]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/qlogic/qlge/qlge_main.c
PCI: Remove DEFINE_PCI_DEVICE_TABLE macro use
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
18c49b91 9#include <linux/bitops.h>
c4e84bde
RM
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
18c49b91 36#include <linux/if_vlan.h>
c4e84bde 37#include <linux/skbuff.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
70c71606 41#include <linux/prefetch.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
84cf7029
SR
66static int debug = -1; /* defaults above */
67module_param(debug, int, 0664);
c4e84bde
RM
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
a5a62a1c 73static int qlge_irq_type = MSIX_IRQ;
84cf7029 74module_param(qlge_irq_type, int, 0664);
a5a62a1c 75MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 76
8aae2600
RM
77static int qlge_mpi_coredump;
78module_param(qlge_mpi_coredump, int, 0);
79MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
d5c1da56
RM
81 "Default is OFF - Do Not allocate memory. ");
82
83static int qlge_force_coredump;
84module_param(qlge_force_coredump, int, 0);
85MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
8aae2600 88
9baa3c34 89static const struct pci_device_id qlge_pci_tbl[] = {
b0c2aadf 90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
92 /* required last entry */
93 {0,}
94};
95
96MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
a45adbe8
JK
98static int ql_wol(struct ql_adapter *);
99static void qlge_set_multicast_list(struct net_device *);
100static int ql_adapter_down(struct ql_adapter *);
101static int ql_adapter_up(struct ql_adapter *);
ac409215 102
c4e84bde
RM
103/* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108{
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
ae9540f7 137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143}
144
145int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146{
0857e9d7 147 unsigned int wait_count = 30;
c4e84bde
RM
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
0857e9d7
RM
151 udelay(100);
152 } while (--wait_count);
c4e84bde
RM
153 return -ETIMEDOUT;
154}
155
156void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157{
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160}
161
162/* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168{
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
ae9540f7
JP
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
c4e84bde
RM
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
ae9540f7
JP
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
188 return -ETIMEDOUT;
189}
190
191/* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195{
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209}
210
211
212/* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217{
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
231 return -ENOMEM;
232 }
233
4322c5be
RM
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
c4e84bde
RM
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
ae9540f7
JP
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
242 goto exit;
243 }
244
c4e84bde
RM
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256exit:
4322c5be 257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260}
261
262/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265{
266 u32 offset = 0;
267 int status;
268
c4e84bde
RM
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
939678f8 275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
939678f8 283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
939678f8 289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
939678f8 297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
939678f8 304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 312 MAC_ADDR_MR, 0);
c4e84bde
RM
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
ae9540f7
JP
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
c4e84bde
RM
324 status = -EPERM;
325 }
326exit:
c4e84bde
RM
327 return status;
328}
329
330/* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335{
336 u32 offset = 0;
337 int status = 0;
338
c4e84bde
RM
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
c4e84bde
RM
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
c4e84bde
RM
379 status =
380 ql_wait_reg_rdy(qdev,
939678f8 381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
939678f8 390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
939678f8 399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
76b26694
RM
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
f646968f 413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
76b26694
RM
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
c4e84bde
RM
427 status =
428 ql_wait_reg_rdy(qdev,
939678f8 429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
ae9540f7
JP
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
c4e84bde
RM
442 status = -EPERM;
443 }
444exit:
c4e84bde
RM
445 return status;
446}
447
7fab3bfe
RM
448/* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453{
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
801e9096 459 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
462 } else {
463 memset(zero_mac_addr, 0, ETH_ALEN);
464 addr = &zero_mac_addr[0];
ae9540f7
JP
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
7fab3bfe
RM
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
ae9540f7
JP
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
7fab3bfe
RM
477 return status;
478}
479
6a473308
RM
480void ql_link_on(struct ql_adapter *qdev)
481{
ae9540f7 482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485}
486
487void ql_link_off(struct ql_adapter *qdev)
488{
ae9540f7 489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492}
493
c4e84bde
RM
494/* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498{
499 int status = 0;
500
939678f8 501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511exit:
c4e84bde
RM
512 return status;
513}
514
515/* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522{
8587ea35 523 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
524 u32 value = 0;
525
c4e84bde
RM
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
fbc2ac33
RM
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
c4e84bde
RM
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
e163d7f2 573 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
e163d7f2 580 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
ae9540f7
JP
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614exit:
c4e84bde
RM
615 return status;
616}
617
618static void ql_enable_interrupts(struct ql_adapter *qdev)
619{
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621}
622
623static void ql_disable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626}
627
628/* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 631 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
bb0d215c 634u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 635{
bb0d215c
RM
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
c4e84bde 644 ql_write32(qdev, INTR_EN,
bb0d215c
RM
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
c4e84bde 648 }
bb0d215c
RM
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
c4e84bde
RM
658}
659
660static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661{
662 u32 var = 0;
bb0d215c 663 struct intr_context *ctx;
c4e84bde 664
bb0d215c
RM
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
08b1bc8f 672 spin_lock(&qdev->hw_lock);
bb0d215c 673 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 674 ql_write32(qdev, INTR_EN,
bb0d215c 675 ctx->intr_dis_mask);
c4e84bde
RM
676 var = ql_read32(qdev, STS);
677 }
bb0d215c 678 atomic_inc(&ctx->irq_cnt);
08b1bc8f 679 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
680 return var;
681}
682
683static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684{
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
bb0d215c
RM
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697}
698
b0c2aadf
RM
699static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700{
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
ae9540f7 707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
ae9540f7
JP
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
717
718 return csum;
719}
720
26351479 721static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
722{
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
26351479
RM
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
741exit:
742 return status;
743}
744
cdca8d02
RM
745static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746{
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
542512e4 751 u8 mac_addr[6];
cdca8d02
RM
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
e4552f51 756 if (!qdev->port)
cdca8d02
RM
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
ae9540f7
JP
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
cdca8d02
RM
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
ae9540f7 778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
779 status = -EINVAL;
780 goto exit;
781 }
782
542512e4
RM
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
542512e4 802 mac_addr,
cdca8d02
RM
803 qdev->ndev->addr_len);
804
805exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808}
809
b0c2aadf 810static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
811{
812 int i;
813 int status;
26351479 814 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 815 u32 offset = 0;
b0c2aadf 816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
e4552f51 821 if (qdev->port)
b0c2aadf 822 offset = size;
c4e84bde
RM
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
b0c2aadf 827 for (i = 0; i < size; i++, p++) {
e78f5fa7 828 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 829 if (status) {
ae9540f7
JP
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
c4e84bde
RM
832 goto exit;
833 }
834
835 }
b0c2aadf
RM
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
ae9540f7 841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
c4e84bde
RM
855exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858}
859
860/* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865{
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877}
878
879/* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884{
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900exit:
901 return status;
902}
903
904/* This is used for reading the 64-bit statistics regs. */
905int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906{
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921exit:
922 return status;
923}
924
cdca8d02
RM
925static int ql_8000_port_initialize(struct ql_adapter *qdev)
926{
bcc2cb3b 927 int status;
cfec0cbc
RM
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
bcc2cb3b
RM
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940exit:
941 return status;
cdca8d02
RM
942}
943
c4e84bde
RM
944/* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
b0c2aadf 950static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
951{
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
ae9540f7
JP
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
ae9540f7
JP
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
c4e84bde
RM
965 }
966 return status;
967 }
968
ae9540f7 969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023}
1024
7c734359
RM
1025static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026{
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028}
1029
c4e84bde 1030/* Get the next large buffer. */
8668ae92 1031static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1032{
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039}
1040
7c734359
RM
1041static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043{
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1047 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061}
1062
c4e84bde 1063/* Get the next small buffer. */
8668ae92 1064static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1065{
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072}
1073
1074/* Update an rx ring index. */
1075static void ql_update_cq(struct rx_ring *rx_ring)
1076{
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083}
1084
1085static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086{
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088}
1089
7c734359
RM
1090static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092{
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
7c734359
RM
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
ef380794 1110 rx_ring->pg_chunk.page = NULL;
ae9540f7
JP
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
7c734359
RM
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137}
c4e84bde
RM
1138/* Process (refill) a large buffer queue. */
1139static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140{
49f2186d
RM
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
c4e84bde 1143 struct bq_desc *lbq_desc;
c4e84bde
RM
1144 u64 map;
1145 int i;
1146
7c734359 1147 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
c4e84bde 1152 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1154 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1155 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
ae9540f7
JP
1158 return;
1159 }
7c734359
RM
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1165 rx_ring->lbq_buf_size);
2c9a0d41 1166 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
ae9540f7
JP
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
c4e84bde
RM
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1189 }
1190}
1191
1192/* Process (refill) a small buffer queue. */
1193static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194{
49f2186d
RM
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
c4e84bde 1197 struct bq_desc *sbq_desc;
c4e84bde
RM
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1203 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
c4e84bde 1207 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
c4e84bde
RM
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
52e55f3c 1214 SMALL_BUFFER_SIZE);
c4e84bde 1215 if (sbq_desc->p.skb == NULL) {
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
433c88e8 1436/* Categorizing receive firmware frame errors */
ae721f3a
SV
1437static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
433c88e8
JK
1439{
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
ae721f3a 1443 rx_ring->rx_errors++;
433c88e8
JK
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466}
1467
a45adbe8
JK
1468/**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475{
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489}
1490
63526713
RM
1491/* Process an inbound completion from an rx ring. */
1492static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497{
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1500 struct napi_struct *napi = &rx_ring->napi;
1501
ae721f3a
SV
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
63526713
RM
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
ae9540f7
JP
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
63526713
RM
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
63526713
RM
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1533 if (vlan_id != 0xffff)
86a9bad3 1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91 1535 napi_gro_frags(napi);
63526713
RM
1536}
1537
4f848c0a
RM
1538/* Process an inbound completion from an rx ring. */
1539static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544{
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
a45adbe8 1550 size_t hlen = ETH_HLEN;
4f848c0a
RM
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
4f848c0a
RM
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
ae721f3a
SV
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
a45adbe8
JK
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
4f848c0a
RM
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
a45adbe8 1574 if (skb->len > ndev->mtu + hlen) {
ae9540f7
JP
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
4f848c0a
RM
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
a45adbe8 1580 memcpy(skb_put(skb, hlen), addr, hlen);
ae9540f7
JP
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
4f848c0a 1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
a45adbe8
JK
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
4f848c0a
RM
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1594 skb_checksum_none_assert(skb);
4f848c0a 1595
88230fd5 1596 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
4f848c0a
RM
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
e02ef331 1606 struct iphdr *iph =
a45adbe8 1607 (struct iphdr *)((u8 *)addr + hlen);
4f848c0a 1608 if (!(iph->frag_off &
0d653ed8 1609 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
e02ef331 1613 "UDP checksum done!\n");
4f848c0a
RM
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1619 if (vlan_id != 0xffff)
86a9bad3 1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
4f848c0a
RM
1625 return;
1626err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629}
1630
1631/* Process an inbound completion from an rx ring. */
1632static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637{
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
4f848c0a
RM
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1652 skb = new_skb;
1653
ae721f3a
SV
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1658 return;
1659 }
1660
4f848c0a
RM
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1665 return;
1666 }
1667
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1670 */
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1674 return;
1675 }
1676
1677 prefetch(skb->data);
4f848c0a 1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680 "%s Multicast.\n",
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1687 }
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
4f848c0a
RM
1691
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1695 skb_checksum_none_assert(skb);
4f848c0a
RM
1696
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1699 */
88230fd5 1700 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702 /* TCP frame. */
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
4f848c0a
RM
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
0d653ed8 1712 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1715 qdev->ndev,
e02ef331 1716 "UDP checksum done!\n");
4f848c0a
RM
1717 }
1718 }
1719 }
1720
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1722 if (vlan_id != 0xffff)
86a9bad3 1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1726 else
1727 netif_receive_skb(skb);
4f848c0a
RM
1728}
1729
8668ae92 1730static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1731{
1732 void *temp_addr = skb->data;
1733
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1737 */
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1741 (unsigned int)len);
1742}
1743
1744/*
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1748 */
1749static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1752{
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
c4e84bde
RM
1759
1760 /*
1761 * Handle the header buffer if present.
1762 */
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1767 /*
1768 * Headers fit nicely into a small buffer.
1769 */
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1779 }
1780
1781 /*
1782 * Handle the data buffer(s).
1783 */
1784 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
c4e84bde
RM
1787 return skb;
1788 }
1789
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1794 length);
c4e84bde
RM
1795 /*
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1800 * buffer.
1801 */
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1804 dma_unmap_addr
c4e84bde 1805 (sbq_desc, mapaddr),
64b9b41d 1806 dma_unmap_len
c4e84bde
RM
1807 (sbq_desc, maplen),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1812 dma_unmap_addr
c4e84bde
RM
1813 (sbq_desc,
1814 mapaddr),
64b9b41d 1815 dma_unmap_len
c4e84bde
RM
1816 (sbq_desc,
1817 maplen),
1818 PCI_DMA_FROMDEVICE);
1819 } else {
ae9540f7
JP
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1822 length);
c4e84bde
RM
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
64b9b41d 1828 dma_unmap_addr(sbq_desc,
c4e84bde 1829 mapaddr),
64b9b41d 1830 dma_unmap_len(sbq_desc,
c4e84bde
RM
1831 maplen),
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1834 }
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1839 length);
c4e84bde
RM
1840 /*
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1843 * it rip.
