]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/qualcomm/emac/emac-mac.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qualcomm / emac / emac-mac.c
CommitLineData
b9b17deb
TT
1/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 */
12
13/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14 */
15
16#include <linux/tcp.h>
17#include <linux/ip.h>
18#include <linux/ipv6.h>
19#include <linux/crc32.h>
20#include <linux/if_vlan.h>
21#include <linux/jiffies.h>
22#include <linux/phy.h>
23#include <linux/of.h>
24#include <net/ip6_checksum.h>
25#include "emac.h"
26#include "emac-sgmii.h"
27
b9b17deb
TT
28/* EMAC_MAC_CTRL */
29#define SINGLE_PAUSE_MODE 0x10000000
30#define DEBUG_MODE 0x08000000
31#define BROAD_EN 0x04000000
32#define MULTI_ALL 0x02000000
33#define RX_CHKSUM_EN 0x01000000
34#define HUGE 0x00800000
35#define SPEED(x) (((x) & 0x3) << 20)
36#define SPEED_MASK SPEED(0x3)
37#define SIMR 0x00080000
38#define TPAUSE 0x00010000
39#define PROM_MODE 0x00008000
40#define VLAN_STRIP 0x00004000
41#define PRLEN_BMSK 0x00003c00
42#define PRLEN_SHFT 10
43#define HUGEN 0x00000200
44#define FLCHK 0x00000100
45#define PCRCE 0x00000080
46#define CRCE 0x00000040
47#define FULLD 0x00000020
48#define MAC_LP_EN 0x00000010
49#define RXFC 0x00000008
50#define TXFC 0x00000004
51#define RXEN 0x00000002
52#define TXEN 0x00000001
53
b9b17deb
TT
54/* EMAC_DESC_CTRL_3 */
55#define RFD_RING_SIZE_BMSK 0xfff
56
57/* EMAC_DESC_CTRL_4 */
58#define RX_BUFFER_SIZE_BMSK 0xffff
59
60/* EMAC_DESC_CTRL_6 */
61#define RRD_RING_SIZE_BMSK 0xfff
62
63/* EMAC_DESC_CTRL_9 */
64#define TPD_RING_SIZE_BMSK 0xffff
65
66/* EMAC_TXQ_CTRL_0 */
67#define NUM_TXF_BURST_PREF_BMSK 0xffff0000
68#define NUM_TXF_BURST_PREF_SHFT 16
69#define LS_8023_SP 0x80
70#define TXQ_MODE 0x40
71#define TXQ_EN 0x20
72#define IP_OP_SP 0x10
73#define NUM_TPD_BURST_PREF_BMSK 0xf
74#define NUM_TPD_BURST_PREF_SHFT 0
75
76/* EMAC_TXQ_CTRL_1 */
77#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
78
79/* EMAC_TXQ_CTRL_2 */
80#define TXF_HWM_BMSK 0xfff0000
81#define TXF_LWM_BMSK 0xfff
82
83/* EMAC_RXQ_CTRL_0 */
84#define RXQ_EN BIT(31)
85#define CUT_THRU_EN BIT(30)
86#define RSS_HASH_EN BIT(29)
87#define NUM_RFD_BURST_PREF_BMSK 0x3f00000
88#define NUM_RFD_BURST_PREF_SHFT 20
89#define IDT_TABLE_SIZE_BMSK 0x1ff00
90#define IDT_TABLE_SIZE_SHFT 8
91#define SP_IPV6 0x80
92
93/* EMAC_RXQ_CTRL_1 */
94#define JUMBO_1KAH_BMSK 0xf000
95#define JUMBO_1KAH_SHFT 12
96#define RFD_PREF_LOW_TH 0x10
97#define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
