]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/qlogic/qlge/qlge_main.c
sctp: Add RCU protection to assoc->transport_addr_list
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
18c49b91 10#include <linux/bitops.h>
c4e84bde
RM
11#include <linux/types.h>
12#include <linux/module.h>
13#include <linux/list.h>
14#include <linux/pci.h>
15#include <linux/dma-mapping.h>
16#include <linux/pagemap.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/dmapool.h>
20#include <linux/mempool.h>
21#include <linux/spinlock.h>
22#include <linux/kthread.h>
23#include <linux/interrupt.h>
24#include <linux/errno.h>
25#include <linux/ioport.h>
26#include <linux/in.h>
27#include <linux/ip.h>
28#include <linux/ipv6.h>
29#include <net/ipv6.h>
30#include <linux/tcp.h>
31#include <linux/udp.h>
32#include <linux/if_arp.h>
33#include <linux/if_ether.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/ethtool.h>
18c49b91 37#include <linux/if_vlan.h>
c4e84bde 38#include <linux/skbuff.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
70c71606 42#include <linux/prefetch.h>
b7c6bfb7 43#include <net/ip6_checksum.h>
c4e84bde
RM
44
45#include "qlge.h"
46
47char qlge_driver_name[] = DRV_NAME;
48const char qlge_driver_version[] = DRV_VERSION;
49
50MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51MODULE_DESCRIPTION(DRV_STRING " ");
52MODULE_LICENSE("GPL");
53MODULE_VERSION(DRV_VERSION);
54
55static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57/* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
4974097a
RM
62/* NETIF_MSG_TX_QUEUED | */
63/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
64/* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
84cf7029
SR
67static int debug = -1; /* defaults above */
68module_param(debug, int, 0664);
c4e84bde
RM
69MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71#define MSIX_IRQ 0
72#define MSI_IRQ 1
73#define LEG_IRQ 2
a5a62a1c 74static int qlge_irq_type = MSIX_IRQ;
84cf7029 75module_param(qlge_irq_type, int, 0664);
a5a62a1c 76MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 77
8aae2600
RM
78static int qlge_mpi_coredump;
79module_param(qlge_mpi_coredump, int, 0);
80MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
d5c1da56
RM
82 "Default is OFF - Do Not allocate memory. ");
83
84static int qlge_force_coredump;
85module_param(qlge_force_coredump, int, 0);
86MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
8aae2600 89
a3aa1884 90static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
b0c2aadf 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
93 /* required last entry */
94 {0,}
95};
96
97MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
ac409215 99static int ql_wol(struct ql_adapter *qdev);
100static void qlge_set_multicast_list(struct net_device *ndev);
101
c4e84bde
RM
102/* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
106static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107{
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
ae9540f7 136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142}
143
144int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145{
0857e9d7 146 unsigned int wait_count = 30;
c4e84bde
RM
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
0857e9d7
RM
150 udelay(100);
151 } while (--wait_count);
c4e84bde
RM
152 return -ETIMEDOUT;
153}
154
155void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156{
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159}
160
161/* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
166int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167{
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
ae9540f7
JP
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
c4e84bde
RM
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
ae9540f7
JP
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
187 return -ETIMEDOUT;
188}
189
190/* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
193static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194{
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208}
209
210
211/* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
214int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216{
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
230 return -ENOMEM;
231 }
232
4322c5be
RM
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
c4e84bde
RM
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
ae9540f7
JP
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
241 goto exit;
242 }
243
c4e84bde
RM
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255exit:
4322c5be 256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259}
260
261/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264{
265 u32 offset = 0;
266 int status;
267
c4e84bde
RM
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
939678f8 274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
939678f8 282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
939678f8 296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
939678f8 303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 311 MAC_ADDR_MR, 0);
c4e84bde
RM
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
ae9540f7
JP
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
c4e84bde
RM
323 status = -EPERM;
324 }
325exit:
c4e84bde
RM
326 return status;
327}
328
329/* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
332static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334{
335 u32 offset = 0;
336 int status = 0;
337
c4e84bde
RM
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
c4e84bde
RM
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
c4e84bde
RM
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
939678f8 398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
76b26694
RM
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
18c49b91 412 if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
76b26694
RM
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
c4e84bde
RM
426 status =
427 ql_wait_reg_rdy(qdev,
939678f8 428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
ae9540f7
JP
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
c4e84bde
RM
441 status = -EPERM;
442 }
443exit:
c4e84bde
RM
444 return status;
445}
446
7fab3bfe
RM
447/* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
451static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452{
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
801e9096 458 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
ae9540f7
JP
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
7fab3bfe
RM
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
ae9540f7
JP
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
7fab3bfe
RM
476 return status;
477}
478
6a473308
RM
479void ql_link_on(struct ql_adapter *qdev)
480{
ae9540f7 481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484}
485
486void ql_link_off(struct ql_adapter *qdev)
487{
ae9540f7 488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
fbc2ac33
RM
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
c4e84bde
RM
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
e163d7f2 572 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
e163d7f2 579 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
ae9540f7
JP
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613exit:
c4e84bde
RM
614 return status;
615}
616
617static void ql_enable_interrupts(struct ql_adapter *qdev)
618{
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620}
621
622static void ql_disable_interrupts(struct ql_adapter *qdev)
623{
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625}
626
627/* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 630 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
bb0d215c 633u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 634{
bb0d215c
RM
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
c4e84bde 643 ql_write32(qdev, INTR_EN,
bb0d215c
RM
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
c4e84bde 647 }
bb0d215c
RM
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
c4e84bde
RM
657}
658
659static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660{
661 u32 var = 0;
bb0d215c 662 struct intr_context *ctx;
c4e84bde 663
bb0d215c
RM
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
08b1bc8f 671 spin_lock(&qdev->hw_lock);
bb0d215c 672 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 673 ql_write32(qdev, INTR_EN,
bb0d215c 674 ctx->intr_dis_mask);
c4e84bde
RM
675 var = ql_read32(qdev, STS);
676 }
bb0d215c 677 atomic_inc(&ctx->irq_cnt);
08b1bc8f 678 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
679 return var;
680}
681
682static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683{
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
bb0d215c
RM
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696}
697
b0c2aadf
RM
698static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699{
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
ae9540f7 706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
ae9540f7
JP
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
716
717 return csum;
718}
719
26351479 720static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
721{
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
26351479
RM
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
740exit:
741 return status;
742}
743
cdca8d02
RM
744static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745{
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
542512e4 750 u8 mac_addr[6];
cdca8d02
RM
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
e4552f51 755 if (!qdev->port)
cdca8d02
RM
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
ae9540f7
JP
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
cdca8d02
RM
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
ae9540f7 777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
778 status = -EINVAL;
779 goto exit;
780 }
781
542512e4
RM
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
542512e4 801 mac_addr,
cdca8d02
RM
802 qdev->ndev->addr_len);
803
804exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807}
808
b0c2aadf 809static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
810{
811 int i;
812 int status;
26351479 813 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 814 u32 offset = 0;
b0c2aadf 815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
e4552f51 820 if (qdev->port)
b0c2aadf 821 offset = size;
c4e84bde
RM
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
b0c2aadf 826 for (i = 0; i < size; i++, p++) {
e78f5fa7 827 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 828 if (status) {
ae9540f7
JP
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
c4e84bde
RM
831 goto exit;
832 }
833
834 }
b0c2aadf
RM
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
ae9540f7 840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
c4e84bde
RM
854exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857}
858
859/* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
863static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864{
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876}
877
878/* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
882int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883{
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899exit:
900 return status;
901}
902
903/* This is used for reading the 64-bit statistics regs. */
904int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905{
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920exit:
921 return status;
922}
923
cdca8d02
RM
924static int ql_8000_port_initialize(struct ql_adapter *qdev)
925{
bcc2cb3b 926 int status;
cfec0cbc
RM
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
bcc2cb3b
RM
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939exit:
940 return status;
cdca8d02
RM
941}
942
c4e84bde
RM
943/* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
b0c2aadf 949static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
950{
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
ae9540f7
JP
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
ae9540f7
JP
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
c4e84bde
RM
964 }
965 return status;
966 }
967
ae9540f7 968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022}
1023
7c734359
RM
1024static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025{
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027}
1028
c4e84bde 1029/* Get the next large buffer. */
8668ae92 1030static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1031{
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038}
1039
7c734359
RM
1040static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042{
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1046 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060}
1061
c4e84bde 1062/* Get the next small buffer. */
8668ae92 1063static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1064{
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071}
1072
1073/* Update an rx ring index. */
1074static void ql_update_cq(struct rx_ring *rx_ring)
1075{
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082}
1083
1084static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085{
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087}
1088
7c734359
RM
1089static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091{
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
7c734359
RM
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
ae9540f7
JP
1109 netif_err(qdev, drv, qdev->ndev,
1110 "PCI mapping failed.\n");
7c734359
RM
1111 return -ENOMEM;
1112 }
1113 rx_ring->pg_chunk.map = map;
1114 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115 }
1116
1117 /* Copy the current master pg_chunk info
1118 * to the current descriptor.
1119 */
1120 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122 /* Adjust the master page chunk for next
1123 * buffer get.
1124 */
1125 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127 rx_ring->pg_chunk.page = NULL;
1128 lbq_desc->p.pg_chunk.last_flag = 1;
1129 } else {
1130 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131 get_page(rx_ring->pg_chunk.page);
1132 lbq_desc->p.pg_chunk.last_flag = 0;
1133 }
1134 return 0;
1135}
c4e84bde
RM
1136/* Process (refill) a large buffer queue. */
1137static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138{
49f2186d
RM
1139 u32 clean_idx = rx_ring->lbq_clean_idx;
1140 u32 start_idx = clean_idx;
c4e84bde 1141 struct bq_desc *lbq_desc;
c4e84bde
RM
1142 u64 map;
1143 int i;
1144
7c734359 1145 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1146 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1147 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148 "lbq: try cleaning clean_idx = %d.\n",
1149 clean_idx);
c4e84bde 1150 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1151 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1152 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1153 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1154 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155 i, clean_idx);
ae9540f7
JP
1156 return;
1157 }
7c734359
RM
1158
1159 map = lbq_desc->p.pg_chunk.map +
1160 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1161 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1163 rx_ring->lbq_buf_size);
2c9a0d41 1164 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1165
1166 pci_dma_sync_single_for_device(qdev->pdev, map,
1167 rx_ring->lbq_buf_size,
1168 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1169 clean_idx++;
1170 if (clean_idx == rx_ring->lbq_len)
1171 clean_idx = 0;
1172 }
1173
1174 rx_ring->lbq_clean_idx = clean_idx;
1175 rx_ring->lbq_prod_idx += 16;
1176 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1178 rx_ring->lbq_free_cnt -= 16;
1179 }
1180
1181 if (start_idx != clean_idx) {
ae9540f7
JP
1182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183 "lbq: updating prod idx = %d.\n",
1184 rx_ring->lbq_prod_idx);
c4e84bde
RM
1185 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1187 }
1188}
1189
1190/* Process (refill) a small buffer queue. */
1191static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192{
49f2186d
RM
1193 u32 clean_idx = rx_ring->sbq_clean_idx;
1194 u32 start_idx = clean_idx;
c4e84bde 1195 struct bq_desc *sbq_desc;
c4e84bde
RM
1196 u64 map;
1197 int i;
1198
1199 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1200 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1201 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1202 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203 "sbq: try cleaning clean_idx = %d.\n",
1204 clean_idx);
c4e84bde 1205 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1206 netif_printk(qdev, rx_status, KERN_DEBUG,
1207 qdev->ndev,
1208 "sbq: getting new skb for index %d.\n",
1209 sbq_desc->index);
c4e84bde
RM
1210 sbq_desc->p.skb =
1211 netdev_alloc_skb(qdev->ndev,
52e55f3c 1212 SMALL_BUFFER_SIZE);
c4e84bde 1213 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1214 netif_err(qdev, probe, qdev->ndev,
1215 "Couldn't get an skb.\n");
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
433c88e8
JK
1436/* Categorizing receive firmware frame errors */
1437static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err)
1438{
1439 struct nic_stats *stats = &qdev->nic_stats;
1440
1441 stats->rx_err_count++;
1442
1443 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1444 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1445 stats->rx_code_err++;
1446 break;
1447 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1448 stats->rx_oversize_err++;
1449 break;
1450 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1451 stats->rx_undersize_err++;
1452 break;
1453 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1454 stats->rx_preamble_err++;
1455 break;
1456 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1457 stats->rx_frame_len_err++;
1458 break;
1459 case IB_MAC_IOCB_RSP_ERR_CRC:
1460 stats->rx_crc_err++;
1461 default:
1462 break;
1463 }
1464}
1465
63526713
RM
1466/* Process an inbound completion from an rx ring. */
1467static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1468 struct rx_ring *rx_ring,
1469 struct ib_mac_iocb_rsp *ib_mac_rsp,
1470 u32 length,
1471 u16 vlan_id)
1472{
1473 struct sk_buff *skb;
1474 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1475 struct napi_struct *napi = &rx_ring->napi;
1476
1477 napi->dev = qdev->ndev;
1478
1479 skb = napi_get_frags(napi);
1480 if (!skb) {
ae9540f7
JP
1481 netif_err(qdev, drv, qdev->ndev,
1482 "Couldn't get an skb, exiting.\n");
63526713
RM
1483 rx_ring->rx_dropped++;
1484 put_page(lbq_desc->p.pg_chunk.page);
1485 return;
1486 }
1487 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1488 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1489 lbq_desc->p.pg_chunk.page,
1490 lbq_desc->p.pg_chunk.offset,
1491 length);
63526713
RM
1492
1493 skb->len += length;
1494 skb->data_len += length;
1495 skb->truesize += length;
1496 skb_shinfo(skb)->nr_frags++;
1497
1498 rx_ring->rx_packets++;
1499 rx_ring->rx_bytes += length;
1500 skb->ip_summed = CHECKSUM_UNNECESSARY;
1501 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1502 if (vlan_id != 0xffff)
1503 __vlan_hwaccel_put_tag(skb, vlan_id);
1504 napi_gro_frags(napi);
63526713
RM
1505}
1506
4f848c0a
RM
1507/* Process an inbound completion from an rx ring. */
1508static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1509 struct rx_ring *rx_ring,
1510 struct ib_mac_iocb_rsp *ib_mac_rsp,
1511 u32 length,
1512 u16 vlan_id)
1513{
1514 struct net_device *ndev = qdev->ndev;
1515 struct sk_buff *skb = NULL;
1516 void *addr;
1517 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1518 struct napi_struct *napi = &rx_ring->napi;
1519
1520 skb = netdev_alloc_skb(ndev, length);
1521 if (!skb) {
ae9540f7
JP
1522 netif_err(qdev, drv, qdev->ndev,
1523 "Couldn't get an skb, need to unwind!.\n");
4f848c0a
RM
1524 rx_ring->rx_dropped++;
1525 put_page(lbq_desc->p.pg_chunk.page);
1526 return;
1527 }
1528
1529 addr = lbq_desc->p.pg_chunk.va;
1530 prefetch(addr);
1531
4f848c0a
RM
1532 /* The max framesize filter on this chip is set higher than
1533 * MTU since FCoE uses 2k frames.
