]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/qlogic/qed/qed_int.c
qed: Add aux. function translating sb_id -> igu_sb_id
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
CommitLineData
fe56b9e6 1/* QLogic qed NIC Driver
e8f1cb50 2 * Copyright (c) 2015-2017 QLogic Corporation
fe56b9e6 3 *
e8f1cb50
MY
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
fe56b9e6
YM
31 */
32
33#include <linux/types.h>
34#include <asm/byteorder.h>
35#include <linux/io.h>
36#include <linux/bitops.h>
37#include <linux/delay.h>
38#include <linux/dma-mapping.h>
39#include <linux/errno.h>
40#include <linux/interrupt.h>
41#include <linux/kernel.h>
42#include <linux/pci.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include "qed.h"
46#include "qed_hsi.h"
47#include "qed_hw.h"
48#include "qed_init_ops.h"
49#include "qed_int.h"
50#include "qed_mcp.h"
51#include "qed_reg_addr.h"
52#include "qed_sp.h"
1408cc1f
YM
53#include "qed_sriov.h"
54#include "qed_vf.h"
fe56b9e6
YM
55
56struct qed_pi_info {
57 qed_int_comp_cb_t comp_cb;
58 void *cookie;
59};
60
61struct qed_sb_sp_info {
62 struct qed_sb_info sb_info;
63
64 /* per protocol index data */
65 struct qed_pi_info pi_info_arr[PIS_PER_SB];
66};
67
ff38577a
YM
68enum qed_attention_type {
69 QED_ATTN_TYPE_ATTN,
70 QED_ATTN_TYPE_PARITY,
71};
72
cc875c2e
YM
73#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
0d956e8a
YM
76struct aeu_invert_reg_bit {
77 char bit_name[30];
78
79#define ATTENTION_PARITY (1 << 0)
80
81#define ATTENTION_LENGTH_MASK (0x00000ff0)
82#define ATTENTION_LENGTH_SHIFT (4)
83#define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
84 ATTENTION_LENGTH_SHIFT)
85#define ATTENTION_SINGLE (1 << ATTENTION_LENGTH_SHIFT)
86#define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
87#define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
88 ATTENTION_PARITY)
89
90/* Multiple bits start with this offset */
91#define ATTENTION_OFFSET_MASK (0x000ff000)
92#define ATTENTION_OFFSET_SHIFT (12)
ba36f718
MY
93
94#define ATTENTION_BB_MASK (0x00700000)
95#define ATTENTION_BB_SHIFT (20)
96#define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
97#define ATTENTION_BB_DIFFERENT BIT(23)
98
0d956e8a 99 unsigned int flags;
ff38577a 100
b4149dc7
YM
101 /* Callback to call if attention will be triggered */
102 int (*cb)(struct qed_hwfn *p_hwfn);
103
ff38577a 104 enum block_id block_index;
0d956e8a
YM
105};
106
107struct aeu_invert_reg {
108 struct aeu_invert_reg_bit bits[32];
109};
110
111#define MAX_ATTN_GRPS (8)
112#define NUM_ATTN_REGS (9)
113
b4149dc7
YM
114/* Specific HW attention callbacks */
115static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116{
117 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119 /* This might occur on certain instances; Log it once then mask it */
120 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 tmp);
122 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 0xffffffff);
124
125 return 0;
126}
127
128#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
129#define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
130#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
131#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
132#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
133#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
134#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
135#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
136#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
137#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
138#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
139#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
140#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
141static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142{
143 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 u32 addr, data, length;
148
149 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 PSWHST_REG_INCORRECT_ACCESS_DATA);
153 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156 DP_INFO(p_hwfn->cdev,
157 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 addr, length,
159 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 (u8) GET_FIELD(data,
162 ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 (u8) GET_FIELD(data,
164 ATTENTION_INCORRECT_ACCESS_CLIENT),
165 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 (u8) GET_FIELD(data,
167 ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 data);
169 }
170
171 return 0;
172}
173
174#define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
175#define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
176#define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177#define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
178#define QED_GRC_ATTENTION_MASTER_MASK (0xf)
179#define QED_GRC_ATTENTION_MASTER_SHIFT (24)
180#define QED_GRC_ATTENTION_PF_MASK (0xf)
181#define QED_GRC_ATTENTION_PF_SHIFT (0)
182#define QED_GRC_ATTENTION_VF_MASK (0xff)
183#define QED_GRC_ATTENTION_VF_SHIFT (4)
184#define QED_GRC_ATTENTION_PRIV_MASK (0x3)
185#define QED_GRC_ATTENTION_PRIV_SHIFT (14)
186#define QED_GRC_ATTENTION_PRIV_VF (0)
187static const char *attn_master_to_str(u8 master)
188{
189 switch (master) {
190 case 1: return "PXP";
191 case 2: return "MCP";
192 case 3: return "MSDM";
193 case 4: return "PSDM";
194 case 5: return "YSDM";
195 case 6: return "USDM";
196 case 7: return "TSDM";
197 case 8: return "XSDM";
198 case 9: return "DBU";
199 case 10: return "DMAE";
200 default:
9165dabb 201 return "Unknown";
b4149dc7
YM
202 }
203}
204
205static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206{
207 u32 tmp, tmp2;
208
209 /* We've already cleared the timeout interrupt register, so we learn
210 * of interrupts via the validity register
211 */
212 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 goto out;
216
217 /* Read the GRC timeout information */
218 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223 DP_INFO(p_hwfn->cdev,
224 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 tmp2, tmp,
226 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Ireelevant)",
232 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234out:
235 /* Regardles of anything else, clean the validity bit */
236 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 return 0;
239}
240
241#define PGLUE_ATTENTION_VALID (1 << 29)
242#define PGLUE_ATTENTION_RD_VALID (1 << 26)
243#define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
244#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
245#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
246#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
247#define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
248#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
249#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
250#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
251#define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
252#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
253#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
254#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
255#define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
256#define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
257#define PGLUE_ATTENTION_ILT_VALID (1 << 23)
258static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259{
260 u32 tmp;
261
262 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263 PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264 if (tmp & PGLUE_ATTENTION_VALID) {
265 u32 addr_lo, addr_hi, details;
266
267 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 PGLUE_B_REG_TX_ERR_WR_DETAILS);
273
274 DP_INFO(p_hwfn,
275 "Illegal write by chip to [%08x:%08x] blocked.\n"
276 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278 addr_hi, addr_lo, details,
279 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281 GET_FIELD(details,
282 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283 tmp,
284 GET_FIELD(tmp,
285 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286 GET_FIELD(tmp,
287 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288 GET_FIELD(tmp,
289 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290 }
291
292 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293 PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 u32 addr_lo, addr_hi, details;
296
297 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304 DP_INFO(p_hwfn,
305 "Illegal read by chip from [%08x:%08x] blocked.\n"
306 " Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 " Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 addr_hi, addr_lo, details,
309 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 GET_FIELD(details,
312 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 tmp,
314 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315 : 0,
316 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318 : 0);
319 }
320
321 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322 PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
325
326 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328 if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329 u32 addr_hi, addr_lo;
330
331 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335
336 DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337 tmp, addr_hi, addr_lo);
338 }
339
340 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342 if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343 u32 addr_hi, addr_lo, details;
344
345 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351
352 DP_INFO(p_hwfn,
353 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354 details, tmp, addr_hi, addr_lo);
355 }
356
357 /* Clear the indications */
358 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359 PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360
361 return 0;
362}
363
364#define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
365#define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366#define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
367#define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
368static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369{
370 u32 reason;
371
372 reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373 QED_DORQ_ATTENTION_REASON_MASK;
374 if (reason) {
375 u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 DORQ_REG_DB_DROP_DETAILS);
377
378 DP_INFO(p_hwfn->cdev,
9165dabb 379 "DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
b4149dc7
YM
380 qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382 (u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384 reason);
385 }
386
387 return -EINVAL;
388}
389
ba36f718
MY
390/* Instead of major changes to the data-structure, we have a some 'special'
391 * identifiers for sources that changed meaning between adapters.