98#define RFD_PREF_LOW_THRESHOLD_SHFT 6
99#define RFD_PREF_UP_TH 0x10
100#define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
101#define RFD_PREF_UP_THRESHOLD_SHFT 0
102
103/* EMAC_RXQ_CTRL_2 */
104#define RXF_DOF_THRESFHOLD 0x1a0
105#define RXF_DOF_THRESHOLD_BMSK 0xfff0000
106#define RXF_DOF_THRESHOLD_SHFT 16
107#define RXF_UOF_THRESFHOLD 0xbe
108#define RXF_UOF_THRESHOLD_BMSK 0xfff
109#define RXF_UOF_THRESHOLD_SHFT 0
110
111/* EMAC_RXQ_CTRL_3 */
112#define RXD_TIMER_BMSK 0xffff0000
113#define RXD_THRESHOLD_BMSK 0xfff
114#define RXD_THRESHOLD_SHFT 0
115
116/* EMAC_DMA_CTRL */
117#define DMAW_DLY_CNT_BMSK 0xf0000
118#define DMAW_DLY_CNT_SHFT 16
119#define DMAR_DLY_CNT_BMSK 0xf800
120#define DMAR_DLY_CNT_SHFT 11
121#define DMAR_REQ_PRI 0x400
122#define REGWRBLEN_BMSK 0x380
123#define REGWRBLEN_SHFT 7
124#define REGRDBLEN_BMSK 0x70
125#define REGRDBLEN_SHFT 4
126#define OUT_ORDER_MODE 0x4
127#define ENH_ORDER_MODE 0x2
128#define IN_ORDER_MODE 0x1
129
130/* EMAC_MAILBOX_13 */
131#define RFD3_PROC_IDX_BMSK 0xfff0000
132#define RFD3_PROC_IDX_SHFT 16
133#define RFD3_PROD_IDX_BMSK 0xfff
134#define RFD3_PROD_IDX_SHFT 0
135
136/* EMAC_MAILBOX_2 */
137#define NTPD_CONS_IDX_BMSK 0xffff0000
138#define NTPD_CONS_IDX_SHFT 16
139
140/* EMAC_MAILBOX_3 */
141#define RFD0_CONS_IDX_BMSK 0xfff
142#define RFD0_CONS_IDX_SHFT 0
143
144/* EMAC_MAILBOX_11 */
145#define H3TPD_PROD_IDX_BMSK 0xffff0000
146#define H3TPD_PROD_IDX_SHFT 16
147
148/* EMAC_AXI_MAST_CTRL */
149#define DATA_BYTE_SWAP 0x8
150#define MAX_BOUND 0x2
151#define MAX_BTYPE 0x1
152
153/* EMAC_MAILBOX_12 */
154#define H3TPD_CONS_IDX_BMSK 0xffff0000
155#define H3TPD_CONS_IDX_SHFT 16
156
157/* EMAC_MAILBOX_9 */
158#define H2TPD_PROD_IDX_BMSK 0xffff
159#define H2TPD_PROD_IDX_SHFT 0
160
161/* EMAC_MAILBOX_10 */
162#define H1TPD_CONS_IDX_BMSK 0xffff0000
163#define H1TPD_CONS_IDX_SHFT 16
164#define H2TPD_CONS_IDX_BMSK 0xffff
165#define H2TPD_CONS_IDX_SHFT 0
166
167/* EMAC_ATHR_HEADER_CTRL */
168#define HEADER_CNT_EN 0x2
169#define HEADER_ENABLE 0x1
170
171/* EMAC_MAILBOX_0 */
172#define RFD0_PROC_IDX_BMSK 0xfff0000
173#define RFD0_PROC_IDX_SHFT 16
174#define RFD0_PROD_IDX_BMSK 0xfff
175#define RFD0_PROD_IDX_SHFT 0
176
177/* EMAC_MAILBOX_5 */
178#define RFD1_PROC_IDX_BMSK 0xfff0000
179#define RFD1_PROC_IDX_SHFT 16
180#define RFD1_PROD_IDX_BMSK 0xfff
181#define RFD1_PROD_IDX_SHFT 0
182
183/* EMAC_MISC_CTRL */
184#define RX_UNCPL_INT_EN 0x1
185
186/* EMAC_MAILBOX_7 */
187#define RFD2_CONS_IDX_BMSK 0xfff0000
188#define RFD2_CONS_IDX_SHFT 16