1844 */
7c734359 1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
c4e84bde
RM
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
c4e84bde
RM
1855 } else {
1856 /*
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1860 */
7c734359 1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1863 if (skb == NULL) {
ae9540f7
JP
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
c4e84bde
RM
1866 return NULL;
1867 }
4055c7d4 1868 pci_unmap_page(qdev->pdev,
64b9b41d 1869 dma_unmap_addr(lbq_desc,
4055c7d4 1870 mapaddr),
64b9b41d 1871 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1872 PCI_DMA_FROMDEVICE);
c4e84bde 1873 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876 length);
7c734359
RM
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1880 length);
c4e84bde
RM
1881 skb->len += length;
1882 skb->data_len += length;
1883 skb->truesize += length;
1884 length -= length;
a45adbe8
JK
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1887 &hlen);
1888 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1889 }
1890 } else {
1891 /*
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1895 * buffer's skb.
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1901 */
7c734359 1902 int size, i = 0;
c4e84bde
RM
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909 /*
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1916 * pages to chain.
1917 */
ae9540f7
JP
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1920 length);
c4e84bde 1921 skb = sbq_desc->p.skb;
c4e84bde
RM
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1924 }
1925 while (length > 0) {
7c734359
RM
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
c4e84bde 1929
ae9540f7
JP
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1932 i, size);
7c734359
RM
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1936 size);
c4e84bde
RM
1937 skb->len += size;
1938 skb->data_len += size;
1939 skb->truesize += size;
1940 length -= size;
c4e84bde
RM
1941 i++;
1942 }
a45adbe8
JK
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944 &hlen);
1945 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1946 }
1947 return skb;
1948}
1949
1950/* Process an inbound completion from an rx ring. */
4f848c0a 1951static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1952 struct rx_ring *rx_ring,
4f848c0a
RM
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1954 u16 vlan_id)
c4e84bde
RM
1955{
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1958
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
ae9540f7
JP
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
885ee398 1965 rx_ring->rx_dropped++;
c4e84bde
RM
1966 return;
1967 }
1968
ae721f3a
SV
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1973 return;
1974 }
1975
ec33a491
RM
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1978 */
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
885ee398 1981 rx_ring->rx_dropped++;
ec33a491
RM
1982 return;
1983 }
1984
9dfbbaa6
RM
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1989 return;
1990 }
1991
c4e84bde 1992 prefetch(skb->data);
c4e84bde 1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 2001 rx_ring->rx_multicast++;
c4e84bde
RM
2002 }
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
c4e84bde 2006 }
d555f592 2007
d555f592 2008 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 2009 skb_checksum_none_assert(skb);
d555f592
RM
2010
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2013 */
88230fd5 2014 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016 /* TCP frame. */
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
d555f592
RM
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
0d653ed8 2026 htons(IP_MF|IP_OFFSET))) {
d555f592 2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
d555f592
RM
2030 }
2031 }
c4e84bde 2032 }
d555f592 2033
885ee398
RM
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
b2014ff8 2036 skb_record_rx_queue(skb, rx_ring->cq_id);
a45adbe8 2037 if (vlan_id != 0xffff)
86a9bad3 2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2041 else
2042 netif_receive_skb(skb);
c4e84bde
RM
2043}
2044
4f848c0a
RM
2045/* Process an inbound completion from an rx ring. */
2046static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2049{
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
4f848c0a
RM
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2060 * separate buffers.
2061 */
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063 vlan_id);
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2068 */
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070 length, vlan_id);
63526713
RM
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2076 */
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078 length, vlan_id);
4f848c0a
RM
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2082 */
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084 length, vlan_id);
2085 } else {
c0c56955
RM
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2088 */
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090 vlan_id);
4f848c0a
RM
2091 }
2092
2093 return (unsigned long)length;
2094}
2095
c4e84bde
RM
2096/* Process an outbound completion from an rx ring. */
2097static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2099{
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2102
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
c4e84bde
RM
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2111
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113 OB_MAC_IOCB_RSP_S |
2114 OB_MAC_IOCB_RSP_L |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2119 }
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2123 }
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2127 }
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2131 }
2132 }
2133 atomic_inc(&tx_ring->tx_count);
2134}
2135
2136/* Fire up a handler to reset the MPI processor. */
2137void ql_queue_fw_error(struct ql_adapter *qdev)
2138{
6a473308 2139 ql_link_off(qdev);
c4e84bde
RM
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141}
2142
2143void ql_queue_asic_error(struct ql_adapter *qdev)
2144{
6a473308 2145 ql_link_off(qdev);
c4e84bde 2146 ql_disable_interrupts(qdev);
6497b607
RM
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2149 * thread
2150 */
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2154 */
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157}
2158
2159static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2161{
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
ae9540f7
JP
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
c4e84bde
RM
2166 ql_queue_fw_error(qdev);
2167 return;
2168
2169 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2172 ql_queue_asic_error(qdev);
2173 return;
2174
2175 case SOFT_ECC_ERROR_EVENT:
5069ee55 2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2177 ql_queue_asic_error(qdev);
2178 break;
2179
2180 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2183 ib_ae_rsp->q_id);
c4e84bde
RM
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 default:
ae9540f7
JP
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189 ib_ae_rsp->event);
c4e84bde
RM
2190 ql_queue_asic_error(qdev);
2191 break;
2192 }
2193}
2194
2195static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196{
2197 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2200 int count = 0;
2201
1e213303 2202 struct tx_ring *tx_ring;
c4e84bde
RM
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2205
ae9540f7
JP
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2209
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211 rmb();
2212 switch (net_rsp->opcode) {
2213
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2217 break;
2218 default:
ae9540f7
JP
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221 net_rsp->opcode);
c4e84bde
RM
2222 }
2223 count++;
2224 ql_update_cq(rx_ring);
ba7cd3ba 2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2226 }
4da79504
DC
2227 if (!net_rsp)
2228 return 0;
c4e84bde 2229 ql_write_cq_idx(rx_ring);
1e213303 2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2233 /*
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2236 */
1e213303 2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2238 }
2239
2240 return count;
2241}
2242
2243static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244{
2245 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2247 struct ql_net_rsp_iocb *net_rsp;
2248 int count = 0;
2249
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2252
ae9540f7
JP
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2256
2257 net_rsp = rx_ring->curr_entry;
2258 rmb();
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2263 net_rsp);
2264 break;
2265
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268 net_rsp);
2269 break;
2270 default:
ae9540f7
JP
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273 net_rsp->opcode);
2274 break;
c4e84bde
RM
2275 }
2276 count++;
2277 ql_update_cq(rx_ring);
ba7cd3ba 2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2279 if (count == budget)
2280 break;
2281 }
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2284 return count;
2285}
2286
2287static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288{
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2294
ae9540f7
JP
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2297
39aa8165
RM
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2304 */
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
39aa8165
RM
2311 ql_clean_outbound_rx_ring(trx_ring);
2312 }
2313 }
2314
2315 /*
2316 * Now service the RSS ring if it's active.
2317 */
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
ae9540f7
JP
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
39aa8165
RM
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324 }
2325
c4e84bde 2326 if (work_done < budget) {
22bdd4f5 2327 napi_complete(napi);
c4e84bde
RM
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329 }
2330 return work_done;
2331}
2332
c8f44aff 2333static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2334{
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2336
f646968f 2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
c4e84bde 2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2340 } else {
c4e84bde
RM
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342 }
2343}
2344
a45adbe8
JK
2345/**
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2348 */
2349static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2351{
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2353 int status = 0;
2354
2355 status = ql_adapter_down(qdev);
2356 if (status) {
2357 netif_err(qdev, link, qdev->ndev,
2358 "Failed to bring down the adapter\n");
2359 return status;
2360 }
2361
2362 /* update the features with resent change */
2363 ndev->features = features;
2364
2365 status = ql_adapter_up(qdev);
2366 if (status) {
2367 netif_err(qdev, link, qdev->ndev,
2368 "Failed to bring up the adapter\n");
2369 return status;
2370 }
2371 return status;
2372}
2373
c8f44aff
MM
2374static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375 netdev_features_t features)
18c49b91 2376{
a45adbe8 2377 int err;
18c49b91 2378
a45adbe8
JK
2379 /* Update the behavior of vlan accel in the adapter */
2380 err = qlge_update_hw_vlan_features(ndev, features);
2381 if (err)
2382 return err;
2383
18c49b91
JP
2384 return features;
2385}
2386
c8f44aff
MM
2387static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
18c49b91 2389{
c8f44aff 2390 netdev_features_t changed = ndev->features ^ features;
18c49b91 2391
f646968f 2392 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
18c49b91
JP
2393 qlge_vlan_mode(ndev, features);
2394
2395 return 0;
2396}
2397
8e586137 2398static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2399{
c4e84bde 2400 u32 enable_bit = MAC_ADDR_E;
8e586137 2401 int err;
c4e84bde 2402
8e586137
JP
2403 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404 MAC_ADDR_TYPE_VLAN, vid);
2405 if (err)
ae9540f7
JP
2406 netif_err(qdev, ifup, qdev->ndev,
2407 "Failed to init vlan address.\n");
8e586137 2408 return err;
c4e84bde
RM
2409}
2410
80d5c368 2411static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
c4e84bde
RM
2412{
2413 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2414 int status;
8e586137 2415 int err;
cc288f54
RM
2416
2417 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418 if (status)
8e586137 2419 return status;
c4e84bde 2420
8e586137 2421 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2422 set_bit(vid, qdev->active_vlans);
2423
2424 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2425
2426 return err;
18c49b91
JP
2427}
2428
8e586137 2429static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2430{
2431 u32 enable_bit = 0;
8e586137 2432 int err;
18c49b91 2433
8e586137
JP
2434 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435 MAC_ADDR_TYPE_VLAN, vid);
2436 if (err)
ae9540f7
JP
2437 netif_err(qdev, ifup, qdev->ndev,
2438 "Failed to clear vlan address.\n");
8e586137 2439 return err;
18c49b91
JP
2440}
2441
80d5c368 2442static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
18c49b91
JP
2443{
2444 struct ql_adapter *qdev = netdev_priv(ndev);
2445 int status;
8e586137 2446 int err;
c4e84bde 2447
18c49b91
JP
2448 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449 if (status)
8e586137 2450 return status;
18c49b91 2451
8e586137 2452 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2453 clear_bit(vid, qdev->active_vlans);
2454
2455 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2456
2457 return err;
c4e84bde
RM
2458}
2459
c1b60092
RM
2460static void qlge_restore_vlan(struct ql_adapter *qdev)
2461{
18c49b91
JP
2462 int status;
2463 u16 vid;
2464
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
2467 return;
2468
2469 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470 __qlge_vlan_rx_add_vid(qdev, vid);
2471
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2473}
2474
c4e84bde
RM
2475/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2477{
2478 struct rx_ring *rx_ring = dev_id;
288379f0 2479 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2480 return IRQ_HANDLED;
2481}
2482
c4e84bde
RM
2483/* This handles a fatal error, MPI activity, and the default
2484 * rx_ring in an MSI-X multiple vector environment.
2485 * In MSI/Legacy environment it also process the rest of
2486 * the rx_rings.
2487 */
2488static irqreturn_t qlge_isr(int irq, void *dev_id)
2489{
2490 struct rx_ring *rx_ring = dev_id;
2491 struct ql_adapter *qdev = rx_ring->qdev;
2492 struct intr_context *intr_context = &qdev->intr_context[0];
2493 u32 var;
c4e84bde
RM
2494 int work_done = 0;
2495
bb0d215c
RM
2496 spin_lock(&qdev->hw_lock);
2497 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2498 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2500 spin_unlock(&qdev->hw_lock);
2501 return IRQ_NONE;
c4e84bde 2502 }
bb0d215c 2503 spin_unlock(&qdev->hw_lock);
c4e84bde 2504
bb0d215c 2505 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2506
2507 /*
2508 * Check for fatal error.
2509 */
2510 if (var & STS_FE) {
2511 ql_queue_asic_error(qdev);
5069ee55 2512 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2513 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2514 netdev_err(qdev->ndev, "Resetting chip. "
2515 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2516 return IRQ_HANDLED;
2517 }
2518
2519 /*
2520 * Check MPI processor activity.
2521 */
5ee22a5a
RM
2522 if ((var & STS_PI) &&
2523 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2524 /*
2525 * We've got an async event or mailbox completion.
2526 * Handle it and clear the source of the interrupt.