392 */
393enum aeu_invert_reg_special_type {
394 AEU_INVERT_REG_SPECIAL_CNIG_0,
395 AEU_INVERT_REG_SPECIAL_CNIG_1,
396 AEU_INVERT_REG_SPECIAL_CNIG_2,
397 AEU_INVERT_REG_SPECIAL_CNIG_3,
398 AEU_INVERT_REG_SPECIAL_MAX,
399};
400
401static struct aeu_invert_reg_bit
402aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407};
408
0d956e8a
YM
409/* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
410static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411 {
412 { /* After Invert 1 */
413 {"GPIO0 function%d",
b4149dc7 414 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
0d956e8a
YM
415 }
416 },
417
418 {
419 { /* After Invert 2 */
b4149dc7
YM
420 {"PGLUE config_space", ATTENTION_SINGLE,
421 NULL, MAX_BLOCK_ID},
422 {"PGLUE misc_flr", ATTENTION_SINGLE,
423 NULL, MAX_BLOCK_ID},
424 {"PGLUE B RBC", ATTENTION_PAR_INT,
425 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426 {"PGLUE misc_mctp", ATTENTION_SINGLE,
427 NULL, MAX_BLOCK_ID},
428 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
430 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
0d956e8a 431 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
ff38577a 432 (1 << ATTENTION_OFFSET_SHIFT),
b4149dc7 433 NULL, MAX_BLOCK_ID},
0d956e8a 434 {"PCIE glue/PXP VPD %d",
b4149dc7 435 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
0d956e8a
YM
436 }
437 },
438
439 {
440 { /* After Invert 3 */
441 {"General Attention %d",
b4149dc7 442 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
0d956e8a
YM
443 }
444 },
445
446 {
447 { /* After Invert 4 */
ff38577a 448 {"General Attention 32", ATTENTION_SINGLE,
b4149dc7 449 NULL, MAX_BLOCK_ID},
0d956e8a
YM
450 {"General Attention %d",
451 (2 << ATTENTION_LENGTH_SHIFT) |
b4149dc7 452 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
ff38577a 453 {"General Attention 35", ATTENTION_SINGLE,
b4149dc7 454 NULL, MAX_BLOCK_ID},
ba36f718
MY
455 {"NWS Parity",
456 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458 NULL, BLOCK_NWS},
459 {"NWS Interrupt",
460 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462 NULL, BLOCK_NWS},
463 {"NWM Parity",
464 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466 NULL, BLOCK_NWM},
467 {"NWM Interrupt",
468 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470 NULL, BLOCK_NWM},
b4149dc7
YM
471 {"MCP CPU", ATTENTION_SINGLE,
472 qed_mcp_attn_cb, MAX_BLOCK_ID},
473 {"MCP Watchdog timer", ATTENTION_SINGLE,
474 NULL, MAX_BLOCK_ID},
475 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
ff38577a 476 {"AVS stop status ready", ATTENTION_SINGLE,
b4149dc7
YM
477 NULL, MAX_BLOCK_ID},
478 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479 {"MSTAT per-path", ATTENTION_PAR_INT,
480 NULL, MAX_BLOCK_ID},
ff38577a 481 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
b4149dc7
YM
482 NULL, MAX_BLOCK_ID},
483 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
0d956e8a
YM
488 }
489 },
490
491 {
492 { /* After Invert 5 */
b4149dc7
YM
493 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
0d956e8a
YM
509 }
510 },
511
512 {
513 { /* After Invert 6 */
b4149dc7
YM
514 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527 {"DORQ", ATTENTION_PAR_INT,
528 qed_dorq_attn_cb, BLOCK_DORQ},
529 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
0d956e8a
YM
531 }
532 },
533
534 {
535 { /* After Invert 7 */
b4149dc7
YM
536 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
0d956e8a
YM
553 }
554 },
555
556 {
557 { /* After Invert 8 */
b4149dc7
YM
558 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559 NULL, BLOCK_PSWRQ2},
560 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561 {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562 NULL, BLOCK_PSWWR2},
563 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564 {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565 NULL, BLOCK_PSWRD2},
566 {"PSWHST", ATTENTION_PAR_INT,
567 qed_pswhst_attn_cb, BLOCK_PSWHST},
568 {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569 NULL, BLOCK_PSWHST2},
570 {"GRC", ATTENTION_PAR_INT,
571 qed_grc_attn_cb, BLOCK_GRC},
572 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
ff38577a 581 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
b4149dc7
YM
582 NULL, BLOCK_PGLCS},
583 {"PERST_B assertion", ATTENTION_SINGLE,
584 NULL, MAX_BLOCK_ID},
ff38577a 585 {"PERST_B deassertion", ATTENTION_SINGLE,
b4149dc7 586 NULL, MAX_BLOCK_ID},
ff38577a 587 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
b4149dc7 588 NULL, MAX_BLOCK_ID},
0d956e8a
YM
589 }
590 },
591
592 {
593 { /* After Invert 9 */
b4149dc7
YM
594 {"MCP Latched memory", ATTENTION_PAR,
595 NULL, MAX_BLOCK_ID},
ff38577a 596 {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
b4149dc7
YM
597 NULL, MAX_BLOCK_ID},
598 {"MCP Latched ump_tx", ATTENTION_PAR,
599 NULL, MAX_BLOCK_ID},
ff38577a 600 {"MCP Latched scratchpad", ATTENTION_PAR,
b4149dc7 601 NULL, MAX_BLOCK_ID},
ff38577a 602 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
b4149dc7 603 NULL, MAX_BLOCK_ID},
0d956e8a
YM
604 }
605 },
606};
607
ba36f718
MY
608static struct aeu_invert_reg_bit *
609qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610 struct aeu_invert_reg_bit *p_bit)
611{
612 if (!QED_IS_BB(p_hwfn->cdev))
613 return p_bit;
614
615 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616 return p_bit;
617
618 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619 ATTENTION_BB_SHIFT];
620}
621
622static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623 struct aeu_invert_reg_bit *p_bit)
624{
625 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626 ATTENTION_PARITY);
627}
628
0d956e8a 629#define ATTN_STATE_BITS (0xfff)
cc875c2e
YM
630#define ATTN_BITS_MASKABLE (0x3ff)
631struct qed_sb_attn_info {
632 /* Virtual & Physical address of the SB */
633 struct atten_status_block *sb_attn;
0d956e8a 634 dma_addr_t sb_phys;
cc875c2e
YM
635
636 /* Last seen running index */
0d956e8a
YM
637 u16 index;
638
639 /* A mask of the AEU bits resulting in a parity error */
640 u32 parity_mask[NUM_ATTN_REGS];
641
642 /* A pointer to the attention description structure */
643 struct aeu_invert_reg *p_aeu_desc;
cc875c2e
YM
644
645 /* Previously asserted attentions, which are still unasserted */
0d956e8a 646 u16 known_attn;
cc875c2e
YM
647
648 /* Cleanup address for the link's general hw attention */
0d956e8a 649 u32 mfw_attn_addr;
cc875c2e
YM
650};
651
652static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
1a635e48 653 struct qed_sb_attn_info *p_sb_desc)
cc875c2e 654{
1a635e48 655 u16 rc = 0, index;
cc875c2e
YM
656
657 /* Make certain HW write took affect */
658 mmiowb();
659
660 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661 if (p_sb_desc->index != index) {
662 p_sb_desc->index = index;
663 rc = QED_SB_ATT_IDX;
664 }
665
666 /* Make certain we got a consistent view with HW */
667 mmiowb();
668
669 return rc;
670}
671
672/**
673 * @brief qed_int_assertion - handles asserted attention bits
674 *
675 * @param p_hwfn
676 * @param asserted_bits newly asserted bits
677 * @return int
678 */
1a635e48 679static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
cc875c2e
YM
680{