189#define RFD1_CONS_IDX_BMSK 0xfff
190#define RFD1_CONS_IDX_SHFT 0
191
192/* EMAC_MAILBOX_8 */
193#define RFD3_CONS_IDX_BMSK 0xfff
194#define RFD3_CONS_IDX_SHFT 0
195
196/* EMAC_MAILBOX_15 */
197#define NTPD_PROD_IDX_BMSK 0xffff
198#define NTPD_PROD_IDX_SHFT 0
199
200/* EMAC_MAILBOX_16 */
201#define H1TPD_PROD_IDX_BMSK 0xffff
202#define H1TPD_PROD_IDX_SHFT 0
203
204#define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
205#define RXQ0_RSS_HSTYP_IPV6_EN 0x10
206#define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
207#define RXQ0_RSS_HSTYP_IPV4_EN 0x4
208
209/* EMAC_EMAC_WRAPPER_TX_TS_INX */
210#define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
211#define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
212
213struct emac_skb_cb {
214 u32 tpd_idx;
215 unsigned long jiffies;
216};
217
218#define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
219#define EMAC_RSS_IDT_SIZE 256
220#define JUMBO_1KAH 0x4
221#define RXD_TH 0x100
222#define EMAC_TPD_LAST_FRAGMENT 0x80000000
223#define EMAC_TPD_TSTAMP_SAVE 0x80000000
224
225/* EMAC Errors in emac_rrd.word[3] */
226#define EMAC_RRD_L4F BIT(14)
227#define EMAC_RRD_IPF BIT(15)
228#define EMAC_RRD_CRC BIT(21)
229#define EMAC_RRD_FAE BIT(22)
230#define EMAC_RRD_TRN BIT(23)
231#define EMAC_RRD_RNT BIT(24)
232#define EMAC_RRD_INC BIT(25)
233#define EMAC_RRD_FOV BIT(29)
234#define EMAC_RRD_LEN BIT(30)
235
236/* Error bits that will result in a received frame being discarded */
237#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
238 EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
239 EMAC_RRD_FOV | EMAC_RRD_LEN)
240#define EMAC_RRD_STATS_DW_IDX 3
241
242#define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
243#define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
244#define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
245
246#define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
247#define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
248
249#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
250
251#define ISR_RX_PKT (\
252 RX_PKT_INT0 |\
253 RX_PKT_INT1 |\
254 RX_PKT_INT2 |\
255 RX_PKT_INT3)
256
b9b17deb
TT
257void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
258{
259 u32 crc32, bit, reg, mta;
260
261 /* Calculate the CRC of the MAC address */
262 crc32 = ether_crc(ETH_ALEN, addr);
263
264 /* The HASH Table is an array of 2 32-bit registers. It is
265 * treated like an array of 64 bits (BitArray[hash_value]).
266 * Use the upper 6 bits of the above CRC as the hash value.
