]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/qlogic/qlge/qlge_main.c
net: stmmac: Don't search for phys if mdio node is defined.
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
18c49b91 9#include <linux/bitops.h>
c4e84bde
RM
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
18c49b91 36#include <linux/if_vlan.h>
c4e84bde 37#include <linux/skbuff.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
70c71606 41#include <linux/prefetch.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
84cf7029
SR
66static int debug = -1; /* defaults above */
67module_param(debug, int, 0664);
c4e84bde
RM
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
a5a62a1c 73static int qlge_irq_type = MSIX_IRQ;
84cf7029 74module_param(qlge_irq_type, int, 0664);
a5a62a1c 75MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 76
8aae2600
RM
77static int qlge_mpi_coredump;
78module_param(qlge_mpi_coredump, int, 0);
79MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
d5c1da56
RM
81 "Default is OFF - Do Not allocate memory. ");
82
83static int qlge_force_coredump;
84module_param(qlge_force_coredump, int, 0);
85MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
8aae2600 88
9baa3c34 89static const struct pci_device_id qlge_pci_tbl[] = {
b0c2aadf 90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
92 /* required last entry */
93 {0,}
94};
95
96MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
a45adbe8
JK
98static int ql_wol(struct ql_adapter *);
99static void qlge_set_multicast_list(struct net_device *);
100static int ql_adapter_down(struct ql_adapter *);
101static int ql_adapter_up(struct ql_adapter *);
ac409215 102
c4e84bde
RM
103/* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108{
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
ae9540f7 137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143}
144
145int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146{
0857e9d7 147 unsigned int wait_count = 30;
c4e84bde
RM
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
0857e9d7
RM
151 udelay(100);
152 } while (--wait_count);
c4e84bde
RM
153 return -ETIMEDOUT;
154}
155
156void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157{
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160}
161
162/* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168{
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
ae9540f7
JP
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
c4e84bde
RM
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
ae9540f7
JP
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
188 return -ETIMEDOUT;
189}
190
191/* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195{
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209}
210
211
212/* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217{
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
231 return -ENOMEM;
232 }
233
4322c5be
RM
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
c4e84bde
RM
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
ae9540f7
JP
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
242 goto exit;
243 }
244
c4e84bde
RM
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256exit:
4322c5be 257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260}
261
262/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265{
266 u32 offset = 0;
267 int status;
268
c4e84bde
RM
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
939678f8 275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
939678f8 283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
939678f8 289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
939678f8 297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
939678f8 304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 312 MAC_ADDR_MR, 0);
c4e84bde
RM
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
ae9540f7
JP
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
c4e84bde
RM
324 status = -EPERM;
325 }
326exit:
c4e84bde
RM
327 return status;
328}
329
330/* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335{
336 u32 offset = 0;
337 int status = 0;
338
c4e84bde
RM
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
c4e84bde
RM
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
c4e84bde
RM
379 status =
380 ql_wait_reg_rdy(qdev,
939678f8 381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
939678f8 390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
939678f8 399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
76b26694
RM
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
f646968f 413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
76b26694
RM
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
c4e84bde
RM
427 status =
428 ql_wait_reg_rdy(qdev,
939678f8 429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
ae9540f7
JP
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
c4e84bde
RM
442 status = -EPERM;
443 }
444exit:
c4e84bde
RM
445 return status;
446}
447
7fab3bfe
RM
448/* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453{
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
801e9096 459 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
7fab3bfe 462 } else {
c7bf7169 463 eth_zero_addr(zero_mac_addr);
7fab3bfe 464 addr = &zero_mac_addr[0];
ae9540f7
JP
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
7fab3bfe
RM
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
ae9540f7
JP
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
7fab3bfe
RM
477 return status;
478}
479
6a473308
RM
480void ql_link_on(struct ql_adapter *qdev)
481{
ae9540f7 482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485}
486
487void ql_link_off(struct ql_adapter *qdev)
488{
ae9540f7 489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492}
493
c4e84bde
RM
494/* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498{
499 int status = 0;
500
939678f8 501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511exit:
c4e84bde
RM
512 return status;
513}
514
515/* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522{
8587ea35 523 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
524 u32 value = 0;
525
c4e84bde
RM
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
fbc2ac33
RM
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
c4e84bde
RM
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
e163d7f2 573 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
e163d7f2 580 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
ae9540f7
JP
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614exit:
c4e84bde
RM
615 return status;
616}
617
618static void ql_enable_interrupts(struct ql_adapter *qdev)
619{
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621}
622
623static void ql_disable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626}
627
628/* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 631 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
bb0d215c 634u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 635{
bb0d215c
RM
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
c4e84bde 644 ql_write32(qdev, INTR_EN,
bb0d215c
RM
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
c4e84bde 648 }
bb0d215c
RM
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
c4e84bde
RM
658}
659
660static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661{
662 u32 var = 0;
bb0d215c 663 struct intr_context *ctx;
c4e84bde 664
bb0d215c
RM
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
08b1bc8f 672 spin_lock(&qdev->hw_lock);
bb0d215c 673 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 674 ql_write32(qdev, INTR_EN,
bb0d215c 675 ctx->intr_dis_mask);
c4e84bde
RM
676 var = ql_read32(qdev, STS);
677 }
bb0d215c 678 atomic_inc(&ctx->irq_cnt);
08b1bc8f 679 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
680 return var;
681}
682
683static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684{
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
bb0d215c
RM
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697}
698
b0c2aadf
RM
699static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700{
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
ae9540f7 707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
ae9540f7
JP
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
717
718 return csum;
719}
720
26351479 721static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
722{
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
26351479
RM
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
741exit:
742 return status;
743}
744
cdca8d02
RM
745static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746{
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
542512e4 751 u8 mac_addr[6];
cdca8d02
RM
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
e4552f51 756 if (!qdev->port)
cdca8d02
RM
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
ae9540f7
JP
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
cdca8d02
RM
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
ae9540f7 778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
779 status = -EINVAL;
780 goto exit;
781 }
782
542512e4
RM
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
542512e4 802 mac_addr,
cdca8d02
RM
803 qdev->ndev->addr_len);
804
805exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808}
809
b0c2aadf 810static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
811{
812 int i;
813 int status;
26351479 814 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 815 u32 offset = 0;
b0c2aadf 816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
e4552f51 821 if (qdev->port)
b0c2aadf 822 offset = size;
c4e84bde
RM
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
b0c2aadf 827 for (i = 0; i < size; i++, p++) {
e78f5fa7 828 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 829 if (status) {
ae9540f7
JP
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
c4e84bde
RM
832 goto exit;
833 }
834
835 }
b0c2aadf
RM
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
ae9540f7 841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
c4e84bde
RM
855exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858}
859
860/* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865{
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877}
878
879/* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884{
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900exit:
901 return status;
902}
903
904/* This is used for reading the 64-bit statistics regs. */
905int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906{
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921exit:
922 return status;
923}
924
cdca8d02
RM
925static int ql_8000_port_initialize(struct ql_adapter *qdev)
926{
bcc2cb3b 927 int status;
cfec0cbc
RM
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
bcc2cb3b
RM
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940exit:
941 return status;
cdca8d02
RM
942}
943
c4e84bde
RM
944/* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
b0c2aadf 950static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
951{
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
ae9540f7
JP
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
ae9540f7
JP
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
c4e84bde
RM
965 }
966 return status;
967 }
968
ae9540f7 969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023}
1024
7c734359
RM
1025static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026{
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028}
1029
c4e84bde 1030/* Get the next large buffer. */
8668ae92 1031static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1032{
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039}
1040
7c734359
RM
1041static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043{
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1047 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061}
1062
c4e84bde 1063/* Get the next small buffer. */
8668ae92 1064static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1065{
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072}
1073
1074/* Update an rx ring index. */
1075static void ql_update_cq(struct rx_ring *rx_ring)
1076{
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083}
1084
1085static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086{
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088}
1089
7c734359
RM
1090static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092{
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
7c734359
RM
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
ef380794 1110 rx_ring->pg_chunk.page = NULL;
ae9540f7
JP
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
7c734359
RM
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137}
c4e84bde
RM
1138/* Process (refill) a large buffer queue. */
1139static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140{
49f2186d
RM
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
c4e84bde 1143 struct bq_desc *lbq_desc;
c4e84bde
RM
1144 u64 map;
1145 int i;
1146
7c734359 1147 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
c4e84bde 1152 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1154 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1155 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
ae9540f7
JP
1158 return;
1159 }
7c734359
RM
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1165 rx_ring->lbq_buf_size);
2c9a0d41 1166 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
ae9540f7
JP
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
c4e84bde
RM
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1189 }
1190}
1191
1192/* Process (refill) a small buffer queue. */
1193static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194{
49f2186d
RM
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
c4e84bde 1197 struct bq_desc *sbq_desc;
c4e84bde
RM
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1203 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
c4e84bde 1207 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
c4e84bde
RM
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
52e55f3c 1214 SMALL_BUFFER_SIZE);
c4e84bde 1215 if (sbq_desc->p.skb == NULL) {
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
433c88e8 1436/* Categorizing receive firmware frame errors */
ae721f3a
SV
1437static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
433c88e8
JK
1439{
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
ae721f3a 1443 rx_ring->rx_errors++;
433c88e8
JK
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466}
1467
a45adbe8
JK
1468/**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475{
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489}
1490
63526713
RM
1491/* Process an inbound completion from an rx ring. */
1492static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497{
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1500 struct napi_struct *napi = &rx_ring->napi;
1501
ae721f3a
SV
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
63526713
RM
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
ae9540f7
JP
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
63526713
RM
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
63526713
RM
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1533 if (vlan_id != 0xffff)
86a9bad3 1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91 1535 napi_gro_frags(napi);
63526713
RM
1536}
1537
4f848c0a
RM
1538/* Process an inbound completion from an rx ring. */
1539static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544{
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
a45adbe8 1550 size_t hlen = ETH_HLEN;
4f848c0a
RM
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
4f848c0a
RM
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
ae721f3a
SV
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
a45adbe8
JK
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
4f848c0a
RM
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
a45adbe8 1574 if (skb->len > ndev->mtu + hlen) {
ae9540f7
JP
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
4f848c0a
RM
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
a45adbe8 1580 memcpy(skb_put(skb, hlen), addr, hlen);
ae9540f7
JP
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
4f848c0a 1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
a45adbe8
JK
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
4f848c0a
RM
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1594 skb_checksum_none_assert(skb);
4f848c0a 1595
88230fd5 1596 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
4f848c0a
RM
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
e02ef331 1606 struct iphdr *iph =
a45adbe8 1607 (struct iphdr *)((u8 *)addr + hlen);
4f848c0a 1608 if (!(iph->frag_off &
0d653ed8 1609 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
e02ef331 1613 "UDP checksum done!\n");
4f848c0a
RM
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1619 if (vlan_id != 0xffff)
86a9bad3 1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
4f848c0a
RM
1625 return;
1626err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629}
1630
1631/* Process an inbound completion from an rx ring. */
1632static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637{
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
4f848c0a
RM
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1652 skb = new_skb;
1653
ae721f3a
SV
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1658 return;
1659 }
1660
4f848c0a
RM
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1665 return;
1666 }
1667
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1670 */
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1674 return;
1675 }
1676
1677 prefetch(skb->data);
4f848c0a 1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680 "%s Multicast.\n",
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1687 }
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
4f848c0a
RM
1691
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1695 skb_checksum_none_assert(skb);
4f848c0a
RM
1696
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1699 */
88230fd5 1700 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702 /* TCP frame. */
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
4f848c0a
RM
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
0d653ed8 1712 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1715 qdev->ndev,
e02ef331 1716 "UDP checksum done!\n");
4f848c0a
RM
1717 }
1718 }
1719 }
1720
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1722 if (vlan_id != 0xffff)
86a9bad3 1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1726 else
1727 netif_receive_skb(skb);
4f848c0a
RM
1728}
1729
8668ae92 1730static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1731{
1732 void *temp_addr = skb->data;
1733
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1737 */
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1741 (unsigned int)len);
1742}
1743
1744/*
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1748 */
1749static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1752{
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
c4e84bde
RM
1759
1760 /*
1761 * Handle the header buffer if present.
1762 */
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1767 /*
1768 * Headers fit nicely into a small buffer.
1769 */
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1779 }
1780
1781 /*
1782 * Handle the data buffer(s).
1783 */
1784 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
c4e84bde
RM
1787 return skb;
1788 }
1789
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1794 length);
c4e84bde
RM
1795 /*
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1800 * buffer.
1801 */
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1804 dma_unmap_addr
c4e84bde 1805 (sbq_desc, mapaddr),
64b9b41d 1806 dma_unmap_len
c4e84bde
RM
1807 (sbq_desc, maplen),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1812 dma_unmap_addr
c4e84bde
RM
1813 (sbq_desc,
1814 mapaddr),
64b9b41d 1815 dma_unmap_len
c4e84bde
RM
1816 (sbq_desc,
1817 maplen),
1818 PCI_DMA_FROMDEVICE);
1819 } else {
ae9540f7
JP
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1822 length);
c4e84bde
RM
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
64b9b41d 1828 dma_unmap_addr(sbq_desc,
c4e84bde 1829 mapaddr),
64b9b41d 1830 dma_unmap_len(sbq_desc,
c4e84bde
RM
1831 maplen),
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1834 }
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1839 length);
c4e84bde
RM
1840 /*
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1843 * it rip.