681 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682 u32 igu_mask;
683
684 /* Mask the source of the attention in the IGU */
1a635e48 685 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
cc875c2e
YM
686 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690
691 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692 "inner known ATTN state: 0x%04x --> 0x%04x\n",
693 sb_attn_sw->known_attn,
694 sb_attn_sw->known_attn | asserted_bits);
695 sb_attn_sw->known_attn |= asserted_bits;
696
697 /* Handle MCP events */
698 if (asserted_bits & 0x100) {
699 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700 /* Clean the MCP attention */
701 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702 sb_attn_sw->mfw_attn_addr, 0);
703 }
704
705 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706 GTT_BAR0_MAP_REG_IGU_CMD +
707 ((IGU_CMD_ATTN_BIT_SET_UPPER -
708 IGU_CMD_INT_ACK_BASE) << 3),
709 (u32)asserted_bits);
710
711 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712 asserted_bits);
713
714 return 0;
715}
716
0ebbd1c8
MY
717static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718 enum block_id id,
719 enum dbg_attn_type type, bool b_clear)
ff38577a 720{
0ebbd1c8
MY
721 struct dbg_attn_block_result attn_results;
722 enum dbg_status status;
ff38577a 723
0ebbd1c8 724 memset(&attn_results, 0, sizeof(attn_results));
ff38577a 725
0ebbd1c8
MY
726 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727 b_clear, &attn_results);
728 if (status != DBG_STATUS_OK)
ff38577a 729 DP_NOTICE(p_hwfn,
0ebbd1c8
MY
730 "Failed to parse attention information [status: %s]\n",
731 qed_dbg_get_status_str(status));
732 else
733 qed_dbg_parse_attn(p_hwfn, &attn_results);
ff38577a
YM
734}
735
0d956e8a
YM
736/**
737 * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738 * cause of the attention
739 *
740 * @param p_hwfn
741 * @param p_aeu - descriptor of an AEU bit which caused the attention
742 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743 * this bit to this group.
744 * @param bit_index - index of this bit in the aeu_en_reg
745 *
746 * @return int
747 */
748static int
749qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750 struct aeu_invert_reg_bit *p_aeu,
751 u32 aeu_en_reg,
6010179d 752 const char *p_bit_name, u32 bitmask)
0d956e8a 753{
0ebbd1c8 754 bool b_fatal = false;
0d956e8a 755 int rc = -EINVAL;
b4149dc7 756 u32 val;
0d956e8a
YM
757
758 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
6010179d 759 p_bit_name, bitmask);
0d956e8a 760
b4149dc7
YM
761 /* Call callback before clearing the interrupt status */
762 if (p_aeu->cb) {
763 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
6010179d 764 p_bit_name);
b4149dc7
YM
765 rc = p_aeu->cb(p_hwfn);
766 }
767
0ebbd1c8
MY
768 if (rc)
769 b_fatal = true;
770
771 /* Print HW block interrupt registers */
772 if (p_aeu->block_index != MAX_BLOCK_ID)
773 qed_int_attn_print(p_hwfn, p_aeu->block_index,
774 ATTN_TYPE_INTERRUPT, !b_fatal);
775
ff38577a 776
b4149dc7
YM
777 /* If the attention is benign, no need to prevent it */
778 if (!rc)
779 goto out;
780
0d956e8a
YM
781 /* Prevent this Attention from being asserted in the future */
782 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
b4149dc7 783 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
0d956e8a 784 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
6010179d 785 p_bit_name);
0d956e8a 786
b4149dc7 787out:
0d956e8a
YM
788 return rc;
789}
790
ff38577a
YM
791/**
792 * @brief qed_int_deassertion_parity - handle a single parity AEU source
793 *
794 * @param p_hwfn
795 * @param p_aeu - descriptor of an AEU bit which caused the parity
9790c35e 796 * @param aeu_en_reg - address of the AEU enable register
ff38577a
YM
797 * @param bit_index
798 */
799static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800 struct aeu_invert_reg_bit *p_aeu,
9790c35e 801 u32 aeu_en_reg, u8 bit_index)
ff38577a 802{
9790c35e 803 u32 block_id = p_aeu->block_index, mask, val;
ff38577a 804
9790c35e
MY
805 DP_NOTICE(p_hwfn->cdev,
806 "%s parity attention is set [address 0x%08x, bit %d]\n",
807 p_aeu->bit_name, aeu_en_reg, bit_index);
ff38577a
YM
808
809 if (block_id != MAX_BLOCK_ID) {
0ebbd1c8 810 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
ff38577a
YM
811
812 /* In BB, there's a single parity bit for several blocks */
813 if (block_id == BLOCK_BTB) {
0ebbd1c8
MY
814 qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815 ATTN_TYPE_PARITY, false);
816 qed_int_attn_print(p_hwfn, BLOCK_MCP,
817 ATTN_TYPE_PARITY, false);
ff38577a
YM
818 }
819 }
9790c35e
MY
820
821 /* Prevent this parity error from being re-asserted */
822 mask = ~BIT(bit_index);
823 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826 p_aeu->bit_name);
ff38577a
YM
827}
828
cc875c2e
YM
829/**
830 * @brief - handles deassertion of previously asserted attentions.
831 *
832 * @param p_hwfn
833 * @param deasserted_bits - newly deasserted bits
834 * @return int
835 *
836 */
837static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
838 u16 deasserted_bits)
839{
840 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
9790c35e 841 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
0d956e8a
YM
842 u8 i, j, k, bit_idx;
843 int rc = 0;
844
845 /* Read the attention registers in the AEU */
846 for (i = 0; i < NUM_ATTN_REGS; i++) {
847 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848 MISC_REG_AEU_AFTER_INVERT_1_IGU +
849 i * 0x4);
850 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851 "Deasserted bits [%d]: %08x\n",
852 i, aeu_inv_arr[i]);
853 }
854
855 /* Find parity attentions first */
856 for (i = 0; i < NUM_ATTN_REGS; i++) {
857 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
0d956e8a
YM
858 u32 parities;
859
9790c35e
MY
860 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862
0d956e8a
YM
863 /* Skip register in which no parity bit is currently set */
864 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865 if (!parities)
866 continue;
cc875c2e 867
0d956e8a
YM
868 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870
ba36f718 871 if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1a635e48 872 !!(parities & BIT(bit_idx)))
ff38577a 873 qed_int_deassertion_parity(p_hwfn, p_bit,
9790c35e 874 aeu_en, bit_idx);
0d956e8a
YM
875
876 bit_idx += ATTENTION_LENGTH(p_bit->flags);
877 }
878 }
879
880 /* Find non-parity cause for attention and act */
881 for (k = 0; k < MAX_ATTN_GRPS; k++) {
882 struct aeu_invert_reg_bit *p_aeu;
883
884 /* Handle only groups whose attention is currently deasserted */
885 if (!(deasserted_bits & (1 << k)))
886 continue;
887
888 for (i = 0; i < NUM_ATTN_REGS; i++) {
9790c35e
MY
889 u32 bits;
890
891 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892 i * sizeof(u32) +
893 k * sizeof(u32) * NUM_ATTN_REGS;
0d956e8a
YM
894
895 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896 bits = aeu_inv_arr[i] & en;
897
898 /* Skip if no bit from this group is currently set */
899 if (!bits)
900 continue;
901
902 /* Find all set bits from current register which belong
903 * to current group, making them responsible for the
904 * previous assertion.