267 */
268 reg = (crc32 >> 31) & 0x1;
269 bit = (crc32 >> 26) & 0x1F;
270
271 mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
272 mta |= BIT(bit);
273 writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
274}
275
276void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
277{
278 writel(0, adpt->base + EMAC_HASH_TAB_REG0);
279 writel(0, adpt->base + EMAC_HASH_TAB_REG1);
280}
281
282/* definitions for RSS */
283#define EMAC_RSS_KEY(_i, _type) \
284 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
285#define EMAC_RSS_TBL(_i, _type) \
286 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
287
288/* Config MAC modes */
289void emac_mac_mode_config(struct emac_adapter *adpt)
290{
291 struct net_device *netdev = adpt->netdev;
292 u32 mac;
293
294 mac = readl(adpt->base + EMAC_MAC_CTRL);
295 mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
296
297 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
298 mac |= VLAN_STRIP;
299
300 if (netdev->flags & IFF_PROMISC)
301 mac |= PROM_MODE;
302
303 if (netdev->flags & IFF_ALLMULTI)
304 mac |= MULTI_ALL;
305
306 writel(mac, adpt->base + EMAC_MAC_CTRL);
307}
308
309/* Config descriptor rings */
310static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
311{
312 static const unsigned short tpd_q_offset[] = {
313 EMAC_DESC_CTRL_8, EMAC_H1TPD_BASE_ADDR_LO,
314 EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
315 static const unsigned short rfd_q_offset[] = {
316 EMAC_DESC_CTRL_2, EMAC_DESC_CTRL_10,
317 EMAC_DESC_CTRL_12, EMAC_DESC_CTRL_13};
318 static const unsigned short rrd_q_offset[] = {
319 EMAC_DESC_CTRL_5, EMAC_DESC_CTRL_14,
320 EMAC_DESC_CTRL_15, EMAC_DESC_CTRL_16};
321
322 /* TPD (Transmit Packet Descriptor) */
323 writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
324 adpt->base + EMAC_DESC_CTRL_1);
325
326 writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
327 adpt->base + tpd_q_offset[0]);
328
329 writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
330 adpt->base + EMAC_DESC_CTRL_9);
331
332 /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
333 writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
334 adpt->base + EMAC_DESC_CTRL_0);
335
336 writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
337 adpt->base + rfd_q_offset[0]);
338 writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
339 adpt->base + rrd_q_offset[0]);
340
341 writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
342 adpt->base + EMAC_DESC_CTRL_3);
343 writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
344 adpt->base + EMAC_DESC_CTRL_6);
345
346 writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
347 adpt->base + EMAC_DESC_CTRL_4);
348
349 writel(0, adpt->base + EMAC_DESC_CTRL_11);
350
351 /* Load all of the base addresses above and ensure that triggering HW to
352 * read ring pointers is flushed
353 */
354 writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
355}
356
357/* Config transmit parameters */
358static void emac_mac_tx_config(struct emac_adapter *adpt)
359{
360 u32 val;
361
362 writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
363 JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
364
365 val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
366 NUM_TPD_BURST_PREF_BMSK;
367
368 val |= TXQ_MODE | LS_8023_SP;
369 val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
370 NUM_TXF_BURST_PREF_BMSK;
371
372 writel(val, adpt->base + EMAC_TXQ_CTRL_0);
373 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
374 (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
375}
376
377/* Config receive parameters */
378static void emac_mac_rx_config(struct emac_adapter *adpt)
379{
380 u32 val;
381
382 val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
383 NUM_RFD_BURST_PREF_BMSK;
384 val |= (SP_IPV6 | CUT_THRU_EN);
385
386 writel(val, adpt->base + EMAC_RXQ_CTRL_0);
387
388 val = readl(adpt->base + EMAC_RXQ_CTRL_1);
389 val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
390 RFD_PREF_UP_THRESHOLD_BMSK);
391 val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
392 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
393 (RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT);
394 writel(val, adpt->base + EMAC_RXQ_CTRL_1);
395
396 val = readl(adpt->base + EMAC_RXQ_CTRL_2);
397 val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
398 val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) |
399 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
400 writel(val, adpt->base + EMAC_RXQ_CTRL_2);
401
402 val = readl(adpt->base + EMAC_RXQ_CTRL_3);
403 val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
404 val |= RXD_TH << RXD_THRESHOLD_SHFT;
405 writel(val, adpt->base + EMAC_RXQ_CTRL_3);
406}
407
408/* Config dma */
409static void emac_mac_dma_config(struct emac_adapter *adpt)
410{
411 u32 dma_ctrl = DMAR_REQ_PRI;
412
413 switch (adpt->dma_order) {
414 case emac_dma_ord_in:
415 dma_ctrl |= IN_ORDER_MODE;
416 break;
417 case emac_dma_ord_enh:
418 dma_ctrl |= ENH_ORDER_MODE;
419 break;
420 case emac_dma_ord_out:
421 dma_ctrl |= OUT_ORDER_MODE;
422 break;
423 default:
424 break;
425 }
426
427 dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
428 REGRDBLEN_BMSK;
429 dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
430 REGWRBLEN_BMSK;
431 dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
432 DMAR_DLY_CNT_BMSK;
433 dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
434 DMAW_DLY_CNT_BMSK;
435
436 /* config DMA and ensure that configuration is flushed to HW */
437 writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
438}
439
440/* set MAC address */
441static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
442{
443 u32 sta;
444
445 /* for example: 00-A0-C6-11-22-33
446 * 0<-->C6112233, 1<-->00A0.