1534 */
1535 if (skb->len > ndev->mtu + ETH_HLEN) {
ae9540f7
JP
1536 netif_err(qdev, drv, qdev->ndev,
1537 "Segment too small, dropping.\n");
4f848c0a
RM
1538 rx_ring->rx_dropped++;
1539 goto err_out;
1540 }
1541 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
ae9540f7
JP
1542 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1543 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1544 length);
4f848c0a
RM
1545 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1546 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1547 length-ETH_HLEN);
1548 skb->len += length-ETH_HLEN;
1549 skb->data_len += length-ETH_HLEN;
1550 skb->truesize += length-ETH_HLEN;
1551
1552 rx_ring->rx_packets++;
1553 rx_ring->rx_bytes += skb->len;
1554 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1555 skb_checksum_none_assert(skb);
4f848c0a 1556
88230fd5 1557 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1558 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1559 /* TCP frame. */
1560 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1561 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1562 "TCP checksum done!\n");
4f848c0a
RM
1563 skb->ip_summed = CHECKSUM_UNNECESSARY;
1564 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1565 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1566 /* Unfragmented ipv4 UDP frame. */
e02ef331
JK
1567 struct iphdr *iph =
1568 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
4f848c0a 1569 if (!(iph->frag_off &
0d653ed8 1570 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1571 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1572 netif_printk(qdev, rx_status, KERN_DEBUG,
1573 qdev->ndev,
e02ef331 1574 "UDP checksum done!\n");
4f848c0a
RM
1575 }
1576 }
1577 }
1578
1579 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1580 if (vlan_id != 0xffff)
1581 __vlan_hwaccel_put_tag(skb, vlan_id);
1582 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1583 napi_gro_receive(napi, skb);
1584 else
1585 netif_receive_skb(skb);
4f848c0a
RM
1586 return;
1587err_out:
1588 dev_kfree_skb_any(skb);
1589 put_page(lbq_desc->p.pg_chunk.page);
1590}
1591
1592/* Process an inbound completion from an rx ring. */
1593static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1594 struct rx_ring *rx_ring,
1595 struct ib_mac_iocb_rsp *ib_mac_rsp,
1596 u32 length,
1597 u16 vlan_id)
1598{
1599 struct net_device *ndev = qdev->ndev;
1600 struct sk_buff *skb = NULL;
1601 struct sk_buff *new_skb = NULL;
1602 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1603
1604 skb = sbq_desc->p.skb;
1605 /* Allocate new_skb and copy */
1606 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1607 if (new_skb == NULL) {
ae9540f7
JP
1608 netif_err(qdev, probe, qdev->ndev,
1609 "No skb available, drop the packet.\n");
4f848c0a
RM
1610 rx_ring->rx_dropped++;
1611 return;
1612 }
1613 skb_reserve(new_skb, NET_IP_ALIGN);
1614 memcpy(skb_put(new_skb, length), skb->data, length);
1615 skb = new_skb;
1616
4f848c0a
RM
1617 /* loopback self test for ethtool */
1618 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1619 ql_check_lb_frame(qdev, skb);
1620 dev_kfree_skb_any(skb);
1621 return;
1622 }
1623
1624 /* The max framesize filter on this chip is set higher than
1625 * MTU since FCoE uses 2k frames.
1626 */
1627 if (skb->len > ndev->mtu + ETH_HLEN) {
1628 dev_kfree_skb_any(skb);
1629 rx_ring->rx_dropped++;
1630 return;
1631 }
1632
1633 prefetch(skb->data);
4f848c0a 1634 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1635 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1636 "%s Multicast.\n",
1637 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1638 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1639 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1641 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1643 }
1644 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1645 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1646 "Promiscuous Packet.\n");
4f848c0a
RM
1647
1648 rx_ring->rx_packets++;
1649 rx_ring->rx_bytes += skb->len;
1650 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1651 skb_checksum_none_assert(skb);
4f848c0a
RM
1652
1653 /* If rx checksum is on, and there are no
1654 * csum or frame errors.
1655 */
88230fd5 1656 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1657 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1658 /* TCP frame. */
1659 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1660 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1661 "TCP checksum done!\n");
4f848c0a
RM
1662 skb->ip_summed = CHECKSUM_UNNECESSARY;
1663 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665 /* Unfragmented ipv4 UDP frame. */
1666 struct iphdr *iph = (struct iphdr *) skb->data;
1667 if (!(iph->frag_off &
0d653ed8 1668 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1669 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1670 netif_printk(qdev, rx_status, KERN_DEBUG,
1671 qdev->ndev,
e02ef331 1672 "UDP checksum done!\n");
4f848c0a
RM
1673 }
1674 }
1675 }
1676
1677 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1678 if (vlan_id != 0xffff)
1679 __vlan_hwaccel_put_tag(skb, vlan_id);
1680 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1681 napi_gro_receive(&rx_ring->napi, skb);
1682 else
1683 netif_receive_skb(skb);
4f848c0a
RM
1684}
1685
8668ae92 1686static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1687{
1688 void *temp_addr = skb->data;
1689
1690 /* Undo the skb_reserve(skb,32) we did before
1691 * giving to hardware, and realign data on
1692 * a 2-byte boundary.
1693 */
1694 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1695 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1696 skb_copy_to_linear_data(skb, temp_addr,
1697 (unsigned int)len);
1698}
1699
1700/*
1701 * This function builds an skb for the given inbound
1702 * completion. It will be rewritten for readability in the near
1703 * future, but for not it works well.
1704 */
1705static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1706 struct rx_ring *rx_ring,
1707 struct ib_mac_iocb_rsp *ib_mac_rsp)
1708{
1709 struct bq_desc *lbq_desc;
1710 struct bq_desc *sbq_desc;
1711 struct sk_buff *skb = NULL;
1712 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1713 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1714
1715 /*
1716 * Handle the header buffer if present.
1717 */
1718 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1719 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1720 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1721 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1722 /*
1723 * Headers fit nicely into a small buffer.
1724 */
1725 sbq_desc = ql_get_curr_sbuf(rx_ring);
1726 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1727 dma_unmap_addr(sbq_desc, mapaddr),
1728 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1729 PCI_DMA_FROMDEVICE);
1730 skb = sbq_desc->p.skb;
1731 ql_realign_skb(skb, hdr_len);
1732 skb_put(skb, hdr_len);
1733 sbq_desc->p.skb = NULL;
1734 }
1735
1736 /*
1737 * Handle the data buffer(s).
1738 */
1739 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1740 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1741 "No Data buffer in this packet.\n");
c4e84bde
RM
1742 return skb;
1743 }
1744
1745 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1746 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1747 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1748 "Headers in small, data of %d bytes in small, combine them.\n",
1749 length);
c4e84bde
RM
1750 /*
1751 * Data is less than small buffer size so it's
1752 * stuffed in a small buffer.
1753 * For this case we append the data
1754 * from the "data" small buffer to the "header" small
1755 * buffer.
1756 */
1757 sbq_desc = ql_get_curr_sbuf(rx_ring);
1758 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1759 dma_unmap_addr
c4e84bde 1760 (sbq_desc, mapaddr),
64b9b41d 1761 dma_unmap_len
c4e84bde
RM
1762 (sbq_desc, maplen),
1763 PCI_DMA_FROMDEVICE);
1764 memcpy(skb_put(skb, length),
1765 sbq_desc->p.skb->data, length);
1766 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1767 dma_unmap_addr
c4e84bde
RM
1768 (sbq_desc,
1769 mapaddr),
64b9b41d 1770 dma_unmap_len
c4e84bde
RM
1771 (sbq_desc,
1772 maplen),
1773 PCI_DMA_FROMDEVICE);
1774 } else {
ae9540f7
JP
1775 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1776 "%d bytes in a single small buffer.\n",
1777 length);
c4e84bde
RM
1778 sbq_desc = ql_get_curr_sbuf(rx_ring);
1779 skb = sbq_desc->p.skb;
1780 ql_realign_skb(skb, length);
1781 skb_put(skb, length);
1782 pci_unmap_single(qdev->pdev,
64b9b41d 1783 dma_unmap_addr(sbq_desc,
c4e84bde 1784 mapaddr),
64b9b41d 1785 dma_unmap_len(sbq_desc,
c4e84bde
RM
1786 maplen),
1787 PCI_DMA_FROMDEVICE);
1788 sbq_desc->p.skb = NULL;
1789 }
1790 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Header in small, %d bytes in large. Chain large to small!\n",
1794 length);
c4e84bde
RM
1795 /*
1796 * The data is in a single large buffer. We
1797 * chain it to the header buffer's skb and let
1798 * it rip.
1799 */
7c734359 1800 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1801 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802 "Chaining page at offset = %d, for %d bytes to skb.\n",
1803 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1804 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1805 lbq_desc->p.pg_chunk.offset,
1806 length);
c4e84bde
RM
1807 skb->len += length;
1808 skb->data_len += length;
1809 skb->truesize += length;
c4e84bde
RM
1810 } else {
1811 /*
1812 * The headers and data are in a single large buffer. We
1813 * copy it to a new skb and let it go. This can happen with
1814 * jumbo mtu on a non-TCP/UDP frame.
1815 */
7c734359 1816 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1817 skb = netdev_alloc_skb(qdev->ndev, length);
1818 if (skb == NULL) {
ae9540f7
JP
1819 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1820 "No skb available, drop the packet.\n");
c4e84bde
RM
1821 return NULL;
1822 }
4055c7d4 1823 pci_unmap_page(qdev->pdev,
64b9b41d 1824 dma_unmap_addr(lbq_desc,
4055c7d4 1825 mapaddr),
64b9b41d 1826 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1827 PCI_DMA_FROMDEVICE);
c4e84bde 1828 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1829 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1830 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1831 length);
7c734359
RM
1832 skb_fill_page_desc(skb, 0,
1833 lbq_desc->p.pg_chunk.page,
1834 lbq_desc->p.pg_chunk.offset,
1835 length);
c4e84bde
RM
1836 skb->len += length;
1837 skb->data_len += length;
1838 skb->truesize += length;
1839 length -= length;
c4e84bde
RM
1840 __pskb_pull_tail(skb,
1841 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1842 VLAN_ETH_HLEN : ETH_HLEN);
1843 }
1844 } else {
1845 /*
1846 * The data is in a chain of large buffers
1847 * pointed to by a small buffer. We loop
1848 * thru and chain them to the our small header
1849 * buffer's skb.
1850 * frags: There are 18 max frags and our small
1851 * buffer will hold 32 of them. The thing is,
1852 * we'll use 3 max for our 9000 byte jumbo
1853 * frames. If the MTU goes up we could
1854 * eventually be in trouble.
1855 */
7c734359 1856 int size, i = 0;
c4e84bde
RM
1857 sbq_desc = ql_get_curr_sbuf(rx_ring);
1858 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1859 dma_unmap_addr(sbq_desc, mapaddr),
1860 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1861 PCI_DMA_FROMDEVICE);
1862 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1863 /*
1864 * This is an non TCP/UDP IP frame, so
1865 * the headers aren't split into a small
1866 * buffer. We have to use the small buffer
1867 * that contains our sg list as our skb to
1868 * send upstairs. Copy the sg list here to
1869 * a local buffer and use it to find the
1870 * pages to chain.
1871 */
ae9540f7
JP
1872 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1873 "%d bytes of headers & data in chain of large.\n",
1874 length);
c4e84bde 1875 skb = sbq_desc->p.skb;
c4e84bde
RM
1876 sbq_desc->p.skb = NULL;
1877 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1878 }
1879 while (length > 0) {
7c734359
RM
1880 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1881 size = (length < rx_ring->lbq_buf_size) ? length :
1882 rx_ring->lbq_buf_size;
c4e84bde 1883
ae9540f7
JP
1884 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1885 "Adding page %d to skb for %d bytes.\n",
1886 i, size);
7c734359
RM
1887 skb_fill_page_desc(skb, i,
1888 lbq_desc->p.pg_chunk.page,
1889 lbq_desc->p.pg_chunk.offset,
1890 size);
c4e84bde
RM
1891 skb->len += size;
1892 skb->data_len += size;
1893 skb->truesize += size;
1894 length -= size;
c4e84bde
RM
1895 i++;
1896 }
1897 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1898 VLAN_ETH_HLEN : ETH_HLEN);
1899 }
1900 return skb;
1901}
1902
1903/* Process an inbound completion from an rx ring. */
4f848c0a 1904static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1905 struct rx_ring *rx_ring,
4f848c0a
RM
1906 struct ib_mac_iocb_rsp *ib_mac_rsp,
1907 u16 vlan_id)
c4e84bde
RM
1908{
1909 struct net_device *ndev = qdev->ndev;
1910 struct sk_buff *skb = NULL;
1911
1912 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1913
1914 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1915 if (unlikely(!skb)) {
ae9540f7
JP
1916 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1917 "No skb available, drop packet.\n");
885ee398 1918 rx_ring->rx_dropped++;
c4e84bde
RM
1919 return;
1920 }
1921
ec33a491
RM
1922 /* The max framesize filter on this chip is set higher than
1923 * MTU since FCoE uses 2k frames.
1924 */
1925 if (skb->len > ndev->mtu + ETH_HLEN) {
1926 dev_kfree_skb_any(skb);
885ee398 1927 rx_ring->rx_dropped++;
ec33a491
RM
1928 return;
1929 }
1930
9dfbbaa6
RM
1931 /* loopback self test for ethtool */
1932 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1933 ql_check_lb_frame(qdev, skb);
1934 dev_kfree_skb_any(skb);
1935 return;
1936 }
1937
c4e84bde 1938 prefetch(skb->data);
c4e84bde 1939 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1940 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1941 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1942 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1943 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1944 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1945 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1946 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 1947 rx_ring->rx_multicast++;
c4e84bde
RM
1948 }
1949 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
1950 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1951 "Promiscuous Packet.\n");
c4e84bde 1952 }
d555f592 1953
d555f592 1954 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1955 skb_checksum_none_assert(skb);
d555f592
RM
1956
1957 /* If rx checksum is on, and there are no
1958 * csum or frame errors.
1959 */
88230fd5 1960 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
1961 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1962 /* TCP frame. */
1963 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1964 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1965 "TCP checksum done!\n");
d555f592
RM
1966 skb->ip_summed = CHECKSUM_UNNECESSARY;
1967 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1968 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1969 /* Unfragmented ipv4 UDP frame. */
1970 struct iphdr *iph = (struct iphdr *) skb->data;
1971 if (!(iph->frag_off &
0d653ed8 1972 htons(IP_MF|IP_OFFSET))) {
d555f592 1973 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1974 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975 "TCP checksum done!\n");
d555f592
RM
1976 }
1977 }
c4e84bde 1978 }
d555f592 1979
885ee398
RM
1980 rx_ring->rx_packets++;
1981 rx_ring->rx_bytes += skb->len;
b2014ff8 1982 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1983 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1984 __vlan_hwaccel_put_tag(skb, vlan_id);
1985 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1986 napi_gro_receive(&rx_ring->napi, skb);
1987 else
1988 netif_receive_skb(skb);
c4e84bde
RM
1989}
1990
4f848c0a
RM
1991/* Process an inbound completion from an rx ring. */
1992static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1993 struct rx_ring *rx_ring,
1994 struct ib_mac_iocb_rsp *ib_mac_rsp)
1995{
1996 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1997 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1998 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1999 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2000
2001 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2002
433c88e8
JK
2003 /* Frame error, so drop the packet. */
2004 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
2005 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2);
2006 return (unsigned long)length;
2007 }
2008
4f848c0a
RM
2009 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2010 /* The data and headers are split into
2011 * separate buffers.
