]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/qlogic/qlge/qlge_main.c
qlge: Fixed double pci free upon tx_ring->q allocation failure.
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
18c49b91 10#include <linux/bitops.h>
c4e84bde
RM
11#include <linux/types.h>
12#include <linux/module.h>
13#include <linux/list.h>
14#include <linux/pci.h>
15#include <linux/dma-mapping.h>
16#include <linux/pagemap.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/dmapool.h>
20#include <linux/mempool.h>
21#include <linux/spinlock.h>
22#include <linux/kthread.h>
23#include <linux/interrupt.h>
24#include <linux/errno.h>
25#include <linux/ioport.h>
26#include <linux/in.h>
27#include <linux/ip.h>
28#include <linux/ipv6.h>
29#include <net/ipv6.h>
30#include <linux/tcp.h>
31#include <linux/udp.h>
32#include <linux/if_arp.h>
33#include <linux/if_ether.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/ethtool.h>
18c49b91 37#include <linux/if_vlan.h>
c4e84bde 38#include <linux/skbuff.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
70c71606 42#include <linux/prefetch.h>
b7c6bfb7 43#include <net/ip6_checksum.h>
c4e84bde
RM
44
45#include "qlge.h"
46
47char qlge_driver_name[] = DRV_NAME;
48const char qlge_driver_version[] = DRV_VERSION;
49
50MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51MODULE_DESCRIPTION(DRV_STRING " ");
52MODULE_LICENSE("GPL");
53MODULE_VERSION(DRV_VERSION);
54
55static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57/* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
4974097a
RM
62/* NETIF_MSG_TX_QUEUED | */
63/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
64/* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
84cf7029
SR
67static int debug = -1; /* defaults above */
68module_param(debug, int, 0664);
c4e84bde
RM
69MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71#define MSIX_IRQ 0
72#define MSI_IRQ 1
73#define LEG_IRQ 2
a5a62a1c 74static int qlge_irq_type = MSIX_IRQ;
84cf7029 75module_param(qlge_irq_type, int, 0664);
a5a62a1c 76MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 77
8aae2600
RM
78static int qlge_mpi_coredump;
79module_param(qlge_mpi_coredump, int, 0);
80MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
d5c1da56
RM
82 "Default is OFF - Do Not allocate memory. ");
83
84static int qlge_force_coredump;
85module_param(qlge_force_coredump, int, 0);
86MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
8aae2600 89
a3aa1884 90static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
b0c2aadf 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
93 /* required last entry */
94 {0,}
95};
96
97MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
ac409215 99static int ql_wol(struct ql_adapter *qdev);
100static void qlge_set_multicast_list(struct net_device *ndev);
101
c4e84bde
RM
102/* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
106static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107{
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
ae9540f7 136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142}
143
144int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145{
0857e9d7 146 unsigned int wait_count = 30;
c4e84bde
RM
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
0857e9d7
RM
150 udelay(100);
151 } while (--wait_count);
c4e84bde
RM
152 return -ETIMEDOUT;
153}
154
155void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156{
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159}
160
161/* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
166int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167{
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
ae9540f7
JP
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
c4e84bde
RM
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
ae9540f7
JP
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
187 return -ETIMEDOUT;
188}
189
190/* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
193static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194{
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208}
209
210
211/* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
214int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216{
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
230 return -ENOMEM;
231 }
232
4322c5be
RM
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
c4e84bde
RM
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
ae9540f7
JP
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
241 goto exit;
242 }
243
c4e84bde
RM
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255exit:
4322c5be 256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259}
260
261/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264{
265 u32 offset = 0;
266 int status;
267
c4e84bde
RM
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
939678f8 274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
939678f8 282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
939678f8 296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
939678f8 303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 311 MAC_ADDR_MR, 0);
c4e84bde
RM
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
ae9540f7
JP
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
c4e84bde
RM
323 status = -EPERM;
324 }
325exit:
c4e84bde
RM
326 return status;
327}
328
329/* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
332static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334{
335 u32 offset = 0;
336 int status = 0;
337
c4e84bde
RM
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
c4e84bde
RM
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
c4e84bde
RM
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
939678f8 398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
76b26694
RM
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
18c49b91 412 if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
76b26694
RM
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
c4e84bde
RM
426 status =
427 ql_wait_reg_rdy(qdev,
939678f8 428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
ae9540f7
JP
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
c4e84bde
RM
441 status = -EPERM;
442 }
443exit:
c4e84bde
RM
444 return status;
445}
446
7fab3bfe
RM
447/* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
451static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452{
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
801e9096 458 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
ae9540f7
JP
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
7fab3bfe
RM
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
ae9540f7
JP
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
7fab3bfe
RM
476 return status;
477}
478
6a473308
RM
479void ql_link_on(struct ql_adapter *qdev)
480{
ae9540f7 481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484}
485
486void ql_link_off(struct ql_adapter *qdev)
487{
ae9540f7 488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
fbc2ac33
RM
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
c4e84bde
RM
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
e163d7f2 572 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
e163d7f2 579 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
ae9540f7
JP
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613exit:
c4e84bde
RM
614 return status;
615}
616
617static void ql_enable_interrupts(struct ql_adapter *qdev)
618{
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620}
621
622static void ql_disable_interrupts(struct ql_adapter *qdev)
623{
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625}
626
627/* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 630 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
bb0d215c 633u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 634{
bb0d215c
RM
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
c4e84bde 643 ql_write32(qdev, INTR_EN,
bb0d215c
RM
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
c4e84bde 647 }
bb0d215c
RM
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
c4e84bde
RM
657}
658
659static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660{
661 u32 var = 0;
bb0d215c 662 struct intr_context *ctx;
c4e84bde 663
bb0d215c
RM
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
08b1bc8f 671 spin_lock(&qdev->hw_lock);
bb0d215c 672 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 673 ql_write32(qdev, INTR_EN,
bb0d215c 674 ctx->intr_dis_mask);
c4e84bde
RM
675 var = ql_read32(qdev, STS);
676 }
bb0d215c 677 atomic_inc(&ctx->irq_cnt);
08b1bc8f 678 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
679 return var;
680}
681
682static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683{
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
bb0d215c
RM
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696}
697
b0c2aadf
RM
698static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699{
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
ae9540f7 706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
ae9540f7
JP
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
716
717 return csum;
718}
719
26351479 720static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
721{
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
26351479
RM
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
740exit:
741 return status;
742}
743
cdca8d02
RM
744static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745{
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
542512e4 750 u8 mac_addr[6];
cdca8d02
RM
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
e4552f51 755 if (!qdev->port)
cdca8d02
RM
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
ae9540f7
JP
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
cdca8d02
RM
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
ae9540f7 777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
778 status = -EINVAL;
779 goto exit;
780 }
781
542512e4
RM
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
542512e4 801 mac_addr,
cdca8d02
RM
802 qdev->ndev->addr_len);
803
804exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807}
808
b0c2aadf 809static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
810{
811 int i;
812 int status;
26351479 813 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 814 u32 offset = 0;
b0c2aadf 815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
e4552f51 820 if (qdev->port)
b0c2aadf 821 offset = size;
c4e84bde
RM
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
b0c2aadf 826 for (i = 0; i < size; i++, p++) {
e78f5fa7 827 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 828 if (status) {
ae9540f7
JP
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
c4e84bde
RM
831 goto exit;
832 }
833
834 }
b0c2aadf
RM
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
ae9540f7 840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
c4e84bde
RM
854exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857}
858
859/* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
863static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864{
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876}
877
878/* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
882int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883{
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899exit:
900 return status;
901}
902
903/* This is used for reading the 64-bit statistics regs. */
904int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905{
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920exit:
921 return status;
922}
923
cdca8d02
RM
924static int ql_8000_port_initialize(struct ql_adapter *qdev)
925{
bcc2cb3b 926 int status;
cfec0cbc
RM
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
bcc2cb3b
RM
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939exit:
940 return status;
cdca8d02
RM
941}
942
c4e84bde
RM
943/* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
b0c2aadf 949static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
950{
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
ae9540f7
JP
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
ae9540f7
JP
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
c4e84bde
RM
964 }
965 return status;
966 }
967
ae9540f7 968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022}
1023
7c734359
RM
1024static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025{
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027}
1028
c4e84bde 1029/* Get the next large buffer. */
8668ae92 1030static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1031{
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038}
1039
7c734359
RM
1040static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042{
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1046 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060}
1061
c4e84bde 1062/* Get the next small buffer. */
8668ae92 1063static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1064{
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071}
1072
1073/* Update an rx ring index. */
1074static void ql_update_cq(struct rx_ring *rx_ring)
1075{
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082}
1083
1084static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085{
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087}
1088
7c734359
RM
1089static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091{
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
7c734359
RM
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
ae9540f7
JP
1109 netif_err(qdev, drv, qdev->ndev,
1110 "PCI mapping failed.\n");
7c734359
RM
1111 return -ENOMEM;
1112 }
1113 rx_ring->pg_chunk.map = map;
1114 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115 }
1116
1117 /* Copy the current master pg_chunk info
1118 * to the current descriptor.
1119 */
1120 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122 /* Adjust the master page chunk for next
1123 * buffer get.
1124 */
1125 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127 rx_ring->pg_chunk.page = NULL;
1128 lbq_desc->p.pg_chunk.last_flag = 1;
1129 } else {
1130 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131 get_page(rx_ring->pg_chunk.page);
1132 lbq_desc->p.pg_chunk.last_flag = 0;
1133 }
1134 return 0;
1135}
c4e84bde
RM
1136/* Process (refill) a large buffer queue. */
1137static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138{
49f2186d
RM
1139 u32 clean_idx = rx_ring->lbq_clean_idx;
1140 u32 start_idx = clean_idx;
c4e84bde 1141 struct bq_desc *lbq_desc;
c4e84bde
RM
1142 u64 map;
1143 int i;
1144
7c734359 1145 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1146 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1147 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148 "lbq: try cleaning clean_idx = %d.\n",
1149 clean_idx);
c4e84bde 1150 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1151 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1152 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1153 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1154 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155 i, clean_idx);
ae9540f7
JP
1156 return;
1157 }
7c734359
RM
1158
1159 map = lbq_desc->p.pg_chunk.map +
1160 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1161 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1163 rx_ring->lbq_buf_size);
2c9a0d41 1164 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1165
1166 pci_dma_sync_single_for_device(qdev->pdev, map,
1167 rx_ring->lbq_buf_size,
1168 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1169 clean_idx++;
1170 if (clean_idx == rx_ring->lbq_len)
1171 clean_idx = 0;
1172 }
1173
1174 rx_ring->lbq_clean_idx = clean_idx;
1175 rx_ring->lbq_prod_idx += 16;
1176 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1178 rx_ring->lbq_free_cnt -= 16;
1179 }
1180
1181 if (start_idx != clean_idx) {
ae9540f7
JP
1182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183 "lbq: updating prod idx = %d.\n",
1184 rx_ring->lbq_prod_idx);
c4e84bde
RM
1185 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1187 }
1188}
1189
1190/* Process (refill) a small buffer queue. */
1191static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192{
49f2186d
RM
1193 u32 clean_idx = rx_ring->sbq_clean_idx;
1194 u32 start_idx = clean_idx;
c4e84bde 1195 struct bq_desc *sbq_desc;
c4e84bde
RM
1196 u64 map;
1197 int i;
1198
1199 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1200 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1201 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1202 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203 "sbq: try cleaning clean_idx = %d.\n",
1204 clean_idx);
c4e84bde 1205 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1206 netif_printk(qdev, rx_status, KERN_DEBUG,
1207 qdev->ndev,
1208 "sbq: getting new skb for index %d.\n",
1209 sbq_desc->index);
c4e84bde
RM
1210 sbq_desc->p.skb =
1211 netdev_alloc_skb(qdev->ndev,
52e55f3c 1212 SMALL_BUFFER_SIZE);
c4e84bde 1213 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1214 netif_err(qdev, probe, qdev->ndev,
1215 "Couldn't get an skb.\n");
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
63526713
RM
1436/* Process an inbound completion from an rx ring. */
1437static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1438 struct rx_ring *rx_ring,
1439 struct ib_mac_iocb_rsp *ib_mac_rsp,
1440 u32 length,
1441 u16 vlan_id)
1442{
1443 struct sk_buff *skb;
1444 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1445 struct napi_struct *napi = &rx_ring->napi;
1446
1447 napi->dev = qdev->ndev;
1448
1449 skb = napi_get_frags(napi);
1450 if (!skb) {
ae9540f7
JP
1451 netif_err(qdev, drv, qdev->ndev,
1452 "Couldn't get an skb, exiting.\n");
63526713
RM
1453 rx_ring->rx_dropped++;
1454 put_page(lbq_desc->p.pg_chunk.page);
1455 return;
1456 }
1457 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1458 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1459 lbq_desc->p.pg_chunk.page,
1460 lbq_desc->p.pg_chunk.offset,
1461 length);
63526713
RM
1462
1463 skb->len += length;
1464 skb->data_len += length;
1465 skb->truesize += length;
1466 skb_shinfo(skb)->nr_frags++;
1467
1468 rx_ring->rx_packets++;
1469 rx_ring->rx_bytes += length;
1470 skb->ip_summed = CHECKSUM_UNNECESSARY;
1471 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1472 if (vlan_id != 0xffff)
1473 __vlan_hwaccel_put_tag(skb, vlan_id);
1474 napi_gro_frags(napi);
63526713
RM
1475}
1476
4f848c0a
RM
1477/* Process an inbound completion from an rx ring. */
1478static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1479 struct rx_ring *rx_ring,
1480 struct ib_mac_iocb_rsp *ib_mac_rsp,
1481 u32 length,
1482 u16 vlan_id)
1483{
1484 struct net_device *ndev = qdev->ndev;
1485 struct sk_buff *skb = NULL;
1486 void *addr;
1487 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1488 struct napi_struct *napi = &rx_ring->napi;
1489
1490 skb = netdev_alloc_skb(ndev, length);
1491 if (!skb) {
ae9540f7
JP
1492 netif_err(qdev, drv, qdev->ndev,
1493 "Couldn't get an skb, need to unwind!.\n");
4f848c0a
RM
1494 rx_ring->rx_dropped++;
1495 put_page(lbq_desc->p.pg_chunk.page);
1496 return;
1497 }
1498
1499 addr = lbq_desc->p.pg_chunk.va;
1500 prefetch(addr);
1501
1502
1503 /* Frame error, so drop the packet. */
1504 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1505 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1506 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
4f848c0a
RM
1507 rx_ring->rx_errors++;
1508 goto err_out;
1509 }
1510
1511 /* The max framesize filter on this chip is set higher than
1512 * MTU since FCoE uses 2k frames.