447 */
448
449 /* low 32bit word */
450 sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
451 (((u32)addr[4]) << 8) | (((u32)addr[5]));
452 writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
453
454 /* hight 32bit word */
455 sta = (((u32)addr[0]) << 8) | (u32)addr[1];
456 writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
457}
458
459static void emac_mac_config(struct emac_adapter *adpt)
460{
461 struct net_device *netdev = adpt->netdev;
462 unsigned int max_frame;
463 u32 val;
464
465 emac_set_mac_address(adpt, netdev->dev_addr);
466
467 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
468 adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
469 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
470
471 emac_mac_dma_rings_config(adpt);
472
473 writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
474 adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
475
476 emac_mac_tx_config(adpt);
477 emac_mac_rx_config(adpt);
478 emac_mac_dma_config(adpt);
479
480 val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
481 val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
482 val |= MAX_BTYPE;
483 writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
484 writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
485 writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
486}
487
488void emac_mac_reset(struct emac_adapter *adpt)
489{
490 emac_mac_stop(adpt);
491
492 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
493 usleep_range(100, 150); /* reset may take up to 100usec */
494
495 /* interrupt clear-on-read */
496 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
497}
498
0f20276d 499static void emac_mac_start(struct emac_adapter *adpt)
b9b17deb
TT
500{
501 struct phy_device *phydev = adpt->phydev;
502 u32 mac, csr1;
503
504 /* enable tx queue */
505 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
506
507 /* enable rx queue */
508 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
509
510 /* enable mac control */
511 mac = readl(adpt->base + EMAC_MAC_CTRL);
512 csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
513
514 mac |= TXEN | RXEN; /* enable RX/TX */
515
b44700e9
TT
516 /* Configure MAC flow control. If set to automatic, then match
517 * whatever the PHY does. Otherwise, enable or disable it, depending
518 * on what the user configured via ethtool.
519 */
520 mac &= ~(RXFC | TXFC);
521
522 if (adpt->automatic) {
523 /* If it's set to automatic, then update our local values */
524 adpt->rx_flow_control = phydev->pause;
525 adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
526 }
527 mac |= adpt->rx_flow_control ? RXFC : 0;
528 mac |= adpt->tx_flow_control ? TXFC : 0;
b9b17deb
TT
529
530 /* setup link speed */
531 mac &= ~SPEED_MASK;
532 if (phydev->speed == SPEED_1000) {
533 mac |= SPEED(2);
534 csr1 |= FREQ_MODE;
535 } else {
536 mac |= SPEED(1);
537 csr1 &= ~FREQ_MODE;
538 }
539
540 if (phydev->duplex == DUPLEX_FULL)
541 mac |= FULLD;
542 else
543 mac &= ~FULLD;
544
545 /* other parameters */
546 mac |= (CRCE | PCRCE);
547 mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
548 mac |= BROAD_EN;
549 mac |= FLCHK;
550 mac &= ~RX_CHKSUM_EN;
551 mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
552 DEBUG_MODE | SINGLE_PAUSE_MODE);
553
554 writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
555
556 writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
557
558 /* enable interrupt read clear, low power sleep mode and
559 * the irq moderators
560 */
561
562 writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
563 writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
564 IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
565
566 emac_mac_mode_config(adpt);
567