1844 */
7c734359 1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
c4e84bde
RM
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
c4e84bde
RM
1855 } else {
1856 /*
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1860 */
7c734359 1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1863 if (skb == NULL) {
ae9540f7
JP
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
c4e84bde
RM
1866 return NULL;
1867 }
4055c7d4 1868 pci_unmap_page(qdev->pdev,
64b9b41d 1869 dma_unmap_addr(lbq_desc,
4055c7d4 1870 mapaddr),
64b9b41d 1871 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1872 PCI_DMA_FROMDEVICE);
c4e84bde 1873 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876 length);
7c734359
RM
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1880 length);
c4e84bde
RM
1881 skb->len += length;
1882 skb->data_len += length;
1883 skb->truesize += length;
1884 length -= length;
a45adbe8
JK
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1887 &hlen);
1888 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1889 }
1890 } else {
1891 /*
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1895 * buffer's skb.
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1901 */
7c734359 1902 int size, i = 0;
c4e84bde
RM
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909 /*
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1916 * pages to chain.
1917 */
ae9540f7
JP
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1920 length);
c4e84bde 1921 skb = sbq_desc->p.skb;
c4e84bde
RM
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde 1924 }
afe6e00c 1925 do {
7c734359
RM
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
c4e84bde 1929
ae9540f7
JP
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1932 i, size);
7c734359
RM
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1936 size);
c4e84bde
RM
1937 skb->len += size;
1938 skb->data_len += size;
1939 skb->truesize += size;
1940 length -= size;
c4e84bde 1941 i++;
afe6e00c 1942 } while (length > 0);
a45adbe8
JK
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944 &hlen);
1945 __pskb_pull_tail(skb, hlen);
c4e84bde
RM
1946 }
1947 return skb;
1948}
1949
1950/* Process an inbound completion from an rx ring. */
4f848c0a 1951static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1952 struct rx_ring *rx_ring,
4f848c0a
RM
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1954 u16 vlan_id)
c4e84bde
RM
1955{
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1958
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
ae9540f7
JP
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
885ee398 1965 rx_ring->rx_dropped++;
c4e84bde
RM
1966 return;
1967 }
1968
ae721f3a
SV
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1973 return;
1974 }
1975
ec33a491
RM
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1978 */
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
885ee398 1981 rx_ring->rx_dropped++;
ec33a491
RM
1982 return;
1983 }
1984
9dfbbaa6
RM
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1989 return;
1990 }
1991
c4e84bde 1992 prefetch(skb->data);
c4e84bde 1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 2001 rx_ring->rx_multicast++;
c4e84bde
RM
2002 }
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
c4e84bde 2006 }
d555f592 2007
d555f592 2008 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 2009 skb_checksum_none_assert(skb);
d555f592
RM
2010
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2013 */
88230fd5 2014 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016 /* TCP frame. */
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
d555f592
RM
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
0d653ed8 2026 htons(IP_MF|IP_OFFSET))) {
d555f592 2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
d555f592
RM
2030 }
2031 }
c4e84bde 2032 }
d555f592 2033
885ee398
RM
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
b2014ff8 2036 skb_record_rx_queue(skb, rx_ring->cq_id);
a45adbe8 2037 if (vlan_id != 0xffff)
86a9bad3 2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2041 else
2042 netif_receive_skb(skb);
c4e84bde
RM
2043}
2044
4f848c0a
RM
2045/* Process an inbound completion from an rx ring. */
2046static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2049{
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
a45adbe8
JK
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
4f848c0a
RM
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2060 * separate buffers.
2061 */
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063 vlan_id);
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2068 */
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070 length, vlan_id);
63526713
RM
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2076 */
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078 length, vlan_id);
4f848c0a
RM
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2082 */
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084 length, vlan_id);
2085 } else {
c0c56955
RM
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2088 */
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090 vlan_id);
4f848c0a
RM
2091 }
2092
2093 return (unsigned long)length;
2094}
2095
c4e84bde
RM
2096/* Process an outbound completion from an rx ring. */
2097static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2099{
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2102
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
c4e84bde
RM
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2111
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113 OB_MAC_IOCB_RSP_S |
2114 OB_MAC_IOCB_RSP_L |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2119 }
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2123 }
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2127 }
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2131 }
2132 }
2133 atomic_inc(&tx_ring->tx_count);
2134}
2135
2136/* Fire up a handler to reset the MPI processor. */
2137void ql_queue_fw_error(struct ql_adapter *qdev)
2138{
6a473308 2139 ql_link_off(qdev);
c4e84bde
RM
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141}
2142
2143void ql_queue_asic_error(struct ql_adapter *qdev)
2144{
6a473308 2145 ql_link_off(qdev);
c4e84bde 2146 ql_disable_interrupts(qdev);
6497b607
RM
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2149 * thread
2150 */
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2154 */
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157}
2158
2159static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2161{
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
ae9540f7
JP
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
c4e84bde
RM
2166 ql_queue_fw_error(qdev);
2167 return;
2168
2169 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2172 ql_queue_asic_error(qdev);
2173 return;
2174
2175 case SOFT_ECC_ERROR_EVENT:
5069ee55 2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2177 ql_queue_asic_error(qdev);
2178 break;
2179
2180 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2183 ib_ae_rsp->q_id);
c4e84bde
RM
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 default:
ae9540f7
JP
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189 ib_ae_rsp->event);
c4e84bde
RM
2190 ql_queue_asic_error(qdev);
2191 break;
2192 }
2193}
2194
2195static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196{
2197 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2200 int count = 0;
2201
1e213303 2202 struct tx_ring *tx_ring;
c4e84bde
RM
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2205
ae9540f7
JP
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2209
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211 rmb();
2212 switch (net_rsp->opcode) {
2213
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2217 break;
2218 default:
ae9540f7
JP
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221 net_rsp->opcode);
c4e84bde
RM
2222 }
2223 count++;
2224 ql_update_cq(rx_ring);
ba7cd3ba 2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2226 }
4da79504
DC
2227 if (!net_rsp)
2228 return 0;
c4e84bde 2229 ql_write_cq_idx(rx_ring);
1e213303 2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2233 /*
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2236 */
1e213303 2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2238 }
2239
2240 return count;
2241}
2242
2243static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244{
2245 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2247 struct ql_net_rsp_iocb *net_rsp;
2248 int count = 0;
2249
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2252
ae9540f7
JP
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2256
2257 net_rsp = rx_ring->curr_entry;
2258 rmb();
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2263 net_rsp);
2264 break;
2265
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268 net_rsp);
2269 break;
2270 default:
ae9540f7
JP
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273 net_rsp->opcode);
2274 break;
c4e84bde
RM
2275 }
2276 count++;
2277 ql_update_cq(rx_ring);
ba7cd3ba 2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2279 if (count == budget)
2280 break;
2281 }
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2284 return count;
2285}
2286
2287static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288{
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2294
ae9540f7
JP
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2297
39aa8165
RM
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2304 */
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
39aa8165
RM
2311 ql_clean_outbound_rx_ring(trx_ring);
2312 }
2313 }
2314
2315 /*
2316 * Now service the RSS ring if it's active.
2317 */
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
ae9540f7
JP
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
39aa8165
RM
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324 }
2325
c4e84bde 2326 if (work_done < budget) {
22bdd4f5 2327 napi_complete(napi);
c4e84bde
RM
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329 }
2330 return work_done;
2331}
2332
c8f44aff 2333static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2334{
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2336
f646968f 2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
c4e84bde 2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2340 } else {
c4e84bde
RM
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342 }
2343}
2344
a45adbe8
JK
2345/**
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2348 */
2349static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2351{
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2353 int status = 0;
61132bf7 2354 bool need_restart = netif_running(ndev);
a45adbe8 2355
61132bf7
ML
2356 if (need_restart) {
2357 status = ql_adapter_down(qdev);
2358 if (status) {
2359 netif_err(qdev, link, qdev->ndev,
2360 "Failed to bring down the adapter\n");
2361 return status;
2362 }
a45adbe8
JK
2363 }
2364
2365 /* update the features with resent change */
2366 ndev->features = features;
2367
61132bf7
ML
2368 if (need_restart) {
2369 status = ql_adapter_up(qdev);
2370 if (status) {
2371 netif_err(qdev, link, qdev->ndev,
2372 "Failed to bring up the adapter\n");
2373 return status;
2374 }
a45adbe8 2375 }
61132bf7 2376
a45adbe8
JK
2377 return status;
2378}
2379
c8f44aff
MM
2380static netdev_features_t qlge_fix_features(struct net_device *ndev,
2381 netdev_features_t features)
18c49b91 2382{
a45adbe8 2383 int err;
18c49b91 2384
a45adbe8
JK
2385 /* Update the behavior of vlan accel in the adapter */
2386 err = qlge_update_hw_vlan_features(ndev, features);
2387 if (err)
2388 return err;
2389
18c49b91
JP
2390 return features;
2391}
2392
c8f44aff
MM
2393static int qlge_set_features(struct net_device *ndev,
2394 netdev_features_t features)
18c49b91 2395{
c8f44aff 2396 netdev_features_t changed = ndev->features ^ features;
18c49b91 2397
f646968f 2398 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
18c49b91
JP
2399 qlge_vlan_mode(ndev, features);
2400
2401 return 0;
2402}
2403
8e586137 2404static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2405{
c4e84bde 2406 u32 enable_bit = MAC_ADDR_E;
8e586137 2407 int err;
c4e84bde 2408
8e586137
JP
2409 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2410 MAC_ADDR_TYPE_VLAN, vid);
2411 if (err)
ae9540f7
JP
2412 netif_err(qdev, ifup, qdev->ndev,
2413 "Failed to init vlan address.\n");
8e586137 2414 return err;
c4e84bde
RM
2415}
2416
80d5c368 2417static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
c4e84bde
RM
2418{
2419 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2420 int status;
8e586137 2421 int err;
cc288f54
RM
2422
2423 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2424 if (status)
8e586137 2425 return status;
c4e84bde 2426
8e586137 2427 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2428 set_bit(vid, qdev->active_vlans);
2429
2430 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2431
2432 return err;
18c49b91
JP
2433}
2434
8e586137 2435static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2436{
2437 u32 enable_bit = 0;
8e586137 2438 int err;
18c49b91 2439
8e586137
JP
2440 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2441 MAC_ADDR_TYPE_VLAN, vid);
2442 if (err)
ae9540f7
JP
2443 netif_err(qdev, ifup, qdev->ndev,
2444 "Failed to clear vlan address.\n");
8e586137 2445 return err;
18c49b91
JP
2446}
2447
80d5c368 2448static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
18c49b91
JP
2449{
2450 struct ql_adapter *qdev = netdev_priv(ndev);
2451 int status;
8e586137 2452 int err;
c4e84bde 2453
18c49b91
JP
2454 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2455 if (status)
8e586137 2456 return status;
18c49b91 2457
8e586137 2458 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2459 clear_bit(vid, qdev->active_vlans);
2460
2461 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2462
2463 return err;
c4e84bde
RM
2464}
2465
c1b60092
RM
2466static void qlge_restore_vlan(struct ql_adapter *qdev)
2467{
18c49b91
JP
2468 int status;
2469 u16 vid;
2470
2471 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2472 if (status)
2473 return;
2474
2475 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2476 __qlge_vlan_rx_add_vid(qdev, vid);
2477
2478 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2479}
2480
c4e84bde
RM
2481/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2482static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2483{
2484 struct rx_ring *rx_ring = dev_id;
288379f0 2485 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2486 return IRQ_HANDLED;
2487}
2488
c4e84bde
RM
2489/* This handles a fatal error, MPI activity, and the default
2490 * rx_ring in an MSI-X multiple vector environment.
2491 * In MSI/Legacy environment it also process the rest of
2492 * the rx_rings.
2493 */
2494static irqreturn_t qlge_isr(int irq, void *dev_id)
2495{
2496 struct rx_ring *rx_ring = dev_id;
2497 struct ql_adapter *qdev = rx_ring->qdev;
2498 struct intr_context *intr_context = &qdev->intr_context[0];
2499 u32 var;
c4e84bde
RM
2500 int work_done = 0;
2501
bb0d215c
RM
2502 spin_lock(&qdev->hw_lock);
2503 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2504 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2505 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2506 spin_unlock(&qdev->hw_lock);
2507 return IRQ_NONE;
c4e84bde 2508 }
bb0d215c 2509 spin_unlock(&qdev->hw_lock);
c4e84bde 2510
bb0d215c 2511 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2512
2513 /*
2514 * Check for fatal error.
2515 */
2516 if (var & STS_FE) {
2517 ql_queue_asic_error(qdev);
5069ee55 2518 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2519 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2520 netdev_err(qdev->ndev, "Resetting chip. "
2521 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2522 return IRQ_HANDLED;
2523 }
2524
2525 /*
2526 * Check MPI processor activity.
2527 */
5ee22a5a
RM
2528 if ((var & STS_PI) &&
2529 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2530 /*
2531 * We've got an async event or mailbox completion.
2532 * Handle it and clear the source of the interrupt.
