(nn, nn->r_vecs[r].tx_ring);
ca40feab 1900 nfp_net_vec_clear_ring_data(nn, r);
aba52df8 1901 }
ca40feab 1902
4c352362
JK
1903 nn->ctrl = new_ctrl;
1904}
1905
ca40feab
JK
1906static void
1907nfp_net_vec_write_ring_data(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1908 unsigned int idx)
1909{
1910 /* Write the DMA address, size and MSI-X info to the device */
1911 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), r_vec->rx_ring->dma);
1912 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(r_vec->rx_ring->cnt));
1913 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), r_vec->irq_idx);
1914
1915 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), r_vec->tx_ring->dma);
1916 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(r_vec->tx_ring->cnt));
1917 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), r_vec->irq_idx);
1918}
1919
1cd0cfc4
JK
1920static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
1921{
1922 u32 new_ctrl, update = 0;
1923 unsigned int r;
1924 int err;
1925
1926 new_ctrl = nn->ctrl;
1927
1928 if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
1929 nfp_net_rss_write_key(nn);
1930 nfp_net_rss_write_itbl(nn);
1931 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
1932 update |= NFP_NET_CFG_UPDATE_RSS;
1933 }
1934
1935 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
1936 nfp_net_coalesce_write_cfg(nn);
1937
1938 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
1939 update |= NFP_NET_CFG_UPDATE_IRQMOD;
1940 }
1941
1942 for (r = 0; r < nn->num_r_vecs; r++)
1943 nfp_net_vec_write_ring_data(nn, &nn->r_vecs[r], r);
1944
1945 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
1946 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);
1947
1948 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
1949 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);
1950
f642963b 1951 nfp_net_write_mac_addr(nn);
1cd0cfc4
JK
1952
1953 nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
1954 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz);
1955
1956 /* Enable device */
1957 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
1958 update |= NFP_NET_CFG_UPDATE_GEN;
1959 update |= NFP_NET_CFG_UPDATE_MSIX;
1960 update |= NFP_NET_CFG_UPDATE_RING;
1961 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
1962 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
1963
1964 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1965 err = nfp_net_reconfig(nn, update);
1966
1967 nn->ctrl = new_ctrl;
1968
aba52df8
JK
1969 for (r = 0; r < nn->num_r_vecs; r++)
1970 nfp_net_rx_ring_fill_freelist(nn->r_vecs[r].rx_ring);
1971
1cd0cfc4
JK
1972 /* Since reconfiguration requests while NFP is down are ignored we
1973 * have to wipe the entire VXLAN configuration and reinitialize it.
1974 */
1975 if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
1976 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
1977 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
3ab68837 1978 udp_tunnel_get_rx_info(nn->netdev);
1cd0cfc4
JK
1979 }
1980
1981 return err;
1982}
1983
1984/**
1985 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
1986 * @nn: NFP Net device to reconfigure
1987 */
1988static int nfp_net_set_config_and_enable(struct nfp_net *nn)
1989{
1990 int err;
1991
1992 err = __nfp_net_set_config_and_enable(nn);
1993 if (err)
1994 nfp_net_clear_config_and_disable(nn);
1995
1996 return err;
1997}
1998
1cd0cfc4
JK
1999/**
2000 * nfp_net_open_stack() - Start the device from stack's perspective
2001 * @nn: NFP Net device to reconfigure
2002 */
2003static void nfp_net_open_stack(struct nfp_net *nn)
2004{
2005 unsigned int r;
2006
aba52df8
JK
2007 for (r = 0; r < nn->num_r_vecs; r++) {
2008 napi_enable(&nn->r_vecs[r].napi);
2009 enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