568 emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
569 (HEADER_ENABLE | HEADER_CNT_EN), 0);
b9b17deb
TT
570}
571
572void emac_mac_stop(struct emac_adapter *adpt)
573{
574 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
575 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
576 emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
577 usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
578}
579
580/* Free all descriptors of given transmit queue */
581static void emac_tx_q_descs_free(struct emac_adapter *adpt)
582{
583 struct emac_tx_queue *tx_q = &adpt->tx_q;
584 unsigned int i;
585 size_t size;
586
587 /* ring already cleared, nothing to do */
588 if (!tx_q->tpd.tpbuff)
589 return;
590
591 for (i = 0; i < tx_q->tpd.count; i++) {
592 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
593
594 if (tpbuf->dma_addr) {
595 dma_unmap_single(adpt->netdev->dev.parent,
596 tpbuf->dma_addr, tpbuf->length,
597 DMA_TO_DEVICE);
598 tpbuf->dma_addr = 0;
599 }
600 if (tpbuf->skb) {
601 dev_kfree_skb_any(tpbuf->skb);
602 tpbuf->skb = NULL;
603 }
604 }
605
606 size = sizeof(struct emac_buffer) * tx_q->tpd.count;
607 memset(tx_q->tpd.tpbuff, 0, size);
608
609 /* clear the descriptor ring */
610 memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
611
612 tx_q->tpd.consume_idx = 0;
613 tx_q->tpd.produce_idx = 0;
614}
615
616/* Free all descriptors of given receive queue */
617static void emac_rx_q_free_descs(struct emac_adapter *adpt)
618{
619 struct device *dev = adpt->netdev->dev.parent;
620 struct emac_rx_queue *rx_q = &adpt->rx_q;
621 unsigned int i;
622 size_t size;
623
624 /* ring already cleared, nothing to do */
625 if (!rx_q->rfd.rfbuff)
626 return;
627
628 for (i = 0; i < rx_q->rfd.count; i++) {
629 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
630
631 if (rfbuf->dma_addr) {
632 dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
633 DMA_FROM_DEVICE);
634 rfbuf->dma_addr = 0;
635 }
636 if (rfbuf->skb) {
637 dev_kfree_skb(rfbuf->skb);
638 rfbuf->skb = NULL;
639 }
640 }
641
642 size = sizeof(struct emac_buffer) * rx_q->rfd.count;
643 memset(rx_q->rfd.rfbuff, 0, size);
644
645 /* clear the descriptor rings */
646 memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
647 rx_q->rrd.produce_idx = 0;
648 rx_q->rrd.consume_idx = 0;
649
650 memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
651 rx_q->rfd.produce_idx = 0;
652 rx_q->rfd.consume_idx = 0;
653}
654
655/* Free all buffers associated with given transmit queue */
656static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
657{
658 struct emac_tx_queue *tx_q = &adpt->tx_q;
659
660 emac_tx_q_descs_free(adpt);
661
662 kfree(tx_q->tpd.tpbuff);
663 tx_q->tpd.tpbuff = NULL;
664 tx_q->tpd.v_addr = NULL;
665 tx_q->tpd.dma_addr = 0;
666 tx_q->tpd.size = 0;
667}
668
669/* Allocate TX descriptor ring for the given transmit queue */
670static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
671 struct emac_tx_queue *tx_q)
672{
673 struct emac_ring_header *ring_header = &adpt->ring_header;
674 size_t size;
675
676 size = sizeof(struct emac_buffer) * tx_q->tpd.count;
677 tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
678 if (!tx_q->tpd.tpbuff)
679 return -ENOMEM;
680
681 tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
682 tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
683 tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
684 ring_header->used += ALIGN(tx_q->tpd.size, 8);
685 tx_q->tpd.produce_idx = 0;
686 tx_q->tpd.consume_idx = 0;
687
688 return 0;
689}
690
691/* Free all buffers associated with given transmit queue */
692static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
693{
694 struct emac_rx_queue *rx_q = &adpt->rx_q;
695
696 emac_rx_q_free_descs(adpt);
697
698 kfree(rx_q->rfd.rfbuff);