2012 */
2013 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2014 vlan_id);
2015 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2016 /* The data fit in a single small buffer.
2017 * Allocate a new skb, copy the data and
2018 * return the buffer to the free pool.
2019 */
2020 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2021 length, vlan_id);
63526713
RM
2022 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2023 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2024 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2025 /* TCP packet in a page chunk that's been checksummed.
2026 * Tack it on to our GRO skb and let it go.
2027 */
2028 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2029 length, vlan_id);
4f848c0a
RM
2030 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2031 /* Non-TCP packet in a page chunk. Allocate an
2032 * skb, tack it on frags, and send it up.
2033 */
2034 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2035 length, vlan_id);
2036 } else {
c0c56955
RM
2037 /* Non-TCP/UDP large frames that span multiple buffers
2038 * can be processed corrrectly by the split frame logic.
2039 */
2040 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2041 vlan_id);
4f848c0a
RM
2042 }
2043
2044 return (unsigned long)length;
2045}
2046
c4e84bde
RM
2047/* Process an outbound completion from an rx ring. */
2048static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2049 struct ob_mac_iocb_rsp *mac_rsp)
2050{
2051 struct tx_ring *tx_ring;
2052 struct tx_ring_desc *tx_ring_desc;
2053
2054 QL_DUMP_OB_MAC_RSP(mac_rsp);
2055 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2056 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2057 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2058 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2059 tx_ring->tx_packets++;
c4e84bde
RM
2060 dev_kfree_skb(tx_ring_desc->skb);
2061 tx_ring_desc->skb = NULL;
2062
2063 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2064 OB_MAC_IOCB_RSP_S |
2065 OB_MAC_IOCB_RSP_L |
2066 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2067 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2068 netif_warn(qdev, tx_done, qdev->ndev,
2069 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2070 }
2071 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2072 netif_warn(qdev, tx_done, qdev->ndev,
2073 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2074 }
2075 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2076 netif_warn(qdev, tx_done, qdev->ndev,
2077 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2078 }
2079 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2080 netif_warn(qdev, tx_done, qdev->ndev,
2081 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2082 }
2083 }
2084 atomic_inc(&tx_ring->tx_count);
2085}
2086
2087/* Fire up a handler to reset the MPI processor. */
2088void ql_queue_fw_error(struct ql_adapter *qdev)
2089{
6a473308 2090 ql_link_off(qdev);
c4e84bde
RM
2091 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2092}
2093
2094void ql_queue_asic_error(struct ql_adapter *qdev)
2095{
6a473308 2096 ql_link_off(qdev);
c4e84bde 2097 ql_disable_interrupts(qdev);
6497b607
RM
2098 /* Clear adapter up bit to signal the recovery
2099 * process that it shouldn't kill the reset worker
2100 * thread
2101 */
2102 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2103 /* Set asic recovery bit to indicate reset process that we are
2104 * in fatal error recovery process rather than normal close
2105 */
2106 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2107 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2108}
2109
2110static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2111 struct ib_ae_iocb_rsp *ib_ae_rsp)
2112{
2113 switch (ib_ae_rsp->event) {
2114 case MGMT_ERR_EVENT:
ae9540f7
JP
2115 netif_err(qdev, rx_err, qdev->ndev,
2116 "Management Processor Fatal Error.\n");
c4e84bde
RM
2117 ql_queue_fw_error(qdev);
2118 return;
2119
2120 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2121 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2122 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2123 ql_queue_asic_error(qdev);
2124 return;
2125
2126 case SOFT_ECC_ERROR_EVENT:
5069ee55 2127 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2128 ql_queue_asic_error(qdev);
2129 break;
2130
2131 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2132 netdev_err(qdev->ndev, "PCI error occurred when reading "
2133 "anonymous buffers from rx_ring %d.\n",
2134 ib_ae_rsp->q_id);
c4e84bde
RM
2135 ql_queue_asic_error(qdev);
2136 break;
2137
2138 default:
ae9540f7
JP
2139 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2140 ib_ae_rsp->event);
c4e84bde
RM
2141 ql_queue_asic_error(qdev);
2142 break;
2143 }
2144}
2145
2146static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2147{
2148 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2149 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2150 struct ob_mac_iocb_rsp *net_rsp = NULL;
2151 int count = 0;
2152
1e213303 2153 struct tx_ring *tx_ring;
c4e84bde
RM
2154 /* While there are entries in the completion queue. */
2155 while (prod != rx_ring->cnsmr_idx) {
2156
ae9540f7
JP
2157 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2158 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2159 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2160
2161 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2162 rmb();
2163 switch (net_rsp->opcode) {
2164
2165 case OPCODE_OB_MAC_TSO_IOCB:
2166 case OPCODE_OB_MAC_IOCB:
2167 ql_process_mac_tx_intr(qdev, net_rsp);
2168 break;
2169 default:
ae9540f7
JP
2170 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2171 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2172 net_rsp->opcode);
c4e84bde
RM
2173 }
2174 count++;
2175 ql_update_cq(rx_ring);
ba7cd3ba 2176 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2177 }
4da79504
DC
2178 if (!net_rsp)
2179 return 0;
c4e84bde 2180 ql_write_cq_idx(rx_ring);
1e213303 2181 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2182 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2183 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2184 /*
2185 * The queue got stopped because the tx_ring was full.
2186 * Wake it up, because it's now at least 25% empty.
2187 */
1e213303 2188 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2189 }
2190
2191 return count;
2192}
2193
2194static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2195{
2196 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2197 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2198 struct ql_net_rsp_iocb *net_rsp;
2199 int count = 0;
2200
2201 /* While there are entries in the completion queue. */
2202 while (prod != rx_ring->cnsmr_idx) {
2203
ae9540f7
JP
2204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2205 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2206 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2207
2208 net_rsp = rx_ring->curr_entry;
2209 rmb();
2210 switch (net_rsp->opcode) {
2211 case OPCODE_IB_MAC_IOCB:
2212 ql_process_mac_rx_intr(qdev, rx_ring,
2213 (struct ib_mac_iocb_rsp *)
2214 net_rsp);
2215 break;
2216
2217 case OPCODE_IB_AE_IOCB:
2218 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2219 net_rsp);
2220 break;
2221 default:
ae9540f7
JP
2222 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2223 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2224 net_rsp->opcode);
2225 break;
c4e84bde
RM
2226 }
2227 count++;
2228 ql_update_cq(rx_ring);
ba7cd3ba 2229 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2230 if (count == budget)
2231 break;
2232 }
2233 ql_update_buffer_queues(qdev, rx_ring);
2234 ql_write_cq_idx(rx_ring);
2235 return count;
2236}
2237
2238static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2239{
2240 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2241 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2242 struct rx_ring *trx_ring;
2243 int i, work_done = 0;
2244 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2245
ae9540f7
JP
2246 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2247 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2248
39aa8165
RM
2249 /* Service the TX rings first. They start
2250 * right after the RSS rings. */
2251 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2252 trx_ring = &qdev->rx_ring[i];
2253 /* If this TX completion ring belongs to this vector and
2254 * it's not empty then service it.
2255 */
2256 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2257 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2258 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2259 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2260 "%s: Servicing TX completion ring %d.\n",
2261 __func__, trx_ring->cq_id);
39aa8165
RM
2262 ql_clean_outbound_rx_ring(trx_ring);
2263 }
2264 }
2265
2266 /*
2267 * Now service the RSS ring if it's active.
2268 */
2269 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2270 rx_ring->cnsmr_idx) {
ae9540f7
JP
2271 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2272 "%s: Servicing RX completion ring %d.\n",
2273 __func__, rx_ring->cq_id);
39aa8165
RM
2274 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2275 }
2276
c4e84bde 2277 if (work_done < budget) {
22bdd4f5 2278 napi_complete(napi);
c4e84bde
RM
2279 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2280 }
2281 return work_done;
2282}
2283
c8f44aff 2284static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2285{
2286 struct ql_adapter *qdev = netdev_priv(ndev);
2287
18c49b91 2288 if (features & NETIF_F_HW_VLAN_RX) {
c4e84bde 2289 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2290 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2291 } else {
c4e84bde
RM
2292 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2293 }
2294}
2295
c8f44aff
MM
2296static netdev_features_t qlge_fix_features(struct net_device *ndev,
2297 netdev_features_t features)
18c49b91
JP
2298{
2299 /*
2300 * Since there is no support for separate rx/tx vlan accel
2301 * enable/disable make sure tx flag is always in same state as rx.
2302 */
2303 if (features & NETIF_F_HW_VLAN_RX)
2304 features |= NETIF_F_HW_VLAN_TX;
2305 else
2306 features &= ~NETIF_F_HW_VLAN_TX;
2307
2308 return features;
2309}
2310
c8f44aff
MM
2311static int qlge_set_features(struct net_device *ndev,
2312 netdev_features_t features)
18c49b91 2313{
c8f44aff 2314 netdev_features_t changed = ndev->features ^ features;
18c49b91
JP
2315
2316 if (changed & NETIF_F_HW_VLAN_RX)
2317 qlge_vlan_mode(ndev, features);
2318
2319 return 0;
2320}
2321
8e586137 2322static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2323{
c4e84bde 2324 u32 enable_bit = MAC_ADDR_E;
8e586137 2325 int err;
c4e84bde 2326
8e586137
JP
2327 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2328 MAC_ADDR_TYPE_VLAN, vid);
2329 if (err)
ae9540f7
JP
2330 netif_err(qdev, ifup, qdev->ndev,
2331 "Failed to init vlan address.\n");
8e586137 2332 return err;
c4e84bde
RM
2333}
2334
8e586137 2335static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2336{
2337 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2338 int status;
8e586137 2339 int err;
cc288f54
RM
2340
2341 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2342 if (status)
8e586137 2343 return status;
c4e84bde 2344
8e586137 2345 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2346 set_bit(vid, qdev->active_vlans);
2347
2348 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2349
2350 return err;
18c49b91
JP
2351}
2352
8e586137 2353static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2354{
2355 u32 enable_bit = 0;
8e586137 2356 int err;
18c49b91 2357
8e586137
JP
2358 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2359 MAC_ADDR_TYPE_VLAN, vid);
2360 if (err)
ae9540f7
JP
2361 netif_err(qdev, ifup, qdev->ndev,
2362 "Failed to clear vlan address.\n");
8e586137 2363 return err;
18c49b91
JP
2364}
2365
8e586137 2366static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
18c49b91
JP
2367{
2368 struct ql_adapter *qdev = netdev_priv(ndev);
2369 int status;
8e586137 2370 int err;
c4e84bde 2371
18c49b91
JP
2372 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2373 if (status)
8e586137 2374 return status;
18c49b91 2375
8e586137 2376 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2377 clear_bit(vid, qdev->active_vlans);
2378
2379 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2380
2381 return err;
c4e84bde
RM
2382}
2383
c1b60092
RM
2384static void qlge_restore_vlan(struct ql_adapter *qdev)
2385{
18c49b91
JP
2386 int status;
2387 u16 vid;
2388
2389 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2390 if (status)
2391 return;
2392
2393 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2394 __qlge_vlan_rx_add_vid(qdev, vid);
2395
2396 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2397}
2398
c4e84bde
RM
2399/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2400static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2401{
2402 struct rx_ring *rx_ring = dev_id;
288379f0 2403 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2404 return IRQ_HANDLED;
2405}
2406
c4e84bde
RM
2407/* This handles a fatal error, MPI activity, and the default
2408 * rx_ring in an MSI-X multiple vector environment.
2409 * In MSI/Legacy environment it also process the rest of
2410 * the rx_rings.
2411 */
2412static irqreturn_t qlge_isr(int irq, void *dev_id)
2413{
2414 struct rx_ring *rx_ring = dev_id;
2415 struct ql_adapter *qdev = rx_ring->qdev;
2416 struct intr_context *intr_context = &qdev->intr_context[0];
2417 u32 var;
c4e84bde
RM
2418 int work_done = 0;
2419
bb0d215c
RM
2420 spin_lock(&qdev->hw_lock);
2421 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2422 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2423 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2424 spin_unlock(&qdev->hw_lock);
2425 return IRQ_NONE;
c4e84bde 2426 }
bb0d215c 2427 spin_unlock(&qdev->hw_lock);
c4e84bde 2428
bb0d215c 2429 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2430
2431 /*
2432 * Check for fatal error.
2433 */
2434 if (var & STS_FE) {
2435 ql_queue_asic_error(qdev);
5069ee55 2436 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2437 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2438 netdev_err(qdev->ndev, "Resetting chip. "
2439 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2440 return IRQ_HANDLED;
2441 }
2442
2443 /*
2444 * Check MPI processor activity.
2445 */
5ee22a5a
RM
2446 if ((var & STS_PI) &&
2447 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2448 /*
2449 * We've got an async event or mailbox completion.
2450 * Handle it and clear the source of the interrupt.