2010 }
1cd0cfc4
JK
2011
2012 netif_tx_wake_all_queues(nn->netdev);
2013
ce449ba7 2014 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
1cd0cfc4
JK
2015 nfp_net_read_link_status(nn);
2016}
2017
4c352362
JK
2018static int nfp_net_netdev_open(struct net_device *netdev)
2019{
2020 struct nfp_net *nn = netdev_priv(netdev);
2021 int err, r;
4c352362
JK
2022
2023 if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
2024 nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
2025 return -EBUSY;
2026 }
2027
4c352362
JK
2028 /* Step 1: Allocate resources for rings and the like
2029 * - Request interrupts
2030 * - Allocate RX and TX ring resources
2031 * - Setup initial RSS table
2032 */
2033 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2034 nn->exn_name, sizeof(nn->exn_name),
2035 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2036 if (err)
2037 return err;
0ba40af9
JK
2038 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2039 nn->lsc_name, sizeof(nn->lsc_name),
2040 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2041 if (err)
2042 goto err_free_exn;
ce449ba7 2043 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
4c352362 2044
73725d9d
JK
2045 nn->rx_rings = kcalloc(nn->num_rx_rings, sizeof(*nn->rx_rings),
2046 GFP_KERNEL);
bc6c03fa
WY
2047 if (!nn->rx_rings) {
2048 err = -ENOMEM;
73725d9d 2049 goto err_free_lsc;
bc6c03fa 2050 }
73725d9d
JK
2051 nn->tx_rings = kcalloc(nn->num_tx_rings, sizeof(*nn->tx_rings),
2052 GFP_KERNEL);
bc6c03fa
WY
2053 if (!nn->tx_rings) {
2054 err = -ENOMEM;
73725d9d 2055 goto err_free_rx_rings;
bc6c03fa 2056 }
73725d9d 2057
0afbfb18
JK
2058 for (r = 0; r < nn->num_r_vecs; r++) {
2059 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2060 if (err)
2061 goto err_free_prev_vecs;
2062
a98cb258 2063 err = nfp_net_tx_ring_alloc(nn->r_vecs[r].tx_ring, nn->txd_cnt);
0afbfb18
JK
2064 if (err)
2065 goto err_cleanup_vec_p;
2066
30d21171 2067 err = nfp_net_rx_ring_alloc(nn->r_vecs[r].rx_ring,
a98cb258 2068 nn->fl_bufsz, nn->rxd_cnt);
0afbfb18
JK
2069 if (err)
2070 goto err_free_tx_ring_p;
114bdef0
JK
2071
2072 err = nfp_net_rx_ring_bufs_alloc(nn, nn->r_vecs[r].rx_ring);
2073 if (err)
2074 goto err_flush_rx_ring_p;
0afbfb18 2075 }
4c352362
JK
2076
2077 err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings);
2078 if (err)
2079 goto err_free_rings;
2080
2081 err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
2082 if (err)
2083 goto err_free_rings;
2084
4c352362
JK
2085 /* Step 2: Configure the NFP
2086 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2087 * - Write MAC address (in case it changed)
2088 * - Set the MTU
2089 * - Set the Freelist buffer size
2090 * - Enable the FW
2091 */
1cd0cfc4 2092 err = nfp_net_set_config_and_enable(nn);
4c352362 2093 if (err)
1cd0cfc4 2094 goto err_free_rings;
4c352362
JK
2095
2096 /* Step 3: Enable for kernel
2097 * - put some freelist descriptors on each RX ring
2098 * - enable NAPI on each ring
2099 * - enable all TX queues
2100 * - set link state
2101 */
1cd0cfc4 2102 nfp_net_open_stack(nn);
4c352362
JK
2103
2104 return 0;
2105
4c352362 2106err_free_rings:
0afbfb18
JK
2107 r = nn->num_r_vecs;
2108err_free_prev_vecs:
2109 while (r--) {
114bdef0
JK
2110 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring);
2111err_flush_rx_ring_p:
0afbfb18
JK
2112 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring);
2113err_free_tx_ring_p:
2114 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring);
2115err_cleanup_vec_p:
2116 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2117 }
73725d9d
JK
2118 kfree(nn->tx_rings);
2119err_free_rx_rings:
2120 kfree(nn->rx_rings);
2121err_free_lsc:
0ba40af9 2122 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
4c352362
JK
2123err_free_exn:
2124 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2125 return err;
2126}
2127
2128/**
1cd0cfc4
JK
2129 * nfp_net_close_stack() - Quiescent the stack (part of close)
2130 * @nn: NFP Net device to reconfigure
4c352362 2131 */
1cd0cfc4 2132static void nfp_net_close_stack(struct nfp_net *nn)
4c352362 2133{
1cd0cfc4 2134 unsigned int r;
4c352362 2135
ce449ba7 2136 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
1cd0cfc4 2137 netif_carrier_off(nn->netdev);
4c352362
JK
2138 nn->link_up = false;
2139
aba52df8
JK
2140 for (r = 0; r < nn->num_r_vecs; r++) {
2141 disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
4c352362 2142 napi_disable(&nn->r_vecs[r].napi);
aba52df8 2143 }
4c352362 2144
1cd0cfc4
JK
2145 netif_tx_disable(nn->netdev);
2146}
4c352362 2147
1cd0cfc4
JK
2148/**
2149 * nfp_net_close_free_all() - Free all runtime resources
2150 * @nn: NFP Net device to reconfigure
2151 */
2152static void nfp_net_close_free_all(struct nfp_net *nn)
2153{
2154 unsigned int r;
4c352362 2155
4c352362 2156 for (r = 0; r < nn->num_r_vecs; r++) {
1934680f 2157 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring);
0afbfb18
JK
2158 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring);
2159 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring);
2160 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
4c352362
JK
2161 }
2162
73725d9d
JK
2163 kfree(nn->rx_rings);
2164 kfree(nn->tx_rings);
2165
0ba40af9 2166 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
4c352362 2167 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
1cd0cfc4
JK
2168}
2169
2170/**
2171 * nfp_net_netdev_close() - Called when the device is downed
2172 * @netdev: netdev structure
2173 */
2174static int nfp_net_netdev_close(struct net_device *netdev)
2175{
2176 struct nfp_net *nn = netdev_priv(netdev);
2177
2178 if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
2179 nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
2180 return 0;
2181 }
2182
2183 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2184 */
2185 nfp_net_close_stack(nn);
2186
2187 /* Step 2: Tell NFP
2188 */
2189 nfp_net_clear_config_and_disable(nn);
2190
2191 /* Step 3: Free resources
2192 */
2193 nfp_net_close_free_all(nn);
4c352362
JK
2194
2195 nn_dbg(nn, "%s down", netdev->name);
2196 return 0;
2197}
2198
2199static void nfp_net_set_rx_mode(struct net_device *netdev)
2200{
2201 struct nfp_net *nn = netdev_priv(netdev);
2202 u32 new_ctrl;
2203
2204 new_ctrl = nn->ctrl;
2205
2206 if (netdev->flags & IFF_PROMISC) {
2207 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2208 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2209 else
2210 nn_warn(nn, "FW does not support promiscuous mode\n");
2211 } else {
2212 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2213 }
2214
2215 if (new_ctrl == nn->ctrl)
2216 return;
2217
2218 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3d780b92 2219 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
4c352362
JK
2220
2221 nn->ctrl = new_ctrl;
2222}
2223
2224static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
2225{
36a857e4 2226 unsigned int old_mtu, old_fl_bufsz, new_fl_bufsz;
4c352362 2227 struct nfp_net *nn = netdev_priv(netdev);
36a857e4
JK
2228 struct nfp_net_rx_ring *tmp_rings;
2229 int err;
4c352362
JK
2230
2231 if (new_mtu < 68 || new_mtu > nn->max_mtu) {
2232 nn_err(nn, "New MTU (%d) is not valid\n", new_mtu);
2233 return -EINVAL;
2234 }
2235
36a857e4
JK
2236 old_mtu = netdev->mtu;
2237 old_fl_bufsz = nn->fl_bufsz;
2238 new_fl_bufsz = NFP_NET_MAX_PREPEND + ETH_HLEN + VLAN_HLEN * 2 + new_mtu;
2239
2240 if (!netif_running(netdev)) {
2241 netdev->mtu = new_mtu;
2242 nn->fl_bufsz = new_fl_bufsz;
2243 return 0;
2244 }
2245
2246 /* Prepare new rings */
a98cb258
JK
2247 tmp_rings = nfp_net_shadow_rx_rings_prepare(nn, new_fl_bufsz,