2533 */
ae9540f7
JP
2534 netif_err(qdev, intr, qdev->ndev,
2535 "Got MPI processor interrupt.\n");
c4e84bde 2536 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2537 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2538 queue_delayed_work_on(smp_processor_id(),
2539 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2540 work_done++;
2541 }
2542
2543 /*
39aa8165
RM
2544 * Get the bit-mask that shows the active queues for this
2545 * pass. Compare it to the queues that this irq services
2546 * and call napi if there's a match.
c4e84bde 2547 */
39aa8165
RM
2548 var = ql_read32(qdev, ISR1);
2549 if (var & intr_context->irq_mask) {
ae9540f7
JP
2550 netif_info(qdev, intr, qdev->ndev,
2551 "Waking handler for rx_ring[0].\n");
39aa8165 2552 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2553 napi_schedule(&rx_ring->napi);
2554 work_done++;
2555 }
bb0d215c 2556 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2557 return work_done ? IRQ_HANDLED : IRQ_NONE;
2558}
2559
2560static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2561{
2562
2563 if (skb_is_gso(skb)) {
2564 int err;
1ee1cfe7 2565 __be16 l3_proto = vlan_get_protocol(skb);
bb9689e6 2566
2567 err = skb_cow_head(skb, 0);
2568 if (err < 0)
2569 return err;
c4e84bde
RM
2570
2571 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2572 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2573 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2574 mac_iocb_ptr->total_hdrs_len =
2575 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2576 mac_iocb_ptr->net_trans_offset =
2577 cpu_to_le16(skb_network_offset(skb) |
2578 skb_transport_offset(skb)
2579 << OB_MAC_TRANSPORT_HDR_SHIFT);
2580 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2581 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1ee1cfe7 2582 if (likely(l3_proto == htons(ETH_P_IP))) {
c4e84bde
RM
2583 struct iphdr *iph = ip_hdr(skb);
2584 iph->check = 0;
2585 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2586 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2587 iph->daddr, 0,
2588 IPPROTO_TCP,
2589 0);
1ee1cfe7 2590 } else if (l3_proto == htons(ETH_P_IPV6)) {
c4e84bde
RM
2591 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2592 tcp_hdr(skb)->check =
2593 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2594 &ipv6_hdr(skb)->daddr,
2595 0, IPPROTO_TCP, 0);
2596 }
2597 return 1;
2598 }
2599 return 0;
2600}
2601
2602static void ql_hw_csum_setup(struct sk_buff *skb,
2603 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2604{
2605 int len;
2606 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2607 __sum16 *check;
c4e84bde
RM
2608 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2609 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2610 mac_iocb_ptr->net_trans_offset =
2611 cpu_to_le16(skb_network_offset(skb) |
2612 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2613
2614 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2615 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2616 if (likely(iph->protocol == IPPROTO_TCP)) {
2617 check = &(tcp_hdr(skb)->check);
2618 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2619 mac_iocb_ptr->total_hdrs_len =
2620 cpu_to_le16(skb_transport_offset(skb) +
2621 (tcp_hdr(skb)->doff << 2));
2622 } else {
2623 check = &(udp_hdr(skb)->check);
2624 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2625 mac_iocb_ptr->total_hdrs_len =
2626 cpu_to_le16(skb_transport_offset(skb) +
2627 sizeof(struct udphdr));
2628 }
2629 *check = ~csum_tcpudp_magic(iph->saddr,
2630 iph->daddr, len, iph->protocol, 0);
2631}
2632
61357325 2633static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2634{
2635 struct tx_ring_desc *tx_ring_desc;
2636 struct ob_mac_iocb_req *mac_iocb_ptr;
2637 struct ql_adapter *qdev = netdev_priv(ndev);
2638 int tso;
2639 struct tx_ring *tx_ring;
1e213303 2640 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2641
2642 tx_ring = &qdev->tx_ring[tx_ring_idx];
2643
74c50b4b
RM
2644 if (skb_padto(skb, ETH_ZLEN))
2645 return NETDEV_TX_OK;
2646
c4e84bde 2647 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2648 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2649 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2650 __func__, tx_ring_idx);
1e213303 2651 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2652 tx_ring->tx_errors++;
c4e84bde
RM
2653 return NETDEV_TX_BUSY;
2654 }
2655 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2656 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2657 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2658
2659 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2660 mac_iocb_ptr->tid = tx_ring_desc->index;
2661 /* We use the upper 32-bits to store the tx queue for this IO.
2662 * When we get the completion we can use it to establish the context.
2663 */
2664 mac_iocb_ptr->txq_idx = tx_ring_idx;
2665 tx_ring_desc->skb = skb;
2666
2667 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2668
df8a39de 2669 if (skb_vlan_tag_present(skb)) {
ae9540f7 2670 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
df8a39de 2671 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
c4e84bde 2672 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
df8a39de 2673 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
c4e84bde
RM
2674 }
2675 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676 if (tso < 0) {
2677 dev_kfree_skb_any(skb);
2678 return NETDEV_TX_OK;
2679 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2680 ql_hw_csum_setup(skb,
2681 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2682 }
0d979f74
RM
2683 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2684 NETDEV_TX_OK) {
ae9540f7
JP
2685 netif_err(qdev, tx_queued, qdev->ndev,
2686 "Could not map the segments.\n");
885ee398 2687 tx_ring->tx_errors++;
0d979f74
RM
2688 return NETDEV_TX_BUSY;
2689 }
c4e84bde
RM
2690 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2691 tx_ring->prod_idx++;
2692 if (tx_ring->prod_idx == tx_ring->wq_len)
2693 tx_ring->prod_idx = 0;
2694 wmb();
2695
2696 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2697 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2698 "tx queued, slot %d, len %d\n",
2699 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2700
2701 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2702
2703 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2704 netif_stop_subqueue(ndev, tx_ring->wq_id);
2705 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2706 /*
2707 * The queue got stopped because the tx_ring was full.
2708 * Wake it up, because it's now at least 25% empty.
2709 */
2710 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2711 }
c4e84bde
RM
2712 return NETDEV_TX_OK;
2713}
2714
9dfbbaa6 2715
c4e84bde
RM
2716static void ql_free_shadow_space(struct ql_adapter *qdev)
2717{
2718 if (qdev->rx_ring_shadow_reg_area) {
2719 pci_free_consistent(qdev->pdev,
2720 PAGE_SIZE,
2721 qdev->rx_ring_shadow_reg_area,
2722 qdev->rx_ring_shadow_reg_dma);
2723 qdev->rx_ring_shadow_reg_area = NULL;
2724 }
2725 if (qdev->tx_ring_shadow_reg_area) {
2726 pci_free_consistent(qdev->pdev,
2727 PAGE_SIZE,
2728 qdev->tx_ring_shadow_reg_area,
2729 qdev->tx_ring_shadow_reg_dma);
2730 qdev->tx_ring_shadow_reg_area = NULL;
2731 }
2732}
2733
2734static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2735{
2736 qdev->rx_ring_shadow_reg_area =
440c734f
JP
2737 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2738 &qdev->rx_ring_shadow_reg_dma);
c4e84bde 2739 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2740 netif_err(qdev, ifup, qdev->ndev,
2741 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2742 return -ENOMEM;
2743 }
440c734f 2744
c4e84bde 2745 qdev->tx_ring_shadow_reg_area =
440c734f
JP
2746 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2747 &qdev->tx_ring_shadow_reg_dma);
c4e84bde 2748 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2749 netif_err(qdev, ifup, qdev->ndev,
2750 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2751 goto err_wqp_sh_area;
2752 }
2753 return 0;
2754
2755err_wqp_sh_area:
2756 pci_free_consistent(qdev->pdev,
2757 PAGE_SIZE,
2758 qdev->rx_ring_shadow_reg_area,
2759 qdev->rx_ring_shadow_reg_dma);
2760 return -ENOMEM;
2761}
2762
2763static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2764{
2765 struct tx_ring_desc *tx_ring_desc;
2766 int i;
2767 struct ob_mac_iocb_req *mac_iocb_ptr;
2768
2769 mac_iocb_ptr = tx_ring->wq_base;
2770 tx_ring_desc = tx_ring->q;
2771 for (i = 0; i < tx_ring->wq_len; i++) {
2772 tx_ring_desc->index = i;
2773 tx_ring_desc->skb = NULL;
2774 tx_ring_desc->queue_entry = mac_iocb_ptr;
2775 mac_iocb_ptr++;
2776 tx_ring_desc++;
2777 }
2778 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2779}
2780
2781static void ql_free_tx_resources(struct ql_adapter *qdev,
2782 struct tx_ring *tx_ring)
2783{
2784 if (tx_ring->wq_base) {
2785 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2786 tx_ring->wq_base, tx_ring->wq_base_dma);
2787 tx_ring->wq_base = NULL;
2788 }
2789 kfree(tx_ring->q);
2790 tx_ring->q = NULL;
2791}
2792
2793static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2794 struct tx_ring *tx_ring)
2795{
2796 tx_ring->wq_base =
2797 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2798 &tx_ring->wq_base_dma);
2799
8e95a202 2800 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2801 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2802 goto pci_alloc_err;
2803
c4e84bde
RM
2804 tx_ring->q =
2805 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2806 if (tx_ring->q == NULL)
2807 goto err;
2808
2809 return 0;
2810err:
2811 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2812 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2813 tx_ring->wq_base = NULL;
2814pci_alloc_err:
2815 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2816 return -ENOMEM;
2817}
2818
8668ae92 2819static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2820{
c4e84bde
RM
2821 struct bq_desc *lbq_desc;
2822
7c734359
RM
2823 uint32_t curr_idx, clean_idx;
2824
2825 curr_idx = rx_ring->lbq_curr_idx;
2826 clean_idx = rx_ring->lbq_clean_idx;
2827 while (curr_idx != clean_idx) {
2828 lbq_desc = &rx_ring->lbq[curr_idx];
2829
2830 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2831 pci_unmap_page(qdev->pdev,
7c734359
RM
2832 lbq_desc->p.pg_chunk.map,
2833 ql_lbq_block_size(qdev),
c4e84bde 2834 PCI_DMA_FROMDEVICE);
7c734359 2835 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2836 }
7c734359
RM
2837
2838 put_page(lbq_desc->p.pg_chunk.page);
2839 lbq_desc->p.pg_chunk.page = NULL;
2840
2841 if (++curr_idx == rx_ring->lbq_len)
2842 curr_idx = 0;
2843
c4e84bde 2844 }
ef380794
TLSC
2845 if (rx_ring->pg_chunk.page) {
2846 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2847 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2848 put_page(rx_ring->pg_chunk.page);
2849 rx_ring->pg_chunk.page = NULL;
2850 }
c4e84bde
RM
2851}
2852
8668ae92 2853static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2854{
2855 int i;
2856 struct bq_desc *sbq_desc;
2857
2858 for (i = 0; i < rx_ring->sbq_len; i++) {
2859 sbq_desc = &rx_ring->sbq[i];
2860 if (sbq_desc == NULL) {
ae9540f7
JP
2861 netif_err(qdev, ifup, qdev->ndev,
2862 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2863 return;
2864 }
2865 if (sbq_desc->p.skb) {
2866 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2867 dma_unmap_addr(sbq_desc, mapaddr),
2868 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2869 PCI_DMA_FROMDEVICE);
2870 dev_kfree_skb(sbq_desc->p.skb);
2871 sbq_desc->p.skb = NULL;
2872 }
c4e84bde
RM
2873 }
2874}
2875
4545a3f2
RM
2876/* Free all large and small rx buffers associated
2877 * with the completion queues for this device.