905 */
906 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
6010179d 907 long unsigned int bitmask;
0d956e8a 908 u8 bit, bit_len;
0d956e8a
YM
909
910 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
ba36f718 911 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
0d956e8a
YM
912
913 bit = bit_idx;
914 bit_len = ATTENTION_LENGTH(p_aeu->flags);
ba36f718 915 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
0d956e8a
YM
916 /* Skip Parity */
917 bit++;
918 bit_len--;
919 }
920
921 bitmask = bits & (((1 << bit_len) - 1) << bit);
6010179d
MY
922 bitmask >>= bit;
923
0d956e8a 924 if (bitmask) {
6010179d
MY
925 u32 flags = p_aeu->flags;
926 char bit_name[30];
927 u8 num;
928
929 num = (u8)find_first_bit(&bitmask,
930 bit_len);
931
932 /* Some bits represent more than a
933 * a single interrupt. Correctly print
934 * their name.
935 */
936 if (ATTENTION_LENGTH(flags) > 2 ||
937 ((flags & ATTENTION_PAR_INT) &&
938 ATTENTION_LENGTH(flags) > 1))
939 snprintf(bit_name, 30,
940 p_aeu->bit_name, num);
941 else
942 strncpy(bit_name,
943 p_aeu->bit_name, 30);
944
945 /* We now need to pass bitmask in its
946 * correct position.
947 */
948 bitmask <<= bit;
949
0d956e8a
YM
950 /* Handle source of the attention */
951 qed_int_deassertion_aeu_bit(p_hwfn,
952 p_aeu,
953 aeu_en,
6010179d 954 bit_name,
0d956e8a
YM
955 bitmask);
956 }
957
958 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959 }
960 }
961 }
cc875c2e
YM
962
963 /* Clear IGU indication for the deasserted bits */
964 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
0d956e8a
YM
965 GTT_BAR0_MAP_REG_IGU_CMD +
966 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967 IGU_CMD_INT_ACK_BASE) << 3),
968 ~((u32)deasserted_bits));
cc875c2e
YM
969
970 /* Unmask deasserted attentions in IGU */
1a635e48 971 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
cc875c2e
YM
972 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974
975 /* Clear deassertion from inner state */
976 sb_attn_sw->known_attn &= ~deasserted_bits;
977
0d956e8a 978 return rc;
cc875c2e
YM
979}
980
981static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982{
983 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985 u32 attn_bits = 0, attn_acks = 0;
986 u16 asserted_bits, deasserted_bits;
987 __le16 index;
988 int rc = 0;
989
990 /* Read current attention bits/acks - safeguard against attentions
991 * by guaranting work on a synchronized timeframe
992 */
993 do {
994 index = p_sb_attn->sb_index;
995 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
996 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
997 } while (index != p_sb_attn->sb_index);
998 p_sb_attn->sb_index = index;
999
1000 /* Attention / Deassertion are meaningful (and in correct state)
1001 * only when they differ and consistent with known state - deassertion
1002 * when previous attention & current ack, and assertion when current
1003 * attention with no previous attention
1004 */
1005 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1006 ~p_sb_attn_sw->known_attn;
1007 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1008 p_sb_attn_sw->known_attn;
1009
1010 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1011 DP_INFO(p_hwfn,
1012 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1013 index, attn_bits, attn_acks, asserted_bits,
1014 deasserted_bits, p_sb_attn_sw->known_attn);
1015 } else if (asserted_bits == 0x100) {
1a635e48 1016 DP_INFO(p_hwfn, "MFW indication via attention\n");
cc875c2e
YM
1017 } else {
1018 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1019 "MFW indication [deassertion]\n");
1020 }
1021
1022 if (asserted_bits) {
1023 rc = qed_int_assertion(p_hwfn, asserted_bits);
1024 if (rc)
1025 return rc;
1026 }
1027
1a635e48 1028 if (deasserted_bits)
cc875c2e 1029 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
cc875c2e
YM
1030
1031 return rc;
1032}
1033
1034static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1a635e48 1035 void __iomem *igu_addr, u32 ack_cons)
cc875c2e
YM
1036{
1037 struct igu_prod_cons_update igu_ack = { 0 };
1038
1039 igu_ack.sb_id_and_flags =
1040 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1041 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1042 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1043 (IGU_SEG_ACCESS_ATTN <<
1044 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1045
1046 DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1047
1048 /* Both segments (interrupts & acks) are written to same place address;
1049 * Need to guarantee all commands will be received (in-order) by HW.
1050 */
1051 mmiowb();
1052 barrier();
1053}
1054
fe56b9e6
YM
1055void qed_int_sp_dpc(unsigned long hwfn_cookie)
1056{
1057 struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1058 struct qed_pi_info *pi_info = NULL;
cc875c2e 1059 struct qed_sb_attn_info *sb_attn;
fe56b9e6
YM
1060 struct qed_sb_info *sb_info;
1061 int arr_size;
1062 u16 rc = 0;
1063
fe56b9e6
YM
1064 if (!p_hwfn->p_sp_sb) {
1065 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1066 return;
1067 }
1068
1069 sb_info = &p_hwfn->p_sp_sb->sb_info;
1070 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1071 if (!sb_info) {
1072 DP_ERR(p_hwfn->cdev,
1073 "Status block is NULL - cannot ack interrupts\n");
1074 return;
1075 }
1076
cc875c2e
YM
1077 if (!p_hwfn->p_sb_attn) {
1078 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1079 return;
1080 }
1081 sb_attn = p_hwfn->p_sb_attn;
1082
fe56b9e6
YM
1083 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1084 p_hwfn, p_hwfn->my_id);
1085
1086 /* Disable ack for def status block. Required both for msix +
1087 * inta in non-mask mode, in inta does no harm.
1088 */
1089 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1090
1091 /* Gather Interrupts/Attentions information */
1092 if (!sb_info->sb_virt) {
1a635e48
YM
1093 DP_ERR(p_hwfn->cdev,
1094 "Interrupt Status block is NULL - cannot check for new interrupts!\n");
fe56b9e6
YM
1095 } else {
1096 u32 tmp_index = sb_info->sb_ack;
1097
1098 rc = qed_sb_update_sb_idx(sb_info);
1099 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1100 "Interrupt indices: 0x%08x --> 0x%08x\n",
1101 tmp_index, sb_info->sb_ack);
1102 }
1103
cc875c2e 1104 if (!sb_attn || !sb_attn->sb_attn) {
1a635e48
YM
1105 DP_ERR(p_hwfn->cdev,
1106 "Attentions Status block is NULL - cannot check for new attentions!\n");
cc875c2e
YM
1107 } else {
1108 u16 tmp_index = sb_attn->index;
1109
1110 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1111 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1112 "Attention indices: 0x%08x --> 0x%08x\n",
1113 tmp_index, sb_attn->index);
1114 }
1115
fe56b9e6
YM
1116 /* Check if we expect interrupts at this time. if not just ack them */
1117 if (!(rc & QED_SB_EVENT_MASK)) {
1118 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1119 return;
1120 }
1121
1122 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1123 if (!p_hwfn->p_dpc_ptt) {
1124 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1125 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1126 return;
1127 }
1128
cc875c2e
YM
1129 if (rc & QED_SB_ATT_IDX)
1130 qed_int_attentions(p_hwfn);
1131
fe56b9e6
YM
1132 if (rc & QED_SB_IDX) {
1133 int pi;
1134
1135 /* Look for a free index */
1136 for (pi = 0; pi < arr_size; pi++) {
1137 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1138 if (pi_info->comp_cb)
1139 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1140 }
1141 }
1142
cc875c2e
YM
1143 if (sb_attn && (rc & QED_SB_ATT_IDX))
1144 /* This should be done before the interrupts are enabled,
1145 * since otherwise a new attention will be generated.