2248 nn->rxd_cnt);
36a857e4
JK
2249 if (!tmp_rings)
2250 return -ENOMEM;
2251
2252 /* Stop device, swap in new rings, try to start the firmware */
2253 nfp_net_close_stack(nn);
2254 nfp_net_clear_config_and_disable(nn);
2255
2256 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings);
2257
4c352362 2258 netdev->mtu = new_mtu;
36a857e4
JK
2259 nn->fl_bufsz = new_fl_bufsz;
2260
2261 err = nfp_net_set_config_and_enable(nn);
2262 if (err) {
2263 const int err_new = err;
2264
2265 /* Try with old configuration and old rings */
2266 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings);
2267
2268 netdev->mtu = old_mtu;
2269 nn->fl_bufsz = old_fl_bufsz;
4c352362 2270
36a857e4
JK
2271 err = __nfp_net_set_config_and_enable(nn);
2272 if (err)
2273 nn_err(nn, "Can't restore MTU - FW communication failed (%d,%d)\n",
2274 err_new, err);
4c352362
JK
2275 }
2276
36a857e4
JK
2277 nfp_net_shadow_rx_rings_free(nn, tmp_rings);
2278
2279 nfp_net_open_stack(nn);
2280
2281 return err;
4c352362
JK
2282}
2283
cc7c0333
JK
2284int nfp_net_set_ring_size(struct nfp_net *nn, u32 rxd_cnt, u32 txd_cnt)
2285{
2286 struct nfp_net_tx_ring *tx_rings = NULL;
2287 struct nfp_net_rx_ring *rx_rings = NULL;
2288 u32 old_rxd_cnt, old_txd_cnt;
2289 int err;
2290
2291 if (!netif_running(nn->netdev)) {
2292 nn->rxd_cnt = rxd_cnt;
2293 nn->txd_cnt = txd_cnt;
2294 return 0;
2295 }
2296
2297 old_rxd_cnt = nn->rxd_cnt;
2298 old_txd_cnt = nn->txd_cnt;
2299
2300 /* Prepare new rings */
2301 if (nn->rxd_cnt != rxd_cnt) {
2302 rx_rings = nfp_net_shadow_rx_rings_prepare(nn, nn->fl_bufsz,
2303 rxd_cnt);
2304 if (!rx_rings)
2305 return -ENOMEM;
2306 }
2307 if (nn->txd_cnt != txd_cnt) {
2308 tx_rings = nfp_net_shadow_tx_rings_prepare(nn, txd_cnt);
2309 if (!tx_rings) {
2310 nfp_net_shadow_rx_rings_free(nn, rx_rings);
2311 return -ENOMEM;
2312 }
2313 }
2314
2315 /* Stop device, swap in new rings, try to start the firmware */
2316 nfp_net_close_stack(nn);
2317 nfp_net_clear_config_and_disable(nn);
2318
2319 if (rx_rings)
2320 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings);
2321 if (tx_rings)
2322 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings);
2323
2324 nn->rxd_cnt = rxd_cnt;
2325 nn->txd_cnt = txd_cnt;
2326
2327 err = nfp_net_set_config_and_enable(nn);
2328 if (err) {
2329 const int err_new = err;
2330
2331 /* Try with old configuration and old rings */
2332 if (rx_rings)
2333 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings);
2334 if (tx_rings)
2335 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings);
2336
2337 nn->rxd_cnt = old_rxd_cnt;
2338 nn->txd_cnt = old_txd_cnt;
2339
2340 err = __nfp_net_set_config_and_enable(nn);
2341 if (err)
2342 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2343 err_new, err);
2344 }
2345
2346 nfp_net_shadow_rx_rings_free(nn, rx_rings);
2347 nfp_net_shadow_tx_rings_free(nn, tx_rings);
2348
2349 nfp_net_open_stack(nn);
2350
2351 return err;
2352}
2353
4c352362
JK
2354static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev,
2355 struct rtnl_link_stats64 *stats)
2356{
2357 struct nfp_net *nn = netdev_priv(netdev);
2358 int r;
2359
2360 for (r = 0; r < nn->num_r_vecs; r++) {
2361 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
2362 u64 data[3];
2363 unsigned int start;
2364
2365 do {
2366 start = u64_stats_fetch_begin(&r_vec->rx_sync);
2367 data[0] = r_vec->rx_pkts;
2368 data[1] = r_vec->rx_bytes;
2369 data[2] = r_vec->rx_drops;
2370 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
2371 stats->rx_packets += data[0];
2372 stats->rx_bytes += data[1];
2373 stats->rx_dropped += data[2];
2374
2375 do {
2376 start = u64_stats_fetch_begin(&r_vec->tx_sync);
2377 data[0] = r_vec->tx_pkts;
2378 data[1] = r_vec->tx_bytes;
2379 data[2] = r_vec->tx_errors;