1513 */
1514 if (skb->len > ndev->mtu + ETH_HLEN) {
ae9540f7
JP
1515 netif_err(qdev, drv, qdev->ndev,
1516 "Segment too small, dropping.\n");
4f848c0a
RM
1517 rx_ring->rx_dropped++;
1518 goto err_out;
1519 }
1520 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
ae9540f7
JP
1521 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1522 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1523 length);
4f848c0a
RM
1524 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1525 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1526 length-ETH_HLEN);
1527 skb->len += length-ETH_HLEN;
1528 skb->data_len += length-ETH_HLEN;
1529 skb->truesize += length-ETH_HLEN;
1530
1531 rx_ring->rx_packets++;
1532 rx_ring->rx_bytes += skb->len;
1533 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1534 skb_checksum_none_assert(skb);
4f848c0a 1535
88230fd5 1536 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1537 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1538 /* TCP frame. */
1539 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1540 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1541 "TCP checksum done!\n");
4f848c0a
RM
1542 skb->ip_summed = CHECKSUM_UNNECESSARY;
1543 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1544 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1545 /* Unfragmented ipv4 UDP frame. */
e02ef331
JK
1546 struct iphdr *iph =
1547 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
4f848c0a
RM
1548 if (!(iph->frag_off &
1549 cpu_to_be16(IP_MF|IP_OFFSET))) {
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1551 netif_printk(qdev, rx_status, KERN_DEBUG,
1552 qdev->ndev,
e02ef331 1553 "UDP checksum done!\n");
4f848c0a
RM
1554 }
1555 }
1556 }
1557
1558 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1559 if (vlan_id != 0xffff)
1560 __vlan_hwaccel_put_tag(skb, vlan_id);
1561 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1562 napi_gro_receive(napi, skb);
1563 else
1564 netif_receive_skb(skb);
4f848c0a
RM
1565 return;
1566err_out:
1567 dev_kfree_skb_any(skb);
1568 put_page(lbq_desc->p.pg_chunk.page);
1569}
1570
1571/* Process an inbound completion from an rx ring. */
1572static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1573 struct rx_ring *rx_ring,
1574 struct ib_mac_iocb_rsp *ib_mac_rsp,
1575 u32 length,
1576 u16 vlan_id)
1577{
1578 struct net_device *ndev = qdev->ndev;
1579 struct sk_buff *skb = NULL;
1580 struct sk_buff *new_skb = NULL;
1581 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1582
1583 skb = sbq_desc->p.skb;
1584 /* Allocate new_skb and copy */
1585 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1586 if (new_skb == NULL) {
ae9540f7
JP
1587 netif_err(qdev, probe, qdev->ndev,
1588 "No skb available, drop the packet.\n");
4f848c0a
RM
1589 rx_ring->rx_dropped++;
1590 return;
1591 }
1592 skb_reserve(new_skb, NET_IP_ALIGN);
1593 memcpy(skb_put(new_skb, length), skb->data, length);
1594 skb = new_skb;
1595
1596 /* Frame error, so drop the packet. */
1597 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1598 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1599 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
4f848c0a
RM
1600 dev_kfree_skb_any(skb);
1601 rx_ring->rx_errors++;
1602 return;
1603 }
1604
1605 /* loopback self test for ethtool */
1606 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1607 ql_check_lb_frame(qdev, skb);
1608 dev_kfree_skb_any(skb);
1609 return;
1610 }
1611
1612 /* The max framesize filter on this chip is set higher than
1613 * MTU since FCoE uses 2k frames.
1614 */
1615 if (skb->len > ndev->mtu + ETH_HLEN) {
1616 dev_kfree_skb_any(skb);
1617 rx_ring->rx_dropped++;
1618 return;
1619 }
1620
1621 prefetch(skb->data);
4f848c0a 1622 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1623 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1624 "%s Multicast.\n",
1625 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1626 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1627 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1628 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1629 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1630 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1631 }
1632 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1633 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1634 "Promiscuous Packet.\n");
4f848c0a
RM
1635
1636 rx_ring->rx_packets++;
1637 rx_ring->rx_bytes += skb->len;
1638 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1639 skb_checksum_none_assert(skb);
4f848c0a
RM
1640
1641 /* If rx checksum is on, and there are no
1642 * csum or frame errors.
1643 */
88230fd5 1644 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1645 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1646 /* TCP frame. */
1647 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1648 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1649 "TCP checksum done!\n");
4f848c0a
RM
1650 skb->ip_summed = CHECKSUM_UNNECESSARY;
1651 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1652 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1653 /* Unfragmented ipv4 UDP frame. */
1654 struct iphdr *iph = (struct iphdr *) skb->data;
1655 if (!(iph->frag_off &
6d29b1ef 1656 ntohs(IP_MF|IP_OFFSET))) {
4f848c0a 1657 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1658 netif_printk(qdev, rx_status, KERN_DEBUG,
1659 qdev->ndev,
e02ef331 1660 "UDP checksum done!\n");
4f848c0a
RM
1661 }
1662 }
1663 }
1664
1665 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1666 if (vlan_id != 0xffff)
1667 __vlan_hwaccel_put_tag(skb, vlan_id);
1668 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1669 napi_gro_receive(&rx_ring->napi, skb);
1670 else
1671 netif_receive_skb(skb);
4f848c0a
RM
1672}
1673
8668ae92 1674static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1675{
1676 void *temp_addr = skb->data;
1677
1678 /* Undo the skb_reserve(skb,32) we did before
1679 * giving to hardware, and realign data on
1680 * a 2-byte boundary.
1681 */
1682 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1683 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1684 skb_copy_to_linear_data(skb, temp_addr,
1685 (unsigned int)len);
1686}
1687
1688/*
1689 * This function builds an skb for the given inbound
1690 * completion. It will be rewritten for readability in the near
1691 * future, but for not it works well.
1692 */
1693static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1694 struct rx_ring *rx_ring,
1695 struct ib_mac_iocb_rsp *ib_mac_rsp)
1696{
1697 struct bq_desc *lbq_desc;
1698 struct bq_desc *sbq_desc;
1699 struct sk_buff *skb = NULL;
1700 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1701 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1702
1703 /*
1704 * Handle the header buffer if present.
1705 */
1706 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1707 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1708 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1709 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1710 /*
1711 * Headers fit nicely into a small buffer.
1712 */
1713 sbq_desc = ql_get_curr_sbuf(rx_ring);
1714 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1715 dma_unmap_addr(sbq_desc, mapaddr),
1716 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1717 PCI_DMA_FROMDEVICE);
1718 skb = sbq_desc->p.skb;
1719 ql_realign_skb(skb, hdr_len);
1720 skb_put(skb, hdr_len);
1721 sbq_desc->p.skb = NULL;
1722 }
1723
1724 /*
1725 * Handle the data buffer(s).
1726 */
1727 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1728 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1729 "No Data buffer in this packet.\n");
c4e84bde
RM
1730 return skb;
1731 }
1732
1733 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1734 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1735 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1736 "Headers in small, data of %d bytes in small, combine them.\n",
1737 length);
c4e84bde
RM
1738 /*
1739 * Data is less than small buffer size so it's
1740 * stuffed in a small buffer.
1741 * For this case we append the data
1742 * from the "data" small buffer to the "header" small
1743 * buffer.
1744 */
1745 sbq_desc = ql_get_curr_sbuf(rx_ring);
1746 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1747 dma_unmap_addr
c4e84bde 1748 (sbq_desc, mapaddr),
64b9b41d 1749 dma_unmap_len
c4e84bde
RM
1750 (sbq_desc, maplen),
1751 PCI_DMA_FROMDEVICE);
1752 memcpy(skb_put(skb, length),
1753 sbq_desc->p.skb->data, length);
1754 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1755 dma_unmap_addr
c4e84bde
RM
1756 (sbq_desc,
1757 mapaddr),
64b9b41d 1758 dma_unmap_len
c4e84bde
RM
1759 (sbq_desc,
1760 maplen),
1761 PCI_DMA_FROMDEVICE);
1762 } else {
ae9540f7
JP
1763 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1764 "%d bytes in a single small buffer.\n",
1765 length);
c4e84bde
RM
1766 sbq_desc = ql_get_curr_sbuf(rx_ring);
1767 skb = sbq_desc->p.skb;
1768 ql_realign_skb(skb, length);
1769 skb_put(skb, length);
1770 pci_unmap_single(qdev->pdev,
64b9b41d 1771 dma_unmap_addr(sbq_desc,
c4e84bde 1772 mapaddr),
64b9b41d 1773 dma_unmap_len(sbq_desc,
c4e84bde
RM
1774 maplen),
1775 PCI_DMA_FROMDEVICE);
1776 sbq_desc->p.skb = NULL;
1777 }
1778 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1779 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1780 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1781 "Header in small, %d bytes in large. Chain large to small!\n",
1782 length);
c4e84bde
RM
1783 /*
1784 * The data is in a single large buffer. We
1785 * chain it to the header buffer's skb and let
1786 * it rip.
1787 */
7c734359 1788 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1789 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1790 "Chaining page at offset = %d, for %d bytes to skb.\n",
1791 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1792 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1793 lbq_desc->p.pg_chunk.offset,
1794 length);
c4e84bde
RM
1795 skb->len += length;
1796 skb->data_len += length;
1797 skb->truesize += length;
c4e84bde
RM
1798 } else {
1799 /*
1800 * The headers and data are in a single large buffer. We
1801 * copy it to a new skb and let it go. This can happen with
1802 * jumbo mtu on a non-TCP/UDP frame.
1803 */
7c734359 1804 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1805 skb = netdev_alloc_skb(qdev->ndev, length);
1806 if (skb == NULL) {
ae9540f7
JP
1807 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1808 "No skb available, drop the packet.\n");
c4e84bde
RM
1809 return NULL;
1810 }
4055c7d4 1811 pci_unmap_page(qdev->pdev,
64b9b41d 1812 dma_unmap_addr(lbq_desc,
4055c7d4 1813 mapaddr),
64b9b41d 1814 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1815 PCI_DMA_FROMDEVICE);
c4e84bde 1816 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1817 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1818 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1819 length);
7c734359
RM
1820 skb_fill_page_desc(skb, 0,
1821 lbq_desc->p.pg_chunk.page,
1822 lbq_desc->p.pg_chunk.offset,
1823 length);
c4e84bde
RM
1824 skb->len += length;
1825 skb->data_len += length;
1826 skb->truesize += length;
1827 length -= length;
c4e84bde
RM
1828 __pskb_pull_tail(skb,
1829 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1830 VLAN_ETH_HLEN : ETH_HLEN);
1831 }
1832 } else {
1833 /*
1834 * The data is in a chain of large buffers
1835 * pointed to by a small buffer. We loop
1836 * thru and chain them to the our small header
1837 * buffer's skb.
1838 * frags: There are 18 max frags and our small
1839 * buffer will hold 32 of them. The thing is,
1840 * we'll use 3 max for our 9000 byte jumbo
1841 * frames. If the MTU goes up we could
1842 * eventually be in trouble.
1843 */
7c734359 1844 int size, i = 0;
c4e84bde
RM
1845 sbq_desc = ql_get_curr_sbuf(rx_ring);
1846 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1847 dma_unmap_addr(sbq_desc, mapaddr),
1848 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1849 PCI_DMA_FROMDEVICE);
1850 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1851 /*
1852 * This is an non TCP/UDP IP frame, so
1853 * the headers aren't split into a small
1854 * buffer. We have to use the small buffer
1855 * that contains our sg list as our skb to
1856 * send upstairs. Copy the sg list here to
1857 * a local buffer and use it to find the
1858 * pages to chain.
1859 */
ae9540f7
JP
1860 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1861 "%d bytes of headers & data in chain of large.\n",
1862 length);
c4e84bde 1863 skb = sbq_desc->p.skb;
c4e84bde
RM
1864 sbq_desc->p.skb = NULL;
1865 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1866 }
1867 while (length > 0) {
7c734359
RM
1868 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1869 size = (length < rx_ring->lbq_buf_size) ? length :
1870 rx_ring->lbq_buf_size;
c4e84bde 1871
ae9540f7
JP
1872 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1873 "Adding page %d to skb for %d bytes.\n",
1874 i, size);
7c734359
RM
1875 skb_fill_page_desc(skb, i,
1876 lbq_desc->p.pg_chunk.page,
1877 lbq_desc->p.pg_chunk.offset,
1878 size);
c4e84bde
RM
1879 skb->len += size;
1880 skb->data_len += size;
1881 skb->truesize += size;
1882 length -= size;
c4e84bde
RM
1883 i++;
1884 }
1885 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1886 VLAN_ETH_HLEN : ETH_HLEN);
1887 }
1888 return skb;
1889}
1890
1891/* Process an inbound completion from an rx ring. */
4f848c0a 1892static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1893 struct rx_ring *rx_ring,
4f848c0a
RM
1894 struct ib_mac_iocb_rsp *ib_mac_rsp,
1895 u16 vlan_id)
c4e84bde
RM
1896{
1897 struct net_device *ndev = qdev->ndev;
1898 struct sk_buff *skb = NULL;
1899
1900 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1901
1902 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1903 if (unlikely(!skb)) {
ae9540f7
JP
1904 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1905 "No skb available, drop packet.\n");
885ee398 1906 rx_ring->rx_dropped++;
c4e84bde
RM
1907 return;
1908 }
1909
a32959cd
RM
1910 /* Frame error, so drop the packet. */
1911 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1912 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1913 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
a32959cd 1914 dev_kfree_skb_any(skb);
885ee398 1915 rx_ring->rx_errors++;
a32959cd
RM
1916 return;
1917 }
ec33a491
RM
1918
1919 /* The max framesize filter on this chip is set higher than
1920 * MTU since FCoE uses 2k frames.
1921 */
1922 if (skb->len > ndev->mtu + ETH_HLEN) {
1923 dev_kfree_skb_any(skb);
885ee398 1924 rx_ring->rx_dropped++;
ec33a491
RM
1925 return;
1926 }
1927
9dfbbaa6
RM
1928 /* loopback self test for ethtool */
1929 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1930 ql_check_lb_frame(qdev, skb);
1931 dev_kfree_skb_any(skb);
1932 return;
1933 }
1934
c4e84bde 1935 prefetch(skb->data);
c4e84bde 1936 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1937 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1938 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1939 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1940 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1941 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1942 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1943 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 1944 rx_ring->rx_multicast++;
c4e84bde
RM
1945 }
1946 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
1947 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1948 "Promiscuous Packet.\n");
c4e84bde 1949 }
d555f592 1950
d555f592 1951 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1952 skb_checksum_none_assert(skb);
d555f592
RM
1953
1954 /* If rx checksum is on, and there are no
1955 * csum or frame errors.
1956 */
88230fd5 1957 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
1958 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1959 /* TCP frame. */
1960 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1961 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1962 "TCP checksum done!\n");
d555f592
RM
1963 skb->ip_summed = CHECKSUM_UNNECESSARY;
1964 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1965 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1966 /* Unfragmented ipv4 UDP frame. */
1967 struct iphdr *iph = (struct iphdr *) skb->data;
1968 if (!(iph->frag_off &
6d29b1ef 1969 ntohs(IP_MF|IP_OFFSET))) {
d555f592 1970 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1971 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1972 "TCP checksum done!\n");
d555f592
RM
1973 }
1974 }
c4e84bde 1975 }
d555f592 1976
885ee398
RM
1977 rx_ring->rx_packets++;
1978 rx_ring->rx_bytes += skb->len;
b2014ff8 1979 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1980 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1981 __vlan_hwaccel_put_tag(skb, vlan_id);
1982 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1983 napi_gro_receive(&rx_ring->napi, skb);
1984 else
1985 netif_receive_skb(skb);
c4e84bde
RM
1986}
1987
4f848c0a
RM
1988/* Process an inbound completion from an rx ring. */
1989static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1990 struct rx_ring *rx_ring,
1991 struct ib_mac_iocb_rsp *ib_mac_rsp)
1992{
1993 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1994 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1995 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1996 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
1997
1998 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1999
2000 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2001 /* The data and headers are split into
2002 * separate buffers.