1146 */
1147 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1148
fe56b9e6
YM
1149 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1150}
1151
cc875c2e
YM
1152static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1153{
4ac801b7
YM
1154 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1155
1156 if (!p_sb)
1157 return;
1158
1159 if (p_sb->sb_attn)
1160 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1161 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1a635e48 1162 p_sb->sb_attn, p_sb->sb_phys);
4ac801b7 1163 kfree(p_sb);
3587cb87 1164 p_hwfn->p_sb_attn = NULL;
cc875c2e
YM
1165}
1166
1167static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1168 struct qed_ptt *p_ptt)
1169{
1170 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1171
1172 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1173
1174 sb_info->index = 0;
1175 sb_info->known_attn = 0;
1176
1177 /* Configure Attention Status Block in IGU */
1178 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1179 lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1180 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1181 upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1182}
1183
1184static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1185 struct qed_ptt *p_ptt,
1a635e48 1186 void *sb_virt_addr, dma_addr_t sb_phy_addr)
cc875c2e
YM
1187{
1188 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
0d956e8a 1189 int i, j, k;
cc875c2e
YM
1190
1191 sb_info->sb_attn = sb_virt_addr;
1192 sb_info->sb_phys = sb_phy_addr;
1193
0d956e8a
YM
1194 /* Set the pointer to the AEU descriptors */
1195 sb_info->p_aeu_desc = aeu_descs;
1196
1197 /* Calculate Parity Masks */
1198 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1199 for (i = 0; i < NUM_ATTN_REGS; i++) {
1200 /* j is array index, k is bit index */
1201 for (j = 0, k = 0; k < 32; j++) {
ba36f718 1202 struct aeu_invert_reg_bit *p_aeu;
0d956e8a 1203
ba36f718
MY
1204 p_aeu = &aeu_descs[i].bits[j];
1205 if (qed_int_is_parity_flag(p_hwfn, p_aeu))
0d956e8a
YM
1206 sb_info->parity_mask[i] |= 1 << k;
1207
ba36f718 1208 k += ATTENTION_LENGTH(p_aeu->flags);
0d956e8a
YM
1209 }
1210 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1211 "Attn Mask [Reg %d]: 0x%08x\n",
1212 i, sb_info->parity_mask[i]);
1213 }
1214
cc875c2e
YM
1215 /* Set the address of cleanup for the mcp attention */
1216 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1217 MISC_REG_AEU_GENERAL_ATTN_0;
1218
1219 qed_int_sb_attn_setup(p_hwfn, p_ptt);
1220}
1221
1222static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1223 struct qed_ptt *p_ptt)
1224{
1225 struct qed_dev *cdev = p_hwfn->cdev;
1226 struct qed_sb_attn_info *p_sb;
cc875c2e 1227 dma_addr_t p_phys = 0;
1a635e48 1228 void *p_virt;
cc875c2e
YM
1229
1230 /* SB struct */
60fffb3b 1231 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
2591c280 1232 if (!p_sb)
cc875c2e 1233 return -ENOMEM;
cc875c2e
YM
1234
1235 /* SB ring */
1236 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1237 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1238 &p_phys, GFP_KERNEL);
1239
1240 if (!p_virt) {
cc875c2e
YM
1241 kfree(p_sb);
1242 return -ENOMEM;
1243 }
1244
1245 /* Attention setup */
1246 p_hwfn->p_sb_attn = p_sb;
1247 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1248
1249 return 0;
1250}
1251
fe56b9e6
YM
1252/* coalescing timeout = timeset << (timer_res + 1) */
1253#define QED_CAU_DEF_RX_USECS 24
1254#define QED_CAU_DEF_TX_USECS 48
1255
1256void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1257 struct cau_sb_entry *p_sb_entry,
1a635e48 1258 u8 pf_id, u16 vf_number, u8 vf_valid)
fe56b9e6 1259{
4ac801b7 1260 struct qed_dev *cdev = p_hwfn->cdev;
fe56b9e6 1261 u32 cau_state;
722003ac 1262 u8 timer_res;
fe56b9e6
YM
1263
1264 memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1265
1266 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1267 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1268 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1269 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1270 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1271
fe56b9e6
YM
1272 cau_state = CAU_HC_DISABLE_STATE;
1273
4ac801b7 1274 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
fe56b9e6 1275 cau_state = CAU_HC_ENABLE_STATE;
4ac801b7
YM
1276 if (!cdev->rx_coalesce_usecs)
1277 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1278 if (!cdev->tx_coalesce_usecs)
1279 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
fe56b9e6
YM
1280 }
1281
722003ac
SRK
1282 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1283 if (cdev->rx_coalesce_usecs <= 0x7F)
1284 timer_res = 0;
1285 else if (cdev->rx_coalesce_usecs <= 0xFF)
1286 timer_res = 1;
1287 else
1288 timer_res = 2;
1289 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1290
1291 if (cdev->tx_coalesce_usecs <= 0x7F)
1292 timer_res = 0;
1293 else if (cdev->tx_coalesce_usecs <= 0xFF)
1294 timer_res = 1;
1295 else
1296 timer_res = 2;
1297 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1298
fe56b9e6
YM
1299 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1300 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1301}
1302
8befd73c
MY
1303static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1304 struct qed_ptt *p_ptt,
1305 u16 igu_sb_id,
1306 u32 pi_index,
1307 enum qed_coalescing_fsm coalescing_fsm,
1308 u8 timeset)
1309{
1310 struct cau_pi_entry pi_entry;
1311 u32 sb_offset, pi_offset;
1312
1313 if (IS_VF(p_hwfn->cdev))
1314 return;
1315
1316 sb_offset = igu_sb_id * PIS_PER_SB;
1317 memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1318
1319 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1320 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1321 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1322 else
1323 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1324
1325 pi_offset = sb_offset + pi_index;
1326 if (p_hwfn->hw_init_done) {
1327 qed_wr(p_hwfn, p_ptt,
1328 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1329 *((u32 *)&(pi_entry)));
1330 } else {
1331 STORE_RT_REG(p_hwfn,
1332 CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1333 *((u32 *)&(pi_entry)));
1334 }
1335}
1336
fe56b9e6
YM
1337void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1338 struct qed_ptt *p_ptt,
1339 dma_addr_t sb_phys,
1a635e48 1340 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
fe56b9e6
YM
1341{
1342 struct cau_sb_entry sb_entry;
fe56b9e6
YM
1343
1344 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1345 vf_number, vf_valid);
1346
1347 if (p_hwfn->hw_init_done) {
0a0c5d3b
YM
1348 /* Wide-bus, initialize via DMAE */
1349 u64 phys_addr = (u64)sb_phys;
1350
1351 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1352 CAU_REG_SB_ADDR_MEMORY +
1353 igu_sb_id * sizeof(u64), 2, 0);
1354 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1355 CAU_REG_SB_VAR_MEMORY +
1356 igu_sb_id * sizeof(u64), 2, 0);
fe56b9e6
YM
1357 } else {
1358 /* Initialize Status Block Address */
1359 STORE_RT_REG_AGG(p_hwfn,
1360 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1361 igu_sb_id * 2,
1362 sb_phys);
1363
1364 STORE_RT_REG_AGG(p_hwfn,
1365 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1366 igu_sb_id * 2,
1367 sb_entry);
1368 }
1369
1370 /* Configure pi coalescing if set */
1371 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
b5a9ee7c 1372 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
722003ac 1373 u8 timeset, timer_res;
b5a9ee7c 1374 u8 i;
fe56b9e6 1375
722003ac
SRK
1376 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1377 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1378 timer_res = 0;
1379 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1380 timer_res = 1;
1381 else
1382 timer_res = 2;
1383 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
fe56b9e6 1384 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1a635e48 1385 QED_COAL_RX_STATE_MACHINE, timeset);
fe56b9e6 1386
722003ac