2527 */
ae9540f7
JP
2528 netif_err(qdev, intr, qdev->ndev,
2529 "Got MPI processor interrupt.\n");
c4e84bde 2530 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2531 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532 queue_delayed_work_on(smp_processor_id(),
2533 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2534 work_done++;
2535 }
2536
2537 /*
39aa8165
RM
2538 * Get the bit-mask that shows the active queues for this
2539 * pass. Compare it to the queues that this irq services
2540 * and call napi if there's a match.
c4e84bde 2541 */
39aa8165
RM
2542 var = ql_read32(qdev, ISR1);
2543 if (var & intr_context->irq_mask) {
ae9540f7
JP
2544 netif_info(qdev, intr, qdev->ndev,
2545 "Waking handler for rx_ring[0].\n");
39aa8165 2546 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2547 napi_schedule(&rx_ring->napi);
2548 work_done++;
2549 }
bb0d215c 2550 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2551 return work_done ? IRQ_HANDLED : IRQ_NONE;
2552}
2553
2554static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2555{
2556
2557 if (skb_is_gso(skb)) {
2558 int err;
bb9689e6 2559
2560 err = skb_cow_head(skb, 0);
2561 if (err < 0)
2562 return err;
c4e84bde
RM
2563
2564 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2565 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2566 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2567 mac_iocb_ptr->total_hdrs_len =
2568 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2569 mac_iocb_ptr->net_trans_offset =
2570 cpu_to_le16(skb_network_offset(skb) |
2571 skb_transport_offset(skb)
2572 << OB_MAC_TRANSPORT_HDR_SHIFT);
2573 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2574 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2575 if (likely(skb->protocol == htons(ETH_P_IP))) {
2576 struct iphdr *iph = ip_hdr(skb);
2577 iph->check = 0;
2578 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2579 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2580 iph->daddr, 0,
2581 IPPROTO_TCP,
2582 0);
2583 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2584 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2585 tcp_hdr(skb)->check =
2586 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2587 &ipv6_hdr(skb)->daddr,
2588 0, IPPROTO_TCP, 0);
2589 }
2590 return 1;
2591 }
2592 return 0;
2593}
2594
2595static void ql_hw_csum_setup(struct sk_buff *skb,
2596 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2597{
2598 int len;
2599 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2600 __sum16 *check;
c4e84bde
RM
2601 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2602 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2603 mac_iocb_ptr->net_trans_offset =
2604 cpu_to_le16(skb_network_offset(skb) |
2605 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2606
2607 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2608 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2609 if (likely(iph->protocol == IPPROTO_TCP)) {
2610 check = &(tcp_hdr(skb)->check);
2611 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2612 mac_iocb_ptr->total_hdrs_len =
2613 cpu_to_le16(skb_transport_offset(skb) +
2614 (tcp_hdr(skb)->doff << 2));
2615 } else {
2616 check = &(udp_hdr(skb)->check);
2617 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2618 mac_iocb_ptr->total_hdrs_len =
2619 cpu_to_le16(skb_transport_offset(skb) +
2620 sizeof(struct udphdr));
2621 }
2622 *check = ~csum_tcpudp_magic(iph->saddr,
2623 iph->daddr, len, iph->protocol, 0);
2624}
2625
61357325 2626static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2627{
2628 struct tx_ring_desc *tx_ring_desc;
2629 struct ob_mac_iocb_req *mac_iocb_ptr;
2630 struct ql_adapter *qdev = netdev_priv(ndev);
2631 int tso;
2632 struct tx_ring *tx_ring;
1e213303 2633 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2634
2635 tx_ring = &qdev->tx_ring[tx_ring_idx];
2636
74c50b4b
RM
2637 if (skb_padto(skb, ETH_ZLEN))
2638 return NETDEV_TX_OK;
2639
c4e84bde 2640 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2641 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2642 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2643 __func__, tx_ring_idx);
1e213303 2644 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2645 tx_ring->tx_errors++;
c4e84bde
RM
2646 return NETDEV_TX_BUSY;
2647 }
2648 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2649 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2650 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2651
2652 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2653 mac_iocb_ptr->tid = tx_ring_desc->index;
2654 /* We use the upper 32-bits to store the tx queue for this IO.
2655 * When we get the completion we can use it to establish the context.
2656 */
2657 mac_iocb_ptr->txq_idx = tx_ring_idx;
2658 tx_ring_desc->skb = skb;
2659
2660 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2661
eab6d18d 2662 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2663 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2664 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2665 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2666 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2667 }
2668 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2669 if (tso < 0) {
2670 dev_kfree_skb_any(skb);
2671 return NETDEV_TX_OK;
2672 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2673 ql_hw_csum_setup(skb,
2674 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2675 }
0d979f74
RM
2676 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2677 NETDEV_TX_OK) {
ae9540f7
JP
2678 netif_err(qdev, tx_queued, qdev->ndev,
2679 "Could not map the segments.\n");
885ee398 2680 tx_ring->tx_errors++;
0d979f74
RM
2681 return NETDEV_TX_BUSY;
2682 }
c4e84bde
RM
2683 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2684 tx_ring->prod_idx++;
2685 if (tx_ring->prod_idx == tx_ring->wq_len)
2686 tx_ring->prod_idx = 0;
2687 wmb();
2688
2689 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2690 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2691 "tx queued, slot %d, len %d\n",
2692 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2693
2694 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2695
2696 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2697 netif_stop_subqueue(ndev, tx_ring->wq_id);
2698 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2699 /*
2700 * The queue got stopped because the tx_ring was full.
2701 * Wake it up, because it's now at least 25% empty.
2702 */
2703 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2704 }
c4e84bde
RM
2705 return NETDEV_TX_OK;
2706}
2707
9dfbbaa6 2708
c4e84bde
RM
2709static void ql_free_shadow_space(struct ql_adapter *qdev)
2710{
2711 if (qdev->rx_ring_shadow_reg_area) {
2712 pci_free_consistent(qdev->pdev,
2713 PAGE_SIZE,
2714 qdev->rx_ring_shadow_reg_area,
2715 qdev->rx_ring_shadow_reg_dma);
2716 qdev->rx_ring_shadow_reg_area = NULL;
2717 }
2718 if (qdev->tx_ring_shadow_reg_area) {
2719 pci_free_consistent(qdev->pdev,
2720 PAGE_SIZE,
2721 qdev->tx_ring_shadow_reg_area,
2722 qdev->tx_ring_shadow_reg_dma);
2723 qdev->tx_ring_shadow_reg_area = NULL;
2724 }
2725}
2726
2727static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2728{
2729 qdev->rx_ring_shadow_reg_area =
440c734f
JP
2730 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2731 &qdev->rx_ring_shadow_reg_dma);
c4e84bde 2732 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2733 netif_err(qdev, ifup, qdev->ndev,
2734 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2735 return -ENOMEM;
2736 }
440c734f 2737
c4e84bde 2738 qdev->tx_ring_shadow_reg_area =
440c734f
JP
2739 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2740 &qdev->tx_ring_shadow_reg_dma);
c4e84bde 2741 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2742 netif_err(qdev, ifup, qdev->ndev,
2743 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2744 goto err_wqp_sh_area;
2745 }
2746 return 0;
2747
2748err_wqp_sh_area:
2749 pci_free_consistent(qdev->pdev,
2750 PAGE_SIZE,
2751 qdev->rx_ring_shadow_reg_area,
2752 qdev->rx_ring_shadow_reg_dma);
2753 return -ENOMEM;
2754}
2755
2756static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2757{
2758 struct tx_ring_desc *tx_ring_desc;
2759 int i;
2760 struct ob_mac_iocb_req *mac_iocb_ptr;
2761
2762 mac_iocb_ptr = tx_ring->wq_base;
2763 tx_ring_desc = tx_ring->q;
2764 for (i = 0; i < tx_ring->wq_len; i++) {
2765 tx_ring_desc->index = i;
2766 tx_ring_desc->skb = NULL;
2767 tx_ring_desc->queue_entry = mac_iocb_ptr;
2768 mac_iocb_ptr++;
2769 tx_ring_desc++;
2770 }
2771 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2772}
2773
2774static void ql_free_tx_resources(struct ql_adapter *qdev,
2775 struct tx_ring *tx_ring)
2776{
2777 if (tx_ring->wq_base) {
2778 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2779 tx_ring->wq_base, tx_ring->wq_base_dma);
2780 tx_ring->wq_base = NULL;
2781 }
2782 kfree(tx_ring->q);
2783 tx_ring->q = NULL;
2784}
2785
2786static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2787 struct tx_ring *tx_ring)
2788{
2789 tx_ring->wq_base =
2790 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2791 &tx_ring->wq_base_dma);
2792
8e95a202 2793 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2794 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2795 goto pci_alloc_err;
2796
c4e84bde
RM
2797 tx_ring->q =
2798 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2799 if (tx_ring->q == NULL)
2800 goto err;
2801
2802 return 0;
2803err:
2804 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2805 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2806 tx_ring->wq_base = NULL;
2807pci_alloc_err:
2808 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2809 return -ENOMEM;
2810}
2811
8668ae92 2812static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2813{
c4e84bde
RM
2814 struct bq_desc *lbq_desc;
2815
7c734359
RM
2816 uint32_t curr_idx, clean_idx;
2817
2818 curr_idx = rx_ring->lbq_curr_idx;
2819 clean_idx = rx_ring->lbq_clean_idx;
2820 while (curr_idx != clean_idx) {
2821 lbq_desc = &rx_ring->lbq[curr_idx];
2822
2823 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2824 pci_unmap_page(qdev->pdev,
7c734359
RM
2825 lbq_desc->p.pg_chunk.map,
2826 ql_lbq_block_size(qdev),
c4e84bde 2827 PCI_DMA_FROMDEVICE);
7c734359 2828 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2829 }
7c734359
RM
2830
2831 put_page(lbq_desc->p.pg_chunk.page);
2832 lbq_desc->p.pg_chunk.page = NULL;
2833
2834 if (++curr_idx == rx_ring->lbq_len)
2835 curr_idx = 0;
2836
c4e84bde 2837 }
ef380794
TLSC
2838 if (rx_ring->pg_chunk.page) {
2839 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2840 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2841 put_page(rx_ring->pg_chunk.page);
2842 rx_ring->pg_chunk.page = NULL;
2843 }
c4e84bde
RM
2844}
2845
8668ae92 2846static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2847{
2848 int i;
2849 struct bq_desc *sbq_desc;
2850
2851 for (i = 0; i < rx_ring->sbq_len; i++) {
2852 sbq_desc = &rx_ring->sbq[i];
2853 if (sbq_desc == NULL) {
ae9540f7
JP
2854 netif_err(qdev, ifup, qdev->ndev,
2855 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2856 return;
2857 }
2858 if (sbq_desc->p.skb) {
2859 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2860 dma_unmap_addr(sbq_desc, mapaddr),
2861 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2862 PCI_DMA_FROMDEVICE);
2863 dev_kfree_skb(sbq_desc->p.skb);
2864 sbq_desc->p.skb = NULL;
2865 }
c4e84bde
RM
2866 }
2867}
2868
4545a3f2
RM
2869/* Free all large and small rx buffers associated
2870 * with the completion queues for this device.
2871 */
2872static void ql_free_rx_buffers(struct ql_adapter *qdev)
2873{
2874 int i;
2875 struct rx_ring *rx_ring;
2876
2877 for (i = 0; i < qdev->rx_ring_count; i++) {
2878 rx_ring = &qdev->rx_ring[i];
2879 if (rx_ring->lbq)
2880 ql_free_lbq_buffers(qdev, rx_ring);
2881 if (rx_ring->sbq)
2882 ql_free_sbq_buffers(qdev, rx_ring);
2883 }
2884}
2885
2886static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2887{
2888 struct rx_ring *rx_ring;
2889 int i;
2890
2891 for (i = 0; i < qdev->rx_ring_count; i++) {
2892 rx_ring = &qdev->rx_ring[i];
2893 if (rx_ring->type != TX_Q)
2894 ql_update_buffer_queues(qdev, rx_ring);
2895 }
2896}
2897
2898static void ql_init_lbq_ring(struct ql_adapter *qdev,
2899 struct rx_ring *rx_ring)
2900{
2901 int i;
2902 struct bq_desc *lbq_desc;
2903 __le64 *bq = rx_ring->lbq_base;
2904
2905 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2906 for (i = 0; i < rx_ring->lbq_len; i++) {
2907 lbq_desc = &rx_ring->lbq[i];
2908 memset(lbq_desc, 0, sizeof(*lbq_desc));
2909 lbq_desc->index = i;
2910 lbq_desc->addr = bq;
2911 bq++;
2912 }
2913}
2914
2915static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2916 struct rx_ring *rx_ring)
2917{
2918 int i;
2919 struct bq_desc *sbq_desc;
2c9a0d41 2920 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2921
4545a3f2 2922 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2923 for (i = 0; i < rx_ring->sbq_len; i++) {
2924 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2925 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2926 sbq_desc->index = i;
2c9a0d41 2927 sbq_desc->addr = bq;
c4e84bde
RM
2928 bq++;
2929 }
c4e84bde
RM
2930}
2931
2932static void ql_free_rx_resources(struct ql_adapter *qdev,
2933 struct rx_ring *rx_ring)
2934{
c4e84bde
RM
2935 /* Free the small buffer queue. */
2936 if (rx_ring->sbq_base) {
2937 pci_free_consistent(qdev->pdev,
2938 rx_ring->sbq_size,
2939 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2940 rx_ring->sbq_base = NULL;
2941 }
2942
2943 /* Free the small buffer queue control blocks. */
2944 kfree(rx_ring->sbq);
2945 rx_ring->sbq = NULL;
2946
2947 /* Free the large buffer queue. */
2948 if (rx_ring->lbq_base) {
2949 pci_free_consistent(qdev->pdev,
2950 rx_ring->lbq_size,
2951 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2952 rx_ring->lbq_base = NULL;
2953 }
2954
2955 /* Free the large buffer queue control blocks. */
2956 kfree(rx_ring->lbq);
2957 rx_ring->lbq = NULL;
2958
2959 /* Free the rx queue. */
2960 if (rx_ring->cq_base) {
2961 pci_free_consistent(qdev->pdev,
2962 rx_ring->cq_size,
2963 rx_ring->cq_base, rx_ring->cq_base_dma);
2964 rx_ring->cq_base = NULL;
2965 }
2966}
2967
2968/* Allocate queues and buffers for this completions queue based
2969 * on the values in the parameter structure. */
2970static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2971 struct rx_ring *rx_ring)
2972{
2973
2974 /*
2975 * Allocate the completion queue for this rx_ring.