2003 */
2004 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2005 vlan_id);
2006 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2007 /* The data fit in a single small buffer.
2008 * Allocate a new skb, copy the data and
2009 * return the buffer to the free pool.
2010 */
2011 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2012 length, vlan_id);
63526713
RM
2013 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2014 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2015 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2016 /* TCP packet in a page chunk that's been checksummed.
2017 * Tack it on to our GRO skb and let it go.
2018 */
2019 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2020 length, vlan_id);
4f848c0a
RM
2021 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2022 /* Non-TCP packet in a page chunk. Allocate an
2023 * skb, tack it on frags, and send it up.
2024 */
2025 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2026 length, vlan_id);
2027 } else {
c0c56955
RM
2028 /* Non-TCP/UDP large frames that span multiple buffers
2029 * can be processed corrrectly by the split frame logic.
2030 */
2031 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2032 vlan_id);
4f848c0a
RM
2033 }
2034
2035 return (unsigned long)length;
2036}
2037
c4e84bde
RM
2038/* Process an outbound completion from an rx ring. */
2039static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2040 struct ob_mac_iocb_rsp *mac_rsp)
2041{
2042 struct tx_ring *tx_ring;
2043 struct tx_ring_desc *tx_ring_desc;
2044
2045 QL_DUMP_OB_MAC_RSP(mac_rsp);
2046 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2047 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2048 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2049 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2050 tx_ring->tx_packets++;
c4e84bde
RM
2051 dev_kfree_skb(tx_ring_desc->skb);
2052 tx_ring_desc->skb = NULL;
2053
2054 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2055 OB_MAC_IOCB_RSP_S |
2056 OB_MAC_IOCB_RSP_L |
2057 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2058 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2059 netif_warn(qdev, tx_done, qdev->ndev,
2060 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2061 }
2062 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2063 netif_warn(qdev, tx_done, qdev->ndev,
2064 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2065 }
2066 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2067 netif_warn(qdev, tx_done, qdev->ndev,
2068 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2069 }
2070 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2071 netif_warn(qdev, tx_done, qdev->ndev,
2072 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2073 }
2074 }
2075 atomic_inc(&tx_ring->tx_count);
2076}
2077
2078/* Fire up a handler to reset the MPI processor. */
2079void ql_queue_fw_error(struct ql_adapter *qdev)
2080{
6a473308 2081 ql_link_off(qdev);
c4e84bde
RM
2082 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2083}
2084
2085void ql_queue_asic_error(struct ql_adapter *qdev)
2086{
6a473308 2087 ql_link_off(qdev);
c4e84bde 2088 ql_disable_interrupts(qdev);
6497b607
RM
2089 /* Clear adapter up bit to signal the recovery
2090 * process that it shouldn't kill the reset worker
2091 * thread
2092 */
2093 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2094 /* Set asic recovery bit to indicate reset process that we are
2095 * in fatal error recovery process rather than normal close
2096 */
2097 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2098 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2099}
2100
2101static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2102 struct ib_ae_iocb_rsp *ib_ae_rsp)
2103{
2104 switch (ib_ae_rsp->event) {
2105 case MGMT_ERR_EVENT:
ae9540f7
JP
2106 netif_err(qdev, rx_err, qdev->ndev,
2107 "Management Processor Fatal Error.\n");
c4e84bde
RM
2108 ql_queue_fw_error(qdev);
2109 return;
2110
2111 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2112 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2113 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2114 ql_queue_asic_error(qdev);
2115 return;
2116
2117 case SOFT_ECC_ERROR_EVENT:
5069ee55 2118 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2119 ql_queue_asic_error(qdev);
2120 break;
2121
2122 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2123 netdev_err(qdev->ndev, "PCI error occurred when reading "
2124 "anonymous buffers from rx_ring %d.\n",
2125 ib_ae_rsp->q_id);
c4e84bde
RM
2126 ql_queue_asic_error(qdev);
2127 break;
2128
2129 default:
ae9540f7
JP
2130 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2131 ib_ae_rsp->event);
c4e84bde
RM
2132 ql_queue_asic_error(qdev);
2133 break;
2134 }
2135}
2136
2137static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2138{
2139 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2140 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2141 struct ob_mac_iocb_rsp *net_rsp = NULL;
2142 int count = 0;
2143
1e213303 2144 struct tx_ring *tx_ring;
c4e84bde
RM
2145 /* While there are entries in the completion queue. */
2146 while (prod != rx_ring->cnsmr_idx) {
2147
ae9540f7
JP
2148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2149 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2150 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2151
2152 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2153 rmb();
2154 switch (net_rsp->opcode) {
2155
2156 case OPCODE_OB_MAC_TSO_IOCB:
2157 case OPCODE_OB_MAC_IOCB:
2158 ql_process_mac_tx_intr(qdev, net_rsp);
2159 break;
2160 default:
ae9540f7
JP
2161 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2162 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2163 net_rsp->opcode);
c4e84bde
RM
2164 }
2165 count++;
2166 ql_update_cq(rx_ring);
ba7cd3ba 2167 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2168 }
4da79504
DC
2169 if (!net_rsp)
2170 return 0;
c4e84bde 2171 ql_write_cq_idx(rx_ring);
1e213303 2172 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2173 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2174 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2175 /*
2176 * The queue got stopped because the tx_ring was full.
2177 * Wake it up, because it's now at least 25% empty.
2178 */
1e213303 2179 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2180 }
2181
2182 return count;
2183}
2184
2185static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2186{
2187 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2188 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2189 struct ql_net_rsp_iocb *net_rsp;
2190 int count = 0;
2191
2192 /* While there are entries in the completion queue. */
2193 while (prod != rx_ring->cnsmr_idx) {
2194
ae9540f7
JP
2195 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2196 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2197 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2198
2199 net_rsp = rx_ring->curr_entry;
2200 rmb();
2201 switch (net_rsp->opcode) {
2202 case OPCODE_IB_MAC_IOCB:
2203 ql_process_mac_rx_intr(qdev, rx_ring,
2204 (struct ib_mac_iocb_rsp *)
2205 net_rsp);
2206 break;
2207
2208 case OPCODE_IB_AE_IOCB:
2209 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2210 net_rsp);
2211 break;
2212 default:
ae9540f7
JP
2213 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2214 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2215 net_rsp->opcode);
2216 break;
c4e84bde
RM
2217 }
2218 count++;
2219 ql_update_cq(rx_ring);
ba7cd3ba 2220 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2221 if (count == budget)
2222 break;
2223 }
2224 ql_update_buffer_queues(qdev, rx_ring);
2225 ql_write_cq_idx(rx_ring);
2226 return count;
2227}
2228
2229static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2230{
2231 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2232 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2233 struct rx_ring *trx_ring;
2234 int i, work_done = 0;
2235 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2236
ae9540f7
JP
2237 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2238 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2239
39aa8165
RM
2240 /* Service the TX rings first. They start
2241 * right after the RSS rings. */
2242 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2243 trx_ring = &qdev->rx_ring[i];
2244 /* If this TX completion ring belongs to this vector and
2245 * it's not empty then service it.
2246 */
2247 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2248 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2249 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2250 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2251 "%s: Servicing TX completion ring %d.\n",
2252 __func__, trx_ring->cq_id);
39aa8165
RM
2253 ql_clean_outbound_rx_ring(trx_ring);
2254 }
2255 }
2256
2257 /*
2258 * Now service the RSS ring if it's active.
2259 */
2260 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2261 rx_ring->cnsmr_idx) {
ae9540f7
JP
2262 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2263 "%s: Servicing RX completion ring %d.\n",
2264 __func__, rx_ring->cq_id);
39aa8165
RM
2265 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2266 }
2267
c4e84bde 2268 if (work_done < budget) {
22bdd4f5 2269 napi_complete(napi);
c4e84bde
RM
2270 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2271 }
2272 return work_done;
2273}
2274
c8f44aff 2275static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2276{
2277 struct ql_adapter *qdev = netdev_priv(ndev);
2278
18c49b91 2279 if (features & NETIF_F_HW_VLAN_RX) {
c4e84bde 2280 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2281 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2282 } else {
c4e84bde
RM
2283 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2284 }
2285}
2286
c8f44aff
MM
2287static netdev_features_t qlge_fix_features(struct net_device *ndev,
2288 netdev_features_t features)
18c49b91
JP
2289{
2290 /*
2291 * Since there is no support for separate rx/tx vlan accel
2292 * enable/disable make sure tx flag is always in same state as rx.
2293 */
2294 if (features & NETIF_F_HW_VLAN_RX)
2295 features |= NETIF_F_HW_VLAN_TX;
2296 else
2297 features &= ~NETIF_F_HW_VLAN_TX;
2298
2299 return features;
2300}
2301
c8f44aff
MM
2302static int qlge_set_features(struct net_device *ndev,
2303 netdev_features_t features)
18c49b91 2304{
c8f44aff 2305 netdev_features_t changed = ndev->features ^ features;
18c49b91
JP
2306
2307 if (changed & NETIF_F_HW_VLAN_RX)
2308 qlge_vlan_mode(ndev, features);
2309
2310 return 0;
2311}
2312
8e586137 2313static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2314{
c4e84bde 2315 u32 enable_bit = MAC_ADDR_E;
8e586137 2316 int err;
c4e84bde 2317
8e586137
JP
2318 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2319 MAC_ADDR_TYPE_VLAN, vid);
2320 if (err)
ae9540f7
JP
2321 netif_err(qdev, ifup, qdev->ndev,
2322 "Failed to init vlan address.\n");
8e586137 2323 return err;
c4e84bde
RM
2324}
2325
8e586137 2326static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2327{
2328 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2329 int status;
8e586137 2330 int err;
cc288f54
RM
2331
2332 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2333 if (status)
8e586137 2334 return status;
c4e84bde 2335
8e586137 2336 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2337 set_bit(vid, qdev->active_vlans);
2338
2339 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2340
2341 return err;
18c49b91
JP
2342}
2343
8e586137 2344static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2345{
2346 u32 enable_bit = 0;
8e586137 2347 int err;
18c49b91 2348
8e586137
JP
2349 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2350 MAC_ADDR_TYPE_VLAN, vid);
2351 if (err)
ae9540f7
JP
2352 netif_err(qdev, ifup, qdev->ndev,
2353 "Failed to clear vlan address.\n");
8e586137 2354 return err;
18c49b91
JP
2355}
2356
8e586137 2357static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
18c49b91
JP
2358{
2359 struct ql_adapter *qdev = netdev_priv(ndev);
2360 int status;
8e586137 2361 int err;
c4e84bde 2362
18c49b91
JP
2363 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2364 if (status)
8e586137 2365 return status;
18c49b91 2366
8e586137 2367 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2368 clear_bit(vid, qdev->active_vlans);
2369
2370 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2371
2372 return err;
c4e84bde
RM
2373}
2374
c1b60092
RM
2375static void qlge_restore_vlan(struct ql_adapter *qdev)
2376{
18c49b91
JP
2377 int status;
2378 u16 vid;
2379
2380 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2381 if (status)
2382 return;
2383
2384 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2385 __qlge_vlan_rx_add_vid(qdev, vid);
2386
2387 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2388}
2389
c4e84bde
RM
2390/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2391static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2392{
2393 struct rx_ring *rx_ring = dev_id;
288379f0 2394 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2395 return IRQ_HANDLED;
2396}
2397
c4e84bde
RM
2398/* This handles a fatal error, MPI activity, and the default
2399 * rx_ring in an MSI-X multiple vector environment.
2400 * In MSI/Legacy environment it also process the rest of
2401 * the rx_rings.
2402 */
2403static irqreturn_t qlge_isr(int irq, void *dev_id)
2404{
2405 struct rx_ring *rx_ring = dev_id;
2406 struct ql_adapter *qdev = rx_ring->qdev;
2407 struct intr_context *intr_context = &qdev->intr_context[0];
2408 u32 var;
c4e84bde
RM
2409 int work_done = 0;
2410
bb0d215c
RM
2411 spin_lock(&qdev->hw_lock);
2412 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2413 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2414 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2415 spin_unlock(&qdev->hw_lock);
2416 return IRQ_NONE;
c4e84bde 2417 }
bb0d215c 2418 spin_unlock(&qdev->hw_lock);
c4e84bde 2419
bb0d215c 2420 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2421
2422 /*
2423 * Check for fatal error.
2424 */
2425 if (var & STS_FE) {
2426 ql_queue_asic_error(qdev);
5069ee55 2427 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2428 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2429 netdev_err(qdev->ndev, "Resetting chip. "
2430 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2431 return IRQ_HANDLED;
2432 }
2433
2434 /*
2435 * Check MPI processor activity.
2436 */
5ee22a5a
RM
2437 if ((var & STS_PI) &&
2438 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2439 /*
2440 * We've got an async event or mailbox completion.
2441 * Handle it and clear the source of the interrupt.