2380 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
2381 stats->tx_packets += data[0];
2382 stats->tx_bytes += data[1];
2383 stats->tx_errors += data[2];
2384 }
2385
2386 return stats;
2387}
2388
2389static int nfp_net_set_features(struct net_device *netdev,
2390 netdev_features_t features)
2391{
2392 netdev_features_t changed = netdev->features ^ features;
2393 struct nfp_net *nn = netdev_priv(netdev);
2394 u32 new_ctrl;
2395 int err;
2396
2397 /* Assume this is not called with features we have not advertised */
2398
2399 new_ctrl = nn->ctrl;
2400
2401 if (changed & NETIF_F_RXCSUM) {
2402 if (features & NETIF_F_RXCSUM)
2403 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
2404 else
2405 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
2406 }
2407
2408 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
2409 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
2410 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2411 else
2412 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
2413 }
2414
2415 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
2416 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
2417 new_ctrl |= NFP_NET_CFG_CTRL_LSO;
2418 else
2419 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
2420 }
2421
2422 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2423 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2424 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
2425 else
2426 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
2427 }
2428
2429 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
2430 if (features & NETIF_F_HW_VLAN_CTAG_TX)
2431 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
2432 else
2433 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
2434 }
2435
2436 if (changed & NETIF_F_SG) {
2437 if (features & NETIF_F_SG)
2438 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
2439 else
2440 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
2441 }
2442
2443 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
2444 netdev->features, features, changed);
2445
2446 if (new_ctrl == nn->ctrl)
2447 return 0;
2448
2449 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
2450 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2451 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
2452 if (err)
2453 return err;
2454
2455 nn->ctrl = new_ctrl;
2456
2457 return 0;
2458}
2459
2460static netdev_features_t
2461nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
2462 netdev_features_t features)
2463{
2464 u8 l4_hdr;
2465
2466 /* We can't do TSO over double tagged packets (802.1AD) */
2467 features &= vlan_features_check(skb, features);
2468
2469 if (!skb->encapsulation)
2470 return features;
2471
2472 /* Ensure that inner L4 header offset fits into TX descriptor field */
2473 if (skb_is_gso(skb)) {
2474 u32 hdrlen;
2475
2476 hdrlen = skb_inner_transport_header(skb) - skb->data +
2477 inner_tcp_hdrlen(skb);
2478
2479 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
2480 features &= ~NETIF_F_GSO_MASK;
2481 }
2482
2483 /* VXLAN/GRE check */
2484 switch (vlan_get_protocol(skb)) {
2485 case htons(ETH_P_IP):
2486 l4_hdr = ip_hdr(skb)->protocol;
2487 break;
2488 case htons(ETH_P_IPV6):
2489 l4_hdr = ipv6_hdr(skb)->nexthdr;
2490 break;
2491 default:
a188222b 2492 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4c352362
JK
2493 }
2494
2495 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
2496 skb->inner_protocol != htons(ETH_P_TEB) ||
2497 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
2498 (l4_hdr == IPPROTO_UDP &&
2499 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
2500 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
a188222b 2501 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4c352362
JK
2502
2503 return features;