2976 */
2977 rx_ring->cq_base =
2978 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2979 &rx_ring->cq_base_dma);
2980
2981 if (rx_ring->cq_base == NULL) {
ae9540f7 2982 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2983 return -ENOMEM;
2984 }
2985
2986 if (rx_ring->sbq_len) {
2987 /*
2988 * Allocate small buffer queue.
2989 */
2990 rx_ring->sbq_base =
2991 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2992 &rx_ring->sbq_base_dma);
2993
2994 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2995 netif_err(qdev, ifup, qdev->ndev,
2996 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2997 goto err_mem;
2998 }
2999
3000 /*
3001 * Allocate small buffer queue control blocks.
3002 */
14f8dc49
JP
3003 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3004 sizeof(struct bq_desc),
3005 GFP_KERNEL);
3006 if (rx_ring->sbq == NULL)
c4e84bde 3007 goto err_mem;
c4e84bde 3008
4545a3f2 3009 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
3010 }
3011
3012 if (rx_ring->lbq_len) {
3013 /*
3014 * Allocate large buffer queue.
3015 */
3016 rx_ring->lbq_base =
3017 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3018 &rx_ring->lbq_base_dma);
3019
3020 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
3021 netif_err(qdev, ifup, qdev->ndev,
3022 "Large buffer queue allocation failed.\n");
c4e84bde
RM
3023 goto err_mem;
3024 }
3025 /*
3026 * Allocate large buffer queue control blocks.
3027 */
14f8dc49
JP
3028 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3029 sizeof(struct bq_desc),
3030 GFP_KERNEL);
3031 if (rx_ring->lbq == NULL)
c4e84bde 3032 goto err_mem;
c4e84bde 3033
4545a3f2 3034 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
3035 }
3036
3037 return 0;
3038
3039err_mem:
3040 ql_free_rx_resources(qdev, rx_ring);
3041 return -ENOMEM;
3042}
3043
3044static void ql_tx_ring_clean(struct ql_adapter *qdev)
3045{
3046 struct tx_ring *tx_ring;
3047 struct tx_ring_desc *tx_ring_desc;
3048 int i, j;
3049
3050 /*
3051 * Loop through all queues and free
3052 * any resources.
3053 */
3054 for (j = 0; j < qdev->tx_ring_count; j++) {
3055 tx_ring = &qdev->tx_ring[j];
3056 for (i = 0; i < tx_ring->wq_len; i++) {
3057 tx_ring_desc = &tx_ring->q[i];
3058 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
3059 netif_err(qdev, ifdown, qdev->ndev,
3060 "Freeing lost SKB %p, from queue %d, index %d.\n",
3061 tx_ring_desc->skb, j,
3062 tx_ring_desc->index);
c4e84bde
RM
3063 ql_unmap_send(qdev, tx_ring_desc,
3064 tx_ring_desc->map_cnt);
3065 dev_kfree_skb(tx_ring_desc->skb);
3066 tx_ring_desc->skb = NULL;
3067 }
3068 }
3069 }
3070}
3071
c4e84bde
RM
3072static void ql_free_mem_resources(struct ql_adapter *qdev)
3073{
3074 int i;
3075
3076 for (i = 0; i < qdev->tx_ring_count; i++)
3077 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3078 for (i = 0; i < qdev->rx_ring_count; i++)
3079 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3080 ql_free_shadow_space(qdev);
3081}
3082
3083static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3084{
3085 int i;
3086
3087 /* Allocate space for our shadow registers and such. */
3088 if (ql_alloc_shadow_space(qdev))
3089 return -ENOMEM;
3090
3091 for (i = 0; i < qdev->rx_ring_count; i++) {
3092 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3093 netif_err(qdev, ifup, qdev->ndev,
3094 "RX resource allocation failed.\n");
c4e84bde
RM
3095 goto err_mem;
3096 }
3097 }
3098 /* Allocate tx queue resources */
3099 for (i = 0; i < qdev->tx_ring_count; i++) {
3100 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3101 netif_err(qdev, ifup, qdev->ndev,
3102 "TX resource allocation failed.\n");
c4e84bde
RM
3103 goto err_mem;
3104 }
3105 }
3106 return 0;
3107
3108err_mem:
3109 ql_free_mem_resources(qdev);
3110 return -ENOMEM;
3111}
3112
3113/* Set up the rx ring control block and pass it to the chip.
3114 * The control block is defined as
3115 * "Completion Queue Initialization Control Block", or cqicb.
3116 */
3117static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3118{
3119 struct cqicb *cqicb = &rx_ring->cqicb;
3120 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3121 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3122 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3123 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3124 void __iomem *doorbell_area =
3125 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3126 int err = 0;
3127 u16 bq_len;
d4a4aba6 3128 u64 tmp;
b8facca0
RM
3129 __le64 *base_indirect_ptr;
3130 int page_entries;
c4e84bde
RM
3131
3132 /* Set up the shadow registers for this ring. */
3133 rx_ring->prod_idx_sh_reg = shadow_reg;
3134 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3135 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3136 shadow_reg += sizeof(u64);
3137 shadow_reg_dma += sizeof(u64);
3138 rx_ring->lbq_base_indirect = shadow_reg;
3139 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3140 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3141 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3142 rx_ring->sbq_base_indirect = shadow_reg;
3143 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3144
3145 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3146 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3147 rx_ring->cnsmr_idx = 0;
3148 rx_ring->curr_entry = rx_ring->cq_base;
3149
3150 /* PCI doorbell mem area + 0x04 for valid register */
3151 rx_ring->valid_db_reg = doorbell_area + 0x04;
3152
3153 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3154 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3155
3156 /* PCI doorbell mem area + 0x1c */
8668ae92 3157 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3158
3159 memset((void *)cqicb, 0, sizeof(struct cqicb));
3160 cqicb->msix_vect = rx_ring->irq;
3161
459caf5a
RM
3162 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3163 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3164
97345524 3165 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3166
97345524 3167 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3168
3169 /*
3170 * Set up the control block load flags.
3171 */
3172 cqicb->flags = FLAGS_LC | /* Load queue base address */
3173 FLAGS_LV | /* Load MSI-X vector */
3174 FLAGS_LI; /* Load irq delay values */
3175 if (rx_ring->lbq_len) {
3176 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3177 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3178 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3179 page_entries = 0;
3180 do {
3181 *base_indirect_ptr = cpu_to_le64(tmp);
3182 tmp += DB_PAGE_SIZE;
3183 base_indirect_ptr++;
3184 page_entries++;
3185 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3186 cqicb->lbq_addr =
3187 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3188 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3189 (u16) rx_ring->lbq_buf_size;
3190 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3191 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3192 (u16) rx_ring->lbq_len;
c4e84bde 3193 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3194 rx_ring->lbq_prod_idx = 0;
c4e84bde 3195 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3196 rx_ring->lbq_clean_idx = 0;
3197 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3198 }
3199 if (rx_ring->sbq_len) {
3200 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3201 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3202 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3203 page_entries = 0;
3204 do {
3205 *base_indirect_ptr = cpu_to_le64(tmp);
3206 tmp += DB_PAGE_SIZE;
3207 base_indirect_ptr++;
3208 page_entries++;
3209 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3210 cqicb->sbq_addr =
3211 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3212 cqicb->sbq_buf_size =
52e55f3c 3213 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3214 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3215 (u16) rx_ring->sbq_len;
c4e84bde 3216 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3217 rx_ring->sbq_prod_idx = 0;
c4e84bde 3218 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3219 rx_ring->sbq_clean_idx = 0;
3220 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3221 }
3222 switch (rx_ring->type) {
3223 case TX_Q:
c4e84bde
RM
3224 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3225 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3226 break;
c4e84bde
RM
3227 case RX_Q:
3228 /* Inbound completion handling rx_rings run in
3229 * separate NAPI contexts.
3230 */
3231 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3232 64);
3233 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3234 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3235 break;
3236 default:
ae9540f7
JP
3237 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3238 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3239 }
c4e84bde
RM
3240 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3241 CFG_LCQ, rx_ring->cq_id);
3242 if (err) {
ae9540f7 3243 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3244 return err;
3245 }
c4e84bde
RM
3246 return err;
3247}
3248
3249static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3250{
3251 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3252 void __iomem *doorbell_area =
3253 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3254 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3255 (tx_ring->wq_id * sizeof(u64));
3256 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3257 (tx_ring->wq_id * sizeof(u64));
3258 int err = 0;
3259
3260 /*
3261 * Assign doorbell registers for this tx_ring.
3262 */
3263 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3264 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3265 tx_ring->prod_idx = 0;
3266 /* TX PCI doorbell mem area + 0x04 */
3267 tx_ring->valid_db_reg = doorbell_area + 0x04;
3268
3269 /*
3270 * Assign shadow registers for this tx_ring.
3271 */
3272 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3273 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3274
3275 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3276 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3277 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3278 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3279 wqicb->rid = 0;
97345524 3280 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3281
97345524 3282 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3283
3284 ql_init_tx_ring(qdev, tx_ring);
3285
e332471c 3286 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3287 (u16) tx_ring->wq_id);
3288 if (err) {
ae9540f7 3289 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3290 return err;
3291 }
c4e84bde
RM
3292 return err;
3293}
3294
3295static void ql_disable_msix(struct ql_adapter *qdev)
3296{
3297 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3298 pci_disable_msix(qdev->pdev);
3299 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3300 kfree(qdev->msi_x_entry);
3301 qdev->msi_x_entry = NULL;
3302 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3303 pci_disable_msi(qdev->pdev);
3304 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3305 }
3306}
3307
a4ab6137
RM
3308/* We start by trying to get the number of vectors
3309 * stored in qdev->intr_count. If we don't get that
3310 * many then we reduce the count and try again.
3311 */
c4e84bde
RM
3312static void ql_enable_msix(struct ql_adapter *qdev)
3313{
a4ab6137 3314 int i, err;
c4e84bde 3315
c4e84bde 3316 /* Get the MSIX vectors. */
a5a62a1c 3317 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3318 /* Try to alloc space for the msix struct,
3319 * if it fails then go to MSI/legacy.
3320 */
a4ab6137 3321 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3322 sizeof(struct msix_entry),
3323 GFP_KERNEL);
3324 if (!qdev->msi_x_entry) {
a5a62a1c 3325 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3326 goto msi;
3327 }
3328
a4ab6137 3329 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3330 qdev->msi_x_entry[i].entry = i;
3331
50b483a1
AG
3332 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3333 1, qdev->intr_count);
a4ab6137 3334 if (err < 0) {
c4e84bde
RM
3335 kfree(qdev->msi_x_entry);
3336 qdev->msi_x_entry = NULL;
ae9540f7
JP
3337 netif_warn(qdev, ifup, qdev->ndev,
3338 "MSI-X Enable failed, trying MSI.\n");
a5a62a1c 3339 qlge_irq_type = MSI_IRQ;
50b483a1
AG
3340 } else {
3341 qdev->intr_count = err;
a4ab6137 3342 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3343 netif_info(qdev, ifup, qdev->ndev,
3344 "MSI-X Enabled, got %d vectors.\n",
3345 qdev->intr_count);
a4ab6137 3346 return;
c4e84bde
RM
3347 }
3348 }
3349msi:
a4ab6137 3350 qdev->intr_count = 1;
a5a62a1c 3351 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3352 if (!pci_enable_msi(qdev->pdev)) {
3353 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3354 netif_info(qdev, ifup, qdev->ndev,
3355 "Running with MSI interrupts.\n");
c4e84bde
RM
3356 return;
3357 }
3358 }
a5a62a1c 3359 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3360 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3361 "Running with legacy interrupts.\n");
c4e84bde
RM
3362}
3363
39aa8165
RM
3364/* Each vector services 1 RSS ring and and 1 or more
3365 * TX completion rings. This function loops through
3366 * the TX completion rings and assigns the vector that
3367 * will service it. An example would be if there are
3368 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3369 * This would mean that vector 0 would service RSS ring 0
25985edc 3370 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3371 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3372 */
3373static void ql_set_tx_vect(struct ql_adapter *qdev)
3374{
3375 int i, j, vect;
3376 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3377
3378 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3379 /* Assign irq vectors to TX rx_rings.*/
3380 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3381 i < qdev->rx_ring_count; i++) {
3382 if (j == tx_rings_per_vector) {
3383 vect++;
3384 j = 0;
3385 }
3386 qdev->rx_ring[i].irq = vect;
3387 j++;
3388 }
3389 } else {
3390 /* For single vector all rings have an irq
3391 * of zero.