2442 */
ae9540f7
JP
2443 netif_err(qdev, intr, qdev->ndev,
2444 "Got MPI processor interrupt.\n");
c4e84bde 2445 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2446 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2447 queue_delayed_work_on(smp_processor_id(),
2448 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2449 work_done++;
2450 }
2451
2452 /*
39aa8165
RM
2453 * Get the bit-mask that shows the active queues for this
2454 * pass. Compare it to the queues that this irq services
2455 * and call napi if there's a match.
c4e84bde 2456 */
39aa8165
RM
2457 var = ql_read32(qdev, ISR1);
2458 if (var & intr_context->irq_mask) {
ae9540f7
JP
2459 netif_info(qdev, intr, qdev->ndev,
2460 "Waking handler for rx_ring[0].\n");
39aa8165 2461 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2462 napi_schedule(&rx_ring->napi);
2463 work_done++;
2464 }
bb0d215c 2465 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2466 return work_done ? IRQ_HANDLED : IRQ_NONE;
2467}
2468
2469static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2470{
2471
2472 if (skb_is_gso(skb)) {
2473 int err;
2474 if (skb_header_cloned(skb)) {
2475 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2476 if (err)
2477 return err;
2478 }
2479
2480 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2481 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2482 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2483 mac_iocb_ptr->total_hdrs_len =
2484 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2485 mac_iocb_ptr->net_trans_offset =
2486 cpu_to_le16(skb_network_offset(skb) |
2487 skb_transport_offset(skb)
2488 << OB_MAC_TRANSPORT_HDR_SHIFT);
2489 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2490 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2491 if (likely(skb->protocol == htons(ETH_P_IP))) {
2492 struct iphdr *iph = ip_hdr(skb);
2493 iph->check = 0;
2494 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2495 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2496 iph->daddr, 0,
2497 IPPROTO_TCP,
2498 0);
2499 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2500 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2501 tcp_hdr(skb)->check =
2502 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2503 &ipv6_hdr(skb)->daddr,
2504 0, IPPROTO_TCP, 0);
2505 }
2506 return 1;
2507 }
2508 return 0;
2509}
2510
2511static void ql_hw_csum_setup(struct sk_buff *skb,
2512 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2513{
2514 int len;
2515 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2516 __sum16 *check;
c4e84bde
RM
2517 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2518 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2519 mac_iocb_ptr->net_trans_offset =
2520 cpu_to_le16(skb_network_offset(skb) |
2521 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2522
2523 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2524 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2525 if (likely(iph->protocol == IPPROTO_TCP)) {
2526 check = &(tcp_hdr(skb)->check);
2527 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2528 mac_iocb_ptr->total_hdrs_len =
2529 cpu_to_le16(skb_transport_offset(skb) +
2530 (tcp_hdr(skb)->doff << 2));
2531 } else {
2532 check = &(udp_hdr(skb)->check);
2533 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2534 mac_iocb_ptr->total_hdrs_len =
2535 cpu_to_le16(skb_transport_offset(skb) +
2536 sizeof(struct udphdr));
2537 }
2538 *check = ~csum_tcpudp_magic(iph->saddr,
2539 iph->daddr, len, iph->protocol, 0);
2540}
2541
61357325 2542static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2543{
2544 struct tx_ring_desc *tx_ring_desc;
2545 struct ob_mac_iocb_req *mac_iocb_ptr;
2546 struct ql_adapter *qdev = netdev_priv(ndev);
2547 int tso;
2548 struct tx_ring *tx_ring;
1e213303 2549 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2550
2551 tx_ring = &qdev->tx_ring[tx_ring_idx];
2552
74c50b4b
RM
2553 if (skb_padto(skb, ETH_ZLEN))
2554 return NETDEV_TX_OK;
2555
c4e84bde 2556 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2557 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2558 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2559 __func__, tx_ring_idx);
1e213303 2560 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2561 tx_ring->tx_errors++;
c4e84bde
RM
2562 return NETDEV_TX_BUSY;
2563 }
2564 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2565 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2566 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2567
2568 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2569 mac_iocb_ptr->tid = tx_ring_desc->index;
2570 /* We use the upper 32-bits to store the tx queue for this IO.
2571 * When we get the completion we can use it to establish the context.
2572 */
2573 mac_iocb_ptr->txq_idx = tx_ring_idx;
2574 tx_ring_desc->skb = skb;
2575
2576 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2577
eab6d18d 2578 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2579 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2580 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2581 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2582 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2583 }
2584 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2585 if (tso < 0) {
2586 dev_kfree_skb_any(skb);
2587 return NETDEV_TX_OK;
2588 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2589 ql_hw_csum_setup(skb,
2590 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2591 }
0d979f74
RM
2592 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2593 NETDEV_TX_OK) {
ae9540f7
JP
2594 netif_err(qdev, tx_queued, qdev->ndev,
2595 "Could not map the segments.\n");
885ee398 2596 tx_ring->tx_errors++;
0d979f74
RM
2597 return NETDEV_TX_BUSY;
2598 }
c4e84bde
RM
2599 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2600 tx_ring->prod_idx++;
2601 if (tx_ring->prod_idx == tx_ring->wq_len)
2602 tx_ring->prod_idx = 0;
2603 wmb();
2604
2605 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2606 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2607 "tx queued, slot %d, len %d\n",
2608 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2609
2610 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2611
2612 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2613 netif_stop_subqueue(ndev, tx_ring->wq_id);
2614 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2615 /*
2616 * The queue got stopped because the tx_ring was full.
2617 * Wake it up, because it's now at least 25% empty.
2618 */
2619 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2620 }
c4e84bde
RM
2621 return NETDEV_TX_OK;
2622}
2623
9dfbbaa6 2624
c4e84bde
RM
2625static void ql_free_shadow_space(struct ql_adapter *qdev)
2626{
2627 if (qdev->rx_ring_shadow_reg_area) {
2628 pci_free_consistent(qdev->pdev,
2629 PAGE_SIZE,
2630 qdev->rx_ring_shadow_reg_area,
2631 qdev->rx_ring_shadow_reg_dma);
2632 qdev->rx_ring_shadow_reg_area = NULL;
2633 }
2634 if (qdev->tx_ring_shadow_reg_area) {
2635 pci_free_consistent(qdev->pdev,
2636 PAGE_SIZE,
2637 qdev->tx_ring_shadow_reg_area,
2638 qdev->tx_ring_shadow_reg_dma);
2639 qdev->tx_ring_shadow_reg_area = NULL;
2640 }
2641}
2642
2643static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2644{
2645 qdev->rx_ring_shadow_reg_area =
2646 pci_alloc_consistent(qdev->pdev,
2647 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2648 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2649 netif_err(qdev, ifup, qdev->ndev,
2650 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2651 return -ENOMEM;
2652 }
b25215d0 2653 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2654 qdev->tx_ring_shadow_reg_area =
2655 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2656 &qdev->tx_ring_shadow_reg_dma);
2657 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2658 netif_err(qdev, ifup, qdev->ndev,
2659 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2660 goto err_wqp_sh_area;
2661 }
b25215d0 2662 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2663 return 0;
2664
2665err_wqp_sh_area:
2666 pci_free_consistent(qdev->pdev,
2667 PAGE_SIZE,
2668 qdev->rx_ring_shadow_reg_area,
2669 qdev->rx_ring_shadow_reg_dma);
2670 return -ENOMEM;
2671}
2672
2673static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2674{
2675 struct tx_ring_desc *tx_ring_desc;
2676 int i;
2677 struct ob_mac_iocb_req *mac_iocb_ptr;
2678
2679 mac_iocb_ptr = tx_ring->wq_base;
2680 tx_ring_desc = tx_ring->q;
2681 for (i = 0; i < tx_ring->wq_len; i++) {
2682 tx_ring_desc->index = i;
2683 tx_ring_desc->skb = NULL;
2684 tx_ring_desc->queue_entry = mac_iocb_ptr;
2685 mac_iocb_ptr++;
2686 tx_ring_desc++;
2687 }
2688 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2689}
2690
2691static void ql_free_tx_resources(struct ql_adapter *qdev,
2692 struct tx_ring *tx_ring)
2693{
2694 if (tx_ring->wq_base) {
2695 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2696 tx_ring->wq_base, tx_ring->wq_base_dma);
2697 tx_ring->wq_base = NULL;
2698 }
2699 kfree(tx_ring->q);
2700 tx_ring->q = NULL;
2701}
2702
2703static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2704 struct tx_ring *tx_ring)
2705{
2706 tx_ring->wq_base =
2707 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2708 &tx_ring->wq_base_dma);
2709
8e95a202 2710 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2711 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2712 goto pci_alloc_err;
2713
c4e84bde
RM
2714 tx_ring->q =
2715 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2716 if (tx_ring->q == NULL)
2717 goto err;
2718
2719 return 0;
2720err:
2721 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2722 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2723 tx_ring->wq_base = NULL;
2724pci_alloc_err:
2725 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2726 return -ENOMEM;
2727}
2728
8668ae92 2729static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2730{
c4e84bde
RM
2731 struct bq_desc *lbq_desc;
2732
7c734359
RM
2733 uint32_t curr_idx, clean_idx;
2734
2735 curr_idx = rx_ring->lbq_curr_idx;
2736 clean_idx = rx_ring->lbq_clean_idx;
2737 while (curr_idx != clean_idx) {
2738 lbq_desc = &rx_ring->lbq[curr_idx];
2739
2740 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2741 pci_unmap_page(qdev->pdev,
7c734359
RM
2742 lbq_desc->p.pg_chunk.map,
2743 ql_lbq_block_size(qdev),
c4e84bde 2744 PCI_DMA_FROMDEVICE);
7c734359 2745 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2746 }
7c734359
RM
2747
2748 put_page(lbq_desc->p.pg_chunk.page);
2749 lbq_desc->p.pg_chunk.page = NULL;
2750
2751 if (++curr_idx == rx_ring->lbq_len)
2752 curr_idx = 0;
2753
c4e84bde
RM
2754 }
2755}
2756
8668ae92 2757static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2758{
2759 int i;
2760 struct bq_desc *sbq_desc;
2761
2762 for (i = 0; i < rx_ring->sbq_len; i++) {
2763 sbq_desc = &rx_ring->sbq[i];
2764 if (sbq_desc == NULL) {
ae9540f7
JP
2765 netif_err(qdev, ifup, qdev->ndev,
2766 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2767 return;
2768 }
2769 if (sbq_desc->p.skb) {
2770 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2771 dma_unmap_addr(sbq_desc, mapaddr),
2772 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2773 PCI_DMA_FROMDEVICE);
2774 dev_kfree_skb(sbq_desc->p.skb);
2775 sbq_desc->p.skb = NULL;
2776 }
c4e84bde
RM
2777 }
2778}
2779
4545a3f2
RM
2780/* Free all large and small rx buffers associated
2781 * with the completion queues for this device.
2782 */
2783static void ql_free_rx_buffers(struct ql_adapter *qdev)
2784{
2785 int i;
2786 struct rx_ring *rx_ring;
2787
2788 for (i = 0; i < qdev->rx_ring_count; i++) {
2789 rx_ring = &qdev->rx_ring[i];
2790 if (rx_ring->lbq)
2791 ql_free_lbq_buffers(qdev, rx_ring);
2792 if (rx_ring->sbq)
2793 ql_free_sbq_buffers(qdev, rx_ring);
2794 }
2795}
2796
2797static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2798{
2799 struct rx_ring *rx_ring;
2800 int i;
2801
2802 for (i = 0; i < qdev->rx_ring_count; i++) {
2803 rx_ring = &qdev->rx_ring[i];
2804 if (rx_ring->type != TX_Q)
2805 ql_update_buffer_queues(qdev, rx_ring);
2806 }
2807}
2808
2809static void ql_init_lbq_ring(struct ql_adapter *qdev,
2810 struct rx_ring *rx_ring)
2811{
2812 int i;
2813 struct bq_desc *lbq_desc;
2814 __le64 *bq = rx_ring->lbq_base;
2815
2816 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2817 for (i = 0; i < rx_ring->lbq_len; i++) {
2818 lbq_desc = &rx_ring->lbq[i];
2819 memset(lbq_desc, 0, sizeof(*lbq_desc));
2820 lbq_desc->index = i;
2821 lbq_desc->addr = bq;
2822 bq++;
2823 }
2824}
2825
2826static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2827 struct rx_ring *rx_ring)
2828{
2829 int i;
2830 struct bq_desc *sbq_desc;
2c9a0d41 2831 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2832
4545a3f2 2833 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2834 for (i = 0; i < rx_ring->sbq_len; i++) {
2835 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2836 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2837 sbq_desc->index = i;
2c9a0d41 2838 sbq_desc->addr = bq;
c4e84bde
RM
2839 bq++;
2840 }
c4e84bde
RM
2841}
2842
2843static void ql_free_rx_resources(struct ql_adapter *qdev,
2844 struct rx_ring *rx_ring)
2845{
c4e84bde
RM
2846 /* Free the small buffer queue. */
2847 if (rx_ring->sbq_base) {
2848 pci_free_consistent(qdev->pdev,
2849 rx_ring->sbq_size,
2850 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2851 rx_ring->sbq_base = NULL;
2852 }
2853
2854 /* Free the small buffer queue control blocks. */
2855 kfree(rx_ring->sbq);
2856 rx_ring->sbq = NULL;
2857
2858 /* Free the large buffer queue. */
2859 if (rx_ring->lbq_base) {
2860 pci_free_consistent(qdev->pdev,
2861 rx_ring->lbq_size,
2862 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2863 rx_ring->lbq_base = NULL;
2864 }
2865
2866 /* Free the large buffer queue control blocks. */
2867 kfree(rx_ring->lbq);
2868 rx_ring->lbq = NULL;
2869
2870 /* Free the rx queue. */
2871 if (rx_ring->cq_base) {
2872 pci_free_consistent(qdev->pdev,
2873 rx_ring->cq_size,
2874 rx_ring->cq_base, rx_ring->cq_base_dma);
2875 rx_ring->cq_base = NULL;
2876 }
2877}
2878
2879/* Allocate queues and buffers for this completions queue based
2880 * on the values in the parameter structure. */
2881static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2882 struct rx_ring *rx_ring)
2883{
2884
2885 /*
2886 * Allocate the completion queue for this rx_ring.
2887 */
2888 rx_ring->cq_base =
2889 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2890 &rx_ring->cq_base_dma);
2891
2892 if (rx_ring->cq_base == NULL) {
ae9540f7 2893 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2894 return -ENOMEM;
2895 }
2896
2897 if (rx_ring->sbq_len) {
2898 /*
2899 * Allocate small buffer queue.
2900 */
2901 rx_ring->sbq_base =
2902 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2903 &rx_ring->sbq_base_dma);
2904
2905 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2906 netif_err(qdev, ifup, qdev->ndev,
2907 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2908 goto err_mem;
2909 }
2910
2911 /*
2912 * Allocate small buffer queue control blocks.
2913 */
2914 rx_ring->sbq =
2915 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2916 GFP_KERNEL);
2917 if (rx_ring->sbq == NULL) {
ae9540f7
JP
2918 netif_err(qdev, ifup, qdev->ndev,
2919 "Small buffer queue control block allocation failed.\n");
c4e84bde
RM
2920 goto err_mem;
2921 }
2922
4545a3f2 2923 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2924 }
2925
2926 if (rx_ring->lbq_len) {
2927 /*
2928 * Allocate large buffer queue.
2929 */
2930 rx_ring->lbq_base =
2931 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2932 &rx_ring->lbq_base_dma);
2933
2934 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
2935 netif_err(qdev, ifup, qdev->ndev,
2936 "Large buffer queue allocation failed.\n");
c4e84bde
RM
2937 goto err_mem;
2938 }
2939 /*
2940 * Allocate large buffer queue control blocks.
2941 */
2942 rx_ring->lbq =
2943 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2944 GFP_KERNEL);
2945 if (rx_ring->lbq == NULL) {
ae9540f7
JP
2946 netif_err(qdev, ifup, qdev->ndev,
2947 "Large buffer queue control block allocation failed.\n");
c4e84bde
RM
2948 goto err_mem;
2949 }
2950
4545a3f2 2951 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2952 }
2953
2954 return 0;
2955
2956err_mem:
2957 ql_free_rx_resources(qdev, rx_ring);
2958 return -ENOMEM;
2959}
2960
2961static void ql_tx_ring_clean(struct ql_adapter *qdev)
2962{
2963 struct tx_ring *tx_ring;
2964 struct tx_ring_desc *tx_ring_desc;
2965 int i, j;
2966
2967 /*
2968 * Loop through all queues and free
2969 * any resources.