2451 */
ae9540f7
JP
2452 netif_err(qdev, intr, qdev->ndev,
2453 "Got MPI processor interrupt.\n");
c4e84bde 2454 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2455 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2456 queue_delayed_work_on(smp_processor_id(),
2457 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2458 work_done++;
2459 }
2460
2461 /*
39aa8165
RM
2462 * Get the bit-mask that shows the active queues for this
2463 * pass. Compare it to the queues that this irq services
2464 * and call napi if there's a match.
c4e84bde 2465 */
39aa8165
RM
2466 var = ql_read32(qdev, ISR1);
2467 if (var & intr_context->irq_mask) {
ae9540f7
JP
2468 netif_info(qdev, intr, qdev->ndev,
2469 "Waking handler for rx_ring[0].\n");
39aa8165 2470 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2471 napi_schedule(&rx_ring->napi);
2472 work_done++;
2473 }
bb0d215c 2474 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2475 return work_done ? IRQ_HANDLED : IRQ_NONE;
2476}
2477
2478static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2479{
2480
2481 if (skb_is_gso(skb)) {
2482 int err;
2483 if (skb_header_cloned(skb)) {
2484 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2485 if (err)
2486 return err;
2487 }
2488
2489 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2490 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2491 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2492 mac_iocb_ptr->total_hdrs_len =
2493 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2494 mac_iocb_ptr->net_trans_offset =
2495 cpu_to_le16(skb_network_offset(skb) |
2496 skb_transport_offset(skb)
2497 << OB_MAC_TRANSPORT_HDR_SHIFT);
2498 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2499 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2500 if (likely(skb->protocol == htons(ETH_P_IP))) {
2501 struct iphdr *iph = ip_hdr(skb);
2502 iph->check = 0;
2503 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2504 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2505 iph->daddr, 0,
2506 IPPROTO_TCP,
2507 0);
2508 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2509 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2510 tcp_hdr(skb)->check =
2511 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2512 &ipv6_hdr(skb)->daddr,
2513 0, IPPROTO_TCP, 0);
2514 }
2515 return 1;
2516 }
2517 return 0;
2518}
2519
2520static void ql_hw_csum_setup(struct sk_buff *skb,
2521 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2522{
2523 int len;
2524 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2525 __sum16 *check;
c4e84bde
RM
2526 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2527 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2528 mac_iocb_ptr->net_trans_offset =
2529 cpu_to_le16(skb_network_offset(skb) |
2530 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2531
2532 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2533 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2534 if (likely(iph->protocol == IPPROTO_TCP)) {
2535 check = &(tcp_hdr(skb)->check);
2536 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2537 mac_iocb_ptr->total_hdrs_len =
2538 cpu_to_le16(skb_transport_offset(skb) +
2539 (tcp_hdr(skb)->doff << 2));
2540 } else {
2541 check = &(udp_hdr(skb)->check);
2542 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2543 mac_iocb_ptr->total_hdrs_len =
2544 cpu_to_le16(skb_transport_offset(skb) +
2545 sizeof(struct udphdr));
2546 }
2547 *check = ~csum_tcpudp_magic(iph->saddr,
2548 iph->daddr, len, iph->protocol, 0);
2549}
2550
61357325 2551static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2552{
2553 struct tx_ring_desc *tx_ring_desc;
2554 struct ob_mac_iocb_req *mac_iocb_ptr;
2555 struct ql_adapter *qdev = netdev_priv(ndev);
2556 int tso;
2557 struct tx_ring *tx_ring;
1e213303 2558 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2559
2560 tx_ring = &qdev->tx_ring[tx_ring_idx];
2561
74c50b4b
RM
2562 if (skb_padto(skb, ETH_ZLEN))
2563 return NETDEV_TX_OK;
2564
c4e84bde 2565 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2566 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2567 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2568 __func__, tx_ring_idx);
1e213303 2569 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2570 tx_ring->tx_errors++;
c4e84bde
RM
2571 return NETDEV_TX_BUSY;
2572 }
2573 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2574 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2575 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2576
2577 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2578 mac_iocb_ptr->tid = tx_ring_desc->index;
2579 /* We use the upper 32-bits to store the tx queue for this IO.
2580 * When we get the completion we can use it to establish the context.
2581 */
2582 mac_iocb_ptr->txq_idx = tx_ring_idx;
2583 tx_ring_desc->skb = skb;
2584
2585 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2586
eab6d18d 2587 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2588 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2589 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2590 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2591 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2592 }
2593 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2594 if (tso < 0) {
2595 dev_kfree_skb_any(skb);
2596 return NETDEV_TX_OK;
2597 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2598 ql_hw_csum_setup(skb,
2599 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2600 }
0d979f74
RM
2601 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2602 NETDEV_TX_OK) {
ae9540f7
JP
2603 netif_err(qdev, tx_queued, qdev->ndev,
2604 "Could not map the segments.\n");
885ee398 2605 tx_ring->tx_errors++;
0d979f74
RM
2606 return NETDEV_TX_BUSY;
2607 }
c4e84bde
RM
2608 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2609 tx_ring->prod_idx++;
2610 if (tx_ring->prod_idx == tx_ring->wq_len)
2611 tx_ring->prod_idx = 0;
2612 wmb();
2613
2614 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2615 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2616 "tx queued, slot %d, len %d\n",
2617 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2618
2619 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2620
2621 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2622 netif_stop_subqueue(ndev, tx_ring->wq_id);
2623 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2624 /*
2625 * The queue got stopped because the tx_ring was full.
2626 * Wake it up, because it's now at least 25% empty.
2627 */
2628 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2629 }
c4e84bde
RM
2630 return NETDEV_TX_OK;
2631}
2632
9dfbbaa6 2633
c4e84bde
RM
2634static void ql_free_shadow_space(struct ql_adapter *qdev)
2635{
2636 if (qdev->rx_ring_shadow_reg_area) {
2637 pci_free_consistent(qdev->pdev,
2638 PAGE_SIZE,
2639 qdev->rx_ring_shadow_reg_area,
2640 qdev->rx_ring_shadow_reg_dma);
2641 qdev->rx_ring_shadow_reg_area = NULL;
2642 }
2643 if (qdev->tx_ring_shadow_reg_area) {
2644 pci_free_consistent(qdev->pdev,
2645 PAGE_SIZE,
2646 qdev->tx_ring_shadow_reg_area,
2647 qdev->tx_ring_shadow_reg_dma);
2648 qdev->tx_ring_shadow_reg_area = NULL;
2649 }
2650}
2651
2652static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2653{
2654 qdev->rx_ring_shadow_reg_area =
2655 pci_alloc_consistent(qdev->pdev,
2656 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2657 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2658 netif_err(qdev, ifup, qdev->ndev,
2659 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2660 return -ENOMEM;
2661 }
b25215d0 2662 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2663 qdev->tx_ring_shadow_reg_area =
2664 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2665 &qdev->tx_ring_shadow_reg_dma);
2666 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2667 netif_err(qdev, ifup, qdev->ndev,
2668 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2669 goto err_wqp_sh_area;
2670 }
b25215d0 2671 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2672 return 0;
2673
2674err_wqp_sh_area:
2675 pci_free_consistent(qdev->pdev,
2676 PAGE_SIZE,
2677 qdev->rx_ring_shadow_reg_area,
2678 qdev->rx_ring_shadow_reg_dma);
2679 return -ENOMEM;
2680}
2681
2682static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2683{
2684 struct tx_ring_desc *tx_ring_desc;
2685 int i;
2686 struct ob_mac_iocb_req *mac_iocb_ptr;
2687
2688 mac_iocb_ptr = tx_ring->wq_base;
2689 tx_ring_desc = tx_ring->q;
2690 for (i = 0; i < tx_ring->wq_len; i++) {
2691 tx_ring_desc->index = i;
2692 tx_ring_desc->skb = NULL;
2693 tx_ring_desc->queue_entry = mac_iocb_ptr;
2694 mac_iocb_ptr++;
2695 tx_ring_desc++;
2696 }
2697 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2698}
2699
2700static void ql_free_tx_resources(struct ql_adapter *qdev,
2701 struct tx_ring *tx_ring)
2702{
2703 if (tx_ring->wq_base) {
2704 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2705 tx_ring->wq_base, tx_ring->wq_base_dma);
2706 tx_ring->wq_base = NULL;
2707 }
2708 kfree(tx_ring->q);
2709 tx_ring->q = NULL;
2710}
2711
2712static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2713 struct tx_ring *tx_ring)
2714{
2715 tx_ring->wq_base =
2716 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2717 &tx_ring->wq_base_dma);
2718
8e95a202 2719 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2720 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2721 goto pci_alloc_err;
2722
c4e84bde
RM
2723 tx_ring->q =
2724 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2725 if (tx_ring->q == NULL)
2726 goto err;
2727
2728 return 0;
2729err:
2730 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2731 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2732 tx_ring->wq_base = NULL;
2733pci_alloc_err:
2734 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2735 return -ENOMEM;
2736}
2737
8668ae92 2738static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2739{
c4e84bde
RM
2740 struct bq_desc *lbq_desc;
2741
7c734359
RM
2742 uint32_t curr_idx, clean_idx;
2743
2744 curr_idx = rx_ring->lbq_curr_idx;
2745 clean_idx = rx_ring->lbq_clean_idx;
2746 while (curr_idx != clean_idx) {
2747 lbq_desc = &rx_ring->lbq[curr_idx];
2748
2749 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2750 pci_unmap_page(qdev->pdev,
7c734359
RM
2751 lbq_desc->p.pg_chunk.map,
2752 ql_lbq_block_size(qdev),
c4e84bde 2753 PCI_DMA_FROMDEVICE);
7c734359 2754 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2755 }
7c734359
RM
2756
2757 put_page(lbq_desc->p.pg_chunk.page);
2758 lbq_desc->p.pg_chunk.page = NULL;
2759
2760 if (++curr_idx == rx_ring->lbq_len)
2761 curr_idx = 0;
2762
c4e84bde
RM
2763 }
2764}
2765
8668ae92 2766static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2767{
2768 int i;
2769 struct bq_desc *sbq_desc;
2770
2771 for (i = 0; i < rx_ring->sbq_len; i++) {
2772 sbq_desc = &rx_ring->sbq[i];
2773 if (sbq_desc == NULL) {
ae9540f7
JP
2774 netif_err(qdev, ifup, qdev->ndev,
2775 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2776 return;
2777 }
2778 if (sbq_desc->p.skb) {
2779 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2780 dma_unmap_addr(sbq_desc, mapaddr),
2781 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2782 PCI_DMA_FROMDEVICE);
2783 dev_kfree_skb(sbq_desc->p.skb);
2784 sbq_desc->p.skb = NULL;
2785 }
c4e84bde
RM
2786 }
2787}
2788
4545a3f2
RM
2789/* Free all large and small rx buffers associated
2790 * with the completion queues for this device.
2791 */
2792static void ql_free_rx_buffers(struct ql_adapter *qdev)
2793{
2794 int i;
2795 struct rx_ring *rx_ring;
2796
2797 for (i = 0; i < qdev->rx_ring_count; i++) {
2798 rx_ring = &qdev->rx_ring[i];
2799 if (rx_ring->lbq)
2800 ql_free_lbq_buffers(qdev, rx_ring);
2801 if (rx_ring->sbq)
2802 ql_free_sbq_buffers(qdev, rx_ring);
2803 }
2804}
2805
2806static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2807{
2808 struct rx_ring *rx_ring;
2809 int i;
2810
2811 for (i = 0; i < qdev->rx_ring_count; i++) {
2812 rx_ring = &qdev->rx_ring[i];
2813 if (rx_ring->type != TX_Q)
2814 ql_update_buffer_queues(qdev, rx_ring);
2815 }
2816}
2817
2818static void ql_init_lbq_ring(struct ql_adapter *qdev,
2819 struct rx_ring *rx_ring)
2820{
2821 int i;
2822 struct bq_desc *lbq_desc;
2823 __le64 *bq = rx_ring->lbq_base;
2824
2825 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2826 for (i = 0; i < rx_ring->lbq_len; i++) {
2827 lbq_desc = &rx_ring->lbq[i];
2828 memset(lbq_desc, 0, sizeof(*lbq_desc));
2829 lbq_desc->index = i;
2830 lbq_desc->addr = bq;
2831 bq++;
2832 }
2833}
2834
2835static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2836 struct rx_ring *rx_ring)
2837{
2838 int i;
2839 struct bq_desc *sbq_desc;
2c9a0d41 2840 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2841
4545a3f2 2842 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2843 for (i = 0; i < rx_ring->sbq_len; i++) {
2844 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2845 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2846 sbq_desc->index = i;
2c9a0d41 2847 sbq_desc->addr = bq;
c4e84bde
RM
2848 bq++;
2849 }
c4e84bde
RM
2850}
2851
2852static void ql_free_rx_resources(struct ql_adapter *qdev,
2853 struct rx_ring *rx_ring)
2854{
c4e84bde
RM
2855 /* Free the small buffer queue. */
2856 if (rx_ring->sbq_base) {
2857 pci_free_consistent(qdev->pdev,
2858 rx_ring->sbq_size,
2859 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2860 rx_ring->sbq_base = NULL;
2861 }
2862
2863 /* Free the small buffer queue control blocks. */
2864 kfree(rx_ring->sbq);
2865 rx_ring->sbq = NULL;
2866
2867 /* Free the large buffer queue. */
2868 if (rx_ring->lbq_base) {
2869 pci_free_consistent(qdev->pdev,
2870 rx_ring->lbq_size,
2871 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2872 rx_ring->lbq_base = NULL;
2873 }
2874
2875 /* Free the large buffer queue control blocks. */
2876 kfree(rx_ring->lbq);
2877 rx_ring->lbq = NULL;
2878
2879 /* Free the rx queue. */
2880 if (rx_ring->cq_base) {
2881 pci_free_consistent(qdev->pdev,
2882 rx_ring->cq_size,
2883 rx_ring->cq_base, rx_ring->cq_base_dma);
2884 rx_ring->cq_base = NULL;
2885 }
2886}
2887
2888/* Allocate queues and buffers for this completions queue based
2889 * on the values in the parameter structure. */
2890static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2891 struct rx_ring *rx_ring)
2892{
2893
2894 /*
2895 * Allocate the completion queue for this rx_ring.
2896 */
2897 rx_ring->cq_base =
2898 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2899 &rx_ring->cq_base_dma);
2900
2901 if (rx_ring->cq_base == NULL) {
ae9540f7 2902 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2903 return -ENOMEM;
2904 }
2905
2906 if (rx_ring->sbq_len) {
2907 /*
2908 * Allocate small buffer queue.
2909 */
2910 rx_ring->sbq_base =
2911 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2912 &rx_ring->sbq_base_dma);
2913
2914 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2915 netif_err(qdev, ifup, qdev->ndev,
2916 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2917 goto err_mem;
2918 }
2919
2920 /*
2921 * Allocate small buffer queue control blocks.
2922 */
2923 rx_ring->sbq =
2924 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2925 GFP_KERNEL);
2926 if (rx_ring->sbq == NULL) {
ae9540f7
JP
2927 netif_err(qdev, ifup, qdev->ndev,
2928 "Small buffer queue control block allocation failed.\n");
c4e84bde
RM
2929 goto err_mem;
2930 }
2931
4545a3f2 2932 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2933 }
2934
2935 if (rx_ring->lbq_len) {
2936 /*
2937 * Allocate large buffer queue.
2938 */
2939 rx_ring->lbq_base =
2940 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2941 &rx_ring->lbq_base_dma);
2942
2943 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
2944 netif_err(qdev, ifup, qdev->ndev,
2945 "Large buffer queue allocation failed.\n");
c4e84bde
RM
2946 goto err_mem;
2947 }
2948 /*
2949 * Allocate large buffer queue control blocks.
2950 */
2951 rx_ring->lbq =
2952 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2953 GFP_KERNEL);
2954 if (rx_ring->lbq == NULL) {
ae9540f7
JP
2955 netif_err(qdev, ifup, qdev->ndev,
2956 "Large buffer queue control block allocation failed.\n");
c4e84bde
RM
2957 goto err_mem;
2958 }
2959
4545a3f2 2960 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2961 }
2962
2963 return 0;
2964
2965err_mem:
2966 ql_free_rx_resources(qdev, rx_ring);
2967 return -ENOMEM;
2968}
2969
2970static void ql_tx_ring_clean(struct ql_adapter *qdev)
2971{
2972 struct tx_ring *tx_ring;
2973 struct tx_ring_desc *tx_ring_desc;
2974 int i, j;
2975
2976 /*
2977 * Loop through all queues and free
2978 * any resources.