2878 */
2879static void ql_free_rx_buffers(struct ql_adapter *qdev)
2880{
2881 int i;
2882 struct rx_ring *rx_ring;
2883
2884 for (i = 0; i < qdev->rx_ring_count; i++) {
2885 rx_ring = &qdev->rx_ring[i];
2886 if (rx_ring->lbq)
2887 ql_free_lbq_buffers(qdev, rx_ring);
2888 if (rx_ring->sbq)
2889 ql_free_sbq_buffers(qdev, rx_ring);
2890 }
2891}
2892
2893static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2894{
2895 struct rx_ring *rx_ring;
2896 int i;
2897
2898 for (i = 0; i < qdev->rx_ring_count; i++) {
2899 rx_ring = &qdev->rx_ring[i];
2900 if (rx_ring->type != TX_Q)
2901 ql_update_buffer_queues(qdev, rx_ring);
2902 }
2903}
2904
2905static void ql_init_lbq_ring(struct ql_adapter *qdev,
2906 struct rx_ring *rx_ring)
2907{
2908 int i;
2909 struct bq_desc *lbq_desc;
2910 __le64 *bq = rx_ring->lbq_base;
2911
2912 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2913 for (i = 0; i < rx_ring->lbq_len; i++) {
2914 lbq_desc = &rx_ring->lbq[i];
2915 memset(lbq_desc, 0, sizeof(*lbq_desc));
2916 lbq_desc->index = i;
2917 lbq_desc->addr = bq;
2918 bq++;
2919 }
2920}
2921
2922static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2923 struct rx_ring *rx_ring)
2924{
2925 int i;
2926 struct bq_desc *sbq_desc;
2c9a0d41 2927 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2928
4545a3f2 2929 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2930 for (i = 0; i < rx_ring->sbq_len; i++) {
2931 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2932 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2933 sbq_desc->index = i;
2c9a0d41 2934 sbq_desc->addr = bq;
c4e84bde
RM
2935 bq++;
2936 }
c4e84bde
RM
2937}
2938
2939static void ql_free_rx_resources(struct ql_adapter *qdev,
2940 struct rx_ring *rx_ring)
2941{
c4e84bde
RM
2942 /* Free the small buffer queue. */
2943 if (rx_ring->sbq_base) {
2944 pci_free_consistent(qdev->pdev,
2945 rx_ring->sbq_size,
2946 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2947 rx_ring->sbq_base = NULL;
2948 }
2949
2950 /* Free the small buffer queue control blocks. */
2951 kfree(rx_ring->sbq);
2952 rx_ring->sbq = NULL;
2953
2954 /* Free the large buffer queue. */
2955 if (rx_ring->lbq_base) {
2956 pci_free_consistent(qdev->pdev,
2957 rx_ring->lbq_size,
2958 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2959 rx_ring->lbq_base = NULL;
2960 }
2961
2962 /* Free the large buffer queue control blocks. */
2963 kfree(rx_ring->lbq);
2964 rx_ring->lbq = NULL;
2965
2966 /* Free the rx queue. */
2967 if (rx_ring->cq_base) {
2968 pci_free_consistent(qdev->pdev,
2969 rx_ring->cq_size,
2970 rx_ring->cq_base, rx_ring->cq_base_dma);
2971 rx_ring->cq_base = NULL;
2972 }
2973}
2974
2975/* Allocate queues and buffers for this completions queue based
2976 * on the values in the parameter structure. */
2977static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2978 struct rx_ring *rx_ring)
2979{
2980
2981 /*
2982 * Allocate the completion queue for this rx_ring.
2983 */
2984 rx_ring->cq_base =
2985 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2986 &rx_ring->cq_base_dma);
2987
2988 if (rx_ring->cq_base == NULL) {
ae9540f7 2989 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2990 return -ENOMEM;
2991 }
2992
2993 if (rx_ring->sbq_len) {
2994 /*
2995 * Allocate small buffer queue.
2996 */
2997 rx_ring->sbq_base =
2998 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2999 &rx_ring->sbq_base_dma);
3000
3001 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
3002 netif_err(qdev, ifup, qdev->ndev,
3003 "Small buffer queue allocation failed.\n");
c4e84bde
RM
3004 goto err_mem;
3005 }
3006
3007 /*
3008 * Allocate small buffer queue control blocks.
3009 */
14f8dc49
JP
3010 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3011 sizeof(struct bq_desc),
3012 GFP_KERNEL);
3013 if (rx_ring->sbq == NULL)
c4e84bde 3014 goto err_mem;
c4e84bde 3015
4545a3f2 3016 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
3017 }
3018
3019 if (rx_ring->lbq_len) {
3020 /*
3021 * Allocate large buffer queue.
3022 */
3023 rx_ring->lbq_base =
3024 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3025 &rx_ring->lbq_base_dma);
3026
3027 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
3028 netif_err(qdev, ifup, qdev->ndev,
3029 "Large buffer queue allocation failed.\n");
c4e84bde
RM
3030 goto err_mem;
3031 }
3032 /*
3033 * Allocate large buffer queue control blocks.
3034 */
14f8dc49
JP
3035 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3036 sizeof(struct bq_desc),
3037 GFP_KERNEL);
3038 if (rx_ring->lbq == NULL)
c4e84bde 3039 goto err_mem;
c4e84bde 3040
4545a3f2 3041 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
3042 }
3043
3044 return 0;
3045
3046err_mem:
3047 ql_free_rx_resources(qdev, rx_ring);
3048 return -ENOMEM;
3049}
3050
3051static void ql_tx_ring_clean(struct ql_adapter *qdev)
3052{
3053 struct tx_ring *tx_ring;
3054 struct tx_ring_desc *tx_ring_desc;
3055 int i, j;
3056
3057 /*
3058 * Loop through all queues and free
3059 * any resources.
3060 */
3061 for (j = 0; j < qdev->tx_ring_count; j++) {
3062 tx_ring = &qdev->tx_ring[j];
3063 for (i = 0; i < tx_ring->wq_len; i++) {
3064 tx_ring_desc = &tx_ring->q[i];
3065 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
3066 netif_err(qdev, ifdown, qdev->ndev,
3067 "Freeing lost SKB %p, from queue %d, index %d.\n",
3068 tx_ring_desc->skb, j,
3069 tx_ring_desc->index);
c4e84bde
RM
3070 ql_unmap_send(qdev, tx_ring_desc,
3071 tx_ring_desc->map_cnt);
3072 dev_kfree_skb(tx_ring_desc->skb);
3073 tx_ring_desc->skb = NULL;
3074 }
3075 }
3076 }
3077}
3078
c4e84bde
RM
3079static void ql_free_mem_resources(struct ql_adapter *qdev)
3080{
3081 int i;
3082
3083 for (i = 0; i < qdev->tx_ring_count; i++)
3084 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3085 for (i = 0; i < qdev->rx_ring_count; i++)
3086 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3087 ql_free_shadow_space(qdev);
3088}
3089
3090static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3091{
3092 int i;
3093
3094 /* Allocate space for our shadow registers and such. */
3095 if (ql_alloc_shadow_space(qdev))
3096 return -ENOMEM;
3097
3098 for (i = 0; i < qdev->rx_ring_count; i++) {
3099 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3100 netif_err(qdev, ifup, qdev->ndev,
3101 "RX resource allocation failed.\n");
c4e84bde
RM
3102 goto err_mem;
3103 }
3104 }
3105 /* Allocate tx queue resources */
3106 for (i = 0; i < qdev->tx_ring_count; i++) {
3107 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3108 netif_err(qdev, ifup, qdev->ndev,
3109 "TX resource allocation failed.\n");
c4e84bde
RM
3110 goto err_mem;
3111 }
3112 }
3113 return 0;
3114
3115err_mem:
3116 ql_free_mem_resources(qdev);
3117 return -ENOMEM;
3118}
3119
3120/* Set up the rx ring control block and pass it to the chip.
3121 * The control block is defined as
3122 * "Completion Queue Initialization Control Block", or cqicb.
3123 */
3124static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3125{
3126 struct cqicb *cqicb = &rx_ring->cqicb;
3127 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3128 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3129 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3130 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3131 void __iomem *doorbell_area =
3132 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3133 int err = 0;
3134 u16 bq_len;
d4a4aba6 3135 u64 tmp;
b8facca0
RM
3136 __le64 *base_indirect_ptr;
3137 int page_entries;
c4e84bde
RM
3138
3139 /* Set up the shadow registers for this ring. */
3140 rx_ring->prod_idx_sh_reg = shadow_reg;
3141 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3142 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3143 shadow_reg += sizeof(u64);
3144 shadow_reg_dma += sizeof(u64);
3145 rx_ring->lbq_base_indirect = shadow_reg;
3146 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3147 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3148 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3149 rx_ring->sbq_base_indirect = shadow_reg;
3150 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3151
3152 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3153 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3154 rx_ring->cnsmr_idx = 0;
3155 rx_ring->curr_entry = rx_ring->cq_base;
3156
3157 /* PCI doorbell mem area + 0x04 for valid register */
3158 rx_ring->valid_db_reg = doorbell_area + 0x04;
3159
3160 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3161 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3162
3163 /* PCI doorbell mem area + 0x1c */
8668ae92 3164 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3165
3166 memset((void *)cqicb, 0, sizeof(struct cqicb));
3167 cqicb->msix_vect = rx_ring->irq;
3168
459caf5a
RM
3169 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3170 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3171
97345524 3172 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3173
97345524 3174 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3175
3176 /*
3177 * Set up the control block load flags.
3178 */
3179 cqicb->flags = FLAGS_LC | /* Load queue base address */
3180 FLAGS_LV | /* Load MSI-X vector */
3181 FLAGS_LI; /* Load irq delay values */
3182 if (rx_ring->lbq_len) {
3183 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3184 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3185 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3186 page_entries = 0;
3187 do {
3188 *base_indirect_ptr = cpu_to_le64(tmp);
3189 tmp += DB_PAGE_SIZE;
3190 base_indirect_ptr++;
3191 page_entries++;
3192 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3193 cqicb->lbq_addr =
3194 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3195 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3196 (u16) rx_ring->lbq_buf_size;
3197 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3198 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3199 (u16) rx_ring->lbq_len;
c4e84bde 3200 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3201 rx_ring->lbq_prod_idx = 0;
c4e84bde 3202 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3203 rx_ring->lbq_clean_idx = 0;
3204 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3205 }
3206 if (rx_ring->sbq_len) {
3207 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3208 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3209 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3210 page_entries = 0;
3211 do {
3212 *base_indirect_ptr = cpu_to_le64(tmp);
3213 tmp += DB_PAGE_SIZE;
3214 base_indirect_ptr++;
3215 page_entries++;
3216 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3217 cqicb->sbq_addr =
3218 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3219 cqicb->sbq_buf_size =
52e55f3c 3220 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3221 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3222 (u16) rx_ring->sbq_len;
c4e84bde 3223 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3224 rx_ring->sbq_prod_idx = 0;
c4e84bde 3225 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3226 rx_ring->sbq_clean_idx = 0;
3227 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3228 }
3229 switch (rx_ring->type) {
3230 case TX_Q:
c4e84bde
RM
3231 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3232 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3233 break;
c4e84bde
RM
3234 case RX_Q:
3235 /* Inbound completion handling rx_rings run in
3236 * separate NAPI contexts.
3237 */
3238 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3239 64);
3240 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3241 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3242 break;
3243 default:
ae9540f7
JP
3244 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3245 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3246 }
c4e84bde
RM
3247 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3248 CFG_LCQ, rx_ring->cq_id);
3249 if (err) {
ae9540f7 3250 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3251 return err;
3252 }
c4e84bde
RM
3253 return err;
3254}
3255
3256static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3257{
3258 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3259 void __iomem *doorbell_area =
3260 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3261 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3262 (tx_ring->wq_id * sizeof(u64));
3263 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3264 (tx_ring->wq_id * sizeof(u64));
3265 int err = 0;
3266
3267 /*
3268 * Assign doorbell registers for this tx_ring.
3269 */
3270 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3271 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3272 tx_ring->prod_idx = 0;
3273 /* TX PCI doorbell mem area + 0x04 */
3274 tx_ring->valid_db_reg = doorbell_area + 0x04;
3275
3276 /*
3277 * Assign shadow registers for this tx_ring.
3278 */
3279 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3280 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3281
3282 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3283 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3284 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3285 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3286 wqicb->rid = 0;
97345524 3287 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3288
97345524 3289 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3290
3291 ql_init_tx_ring(qdev, tx_ring);
3292
e332471c 3293 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3294 (u16) tx_ring->wq_id);
3295 if (err) {
ae9540f7 3296 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3297 return err;
3298 }
c4e84bde
RM
3299 return err;
3300}
3301
3302static void ql_disable_msix(struct ql_adapter *qdev)
3303{
3304 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3305 pci_disable_msix(qdev->pdev);
3306 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3307 kfree(qdev->msi_x_entry);
3308 qdev->msi_x_entry = NULL;
3309 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3310 pci_disable_msi(qdev->pdev);
3311 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3312 }
3313}
3314
a4ab6137
RM
3315/* We start by trying to get the number of vectors
3316 * stored in qdev->intr_count. If we don't get that
3317 * many then we reduce the count and try again.
3318 */
c4e84bde
RM
3319static void ql_enable_msix(struct ql_adapter *qdev)
3320{
a4ab6137 3321 int i, err;
c4e84bde 3322
c4e84bde 3323 /* Get the MSIX vectors. */
a5a62a1c 3324 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3325 /* Try to alloc space for the msix struct,
3326 * if it fails then go to MSI/legacy.
3327 */
a4ab6137 3328 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3329 sizeof(struct msix_entry),
3330 GFP_KERNEL);
3331 if (!qdev->msi_x_entry) {
a5a62a1c 3332 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3333 goto msi;
3334 }
3335
a4ab6137 3336 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3337 qdev->msi_x_entry[i].entry = i;
3338
50b483a1
AG
3339 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3340 1, qdev->intr_count);
a4ab6137 3341 if (err < 0) {
c4e84bde
RM
3342 kfree(qdev->msi_x_entry);
3343 qdev->msi_x_entry = NULL;
ae9540f7
JP
3344 netif_warn(qdev, ifup, qdev->ndev,
3345 "MSI-X Enable failed, trying MSI.\n");
a5a62a1c 3346 qlge_irq_type = MSI_IRQ;
50b483a1
AG
3347 } else {
3348 qdev->intr_count = err;
a4ab6137 3349 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3350 netif_info(qdev, ifup, qdev->ndev,
3351 "MSI-X Enabled, got %d vectors.\n",
3352 qdev->intr_count);
a4ab6137 3353 return;
c4e84bde
RM
3354 }
3355 }
3356msi:
a4ab6137 3357 qdev->intr_count = 1;
a5a62a1c 3358 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3359 if (!pci_enable_msi(qdev->pdev)) {
3360 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3361 netif_info(qdev, ifup, qdev->ndev,
3362 "Running with MSI interrupts.\n");
c4e84bde
RM
3363 return;
3364 }
3365 }
a5a62a1c 3366 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3367 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3368 "Running with legacy interrupts.\n");
c4e84bde
RM
3369}
3370
39aa8165
RM
3371/* Each vector services 1 RSS ring and and 1 or more
3372 * TX completion rings. This function loops through
3373 * the TX completion rings and assigns the vector that
3374 * will service it. An example would be if there are
3375 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3376 * This would mean that vector 0 would service RSS ring 0
25985edc 3377 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3378 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3379 */
3380static void ql_set_tx_vect(struct ql_adapter *qdev)
3381{
3382 int i, j, vect;
3383 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3384
3385 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3386 /* Assign irq vectors to TX rx_rings.*/
3387 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3388 i < qdev->rx_ring_count; i++) {
3389 if (j == tx_rings_per_vector) {
3390 vect++;
3391 j = 0;
3392 }
3393 qdev->rx_ring[i].irq = vect;
3394 j++;
3395 }
3396 } else {
3397 /* For single vector all rings have an irq
3398 * of zero.