3392 */
3393 for (i = 0; i < qdev->rx_ring_count; i++)
3394 qdev->rx_ring[i].irq = 0;
3395 }
3396}
3397
3398/* Set the interrupt mask for this vector. Each vector
3399 * will service 1 RSS ring and 1 or more TX completion
3400 * rings. This function sets up a bit mask per vector
3401 * that indicates which rings it services.
3402 */
3403static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3404{
3405 int j, vect = ctx->intr;
3406 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3407
3408 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3409 /* Add the RSS ring serviced by this vector
3410 * to the mask.
3411 */
3412 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3413 /* Add the TX ring(s) serviced by this vector
3414 * to the mask. */
3415 for (j = 0; j < tx_rings_per_vector; j++) {
3416 ctx->irq_mask |=
3417 (1 << qdev->rx_ring[qdev->rss_ring_count +
3418 (vect * tx_rings_per_vector) + j].cq_id);
3419 }
3420 } else {
3421 /* For single vector we just shift each queue's
3422 * ID into the mask.
3423 */
3424 for (j = 0; j < qdev->rx_ring_count; j++)
3425 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3426 }
3427}
3428
c4e84bde
RM
3429/*
3430 * Here we build the intr_context structures based on
3431 * our rx_ring count and intr vector count.
3432 * The intr_context structure is used to hook each vector
3433 * to possibly different handlers.
3434 */
3435static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3436{
3437 int i = 0;
3438 struct intr_context *intr_context = &qdev->intr_context[0];
3439
c4e84bde
RM
3440 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3441 /* Each rx_ring has it's
3442 * own intr_context since we have separate
3443 * vectors for each queue.
c4e84bde
RM
3444 */
3445 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3446 qdev->rx_ring[i].irq = i;
3447 intr_context->intr = i;
3448 intr_context->qdev = qdev;
39aa8165
RM
3449 /* Set up this vector's bit-mask that indicates
3450 * which queues it services.
3451 */
3452 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3453 /*
3454 * We set up each vectors enable/disable/read bits so
3455 * there's no bit/mask calculations in the critical path.
3456 */
3457 intr_context->intr_en_mask =
3458 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3459 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3460 | i;
3461 intr_context->intr_dis_mask =
3462 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3463 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3464 INTR_EN_IHD | i;
3465 intr_context->intr_read_mask =
3466 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3467 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3468 i;
39aa8165
RM
3469 if (i == 0) {
3470 /* The first vector/queue handles
3471 * broadcast/multicast, fatal errors,
3472 * and firmware events. This in addition
3473 * to normal inbound NAPI processing.
c4e84bde 3474 */
39aa8165 3475 intr_context->handler = qlge_isr;
b2014ff8
RM
3476 sprintf(intr_context->name, "%s-rx-%d",
3477 qdev->ndev->name, i);
3478 } else {
c4e84bde 3479 /*
39aa8165 3480 * Inbound queues handle unicast frames only.
c4e84bde 3481 */
39aa8165
RM
3482 intr_context->handler = qlge_msix_rx_isr;
3483 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3484 qdev->ndev->name, i);
c4e84bde
RM
3485 }
3486 }
3487 } else {
3488 /*
3489 * All rx_rings use the same intr_context since
3490 * there is only one vector.
3491 */
3492 intr_context->intr = 0;
3493 intr_context->qdev = qdev;
3494 /*
3495 * We set up each vectors enable/disable/read bits so
3496 * there's no bit/mask calculations in the critical path.
3497 */
3498 intr_context->intr_en_mask =
3499 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3500 intr_context->intr_dis_mask =
3501 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3502 INTR_EN_TYPE_DISABLE;
3503 intr_context->intr_read_mask =
3504 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3505 /*
3506 * Single interrupt means one handler for all rings.
3507 */
3508 intr_context->handler = qlge_isr;
3509 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3510 /* Set up this vector's bit-mask that indicates
3511 * which queues it services. In this case there is
3512 * a single vector so it will service all RSS and
3513 * TX completion rings.
3514 */
3515 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3516 }
39aa8165
RM
3517 /* Tell the TX completion rings which MSIx vector
3518 * they will be using.
3519 */
3520 ql_set_tx_vect(qdev);
c4e84bde
RM
3521}
3522
3523static void ql_free_irq(struct ql_adapter *qdev)
3524{
3525 int i;
3526 struct intr_context *intr_context = &qdev->intr_context[0];
3527
3528 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3529 if (intr_context->hooked) {
3530 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3531 free_irq(qdev->msi_x_entry[i].vector,
3532 &qdev->rx_ring[i]);
c4e84bde
RM
3533 } else {
3534 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3535 }
3536 }
3537 }
3538 ql_disable_msix(qdev);
3539}
3540
3541static int ql_request_irq(struct ql_adapter *qdev)
3542{
3543 int i;
3544 int status = 0;
3545 struct pci_dev *pdev = qdev->pdev;
3546 struct intr_context *intr_context = &qdev->intr_context[0];
3547
3548 ql_resolve_queues_to_irqs(qdev);
3549
3550 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3551 atomic_set(&intr_context->irq_cnt, 0);
3552 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3553 status = request_irq(qdev->msi_x_entry[i].vector,
3554 intr_context->handler,
3555 0,
3556 intr_context->name,
3557 &qdev->rx_ring[i]);
3558 if (status) {
ae9540f7
JP
3559 netif_err(qdev, ifup, qdev->ndev,
3560 "Failed request for MSIX interrupt %d.\n",
3561 i);
c4e84bde 3562 goto err_irq;
c4e84bde
RM
3563 }
3564 } else {
ae9540f7
JP
3565 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3566 "trying msi or legacy interrupts.\n");
3567 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3568 "%s: irq = %d.\n", __func__, pdev->irq);
3569 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3570 "%s: context->name = %s.\n", __func__,
3571 intr_context->name);
3572 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3573 "%s: dev_id = 0x%p.\n", __func__,
3574 &qdev->rx_ring[0]);
c4e84bde
RM
3575 status =
3576 request_irq(pdev->irq, qlge_isr,
3577 test_bit(QL_MSI_ENABLED,
3578 &qdev->
3579 flags) ? 0 : IRQF_SHARED,
3580 intr_context->name, &qdev->rx_ring[0]);
3581 if (status)
3582 goto err_irq;
3583
ae9540f7
JP
3584 netif_err(qdev, ifup, qdev->ndev,
3585 "Hooked intr %d, queue type %s, with name %s.\n",
3586 i,
3587 qdev->rx_ring[0].type == DEFAULT_Q ?
3588 "DEFAULT_Q" :
3589 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3590 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3591 intr_context->name);
c4e84bde
RM
3592 }
3593 intr_context->hooked = 1;
3594 }
3595 return status;
3596err_irq:
a42c3a28 3597 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
c4e84bde
RM
3598 ql_free_irq(qdev);
3599 return status;
3600}
3601
3602static int ql_start_rss(struct ql_adapter *qdev)
3603{
215faf9c
JP
3604 static const u8 init_hash_seed[] = {
3605 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3606 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3607 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3608 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3609 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3610 };
c4e84bde
RM
3611 struct ricb *ricb = &qdev->ricb;
3612 int status = 0;
3613 int i;
3614 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3615
e332471c 3616 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3617
b2014ff8 3618 ricb->base_cq = RSS_L4K;
c4e84bde 3619 ricb->flags =
541ae28c
RM
3620 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3621 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3622
3623 /*
3624 * Fill out the Indirection Table.
3625 */
541ae28c
RM
3626 for (i = 0; i < 1024; i++)
3627 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3628
541ae28c
RM
3629 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3630 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3631
e332471c 3632 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3633 if (status) {
ae9540f7 3634 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3635 return status;
3636 }
c4e84bde
RM
3637 return status;
3638}
3639
a5f59dc9 3640static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3641{
a5f59dc9 3642 int i, status = 0;
c4e84bde 3643
8587ea35
RM
3644 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3645 if (status)
3646 return status;
c4e84bde
RM
3647 /* Clear all the entries in the routing table. */
3648 for (i = 0; i < 16; i++) {
3649 status = ql_set_routing_reg(qdev, i, 0, 0);
3650 if (status) {
ae9540f7
JP
3651 netif_err(qdev, ifup, qdev->ndev,
3652 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3653 break;
c4e84bde
RM
3654 }
3655 }
a5f59dc9
RM
3656 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3657 return status;
3658}
3659
3660/* Initialize the frame-to-queue routing. */
3661static int ql_route_initialize(struct ql_adapter *qdev)
3662{
3663 int status = 0;
3664
fd21cf52
RM
3665 /* Clear all the entries in the routing table. */
3666 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3667 if (status)
3668 return status;
3669
fd21cf52 3670 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3671 if (status)
fd21cf52 3672 return status;
c4e84bde 3673
fbc2ac33
RM
3674 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3675 RT_IDX_IP_CSUM_ERR, 1);
3676 if (status) {
3677 netif_err(qdev, ifup, qdev->ndev,
3678 "Failed to init routing register "
3679 "for IP CSUM error packets.\n");
3680 goto exit;
3681 }
3682 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3683 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3684 if (status) {
ae9540f7 3685 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3686 "Failed to init routing register "
3687 "for TCP/UDP CSUM error packets.\n");
8587ea35 3688 goto exit;
c4e84bde
RM
3689 }
3690 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3691 if (status) {
ae9540f7
JP
3692 netif_err(qdev, ifup, qdev->ndev,
3693 "Failed to init routing register for broadcast packets.\n");
8587ea35 3694 goto exit;
c4e84bde
RM
3695 }
3696 /* If we have more than one inbound queue, then turn on RSS in the
3697 * routing block.
3698 */
3699 if (qdev->rss_ring_count > 1) {
3700 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3701 RT_IDX_RSS_MATCH, 1);
3702 if (status) {
ae9540f7
JP
3703 netif_err(qdev, ifup, qdev->ndev,
3704 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3705 goto exit;
c4e84bde
RM
3706 }
3707 }
3708
3709 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3710 RT_IDX_CAM_HIT, 1);
8587ea35 3711 if (status)
ae9540f7
JP
3712 netif_err(qdev, ifup, qdev->ndev,
3713 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3714exit:
3715 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3716 return status;
3717}
3718
2ee1e272 3719int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3720{
7fab3bfe 3721 int status, set;
bb58b5b6 3722
7fab3bfe
RM
3723 /* If check if the link is up and use to
3724 * determine if we are setting or clearing
3725 * the MAC address in the CAM.
3726 */
3727 set = ql_read32(qdev, STS);
3728 set &= qdev->port_link_up;
3729 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3730 if (status) {
ae9540f7 3731 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3732 return status;
3733 }
3734
3735 status = ql_route_initialize(qdev);
3736 if (status)
ae9540f7 3737 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3738
3739 return status;
3740}
3741
c4e84bde
RM
3742static int ql_adapter_initialize(struct ql_adapter *qdev)
3743{
3744 u32 value, mask;
3745 int i;
3746 int status = 0;
3747
3748 /*
3749 * Set up the System register to halt on errors.
3750 */
3751 value = SYS_EFE | SYS_FAE;
3752 mask = value << 16;
3753 ql_write32(qdev, SYS, mask | value);
3754
c9cf0a04 3755 /* Set the default queue, and VLAN behavior. */
a45adbe8
JK
3756 value = NIC_RCV_CFG_DFQ;
3757 mask = NIC_RCV_CFG_DFQ_MASK;
3758 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3759 value |= NIC_RCV_CFG_RV;
3760 mask |= (NIC_RCV_CFG_RV << 16);
3761 }
c4e84bde
RM
3762 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3763
3764 /* Set the MPI interrupt to enabled. */
3765 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3766
3767 /* Enable the function, set pagesize, enable error checking. */
3768 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3769 FSC_EC | FSC_VM_PAGE_4K;
3770 value |= SPLT_SETTING;
c4e84bde
RM
3771
3772 /* Set/clear header splitting. */
3773 mask = FSC_VM_PAGESIZE_MASK |
3774 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3775 ql_write32(qdev, FSC, mask | value);
3776
572c526f 3777 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3778
a3b71939
RM
3779 /* Set RX packet routing to use port/pci function on which the
3780 * packet arrived on in addition to usual frame routing.
3781 * This is helpful on bonding where both interfaces can have
3782 * the same MAC address.
3783 */
3784 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3785 /* Reroute all packets to our Interface.
3786 * They may have been routed to MPI firmware
3787 * due to WOL.