2970 */
2971 for (j = 0; j < qdev->tx_ring_count; j++) {
2972 tx_ring = &qdev->tx_ring[j];
2973 for (i = 0; i < tx_ring->wq_len; i++) {
2974 tx_ring_desc = &tx_ring->q[i];
2975 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
2976 netif_err(qdev, ifdown, qdev->ndev,
2977 "Freeing lost SKB %p, from queue %d, index %d.\n",
2978 tx_ring_desc->skb, j,
2979 tx_ring_desc->index);
c4e84bde
RM
2980 ql_unmap_send(qdev, tx_ring_desc,
2981 tx_ring_desc->map_cnt);
2982 dev_kfree_skb(tx_ring_desc->skb);
2983 tx_ring_desc->skb = NULL;
2984 }
2985 }
2986 }
2987}
2988
c4e84bde
RM
2989static void ql_free_mem_resources(struct ql_adapter *qdev)
2990{
2991 int i;
2992
2993 for (i = 0; i < qdev->tx_ring_count; i++)
2994 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2995 for (i = 0; i < qdev->rx_ring_count; i++)
2996 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2997 ql_free_shadow_space(qdev);
2998}
2999
3000static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3001{
3002 int i;
3003
3004 /* Allocate space for our shadow registers and such. */
3005 if (ql_alloc_shadow_space(qdev))
3006 return -ENOMEM;
3007
3008 for (i = 0; i < qdev->rx_ring_count; i++) {
3009 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3010 netif_err(qdev, ifup, qdev->ndev,
3011 "RX resource allocation failed.\n");
c4e84bde
RM
3012 goto err_mem;
3013 }
3014 }
3015 /* Allocate tx queue resources */
3016 for (i = 0; i < qdev->tx_ring_count; i++) {
3017 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3018 netif_err(qdev, ifup, qdev->ndev,
3019 "TX resource allocation failed.\n");
c4e84bde
RM
3020 goto err_mem;
3021 }
3022 }
3023 return 0;
3024
3025err_mem:
3026 ql_free_mem_resources(qdev);
3027 return -ENOMEM;
3028}
3029
3030/* Set up the rx ring control block and pass it to the chip.
3031 * The control block is defined as
3032 * "Completion Queue Initialization Control Block", or cqicb.
3033 */
3034static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3035{
3036 struct cqicb *cqicb = &rx_ring->cqicb;
3037 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3038 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3039 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3040 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3041 void __iomem *doorbell_area =
3042 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3043 int err = 0;
3044 u16 bq_len;
d4a4aba6 3045 u64 tmp;
b8facca0
RM
3046 __le64 *base_indirect_ptr;
3047 int page_entries;
c4e84bde
RM
3048
3049 /* Set up the shadow registers for this ring. */
3050 rx_ring->prod_idx_sh_reg = shadow_reg;
3051 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3052 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3053 shadow_reg += sizeof(u64);
3054 shadow_reg_dma += sizeof(u64);
3055 rx_ring->lbq_base_indirect = shadow_reg;
3056 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3057 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3058 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3059 rx_ring->sbq_base_indirect = shadow_reg;
3060 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3061
3062 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3063 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3064 rx_ring->cnsmr_idx = 0;
3065 rx_ring->curr_entry = rx_ring->cq_base;
3066
3067 /* PCI doorbell mem area + 0x04 for valid register */
3068 rx_ring->valid_db_reg = doorbell_area + 0x04;
3069
3070 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3071 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3072
3073 /* PCI doorbell mem area + 0x1c */
8668ae92 3074 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3075
3076 memset((void *)cqicb, 0, sizeof(struct cqicb));
3077 cqicb->msix_vect = rx_ring->irq;
3078
459caf5a
RM
3079 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3080 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3081
97345524 3082 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3083
97345524 3084 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3085
3086 /*
3087 * Set up the control block load flags.
3088 */
3089 cqicb->flags = FLAGS_LC | /* Load queue base address */
3090 FLAGS_LV | /* Load MSI-X vector */
3091 FLAGS_LI; /* Load irq delay values */
3092 if (rx_ring->lbq_len) {
3093 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3094 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3095 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3096 page_entries = 0;
3097 do {
3098 *base_indirect_ptr = cpu_to_le64(tmp);
3099 tmp += DB_PAGE_SIZE;
3100 base_indirect_ptr++;
3101 page_entries++;
3102 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3103 cqicb->lbq_addr =
3104 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3105 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3106 (u16) rx_ring->lbq_buf_size;
3107 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3108 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3109 (u16) rx_ring->lbq_len;
c4e84bde 3110 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3111 rx_ring->lbq_prod_idx = 0;
c4e84bde 3112 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3113 rx_ring->lbq_clean_idx = 0;
3114 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3115 }
3116 if (rx_ring->sbq_len) {
3117 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3118 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3119 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3120 page_entries = 0;
3121 do {
3122 *base_indirect_ptr = cpu_to_le64(tmp);
3123 tmp += DB_PAGE_SIZE;
3124 base_indirect_ptr++;
3125 page_entries++;
3126 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3127 cqicb->sbq_addr =
3128 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3129 cqicb->sbq_buf_size =
52e55f3c 3130 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3131 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3132 (u16) rx_ring->sbq_len;
c4e84bde 3133 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3134 rx_ring->sbq_prod_idx = 0;
c4e84bde 3135 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3136 rx_ring->sbq_clean_idx = 0;
3137 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3138 }
3139 switch (rx_ring->type) {
3140 case TX_Q:
c4e84bde
RM
3141 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3142 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3143 break;
c4e84bde
RM
3144 case RX_Q:
3145 /* Inbound completion handling rx_rings run in
3146 * separate NAPI contexts.
3147 */
3148 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3149 64);
3150 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3151 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3152 break;
3153 default:
ae9540f7
JP
3154 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3155 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3156 }
c4e84bde
RM
3157 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3158 CFG_LCQ, rx_ring->cq_id);
3159 if (err) {
ae9540f7 3160 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3161 return err;
3162 }
c4e84bde
RM
3163 return err;
3164}
3165
3166static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3167{
3168 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3169 void __iomem *doorbell_area =
3170 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3171 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3172 (tx_ring->wq_id * sizeof(u64));
3173 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3174 (tx_ring->wq_id * sizeof(u64));
3175 int err = 0;
3176
3177 /*
3178 * Assign doorbell registers for this tx_ring.
3179 */
3180 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3181 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3182 tx_ring->prod_idx = 0;
3183 /* TX PCI doorbell mem area + 0x04 */
3184 tx_ring->valid_db_reg = doorbell_area + 0x04;
3185
3186 /*
3187 * Assign shadow registers for this tx_ring.
3188 */
3189 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3190 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3191
3192 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3193 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3194 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3195 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3196 wqicb->rid = 0;
97345524 3197 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3198
97345524 3199 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3200
3201 ql_init_tx_ring(qdev, tx_ring);
3202
e332471c 3203 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3204 (u16) tx_ring->wq_id);
3205 if (err) {
ae9540f7 3206 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3207 return err;
3208 }
c4e84bde
RM
3209 return err;
3210}
3211
3212static void ql_disable_msix(struct ql_adapter *qdev)
3213{
3214 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3215 pci_disable_msix(qdev->pdev);
3216 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3217 kfree(qdev->msi_x_entry);
3218 qdev->msi_x_entry = NULL;
3219 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3220 pci_disable_msi(qdev->pdev);
3221 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3222 }
3223}
3224
a4ab6137
RM
3225/* We start by trying to get the number of vectors
3226 * stored in qdev->intr_count. If we don't get that
3227 * many then we reduce the count and try again.
3228 */
c4e84bde
RM
3229static void ql_enable_msix(struct ql_adapter *qdev)
3230{
a4ab6137 3231 int i, err;
c4e84bde 3232
c4e84bde 3233 /* Get the MSIX vectors. */
a5a62a1c 3234 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3235 /* Try to alloc space for the msix struct,
3236 * if it fails then go to MSI/legacy.
3237 */
a4ab6137 3238 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3239 sizeof(struct msix_entry),
3240 GFP_KERNEL);
3241 if (!qdev->msi_x_entry) {
a5a62a1c 3242 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3243 goto msi;
3244 }
3245
a4ab6137 3246 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3247 qdev->msi_x_entry[i].entry = i;
3248
a4ab6137
RM
3249 /* Loop to get our vectors. We start with
3250 * what we want and settle for what we get.
3251 */
3252 do {
3253 err = pci_enable_msix(qdev->pdev,
3254 qdev->msi_x_entry, qdev->intr_count);
3255 if (err > 0)
3256 qdev->intr_count = err;
3257 } while (err > 0);
3258
3259 if (err < 0) {
c4e84bde
RM
3260 kfree(qdev->msi_x_entry);
3261 qdev->msi_x_entry = NULL;
ae9540f7
JP
3262 netif_warn(qdev, ifup, qdev->ndev,
3263 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 3264 qdev->intr_count = 1;
a5a62a1c 3265 qlge_irq_type = MSI_IRQ;
a4ab6137
RM
3266 } else if (err == 0) {
3267 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3268 netif_info(qdev, ifup, qdev->ndev,
3269 "MSI-X Enabled, got %d vectors.\n",
3270 qdev->intr_count);
a4ab6137 3271 return;
c4e84bde
RM
3272 }
3273 }
3274msi:
a4ab6137 3275 qdev->intr_count = 1;
a5a62a1c 3276 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3277 if (!pci_enable_msi(qdev->pdev)) {
3278 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3279 netif_info(qdev, ifup, qdev->ndev,
3280 "Running with MSI interrupts.\n");
c4e84bde
RM
3281 return;
3282 }
3283 }
a5a62a1c 3284 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3285 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3286 "Running with legacy interrupts.\n");
c4e84bde
RM
3287}
3288
39aa8165
RM
3289/* Each vector services 1 RSS ring and and 1 or more
3290 * TX completion rings. This function loops through
3291 * the TX completion rings and assigns the vector that
3292 * will service it. An example would be if there are
3293 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3294 * This would mean that vector 0 would service RSS ring 0
25985edc 3295 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3296 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3297 */
3298static void ql_set_tx_vect(struct ql_adapter *qdev)
3299{
3300 int i, j, vect;
3301 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3302
3303 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3304 /* Assign irq vectors to TX rx_rings.*/
3305 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3306 i < qdev->rx_ring_count; i++) {
3307 if (j == tx_rings_per_vector) {
3308 vect++;
3309 j = 0;
3310 }
3311 qdev->rx_ring[i].irq = vect;
3312 j++;
3313 }
3314 } else {
3315 /* For single vector all rings have an irq
3316 * of zero.
3317 */
3318 for (i = 0; i < qdev->rx_ring_count; i++)
3319 qdev->rx_ring[i].irq = 0;
3320 }
3321}
3322
3323/* Set the interrupt mask for this vector. Each vector
3324 * will service 1 RSS ring and 1 or more TX completion
3325 * rings. This function sets up a bit mask per vector
3326 * that indicates which rings it services.
3327 */
3328static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3329{
3330 int j, vect = ctx->intr;
3331 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3332
3333 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3334 /* Add the RSS ring serviced by this vector
3335 * to the mask.
3336 */
3337 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3338 /* Add the TX ring(s) serviced by this vector
3339 * to the mask. */
3340 for (j = 0; j < tx_rings_per_vector; j++) {
3341 ctx->irq_mask |=
3342 (1 << qdev->rx_ring[qdev->rss_ring_count +
3343 (vect * tx_rings_per_vector) + j].cq_id);
3344 }
3345 } else {
3346 /* For single vector we just shift each queue's
3347 * ID into the mask.
3348 */
3349 for (j = 0; j < qdev->rx_ring_count; j++)
3350 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3351 }
3352}
3353
c4e84bde
RM
3354/*
3355 * Here we build the intr_context structures based on
3356 * our rx_ring count and intr vector count.
3357 * The intr_context structure is used to hook each vector
3358 * to possibly different handlers.
3359 */
3360static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3361{
3362 int i = 0;
3363 struct intr_context *intr_context = &qdev->intr_context[0];
3364
c4e84bde
RM
3365 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3366 /* Each rx_ring has it's
3367 * own intr_context since we have separate
3368 * vectors for each queue.
c4e84bde
RM
3369 */
3370 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3371 qdev->rx_ring[i].irq = i;
3372 intr_context->intr = i;
3373 intr_context->qdev = qdev;
39aa8165
RM
3374 /* Set up this vector's bit-mask that indicates
3375 * which queues it services.
3376 */
3377 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3378 /*
3379 * We set up each vectors enable/disable/read bits so
3380 * there's no bit/mask calculations in the critical path.
3381 */
3382 intr_context->intr_en_mask =
3383 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3384 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3385 | i;
3386 intr_context->intr_dis_mask =
3387 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3388 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3389 INTR_EN_IHD | i;
3390 intr_context->intr_read_mask =
3391 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3392 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3393 i;
39aa8165
RM
3394 if (i == 0) {
3395 /* The first vector/queue handles
3396 * broadcast/multicast, fatal errors,
3397 * and firmware events. This in addition
3398 * to normal inbound NAPI processing.
c4e84bde 3399 */
39aa8165 3400 intr_context->handler = qlge_isr;
b2014ff8
RM
3401 sprintf(intr_context->name, "%s-rx-%d",
3402 qdev->ndev->name, i);
3403 } else {
c4e84bde 3404 /*
39aa8165 3405 * Inbound queues handle unicast frames only.
c4e84bde 3406 */
39aa8165
RM
3407 intr_context->handler = qlge_msix_rx_isr;
3408 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3409 qdev->ndev->name, i);
c4e84bde
RM
3410 }
3411 }
3412 } else {
3413 /*
3414 * All rx_rings use the same intr_context since
3415 * there is only one vector.
3416 */
3417 intr_context->intr = 0;
3418 intr_context->qdev = qdev;
3419 /*
3420 * We set up each vectors enable/disable/read bits so
3421 * there's no bit/mask calculations in the critical path.
3422 */
3423 intr_context->intr_en_mask =
3424 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3425 intr_context->intr_dis_mask =
3426 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3427 INTR_EN_TYPE_DISABLE;
3428 intr_context->intr_read_mask =
3429 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3430 /*
3431 * Single interrupt means one handler for all rings.
3432 */
3433 intr_context->handler = qlge_isr;
3434 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3435 /* Set up this vector's bit-mask that indicates
3436 * which queues it services. In this case there is
3437 * a single vector so it will service all RSS and
3438 * TX completion rings.
3439 */
3440 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3441 }
39aa8165
RM
3442 /* Tell the TX completion rings which MSIx vector
3443 * they will be using.