3399 */
3400 for (i = 0; i < qdev->rx_ring_count; i++)
3401 qdev->rx_ring[i].irq = 0;
3402 }
3403}
3404
3405/* Set the interrupt mask for this vector. Each vector
3406 * will service 1 RSS ring and 1 or more TX completion
3407 * rings. This function sets up a bit mask per vector
3408 * that indicates which rings it services.
3409 */
3410static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3411{
3412 int j, vect = ctx->intr;
3413 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3414
3415 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3416 /* Add the RSS ring serviced by this vector
3417 * to the mask.
3418 */
3419 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3420 /* Add the TX ring(s) serviced by this vector
3421 * to the mask. */
3422 for (j = 0; j < tx_rings_per_vector; j++) {
3423 ctx->irq_mask |=
3424 (1 << qdev->rx_ring[qdev->rss_ring_count +
3425 (vect * tx_rings_per_vector) + j].cq_id);
3426 }
3427 } else {
3428 /* For single vector we just shift each queue's
3429 * ID into the mask.
3430 */
3431 for (j = 0; j < qdev->rx_ring_count; j++)
3432 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3433 }
3434}
3435
c4e84bde
RM
3436/*
3437 * Here we build the intr_context structures based on
3438 * our rx_ring count and intr vector count.
3439 * The intr_context structure is used to hook each vector
3440 * to possibly different handlers.
3441 */
3442static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3443{
3444 int i = 0;
3445 struct intr_context *intr_context = &qdev->intr_context[0];
3446
c4e84bde
RM
3447 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3448 /* Each rx_ring has it's
3449 * own intr_context since we have separate
3450 * vectors for each queue.
c4e84bde
RM
3451 */
3452 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3453 qdev->rx_ring[i].irq = i;
3454 intr_context->intr = i;
3455 intr_context->qdev = qdev;
39aa8165
RM
3456 /* Set up this vector's bit-mask that indicates
3457 * which queues it services.
3458 */
3459 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3460 /*
3461 * We set up each vectors enable/disable/read bits so
3462 * there's no bit/mask calculations in the critical path.
3463 */
3464 intr_context->intr_en_mask =
3465 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3466 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3467 | i;
3468 intr_context->intr_dis_mask =
3469 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3470 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3471 INTR_EN_IHD | i;
3472 intr_context->intr_read_mask =
3473 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3474 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3475 i;
39aa8165
RM
3476 if (i == 0) {
3477 /* The first vector/queue handles
3478 * broadcast/multicast, fatal errors,
3479 * and firmware events. This in addition
3480 * to normal inbound NAPI processing.
c4e84bde 3481 */
39aa8165 3482 intr_context->handler = qlge_isr;
b2014ff8
RM
3483 sprintf(intr_context->name, "%s-rx-%d",
3484 qdev->ndev->name, i);
3485 } else {
c4e84bde 3486 /*
39aa8165 3487 * Inbound queues handle unicast frames only.
c4e84bde 3488 */
39aa8165
RM
3489 intr_context->handler = qlge_msix_rx_isr;
3490 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3491 qdev->ndev->name, i);
c4e84bde
RM
3492 }
3493 }
3494 } else {
3495 /*
3496 * All rx_rings use the same intr_context since
3497 * there is only one vector.
3498 */
3499 intr_context->intr = 0;
3500 intr_context->qdev = qdev;
3501 /*
3502 * We set up each vectors enable/disable/read bits so
3503 * there's no bit/mask calculations in the critical path.
3504 */
3505 intr_context->intr_en_mask =
3506 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3507 intr_context->intr_dis_mask =
3508 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3509 INTR_EN_TYPE_DISABLE;
3510 intr_context->intr_read_mask =
3511 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3512 /*
3513 * Single interrupt means one handler for all rings.
3514 */
3515 intr_context->handler = qlge_isr;
3516 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3517 /* Set up this vector's bit-mask that indicates
3518 * which queues it services. In this case there is
3519 * a single vector so it will service all RSS and
3520 * TX completion rings.
3521 */
3522 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3523 }
39aa8165
RM
3524 /* Tell the TX completion rings which MSIx vector
3525 * they will be using.
3526 */
3527 ql_set_tx_vect(qdev);
c4e84bde
RM
3528}
3529
3530static void ql_free_irq(struct ql_adapter *qdev)
3531{
3532 int i;
3533 struct intr_context *intr_context = &qdev->intr_context[0];
3534
3535 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3536 if (intr_context->hooked) {
3537 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3538 free_irq(qdev->msi_x_entry[i].vector,
3539 &qdev->rx_ring[i]);
c4e84bde
RM
3540 } else {
3541 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3542 }
3543 }
3544 }
3545 ql_disable_msix(qdev);
3546}
3547
3548static int ql_request_irq(struct ql_adapter *qdev)
3549{
3550 int i;
3551 int status = 0;
3552 struct pci_dev *pdev = qdev->pdev;
3553 struct intr_context *intr_context = &qdev->intr_context[0];
3554
3555 ql_resolve_queues_to_irqs(qdev);
3556
3557 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3558 atomic_set(&intr_context->irq_cnt, 0);
3559 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3560 status = request_irq(qdev->msi_x_entry[i].vector,
3561 intr_context->handler,
3562 0,
3563 intr_context->name,
3564 &qdev->rx_ring[i]);
3565 if (status) {
ae9540f7
JP
3566 netif_err(qdev, ifup, qdev->ndev,
3567 "Failed request for MSIX interrupt %d.\n",
3568 i);
c4e84bde 3569 goto err_irq;
c4e84bde
RM
3570 }
3571 } else {
ae9540f7
JP
3572 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3573 "trying msi or legacy interrupts.\n");
3574 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3575 "%s: irq = %d.\n", __func__, pdev->irq);
3576 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3577 "%s: context->name = %s.\n", __func__,
3578 intr_context->name);
3579 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580 "%s: dev_id = 0x%p.\n", __func__,
3581 &qdev->rx_ring[0]);
c4e84bde
RM
3582 status =
3583 request_irq(pdev->irq, qlge_isr,
3584 test_bit(QL_MSI_ENABLED,
3585 &qdev->
3586 flags) ? 0 : IRQF_SHARED,
3587 intr_context->name, &qdev->rx_ring[0]);
3588 if (status)
3589 goto err_irq;
3590
ae9540f7
JP
3591 netif_err(qdev, ifup, qdev->ndev,
3592 "Hooked intr %d, queue type %s, with name %s.\n",
3593 i,
3594 qdev->rx_ring[0].type == DEFAULT_Q ?
3595 "DEFAULT_Q" :
3596 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3597 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3598 intr_context->name);
c4e84bde
RM
3599 }
3600 intr_context->hooked = 1;
3601 }
3602 return status;
3603err_irq:
a42c3a28 3604 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
c4e84bde
RM
3605 ql_free_irq(qdev);
3606 return status;
3607}
3608
3609static int ql_start_rss(struct ql_adapter *qdev)
3610{
215faf9c
JP
3611 static const u8 init_hash_seed[] = {
3612 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3613 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3614 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3615 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3616 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3617 };
c4e84bde
RM
3618 struct ricb *ricb = &qdev->ricb;
3619 int status = 0;
3620 int i;
3621 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3622
e332471c 3623 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3624
b2014ff8 3625 ricb->base_cq = RSS_L4K;
c4e84bde 3626 ricb->flags =
541ae28c
RM
3627 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3628 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3629
3630 /*
3631 * Fill out the Indirection Table.
3632 */
541ae28c
RM
3633 for (i = 0; i < 1024; i++)
3634 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3635
541ae28c
RM
3636 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3637 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3638
e332471c 3639 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3640 if (status) {
ae9540f7 3641 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3642 return status;
3643 }
c4e84bde
RM
3644 return status;
3645}
3646
a5f59dc9 3647static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3648{
a5f59dc9 3649 int i, status = 0;
c4e84bde 3650
8587ea35
RM
3651 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3652 if (status)
3653 return status;
c4e84bde
RM
3654 /* Clear all the entries in the routing table. */
3655 for (i = 0; i < 16; i++) {
3656 status = ql_set_routing_reg(qdev, i, 0, 0);
3657 if (status) {
ae9540f7
JP
3658 netif_err(qdev, ifup, qdev->ndev,
3659 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3660 break;
c4e84bde
RM
3661 }
3662 }
a5f59dc9
RM
3663 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3664 return status;
3665}
3666
3667/* Initialize the frame-to-queue routing. */
3668static int ql_route_initialize(struct ql_adapter *qdev)
3669{
3670 int status = 0;
3671
fd21cf52
RM
3672 /* Clear all the entries in the routing table. */
3673 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3674 if (status)
3675 return status;
3676
fd21cf52 3677 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3678 if (status)
fd21cf52 3679 return status;
c4e84bde 3680
fbc2ac33
RM
3681 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3682 RT_IDX_IP_CSUM_ERR, 1);
3683 if (status) {
3684 netif_err(qdev, ifup, qdev->ndev,
3685 "Failed to init routing register "
3686 "for IP CSUM error packets.\n");
3687 goto exit;
3688 }
3689 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3690 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3691 if (status) {
ae9540f7 3692 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3693 "Failed to init routing register "
3694 "for TCP/UDP CSUM error packets.\n");
8587ea35 3695 goto exit;
c4e84bde
RM
3696 }
3697 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3698 if (status) {
ae9540f7
JP
3699 netif_err(qdev, ifup, qdev->ndev,
3700 "Failed to init routing register for broadcast packets.\n");
8587ea35 3701 goto exit;
c4e84bde
RM
3702 }
3703 /* If we have more than one inbound queue, then turn on RSS in the
3704 * routing block.
3705 */
3706 if (qdev->rss_ring_count > 1) {
3707 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3708 RT_IDX_RSS_MATCH, 1);
3709 if (status) {
ae9540f7
JP
3710 netif_err(qdev, ifup, qdev->ndev,
3711 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3712 goto exit;
c4e84bde
RM
3713 }
3714 }
3715
3716 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3717 RT_IDX_CAM_HIT, 1);
8587ea35 3718 if (status)
ae9540f7
JP
3719 netif_err(qdev, ifup, qdev->ndev,
3720 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3721exit:
3722 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3723 return status;
3724}
3725
2ee1e272 3726int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3727{
7fab3bfe 3728 int status, set;
bb58b5b6 3729
7fab3bfe
RM
3730 /* If check if the link is up and use to
3731 * determine if we are setting or clearing
3732 * the MAC address in the CAM.
3733 */
3734 set = ql_read32(qdev, STS);
3735 set &= qdev->port_link_up;
3736 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3737 if (status) {
ae9540f7 3738 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3739 return status;
3740 }
3741
3742 status = ql_route_initialize(qdev);
3743 if (status)
ae9540f7 3744 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3745
3746 return status;
3747}
3748
c4e84bde
RM
3749static int ql_adapter_initialize(struct ql_adapter *qdev)
3750{
3751 u32 value, mask;
3752 int i;
3753 int status = 0;
3754
3755 /*
3756 * Set up the System register to halt on errors.
3757 */
3758 value = SYS_EFE | SYS_FAE;
3759 mask = value << 16;
3760 ql_write32(qdev, SYS, mask | value);
3761
c9cf0a04 3762 /* Set the default queue, and VLAN behavior. */
a45adbe8
JK
3763 value = NIC_RCV_CFG_DFQ;
3764 mask = NIC_RCV_CFG_DFQ_MASK;
3765 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3766 value |= NIC_RCV_CFG_RV;
3767 mask |= (NIC_RCV_CFG_RV << 16);
3768 }
c4e84bde
RM
3769 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3770
3771 /* Set the MPI interrupt to enabled. */
3772 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3773
3774 /* Enable the function, set pagesize, enable error checking. */
3775 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3776 FSC_EC | FSC_VM_PAGE_4K;
3777 value |= SPLT_SETTING;
c4e84bde
RM
3778
3779 /* Set/clear header splitting. */
3780 mask = FSC_VM_PAGESIZE_MASK |
3781 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3782 ql_write32(qdev, FSC, mask | value);
3783
572c526f 3784 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3785
a3b71939
RM
3786 /* Set RX packet routing to use port/pci function on which the
3787 * packet arrived on in addition to usual frame routing.