2504}
2505
2506/**
2507 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
2508 * @nn: NFP Net device to reconfigure
2509 * @idx: Index into the port table where new port should be written
2510 * @port: UDP port to configure (pass zero to remove VXLAN port)
2511 */
2512static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
2513{
2514 int i;
2515
2516 nn->vxlan_ports[idx] = port;
2517
2518 if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
2519 return;
2520
2521 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
2522 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
2523 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
2524 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
2525 be16_to_cpu(nn->vxlan_ports[i]));
2526
3d780b92 2527 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
4c352362
JK
2528}
2529
2530/**
2531 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
2532 * @nn: NFP Network structure
2533 * @port: UDP port to look for
2534 *
2535 * Return: if the port is already in the table -- it's position;
2536 * if the port is not in the table -- free position to use;
2537 * if the table is full -- -ENOSPC.
2538 */
2539static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
2540{
2541 int i, free_idx = -ENOSPC;
2542
2543 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
2544 if (nn->vxlan_ports[i] == port)
2545 return i;
2546 if (!nn->vxlan_usecnt[i])
2547 free_idx = i;
2548 }
2549
2550 return free_idx;
2551}
2552
2553static void nfp_net_add_vxlan_port(struct net_device *netdev,
3ab68837 2554 struct udp_tunnel_info *ti)
4c352362
JK
2555{
2556 struct nfp_net *nn = netdev_priv(netdev);
2557 int idx;
2558
3ab68837
AD
2559 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2560 return;
2561
2562 idx = nfp_net_find_vxlan_idx(nn, ti->port);
4c352362
JK
2563 if (idx == -ENOSPC)
2564 return;
2565
2566 if (!nn->vxlan_usecnt[idx]++)
3ab68837 2567 nfp_net_set_vxlan_port(nn, idx, ti->port);
4c352362
JK
2568}
2569
2570static void nfp_net_del_vxlan_port(struct net_device *netdev,
3ab68837 2571 struct udp_tunnel_info *ti)
4c352362
JK
2572{
2573 struct nfp_net *nn = netdev_priv(netdev);
2574 int idx;
2575
3ab68837
AD
2576 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2577 return;
2578
2579 idx = nfp_net_find_vxlan_idx(nn, ti->port);
f50cef6f 2580 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
4c352362
JK
2581 return;
2582
2583 if (!--nn->vxlan_usecnt[idx])
2584 nfp_net_set_vxlan_port(nn, idx, 0);
2585}
2586
2587static const struct net_device_ops nfp_net_netdev_ops = {
2588 .ndo_open = nfp_net_netdev_open,
2589 .ndo_stop = nfp_net_netdev_close,
2590 .ndo_start_xmit = nfp_net_tx,
2591 .ndo_get_stats64 = nfp_net_stat64,
2592 .ndo_tx_timeout = nfp_net_tx_timeout,
2593 .ndo_set_rx_mode = nfp_net_set_rx_mode,
2594 .ndo_change_mtu = nfp_net_change_mtu,
2595 .ndo_set_mac_address = eth_mac_addr,
2596 .ndo_set_features = nfp_net_set_features,
2597 .ndo_features_check = nfp_net_features_check,
3ab68837
AD
2598 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
2599 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
4c352362
JK
2600};
2601
2602/**
2603 * nfp_net_info() - Print general info about the NIC
2604 * @nn: NFP Net device to reconfigure
2605 */
2606void nfp_net_info(struct nfp_net *nn)
2607{
2608 nn_info(nn, "Netronome %s %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2609 nn->is_nfp3200 ? "NFP-32xx" : "NFP-6xxx",
2610 nn->is_vf ? "VF " : "",
2611 nn->num_tx_rings, nn->max_tx_rings,
2612 nn->num_rx_rings, nn->max_rx_rings);
2613 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
2614 nn->fw_ver.resv, nn->fw_ver.class,
2615 nn->fw_ver.major, nn->fw_ver.minor,
2616 nn->max_mtu);
2617 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2618 nn->cap,