2979 */
2980 for (j = 0; j < qdev->tx_ring_count; j++) {
2981 tx_ring = &qdev->tx_ring[j];
2982 for (i = 0; i < tx_ring->wq_len; i++) {
2983 tx_ring_desc = &tx_ring->q[i];
2984 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
2985 netif_err(qdev, ifdown, qdev->ndev,
2986 "Freeing lost SKB %p, from queue %d, index %d.\n",
2987 tx_ring_desc->skb, j,
2988 tx_ring_desc->index);
c4e84bde
RM
2989 ql_unmap_send(qdev, tx_ring_desc,
2990 tx_ring_desc->map_cnt);
2991 dev_kfree_skb(tx_ring_desc->skb);
2992 tx_ring_desc->skb = NULL;
2993 }
2994 }
2995 }
2996}
2997
c4e84bde
RM
2998static void ql_free_mem_resources(struct ql_adapter *qdev)
2999{
3000 int i;
3001
3002 for (i = 0; i < qdev->tx_ring_count; i++)
3003 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3004 for (i = 0; i < qdev->rx_ring_count; i++)
3005 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3006 ql_free_shadow_space(qdev);
3007}
3008
3009static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3010{
3011 int i;
3012
3013 /* Allocate space for our shadow registers and such. */
3014 if (ql_alloc_shadow_space(qdev))
3015 return -ENOMEM;
3016
3017 for (i = 0; i < qdev->rx_ring_count; i++) {
3018 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3019 netif_err(qdev, ifup, qdev->ndev,
3020 "RX resource allocation failed.\n");
c4e84bde
RM
3021 goto err_mem;
3022 }
3023 }
3024 /* Allocate tx queue resources */
3025 for (i = 0; i < qdev->tx_ring_count; i++) {
3026 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3027 netif_err(qdev, ifup, qdev->ndev,
3028 "TX resource allocation failed.\n");
c4e84bde
RM
3029 goto err_mem;
3030 }
3031 }
3032 return 0;
3033
3034err_mem:
3035 ql_free_mem_resources(qdev);
3036 return -ENOMEM;
3037}
3038
3039/* Set up the rx ring control block and pass it to the chip.
3040 * The control block is defined as
3041 * "Completion Queue Initialization Control Block", or cqicb.
3042 */
3043static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3044{
3045 struct cqicb *cqicb = &rx_ring->cqicb;
3046 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3047 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3048 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3049 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3050 void __iomem *doorbell_area =
3051 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3052 int err = 0;
3053 u16 bq_len;
d4a4aba6 3054 u64 tmp;
b8facca0
RM
3055 __le64 *base_indirect_ptr;
3056 int page_entries;
c4e84bde
RM
3057
3058 /* Set up the shadow registers for this ring. */
3059 rx_ring->prod_idx_sh_reg = shadow_reg;
3060 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3061 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3062 shadow_reg += sizeof(u64);
3063 shadow_reg_dma += sizeof(u64);
3064 rx_ring->lbq_base_indirect = shadow_reg;
3065 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3066 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3067 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3068 rx_ring->sbq_base_indirect = shadow_reg;
3069 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3070
3071 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3072 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3073 rx_ring->cnsmr_idx = 0;
3074 rx_ring->curr_entry = rx_ring->cq_base;
3075
3076 /* PCI doorbell mem area + 0x04 for valid register */
3077 rx_ring->valid_db_reg = doorbell_area + 0x04;
3078
3079 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3080 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3081
3082 /* PCI doorbell mem area + 0x1c */
8668ae92 3083 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3084
3085 memset((void *)cqicb, 0, sizeof(struct cqicb));
3086 cqicb->msix_vect = rx_ring->irq;
3087
459caf5a
RM
3088 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3089 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3090
97345524 3091 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3092
97345524 3093 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3094
3095 /*
3096 * Set up the control block load flags.
3097 */
3098 cqicb->flags = FLAGS_LC | /* Load queue base address */
3099 FLAGS_LV | /* Load MSI-X vector */
3100 FLAGS_LI; /* Load irq delay values */
3101 if (rx_ring->lbq_len) {
3102 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3103 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3104 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3105 page_entries = 0;
3106 do {
3107 *base_indirect_ptr = cpu_to_le64(tmp);
3108 tmp += DB_PAGE_SIZE;
3109 base_indirect_ptr++;
3110 page_entries++;
3111 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3112 cqicb->lbq_addr =
3113 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3114 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3115 (u16) rx_ring->lbq_buf_size;
3116 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3117 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3118 (u16) rx_ring->lbq_len;
c4e84bde 3119 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3120 rx_ring->lbq_prod_idx = 0;
c4e84bde 3121 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3122 rx_ring->lbq_clean_idx = 0;
3123 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3124 }
3125 if (rx_ring->sbq_len) {
3126 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3127 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3128 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3129 page_entries = 0;
3130 do {
3131 *base_indirect_ptr = cpu_to_le64(tmp);
3132 tmp += DB_PAGE_SIZE;
3133 base_indirect_ptr++;
3134 page_entries++;
3135 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3136 cqicb->sbq_addr =
3137 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3138 cqicb->sbq_buf_size =
52e55f3c 3139 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3140 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3141 (u16) rx_ring->sbq_len;
c4e84bde 3142 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3143 rx_ring->sbq_prod_idx = 0;
c4e84bde 3144 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3145 rx_ring->sbq_clean_idx = 0;
3146 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3147 }
3148 switch (rx_ring->type) {
3149 case TX_Q:
c4e84bde
RM
3150 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3151 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3152 break;
c4e84bde
RM
3153 case RX_Q:
3154 /* Inbound completion handling rx_rings run in
3155 * separate NAPI contexts.
3156 */
3157 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3158 64);
3159 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3160 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3161 break;
3162 default:
ae9540f7
JP
3163 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3164 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3165 }
c4e84bde
RM
3166 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3167 CFG_LCQ, rx_ring->cq_id);
3168 if (err) {
ae9540f7 3169 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3170 return err;
3171 }
c4e84bde
RM
3172 return err;
3173}
3174
3175static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3176{
3177 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3178 void __iomem *doorbell_area =
3179 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3180 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3181 (tx_ring->wq_id * sizeof(u64));
3182 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3183 (tx_ring->wq_id * sizeof(u64));
3184 int err = 0;
3185
3186 /*
3187 * Assign doorbell registers for this tx_ring.
3188 */
3189 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3190 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3191 tx_ring->prod_idx = 0;
3192 /* TX PCI doorbell mem area + 0x04 */
3193 tx_ring->valid_db_reg = doorbell_area + 0x04;
3194
3195 /*
3196 * Assign shadow registers for this tx_ring.
3197 */
3198 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3199 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3200
3201 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3202 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3203 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3204 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3205 wqicb->rid = 0;
97345524 3206 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3207
97345524 3208 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3209
3210 ql_init_tx_ring(qdev, tx_ring);
3211
e332471c 3212 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3213 (u16) tx_ring->wq_id);
3214 if (err) {
ae9540f7 3215 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3216 return err;
3217 }
c4e84bde
RM
3218 return err;
3219}
3220
3221static void ql_disable_msix(struct ql_adapter *qdev)
3222{
3223 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3224 pci_disable_msix(qdev->pdev);
3225 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3226 kfree(qdev->msi_x_entry);
3227 qdev->msi_x_entry = NULL;
3228 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3229 pci_disable_msi(qdev->pdev);
3230 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3231 }
3232}
3233
a4ab6137
RM
3234/* We start by trying to get the number of vectors
3235 * stored in qdev->intr_count. If we don't get that
3236 * many then we reduce the count and try again.
3237 */
c4e84bde
RM
3238static void ql_enable_msix(struct ql_adapter *qdev)
3239{
a4ab6137 3240 int i, err;
c4e84bde 3241
c4e84bde 3242 /* Get the MSIX vectors. */
a5a62a1c 3243 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3244 /* Try to alloc space for the msix struct,
3245 * if it fails then go to MSI/legacy.
3246 */
a4ab6137 3247 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3248 sizeof(struct msix_entry),
3249 GFP_KERNEL);
3250 if (!qdev->msi_x_entry) {
a5a62a1c 3251 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3252 goto msi;
3253 }
3254
a4ab6137 3255 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3256 qdev->msi_x_entry[i].entry = i;
3257
a4ab6137
RM
3258 /* Loop to get our vectors. We start with
3259 * what we want and settle for what we get.
3260 */
3261 do {
3262 err = pci_enable_msix(qdev->pdev,
3263 qdev->msi_x_entry, qdev->intr_count);
3264 if (err > 0)
3265 qdev->intr_count = err;
3266 } while (err > 0);
3267
3268 if (err < 0) {
c4e84bde
RM
3269 kfree(qdev->msi_x_entry);
3270 qdev->msi_x_entry = NULL;
ae9540f7
JP
3271 netif_warn(qdev, ifup, qdev->ndev,
3272 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 3273 qdev->intr_count = 1;
a5a62a1c 3274 qlge_irq_type = MSI_IRQ;
a4ab6137
RM
3275 } else if (err == 0) {
3276 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3277 netif_info(qdev, ifup, qdev->ndev,
3278 "MSI-X Enabled, got %d vectors.\n",
3279 qdev->intr_count);
a4ab6137 3280 return;
c4e84bde
RM
3281 }
3282 }
3283msi:
a4ab6137 3284 qdev->intr_count = 1;
a5a62a1c 3285 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3286 if (!pci_enable_msi(qdev->pdev)) {
3287 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3288 netif_info(qdev, ifup, qdev->ndev,
3289 "Running with MSI interrupts.\n");
c4e84bde
RM
3290 return;
3291 }
3292 }
a5a62a1c 3293 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3294 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3295 "Running with legacy interrupts.\n");
c4e84bde
RM
3296}
3297
39aa8165
RM
3298/* Each vector services 1 RSS ring and and 1 or more
3299 * TX completion rings. This function loops through
3300 * the TX completion rings and assigns the vector that
3301 * will service it. An example would be if there are
3302 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3303 * This would mean that vector 0 would service RSS ring 0
25985edc 3304 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3305 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3306 */
3307static void ql_set_tx_vect(struct ql_adapter *qdev)
3308{
3309 int i, j, vect;
3310 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3311
3312 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3313 /* Assign irq vectors to TX rx_rings.*/
3314 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3315 i < qdev->rx_ring_count; i++) {
3316 if (j == tx_rings_per_vector) {
3317 vect++;
3318 j = 0;
3319 }
3320 qdev->rx_ring[i].irq = vect;
3321 j++;
3322 }
3323 } else {
3324 /* For single vector all rings have an irq
3325 * of zero.
3326 */
3327 for (i = 0; i < qdev->rx_ring_count; i++)
3328 qdev->rx_ring[i].irq = 0;
3329 }
3330}
3331
3332/* Set the interrupt mask for this vector. Each vector
3333 * will service 1 RSS ring and 1 or more TX completion
3334 * rings. This function sets up a bit mask per vector
3335 * that indicates which rings it services.
3336 */
3337static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3338{
3339 int j, vect = ctx->intr;
3340 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3341
3342 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3343 /* Add the RSS ring serviced by this vector
3344 * to the mask.
3345 */
3346 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3347 /* Add the TX ring(s) serviced by this vector
3348 * to the mask. */
3349 for (j = 0; j < tx_rings_per_vector; j++) {
3350 ctx->irq_mask |=
3351 (1 << qdev->rx_ring[qdev->rss_ring_count +
3352 (vect * tx_rings_per_vector) + j].cq_id);
3353 }
3354 } else {
3355 /* For single vector we just shift each queue's
3356 * ID into the mask.
3357 */
3358 for (j = 0; j < qdev->rx_ring_count; j++)
3359 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3360 }
3361}
3362
c4e84bde
RM
3363/*
3364 * Here we build the intr_context structures based on
3365 * our rx_ring count and intr vector count.
3366 * The intr_context structure is used to hook each vector
3367 * to possibly different handlers.
3368 */
3369static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3370{
3371 int i = 0;
3372 struct intr_context *intr_context = &qdev->intr_context[0];
3373
c4e84bde
RM
3374 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3375 /* Each rx_ring has it's
3376 * own intr_context since we have separate
3377 * vectors for each queue.
c4e84bde
RM
3378 */
3379 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3380 qdev->rx_ring[i].irq = i;
3381 intr_context->intr = i;
3382 intr_context->qdev = qdev;
39aa8165
RM
3383 /* Set up this vector's bit-mask that indicates
3384 * which queues it services.
3385 */
3386 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3387 /*
3388 * We set up each vectors enable/disable/read bits so
3389 * there's no bit/mask calculations in the critical path.
3390 */
3391 intr_context->intr_en_mask =
3392 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3393 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3394 | i;
3395 intr_context->intr_dis_mask =
3396 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3397 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3398 INTR_EN_IHD | i;
3399 intr_context->intr_read_mask =
3400 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3401 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3402 i;
39aa8165
RM
3403 if (i == 0) {
3404 /* The first vector/queue handles
3405 * broadcast/multicast, fatal errors,
3406 * and firmware events. This in addition
3407 * to normal inbound NAPI processing.
c4e84bde 3408 */
39aa8165 3409 intr_context->handler = qlge_isr;
b2014ff8
RM
3410 sprintf(intr_context->name, "%s-rx-%d",
3411 qdev->ndev->name, i);
3412 } else {
c4e84bde 3413 /*
39aa8165 3414 * Inbound queues handle unicast frames only.
c4e84bde 3415 */
39aa8165
RM
3416 intr_context->handler = qlge_msix_rx_isr;
3417 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3418 qdev->ndev->name, i);
c4e84bde
RM
3419 }
3420 }
3421 } else {
3422 /*
3423 * All rx_rings use the same intr_context since
3424 * there is only one vector.
3425 */
3426 intr_context->intr = 0;
3427 intr_context->qdev = qdev;
3428 /*
3429 * We set up each vectors enable/disable/read bits so
3430 * there's no bit/mask calculations in the critical path.
3431 */
3432 intr_context->intr_en_mask =
3433 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3434 intr_context->intr_dis_mask =
3435 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3436 INTR_EN_TYPE_DISABLE;
3437 intr_context->intr_read_mask =
3438 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3439 /*
3440 * Single interrupt means one handler for all rings.
3441 */
3442 intr_context->handler = qlge_isr;
3443 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3444 /* Set up this vector's bit-mask that indicates
3445 * which queues it services. In this case there is
3446 * a single vector so it will service all RSS and
3447 * TX completion rings.
3448 */
3449 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3450 }
39aa8165
RM
3451 /* Tell the TX completion rings which MSIx vector
3452 * they will be using.