3444 */
3445 ql_set_tx_vect(qdev);
c4e84bde
RM
3446}
3447
3448static void ql_free_irq(struct ql_adapter *qdev)
3449{
3450 int i;
3451 struct intr_context *intr_context = &qdev->intr_context[0];
3452
3453 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3454 if (intr_context->hooked) {
3455 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3456 free_irq(qdev->msi_x_entry[i].vector,
3457 &qdev->rx_ring[i]);
c4e84bde
RM
3458 } else {
3459 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3460 }
3461 }
3462 }
3463 ql_disable_msix(qdev);
3464}
3465
3466static int ql_request_irq(struct ql_adapter *qdev)
3467{
3468 int i;
3469 int status = 0;
3470 struct pci_dev *pdev = qdev->pdev;
3471 struct intr_context *intr_context = &qdev->intr_context[0];
3472
3473 ql_resolve_queues_to_irqs(qdev);
3474
3475 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3476 atomic_set(&intr_context->irq_cnt, 0);
3477 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3478 status = request_irq(qdev->msi_x_entry[i].vector,
3479 intr_context->handler,
3480 0,
3481 intr_context->name,
3482 &qdev->rx_ring[i]);
3483 if (status) {
ae9540f7
JP
3484 netif_err(qdev, ifup, qdev->ndev,
3485 "Failed request for MSIX interrupt %d.\n",
3486 i);
c4e84bde 3487 goto err_irq;
c4e84bde
RM
3488 }
3489 } else {
ae9540f7
JP
3490 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3491 "trying msi or legacy interrupts.\n");
3492 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3493 "%s: irq = %d.\n", __func__, pdev->irq);
3494 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3495 "%s: context->name = %s.\n", __func__,
3496 intr_context->name);
3497 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3498 "%s: dev_id = 0x%p.\n", __func__,
3499 &qdev->rx_ring[0]);
c4e84bde
RM
3500 status =
3501 request_irq(pdev->irq, qlge_isr,
3502 test_bit(QL_MSI_ENABLED,
3503 &qdev->
3504 flags) ? 0 : IRQF_SHARED,
3505 intr_context->name, &qdev->rx_ring[0]);
3506 if (status)
3507 goto err_irq;
3508
ae9540f7
JP
3509 netif_err(qdev, ifup, qdev->ndev,
3510 "Hooked intr %d, queue type %s, with name %s.\n",
3511 i,
3512 qdev->rx_ring[0].type == DEFAULT_Q ?
3513 "DEFAULT_Q" :
3514 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3515 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3516 intr_context->name);
c4e84bde
RM
3517 }
3518 intr_context->hooked = 1;
3519 }
3520 return status;
3521err_irq:
ae9540f7 3522 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
c4e84bde
RM
3523 ql_free_irq(qdev);
3524 return status;
3525}
3526
3527static int ql_start_rss(struct ql_adapter *qdev)
3528{
215faf9c
JP
3529 static const u8 init_hash_seed[] = {
3530 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3531 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3532 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3533 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3534 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3535 };
c4e84bde
RM
3536 struct ricb *ricb = &qdev->ricb;
3537 int status = 0;
3538 int i;
3539 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3540
e332471c 3541 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3542
b2014ff8 3543 ricb->base_cq = RSS_L4K;
c4e84bde 3544 ricb->flags =
541ae28c
RM
3545 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3546 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3547
3548 /*
3549 * Fill out the Indirection Table.
3550 */
541ae28c
RM
3551 for (i = 0; i < 1024; i++)
3552 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3553
541ae28c
RM
3554 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3555 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3556
e332471c 3557 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3558 if (status) {
ae9540f7 3559 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3560 return status;
3561 }
c4e84bde
RM
3562 return status;
3563}
3564
a5f59dc9 3565static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3566{
a5f59dc9 3567 int i, status = 0;
c4e84bde 3568
8587ea35
RM
3569 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3570 if (status)
3571 return status;
c4e84bde
RM
3572 /* Clear all the entries in the routing table. */
3573 for (i = 0; i < 16; i++) {
3574 status = ql_set_routing_reg(qdev, i, 0, 0);
3575 if (status) {
ae9540f7
JP
3576 netif_err(qdev, ifup, qdev->ndev,
3577 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3578 break;
c4e84bde
RM
3579 }
3580 }
a5f59dc9
RM
3581 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3582 return status;
3583}
3584
3585/* Initialize the frame-to-queue routing. */
3586static int ql_route_initialize(struct ql_adapter *qdev)
3587{
3588 int status = 0;
3589
fd21cf52
RM
3590 /* Clear all the entries in the routing table. */
3591 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3592 if (status)
3593 return status;
3594
fd21cf52 3595 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3596 if (status)
fd21cf52 3597 return status;
c4e84bde 3598
fbc2ac33
RM
3599 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3600 RT_IDX_IP_CSUM_ERR, 1);
3601 if (status) {
3602 netif_err(qdev, ifup, qdev->ndev,
3603 "Failed to init routing register "
3604 "for IP CSUM error packets.\n");
3605 goto exit;
3606 }
3607 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3608 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3609 if (status) {
ae9540f7 3610 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3611 "Failed to init routing register "
3612 "for TCP/UDP CSUM error packets.\n");
8587ea35 3613 goto exit;
c4e84bde
RM
3614 }
3615 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3616 if (status) {
ae9540f7
JP
3617 netif_err(qdev, ifup, qdev->ndev,
3618 "Failed to init routing register for broadcast packets.\n");
8587ea35 3619 goto exit;
c4e84bde
RM
3620 }
3621 /* If we have more than one inbound queue, then turn on RSS in the
3622 * routing block.
3623 */
3624 if (qdev->rss_ring_count > 1) {
3625 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3626 RT_IDX_RSS_MATCH, 1);
3627 if (status) {
ae9540f7
JP
3628 netif_err(qdev, ifup, qdev->ndev,
3629 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3630 goto exit;
c4e84bde
RM
3631 }
3632 }
3633
3634 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3635 RT_IDX_CAM_HIT, 1);
8587ea35 3636 if (status)
ae9540f7
JP
3637 netif_err(qdev, ifup, qdev->ndev,
3638 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3639exit:
3640 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3641 return status;
3642}
3643
2ee1e272 3644int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3645{
7fab3bfe 3646 int status, set;
bb58b5b6 3647
7fab3bfe
RM
3648 /* If check if the link is up and use to
3649 * determine if we are setting or clearing
3650 * the MAC address in the CAM.
3651 */
3652 set = ql_read32(qdev, STS);
3653 set &= qdev->port_link_up;
3654 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3655 if (status) {
ae9540f7 3656 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3657 return status;
3658 }
3659
3660 status = ql_route_initialize(qdev);
3661 if (status)
ae9540f7 3662 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3663
3664 return status;
3665}
3666
c4e84bde
RM
3667static int ql_adapter_initialize(struct ql_adapter *qdev)
3668{
3669 u32 value, mask;
3670 int i;
3671 int status = 0;
3672
3673 /*
3674 * Set up the System register to halt on errors.
3675 */
3676 value = SYS_EFE | SYS_FAE;
3677 mask = value << 16;
3678 ql_write32(qdev, SYS, mask | value);
3679
c9cf0a04
RM
3680 /* Set the default queue, and VLAN behavior. */
3681 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3682 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3683 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3684
3685 /* Set the MPI interrupt to enabled. */
3686 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3687
3688 /* Enable the function, set pagesize, enable error checking. */
3689 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3690 FSC_EC | FSC_VM_PAGE_4K;
3691 value |= SPLT_SETTING;
c4e84bde
RM
3692
3693 /* Set/clear header splitting. */
3694 mask = FSC_VM_PAGESIZE_MASK |
3695 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3696 ql_write32(qdev, FSC, mask | value);
3697
572c526f 3698 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3699
a3b71939
RM
3700 /* Set RX packet routing to use port/pci function on which the
3701 * packet arrived on in addition to usual frame routing.
3702 * This is helpful on bonding where both interfaces can have
3703 * the same MAC address.
3704 */
3705 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3706 /* Reroute all packets to our Interface.
3707 * They may have been routed to MPI firmware
3708 * due to WOL.
3709 */
3710 value = ql_read32(qdev, MGMT_RCV_CFG);
3711 value &= ~MGMT_RCV_CFG_RM;
3712 mask = 0xffff0000;
3713
3714 /* Sticky reg needs clearing due to WOL. */
3715 ql_write32(qdev, MGMT_RCV_CFG, mask);
3716 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3717
3718 /* Default WOL is enable on Mezz cards */
3719 if (qdev->pdev->subsystem_device == 0x0068 ||
3720 qdev->pdev->subsystem_device == 0x0180)
3721 qdev->wol = WAKE_MAGIC;
a3b71939 3722
c4e84bde
RM
3723 /* Start up the rx queues. */
3724 for (i = 0; i < qdev->rx_ring_count; i++) {
3725 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3726 if (status) {
ae9540f7
JP
3727 netif_err(qdev, ifup, qdev->ndev,
3728 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3729 return status;
3730 }
3731 }
3732
3733 /* If there is more than one inbound completion queue
3734 * then download a RICB to configure RSS.
3735 */
3736 if (qdev->rss_ring_count > 1) {
3737 status = ql_start_rss(qdev);
3738 if (status) {
ae9540f7 3739 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3740 return status;
3741 }
3742 }
3743
3744 /* Start up the tx queues. */
3745 for (i = 0; i < qdev->tx_ring_count; i++) {
3746 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3747 if (status) {
ae9540f7
JP
3748 netif_err(qdev, ifup, qdev->ndev,
3749 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3750 return status;
3751 }
3752 }
3753
b0c2aadf
RM
3754 /* Initialize the port and set the max framesize. */
3755 status = qdev->nic_ops->port_initialize(qdev);
80928860 3756 if (status)
ae9540f7 3757 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3758
bb58b5b6
RM
3759 /* Set up the MAC address and frame routing filter. */
3760 status = ql_cam_route_initialize(qdev);
c4e84bde 3761 if (status) {
ae9540f7
JP
3762 netif_err(qdev, ifup, qdev->ndev,
3763 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3764 return status;
3765 }
3766
3767 /* Start NAPI for the RSS queues. */
19257f5a 3768 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3769 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3770
3771 return status;
3772}
3773
3774/* Issue soft reset to chip. */
3775static int ql_adapter_reset(struct ql_adapter *qdev)
3776{
3777 u32 value;
c4e84bde 3778 int status = 0;
a5f59dc9 3779 unsigned long end_jiffies;
c4e84bde 3780
a5f59dc9
RM
3781 /* Clear all the entries in the routing table. */
3782 status = ql_clear_routing_entries(qdev);
3783 if (status) {
ae9540f7 3784 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3785 return status;
3786 }
3787
3788 end_jiffies = jiffies +
3789 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d 3790
da92b393
JK
3791 /* Check if bit is set then skip the mailbox command and
3792 * clear the bit, else we are in normal reset process.
3793 */
3794 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3795 /* Stop management traffic. */
3796 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3797
3798 /* Wait for the NIC and MGMNT FIFOs to empty. */
3799 ql_wait_fifo_empty(qdev);
3800 } else
3801 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3802
c4e84bde 3803 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3804
c4e84bde
RM
3805 do {
3806 value = ql_read32(qdev, RST_FO);
3807 if ((value & RST_FO_FR) == 0)
3808 break;
a75ee7f1
RM
3809 cpu_relax();
3810 } while (time_before(jiffies, end_jiffies));
c4e84bde 3811
c4e84bde 3812 if (value & RST_FO_FR) {
ae9540f7
JP
3813 netif_err(qdev, ifdown, qdev->ndev,
3814 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3815 status = -ETIMEDOUT;
c4e84bde
RM
3816 }
3817
84087f4d
RM
3818 /* Resume management traffic. */
3819 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3820 return status;
3821}
3822
3823static void ql_display_dev_info(struct net_device *ndev)
3824{
b16fed0a 3825 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3826
ae9540f7
JP
3827 netif_info(qdev, probe, qdev->ndev,
3828 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3829 "XG Roll = %d, XG Rev = %d.\n",
3830 qdev->func,
3831 qdev->port,
3832 qdev->chip_rev_id & 0x0000000f,
3833 qdev->chip_rev_id >> 4 & 0x0000000f,
3834 qdev->chip_rev_id >> 8 & 0x0000000f,
3835 qdev->chip_rev_id >> 12 & 0x0000000f);
3836 netif_info(qdev, probe, qdev->ndev,
3837 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3838}
3839
ac409215 3840static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3841{
3842 int status = 0;
3843 u32 wol = MB_WOL_DISABLE;
3844
3845 /* The CAM is still intact after a reset, but if we
3846 * are doing WOL, then we may need to program the
3847 * routing regs. We would also need to issue the mailbox
3848 * commands to instruct the MPI what to do per the ethtool
3849 * settings.
3850 */
3851
3852 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3853 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3854 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3855 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3856 qdev->wol);
bc083ce9
RM
3857 return -EINVAL;
3858 }
3859
3860 if (qdev->wol & WAKE_MAGIC) {
3861 status = ql_mb_wol_set_magic(qdev, 1);
3862 if (status) {
ae9540f7
JP
3863 netif_err(qdev, ifdown, qdev->ndev,
3864 "Failed to set magic packet on %s.\n",
3865 qdev->ndev->name);
bc083ce9
RM
3866 return status;
3867 } else
ae9540f7
JP
3868 netif_info(qdev, drv, qdev->ndev,
3869 "Enabled magic packet successfully on %s.\n",
3870 qdev->ndev->name);
bc083ce9
RM
3871
3872 wol |= MB_WOL_MAGIC_PKT;
3873 }
3874
3875 if (qdev->wol) {
bc083ce9
RM
3876 wol |= MB_WOL_MODE_ON;
3877 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3878 netif_err(qdev, drv, qdev->ndev,
3879 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3880 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3881 wol, qdev->ndev->name);
bc083ce9
RM
3882 }
3883
3884 return status;
3885}
3886
c5dadddb 3887static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3888{
c4e84bde 3889
6497b607
RM
3890 /* Don't kill the reset worker thread if we
3891 * are in the process of recovery.
3892 */
3893 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3894 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3895 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3896 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3897 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3898 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3899 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3900}
3901
3902static int ql_adapter_down(struct ql_adapter *qdev)
3903{
3904 int i, status = 0;
3905
3906 ql_link_off(qdev);
3907
3908 ql_cancel_all_work_sync(qdev);
c4e84bde 3909
39aa8165
RM
3910 for (i = 0; i < qdev->rss_ring_count; i++)
3911 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3912
3913 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3914
3915 ql_disable_interrupts(qdev);
3916
3917 ql_tx_ring_clean(qdev);
3918
6b318cb3
RM
3919 /* Call netif_napi_del() from common point.
3920 */
b2014ff8 3921 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3922 netif_napi_del(&qdev->rx_ring[i].napi);
3923
c4e84bde
RM
3924 status = ql_adapter_reset(qdev);
3925 if (status)
ae9540f7
JP
3926 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3927 qdev->func);
fe5f0980
BL
3928 ql_free_rx_buffers(qdev);
3929
c4e84bde
RM
3930 return status;
3931}
3932
3933static int ql_adapter_up(struct ql_adapter *qdev)
3934{
3935 int err = 0;
3936
c4e84bde
RM
3937 err = ql_adapter_initialize(qdev);
3938 if (err) {
ae9540f7 3939 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
3940 goto err_init;
3941 }
c4e84bde 3942 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3943 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3944 /* If the port is initialized and the
3945 * link is up the turn on the carrier.