SRK
1387 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1388 timer_res = 0;
1389 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1390 timer_res = 1;
1391 else
1392 timer_res = 2;
1393 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
fe56b9e6
YM
1394 for (i = 0; i < num_tc; i++) {
1395 qed_int_cau_conf_pi(p_hwfn, p_ptt,
1396 igu_sb_id, TX_PI(i),
1397 QED_COAL_TX_STATE_MACHINE,
1398 timeset);
1399 }
1400 }
1401}
1402
fe56b9e6 1403void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1a635e48 1404 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
fe56b9e6
YM
1405{
1406 /* zero status block and ack counter */
1407 sb_info->sb_ack = 0;
1408 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1409
1408cc1f
YM
1410 if (IS_PF(p_hwfn->cdev))
1411 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1412 sb_info->igu_sb_id, 0, 0);
fe56b9e6
YM
1413}
1414
a333f7f3
MY
1415static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1416{
1417 struct qed_igu_block *p_block;
1418 u16 igu_id;
1419
1420 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1421 igu_id++) {
1422 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1423
1424 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1425 !p_block->is_pf ||
1426 p_block->vector_number != vector_id)
1427 continue;
1428
1429 return igu_id;
1430 }
1431
1432 return QED_SB_INVALID_IDX;
1433}
1434
1a635e48 1435static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
fe56b9e6
YM
1436{
1437 u16 igu_sb_id;
1438
1439 /* Assuming continuous set of IGU SBs dedicated for given PF */
1440 if (sb_id == QED_SP_SB_ID)
1441 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1408cc1f 1442 else if (IS_PF(p_hwfn->cdev))
a333f7f3 1443 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1408cc1f
YM
1444 else
1445 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
fe56b9e6 1446
525ef5c0
YM
1447 if (sb_id == QED_SP_SB_ID)
1448 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1449 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1450 else
1451 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1452 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
fe56b9e6
YM
1453
1454 return igu_sb_id;
1455}
1456
1457int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1458 struct qed_ptt *p_ptt,
1459 struct qed_sb_info *sb_info,
1a635e48 1460 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
fe56b9e6
YM
1461{
1462 sb_info->sb_virt = sb_virt_addr;
1463 sb_info->sb_phys = sb_phy_addr;
1464
1465 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1466
1467 if (sb_id != QED_SP_SB_ID) {
1468 p_hwfn->sbs_info[sb_id] = sb_info;
1469 p_hwfn->num_sbs++;
1470 }
1471
1472 sb_info->cdev = p_hwfn->cdev;
1473
1474 /* The igu address will hold the absolute address that needs to be
1475 * written to for a specific status block
1476 */
1408cc1f
YM
1477 if (IS_PF(p_hwfn->cdev)) {
1478 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1479 GTT_BAR0_MAP_REG_IGU_CMD +
1480 (sb_info->igu_sb_id << 3);
1481 } else {
1482 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1483 PXP_VF_BAR0_START_IGU +
1484 ((IGU_CMD_INT_ACK_BASE +
1485 sb_info->igu_sb_id) << 3);
1486 }
fe56b9e6
YM
1487
1488 sb_info->flags |= QED_SB_INFO_INIT;
1489
1490 qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1491
1492 return 0;
1493}
1494
1495int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1a635e48 1496 struct qed_sb_info *sb_info, u16 sb_id)
fe56b9e6
YM
1497{
1498 if (sb_id == QED_SP_SB_ID) {
1499 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1500 return -EINVAL;
1501 }
1502
1503 /* zero status block and ack counter */
1504 sb_info->sb_ack = 0;
1505 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1506
4ac801b7
YM
1507 if (p_hwfn->sbs_info[sb_id] != NULL) {
1508 p_hwfn->sbs_info[sb_id] = NULL;
1509 p_hwfn->num_sbs--;
1510 }
fe56b9e6
YM
1511
1512 return 0;
1513}
1514
1515static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1516{
1517 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1518
4ac801b7
YM
1519 if (!p_sb)
1520 return;
1521
1522 if (p_sb->sb_info.sb_virt)
1523 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1524 SB_ALIGNED_SIZE(p_hwfn),
1525 p_sb->sb_info.sb_virt,
1526 p_sb->sb_info.sb_phys);
1527 kfree(p_sb);
3587cb87 1528 p_hwfn->p_sp_sb = NULL;
fe56b9e6
YM
1529}
1530
1a635e48 1531static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
fe56b9e6
YM
1532{
1533 struct qed_sb_sp_info *p_sb;
1534 dma_addr_t p_phys = 0;
1535 void *p_virt;
1536
1537 /* SB struct */
60fffb3b 1538 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
2591c280 1539 if (!p_sb)
fe56b9e6 1540 return -ENOMEM;
fe56b9e6
YM
1541
1542 /* SB ring */
1543 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1544 SB_ALIGNED_SIZE(p_hwfn),
1545 &p_phys, GFP_KERNEL);
1546 if (!p_virt) {
fe56b9e6
YM
1547 kfree(p_sb);
1548 return -ENOMEM;
1549 }
1550
1551 /* Status Block setup */
1552 p_hwfn->p_sp_sb = p_sb;
1553 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1554 p_phys, QED_SP_SB_ID);
1555
1556 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1557
1558 return 0;
1559}
1560
fe56b9e6
YM
1561int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1562 qed_int_comp_cb_t comp_cb,
1a635e48 1563 void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
fe56b9e6
YM
1564{
1565 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
4ac801b7 1566 int rc = -ENOMEM;
fe56b9e6
YM
1567 u8 pi;
1568
1569 /* Look for a free index */
1570 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
4ac801b7
YM
1571 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1572 continue;
1573
1574 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1575 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1576 *sb_idx = pi;
1577 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1578 rc = 0;
1579 break;
fe56b9e6
YM
1580 }
1581
4ac801b7 1582 return rc;
fe56b9e6
YM
1583}
1584
1585int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1586{
1587 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
fe56b9e6 1588
4ac801b7
YM
1589 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1590 return -ENOMEM;
fe56b9e6 1591
4ac801b7
YM
1592 p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1593 p_sp_sb->pi_info_arr[pi].cookie = NULL;
1594
1595 return 0;
fe56b9e6
YM
1596}
1597
1598u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1599{
1600 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1601}
1602
1603void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1a635e48 1604 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
fe56b9e6 1605{
cc875c2e 1606 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
fe56b9e6
YM
1607
1608 p_hwfn->cdev->int_mode = int_mode;
1609 switch (p_hwfn->cdev->int_mode) {
1610 case QED_INT_MODE_INTA:
1611 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1612 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1613 break;
1614
1615 case QED_INT_MODE_MSI:
1616 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1617 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1618 break;
1619
1620 case QED_INT_MODE_MSIX:
1621 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1622 break;
1623 case QED_INT_MODE_POLL:
1624 break;
1625 }
1626
1627 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1628}
1629
979cead3
MY
1630static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1631 struct qed_ptt *p_ptt)
fe56b9e6 1632{
fe56b9e6 1633
0d956e8a
YM
1634 /* Configure AEU signal change to produce attentions */
1635 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
cc875c2e
YM
1636 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1637 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
0d956e8a 1638 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
cc875c2e 1639
fe56b9e6
YM
1640 /* Flush the writes to IGU */
1641 mmiowb();
cc875c2e
YM
1642
1643 /* Unmask AEU signals toward IGU */
1644 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
979cead3
MY
1645}
1646