3453 */
3454 ql_set_tx_vect(qdev);
c4e84bde
RM
3455}
3456
3457static void ql_free_irq(struct ql_adapter *qdev)
3458{
3459 int i;
3460 struct intr_context *intr_context = &qdev->intr_context[0];
3461
3462 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3463 if (intr_context->hooked) {
3464 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3465 free_irq(qdev->msi_x_entry[i].vector,
3466 &qdev->rx_ring[i]);
c4e84bde
RM
3467 } else {
3468 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3469 }
3470 }
3471 }
3472 ql_disable_msix(qdev);
3473}
3474
3475static int ql_request_irq(struct ql_adapter *qdev)
3476{
3477 int i;
3478 int status = 0;
3479 struct pci_dev *pdev = qdev->pdev;
3480 struct intr_context *intr_context = &qdev->intr_context[0];
3481
3482 ql_resolve_queues_to_irqs(qdev);
3483
3484 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3485 atomic_set(&intr_context->irq_cnt, 0);
3486 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3487 status = request_irq(qdev->msi_x_entry[i].vector,
3488 intr_context->handler,
3489 0,
3490 intr_context->name,
3491 &qdev->rx_ring[i]);
3492 if (status) {
ae9540f7
JP
3493 netif_err(qdev, ifup, qdev->ndev,
3494 "Failed request for MSIX interrupt %d.\n",
3495 i);
c4e84bde 3496 goto err_irq;
c4e84bde
RM
3497 }
3498 } else {
ae9540f7
JP
3499 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3500 "trying msi or legacy interrupts.\n");
3501 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3502 "%s: irq = %d.\n", __func__, pdev->irq);
3503 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3504 "%s: context->name = %s.\n", __func__,
3505 intr_context->name);
3506 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3507 "%s: dev_id = 0x%p.\n", __func__,
3508 &qdev->rx_ring[0]);
c4e84bde
RM
3509 status =
3510 request_irq(pdev->irq, qlge_isr,
3511 test_bit(QL_MSI_ENABLED,
3512 &qdev->
3513 flags) ? 0 : IRQF_SHARED,
3514 intr_context->name, &qdev->rx_ring[0]);
3515 if (status)
3516 goto err_irq;
3517
ae9540f7
JP
3518 netif_err(qdev, ifup, qdev->ndev,
3519 "Hooked intr %d, queue type %s, with name %s.\n",
3520 i,
3521 qdev->rx_ring[0].type == DEFAULT_Q ?
3522 "DEFAULT_Q" :
3523 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3524 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3525 intr_context->name);
c4e84bde
RM
3526 }
3527 intr_context->hooked = 1;
3528 }
3529 return status;
3530err_irq:
ae9540f7 3531 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
c4e84bde
RM
3532 ql_free_irq(qdev);
3533 return status;
3534}
3535
3536static int ql_start_rss(struct ql_adapter *qdev)
3537{
215faf9c
JP
3538 static const u8 init_hash_seed[] = {
3539 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3540 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3541 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3542 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3543 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3544 };
c4e84bde
RM
3545 struct ricb *ricb = &qdev->ricb;
3546 int status = 0;
3547 int i;
3548 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3549
e332471c 3550 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3551
b2014ff8 3552 ricb->base_cq = RSS_L4K;
c4e84bde 3553 ricb->flags =
541ae28c
RM
3554 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3555 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3556
3557 /*
3558 * Fill out the Indirection Table.
3559 */
541ae28c
RM
3560 for (i = 0; i < 1024; i++)
3561 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3562
541ae28c
RM
3563 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3564 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3565
e332471c 3566 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3567 if (status) {
ae9540f7 3568 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3569 return status;
3570 }
c4e84bde
RM
3571 return status;
3572}
3573
a5f59dc9 3574static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3575{
a5f59dc9 3576 int i, status = 0;
c4e84bde 3577
8587ea35
RM
3578 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3579 if (status)
3580 return status;
c4e84bde
RM
3581 /* Clear all the entries in the routing table. */
3582 for (i = 0; i < 16; i++) {
3583 status = ql_set_routing_reg(qdev, i, 0, 0);
3584 if (status) {
ae9540f7
JP
3585 netif_err(qdev, ifup, qdev->ndev,
3586 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3587 break;
c4e84bde
RM
3588 }
3589 }
a5f59dc9
RM
3590 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3591 return status;
3592}
3593
3594/* Initialize the frame-to-queue routing. */
3595static int ql_route_initialize(struct ql_adapter *qdev)
3596{
3597 int status = 0;
3598
fd21cf52
RM
3599 /* Clear all the entries in the routing table. */
3600 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3601 if (status)
3602 return status;
3603
fd21cf52 3604 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3605 if (status)
fd21cf52 3606 return status;
c4e84bde 3607
fbc2ac33
RM
3608 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3609 RT_IDX_IP_CSUM_ERR, 1);
3610 if (status) {
3611 netif_err(qdev, ifup, qdev->ndev,
3612 "Failed to init routing register "
3613 "for IP CSUM error packets.\n");
3614 goto exit;
3615 }
3616 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3617 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3618 if (status) {
ae9540f7 3619 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3620 "Failed to init routing register "
3621 "for TCP/UDP CSUM error packets.\n");
8587ea35 3622 goto exit;
c4e84bde
RM
3623 }
3624 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3625 if (status) {
ae9540f7
JP
3626 netif_err(qdev, ifup, qdev->ndev,
3627 "Failed to init routing register for broadcast packets.\n");
8587ea35 3628 goto exit;
c4e84bde
RM
3629 }
3630 /* If we have more than one inbound queue, then turn on RSS in the
3631 * routing block.
3632 */
3633 if (qdev->rss_ring_count > 1) {
3634 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3635 RT_IDX_RSS_MATCH, 1);
3636 if (status) {
ae9540f7
JP
3637 netif_err(qdev, ifup, qdev->ndev,
3638 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3639 goto exit;
c4e84bde
RM
3640 }
3641 }
3642
3643 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3644 RT_IDX_CAM_HIT, 1);
8587ea35 3645 if (status)
ae9540f7
JP
3646 netif_err(qdev, ifup, qdev->ndev,
3647 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3648exit:
3649 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3650 return status;
3651}
3652
2ee1e272 3653int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3654{
7fab3bfe 3655 int status, set;
bb58b5b6 3656
7fab3bfe
RM
3657 /* If check if the link is up and use to
3658 * determine if we are setting or clearing
3659 * the MAC address in the CAM.
3660 */
3661 set = ql_read32(qdev, STS);
3662 set &= qdev->port_link_up;
3663 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3664 if (status) {
ae9540f7 3665 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3666 return status;
3667 }
3668
3669 status = ql_route_initialize(qdev);
3670 if (status)
ae9540f7 3671 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3672
3673 return status;
3674}
3675
c4e84bde
RM
3676static int ql_adapter_initialize(struct ql_adapter *qdev)
3677{
3678 u32 value, mask;
3679 int i;
3680 int status = 0;
3681
3682 /*
3683 * Set up the System register to halt on errors.
3684 */
3685 value = SYS_EFE | SYS_FAE;
3686 mask = value << 16;
3687 ql_write32(qdev, SYS, mask | value);
3688
c9cf0a04
RM
3689 /* Set the default queue, and VLAN behavior. */
3690 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3691 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3692 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3693
3694 /* Set the MPI interrupt to enabled. */
3695 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3696
3697 /* Enable the function, set pagesize, enable error checking. */
3698 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3699 FSC_EC | FSC_VM_PAGE_4K;
3700 value |= SPLT_SETTING;
c4e84bde
RM
3701
3702 /* Set/clear header splitting. */
3703 mask = FSC_VM_PAGESIZE_MASK |
3704 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3705 ql_write32(qdev, FSC, mask | value);
3706
572c526f 3707 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3708
a3b71939
RM
3709 /* Set RX packet routing to use port/pci function on which the
3710 * packet arrived on in addition to usual frame routing.
3711 * This is helpful on bonding where both interfaces can have
3712 * the same MAC address.
3713 */
3714 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3715 /* Reroute all packets to our Interface.
3716 * They may have been routed to MPI firmware
3717 * due to WOL.
3718 */
3719 value = ql_read32(qdev, MGMT_RCV_CFG);
3720 value &= ~MGMT_RCV_CFG_RM;
3721 mask = 0xffff0000;
3722
3723 /* Sticky reg needs clearing due to WOL. */
3724 ql_write32(qdev, MGMT_RCV_CFG, mask);
3725 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3726
3727 /* Default WOL is enable on Mezz cards */
3728 if (qdev->pdev->subsystem_device == 0x0068 ||
3729 qdev->pdev->subsystem_device == 0x0180)
3730 qdev->wol = WAKE_MAGIC;
a3b71939 3731
c4e84bde
RM
3732 /* Start up the rx queues. */
3733 for (i = 0; i < qdev->rx_ring_count; i++) {
3734 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3735 if (status) {
ae9540f7
JP
3736 netif_err(qdev, ifup, qdev->ndev,
3737 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3738 return status;
3739 }
3740 }
3741
3742 /* If there is more than one inbound completion queue
3743 * then download a RICB to configure RSS.
3744 */
3745 if (qdev->rss_ring_count > 1) {
3746 status = ql_start_rss(qdev);
3747 if (status) {
ae9540f7 3748 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3749 return status;
3750 }
3751 }
3752
3753 /* Start up the tx queues. */
3754 for (i = 0; i < qdev->tx_ring_count; i++) {
3755 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3756 if (status) {
ae9540f7
JP
3757 netif_err(qdev, ifup, qdev->ndev,
3758 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3759 return status;
3760 }
3761 }
3762
b0c2aadf
RM
3763 /* Initialize the port and set the max framesize. */
3764 status = qdev->nic_ops->port_initialize(qdev);
80928860 3765 if (status)
ae9540f7 3766 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3767
bb58b5b6
RM
3768 /* Set up the MAC address and frame routing filter. */
3769 status = ql_cam_route_initialize(qdev);
c4e84bde 3770 if (status) {
ae9540f7
JP
3771 netif_err(qdev, ifup, qdev->ndev,
3772 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3773 return status;
3774 }
3775
3776 /* Start NAPI for the RSS queues. */
19257f5a 3777 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3778 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3779
3780 return status;
3781}
3782
3783/* Issue soft reset to chip. */
3784static int ql_adapter_reset(struct ql_adapter *qdev)
3785{
3786 u32 value;
c4e84bde 3787 int status = 0;
a5f59dc9 3788 unsigned long end_jiffies;
c4e84bde 3789
a5f59dc9
RM
3790 /* Clear all the entries in the routing table. */
3791 status = ql_clear_routing_entries(qdev);
3792 if (status) {
ae9540f7 3793 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3794 return status;
3795 }
3796
3797 end_jiffies = jiffies +
3798 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d 3799
da92b393
JK
3800 /* Check if bit is set then skip the mailbox command and
3801 * clear the bit, else we are in normal reset process.
3802 */
3803 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3804 /* Stop management traffic. */
3805 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3806
3807 /* Wait for the NIC and MGMNT FIFOs to empty. */
3808 ql_wait_fifo_empty(qdev);
3809 } else
3810 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3811
c4e84bde 3812 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3813
c4e84bde
RM
3814 do {
3815 value = ql_read32(qdev, RST_FO);
3816 if ((value & RST_FO_FR) == 0)
3817 break;
a75ee7f1
RM
3818 cpu_relax();
3819 } while (time_before(jiffies, end_jiffies));
c4e84bde 3820
c4e84bde 3821 if (value & RST_FO_FR) {
ae9540f7
JP
3822 netif_err(qdev, ifdown, qdev->ndev,
3823 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3824 status = -ETIMEDOUT;
c4e84bde
RM
3825 }
3826
84087f4d
RM
3827 /* Resume management traffic. */
3828 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3829 return status;
3830}
3831
3832static void ql_display_dev_info(struct net_device *ndev)
3833{
b16fed0a 3834 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3835
ae9540f7
JP
3836 netif_info(qdev, probe, qdev->ndev,
3837 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3838 "XG Roll = %d, XG Rev = %d.\n",
3839 qdev->func,
3840 qdev->port,
3841 qdev->chip_rev_id & 0x0000000f,
3842 qdev->chip_rev_id >> 4 & 0x0000000f,
3843 qdev->chip_rev_id >> 8 & 0x0000000f,
3844 qdev->chip_rev_id >> 12 & 0x0000000f);
3845 netif_info(qdev, probe, qdev->ndev,
3846 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3847}
3848
ac409215 3849static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3850{
3851 int status = 0;
3852 u32 wol = MB_WOL_DISABLE;
3853
3854 /* The CAM is still intact after a reset, but if we
3855 * are doing WOL, then we may need to program the
3856 * routing regs. We would also need to issue the mailbox
3857 * commands to instruct the MPI what to do per the ethtool
3858 * settings.
3859 */
3860
3861 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3862 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3863 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3864 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3865 qdev->wol);
bc083ce9
RM
3866 return -EINVAL;
3867 }
3868
3869 if (qdev->wol & WAKE_MAGIC) {
3870 status = ql_mb_wol_set_magic(qdev, 1);
3871 if (status) {
ae9540f7
JP
3872 netif_err(qdev, ifdown, qdev->ndev,
3873 "Failed to set magic packet on %s.\n",
3874 qdev->ndev->name);
bc083ce9
RM
3875 return status;
3876 } else
ae9540f7
JP
3877 netif_info(qdev, drv, qdev->ndev,
3878 "Enabled magic packet successfully on %s.\n",
3879 qdev->ndev->name);
bc083ce9
RM
3880
3881 wol |= MB_WOL_MAGIC_PKT;
3882 }
3883
3884 if (qdev->wol) {
bc083ce9
RM
3885 wol |= MB_WOL_MODE_ON;
3886 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3887 netif_err(qdev, drv, qdev->ndev,
3888 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3889 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3890 wol, qdev->ndev->name);
bc083ce9
RM
3891 }
3892
3893 return status;
3894}
3895
c5dadddb 3896static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3897{
c4e84bde 3898
6497b607
RM
3899 /* Don't kill the reset worker thread if we
3900 * are in the process of recovery.
3901 */
3902 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3903 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3904 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3905 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3906 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3907 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3908 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3909}
3910
3911static int ql_adapter_down(struct ql_adapter *qdev)
3912{
3913 int i, status = 0;
3914
3915 ql_link_off(qdev);
3916
3917 ql_cancel_all_work_sync(qdev);
c4e84bde 3918
39aa8165
RM
3919 for (i = 0; i < qdev->rss_ring_count; i++)
3920 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3921
3922 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3923
3924 ql_disable_interrupts(qdev);
3925
3926 ql_tx_ring_clean(qdev);
3927
6b318cb3
RM
3928 /* Call netif_napi_del() from common point.
3929 */
b2014ff8 3930 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3931 netif_napi_del(&qdev->rx_ring[i].napi);
3932
c4e84bde
RM
3933 status = ql_adapter_reset(qdev);
3934 if (status)
ae9540f7
JP
3935 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3936 qdev->func);
fe5f0980
BL
3937 ql_free_rx_buffers(qdev);
3938
c4e84bde
RM
3939 return status;
3940}
3941
3942static int ql_adapter_up(struct ql_adapter *qdev)
3943{
3944 int err = 0;
3945
c4e84bde
RM
3946 err = ql_adapter_initialize(qdev);
3947 if (err) {
ae9540f7 3948 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
3949 goto err_init;
3950 }
c4e84bde 3951 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3952 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3953 /* If the port is initialized and the
3954 * link is up the turn on the carrier.
3955 */
3956 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3957 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3958 ql_link_on(qdev);
f2c05004
RM
3959 /* Restore rx mode. */
3960 clear_bit(QL_ALLMULTI, &qdev->flags);
3961 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3962 qlge_set_multicast_list(qdev->ndev);
3963
c1b60092
RM
3964 /* Restore vlan setting. */
3965 qlge_restore_vlan(qdev);
3966
c4e84bde
RM
3967 ql_enable_interrupts(qdev);
3968 ql_enable_all_completion_interrupts(qdev);
1e213303 3969 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3970
3971 return 0;
3972err_init:
3973 ql_adapter_reset(qdev);
3974 return err;
3975}
3976
c4e84bde
RM
3977static void ql_release_adapter_resources(struct ql_adapter *qdev)
3978{
3979 ql_free_mem_resources(qdev);
3980 ql_free_irq(qdev);
3981}
3982
3983static int ql_get_adapter_resources(struct ql_adapter *qdev)
3984{
3985 int status = 0;
3986
3987 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 3988 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
3989 return -ENOMEM;
3990 }
3991 status = ql_request_irq(qdev);
c4e84bde
RM
3992 return status;
3993}
3994
3995static int qlge_close(struct net_device *ndev)
3996{
3997 struct ql_adapter *qdev = netdev_priv(ndev);
3998
4bbd1a19
RM
3999 /* If we hit pci_channel_io_perm_failure
4000 * failure condition, then we already
4001 * brought the adapter down.