3788 * This is helpful on bonding where both interfaces can have
3789 * the same MAC address.
3790 */
3791 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3792 /* Reroute all packets to our Interface.
3793 * They may have been routed to MPI firmware
3794 * due to WOL.
3795 */
3796 value = ql_read32(qdev, MGMT_RCV_CFG);
3797 value &= ~MGMT_RCV_CFG_RM;
3798 mask = 0xffff0000;
3799
3800 /* Sticky reg needs clearing due to WOL. */
3801 ql_write32(qdev, MGMT_RCV_CFG, mask);
3802 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3803
3804 /* Default WOL is enable on Mezz cards */
3805 if (qdev->pdev->subsystem_device == 0x0068 ||
3806 qdev->pdev->subsystem_device == 0x0180)
3807 qdev->wol = WAKE_MAGIC;
a3b71939 3808
c4e84bde
RM
3809 /* Start up the rx queues. */
3810 for (i = 0; i < qdev->rx_ring_count; i++) {
3811 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3812 if (status) {
ae9540f7
JP
3813 netif_err(qdev, ifup, qdev->ndev,
3814 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3815 return status;
3816 }
3817 }
3818
3819 /* If there is more than one inbound completion queue
3820 * then download a RICB to configure RSS.
3821 */
3822 if (qdev->rss_ring_count > 1) {
3823 status = ql_start_rss(qdev);
3824 if (status) {
ae9540f7 3825 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3826 return status;
3827 }
3828 }
3829
3830 /* Start up the tx queues. */
3831 for (i = 0; i < qdev->tx_ring_count; i++) {
3832 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3833 if (status) {
ae9540f7
JP
3834 netif_err(qdev, ifup, qdev->ndev,
3835 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3836 return status;
3837 }
3838 }
3839
b0c2aadf
RM
3840 /* Initialize the port and set the max framesize. */
3841 status = qdev->nic_ops->port_initialize(qdev);
80928860 3842 if (status)
ae9540f7 3843 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3844
bb58b5b6
RM
3845 /* Set up the MAC address and frame routing filter. */
3846 status = ql_cam_route_initialize(qdev);
c4e84bde 3847 if (status) {
ae9540f7
JP
3848 netif_err(qdev, ifup, qdev->ndev,
3849 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3850 return status;
3851 }
3852
3853 /* Start NAPI for the RSS queues. */
19257f5a 3854 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3855 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3856
3857 return status;
3858}
3859
3860/* Issue soft reset to chip. */
3861static int ql_adapter_reset(struct ql_adapter *qdev)
3862{
3863 u32 value;
c4e84bde 3864 int status = 0;
a5f59dc9 3865 unsigned long end_jiffies;
c4e84bde 3866
a5f59dc9
RM
3867 /* Clear all the entries in the routing table. */
3868 status = ql_clear_routing_entries(qdev);
3869 if (status) {
ae9540f7 3870 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3871 return status;
3872 }
3873
da92b393
JK
3874 /* Check if bit is set then skip the mailbox command and
3875 * clear the bit, else we are in normal reset process.
3876 */
3877 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3878 /* Stop management traffic. */
3879 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3880
3881 /* Wait for the NIC and MGMNT FIFOs to empty. */
3882 ql_wait_fifo_empty(qdev);
3883 } else
3884 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3885
c4e84bde 3886 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3887
3f6e785f 3888 end_jiffies = jiffies + usecs_to_jiffies(30);
c4e84bde
RM
3889 do {
3890 value = ql_read32(qdev, RST_FO);
3891 if ((value & RST_FO_FR) == 0)
3892 break;
a75ee7f1
RM
3893 cpu_relax();
3894 } while (time_before(jiffies, end_jiffies));
c4e84bde 3895
c4e84bde 3896 if (value & RST_FO_FR) {
ae9540f7
JP
3897 netif_err(qdev, ifdown, qdev->ndev,
3898 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3899 status = -ETIMEDOUT;
c4e84bde
RM
3900 }
3901
84087f4d
RM
3902 /* Resume management traffic. */
3903 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3904 return status;
3905}
3906
3907static void ql_display_dev_info(struct net_device *ndev)
3908{
b16fed0a 3909 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3910
ae9540f7
JP
3911 netif_info(qdev, probe, qdev->ndev,
3912 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3913 "XG Roll = %d, XG Rev = %d.\n",
3914 qdev->func,
3915 qdev->port,
3916 qdev->chip_rev_id & 0x0000000f,
3917 qdev->chip_rev_id >> 4 & 0x0000000f,
3918 qdev->chip_rev_id >> 8 & 0x0000000f,
3919 qdev->chip_rev_id >> 12 & 0x0000000f);
3920 netif_info(qdev, probe, qdev->ndev,
3921 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3922}
3923
ac409215 3924static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3925{
3926 int status = 0;
3927 u32 wol = MB_WOL_DISABLE;
3928
3929 /* The CAM is still intact after a reset, but if we
3930 * are doing WOL, then we may need to program the
3931 * routing regs. We would also need to issue the mailbox
3932 * commands to instruct the MPI what to do per the ethtool
3933 * settings.
3934 */
3935
3936 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3937 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3938 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3939 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3940 qdev->wol);
bc083ce9
RM
3941 return -EINVAL;
3942 }
3943
3944 if (qdev->wol & WAKE_MAGIC) {
3945 status = ql_mb_wol_set_magic(qdev, 1);
3946 if (status) {
ae9540f7
JP
3947 netif_err(qdev, ifdown, qdev->ndev,
3948 "Failed to set magic packet on %s.\n",
3949 qdev->ndev->name);
bc083ce9
RM
3950 return status;
3951 } else
ae9540f7
JP
3952 netif_info(qdev, drv, qdev->ndev,
3953 "Enabled magic packet successfully on %s.\n",
3954 qdev->ndev->name);
bc083ce9
RM
3955
3956 wol |= MB_WOL_MAGIC_PKT;
3957 }
3958
3959 if (qdev->wol) {
bc083ce9
RM
3960 wol |= MB_WOL_MODE_ON;
3961 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3962 netif_err(qdev, drv, qdev->ndev,
3963 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3964 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3965 wol, qdev->ndev->name);
bc083ce9
RM
3966 }
3967
3968 return status;
3969}
3970
c5dadddb 3971static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3972{
c4e84bde 3973
6497b607
RM
3974 /* Don't kill the reset worker thread if we
3975 * are in the process of recovery.
3976 */
3977 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3978 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3979 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3980 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3981 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3982 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3983 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3984}
3985
3986static int ql_adapter_down(struct ql_adapter *qdev)
3987{
3988 int i, status = 0;
3989
3990 ql_link_off(qdev);
3991
3992 ql_cancel_all_work_sync(qdev);
c4e84bde 3993
39aa8165
RM
3994 for (i = 0; i < qdev->rss_ring_count; i++)
3995 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3996
3997 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3998
3999 ql_disable_interrupts(qdev);
4000
4001 ql_tx_ring_clean(qdev);
4002
6b318cb3
RM
4003 /* Call netif_napi_del() from common point.
4004 */
b2014ff8 4005 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
4006 netif_napi_del(&qdev->rx_ring[i].napi);
4007
c4e84bde
RM
4008 status = ql_adapter_reset(qdev);
4009 if (status)
ae9540f7
JP
4010 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4011 qdev->func);
fe5f0980
BL
4012 ql_free_rx_buffers(qdev);
4013
c4e84bde
RM
4014 return status;
4015}
4016
4017static int ql_adapter_up(struct ql_adapter *qdev)
4018{
4019 int err = 0;
4020
c4e84bde
RM
4021 err = ql_adapter_initialize(qdev);
4022 if (err) {
ae9540f7 4023 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
4024 goto err_init;
4025 }
c4e84bde 4026 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 4027 ql_alloc_rx_buffers(qdev);
8b007de1
RM
4028 /* If the port is initialized and the
4029 * link is up the turn on the carrier.
4030 */
4031 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4032 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 4033 ql_link_on(qdev);
f2c05004
RM
4034 /* Restore rx mode. */
4035 clear_bit(QL_ALLMULTI, &qdev->flags);
4036 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4037 qlge_set_multicast_list(qdev->ndev);
4038
c1b60092
RM
4039 /* Restore vlan setting. */
4040 qlge_restore_vlan(qdev);
4041
c4e84bde
RM
4042 ql_enable_interrupts(qdev);
4043 ql_enable_all_completion_interrupts(qdev);
1e213303 4044 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
4045
4046 return 0;
4047err_init:
4048 ql_adapter_reset(qdev);
4049 return err;
4050}
4051
c4e84bde
RM
4052static void ql_release_adapter_resources(struct ql_adapter *qdev)
4053{
4054 ql_free_mem_resources(qdev);
4055 ql_free_irq(qdev);
4056}
4057
4058static int ql_get_adapter_resources(struct ql_adapter *qdev)
4059{
4060 int status = 0;
4061
4062 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 4063 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
4064 return -ENOMEM;
4065 }
4066 status = ql_request_irq(qdev);
c4e84bde
RM
4067 return status;
4068}
4069
4070static int qlge_close(struct net_device *ndev)
4071{
4072 struct ql_adapter *qdev = netdev_priv(ndev);
4073
4bbd1a19
RM
4074 /* If we hit pci_channel_io_perm_failure
4075 * failure condition, then we already
4076 * brought the adapter down.
4077 */
4078 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 4079 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
4080 clear_bit(QL_EEH_FATAL, &qdev->flags);
4081 return 0;
4082 }
4083
c4e84bde
RM
4084 /*
4085 * Wait for device to recover from a reset.
4086 * (Rarely happens, but possible.)
4087 */
4088 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4089 msleep(1);
4090 ql_adapter_down(qdev);
4091 ql_release_adapter_resources(qdev);
c4e84bde
RM
4092 return 0;
4093}
4094
4095static int ql_configure_rings(struct ql_adapter *qdev)
4096{
4097 int i;
4098 struct rx_ring *rx_ring;
4099 struct tx_ring *tx_ring;
a4ab6137 4100 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4101 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4102 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4103
4104 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4105
4106 /* In a perfect world we have one RSS ring for each CPU
4107 * and each has it's own vector. To do that we ask for
4108 * cpu_cnt vectors. ql_enable_msix() will adjust the
4109 * vector count to what we actually get. We then
4110 * allocate an RSS ring for each.
4111 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4112 */
a4ab6137
RM
4113 qdev->intr_count = cpu_cnt;
4114 ql_enable_msix(qdev);
4115 /* Adjust the RSS ring count to the actual vector count. */
4116 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4117 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4118 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4119
c4e84bde
RM
4120 for (i = 0; i < qdev->tx_ring_count; i++) {
4121 tx_ring = &qdev->tx_ring[i];
e332471c 4122 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4123 tx_ring->qdev = qdev;
4124 tx_ring->wq_id = i;
4125 tx_ring->wq_len = qdev->tx_ring_size;
4126 tx_ring->wq_size =
4127 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4128
4129 /*
4130 * The completion queue ID for the tx rings start
39aa8165 4131 * immediately after the rss rings.
c4e84bde 4132 */
39aa8165 4133 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4134 }
4135
4136 for (i = 0; i < qdev->rx_ring_count; i++) {
4137 rx_ring = &qdev->rx_ring[i];
e332471c 4138 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4139 rx_ring->qdev = qdev;
4140 rx_ring->cq_id = i;
4141 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4142 if (i < qdev->rss_ring_count) {
39aa8165
RM
4143 /*
4144 * Inbound (RSS) queues.
4145 */
c4e84bde
RM
4146 rx_ring->cq_len = qdev->rx_ring_size;
4147 rx_ring->cq_size =
4148 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4149 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4150 rx_ring->lbq_size =
2c9a0d41 4151 rx_ring->lbq_len * sizeof(__le64);
7c734359 4152 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4153 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4154 rx_ring->sbq_size =
2c9a0d41 4155 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4156 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4157 rx_ring->type = RX_Q;
4158 } else {
c4e84bde
RM
4159 /*
4160 * Outbound queue handles outbound completions only.