1647int
1648qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1649 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1650{
1651 int rc = 0;
1652
1653 qed_int_igu_enable_attn(p_hwfn, p_ptt);
1654
8f16bc97
SK
1655 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1656 rc = qed_slowpath_irq_req(p_hwfn);
1a635e48 1657 if (rc) {
8f16bc97
SK
1658 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1659 return -EINVAL;
1660 }
1661 p_hwfn->b_int_requested = true;
1662 }
1663 /* Enable interrupt Generation */
1664 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1665 p_hwfn->b_int_enabled = 1;
1666
1667 return rc;
fe56b9e6
YM
1668}
1669
1a635e48 1670void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
fe56b9e6
YM
1671{
1672 p_hwfn->b_int_enabled = 0;
1673
1408cc1f
YM
1674 if (IS_VF(p_hwfn->cdev))
1675 return;
1676
fe56b9e6
YM
1677 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1678}
1679
1680#define IGU_CLEANUP_SLEEP_LENGTH (1000)
b2b897eb
YM
1681static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1682 struct qed_ptt *p_ptt,
d031548e
MY
1683 u16 igu_sb_id,
1684 bool cleanup_set, u16 opaque_fid)
fe56b9e6 1685{
b2b897eb 1686 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
d031548e 1687 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
fe56b9e6 1688 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
fe56b9e6
YM
1689
1690 /* Set the data field */
1691 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1692 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1693 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1694
1695 /* Set the control register */
1696 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1697 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1698 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1699
1700 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1701
1702 barrier();
1703
1704 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1705
1706 /* Flush the write to IGU */
1707 mmiowb();
1708
1709 /* calculate where to read the status bit from */
d031548e
MY
1710 sb_bit = 1 << (igu_sb_id % 32);
1711 sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
fe56b9e6
YM
1712
1713 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1714
1715 /* Now wait for the command to complete */
1716 do {
1717 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1718
1719 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1720 break;
1721
1722 usleep_range(5000, 10000);
1723 } while (--sleep_cnt);
1724
1725 if (!sleep_cnt)
1726 DP_NOTICE(p_hwfn,
1727 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
d031548e 1728 val, igu_sb_id);
fe56b9e6
YM
1729}
1730
1731void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1732 struct qed_ptt *p_ptt,
d031548e 1733 u16 igu_sb_id, u16 opaque, bool b_set)
fe56b9e6 1734{
b2b897eb 1735 int pi, i;
fe56b9e6
YM
1736
1737 /* Set */
1738 if (b_set)
d031548e 1739 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
fe56b9e6
YM
1740
1741 /* Clear */
d031548e 1742 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
fe56b9e6 1743
b2b897eb
YM
1744 /* Wait for the IGU SB to cleanup */
1745 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1746 u32 val;
1747
1748 val = qed_rd(p_hwfn, p_ptt,
d031548e
MY
1749 IGU_REG_WRITE_DONE_PENDING +
1750 ((igu_sb_id / 32) * 4));
1751 if (val & BIT((igu_sb_id % 32)))
b2b897eb
YM
1752 usleep_range(10, 20);
1753 else
1754 break;
1755 }
1756 if (i == IGU_CLEANUP_SLEEP_LENGTH)
1757 DP_NOTICE(p_hwfn,
1758 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
d031548e 1759 igu_sb_id);
b2b897eb 1760
fe56b9e6
YM
1761 /* Clear the CAU for the SB */
1762 for (pi = 0; pi < 12; pi++)
1763 qed_wr(p_hwfn, p_ptt,
d031548e 1764 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
fe56b9e6
YM
1765}
1766
1767void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1768 struct qed_ptt *p_ptt,
b2b897eb 1769 bool b_set, bool b_slowpath)
fe56b9e6
YM
1770{
1771 u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
1772 u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
d031548e 1773 u32 igu_sb_id = 0, val = 0;
fe56b9e6
YM
1774
1775 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1776 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1777 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1778 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1779
1780 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1781 "IGU cleaning SBs [%d,...,%d]\n",
1782 igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
1783
d031548e
MY
1784 for (igu_sb_id = igu_base_sb; igu_sb_id < igu_base_sb + igu_sb_cnt;
1785 igu_sb_id++)
1786 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
fe56b9e6
YM
1787 p_hwfn->hw_info.opaque_fid,
1788 b_set);
1789
b2b897eb
YM
1790 if (!b_slowpath)
1791 return;
1792
d031548e 1793 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
b2b897eb 1794 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
d031548e
MY
1795 "IGU cleaning slowpath SB [%d]\n", igu_sb_id);
1796 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
b2b897eb 1797 p_hwfn->hw_info.opaque_fid, b_set);
fe56b9e6
YM
1798}
1799
d749dd0d
MY
1800static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1801 struct qed_ptt *p_ptt, u16 igu_sb_id)
4ac801b7
YM
1802{
1803 u32 val = qed_rd(p_hwfn, p_ptt,
d749dd0d 1804 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
4ac801b7
YM
1805 struct qed_igu_block *p_block;
1806
d749dd0d 1807 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
4ac801b7
YM
1808
1809 /* Fill the block information */
d749dd0d
MY
1810 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
1811 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
1812 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
4ac801b7
YM
1813}
1814
1a635e48 1815int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
fe56b9e6
YM
1816{
1817 struct qed_igu_info *p_igu_info;
d749dd0d
MY
1818 struct qed_igu_block *p_block;
1819 u32 min_vf = 0, max_vf = 0;
1820 u16 igu_sb_id;
fe56b9e6 1821
60fffb3b 1822 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
fe56b9e6
YM
1823 if (!p_hwfn->hw_info.p_igu_info)
1824 return -ENOMEM;
1825
1826 p_igu_info = p_hwfn->hw_info.p_igu_info;
1827
d749dd0d
MY
1828 /* Initialize base sb / sb cnt for PFs and VFs */
1829 p_igu_info->igu_base_sb = 0xffff;
1830 p_igu_info->igu_sb_cnt = 0;
1831 p_igu_info->igu_base_sb_iov = 0xffff;
1832
1833 /* Distinguish between existent and non-existent default SB */
1834 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
fe56b9e6 1835
d749dd0d 1836 /* Find the range of VF ids whose SB belong to this PF */
1408cc1f
YM
1837 if (p_hwfn->cdev->p_iov_info) {
1838 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
1839
1840 min_vf = p_iov->first_vf_in_pf;
1841 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
1842 }
1843
d749dd0d
MY
1844 for (igu_sb_id = 0;
1845 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1846 /* Read current entry; Notice it might not belong to this PF */
1847 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
1848 p_block = &p_igu_info->entry[igu_sb_id];
1849
1850 if ((p_block->is_pf) &&
1851 (p_block->function_id == p_hwfn->rel_pf_id)) {
1852 p_block->status = QED_IGU_STATUS_PF |
1853 QED_IGU_STATUS_VALID |
1854 QED_IGU_STATUS_FREE;
1855
1856 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) {
1857 if (p_igu_info->igu_base_sb == 0xffff)
1858 p_igu_info->igu_base_sb = igu_sb_id;
1859 p_igu_info->igu_sb_cnt++;
1408cc1f 1860 }
d749dd0d
MY
1861 } else if (!(p_block->is_pf) &&
1862 (p_block->function_id >= min_vf) &&
1863 (p_block->function_id < max_vf)) {
1864 /* Available for VFs of this PF */
1865 p_block->status = QED_IGU_STATUS_VALID |
1866 QED_IGU_STATUS_FREE;
1867
1868 if (p_igu_info->igu_base_sb_iov == 0xffff)
1869 p_igu_info->igu_base_sb_iov = igu_sb_id;
1870 p_igu_info->free_blks++;
fe56b9e6 1871 }
5a1f965a 1872
d749dd0d
MY
1873 /* Mark the First entry belonging to the PF or its VFs
1874 * as the default SB.