4002 */
4003 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 4004 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
4005 clear_bit(QL_EEH_FATAL, &qdev->flags);
4006 return 0;
4007 }
4008
c4e84bde
RM
4009 /*
4010 * Wait for device to recover from a reset.
4011 * (Rarely happens, but possible.)
4012 */
4013 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4014 msleep(1);
4015 ql_adapter_down(qdev);
4016 ql_release_adapter_resources(qdev);
c4e84bde
RM
4017 return 0;
4018}
4019
4020static int ql_configure_rings(struct ql_adapter *qdev)
4021{
4022 int i;
4023 struct rx_ring *rx_ring;
4024 struct tx_ring *tx_ring;
a4ab6137 4025 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4026 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4027 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4028
4029 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4030
4031 /* In a perfect world we have one RSS ring for each CPU
4032 * and each has it's own vector. To do that we ask for
4033 * cpu_cnt vectors. ql_enable_msix() will adjust the
4034 * vector count to what we actually get. We then
4035 * allocate an RSS ring for each.
4036 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4037 */
a4ab6137
RM
4038 qdev->intr_count = cpu_cnt;
4039 ql_enable_msix(qdev);
4040 /* Adjust the RSS ring count to the actual vector count. */
4041 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4042 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4043 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4044
c4e84bde
RM
4045 for (i = 0; i < qdev->tx_ring_count; i++) {
4046 tx_ring = &qdev->tx_ring[i];
e332471c 4047 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4048 tx_ring->qdev = qdev;
4049 tx_ring->wq_id = i;
4050 tx_ring->wq_len = qdev->tx_ring_size;
4051 tx_ring->wq_size =
4052 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4053
4054 /*
4055 * The completion queue ID for the tx rings start
39aa8165 4056 * immediately after the rss rings.
c4e84bde 4057 */
39aa8165 4058 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4059 }
4060
4061 for (i = 0; i < qdev->rx_ring_count; i++) {
4062 rx_ring = &qdev->rx_ring[i];
e332471c 4063 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4064 rx_ring->qdev = qdev;
4065 rx_ring->cq_id = i;
4066 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4067 if (i < qdev->rss_ring_count) {
39aa8165
RM
4068 /*
4069 * Inbound (RSS) queues.
4070 */
c4e84bde
RM
4071 rx_ring->cq_len = qdev->rx_ring_size;
4072 rx_ring->cq_size =
4073 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4074 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4075 rx_ring->lbq_size =
2c9a0d41 4076 rx_ring->lbq_len * sizeof(__le64);
7c734359 4077 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4078 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4079 rx_ring->sbq_size =
2c9a0d41 4080 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4081 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4082 rx_ring->type = RX_Q;
4083 } else {
c4e84bde
RM
4084 /*
4085 * Outbound queue handles outbound completions only.
4086 */
4087 /* outbound cq is same size as tx_ring it services. */
4088 rx_ring->cq_len = qdev->tx_ring_size;
4089 rx_ring->cq_size =
4090 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4091 rx_ring->lbq_len = 0;
4092 rx_ring->lbq_size = 0;
4093 rx_ring->lbq_buf_size = 0;
4094 rx_ring->sbq_len = 0;
4095 rx_ring->sbq_size = 0;
4096 rx_ring->sbq_buf_size = 0;
4097 rx_ring->type = TX_Q;
c4e84bde
RM
4098 }
4099 }
4100 return 0;
4101}
4102
4103static int qlge_open(struct net_device *ndev)
4104{
4105 int err = 0;
4106 struct ql_adapter *qdev = netdev_priv(ndev);
4107
74e12435
RM
4108 err = ql_adapter_reset(qdev);
4109 if (err)
4110 return err;
4111
c4e84bde
RM
4112 err = ql_configure_rings(qdev);
4113 if (err)
4114 return err;
4115
4116 err = ql_get_adapter_resources(qdev);
4117 if (err)
4118 goto error_up;
4119
4120 err = ql_adapter_up(qdev);
4121 if (err)
4122 goto error_up;
4123
4124 return err;
4125
4126error_up:
4127 ql_release_adapter_resources(qdev);
c4e84bde
RM
4128 return err;
4129}
4130
7c734359
RM
4131static int ql_change_rx_buffers(struct ql_adapter *qdev)
4132{
4133 struct rx_ring *rx_ring;
4134 int i, status;
4135 u32 lbq_buf_len;
4136
25985edc 4137 /* Wait for an outstanding reset to complete. */
7c734359
RM
4138 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4139 int i = 3;
4140 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4141 netif_err(qdev, ifup, qdev->ndev,
4142 "Waiting for adapter UP...\n");
7c734359
RM
4143 ssleep(1);
4144 }
4145
4146 if (!i) {
ae9540f7
JP
4147 netif_err(qdev, ifup, qdev->ndev,
4148 "Timed out waiting for adapter UP\n");
7c734359
RM
4149 return -ETIMEDOUT;
4150 }
4151 }
4152
4153 status = ql_adapter_down(qdev);
4154 if (status)
4155 goto error;
4156
4157 /* Get the new rx buffer size. */
4158 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4159 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4160 qdev->lbq_buf_order = get_order(lbq_buf_len);
4161
4162 for (i = 0; i < qdev->rss_ring_count; i++) {
4163 rx_ring = &qdev->rx_ring[i];
4164 /* Set the new size. */
4165 rx_ring->lbq_buf_size = lbq_buf_len;
4166 }
4167
4168 status = ql_adapter_up(qdev);
4169 if (status)
4170 goto error;
4171
4172 return status;
4173error:
ae9540f7
JP
4174 netif_alert(qdev, ifup, qdev->ndev,
4175 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4176 set_bit(QL_ADAPTER_UP, &qdev->flags);
4177 dev_close(qdev->ndev);
4178 return status;
4179}
4180
c4e84bde
RM
4181static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4182{
4183 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4184 int status;
c4e84bde
RM
4185
4186 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4187 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4188 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4189 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4190 } else
4191 return -EINVAL;
7c734359
RM
4192
4193 queue_delayed_work(qdev->workqueue,
4194 &qdev->mpi_port_cfg_work, 3*HZ);
4195
746079da
BL
4196 ndev->mtu = new_mtu;
4197
7c734359 4198 if (!netif_running(qdev->ndev)) {
7c734359
RM
4199 return 0;
4200 }
4201
7c734359
RM
4202 status = ql_change_rx_buffers(qdev);
4203 if (status) {
ae9540f7
JP
4204 netif_err(qdev, ifup, qdev->ndev,
4205 "Changing MTU failed.\n");
7c734359
RM
4206 }
4207
4208 return status;
c4e84bde
RM
4209}
4210
4211static struct net_device_stats *qlge_get_stats(struct net_device
4212 *ndev)
4213{
885ee398
RM
4214 struct ql_adapter *qdev = netdev_priv(ndev);
4215 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4216 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4217 unsigned long pkts, mcast, dropped, errors, bytes;
4218 int i;
4219
4220 /* Get RX stats. */
4221 pkts = mcast = dropped = errors = bytes = 0;
4222 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4223 pkts += rx_ring->rx_packets;
4224 bytes += rx_ring->rx_bytes;
4225 dropped += rx_ring->rx_dropped;
4226 errors += rx_ring->rx_errors;
4227 mcast += rx_ring->rx_multicast;
4228 }
4229 ndev->stats.rx_packets = pkts;
4230 ndev->stats.rx_bytes = bytes;
4231 ndev->stats.rx_dropped = dropped;
4232 ndev->stats.rx_errors = errors;
4233 ndev->stats.multicast = mcast;
4234
4235 /* Get TX stats. */
4236 pkts = errors = bytes = 0;
4237 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4238 pkts += tx_ring->tx_packets;
4239 bytes += tx_ring->tx_bytes;
4240 errors += tx_ring->tx_errors;
4241 }
4242 ndev->stats.tx_packets = pkts;
4243 ndev->stats.tx_bytes = bytes;
4244 ndev->stats.tx_errors = errors;
bcc90f55 4245 return &ndev->stats;
c4e84bde
RM
4246}
4247
ac409215 4248static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4249{
b16fed0a 4250 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4251 struct netdev_hw_addr *ha;
cc288f54 4252 int i, status;
c4e84bde 4253
cc288f54
RM
4254 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4255 if (status)
4256 return;
c4e84bde
RM
4257 /*
4258 * Set or clear promiscuous mode if a
4259 * transition is taking place.
4260 */
4261 if (ndev->flags & IFF_PROMISC) {
4262 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4263 if (ql_set_routing_reg
4264 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4265 netif_err(qdev, hw, qdev->ndev,
25985edc 4266 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4267 } else {
4268 set_bit(QL_PROMISCUOUS, &qdev->flags);
4269 }
4270 }
4271 } else {
4272 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4273 if (ql_set_routing_reg
4274 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4275 netif_err(qdev, hw, qdev->ndev,
25985edc 4276 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4277 } else {
4278 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4279 }
4280 }
4281 }
4282
4283 /*
4284 * Set or clear all multicast mode if a
4285 * transition is taking place.
4286 */
4287 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4288 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4289 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4290 if (ql_set_routing_reg
4291 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4292 netif_err(qdev, hw, qdev->ndev,
4293 "Failed to set all-multi mode.\n");
c4e84bde
RM
4294 } else {
4295 set_bit(QL_ALLMULTI, &qdev->flags);
4296 }
4297 }
4298 } else {
4299 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4300 if (ql_set_routing_reg
4301 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4302 netif_err(qdev, hw, qdev->ndev,
4303 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4304 } else {
4305 clear_bit(QL_ALLMULTI, &qdev->flags);
4306 }
4307 }
4308 }
4309
4cd24eaf 4310 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4311 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4312 if (status)
4313 goto exit;
f9dcbcc9 4314 i = 0;
22bedad3
JP
4315 netdev_for_each_mc_addr(ha, ndev) {
4316 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4317 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4318 netif_err(qdev, hw, qdev->ndev,
4319 "Failed to loadmulticast address.\n");
cc288f54 4320 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4321 goto exit;
4322 }
f9dcbcc9
JP
4323 i++;
4324 }
cc288f54 4325 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4326 if (ql_set_routing_reg
4327 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4328 netif_err(qdev, hw, qdev->ndev,
4329 "Failed to set multicast match mode.\n");
c4e84bde
RM
4330 } else {
4331 set_bit(QL_ALLMULTI, &qdev->flags);
4332 }
4333 }
4334exit:
8587ea35 4335 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4336}
4337
4338static int qlge_set_mac_address(struct net_device *ndev, void *p)
4339{
b16fed0a 4340 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4341 struct sockaddr *addr = p;
cc288f54 4342 int status;
c4e84bde 4343
c4e84bde
RM
4344 if (!is_valid_ether_addr(addr->sa_data))
4345 return -EADDRNOTAVAIL;
4346 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4347 /* Update local copy of current mac address. */
4348 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4349
cc288f54
RM
4350 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4351 if (status)
4352 return status;
cc288f54
RM
4353 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4354 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4355 if (status)
ae9540f7 4356 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4357 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4358 return status;
c4e84bde
RM
4359}
4360
4361static void qlge_tx_timeout(struct net_device *ndev)
4362{
b16fed0a 4363 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4364 ql_queue_asic_error(qdev);
c4e84bde
RM
4365}
4366
4367static void ql_asic_reset_work(struct work_struct *work)
4368{
4369 struct ql_adapter *qdev =
4370 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4371 int status;
f2c0d8df 4372 rtnl_lock();
db98812f
RM
4373 status = ql_adapter_down(qdev);
4374 if (status)
4375 goto error;
4376
4377 status = ql_adapter_up(qdev);
4378 if (status)
4379 goto error;
2cd6dbaa
RM
4380
4381 /* Restore rx mode. */
4382 clear_bit(QL_ALLMULTI, &qdev->flags);
4383 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4384 qlge_set_multicast_list(qdev->ndev);
4385
f2c0d8df 4386 rtnl_unlock();
db98812f
RM
4387 return;
4388error:
ae9540f7
JP
4389 netif_alert(qdev, ifup, qdev->ndev,
4390 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4391
db98812f
RM
4392 set_bit(QL_ADAPTER_UP, &qdev->flags);
4393 dev_close(qdev->ndev);
4394 rtnl_unlock();
c4e84bde
RM
4395}
4396
ef9c7ab4 4397static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4398 .get_flash = ql_get_8012_flash_params,
4399 .port_initialize = ql_8012_port_initialize,
4400};
4401
ef9c7ab4 4402static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4403 .get_flash = ql_get_8000_flash_params,
4404 .port_initialize = ql_8000_port_initialize,
4405};
4406
e4552f51
RM
4407/* Find the pcie function number for the other NIC
4408 * on this chip. Since both NIC functions share a
4409 * common firmware we have the lowest enabled function
4410 * do any common work. Examples would be resetting
4411 * after a fatal firmware error, or doing a firmware
4412 * coredump.