3788 */
3789 value = ql_read32(qdev, MGMT_RCV_CFG);
3790 value &= ~MGMT_RCV_CFG_RM;
3791 mask = 0xffff0000;
3792
3793 /* Sticky reg needs clearing due to WOL. */
3794 ql_write32(qdev, MGMT_RCV_CFG, mask);
3795 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3796
3797 /* Default WOL is enable on Mezz cards */
3798 if (qdev->pdev->subsystem_device == 0x0068 ||
3799 qdev->pdev->subsystem_device == 0x0180)
3800 qdev->wol = WAKE_MAGIC;
a3b71939 3801
c4e84bde
RM
3802 /* Start up the rx queues. */
3803 for (i = 0; i < qdev->rx_ring_count; i++) {
3804 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3805 if (status) {
ae9540f7
JP
3806 netif_err(qdev, ifup, qdev->ndev,
3807 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3808 return status;
3809 }
3810 }
3811
3812 /* If there is more than one inbound completion queue
3813 * then download a RICB to configure RSS.
3814 */
3815 if (qdev->rss_ring_count > 1) {
3816 status = ql_start_rss(qdev);
3817 if (status) {
ae9540f7 3818 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3819 return status;
3820 }
3821 }
3822
3823 /* Start up the tx queues. */
3824 for (i = 0; i < qdev->tx_ring_count; i++) {
3825 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3826 if (status) {
ae9540f7
JP
3827 netif_err(qdev, ifup, qdev->ndev,
3828 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3829 return status;
3830 }
3831 }
3832
b0c2aadf
RM
3833 /* Initialize the port and set the max framesize. */
3834 status = qdev->nic_ops->port_initialize(qdev);
80928860 3835 if (status)
ae9540f7 3836 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3837
bb58b5b6
RM
3838 /* Set up the MAC address and frame routing filter. */
3839 status = ql_cam_route_initialize(qdev);
c4e84bde 3840 if (status) {
ae9540f7
JP
3841 netif_err(qdev, ifup, qdev->ndev,
3842 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3843 return status;
3844 }
3845
3846 /* Start NAPI for the RSS queues. */
19257f5a 3847 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3848 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3849
3850 return status;
3851}
3852
3853/* Issue soft reset to chip. */
3854static int ql_adapter_reset(struct ql_adapter *qdev)
3855{
3856 u32 value;
c4e84bde 3857 int status = 0;
a5f59dc9 3858 unsigned long end_jiffies;
c4e84bde 3859
a5f59dc9
RM
3860 /* Clear all the entries in the routing table. */
3861 status = ql_clear_routing_entries(qdev);
3862 if (status) {
ae9540f7 3863 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3864 return status;
3865 }
3866
3867 end_jiffies = jiffies +
3868 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d 3869
da92b393
JK
3870 /* Check if bit is set then skip the mailbox command and
3871 * clear the bit, else we are in normal reset process.
3872 */
3873 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3874 /* Stop management traffic. */
3875 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3876
3877 /* Wait for the NIC and MGMNT FIFOs to empty. */
3878 ql_wait_fifo_empty(qdev);
3879 } else
3880 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3881
c4e84bde 3882 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3883
c4e84bde
RM
3884 do {
3885 value = ql_read32(qdev, RST_FO);
3886 if ((value & RST_FO_FR) == 0)
3887 break;
a75ee7f1
RM
3888 cpu_relax();
3889 } while (time_before(jiffies, end_jiffies));
c4e84bde 3890
c4e84bde 3891 if (value & RST_FO_FR) {
ae9540f7
JP
3892 netif_err(qdev, ifdown, qdev->ndev,
3893 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3894 status = -ETIMEDOUT;
c4e84bde
RM
3895 }
3896
84087f4d
RM
3897 /* Resume management traffic. */
3898 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3899 return status;
3900}
3901
3902static void ql_display_dev_info(struct net_device *ndev)
3903{
b16fed0a 3904 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3905
ae9540f7
JP
3906 netif_info(qdev, probe, qdev->ndev,
3907 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3908 "XG Roll = %d, XG Rev = %d.\n",
3909 qdev->func,
3910 qdev->port,
3911 qdev->chip_rev_id & 0x0000000f,
3912 qdev->chip_rev_id >> 4 & 0x0000000f,
3913 qdev->chip_rev_id >> 8 & 0x0000000f,
3914 qdev->chip_rev_id >> 12 & 0x0000000f);
3915 netif_info(qdev, probe, qdev->ndev,
3916 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3917}
3918
ac409215 3919static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3920{
3921 int status = 0;
3922 u32 wol = MB_WOL_DISABLE;
3923
3924 /* The CAM is still intact after a reset, but if we
3925 * are doing WOL, then we may need to program the
3926 * routing regs. We would also need to issue the mailbox
3927 * commands to instruct the MPI what to do per the ethtool
3928 * settings.
3929 */
3930
3931 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3932 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3933 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3934 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3935 qdev->wol);
bc083ce9
RM
3936 return -EINVAL;
3937 }
3938
3939 if (qdev->wol & WAKE_MAGIC) {
3940 status = ql_mb_wol_set_magic(qdev, 1);
3941 if (status) {
ae9540f7
JP
3942 netif_err(qdev, ifdown, qdev->ndev,
3943 "Failed to set magic packet on %s.\n",
3944 qdev->ndev->name);
bc083ce9
RM
3945 return status;
3946 } else
ae9540f7
JP
3947 netif_info(qdev, drv, qdev->ndev,
3948 "Enabled magic packet successfully on %s.\n",
3949 qdev->ndev->name);
bc083ce9
RM
3950
3951 wol |= MB_WOL_MAGIC_PKT;
3952 }
3953
3954 if (qdev->wol) {
bc083ce9
RM
3955 wol |= MB_WOL_MODE_ON;
3956 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3957 netif_err(qdev, drv, qdev->ndev,
3958 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3959 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3960 wol, qdev->ndev->name);
bc083ce9
RM
3961 }
3962
3963 return status;
3964}
3965
c5dadddb 3966static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3967{
c4e84bde 3968
6497b607
RM
3969 /* Don't kill the reset worker thread if we
3970 * are in the process of recovery.
3971 */
3972 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3973 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3974 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3975 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3976 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3977 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3978 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3979}
3980
3981static int ql_adapter_down(struct ql_adapter *qdev)
3982{
3983 int i, status = 0;
3984
3985 ql_link_off(qdev);
3986
3987 ql_cancel_all_work_sync(qdev);
c4e84bde 3988
39aa8165
RM
3989 for (i = 0; i < qdev->rss_ring_count; i++)
3990 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3991
3992 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3993
3994 ql_disable_interrupts(qdev);
3995
3996 ql_tx_ring_clean(qdev);
3997
6b318cb3
RM
3998 /* Call netif_napi_del() from common point.
3999 */
b2014ff8 4000 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
4001 netif_napi_del(&qdev->rx_ring[i].napi);
4002
c4e84bde
RM
4003 status = ql_adapter_reset(qdev);
4004 if (status)
ae9540f7
JP
4005 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4006 qdev->func);
fe5f0980
BL
4007 ql_free_rx_buffers(qdev);
4008
c4e84bde
RM
4009 return status;
4010}
4011
4012static int ql_adapter_up(struct ql_adapter *qdev)
4013{
4014 int err = 0;
4015
c4e84bde
RM
4016 err = ql_adapter_initialize(qdev);
4017 if (err) {
ae9540f7 4018 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
4019 goto err_init;
4020 }
c4e84bde 4021 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 4022 ql_alloc_rx_buffers(qdev);
8b007de1
RM
4023 /* If the port is initialized and the
4024 * link is up the turn on the carrier.
4025 */
4026 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4027 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 4028 ql_link_on(qdev);
f2c05004
RM
4029 /* Restore rx mode. */
4030 clear_bit(QL_ALLMULTI, &qdev->flags);
4031 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4032 qlge_set_multicast_list(qdev->ndev);
4033
c1b60092
RM
4034 /* Restore vlan setting. */
4035 qlge_restore_vlan(qdev);
4036
c4e84bde
RM
4037 ql_enable_interrupts(qdev);
4038 ql_enable_all_completion_interrupts(qdev);
1e213303 4039 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
4040
4041 return 0;
4042err_init:
4043 ql_adapter_reset(qdev);
4044 return err;
4045}
4046
c4e84bde
RM
4047static void ql_release_adapter_resources(struct ql_adapter *qdev)
4048{
4049 ql_free_mem_resources(qdev);
4050 ql_free_irq(qdev);
4051}
4052
4053static int ql_get_adapter_resources(struct ql_adapter *qdev)
4054{
4055 int status = 0;
4056
4057 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 4058 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
4059 return -ENOMEM;
4060 }
4061 status = ql_request_irq(qdev);
c4e84bde
RM
4062 return status;
4063}
4064
4065static int qlge_close(struct net_device *ndev)
4066{
4067 struct ql_adapter *qdev = netdev_priv(ndev);
4068
4bbd1a19
RM
4069 /* If we hit pci_channel_io_perm_failure
4070 * failure condition, then we already
4071 * brought the adapter down.
4072 */
4073 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 4074 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
4075 clear_bit(QL_EEH_FATAL, &qdev->flags);
4076 return 0;
4077 }
4078
c4e84bde
RM
4079 /*
4080 * Wait for device to recover from a reset.
4081 * (Rarely happens, but possible.)
4082 */
4083 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4084 msleep(1);
4085 ql_adapter_down(qdev);
4086 ql_release_adapter_resources(qdev);
c4e84bde
RM
4087 return 0;
4088}
4089
4090static int ql_configure_rings(struct ql_adapter *qdev)
4091{
4092 int i;
4093 struct rx_ring *rx_ring;
4094 struct tx_ring *tx_ring;
a4ab6137 4095 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4096 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4097 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4098
4099 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4100
4101 /* In a perfect world we have one RSS ring for each CPU
4102 * and each has it's own vector. To do that we ask for
4103 * cpu_cnt vectors. ql_enable_msix() will adjust the
4104 * vector count to what we actually get. We then
4105 * allocate an RSS ring for each.
4106 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4107 */
a4ab6137
RM
4108 qdev->intr_count = cpu_cnt;
4109 ql_enable_msix(qdev);
4110 /* Adjust the RSS ring count to the actual vector count. */
4111 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4112 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4113 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4114
c4e84bde
RM
4115 for (i = 0; i < qdev->tx_ring_count; i++) {
4116 tx_ring = &qdev->tx_ring[i];
e332471c 4117 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4118 tx_ring->qdev = qdev;
4119 tx_ring->wq_id = i;
4120 tx_ring->wq_len = qdev->tx_ring_size;
4121 tx_ring->wq_size =
4122 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4123
4124 /*
4125 * The completion queue ID for the tx rings start
39aa8165 4126 * immediately after the rss rings.
c4e84bde 4127 */
39aa8165 4128 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4129 }
4130
4131 for (i = 0; i < qdev->rx_ring_count; i++) {
4132 rx_ring = &qdev->rx_ring[i];
e332471c 4133 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4134 rx_ring->qdev = qdev;
4135 rx_ring->cq_id = i;
4136 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4137 if (i < qdev->rss_ring_count) {
39aa8165
RM
4138 /*
4139 * Inbound (RSS) queues.
4140 */
c4e84bde
RM
4141 rx_ring->cq_len = qdev->rx_ring_size;
4142 rx_ring->cq_size =
4143 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4144 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4145 rx_ring->lbq_size =
2c9a0d41 4146 rx_ring->lbq_len * sizeof(__le64);
7c734359 4147 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4148 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4149 rx_ring->sbq_size =
2c9a0d41 4150 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4151 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4152 rx_ring->type = RX_Q;
4153 } else {
c4e84bde
RM
4154 /*
4155 * Outbound queue handles outbound completions only.