1875 */
1876 if ((p_block->status & QED_IGU_STATUS_VALID) &&
1877 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
1878 p_igu_info->igu_dsb_id = igu_sb_id;
1879 p_block->status |= QED_IGU_STATUS_DSB;
1880 }
1881
1882 /* limit number of prints by having each PF print only its
1883 * entries with the exception of PF0 which would print
1884 * everything.
1885 */
1886 if ((p_block->status & QED_IGU_STATUS_VALID) ||
1887 (p_hwfn->abs_pf_id == 0)) {
1888 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1889 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
1890 igu_sb_id, p_block->function_id,
1891 p_block->is_pf, p_block->vector_number);
5a1f965a
MY
1892 }
1893 }
1408cc1f 1894
d749dd0d 1895 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
fe56b9e6 1896 DP_NOTICE(p_hwfn,
d749dd0d
MY
1897 "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
1898 p_igu_info->igu_dsb_id);
fe56b9e6
YM
1899 return -EINVAL;
1900 }
1901
d749dd0d
MY
1902 /* All non default SB are considered free at this point */
1903 p_igu_info->igu_sb_cnt_iov = p_igu_info->free_blks;
1904
1905 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1906 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x\n",
1907 p_igu_info->igu_dsb_id,
1908 p_igu_info->igu_sb_cnt, p_igu_info->igu_sb_cnt_iov);
1909
fe56b9e6
YM
1910 return 0;
1911}
1912
1913/**
1914 * @brief Initialize igu runtime registers
1915 *
1916 * @param p_hwfn
1917 */
1918void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
1919{
1a635e48 1920 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
fe56b9e6
YM
1921
1922 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1923}
1924
1925u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
1926{
fe56b9e6
YM
1927 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
1928 IGU_CMD_INT_ACK_BASE;
1929 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
1930 IGU_CMD_INT_ACK_BASE;
1a635e48
YM
1931 u32 intr_status_hi = 0, intr_status_lo = 0;
1932 u64 intr_status = 0;
fe56b9e6
YM
1933
1934 intr_status_lo = REG_RD(p_hwfn,
1935 GTT_BAR0_MAP_REG_IGU_CMD +
1936 lsb_igu_cmd_addr * 8);
1937 intr_status_hi = REG_RD(p_hwfn,
1938 GTT_BAR0_MAP_REG_IGU_CMD +
1939 msb_igu_cmd_addr * 8);
1940 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
1941
1942 return intr_status;
1943}
1944
1945static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
1946{
1947 tasklet_init(p_hwfn->sp_dpc,
1948 qed_int_sp_dpc, (unsigned long)p_hwfn);
1949 p_hwfn->b_sp_dpc_enabled = true;
1950}
1951
1952static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
1953{
60fffb3b 1954 p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
fe56b9e6
YM
1955 if (!p_hwfn->sp_dpc)
1956 return -ENOMEM;
1957
1958 return 0;
1959}
1960
1961static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
1962{
1963 kfree(p_hwfn->sp_dpc);
3587cb87 1964 p_hwfn->sp_dpc = NULL;
fe56b9e6
YM
1965}
1966
1a635e48 1967int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
fe56b9e6
YM
1968{
1969 int rc = 0;
1970
1971 rc = qed_int_sp_dpc_alloc(p_hwfn);
2591c280 1972 if (rc)
fe56b9e6 1973 return rc;
2591c280 1974
fe56b9e6 1975 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2591c280 1976 if (rc)
fe56b9e6 1977 return rc;
2591c280 1978
cc875c2e 1979 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
83aeb933 1980
fe56b9e6
YM
1981 return rc;
1982}
1983
1984void qed_int_free(struct qed_hwfn *p_hwfn)
1985{
1986 qed_int_sp_sb_free(p_hwfn);
cc875c2e 1987 qed_int_sb_attn_free(p_hwfn);
fe56b9e6
YM
1988 qed_int_sp_dpc_free(p_hwfn);
1989}
1990
1a635e48 1991void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
fe56b9e6 1992{
0d956e8a
YM
1993 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
1994 qed_int_sb_attn_setup(p_hwfn, p_ptt);
fe56b9e6
YM
1995 qed_int_sp_dpc_setup(p_hwfn);
1996}
1997
4ac801b7
YM
1998void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
1999 struct qed_sb_cnt_info *p_sb_cnt_info)
fe56b9e6
YM
2000{
2001 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2002
4ac801b7
YM
2003 if (!info || !p_sb_cnt_info)
2004 return;
fe56b9e6 2005
4ac801b7
YM
2006 p_sb_cnt_info->sb_cnt = info->igu_sb_cnt;
2007 p_sb_cnt_info->sb_iov_cnt = info->igu_sb_cnt_iov;
2008 p_sb_cnt_info->sb_free_blk = info->free_blks;
fe56b9e6 2009}
8f16bc97 2010
1408cc1f
YM
2011u16 qed_int_queue_id_from_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
2012{
2013 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2014
2015 /* Determine origin of SB id */
2016 if ((sb_id >= p_info->igu_base_sb) &&
2017 (sb_id < p_info->igu_base_sb + p_info->igu_sb_cnt)) {
2018 return sb_id - p_info->igu_base_sb;
2019 } else if ((sb_id >= p_info->igu_base_sb_iov) &&
2020 (sb_id < p_info->igu_base_sb_iov + p_info->igu_sb_cnt_iov)) {
5a1f965a
MY
2021 /* We want the first VF queue to be adjacent to the
2022 * last PF queue. Since L2 queues can be partial to
2023 * SBs, we'll use the feature instead.
2024 */
2025 return sb_id - p_info->igu_base_sb_iov +
2026 FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1408cc1f
YM
2027 } else {
2028 DP_NOTICE(p_hwfn, "SB %d not in range for function\n", sb_id);
2029 return 0;
2030 }
2031}
2032
8f16bc97
SK
2033void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2034{
2035 int i;
2036
2037 for_each_hwfn(cdev, i)
2038 cdev->hwfns[i].b_int_requested = false;
2039}
722003ac
SRK
2040
2041int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2042 u8 timer_res, u16 sb_id, bool tx)
2043{
2044 struct cau_sb_entry sb_entry;
2045 int rc;
2046
2047 if (!p_hwfn->hw_init_done) {
2048 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2049 return -EINVAL;
2050 }
2051
2052 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2053 sb_id * sizeof(u64),
2054 (u64)(uintptr_t)&sb_entry, 2, 0);
2055 if (rc) {
2056 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2057 return rc;
2058 }
2059
2060 if (tx)
2061 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2062 else
2063 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2064
2065 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2066 (u64)(uintptr_t)&sb_entry,
2067 CAU_REG_SB_VAR_MEMORY +
2068 sb_id * sizeof(u64), 2, 0);
2069 if (rc) {
2070 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2071 return rc;
2072 }
2073
2074 return rc;
2075}