2619 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
2620 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
2621 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
2622 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
2623 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
2624 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
2625 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
2626 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
2627 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
2628 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "",
2629 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "",
2630 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
2631 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
2632 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
2633 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
2634 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "");
2635}
2636
2637/**
2638 * nfp_net_netdev_alloc() - Allocate netdev and related structure
2639 * @pdev: PCI device
2640 * @max_tx_rings: Maximum number of TX rings supported by device
2641 * @max_rx_rings: Maximum number of RX rings supported by device
2642 *
2643 * This function allocates a netdev device and fills in the initial
2644 * part of the @struct nfp_net structure.
2645 *
2646 * Return: NFP Net device structure, or ERR_PTR on error.
2647 */
2648struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
2649 int max_tx_rings, int max_rx_rings)
2650{
2651 struct net_device *netdev;
2652 struct nfp_net *nn;
2653 int nqs;
2654
2655 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
2656 max_tx_rings, max_rx_rings);
2657 if (!netdev)
2658 return ERR_PTR(-ENOMEM);
2659
2660 SET_NETDEV_DEV(netdev, &pdev->dev);
2661 nn = netdev_priv(netdev);
2662
2663 nn->netdev = netdev;
2664 nn->pdev = pdev;
2665
2666 nn->max_tx_rings = max_tx_rings;
2667 nn->max_rx_rings = max_rx_rings;
2668
2669 nqs = netif_get_num_default_rss_queues();
2670 nn->num_tx_rings = min_t(int, nqs, max_tx_rings);
2671 nn->num_rx_rings = min_t(int, nqs, max_rx_rings);
2672
2673 nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
2674 nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
2675
2676 spin_lock_init(&nn->reconfig_lock);
2677 spin_lock_init(&nn->link_status_lock);
2678
3d780b92
JK
2679 setup_timer(&nn->reconfig_timer,
2680 nfp_net_reconfig_timer, (unsigned long)nn);
2681
4c352362
JK
2682 return nn;
2683}
2684
2685/**
2686 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
2687 * @nn: NFP Net device to reconfigure
2688 */
2689void nfp_net_netdev_free(struct nfp_net *nn)
2690{
2691 free_netdev(nn->netdev);
2692}
2693
2694/**
2695 * nfp_net_rss_init() - Set the initial RSS parameters
2696 * @nn: NFP Net device to reconfigure
2697 */
2698static void nfp_net_rss_init(struct nfp_net *nn)
2699{
2700 int i;
2701
2702 netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ);
2703
2704 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2705 nn->rss_itbl[i] =
2706 ethtool_rxfh_indir_default(i, nn->num_rx_rings);
2707
2708 /* Enable IPv4/IPv6 TCP by default */
2709 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
2710 NFP_NET_CFG_RSS_IPV6_TCP |
2711 NFP_NET_CFG_RSS_TOEPLITZ |
2712 NFP_NET_CFG_RSS_MASK;
2713}
2714
2715/**
2716 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
2717 * @nn: NFP Net device to reconfigure
2718 */
2719static void nfp_net_irqmod_init(struct nfp_net *nn)
2720{
2721 nn->rx_coalesce_usecs = 50;
2722 nn->rx_coalesce_max_frames = 64;
2723 nn->tx_coalesce_usecs = 50;
2724 nn->tx_coalesce_max_frames = 64;
2725}
2726
2727/**
2728 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
2729 * @netdev: netdev structure
2730 *
2731 * Return: 0 on success or negative errno on error.