4156 */
4157 /* outbound cq is same size as tx_ring it services. */
4158 rx_ring->cq_len = qdev->tx_ring_size;
4159 rx_ring->cq_size =
4160 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4161 rx_ring->lbq_len = 0;
4162 rx_ring->lbq_size = 0;
4163 rx_ring->lbq_buf_size = 0;
4164 rx_ring->sbq_len = 0;
4165 rx_ring->sbq_size = 0;
4166 rx_ring->sbq_buf_size = 0;
4167 rx_ring->type = TX_Q;
c4e84bde
RM
4168 }
4169 }
4170 return 0;
4171}
4172
4173static int qlge_open(struct net_device *ndev)
4174{
4175 int err = 0;
4176 struct ql_adapter *qdev = netdev_priv(ndev);
4177
74e12435
RM
4178 err = ql_adapter_reset(qdev);
4179 if (err)
4180 return err;
4181
c4e84bde
RM
4182 err = ql_configure_rings(qdev);
4183 if (err)
4184 return err;
4185
4186 err = ql_get_adapter_resources(qdev);
4187 if (err)
4188 goto error_up;
4189
4190 err = ql_adapter_up(qdev);
4191 if (err)
4192 goto error_up;
4193
4194 return err;
4195
4196error_up:
4197 ql_release_adapter_resources(qdev);
c4e84bde
RM
4198 return err;
4199}
4200
7c734359
RM
4201static int ql_change_rx_buffers(struct ql_adapter *qdev)
4202{
4203 struct rx_ring *rx_ring;
4204 int i, status;
4205 u32 lbq_buf_len;
4206
25985edc 4207 /* Wait for an outstanding reset to complete. */
7c734359
RM
4208 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4209 int i = 3;
4210 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4211 netif_err(qdev, ifup, qdev->ndev,
4212 "Waiting for adapter UP...\n");
7c734359
RM
4213 ssleep(1);
4214 }
4215
4216 if (!i) {
ae9540f7
JP
4217 netif_err(qdev, ifup, qdev->ndev,
4218 "Timed out waiting for adapter UP\n");
7c734359
RM
4219 return -ETIMEDOUT;
4220 }
4221 }
4222
4223 status = ql_adapter_down(qdev);
4224 if (status)
4225 goto error;
4226
4227 /* Get the new rx buffer size. */
4228 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4229 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4230 qdev->lbq_buf_order = get_order(lbq_buf_len);
4231
4232 for (i = 0; i < qdev->rss_ring_count; i++) {
4233 rx_ring = &qdev->rx_ring[i];
4234 /* Set the new size. */
4235 rx_ring->lbq_buf_size = lbq_buf_len;
4236 }
4237
4238 status = ql_adapter_up(qdev);
4239 if (status)
4240 goto error;
4241
4242 return status;
4243error:
ae9540f7
JP
4244 netif_alert(qdev, ifup, qdev->ndev,
4245 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4246 set_bit(QL_ADAPTER_UP, &qdev->flags);
4247 dev_close(qdev->ndev);
4248 return status;
4249}
4250
c4e84bde
RM
4251static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4252{
4253 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4254 int status;
c4e84bde
RM
4255
4256 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4257 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4258 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4259 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4260 } else
4261 return -EINVAL;
7c734359
RM
4262
4263 queue_delayed_work(qdev->workqueue,
4264 &qdev->mpi_port_cfg_work, 3*HZ);
4265
746079da
BL
4266 ndev->mtu = new_mtu;
4267
7c734359 4268 if (!netif_running(qdev->ndev)) {
7c734359
RM
4269 return 0;
4270 }
4271
7c734359
RM
4272 status = ql_change_rx_buffers(qdev);
4273 if (status) {
ae9540f7
JP
4274 netif_err(qdev, ifup, qdev->ndev,
4275 "Changing MTU failed.\n");
7c734359
RM
4276 }
4277
4278 return status;
c4e84bde
RM
4279}
4280
4281static struct net_device_stats *qlge_get_stats(struct net_device
4282 *ndev)
4283{
885ee398
RM
4284 struct ql_adapter *qdev = netdev_priv(ndev);
4285 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4286 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4287 unsigned long pkts, mcast, dropped, errors, bytes;
4288 int i;
4289
4290 /* Get RX stats. */
4291 pkts = mcast = dropped = errors = bytes = 0;
4292 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4293 pkts += rx_ring->rx_packets;
4294 bytes += rx_ring->rx_bytes;
4295 dropped += rx_ring->rx_dropped;
4296 errors += rx_ring->rx_errors;
4297 mcast += rx_ring->rx_multicast;
4298 }
4299 ndev->stats.rx_packets = pkts;
4300 ndev->stats.rx_bytes = bytes;
4301 ndev->stats.rx_dropped = dropped;
4302 ndev->stats.rx_errors = errors;
4303 ndev->stats.multicast = mcast;
4304
4305 /* Get TX stats. */
4306 pkts = errors = bytes = 0;
4307 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4308 pkts += tx_ring->tx_packets;
4309 bytes += tx_ring->tx_bytes;
4310 errors += tx_ring->tx_errors;
4311 }
4312 ndev->stats.tx_packets = pkts;
4313 ndev->stats.tx_bytes = bytes;
4314 ndev->stats.tx_errors = errors;
bcc90f55 4315 return &ndev->stats;
c4e84bde
RM
4316}
4317
ac409215 4318static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4319{
b16fed0a 4320 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4321 struct netdev_hw_addr *ha;
cc288f54 4322 int i, status;
c4e84bde 4323
cc288f54
RM
4324 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4325 if (status)
4326 return;
c4e84bde
RM
4327 /*
4328 * Set or clear promiscuous mode if a
4329 * transition is taking place.
4330 */
4331 if (ndev->flags & IFF_PROMISC) {
4332 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4333 if (ql_set_routing_reg
4334 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4335 netif_err(qdev, hw, qdev->ndev,
25985edc 4336 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4337 } else {
4338 set_bit(QL_PROMISCUOUS, &qdev->flags);
4339 }
4340 }
4341 } else {
4342 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4343 if (ql_set_routing_reg
4344 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4345 netif_err(qdev, hw, qdev->ndev,
25985edc 4346 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4347 } else {
4348 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4349 }
4350 }
4351 }
4352
4353 /*
4354 * Set or clear all multicast mode if a
4355 * transition is taking place.
4356 */
4357 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4358 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4359 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4360 if (ql_set_routing_reg
4361 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4362 netif_err(qdev, hw, qdev->ndev,
4363 "Failed to set all-multi mode.\n");
c4e84bde
RM
4364 } else {
4365 set_bit(QL_ALLMULTI, &qdev->flags);
4366 }
4367 }
4368 } else {
4369 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4370 if (ql_set_routing_reg
4371 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4372 netif_err(qdev, hw, qdev->ndev,
4373 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4374 } else {
4375 clear_bit(QL_ALLMULTI, &qdev->flags);
4376 }
4377 }
4378 }
4379
4cd24eaf 4380 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4381 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4382 if (status)
4383 goto exit;
f9dcbcc9 4384 i = 0;
22bedad3
JP
4385 netdev_for_each_mc_addr(ha, ndev) {
4386 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4387 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4388 netif_err(qdev, hw, qdev->ndev,
4389 "Failed to loadmulticast address.\n");
cc288f54 4390 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4391 goto exit;
4392 }
f9dcbcc9
JP
4393 i++;
4394 }
cc288f54 4395 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4396 if (ql_set_routing_reg
4397 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4398 netif_err(qdev, hw, qdev->ndev,
4399 "Failed to set multicast match mode.\n");
c4e84bde
RM
4400 } else {
4401 set_bit(QL_ALLMULTI, &qdev->flags);
4402 }
4403 }
4404exit:
8587ea35 4405 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4406}
4407
4408static int qlge_set_mac_address(struct net_device *ndev, void *p)
4409{
b16fed0a 4410 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4411 struct sockaddr *addr = p;
cc288f54 4412 int status;
c4e84bde 4413
c4e84bde
RM
4414 if (!is_valid_ether_addr(addr->sa_data))
4415 return -EADDRNOTAVAIL;
4416 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4417 /* Update local copy of current mac address. */
4418 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4419
cc288f54
RM
4420 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4421 if (status)
4422 return status;
cc288f54
RM
4423 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4424 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4425 if (status)
ae9540f7 4426 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4427 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4428 return status;
c4e84bde
RM
4429}
4430
4431static void qlge_tx_timeout(struct net_device *ndev)
4432{
b16fed0a 4433 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4434 ql_queue_asic_error(qdev);
c4e84bde
RM
4435}
4436
4437static void ql_asic_reset_work(struct work_struct *work)
4438{
4439 struct ql_adapter *qdev =
4440 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4441 int status;
f2c0d8df 4442 rtnl_lock();
db98812f
RM
4443 status = ql_adapter_down(qdev);
4444 if (status)
4445 goto error;
4446
4447 status = ql_adapter_up(qdev);
4448 if (status)
4449 goto error;
2cd6dbaa
RM
4450
4451 /* Restore rx mode. */
4452 clear_bit(QL_ALLMULTI, &qdev->flags);
4453 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4454 qlge_set_multicast_list(qdev->ndev);
4455
f2c0d8df 4456 rtnl_unlock();
db98812f
RM
4457 return;
4458error:
ae9540f7
JP
4459 netif_alert(qdev, ifup, qdev->ndev,
4460 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4461
db98812f
RM
4462 set_bit(QL_ADAPTER_UP, &qdev->flags);
4463 dev_close(qdev->ndev);
4464 rtnl_unlock();
c4e84bde
RM
4465}
4466
ef9c7ab4 4467static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4468 .get_flash = ql_get_8012_flash_params,
4469 .port_initialize = ql_8012_port_initialize,
4470};
4471
ef9c7ab4 4472static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4473 .get_flash = ql_get_8000_flash_params,
4474 .port_initialize = ql_8000_port_initialize,
4475};
4476
e4552f51
RM
4477/* Find the pcie function number for the other NIC
4478 * on this chip. Since both NIC functions share a
4479 * common firmware we have the lowest enabled function
4480 * do any common work. Examples would be resetting
4481 * after a fatal firmware error, or doing a firmware
4482 * coredump.
4483 */
4484static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4485{
4486 int status = 0;
4487 u32 temp;
4488 u32 nic_func1, nic_func2;
4489
4490 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4491 &temp);
4492 if (status)
4493 return status;
4494
4495 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4496 MPI_TEST_NIC_FUNC_MASK);
4497 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4498 MPI_TEST_NIC_FUNC_MASK);
4499
4500 if (qdev->func == nic_func1)
4501 qdev->alt_func = nic_func2;
4502 else if (qdev->func == nic_func2)
4503 qdev->alt_func = nic_func1;
4504 else
4505 status = -EIO;
4506
4507 return status;
4508}
b0c2aadf 4509
e4552f51 4510static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4511{
e4552f51 4512 int status;
c4e84bde
RM
4513 qdev->func =
4514 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4515 if (qdev->func > 3)
4516 return -EIO;
4517
4518 status = ql_get_alt_pcie_func(qdev);
4519 if (status)
4520 return status;
4521
4522 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4523 if (qdev->port) {
c4e84bde
RM
4524 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4525 qdev->port_link_up = STS_PL1;
4526 qdev->port_init = STS_PI1;
4527 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4528 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4529 } else {
4530 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4531 qdev->port_link_up = STS_PL0;
4532 qdev->port_init = STS_PI0;
4533 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4534 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4535 }
4536 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4537 qdev->device_id = qdev->pdev->device;
4538 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4539 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4540 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4541 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4542 return status;
c4e84bde
RM
4543}
4544
4545static void ql_release_all(struct pci_dev *pdev)
4546{
4547 struct net_device *ndev = pci_get_drvdata(pdev);
4548 struct ql_adapter *qdev = netdev_priv(ndev);
4549
4550 if (qdev->workqueue) {
4551 destroy_workqueue(qdev->workqueue);
4552 qdev->workqueue = NULL;
4553 }
39aa8165 4554
c4e84bde 4555 if (qdev->reg_base)
8668ae92 4556 iounmap(qdev->reg_base);
c4e84bde
RM
4557 if (qdev->doorbell_area)
4558 iounmap(qdev->doorbell_area);
8aae2600 4559 vfree(qdev->mpi_coredump);
c4e84bde 4560 pci_release_regions(pdev);
c4e84bde
RM
4561}
4562
1dd06ae8
GKH
4563static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4564 int cards_found)
c4e84bde
RM
4565{
4566 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4567 int err = 0;
c4e84bde 4568
e332471c 4569 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4570 err = pci_enable_device(pdev);
4571 if (err) {
4572 dev_err(&pdev->dev, "PCI device enable failed.\n");
4573 return err;
4574 }
4575
ebd6e774
RM
4576 qdev->ndev = ndev;
4577 qdev->pdev = pdev;
4578 pci_set_drvdata(pdev, ndev);
c4e84bde 4579
bc9167f3
RM
4580 /* Set PCIe read request size */
4581 err = pcie_set_readrq(pdev, 4096);
4582 if (err) {
4583 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4584 goto err_out1;
bc9167f3
RM
4585 }
4586
c4e84bde
RM
4587 err = pci_request_regions(pdev, DRV_NAME);
4588 if (err) {
4589 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4590 return err;
c4e84bde
RM
4591 }
4592
4593 pci_set_master(pdev);
6a35528a 4594 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4595 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4596 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4597 } else {
284901a9 4598 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4599 if (!err)
284901a9 4600 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4601 }
4602
4603 if (err) {
4604 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4605 goto err_out2;
c4e84bde
RM
4606 }
4607
73475339
RM
4608 /* Set PCIe reset type for EEH to fundamental. */
4609 pdev->needs_freset = 1;
6d190c6e 4610 pci_save_state(pdev);
c4e84bde
RM
4611 qdev->reg_base =
4612 ioremap_nocache(pci_resource_start(pdev, 1),
4613 pci_resource_len(pdev, 1));
4614 if (!qdev->reg_base) {
4615 dev_err(&pdev->dev, "Register mapping failed.\n");
4616 err = -ENOMEM;
4f9a91c8 4617 goto err_out2;
c4e84bde
RM
4618 }
4619
4620 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4621 qdev->doorbell_area =
4622 ioremap_nocache(pci_resource_start(pdev, 3),
4623 pci_resource_len(pdev, 3));
4624 if (!qdev->doorbell_area) {
4625 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4626 err = -ENOMEM;
4f9a91c8 4627 goto err_out2;
c4e84bde
RM
4628 }
4629
e4552f51
RM
4630 err = ql_get_board_info(qdev);
4631 if (err) {
4632 dev_err(&pdev->dev, "Register access failed.\n");
4633 err = -EIO;
4f9a91c8 4634 goto err_out2;
e4552f51 4635 }
c4e84bde
RM
4636 qdev->msg_enable = netif_msg_init(debug, default_msg);
4637 spin_lock_init(&qdev->hw_lock);
4638 spin_lock_init(&qdev->stats_lock);
4639
8aae2600
RM
4640 if (qlge_mpi_coredump) {
4641 qdev->mpi_coredump =
4642 vmalloc(sizeof(struct ql_mpi_coredump));
4643 if (qdev->mpi_coredump == NULL) {
8aae2600 4644 err = -ENOMEM;
ce96bc86 4645 goto err_out2;
8aae2600 4646 }
d5c1da56
RM
4647 if (qlge_force_coredump)
4648 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4649 }
c4e84bde 4650 /* make sure the EEPROM is good */
b0c2aadf 4651 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4652 if (err) {
4653 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4654 goto err_out2;
c4e84bde
RM
4655 }
4656
801e9096
RM
4657 /* Keep local copy of current mac address. */
4658 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4659
4660 /* Set up the default ring sizes. */
4661 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4662 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4663
4664 /* Set up the coalescing parameters. */
4665 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4666 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4667 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4668 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4669
4670 /*
4671 * Set up the operating parameters.