4161 */
4162 /* outbound cq is same size as tx_ring it services. */
4163 rx_ring->cq_len = qdev->tx_ring_size;
4164 rx_ring->cq_size =
4165 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4166 rx_ring->lbq_len = 0;
4167 rx_ring->lbq_size = 0;
4168 rx_ring->lbq_buf_size = 0;
4169 rx_ring->sbq_len = 0;
4170 rx_ring->sbq_size = 0;
4171 rx_ring->sbq_buf_size = 0;
4172 rx_ring->type = TX_Q;
c4e84bde
RM
4173 }
4174 }
4175 return 0;
4176}
4177
4178static int qlge_open(struct net_device *ndev)
4179{
4180 int err = 0;
4181 struct ql_adapter *qdev = netdev_priv(ndev);
4182
74e12435
RM
4183 err = ql_adapter_reset(qdev);
4184 if (err)
4185 return err;
4186
c4e84bde
RM
4187 err = ql_configure_rings(qdev);
4188 if (err)
4189 return err;
4190
4191 err = ql_get_adapter_resources(qdev);
4192 if (err)
4193 goto error_up;
4194
4195 err = ql_adapter_up(qdev);
4196 if (err)
4197 goto error_up;
4198
4199 return err;
4200
4201error_up:
4202 ql_release_adapter_resources(qdev);
c4e84bde
RM
4203 return err;
4204}
4205
7c734359
RM
4206static int ql_change_rx_buffers(struct ql_adapter *qdev)
4207{
4208 struct rx_ring *rx_ring;
4209 int i, status;
4210 u32 lbq_buf_len;
4211
25985edc 4212 /* Wait for an outstanding reset to complete. */
7c734359 4213 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
351434c6
DC
4214 int i = 4;
4215
4216 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4217 netif_err(qdev, ifup, qdev->ndev,
4218 "Waiting for adapter UP...\n");
7c734359
RM
4219 ssleep(1);
4220 }
4221
4222 if (!i) {
ae9540f7
JP
4223 netif_err(qdev, ifup, qdev->ndev,
4224 "Timed out waiting for adapter UP\n");
7c734359
RM
4225 return -ETIMEDOUT;
4226 }
4227 }
4228
4229 status = ql_adapter_down(qdev);
4230 if (status)
4231 goto error;
4232
4233 /* Get the new rx buffer size. */
4234 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4235 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4236 qdev->lbq_buf_order = get_order(lbq_buf_len);
4237
4238 for (i = 0; i < qdev->rss_ring_count; i++) {
4239 rx_ring = &qdev->rx_ring[i];
4240 /* Set the new size. */
4241 rx_ring->lbq_buf_size = lbq_buf_len;
4242 }
4243
4244 status = ql_adapter_up(qdev);
4245 if (status)
4246 goto error;
4247
4248 return status;
4249error:
ae9540f7
JP
4250 netif_alert(qdev, ifup, qdev->ndev,
4251 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4252 set_bit(QL_ADAPTER_UP, &qdev->flags);
4253 dev_close(qdev->ndev);
4254 return status;
4255}
4256
c4e84bde
RM
4257static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4258{
4259 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4260 int status;
c4e84bde
RM
4261
4262 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4263 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4264 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4265 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4266 } else
4267 return -EINVAL;
7c734359
RM
4268
4269 queue_delayed_work(qdev->workqueue,
4270 &qdev->mpi_port_cfg_work, 3*HZ);
4271
746079da
BL
4272 ndev->mtu = new_mtu;
4273
7c734359 4274 if (!netif_running(qdev->ndev)) {
7c734359
RM
4275 return 0;
4276 }
4277
7c734359
RM
4278 status = ql_change_rx_buffers(qdev);
4279 if (status) {
ae9540f7
JP
4280 netif_err(qdev, ifup, qdev->ndev,
4281 "Changing MTU failed.\n");
7c734359
RM
4282 }
4283
4284 return status;
c4e84bde
RM
4285}
4286
4287static struct net_device_stats *qlge_get_stats(struct net_device
4288 *ndev)
4289{
885ee398
RM
4290 struct ql_adapter *qdev = netdev_priv(ndev);
4291 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4292 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4293 unsigned long pkts, mcast, dropped, errors, bytes;
4294 int i;
4295
4296 /* Get RX stats. */
4297 pkts = mcast = dropped = errors = bytes = 0;
4298 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4299 pkts += rx_ring->rx_packets;
4300 bytes += rx_ring->rx_bytes;
4301 dropped += rx_ring->rx_dropped;
4302 errors += rx_ring->rx_errors;
4303 mcast += rx_ring->rx_multicast;
4304 }
4305 ndev->stats.rx_packets = pkts;
4306 ndev->stats.rx_bytes = bytes;
4307 ndev->stats.rx_dropped = dropped;
4308 ndev->stats.rx_errors = errors;
4309 ndev->stats.multicast = mcast;
4310
4311 /* Get TX stats. */
4312 pkts = errors = bytes = 0;
4313 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4314 pkts += tx_ring->tx_packets;
4315 bytes += tx_ring->tx_bytes;
4316 errors += tx_ring->tx_errors;
4317 }
4318 ndev->stats.tx_packets = pkts;
4319 ndev->stats.tx_bytes = bytes;
4320 ndev->stats.tx_errors = errors;
bcc90f55 4321 return &ndev->stats;
c4e84bde
RM
4322}
4323
ac409215 4324static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4325{
b16fed0a 4326 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4327 struct netdev_hw_addr *ha;
cc288f54 4328 int i, status;
c4e84bde 4329
cc288f54
RM
4330 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4331 if (status)
4332 return;
c4e84bde
RM
4333 /*
4334 * Set or clear promiscuous mode if a
4335 * transition is taking place.
4336 */
4337 if (ndev->flags & IFF_PROMISC) {
4338 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4339 if (ql_set_routing_reg
4340 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4341 netif_err(qdev, hw, qdev->ndev,
25985edc 4342 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4343 } else {
4344 set_bit(QL_PROMISCUOUS, &qdev->flags);
4345 }
4346 }
4347 } else {
4348 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4349 if (ql_set_routing_reg
4350 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4351 netif_err(qdev, hw, qdev->ndev,
25985edc 4352 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4353 } else {
4354 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4355 }
4356 }
4357 }
4358
4359 /*
4360 * Set or clear all multicast mode if a
4361 * transition is taking place.
4362 */
4363 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4364 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4365 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4366 if (ql_set_routing_reg
4367 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4368 netif_err(qdev, hw, qdev->ndev,
4369 "Failed to set all-multi mode.\n");
c4e84bde
RM
4370 } else {
4371 set_bit(QL_ALLMULTI, &qdev->flags);
4372 }
4373 }
4374 } else {
4375 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4376 if (ql_set_routing_reg
4377 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4378 netif_err(qdev, hw, qdev->ndev,
4379 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4380 } else {
4381 clear_bit(QL_ALLMULTI, &qdev->flags);
4382 }
4383 }
4384 }
4385
4cd24eaf 4386 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4387 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4388 if (status)
4389 goto exit;
f9dcbcc9 4390 i = 0;
22bedad3
JP
4391 netdev_for_each_mc_addr(ha, ndev) {
4392 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4393 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4394 netif_err(qdev, hw, qdev->ndev,
4395 "Failed to loadmulticast address.\n");
cc288f54 4396 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4397 goto exit;
4398 }
f9dcbcc9
JP
4399 i++;
4400 }
cc288f54 4401 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4402 if (ql_set_routing_reg
4403 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4404 netif_err(qdev, hw, qdev->ndev,
4405 "Failed to set multicast match mode.\n");
c4e84bde
RM
4406 } else {
4407 set_bit(QL_ALLMULTI, &qdev->flags);
4408 }
4409 }
4410exit:
8587ea35 4411 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4412}
4413
4414static int qlge_set_mac_address(struct net_device *ndev, void *p)
4415{
b16fed0a 4416 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4417 struct sockaddr *addr = p;
cc288f54 4418 int status;
c4e84bde 4419
c4e84bde
RM
4420 if (!is_valid_ether_addr(addr->sa_data))
4421 return -EADDRNOTAVAIL;
4422 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4423 /* Update local copy of current mac address. */
4424 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4425
cc288f54
RM
4426 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4427 if (status)
4428 return status;
cc288f54
RM
4429 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4430 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4431 if (status)
ae9540f7 4432 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4433 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4434 return status;
c4e84bde
RM
4435}
4436
4437static void qlge_tx_timeout(struct net_device *ndev)
4438{
b16fed0a 4439 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4440 ql_queue_asic_error(qdev);
c4e84bde
RM
4441}
4442
4443static void ql_asic_reset_work(struct work_struct *work)
4444{
4445 struct ql_adapter *qdev =
4446 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4447 int status;
f2c0d8df 4448 rtnl_lock();
db98812f
RM
4449 status = ql_adapter_down(qdev);
4450 if (status)
4451 goto error;
4452
4453 status = ql_adapter_up(qdev);
4454 if (status)
4455 goto error;
2cd6dbaa
RM
4456
4457 /* Restore rx mode. */
4458 clear_bit(QL_ALLMULTI, &qdev->flags);
4459 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4460 qlge_set_multicast_list(qdev->ndev);
4461
f2c0d8df 4462 rtnl_unlock();
db98812f
RM
4463 return;
4464error:
ae9540f7
JP
4465 netif_alert(qdev, ifup, qdev->ndev,
4466 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4467
db98812f
RM
4468 set_bit(QL_ADAPTER_UP, &qdev->flags);
4469 dev_close(qdev->ndev);
4470 rtnl_unlock();
c4e84bde
RM
4471}
4472
ef9c7ab4 4473static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4474 .get_flash = ql_get_8012_flash_params,
4475 .port_initialize = ql_8012_port_initialize,
4476};
4477
ef9c7ab4 4478static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4479 .get_flash = ql_get_8000_flash_params,
4480 .port_initialize = ql_8000_port_initialize,
4481};
4482
e4552f51
RM
4483/* Find the pcie function number for the other NIC
4484 * on this chip. Since both NIC functions share a
4485 * common firmware we have the lowest enabled function
4486 * do any common work. Examples would be resetting
4487 * after a fatal firmware error, or doing a firmware
4488 * coredump.
4489 */
4490static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4491{
4492 int status = 0;
4493 u32 temp;
4494 u32 nic_func1, nic_func2;
4495
4496 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4497 &temp);
4498 if (status)
4499 return status;
4500
4501 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4502 MPI_TEST_NIC_FUNC_MASK);
4503 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4504 MPI_TEST_NIC_FUNC_MASK);
4505
4506 if (qdev->func == nic_func1)
4507 qdev->alt_func = nic_func2;
4508 else if (qdev->func == nic_func2)
4509 qdev->alt_func = nic_func1;
4510 else
4511 status = -EIO;
4512
4513 return status;
4514}
b0c2aadf 4515
e4552f51 4516static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4517{
e4552f51 4518 int status;
c4e84bde
RM
4519 qdev->func =
4520 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4521 if (qdev->func > 3)
4522 return -EIO;
4523
4524 status = ql_get_alt_pcie_func(qdev);
4525 if (status)
4526 return status;
4527
4528 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4529 if (qdev->port) {
c4e84bde
RM
4530 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4531 qdev->port_link_up = STS_PL1;
4532 qdev->port_init = STS_PI1;
4533 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4534 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4535 } else {
4536 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4537 qdev->port_link_up = STS_PL0;
4538 qdev->port_init = STS_PI0;
4539 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4540 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4541 }
4542 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4543 qdev->device_id = qdev->pdev->device;
4544 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4545 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4546 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4547 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4548 return status;
c4e84bde
RM
4549}
4550
4551static void ql_release_all(struct pci_dev *pdev)
4552{
4553 struct net_device *ndev = pci_get_drvdata(pdev);
4554 struct ql_adapter *qdev = netdev_priv(ndev);
4555
4556 if (qdev->workqueue) {
4557 destroy_workqueue(qdev->workqueue);
4558 qdev->workqueue = NULL;
4559 }
39aa8165 4560
c4e84bde 4561 if (qdev->reg_base)
8668ae92 4562 iounmap(qdev->reg_base);
c4e84bde
RM
4563 if (qdev->doorbell_area)
4564 iounmap(qdev->doorbell_area);
8aae2600 4565 vfree(qdev->mpi_coredump);
c4e84bde 4566 pci_release_regions(pdev);
c4e84bde
RM
4567}
4568
1dd06ae8
GKH
4569static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4570 int cards_found)
c4e84bde
RM
4571{
4572 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4573 int err = 0;
c4e84bde 4574
e332471c 4575 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4576 err = pci_enable_device(pdev);
4577 if (err) {
4578 dev_err(&pdev->dev, "PCI device enable failed.\n");
4579 return err;
4580 }
4581
ebd6e774
RM
4582 qdev->ndev = ndev;
4583 qdev->pdev = pdev;
4584 pci_set_drvdata(pdev, ndev);
c4e84bde 4585
bc9167f3
RM
4586 /* Set PCIe read request size */
4587 err = pcie_set_readrq(pdev, 4096);
4588 if (err) {
4589 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4590 goto err_out1;
bc9167f3
RM
4591 }
4592
c4e84bde
RM
4593 err = pci_request_regions(pdev, DRV_NAME);
4594 if (err) {
4595 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4596 return err;
c4e84bde
RM
4597 }
4598
4599 pci_set_master(pdev);
6a35528a 4600 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4601 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4602 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4603 } else {
284901a9 4604 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4605 if (!err)
284901a9 4606 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4607 }
4608
4609 if (err) {
4610 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4611 goto err_out2;
c4e84bde
RM
4612 }
4613
73475339
RM
4614 /* Set PCIe reset type for EEH to fundamental. */
4615 pdev->needs_freset = 1;
6d190c6e 4616 pci_save_state(pdev);
c4e84bde
RM
4617 qdev->reg_base =
4618 ioremap_nocache(pci_resource_start(pdev, 1),
4619 pci_resource_len(pdev, 1));
4620 if (!qdev->reg_base) {
4621 dev_err(&pdev->dev, "Register mapping failed.\n");
4622 err = -ENOMEM;
4f9a91c8 4623 goto err_out2;
c4e84bde
RM
4624 }
4625
4626 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4627 qdev->doorbell_area =
4628 ioremap_nocache(pci_resource_start(pdev, 3),
4629 pci_resource_len(pdev, 3));
4630 if (!qdev->doorbell_area) {
4631 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4632 err = -ENOMEM;
4f9a91c8 4633 goto err_out2;
c4e84bde
RM
4634 }
4635
e4552f51
RM
4636 err = ql_get_board_info(qdev);
4637 if (err) {
4638 dev_err(&pdev->dev, "Register access failed.\n");
4639 err = -EIO;
4f9a91c8 4640 goto err_out2;
e4552f51 4641 }
c4e84bde
RM
4642 qdev->msg_enable = netif_msg_init(debug, default_msg);
4643 spin_lock_init(&qdev->hw_lock);
4644 spin_lock_init(&qdev->stats_lock);
4645
8aae2600
RM
4646 if (qlge_mpi_coredump) {
4647 qdev->mpi_coredump =
4648 vmalloc(sizeof(struct ql_mpi_coredump));
4649 if (qdev->mpi_coredump == NULL) {
8aae2600 4650 err = -ENOMEM;
ce96bc86 4651 goto err_out2;
8aae2600 4652 }
d5c1da56
RM
4653 if (qlge_force_coredump)
4654 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4655 }
c4e84bde 4656 /* make sure the EEPROM is good */
b0c2aadf 4657 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4658 if (err) {
4659 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4660 goto err_out2;
c4e84bde
RM
4661 }
4662
801e9096
RM
4663 /* Keep local copy of current mac address. */
4664 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4665
4666 /* Set up the default ring sizes. */
4667 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4668 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4669
4670 /* Set up the coalescing parameters. */
4671 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4672 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4673 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4674 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4675
4676 /*
4677 * Set up the operating parameters.