3946 */
3947 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3948 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3949 ql_link_on(qdev);
f2c05004
RM
3950 /* Restore rx mode. */
3951 clear_bit(QL_ALLMULTI, &qdev->flags);
3952 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3953 qlge_set_multicast_list(qdev->ndev);
3954
c1b60092
RM
3955 /* Restore vlan setting. */
3956 qlge_restore_vlan(qdev);
3957
c4e84bde
RM
3958 ql_enable_interrupts(qdev);
3959 ql_enable_all_completion_interrupts(qdev);
1e213303 3960 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3961
3962 return 0;
3963err_init:
3964 ql_adapter_reset(qdev);
3965 return err;
3966}
3967
c4e84bde
RM
3968static void ql_release_adapter_resources(struct ql_adapter *qdev)
3969{
3970 ql_free_mem_resources(qdev);
3971 ql_free_irq(qdev);
3972}
3973
3974static int ql_get_adapter_resources(struct ql_adapter *qdev)
3975{
3976 int status = 0;
3977
3978 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 3979 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
3980 return -ENOMEM;
3981 }
3982 status = ql_request_irq(qdev);
c4e84bde
RM
3983 return status;
3984}
3985
3986static int qlge_close(struct net_device *ndev)
3987{
3988 struct ql_adapter *qdev = netdev_priv(ndev);
3989
4bbd1a19
RM
3990 /* If we hit pci_channel_io_perm_failure
3991 * failure condition, then we already
3992 * brought the adapter down.
3993 */
3994 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 3995 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
3996 clear_bit(QL_EEH_FATAL, &qdev->flags);
3997 return 0;
3998 }
3999
c4e84bde
RM
4000 /*
4001 * Wait for device to recover from a reset.
4002 * (Rarely happens, but possible.)
4003 */
4004 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4005 msleep(1);
4006 ql_adapter_down(qdev);
4007 ql_release_adapter_resources(qdev);
c4e84bde
RM
4008 return 0;
4009}
4010
4011static int ql_configure_rings(struct ql_adapter *qdev)
4012{
4013 int i;
4014 struct rx_ring *rx_ring;
4015 struct tx_ring *tx_ring;
a4ab6137 4016 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4017 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4018 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4019
4020 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4021
4022 /* In a perfect world we have one RSS ring for each CPU
4023 * and each has it's own vector. To do that we ask for
4024 * cpu_cnt vectors. ql_enable_msix() will adjust the
4025 * vector count to what we actually get. We then
4026 * allocate an RSS ring for each.
4027 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4028 */
a4ab6137
RM
4029 qdev->intr_count = cpu_cnt;
4030 ql_enable_msix(qdev);
4031 /* Adjust the RSS ring count to the actual vector count. */
4032 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4033 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4034 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4035
c4e84bde
RM
4036 for (i = 0; i < qdev->tx_ring_count; i++) {
4037 tx_ring = &qdev->tx_ring[i];
e332471c 4038 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4039 tx_ring->qdev = qdev;
4040 tx_ring->wq_id = i;
4041 tx_ring->wq_len = qdev->tx_ring_size;
4042 tx_ring->wq_size =
4043 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4044
4045 /*
4046 * The completion queue ID for the tx rings start
39aa8165 4047 * immediately after the rss rings.
c4e84bde 4048 */
39aa8165 4049 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4050 }
4051
4052 for (i = 0; i < qdev->rx_ring_count; i++) {
4053 rx_ring = &qdev->rx_ring[i];
e332471c 4054 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4055 rx_ring->qdev = qdev;
4056 rx_ring->cq_id = i;
4057 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4058 if (i < qdev->rss_ring_count) {
39aa8165
RM
4059 /*
4060 * Inbound (RSS) queues.
4061 */
c4e84bde
RM
4062 rx_ring->cq_len = qdev->rx_ring_size;
4063 rx_ring->cq_size =
4064 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4065 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4066 rx_ring->lbq_size =
2c9a0d41 4067 rx_ring->lbq_len * sizeof(__le64);
7c734359 4068 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4069 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4070 rx_ring->sbq_size =
2c9a0d41 4071 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4072 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4073 rx_ring->type = RX_Q;
4074 } else {
c4e84bde
RM
4075 /*
4076 * Outbound queue handles outbound completions only.
4077 */
4078 /* outbound cq is same size as tx_ring it services. */
4079 rx_ring->cq_len = qdev->tx_ring_size;
4080 rx_ring->cq_size =
4081 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4082 rx_ring->lbq_len = 0;
4083 rx_ring->lbq_size = 0;
4084 rx_ring->lbq_buf_size = 0;
4085 rx_ring->sbq_len = 0;
4086 rx_ring->sbq_size = 0;
4087 rx_ring->sbq_buf_size = 0;
4088 rx_ring->type = TX_Q;
c4e84bde
RM
4089 }
4090 }
4091 return 0;
4092}
4093
4094static int qlge_open(struct net_device *ndev)
4095{
4096 int err = 0;
4097 struct ql_adapter *qdev = netdev_priv(ndev);
4098
74e12435
RM
4099 err = ql_adapter_reset(qdev);
4100 if (err)
4101 return err;
4102
c4e84bde
RM
4103 err = ql_configure_rings(qdev);
4104 if (err)
4105 return err;
4106
4107 err = ql_get_adapter_resources(qdev);
4108 if (err)
4109 goto error_up;
4110
4111 err = ql_adapter_up(qdev);
4112 if (err)
4113 goto error_up;
4114
4115 return err;
4116
4117error_up:
4118 ql_release_adapter_resources(qdev);
c4e84bde
RM
4119 return err;
4120}
4121
7c734359
RM
4122static int ql_change_rx_buffers(struct ql_adapter *qdev)
4123{
4124 struct rx_ring *rx_ring;
4125 int i, status;
4126 u32 lbq_buf_len;
4127
25985edc 4128 /* Wait for an outstanding reset to complete. */
7c734359
RM
4129 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4130 int i = 3;
4131 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4132 netif_err(qdev, ifup, qdev->ndev,
4133 "Waiting for adapter UP...\n");
7c734359
RM
4134 ssleep(1);
4135 }
4136
4137 if (!i) {
ae9540f7
JP
4138 netif_err(qdev, ifup, qdev->ndev,
4139 "Timed out waiting for adapter UP\n");
7c734359
RM
4140 return -ETIMEDOUT;
4141 }
4142 }
4143
4144 status = ql_adapter_down(qdev);
4145 if (status)
4146 goto error;
4147
4148 /* Get the new rx buffer size. */
4149 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4150 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4151 qdev->lbq_buf_order = get_order(lbq_buf_len);
4152
4153 for (i = 0; i < qdev->rss_ring_count; i++) {
4154 rx_ring = &qdev->rx_ring[i];
4155 /* Set the new size. */
4156 rx_ring->lbq_buf_size = lbq_buf_len;
4157 }
4158
4159 status = ql_adapter_up(qdev);
4160 if (status)
4161 goto error;
4162
4163 return status;
4164error:
ae9540f7
JP
4165 netif_alert(qdev, ifup, qdev->ndev,
4166 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4167 set_bit(QL_ADAPTER_UP, &qdev->flags);
4168 dev_close(qdev->ndev);
4169 return status;
4170}
4171
c4e84bde
RM
4172static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4173{
4174 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4175 int status;
c4e84bde
RM
4176
4177 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4178 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4179 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4180 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4181 } else
4182 return -EINVAL;
7c734359
RM
4183
4184 queue_delayed_work(qdev->workqueue,
4185 &qdev->mpi_port_cfg_work, 3*HZ);
4186
746079da
BL
4187 ndev->mtu = new_mtu;
4188
7c734359 4189 if (!netif_running(qdev->ndev)) {
7c734359
RM
4190 return 0;
4191 }
4192
7c734359
RM
4193 status = ql_change_rx_buffers(qdev);
4194 if (status) {
ae9540f7
JP
4195 netif_err(qdev, ifup, qdev->ndev,
4196 "Changing MTU failed.\n");
7c734359
RM
4197 }
4198
4199 return status;
c4e84bde
RM
4200}
4201
4202static struct net_device_stats *qlge_get_stats(struct net_device
4203 *ndev)
4204{
885ee398
RM
4205 struct ql_adapter *qdev = netdev_priv(ndev);
4206 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4207 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4208 unsigned long pkts, mcast, dropped, errors, bytes;
4209 int i;
4210
4211 /* Get RX stats. */
4212 pkts = mcast = dropped = errors = bytes = 0;
4213 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4214 pkts += rx_ring->rx_packets;
4215 bytes += rx_ring->rx_bytes;
4216 dropped += rx_ring->rx_dropped;
4217 errors += rx_ring->rx_errors;
4218 mcast += rx_ring->rx_multicast;
4219 }
4220 ndev->stats.rx_packets = pkts;
4221 ndev->stats.rx_bytes = bytes;
4222 ndev->stats.rx_dropped = dropped;
4223 ndev->stats.rx_errors = errors;
4224 ndev->stats.multicast = mcast;
4225
4226 /* Get TX stats. */
4227 pkts = errors = bytes = 0;
4228 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4229 pkts += tx_ring->tx_packets;
4230 bytes += tx_ring->tx_bytes;
4231 errors += tx_ring->tx_errors;
4232 }
4233 ndev->stats.tx_packets = pkts;
4234 ndev->stats.tx_bytes = bytes;
4235 ndev->stats.tx_errors = errors;
bcc90f55 4236 return &ndev->stats;
c4e84bde
RM
4237}
4238
ac409215 4239static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4240{
b16fed0a 4241 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4242 struct netdev_hw_addr *ha;
cc288f54 4243 int i, status;
c4e84bde 4244
cc288f54
RM
4245 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4246 if (status)
4247 return;
c4e84bde
RM
4248 /*
4249 * Set or clear promiscuous mode if a
4250 * transition is taking place.
4251 */
4252 if (ndev->flags & IFF_PROMISC) {
4253 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4254 if (ql_set_routing_reg
4255 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4256 netif_err(qdev, hw, qdev->ndev,
25985edc 4257 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4258 } else {
4259 set_bit(QL_PROMISCUOUS, &qdev->flags);
4260 }
4261 }
4262 } else {
4263 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4264 if (ql_set_routing_reg
4265 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4266 netif_err(qdev, hw, qdev->ndev,
25985edc 4267 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4268 } else {
4269 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4270 }
4271 }
4272 }
4273
4274 /*
4275 * Set or clear all multicast mode if a
4276 * transition is taking place.
4277 */
4278 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4279 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4280 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4281 if (ql_set_routing_reg
4282 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4283 netif_err(qdev, hw, qdev->ndev,
4284 "Failed to set all-multi mode.\n");
c4e84bde
RM
4285 } else {
4286 set_bit(QL_ALLMULTI, &qdev->flags);
4287 }
4288 }
4289 } else {
4290 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4291 if (ql_set_routing_reg
4292 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4293 netif_err(qdev, hw, qdev->ndev,
4294 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4295 } else {
4296 clear_bit(QL_ALLMULTI, &qdev->flags);
4297 }
4298 }
4299 }
4300
4cd24eaf 4301 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4302 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4303 if (status)
4304 goto exit;
f9dcbcc9 4305 i = 0;
22bedad3
JP
4306 netdev_for_each_mc_addr(ha, ndev) {
4307 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4308 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4309 netif_err(qdev, hw, qdev->ndev,
4310 "Failed to loadmulticast address.\n");
cc288f54 4311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4312 goto exit;
4313 }
f9dcbcc9
JP
4314 i++;
4315 }
cc288f54 4316 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4317 if (ql_set_routing_reg
4318 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4319 netif_err(qdev, hw, qdev->ndev,
4320 "Failed to set multicast match mode.\n");
c4e84bde
RM
4321 } else {
4322 set_bit(QL_ALLMULTI, &qdev->flags);
4323 }
4324 }
4325exit:
8587ea35 4326 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4327}
4328
4329static int qlge_set_mac_address(struct net_device *ndev, void *p)
4330{
b16fed0a 4331 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4332 struct sockaddr *addr = p;
cc288f54 4333 int status;
c4e84bde 4334
c4e84bde
RM
4335 if (!is_valid_ether_addr(addr->sa_data))
4336 return -EADDRNOTAVAIL;
4337 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4338 /* Update local copy of current mac address. */
4339 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4340
cc288f54
RM
4341 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4342 if (status)
4343 return status;
cc288f54
RM
4344 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4345 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4346 if (status)
ae9540f7 4347 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4348 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4349 return status;
c4e84bde
RM
4350}
4351
4352static void qlge_tx_timeout(struct net_device *ndev)
4353{
b16fed0a 4354 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4355 ql_queue_asic_error(qdev);
c4e84bde
RM
4356}
4357
4358static void ql_asic_reset_work(struct work_struct *work)
4359{
4360 struct ql_adapter *qdev =
4361 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4362 int status;
f2c0d8df 4363 rtnl_lock();
db98812f
RM
4364 status = ql_adapter_down(qdev);
4365 if (status)
4366 goto error;
4367
4368 status = ql_adapter_up(qdev);
4369 if (status)
4370 goto error;
2cd6dbaa
RM
4371
4372 /* Restore rx mode. */
4373 clear_bit(QL_ALLMULTI, &qdev->flags);
4374 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4375 qlge_set_multicast_list(qdev->ndev);
4376
f2c0d8df 4377 rtnl_unlock();
db98812f
RM
4378 return;
4379error:
ae9540f7
JP
4380 netif_alert(qdev, ifup, qdev->ndev,
4381 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4382
db98812f
RM
4383 set_bit(QL_ADAPTER_UP, &qdev->flags);
4384 dev_close(qdev->ndev);
4385 rtnl_unlock();
c4e84bde
RM
4386}
4387
ef9c7ab4 4388static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4389 .get_flash = ql_get_8012_flash_params,
4390 .port_initialize = ql_8012_port_initialize,
4391};
4392
ef9c7ab4 4393static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4394 .get_flash = ql_get_8000_flash_params,
4395 .port_initialize = ql_8000_port_initialize,
4396};
4397
e4552f51
RM
4398/* Find the pcie function number for the other NIC
4399 * on this chip. Since both NIC functions share a
4400 * common firmware we have the lowest enabled function
4401 * do any common work. Examples would be resetting
4402 * after a fatal firmware error, or doing a firmware
4403 * coredump.