4413 */
4414static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4415{
4416 int status = 0;
4417 u32 temp;
4418 u32 nic_func1, nic_func2;
4419
4420 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4421 &temp);
4422 if (status)
4423 return status;
4424
4425 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4426 MPI_TEST_NIC_FUNC_MASK);
4427 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4428 MPI_TEST_NIC_FUNC_MASK);
4429
4430 if (qdev->func == nic_func1)
4431 qdev->alt_func = nic_func2;
4432 else if (qdev->func == nic_func2)
4433 qdev->alt_func = nic_func1;
4434 else
4435 status = -EIO;
4436
4437 return status;
4438}
b0c2aadf 4439
e4552f51 4440static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4441{
e4552f51 4442 int status;
c4e84bde
RM
4443 qdev->func =
4444 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4445 if (qdev->func > 3)
4446 return -EIO;
4447
4448 status = ql_get_alt_pcie_func(qdev);
4449 if (status)
4450 return status;
4451
4452 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4453 if (qdev->port) {
c4e84bde
RM
4454 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4455 qdev->port_link_up = STS_PL1;
4456 qdev->port_init = STS_PI1;
4457 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4458 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4459 } else {
4460 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4461 qdev->port_link_up = STS_PL0;
4462 qdev->port_init = STS_PI0;
4463 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4464 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4465 }
4466 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4467 qdev->device_id = qdev->pdev->device;
4468 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4469 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4470 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4471 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4472 return status;
c4e84bde
RM
4473}
4474
4475static void ql_release_all(struct pci_dev *pdev)
4476{
4477 struct net_device *ndev = pci_get_drvdata(pdev);
4478 struct ql_adapter *qdev = netdev_priv(ndev);
4479
4480 if (qdev->workqueue) {
4481 destroy_workqueue(qdev->workqueue);
4482 qdev->workqueue = NULL;
4483 }
39aa8165 4484
c4e84bde 4485 if (qdev->reg_base)
8668ae92 4486 iounmap(qdev->reg_base);
c4e84bde
RM
4487 if (qdev->doorbell_area)
4488 iounmap(qdev->doorbell_area);
8aae2600 4489 vfree(qdev->mpi_coredump);
c4e84bde
RM
4490 pci_release_regions(pdev);
4491 pci_set_drvdata(pdev, NULL);
4492}
4493
5d8e8726 4494static int ql_init_device(struct pci_dev *pdev,
c4e84bde
RM
4495 struct net_device *ndev, int cards_found)
4496{
4497 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4498 int err = 0;
c4e84bde 4499
e332471c 4500 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4501 err = pci_enable_device(pdev);
4502 if (err) {
4503 dev_err(&pdev->dev, "PCI device enable failed.\n");
4504 return err;
4505 }
4506
ebd6e774
RM
4507 qdev->ndev = ndev;
4508 qdev->pdev = pdev;
4509 pci_set_drvdata(pdev, ndev);
c4e84bde 4510
bc9167f3
RM
4511 /* Set PCIe read request size */
4512 err = pcie_set_readrq(pdev, 4096);
4513 if (err) {
4514 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4515 goto err_out1;
bc9167f3
RM
4516 }
4517
c4e84bde
RM
4518 err = pci_request_regions(pdev, DRV_NAME);
4519 if (err) {
4520 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4521 return err;
c4e84bde
RM
4522 }
4523
4524 pci_set_master(pdev);
6a35528a 4525 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4526 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4527 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4528 } else {
284901a9 4529 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4530 if (!err)
284901a9 4531 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4532 }
4533
4534 if (err) {
4535 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4536 goto err_out2;
c4e84bde
RM
4537 }
4538
73475339
RM
4539 /* Set PCIe reset type for EEH to fundamental. */
4540 pdev->needs_freset = 1;
6d190c6e 4541 pci_save_state(pdev);
c4e84bde
RM
4542 qdev->reg_base =
4543 ioremap_nocache(pci_resource_start(pdev, 1),
4544 pci_resource_len(pdev, 1));
4545 if (!qdev->reg_base) {
4546 dev_err(&pdev->dev, "Register mapping failed.\n");
4547 err = -ENOMEM;
4f9a91c8 4548 goto err_out2;
c4e84bde
RM
4549 }
4550
4551 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4552 qdev->doorbell_area =
4553 ioremap_nocache(pci_resource_start(pdev, 3),
4554 pci_resource_len(pdev, 3));
4555 if (!qdev->doorbell_area) {
4556 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4557 err = -ENOMEM;
4f9a91c8 4558 goto err_out2;
c4e84bde
RM
4559 }
4560
e4552f51
RM
4561 err = ql_get_board_info(qdev);
4562 if (err) {
4563 dev_err(&pdev->dev, "Register access failed.\n");
4564 err = -EIO;
4f9a91c8 4565 goto err_out2;
e4552f51 4566 }
c4e84bde
RM
4567 qdev->msg_enable = netif_msg_init(debug, default_msg);
4568 spin_lock_init(&qdev->hw_lock);
4569 spin_lock_init(&qdev->stats_lock);
4570
8aae2600
RM
4571 if (qlge_mpi_coredump) {
4572 qdev->mpi_coredump =
4573 vmalloc(sizeof(struct ql_mpi_coredump));
4574 if (qdev->mpi_coredump == NULL) {
4575 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4576 err = -ENOMEM;
ce96bc86 4577 goto err_out2;
8aae2600 4578 }
d5c1da56
RM
4579 if (qlge_force_coredump)
4580 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4581 }
c4e84bde 4582 /* make sure the EEPROM is good */
b0c2aadf 4583 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4584 if (err) {
4585 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4586 goto err_out2;
c4e84bde
RM
4587 }
4588
c4e84bde 4589 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
801e9096
RM
4590 /* Keep local copy of current mac address. */
4591 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4592
4593 /* Set up the default ring sizes. */
4594 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4595 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4596
4597 /* Set up the coalescing parameters. */
4598 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4599 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4600 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4601 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4602
4603 /*
4604 * Set up the operating parameters.
4605 */
c4e84bde
RM
4606 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4607 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4608 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4609 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4610 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4611 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4612 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4613 init_completion(&qdev->ide_completion);
4d7b6b5d 4614 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4615
4616 if (!cards_found) {
4617 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4618 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4619 DRV_NAME, DRV_VERSION);
4620 }
4621 return 0;
4f9a91c8 4622err_out2:
c4e84bde 4623 ql_release_all(pdev);
4f9a91c8 4624err_out1:
c4e84bde
RM
4625 pci_disable_device(pdev);
4626 return err;
4627}
4628
25ed7849
SH
4629static const struct net_device_ops qlge_netdev_ops = {
4630 .ndo_open = qlge_open,
4631 .ndo_stop = qlge_close,
4632 .ndo_start_xmit = qlge_send,
4633 .ndo_change_mtu = qlge_change_mtu,
4634 .ndo_get_stats = qlge_get_stats,
afc4b13d 4635 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4636 .ndo_set_mac_address = qlge_set_mac_address,
4637 .ndo_validate_addr = eth_validate_addr,
4638 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4639 .ndo_fix_features = qlge_fix_features,
4640 .ndo_set_features = qlge_set_features,
01e6b953
RM
4641 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4642 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4643};
4644
15c052fc
RM
4645static void ql_timer(unsigned long data)
4646{
4647 struct ql_adapter *qdev = (struct ql_adapter *)data;
4648 u32 var = 0;
4649
4650 var = ql_read32(qdev, STS);
4651 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4652 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4653 return;
4654 }
4655
72046d84 4656 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4657}
4658
5d8e8726 4659static int qlge_probe(struct pci_dev *pdev,
c4e84bde
RM
4660 const struct pci_device_id *pci_entry)
4661{
4662 struct net_device *ndev = NULL;
4663 struct ql_adapter *qdev = NULL;
4664 static int cards_found = 0;
4665 int err = 0;
4666
1e213303 4667 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4668 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4669 if (!ndev)
4670 return -ENOMEM;
4671
4672 err = ql_init_device(pdev, ndev, cards_found);
4673 if (err < 0) {
4674 free_netdev(ndev);
4675 return err;
4676 }
4677
4678 qdev = netdev_priv(ndev);
4679 SET_NETDEV_DEV(ndev, &pdev->dev);
88230fd5
MM
4680 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4681 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4682 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4683 ndev->features = ndev->hw_features |
4684 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
1a0150a9 4685 ndev->vlan_features = ndev->hw_features;
c4e84bde
RM
4686
4687 if (test_bit(QL_DMA64, &qdev->flags))
4688 ndev->features |= NETIF_F_HIGHDMA;
4689
4690 /*
4691 * Set up net_device structure.
4692 */
4693 ndev->tx_queue_len = qdev->tx_ring_size;
4694 ndev->irq = pdev->irq;
25ed7849
SH
4695
4696 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4697 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4698 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4699
c4e84bde
RM
4700 err = register_netdev(ndev);
4701 if (err) {
4702 dev_err(&pdev->dev, "net device registration failed.\n");
4703 ql_release_all(pdev);
4704 pci_disable_device(pdev);
4705 return err;
4706 }
15c052fc
RM
4707 /* Start up the timer to trigger EEH if
4708 * the bus goes dead
4709 */
4710 init_timer_deferrable(&qdev->timer);
4711 qdev->timer.data = (unsigned long)qdev;
4712 qdev->timer.function = ql_timer;
4713 qdev->timer.expires = jiffies + (5*HZ);
4714 add_timer(&qdev->timer);
6a473308 4715 ql_link_off(qdev);
c4e84bde 4716 ql_display_dev_info(ndev);
9dfbbaa6 4717 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4718 cards_found++;
4719 return 0;
4720}
4721
9dfbbaa6
RM
4722netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4723{
4724 return qlge_send(skb, ndev);
4725}
4726
4727int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4728{
4729 return ql_clean_inbound_rx_ring(rx_ring, budget);
4730}
4731
5d8e8726 4732static void qlge_remove(struct pci_dev *pdev)
c4e84bde
RM
4733{
4734 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4735 struct ql_adapter *qdev = netdev_priv(ndev);
4736 del_timer_sync(&qdev->timer);
c5dadddb 4737 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4738 unregister_netdev(ndev);
4739 ql_release_all(pdev);
4740 pci_disable_device(pdev);
4741 free_netdev(ndev);
4742}
4743
6d190c6e
RM
4744/* Clean up resources without touching hardware. */
4745static void ql_eeh_close(struct net_device *ndev)
4746{
4747 int i;
4748 struct ql_adapter *qdev = netdev_priv(ndev);
4749
4750 if (netif_carrier_ok(ndev)) {
4751 netif_carrier_off(ndev);
4752 netif_stop_queue(ndev);
4753 }
4754
7ae80abd
BL
4755 /* Disabling the timer */
4756 del_timer_sync(&qdev->timer);
c5dadddb 4757 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4758
4759 for (i = 0; i < qdev->rss_ring_count; i++)
4760 netif_napi_del(&qdev->rx_ring[i].napi);
4761
4762 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4763 ql_tx_ring_clean(qdev);
4764 ql_free_rx_buffers(qdev);
4765 ql_release_adapter_resources(qdev);
4766}
4767
c4e84bde
RM
4768/*
4769 * This callback is called by the PCI subsystem whenever
4770 * a PCI bus error is detected.
4771 */
4772static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4773 enum pci_channel_state state)
4774{
4775 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4776 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4777
6d190c6e
RM
4778 switch (state) {
4779 case pci_channel_io_normal:
4780 return PCI_ERS_RESULT_CAN_RECOVER;
4781 case pci_channel_io_frozen:
4782 netif_device_detach(ndev);
4783 if (netif_running(ndev))
4784 ql_eeh_close(ndev);
4785 pci_disable_device(pdev);
4786 return PCI_ERS_RESULT_NEED_RESET;
4787 case pci_channel_io_perm_failure:
4788 dev_err(&pdev->dev,
4789 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4790 ql_eeh_close(ndev);
4791 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4792 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4793 }
c4e84bde
RM
4794
4795 /* Request a slot reset. */
4796 return PCI_ERS_RESULT_NEED_RESET;
4797}
4798
4799/*
4800 * This callback is called after the PCI buss has been reset.
4801 * Basically, this tries to restart the card from scratch.
4802 * This is a shortened version of the device probe/discovery code,
4803 * it resembles the first-half of the () routine.
4804 */
4805static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4806{
4807 struct net_device *ndev = pci_get_drvdata(pdev);
4808 struct ql_adapter *qdev = netdev_priv(ndev);
4809
6d190c6e
RM
4810 pdev->error_state = pci_channel_io_normal;
4811
4812 pci_restore_state(pdev);
c4e84bde 4813 if (pci_enable_device(pdev)) {
ae9540f7
JP
4814 netif_err(qdev, ifup, qdev->ndev,
4815 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4816 return PCI_ERS_RESULT_DISCONNECT;
4817 }
c4e84bde 4818 pci_set_master(pdev);
a112fd4c
RM
4819
4820 if (ql_adapter_reset(qdev)) {
ae9540f7 4821 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4822 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4823 return PCI_ERS_RESULT_DISCONNECT;
4824 }
4825
c4e84bde
RM
4826 return PCI_ERS_RESULT_RECOVERED;
4827}
4828
4829static void qlge_io_resume(struct pci_dev *pdev)
4830{
4831 struct net_device *ndev = pci_get_drvdata(pdev);
4832 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4833 int err = 0;
c4e84bde 4834
c4e84bde 4835 if (netif_running(ndev)) {
6d190c6e
RM
4836 err = qlge_open(ndev);
4837 if (err) {
ae9540f7
JP
4838 netif_err(qdev, ifup, qdev->ndev,
4839 "Device initialization failed after reset.\n");
c4e84bde
RM
4840 return;
4841 }
6d190c6e 4842 } else {
ae9540f7
JP
4843 netif_err(qdev, ifup, qdev->ndev,
4844 "Device was not running prior to EEH.\n");
c4e84bde 4845 }
72046d84 4846 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4847 netif_device_attach(ndev);
4848}
4849
3646f0e5 4850static const struct pci_error_handlers qlge_err_handler = {
c4e84bde
RM
4851 .error_detected = qlge_io_error_detected,
4852 .slot_reset = qlge_io_slot_reset,
4853 .resume = qlge_io_resume,
4854};
4855
4856static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4857{
4858 struct net_device *ndev = pci_get_drvdata(pdev);
4859 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4860 int err;
c4e84bde
RM
4861
4862 netif_device_detach(ndev);
15c052fc 4863 del_timer_sync(&qdev->timer);
c4e84bde
RM
4864
4865 if (netif_running(ndev)) {
4866 err = ql_adapter_down(qdev);
4867 if (!err)
4868 return err;
4869 }
4870
bc083ce9 4871 ql_wol(qdev);
c4e84bde
RM
4872 err = pci_save_state(pdev);
4873 if (err)
4874 return err;
4875
4876 pci_disable_device(pdev);
4877
4878 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4879
4880 return 0;
4881}
4882
04da2cf9 4883#ifdef CONFIG_PM
c4e84bde
RM
4884static int qlge_resume(struct pci_dev *pdev)
4885{
4886 struct net_device *ndev = pci_get_drvdata(pdev);
4887 struct ql_adapter *qdev = netdev_priv(ndev);
4888 int err;
4889
4890 pci_set_power_state(pdev, PCI_D0);
4891 pci_restore_state(pdev);
4892 err = pci_enable_device(pdev);
4893 if (err) {
ae9540f7 4894 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4895 return err;
4896 }
4897 pci_set_master(pdev);
4898
4899 pci_enable_wake(pdev, PCI_D3hot, 0);
4900 pci_enable_wake(pdev, PCI_D3cold, 0);
4901
4902 if (netif_running(ndev)) {
4903 err = ql_adapter_up(qdev);
4904 if (err)
4905 return err;
4906 }
4907
72046d84 4908 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4909 netif_device_attach(ndev);
4910
4911 return 0;
4912}
04da2cf9 4913#endif /* CONFIG_PM */
c4e84bde
RM
4914
4915static void qlge_shutdown(struct pci_dev *pdev)
4916{
4917 qlge_suspend(pdev, PMSG_SUSPEND);
4918}
4919
4920static struct pci_driver qlge_driver = {
4921 .name = DRV_NAME,
4922 .id_table = qlge_pci_tbl,
4923 .probe = qlge_probe,
5d8e8726 4924 .remove = qlge_remove,
c4e84bde
RM
4925#ifdef CONFIG_PM
4926 .suspend = qlge_suspend,
4927 .resume = qlge_resume,
4928#endif
4929 .shutdown = qlge_shutdown,
4930 .err_handler = &qlge_err_handler
4931};
4932
4933static int __init qlge_init_module(void)
4934{
4935 return pci_register_driver(&qlge_driver);
4936}
4937
4938static void __exit qlge_exit(void)
4939{
4940 pci_unregister_driver(&qlge_driver);
4941}
4942
4943module_init(qlge_init_module);
4944module_exit(qlge_exit);