4678 */
c4e84bde
RM
4679 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4680 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4681 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4682 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4683 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4684 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4685 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4686 init_completion(&qdev->ide_completion);
4d7b6b5d 4687 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4688
4689 if (!cards_found) {
4690 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4691 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4692 DRV_NAME, DRV_VERSION);
4693 }
4694 return 0;
4f9a91c8 4695err_out2:
c4e84bde 4696 ql_release_all(pdev);
4f9a91c8 4697err_out1:
c4e84bde
RM
4698 pci_disable_device(pdev);
4699 return err;
4700}
4701
25ed7849
SH
4702static const struct net_device_ops qlge_netdev_ops = {
4703 .ndo_open = qlge_open,
4704 .ndo_stop = qlge_close,
4705 .ndo_start_xmit = qlge_send,
4706 .ndo_change_mtu = qlge_change_mtu,
4707 .ndo_get_stats = qlge_get_stats,
afc4b13d 4708 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4709 .ndo_set_mac_address = qlge_set_mac_address,
4710 .ndo_validate_addr = eth_validate_addr,
4711 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4712 .ndo_fix_features = qlge_fix_features,
4713 .ndo_set_features = qlge_set_features,
01e6b953
RM
4714 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4715 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4716};
4717
15c052fc
RM
4718static void ql_timer(unsigned long data)
4719{
4720 struct ql_adapter *qdev = (struct ql_adapter *)data;
4721 u32 var = 0;
4722
4723 var = ql_read32(qdev, STS);
4724 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4725 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4726 return;
4727 }
4728
72046d84 4729 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4730}
4731
5d8e8726 4732static int qlge_probe(struct pci_dev *pdev,
1dd06ae8 4733 const struct pci_device_id *pci_entry)
c4e84bde
RM
4734{
4735 struct net_device *ndev = NULL;
4736 struct ql_adapter *qdev = NULL;
4737 static int cards_found = 0;
4738 int err = 0;
4739
1e213303 4740 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4741 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4742 if (!ndev)
4743 return -ENOMEM;
4744
4745 err = ql_init_device(pdev, ndev, cards_found);
4746 if (err < 0) {
4747 free_netdev(ndev);
4748 return err;
4749 }
4750
4751 qdev = netdev_priv(ndev);
4752 SET_NETDEV_DEV(ndev, &pdev->dev);
a45adbe8
JK
4753 ndev->hw_features = NETIF_F_SG |
4754 NETIF_F_IP_CSUM |
4755 NETIF_F_TSO |
4756 NETIF_F_TSO_ECN |
4757 NETIF_F_HW_VLAN_CTAG_TX |
4758 NETIF_F_HW_VLAN_CTAG_RX |
4759 NETIF_F_HW_VLAN_CTAG_FILTER |
4760 NETIF_F_RXCSUM;
4761 ndev->features = ndev->hw_features;
1a0150a9 4762 ndev->vlan_features = ndev->hw_features;
51bb352f 4763 /* vlan gets same features (except vlan filter) */
f6d1ac4b
VY
4764 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4765 NETIF_F_HW_VLAN_CTAG_TX |
4766 NETIF_F_HW_VLAN_CTAG_RX);
c4e84bde
RM
4767
4768 if (test_bit(QL_DMA64, &qdev->flags))
4769 ndev->features |= NETIF_F_HIGHDMA;
4770
4771 /*
4772 * Set up net_device structure.
4773 */
4774 ndev->tx_queue_len = qdev->tx_ring_size;
4775 ndev->irq = pdev->irq;
25ed7849
SH
4776
4777 ndev->netdev_ops = &qlge_netdev_ops;
7ad24ea4 4778 ndev->ethtool_ops = &qlge_ethtool_ops;
c4e84bde 4779 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4780
c4e84bde
RM
4781 err = register_netdev(ndev);
4782 if (err) {
4783 dev_err(&pdev->dev, "net device registration failed.\n");
4784 ql_release_all(pdev);
4785 pci_disable_device(pdev);
4d2593cc 4786 free_netdev(ndev);
c4e84bde
RM
4787 return err;
4788 }
15c052fc
RM
4789 /* Start up the timer to trigger EEH if
4790 * the bus goes dead
4791 */
4792 init_timer_deferrable(&qdev->timer);
4793 qdev->timer.data = (unsigned long)qdev;
4794 qdev->timer.function = ql_timer;
4795 qdev->timer.expires = jiffies + (5*HZ);
4796 add_timer(&qdev->timer);
6a473308 4797 ql_link_off(qdev);
c4e84bde 4798 ql_display_dev_info(ndev);
9dfbbaa6 4799 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4800 cards_found++;
4801 return 0;
4802}
4803
9dfbbaa6
RM
4804netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4805{
4806 return qlge_send(skb, ndev);
4807}
4808
4809int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4810{
4811 return ql_clean_inbound_rx_ring(rx_ring, budget);
4812}
4813
5d8e8726 4814static void qlge_remove(struct pci_dev *pdev)
c4e84bde
RM
4815{
4816 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4817 struct ql_adapter *qdev = netdev_priv(ndev);
4818 del_timer_sync(&qdev->timer);
c5dadddb 4819 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4820 unregister_netdev(ndev);
4821 ql_release_all(pdev);
4822 pci_disable_device(pdev);
4823 free_netdev(ndev);
4824}
4825
6d190c6e
RM
4826/* Clean up resources without touching hardware. */
4827static void ql_eeh_close(struct net_device *ndev)
4828{
4829 int i;
4830 struct ql_adapter *qdev = netdev_priv(ndev);
4831
4832 if (netif_carrier_ok(ndev)) {
4833 netif_carrier_off(ndev);
4834 netif_stop_queue(ndev);
4835 }
4836
7ae80abd
BL
4837 /* Disabling the timer */
4838 del_timer_sync(&qdev->timer);
c5dadddb 4839 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4840
4841 for (i = 0; i < qdev->rss_ring_count; i++)
4842 netif_napi_del(&qdev->rx_ring[i].napi);
4843
4844 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4845 ql_tx_ring_clean(qdev);
4846 ql_free_rx_buffers(qdev);
4847 ql_release_adapter_resources(qdev);
4848}
4849
c4e84bde
RM
4850/*
4851 * This callback is called by the PCI subsystem whenever
4852 * a PCI bus error is detected.
4853 */
4854static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4855 enum pci_channel_state state)
4856{
4857 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4858 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4859
6d190c6e
RM
4860 switch (state) {
4861 case pci_channel_io_normal:
4862 return PCI_ERS_RESULT_CAN_RECOVER;
4863 case pci_channel_io_frozen:
4864 netif_device_detach(ndev);
4865 if (netif_running(ndev))
4866 ql_eeh_close(ndev);
4867 pci_disable_device(pdev);
4868 return PCI_ERS_RESULT_NEED_RESET;
4869 case pci_channel_io_perm_failure:
4870 dev_err(&pdev->dev,
4871 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4872 ql_eeh_close(ndev);
4873 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4874 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4875 }
c4e84bde
RM
4876
4877 /* Request a slot reset. */
4878 return PCI_ERS_RESULT_NEED_RESET;
4879}
4880
4881/*
4882 * This callback is called after the PCI buss has been reset.
4883 * Basically, this tries to restart the card from scratch.
4884 * This is a shortened version of the device probe/discovery code,
4885 * it resembles the first-half of the () routine.
4886 */
4887static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4888{
4889 struct net_device *ndev = pci_get_drvdata(pdev);
4890 struct ql_adapter *qdev = netdev_priv(ndev);
4891
6d190c6e
RM
4892 pdev->error_state = pci_channel_io_normal;
4893
4894 pci_restore_state(pdev);
c4e84bde 4895 if (pci_enable_device(pdev)) {
ae9540f7
JP
4896 netif_err(qdev, ifup, qdev->ndev,
4897 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4898 return PCI_ERS_RESULT_DISCONNECT;
4899 }
c4e84bde 4900 pci_set_master(pdev);
a112fd4c
RM
4901
4902 if (ql_adapter_reset(qdev)) {
ae9540f7 4903 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4904 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4905 return PCI_ERS_RESULT_DISCONNECT;
4906 }
4907
c4e84bde
RM
4908 return PCI_ERS_RESULT_RECOVERED;
4909}
4910
4911static void qlge_io_resume(struct pci_dev *pdev)
4912{
4913 struct net_device *ndev = pci_get_drvdata(pdev);
4914 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4915 int err = 0;
c4e84bde 4916
c4e84bde 4917 if (netif_running(ndev)) {
6d190c6e
RM
4918 err = qlge_open(ndev);
4919 if (err) {
ae9540f7
JP
4920 netif_err(qdev, ifup, qdev->ndev,
4921 "Device initialization failed after reset.\n");
c4e84bde
RM
4922 return;
4923 }
6d190c6e 4924 } else {
ae9540f7
JP
4925 netif_err(qdev, ifup, qdev->ndev,
4926 "Device was not running prior to EEH.\n");
c4e84bde 4927 }
72046d84 4928 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4929 netif_device_attach(ndev);
4930}
4931
3646f0e5 4932static const struct pci_error_handlers qlge_err_handler = {
c4e84bde
RM
4933 .error_detected = qlge_io_error_detected,
4934 .slot_reset = qlge_io_slot_reset,
4935 .resume = qlge_io_resume,
4936};
4937
4938static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4939{
4940 struct net_device *ndev = pci_get_drvdata(pdev);
4941 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4942 int err;
c4e84bde
RM
4943
4944 netif_device_detach(ndev);
15c052fc 4945 del_timer_sync(&qdev->timer);
c4e84bde
RM
4946
4947 if (netif_running(ndev)) {
4948 err = ql_adapter_down(qdev);
4949 if (!err)
4950 return err;
4951 }
4952
bc083ce9 4953 ql_wol(qdev);
c4e84bde
RM
4954 err = pci_save_state(pdev);
4955 if (err)
4956 return err;
4957
4958 pci_disable_device(pdev);
4959
4960 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4961
4962 return 0;
4963}
4964
04da2cf9 4965#ifdef CONFIG_PM
c4e84bde
RM
4966static int qlge_resume(struct pci_dev *pdev)
4967{
4968 struct net_device *ndev = pci_get_drvdata(pdev);
4969 struct ql_adapter *qdev = netdev_priv(ndev);
4970 int err;
4971
4972 pci_set_power_state(pdev, PCI_D0);
4973 pci_restore_state(pdev);
4974 err = pci_enable_device(pdev);
4975 if (err) {
ae9540f7 4976 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4977 return err;
4978 }
4979 pci_set_master(pdev);
4980
4981 pci_enable_wake(pdev, PCI_D3hot, 0);
4982 pci_enable_wake(pdev, PCI_D3cold, 0);
4983
4984 if (netif_running(ndev)) {
4985 err = ql_adapter_up(qdev);
4986 if (err)
4987 return err;
4988 }
4989
72046d84 4990 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4991 netif_device_attach(ndev);
4992
4993 return 0;
4994}
04da2cf9 4995#endif /* CONFIG_PM */
c4e84bde
RM
4996
4997static void qlge_shutdown(struct pci_dev *pdev)
4998{
4999 qlge_suspend(pdev, PMSG_SUSPEND);
5000}
5001
5002static struct pci_driver qlge_driver = {
5003 .name = DRV_NAME,
5004 .id_table = qlge_pci_tbl,
5005 .probe = qlge_probe,
5d8e8726 5006 .remove = qlge_remove,
c4e84bde
RM
5007#ifdef CONFIG_PM
5008 .suspend = qlge_suspend,
5009 .resume = qlge_resume,
5010#endif
5011 .shutdown = qlge_shutdown,
5012 .err_handler = &qlge_err_handler
5013};
5014
70a611de 5015module_pci_driver(qlge_driver);