699 rx_q->rfd.rfbuff = NULL;
700
701 rx_q->rfd.v_addr = NULL;
702 rx_q->rfd.dma_addr = 0;
703 rx_q->rfd.size = 0;
704
705 rx_q->rrd.v_addr = NULL;
706 rx_q->rrd.dma_addr = 0;
707 rx_q->rrd.size = 0;
708}
709
710/* Allocate RX descriptor rings for the given receive queue */
711static int emac_rx_descs_alloc(struct emac_adapter *adpt)
712{
713 struct emac_ring_header *ring_header = &adpt->ring_header;
714 struct emac_rx_queue *rx_q = &adpt->rx_q;
715 size_t size;
716
717 size = sizeof(struct emac_buffer) * rx_q->rfd.count;
718 rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
719 if (!rx_q->rfd.rfbuff)
720 return -ENOMEM;
721
722 rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
723 rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
724
725 rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
726 rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used;
727 ring_header->used += ALIGN(rx_q->rrd.size, 8);
728
729 rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
730 rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used;
731 ring_header->used += ALIGN(rx_q->rfd.size, 8);
732
733 rx_q->rrd.produce_idx = 0;
734 rx_q->rrd.consume_idx = 0;
735
736 rx_q->rfd.produce_idx = 0;
737 rx_q->rfd.consume_idx = 0;
738
739 return 0;
740}
741
742/* Allocate all TX and RX descriptor rings */
743int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
744{
745 struct emac_ring_header *ring_header = &adpt->ring_header;
746 struct device *dev = adpt->netdev->dev.parent;
747 unsigned int num_tx_descs = adpt->tx_desc_cnt;
748 unsigned int num_rx_descs = adpt->rx_desc_cnt;
749 int ret;
750
751 adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
752
753 adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
754 adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
755
756 /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
757 * hence the additional padding bytes are allocated.
758 */
759 ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
760 num_rx_descs * (adpt->rfd_size * 4) +
761 num_rx_descs * (adpt->rrd_size * 4) +
762 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
763
764 ring_header->used = 0;
765 ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
766 &ring_header->dma_addr,
767 GFP_KERNEL);
768 if (!ring_header->v_addr)
769 return -ENOMEM;
770
771 ring_header->used = ALIGN(ring_header->dma_addr, 8) -
772 ring_header->dma_addr;
773
774 ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
775 if (ret) {
776 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
777 goto err_alloc_tx;
778 }
779
780 ret = emac_rx_descs_alloc(adpt);
781 if (ret) {
782 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
783 goto err_alloc_rx;
784 }
785
786 return 0;
787
788err_alloc_rx:
789 emac_tx_q_bufs_free(adpt);
790err_alloc_tx:
791 dma_free_coherent(dev, ring_header->size,
792 ring_header->v_addr, ring_header->dma_addr);
793
794 ring_header->v_addr = NULL;
795 ring_header->dma_addr = 0;
796 ring_header->size = 0;
797 ring_header->used = 0;
798
799 return ret;
800}
801
802/* Free all TX and RX descriptor rings */
803void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
804{
805 struct emac_ring_header *ring_header = &adpt->ring_header;
806 struct device *dev = adpt->netdev->dev.parent;
807
808 emac_tx_q_bufs_free(adpt);
809 emac_rx_q_bufs_free(adpt);
810
811 dma_free_coherent(dev, ring_header->size,
812 ring_header->v_addr, ring_header->dma_addr);
813
814 ring_header->v_addr = NULL;
815 ring_header->dma_addr = 0;
816 ring_header->size = 0;
817 ring_header->used = 0;
818}
819
820/* Initialize descriptor rings */
821static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
822{
823 unsigned int i;
824
825 adpt->tx_q.tpd.produce_idx = 0;
826 adpt->tx_q.tpd.consume_idx = 0;