2732 */
2733int nfp_net_netdev_init(struct net_device *netdev)
2734{
2735 struct nfp_net *nn = netdev_priv(netdev);
2736 int err;
2737
2738 /* Get some of the read-only fields from the BAR */
2739 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
2740 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
2741
f642963b 2742 nfp_net_write_mac_addr(nn);
4c352362
JK
2743
2744 /* Set default MTU and Freelist buffer size */
2745 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
2746 netdev->mtu = nn->max_mtu;
2747 else
2748 netdev->mtu = NFP_NET_DEFAULT_MTU;
2749 nn->fl_bufsz = NFP_NET_DEFAULT_RX_BUFSZ;
2750
2751 /* Advertise/enable offloads based on capabilities
2752 *
2753 * Note: netdev->features show the currently enabled features
2754 * and netdev->hw_features advertises which features are
2755 * supported. By default we enable most features.
2756 */
2757 netdev->hw_features = NETIF_F_HIGHDMA;
2758 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
2759 netdev->hw_features |= NETIF_F_RXCSUM;
2760 nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
2761 }
2762 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
2763 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2764 nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2765 }
2766 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
2767 netdev->hw_features |= NETIF_F_SG;
2768 nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
2769 }
2770 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
2771 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
2772 nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
2773 }
2774 if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
2775 netdev->hw_features |= NETIF_F_RXHASH;
2776 nfp_net_rss_init(nn);
2777 nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
2778 }
2779 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
2780 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
2781 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
2782 netdev->hw_features |= NETIF_F_GSO_GRE |
2783 NETIF_F_GSO_UDP_TUNNEL;
2784 nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
2785
2786 netdev->hw_enc_features = netdev->hw_features;
2787 }
2788
2789 netdev->vlan_features = netdev->hw_features;
2790
2791 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
2792 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2793 nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
2794 }
2795 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
2796 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
2797 nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
2798 }
2799
2800 netdev->features = netdev->hw_features;
2801
2802 /* Advertise but disable TSO by default. */
2803 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
2804
2805 /* Allow L2 Broadcast and Multicast through by default, if supported */
2806 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
2807 nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
2808 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
2809 nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;
2810
2811 /* Allow IRQ moderation, if supported */
2812 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
2813 nfp_net_irqmod_init(nn);
2814 nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
2815 }
2816
2817 /* On NFP-3200 enable MSI-X auto-masking, if supported and the
2818 * interrupts are not shared.
2819 */
2820 if (nn->is_nfp3200 && nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO)
2821 nn->ctrl |= NFP_NET_CFG_CTRL_MSIXAUTO;
2822
2823 /* On NFP4000/NFP6000, determine RX packet/metadata boundary offset */
2824 if (nn->fw_ver.major >= 2)
2825 nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
2826 else
2827 nn->rx_offset = NFP_NET_RX_OFFSET;
2828
2829 /* Stash the re-configuration queue away. First odd queue in TX Bar */
2830 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
2831
2832 /* Make sure the FW knows the netdev is supposed to be disabled here */
2833 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
2834 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2835 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2836 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
2837 NFP_NET_CFG_UPDATE_GEN);
2838 if (err)
2839 return err;
2840
2841 /* Finalise the netdev setup */
2842 ether_setup(netdev);
2843 netdev->netdev_ops = &nfp_net_netdev_ops;
2844 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4b402d71 2845 netif_carrier_off(netdev);
4c352362
JK
2846
2847 nfp_net_set_ethtool_ops(netdev);
2848 nfp_net_irqs_assign(netdev);
2849
2850 return register_netdev(netdev);
2851}
2852
2853/**
2854 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
2855 * @netdev: netdev structure
2856 */
2857void nfp_net_netdev_clean(struct net_device *netdev)
2858{
2859 unregister_netdev(netdev);
2860}