4404 */
4405static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4406{
4407 int status = 0;
4408 u32 temp;
4409 u32 nic_func1, nic_func2;
4410
4411 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4412 &temp);
4413 if (status)
4414 return status;
4415
4416 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4417 MPI_TEST_NIC_FUNC_MASK);
4418 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4419 MPI_TEST_NIC_FUNC_MASK);
4420
4421 if (qdev->func == nic_func1)
4422 qdev->alt_func = nic_func2;
4423 else if (qdev->func == nic_func2)
4424 qdev->alt_func = nic_func1;
4425 else
4426 status = -EIO;
4427
4428 return status;
4429}
b0c2aadf 4430
e4552f51 4431static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4432{
e4552f51 4433 int status;
c4e84bde
RM
4434 qdev->func =
4435 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4436 if (qdev->func > 3)
4437 return -EIO;
4438
4439 status = ql_get_alt_pcie_func(qdev);
4440 if (status)
4441 return status;
4442
4443 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4444 if (qdev->port) {
c4e84bde
RM
4445 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4446 qdev->port_link_up = STS_PL1;
4447 qdev->port_init = STS_PI1;
4448 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4449 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4450 } else {
4451 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4452 qdev->port_link_up = STS_PL0;
4453 qdev->port_init = STS_PI0;
4454 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4455 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4456 }
4457 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4458 qdev->device_id = qdev->pdev->device;
4459 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4460 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4461 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4462 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4463 return status;
c4e84bde
RM
4464}
4465
4466static void ql_release_all(struct pci_dev *pdev)
4467{
4468 struct net_device *ndev = pci_get_drvdata(pdev);
4469 struct ql_adapter *qdev = netdev_priv(ndev);
4470
4471 if (qdev->workqueue) {
4472 destroy_workqueue(qdev->workqueue);
4473 qdev->workqueue = NULL;
4474 }
39aa8165 4475
c4e84bde 4476 if (qdev->reg_base)
8668ae92 4477 iounmap(qdev->reg_base);
c4e84bde
RM
4478 if (qdev->doorbell_area)
4479 iounmap(qdev->doorbell_area);
8aae2600 4480 vfree(qdev->mpi_coredump);
c4e84bde
RM
4481 pci_release_regions(pdev);
4482 pci_set_drvdata(pdev, NULL);
4483}
4484
4485static int __devinit ql_init_device(struct pci_dev *pdev,
4486 struct net_device *ndev, int cards_found)
4487{
4488 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4489 int err = 0;
c4e84bde 4490
e332471c 4491 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4492 err = pci_enable_device(pdev);
4493 if (err) {
4494 dev_err(&pdev->dev, "PCI device enable failed.\n");
4495 return err;
4496 }
4497
ebd6e774
RM
4498 qdev->ndev = ndev;
4499 qdev->pdev = pdev;
4500 pci_set_drvdata(pdev, ndev);
c4e84bde 4501
bc9167f3
RM
4502 /* Set PCIe read request size */
4503 err = pcie_set_readrq(pdev, 4096);
4504 if (err) {
4505 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4506 goto err_out1;
bc9167f3
RM
4507 }
4508
c4e84bde
RM
4509 err = pci_request_regions(pdev, DRV_NAME);
4510 if (err) {
4511 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4512 return err;
c4e84bde
RM
4513 }
4514
4515 pci_set_master(pdev);
6a35528a 4516 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4517 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4518 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4519 } else {
284901a9 4520 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4521 if (!err)
284901a9 4522 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4523 }
4524
4525 if (err) {
4526 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4527 goto err_out2;
c4e84bde
RM
4528 }
4529
73475339
RM
4530 /* Set PCIe reset type for EEH to fundamental. */
4531 pdev->needs_freset = 1;
6d190c6e 4532 pci_save_state(pdev);
c4e84bde
RM
4533 qdev->reg_base =
4534 ioremap_nocache(pci_resource_start(pdev, 1),
4535 pci_resource_len(pdev, 1));
4536 if (!qdev->reg_base) {
4537 dev_err(&pdev->dev, "Register mapping failed.\n");
4538 err = -ENOMEM;
4f9a91c8 4539 goto err_out2;
c4e84bde
RM
4540 }
4541
4542 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4543 qdev->doorbell_area =
4544 ioremap_nocache(pci_resource_start(pdev, 3),
4545 pci_resource_len(pdev, 3));
4546 if (!qdev->doorbell_area) {
4547 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4548 err = -ENOMEM;
4f9a91c8 4549 goto err_out2;
c4e84bde
RM
4550 }
4551
e4552f51
RM
4552 err = ql_get_board_info(qdev);
4553 if (err) {
4554 dev_err(&pdev->dev, "Register access failed.\n");
4555 err = -EIO;
4f9a91c8 4556 goto err_out2;
e4552f51 4557 }
c4e84bde
RM
4558 qdev->msg_enable = netif_msg_init(debug, default_msg);
4559 spin_lock_init(&qdev->hw_lock);
4560 spin_lock_init(&qdev->stats_lock);
4561
8aae2600
RM
4562 if (qlge_mpi_coredump) {
4563 qdev->mpi_coredump =
4564 vmalloc(sizeof(struct ql_mpi_coredump));
4565 if (qdev->mpi_coredump == NULL) {
4566 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4567 err = -ENOMEM;
ce96bc86 4568 goto err_out2;
8aae2600 4569 }
d5c1da56
RM
4570 if (qlge_force_coredump)
4571 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4572 }
c4e84bde 4573 /* make sure the EEPROM is good */
b0c2aadf 4574 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4575 if (err) {
4576 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4577 goto err_out2;
c4e84bde
RM
4578 }
4579
c4e84bde 4580 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
801e9096
RM
4581 /* Keep local copy of current mac address. */
4582 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4583
4584 /* Set up the default ring sizes. */
4585 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4586 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4587
4588 /* Set up the coalescing parameters. */
4589 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4590 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4591 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4592 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4593
4594 /*
4595 * Set up the operating parameters.
4596 */
c4e84bde
RM
4597 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4598 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4599 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4600 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4601 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4602 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4603 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4604 init_completion(&qdev->ide_completion);
4d7b6b5d 4605 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4606
4607 if (!cards_found) {
4608 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4609 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4610 DRV_NAME, DRV_VERSION);
4611 }
4612 return 0;
4f9a91c8 4613err_out2:
c4e84bde 4614 ql_release_all(pdev);
4f9a91c8 4615err_out1:
c4e84bde
RM
4616 pci_disable_device(pdev);
4617 return err;
4618}
4619
25ed7849
SH
4620static const struct net_device_ops qlge_netdev_ops = {
4621 .ndo_open = qlge_open,
4622 .ndo_stop = qlge_close,
4623 .ndo_start_xmit = qlge_send,
4624 .ndo_change_mtu = qlge_change_mtu,
4625 .ndo_get_stats = qlge_get_stats,
afc4b13d 4626 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4627 .ndo_set_mac_address = qlge_set_mac_address,
4628 .ndo_validate_addr = eth_validate_addr,
4629 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4630 .ndo_fix_features = qlge_fix_features,
4631 .ndo_set_features = qlge_set_features,
01e6b953
RM
4632 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4633 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4634};
4635
15c052fc
RM
4636static void ql_timer(unsigned long data)
4637{
4638 struct ql_adapter *qdev = (struct ql_adapter *)data;
4639 u32 var = 0;
4640
4641 var = ql_read32(qdev, STS);
4642 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4643 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4644 return;
4645 }
4646
72046d84 4647 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4648}
4649
c4e84bde
RM
4650static int __devinit qlge_probe(struct pci_dev *pdev,
4651 const struct pci_device_id *pci_entry)
4652{
4653 struct net_device *ndev = NULL;
4654 struct ql_adapter *qdev = NULL;
4655 static int cards_found = 0;
4656 int err = 0;
4657
1e213303 4658 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4659 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4660 if (!ndev)
4661 return -ENOMEM;
4662
4663 err = ql_init_device(pdev, ndev, cards_found);
4664 if (err < 0) {
4665 free_netdev(ndev);
4666 return err;
4667 }
4668
4669 qdev = netdev_priv(ndev);
4670 SET_NETDEV_DEV(ndev, &pdev->dev);
88230fd5
MM
4671 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4672 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4673 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4674 ndev->features = ndev->hw_features |
4675 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
c4e84bde
RM
4676
4677 if (test_bit(QL_DMA64, &qdev->flags))
4678 ndev->features |= NETIF_F_HIGHDMA;
4679
4680 /*
4681 * Set up net_device structure.
4682 */
4683 ndev->tx_queue_len = qdev->tx_ring_size;
4684 ndev->irq = pdev->irq;
25ed7849
SH
4685
4686 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4687 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4688 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4689
c4e84bde
RM
4690 err = register_netdev(ndev);
4691 if (err) {
4692 dev_err(&pdev->dev, "net device registration failed.\n");
4693 ql_release_all(pdev);
4694 pci_disable_device(pdev);
4695 return err;
4696 }
15c052fc
RM
4697 /* Start up the timer to trigger EEH if
4698 * the bus goes dead
4699 */
4700 init_timer_deferrable(&qdev->timer);
4701 qdev->timer.data = (unsigned long)qdev;
4702 qdev->timer.function = ql_timer;
4703 qdev->timer.expires = jiffies + (5*HZ);
4704 add_timer(&qdev->timer);
6a473308 4705 ql_link_off(qdev);
c4e84bde 4706 ql_display_dev_info(ndev);
9dfbbaa6 4707 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4708 cards_found++;
4709 return 0;
4710}
4711
9dfbbaa6
RM
4712netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4713{
4714 return qlge_send(skb, ndev);
4715}
4716
4717int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4718{
4719 return ql_clean_inbound_rx_ring(rx_ring, budget);
4720}
4721
c4e84bde
RM
4722static void __devexit qlge_remove(struct pci_dev *pdev)
4723{
4724 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4725 struct ql_adapter *qdev = netdev_priv(ndev);
4726 del_timer_sync(&qdev->timer);
c5dadddb 4727 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4728 unregister_netdev(ndev);
4729 ql_release_all(pdev);
4730 pci_disable_device(pdev);
4731 free_netdev(ndev);
4732}
4733
6d190c6e
RM
4734/* Clean up resources without touching hardware. */
4735static void ql_eeh_close(struct net_device *ndev)
4736{
4737 int i;
4738 struct ql_adapter *qdev = netdev_priv(ndev);
4739
4740 if (netif_carrier_ok(ndev)) {
4741 netif_carrier_off(ndev);
4742 netif_stop_queue(ndev);
4743 }
4744
7ae80abd
BL
4745 /* Disabling the timer */
4746 del_timer_sync(&qdev->timer);
c5dadddb 4747 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4748
4749 for (i = 0; i < qdev->rss_ring_count; i++)
4750 netif_napi_del(&qdev->rx_ring[i].napi);
4751
4752 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4753 ql_tx_ring_clean(qdev);
4754 ql_free_rx_buffers(qdev);
4755 ql_release_adapter_resources(qdev);
4756}
4757
c4e84bde
RM
4758/*
4759 * This callback is called by the PCI subsystem whenever
4760 * a PCI bus error is detected.
4761 */
4762static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4763 enum pci_channel_state state)
4764{
4765 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4766 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4767
6d190c6e
RM
4768 switch (state) {
4769 case pci_channel_io_normal:
4770 return PCI_ERS_RESULT_CAN_RECOVER;
4771 case pci_channel_io_frozen:
4772 netif_device_detach(ndev);
4773 if (netif_running(ndev))
4774 ql_eeh_close(ndev);
4775 pci_disable_device(pdev);
4776 return PCI_ERS_RESULT_NEED_RESET;
4777 case pci_channel_io_perm_failure:
4778 dev_err(&pdev->dev,
4779 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4780 ql_eeh_close(ndev);
4781 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4782 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4783 }
c4e84bde
RM
4784
4785 /* Request a slot reset. */
4786 return PCI_ERS_RESULT_NEED_RESET;
4787}
4788
4789/*
4790 * This callback is called after the PCI buss has been reset.
4791 * Basically, this tries to restart the card from scratch.
4792 * This is a shortened version of the device probe/discovery code,
4793 * it resembles the first-half of the () routine.
4794 */
4795static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4796{
4797 struct net_device *ndev = pci_get_drvdata(pdev);
4798 struct ql_adapter *qdev = netdev_priv(ndev);
4799
6d190c6e
RM
4800 pdev->error_state = pci_channel_io_normal;
4801
4802 pci_restore_state(pdev);
c4e84bde 4803 if (pci_enable_device(pdev)) {
ae9540f7
JP
4804 netif_err(qdev, ifup, qdev->ndev,
4805 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4806 return PCI_ERS_RESULT_DISCONNECT;
4807 }
c4e84bde 4808 pci_set_master(pdev);
a112fd4c
RM
4809
4810 if (ql_adapter_reset(qdev)) {
ae9540f7 4811 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4812 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4813 return PCI_ERS_RESULT_DISCONNECT;
4814 }
4815
c4e84bde
RM
4816 return PCI_ERS_RESULT_RECOVERED;
4817}
4818
4819static void qlge_io_resume(struct pci_dev *pdev)
4820{
4821 struct net_device *ndev = pci_get_drvdata(pdev);
4822 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4823 int err = 0;
c4e84bde 4824
c4e84bde 4825 if (netif_running(ndev)) {
6d190c6e
RM
4826 err = qlge_open(ndev);
4827 if (err) {
ae9540f7
JP
4828 netif_err(qdev, ifup, qdev->ndev,
4829 "Device initialization failed after reset.\n");
c4e84bde
RM
4830 return;
4831 }
6d190c6e 4832 } else {
ae9540f7
JP
4833 netif_err(qdev, ifup, qdev->ndev,
4834 "Device was not running prior to EEH.\n");
c4e84bde 4835 }
72046d84 4836 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4837 netif_device_attach(ndev);
4838}
4839
4840static struct pci_error_handlers qlge_err_handler = {
4841 .error_detected = qlge_io_error_detected,
4842 .slot_reset = qlge_io_slot_reset,
4843 .resume = qlge_io_resume,
4844};
4845
4846static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4847{
4848 struct net_device *ndev = pci_get_drvdata(pdev);
4849 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4850 int err;
c4e84bde
RM
4851
4852 netif_device_detach(ndev);
15c052fc 4853 del_timer_sync(&qdev->timer);
c4e84bde
RM
4854
4855 if (netif_running(ndev)) {
4856 err = ql_adapter_down(qdev);
4857 if (!err)
4858 return err;
4859 }
4860
bc083ce9 4861 ql_wol(qdev);
c4e84bde
RM
4862 err = pci_save_state(pdev);
4863 if (err)
4864 return err;
4865
4866 pci_disable_device(pdev);
4867
4868 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4869
4870 return 0;
4871}
4872
04da2cf9 4873#ifdef CONFIG_PM
c4e84bde
RM
4874static int qlge_resume(struct pci_dev *pdev)
4875{
4876 struct net_device *ndev = pci_get_drvdata(pdev);
4877 struct ql_adapter *qdev = netdev_priv(ndev);
4878 int err;
4879
4880 pci_set_power_state(pdev, PCI_D0);
4881 pci_restore_state(pdev);
4882 err = pci_enable_device(pdev);
4883 if (err) {
ae9540f7 4884 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4885 return err;
4886 }
4887 pci_set_master(pdev);
4888
4889 pci_enable_wake(pdev, PCI_D3hot, 0);
4890 pci_enable_wake(pdev, PCI_D3cold, 0);
4891
4892 if (netif_running(ndev)) {
4893 err = ql_adapter_up(qdev);
4894 if (err)
4895 return err;
4896 }
4897
72046d84 4898 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4899 netif_device_attach(ndev);
4900
4901 return 0;
4902}
04da2cf9 4903#endif /* CONFIG_PM */
c4e84bde
RM
4904
4905static void qlge_shutdown(struct pci_dev *pdev)
4906{
4907 qlge_suspend(pdev, PMSG_SUSPEND);
4908}
4909
4910static struct pci_driver qlge_driver = {
4911 .name = DRV_NAME,
4912 .id_table = qlge_pci_tbl,
4913 .probe = qlge_probe,
4914 .remove = __devexit_p(qlge_remove),
4915#ifdef CONFIG_PM
4916 .suspend = qlge_suspend,
4917 .resume = qlge_resume,
4918#endif
4919 .shutdown = qlge_shutdown,
4920 .err_handler = &qlge_err_handler
4921};
4922
4923static int __init qlge_init_module(void)
4924{
4925 return pci_register_driver(&qlge_driver);
4926}
4927
4928static void __exit qlge_exit(void)
4929{
4930 pci_unregister_driver(&qlge_driver);
4931}
4932
4933module_init(qlge_init_module);
4934module_exit(qlge_exit);