4672 */
c4e84bde
RM
4673 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4674 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4675 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4676 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4677 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4678 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4679 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4680 init_completion(&qdev->ide_completion);
4d7b6b5d 4681 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4682
4683 if (!cards_found) {
4684 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4685 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4686 DRV_NAME, DRV_VERSION);
4687 }
4688 return 0;
4f9a91c8 4689err_out2:
c4e84bde 4690 ql_release_all(pdev);
4f9a91c8 4691err_out1:
c4e84bde
RM
4692 pci_disable_device(pdev);
4693 return err;
4694}
4695
25ed7849
SH
4696static const struct net_device_ops qlge_netdev_ops = {
4697 .ndo_open = qlge_open,
4698 .ndo_stop = qlge_close,
4699 .ndo_start_xmit = qlge_send,
4700 .ndo_change_mtu = qlge_change_mtu,
4701 .ndo_get_stats = qlge_get_stats,
afc4b13d 4702 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4703 .ndo_set_mac_address = qlge_set_mac_address,
4704 .ndo_validate_addr = eth_validate_addr,
4705 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4706 .ndo_fix_features = qlge_fix_features,
4707 .ndo_set_features = qlge_set_features,
01e6b953
RM
4708 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4709 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4710};
4711
15c052fc
RM
4712static void ql_timer(unsigned long data)
4713{
4714 struct ql_adapter *qdev = (struct ql_adapter *)data;
4715 u32 var = 0;
4716
4717 var = ql_read32(qdev, STS);
4718 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4719 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4720 return;
4721 }
4722
72046d84 4723 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4724}
4725
5d8e8726 4726static int qlge_probe(struct pci_dev *pdev,
1dd06ae8 4727 const struct pci_device_id *pci_entry)
c4e84bde
RM
4728{
4729 struct net_device *ndev = NULL;
4730 struct ql_adapter *qdev = NULL;
4731 static int cards_found = 0;
4732 int err = 0;
4733
1e213303 4734 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4735 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4736 if (!ndev)
4737 return -ENOMEM;
4738
4739 err = ql_init_device(pdev, ndev, cards_found);
4740 if (err < 0) {
4741 free_netdev(ndev);
4742 return err;
4743 }
4744
4745 qdev = netdev_priv(ndev);
4746 SET_NETDEV_DEV(ndev, &pdev->dev);
a45adbe8
JK
4747 ndev->hw_features = NETIF_F_SG |
4748 NETIF_F_IP_CSUM |
4749 NETIF_F_TSO |
4750 NETIF_F_TSO_ECN |
4751 NETIF_F_HW_VLAN_CTAG_TX |
4752 NETIF_F_HW_VLAN_CTAG_RX |
4753 NETIF_F_HW_VLAN_CTAG_FILTER |
4754 NETIF_F_RXCSUM;
4755 ndev->features = ndev->hw_features;
1a0150a9 4756 ndev->vlan_features = ndev->hw_features;
51bb352f 4757 /* vlan gets same features (except vlan filter) */
f6d1ac4b
VY
4758 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4759 NETIF_F_HW_VLAN_CTAG_TX |
4760 NETIF_F_HW_VLAN_CTAG_RX);
c4e84bde
RM
4761
4762 if (test_bit(QL_DMA64, &qdev->flags))
4763 ndev->features |= NETIF_F_HIGHDMA;
4764
4765 /*
4766 * Set up net_device structure.
4767 */
4768 ndev->tx_queue_len = qdev->tx_ring_size;
4769 ndev->irq = pdev->irq;
25ed7849
SH
4770
4771 ndev->netdev_ops = &qlge_netdev_ops;
7ad24ea4 4772 ndev->ethtool_ops = &qlge_ethtool_ops;
c4e84bde 4773 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4774
c4e84bde
RM
4775 err = register_netdev(ndev);
4776 if (err) {
4777 dev_err(&pdev->dev, "net device registration failed.\n");
4778 ql_release_all(pdev);
4779 pci_disable_device(pdev);
4d2593cc 4780 free_netdev(ndev);
c4e84bde
RM
4781 return err;
4782 }
15c052fc
RM
4783 /* Start up the timer to trigger EEH if
4784 * the bus goes dead
4785 */
4786 init_timer_deferrable(&qdev->timer);
4787 qdev->timer.data = (unsigned long)qdev;
4788 qdev->timer.function = ql_timer;
4789 qdev->timer.expires = jiffies + (5*HZ);
4790 add_timer(&qdev->timer);
6a473308 4791 ql_link_off(qdev);
c4e84bde 4792 ql_display_dev_info(ndev);
9dfbbaa6 4793 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4794 cards_found++;
4795 return 0;
4796}
4797
9dfbbaa6
RM
4798netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4799{
4800 return qlge_send(skb, ndev);
4801}
4802
4803int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4804{
4805 return ql_clean_inbound_rx_ring(rx_ring, budget);
4806}
4807
5d8e8726 4808static void qlge_remove(struct pci_dev *pdev)
c4e84bde
RM
4809{
4810 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4811 struct ql_adapter *qdev = netdev_priv(ndev);
4812 del_timer_sync(&qdev->timer);
c5dadddb 4813 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4814 unregister_netdev(ndev);
4815 ql_release_all(pdev);
4816 pci_disable_device(pdev);
4817 free_netdev(ndev);
4818}
4819
6d190c6e
RM
4820/* Clean up resources without touching hardware. */
4821static void ql_eeh_close(struct net_device *ndev)
4822{
4823 int i;
4824 struct ql_adapter *qdev = netdev_priv(ndev);
4825
4826 if (netif_carrier_ok(ndev)) {
4827 netif_carrier_off(ndev);
4828 netif_stop_queue(ndev);
4829 }
4830
7ae80abd
BL
4831 /* Disabling the timer */
4832 del_timer_sync(&qdev->timer);
c5dadddb 4833 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4834
4835 for (i = 0; i < qdev->rss_ring_count; i++)
4836 netif_napi_del(&qdev->rx_ring[i].napi);
4837
4838 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4839 ql_tx_ring_clean(qdev);
4840 ql_free_rx_buffers(qdev);
4841 ql_release_adapter_resources(qdev);
4842}
4843
c4e84bde
RM
4844/*
4845 * This callback is called by the PCI subsystem whenever
4846 * a PCI bus error is detected.
4847 */
4848static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4849 enum pci_channel_state state)
4850{
4851 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4852 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4853
6d190c6e
RM
4854 switch (state) {
4855 case pci_channel_io_normal:
4856 return PCI_ERS_RESULT_CAN_RECOVER;
4857 case pci_channel_io_frozen:
4858 netif_device_detach(ndev);
4859 if (netif_running(ndev))
4860 ql_eeh_close(ndev);
4861 pci_disable_device(pdev);
4862 return PCI_ERS_RESULT_NEED_RESET;
4863 case pci_channel_io_perm_failure:
4864 dev_err(&pdev->dev,
4865 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4866 ql_eeh_close(ndev);
4867 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4868 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4869 }
c4e84bde
RM
4870
4871 /* Request a slot reset. */
4872 return PCI_ERS_RESULT_NEED_RESET;
4873}
4874
4875/*
4876 * This callback is called after the PCI buss has been reset.
4877 * Basically, this tries to restart the card from scratch.
4878 * This is a shortened version of the device probe/discovery code,
4879 * it resembles the first-half of the () routine.
4880 */
4881static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4882{
4883 struct net_device *ndev = pci_get_drvdata(pdev);
4884 struct ql_adapter *qdev = netdev_priv(ndev);
4885
6d190c6e
RM
4886 pdev->error_state = pci_channel_io_normal;
4887
4888 pci_restore_state(pdev);
c4e84bde 4889 if (pci_enable_device(pdev)) {
ae9540f7
JP
4890 netif_err(qdev, ifup, qdev->ndev,
4891 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4892 return PCI_ERS_RESULT_DISCONNECT;
4893 }
c4e84bde 4894 pci_set_master(pdev);
a112fd4c
RM
4895
4896 if (ql_adapter_reset(qdev)) {
ae9540f7 4897 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4898 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4899 return PCI_ERS_RESULT_DISCONNECT;
4900 }
4901
c4e84bde
RM
4902 return PCI_ERS_RESULT_RECOVERED;
4903}
4904
4905static void qlge_io_resume(struct pci_dev *pdev)
4906{
4907 struct net_device *ndev = pci_get_drvdata(pdev);
4908 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4909 int err = 0;
c4e84bde 4910
c4e84bde 4911 if (netif_running(ndev)) {
6d190c6e
RM
4912 err = qlge_open(ndev);
4913 if (err) {
ae9540f7
JP
4914 netif_err(qdev, ifup, qdev->ndev,
4915 "Device initialization failed after reset.\n");
c4e84bde
RM
4916 return;
4917 }
6d190c6e 4918 } else {
ae9540f7
JP
4919 netif_err(qdev, ifup, qdev->ndev,
4920 "Device was not running prior to EEH.\n");
c4e84bde 4921 }
72046d84 4922 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4923 netif_device_attach(ndev);
4924}
4925
3646f0e5 4926static const struct pci_error_handlers qlge_err_handler = {
c4e84bde
RM
4927 .error_detected = qlge_io_error_detected,
4928 .slot_reset = qlge_io_slot_reset,
4929 .resume = qlge_io_resume,
4930};
4931
4932static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4933{
4934 struct net_device *ndev = pci_get_drvdata(pdev);
4935 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4936 int err;
c4e84bde
RM
4937
4938 netif_device_detach(ndev);
15c052fc 4939 del_timer_sync(&qdev->timer);
c4e84bde
RM
4940
4941 if (netif_running(ndev)) {
4942 err = ql_adapter_down(qdev);
4943 if (!err)
4944 return err;
4945 }
4946
bc083ce9 4947 ql_wol(qdev);
c4e84bde
RM
4948 err = pci_save_state(pdev);
4949 if (err)
4950 return err;
4951
4952 pci_disable_device(pdev);
4953
4954 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4955
4956 return 0;
4957}
4958
04da2cf9 4959#ifdef CONFIG_PM
c4e84bde
RM
4960static int qlge_resume(struct pci_dev *pdev)
4961{
4962 struct net_device *ndev = pci_get_drvdata(pdev);
4963 struct ql_adapter *qdev = netdev_priv(ndev);
4964 int err;
4965
4966 pci_set_power_state(pdev, PCI_D0);
4967 pci_restore_state(pdev);
4968 err = pci_enable_device(pdev);
4969 if (err) {
ae9540f7 4970 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4971 return err;
4972 }
4973 pci_set_master(pdev);
4974
4975 pci_enable_wake(pdev, PCI_D3hot, 0);
4976 pci_enable_wake(pdev, PCI_D3cold, 0);
4977
4978 if (netif_running(ndev)) {
4979 err = ql_adapter_up(qdev);
4980 if (err)
4981 return err;
4982 }
4983
72046d84 4984 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4985 netif_device_attach(ndev);
4986
4987 return 0;
4988}
04da2cf9 4989#endif /* CONFIG_PM */
c4e84bde
RM
4990
4991static void qlge_shutdown(struct pci_dev *pdev)
4992{
4993 qlge_suspend(pdev, PMSG_SUSPEND);
4994}
4995
4996static struct pci_driver qlge_driver = {
4997 .name = DRV_NAME,
4998 .id_table = qlge_pci_tbl,
4999 .probe = qlge_probe,
5d8e8726 5000 .remove = qlge_remove,
c4e84bde
RM
5001#ifdef CONFIG_PM
5002 .suspend = qlge_suspend,
5003 .resume = qlge_resume,
5004#endif
5005 .shutdown = qlge_shutdown,
5006 .err_handler = &qlge_err_handler
5007};
5008
70a611de 5009module_pci_driver(qlge_driver);