827 for (i = 0; i < adpt->tx_q.tpd.count; i++)
828 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
829
830 adpt->rx_q.rrd.produce_idx = 0;
831 adpt->rx_q.rrd.consume_idx = 0;
832 adpt->rx_q.rfd.produce_idx = 0;
833 adpt->rx_q.rfd.consume_idx = 0;
834 for (i = 0; i < adpt->rx_q.rfd.count; i++)
835 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
836}
837
838/* Produce new receive free descriptor */
839static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
840 struct emac_rx_queue *rx_q,
841 dma_addr_t addr)
842{
843 u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
844
845 *(hw_rfd++) = lower_32_bits(addr);
846 *hw_rfd = upper_32_bits(addr);
847
848 if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
849 rx_q->rfd.produce_idx = 0;
850}
851
852/* Fill up receive queue's RFD with preallocated receive buffers */
853static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
854 struct emac_rx_queue *rx_q)
855{
856 struct emac_buffer *curr_rxbuf;
857 struct emac_buffer *next_rxbuf;
858 unsigned int count = 0;
859 u32 next_produce_idx;
860
861 next_produce_idx = rx_q->rfd.produce_idx + 1;
862 if (next_produce_idx == rx_q->rfd.count)
863 next_produce_idx = 0;
864
865 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
866 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
867
868 /* this always has a blank rx_buffer*/
869 while (!next_rxbuf->dma_addr) {
870 struct sk_buff *skb;
871 int ret;
872
873 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
874 if (!skb)
875 break;
876
877 curr_rxbuf->dma_addr =
878 dma_map_single(adpt->netdev->dev.parent, skb->data,
879 curr_rxbuf->length, DMA_FROM_DEVICE);
880 ret = dma_mapping_error(adpt->netdev->dev.parent,
881 curr_rxbuf->dma_addr);
882 if (ret) {
883 dev_kfree_skb(skb);
884 break;
885 }
886 curr_rxbuf->skb = skb;
887 curr_rxbuf->length = adpt->rxbuf_size;
888
889 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
890 next_produce_idx = rx_q->rfd.produce_idx + 1;
891 if (next_produce_idx == rx_q->rfd.count)
892 next_produce_idx = 0;
893
894 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
895 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
896 count++;
897 }
898
899 if (count) {
900 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
901 rx_q->produce_mask;
902 emac_reg_update32(adpt->base + rx_q->produce_reg,
903 rx_q->produce_mask, prod_idx);
904 }
905}
906
907static void emac_adjust_link(struct net_device *netdev)
908{
909 struct emac_adapter *adpt = netdev_priv(netdev);
fd0e97b8 910 struct emac_sgmii *sgmii = &adpt->phy;
b9b17deb
TT
911 struct phy_device *phydev = netdev->phydev;
912
fd0e97b8 913 if (phydev->link) {
b9b17deb 914 emac_mac_start(adpt);
fd0e97b8
TT
915 sgmii->link_up(adpt);
916 } else {
917 sgmii->link_down(adpt);
b9b17deb 918 emac_mac_stop(adpt);
fd0e97b8 919 }
b9b17deb
TT
920
921 phy_print_status(phydev);
922}
923
924/* Bringup the interface/HW */
925int emac_mac_up(struct emac_adapter *adpt)
926{
927 struct net_device *netdev = adpt->netdev;
b9b17deb
TT
928 int ret;
929
930 emac_mac_rx_tx_ring_reset_all(adpt);
931 emac_mac_config(adpt);
b9b17deb
TT
932 emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
933
24609669 934 adpt->phydev->irq = PHY_POLL;
b9b17deb
TT
935 ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
936 PHY_INTERFACE_MODE_SGMII);
937 if (ret) {
938 netdev_err(adpt->netdev, "could not connect phy\n");
b9b17deb
TT
939 return ret;
940 }
941
9da34f27
TT
942 phy_attached_print(adpt->phydev, NULL);
943
b9b17deb
TT
944 /* enable mac irq */
945 writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
946 writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
947
b9b17deb
TT
948 phy_start(adpt->phydev);
949
950 napi_enable(&adpt->rx_q.napi);
951 netif_start_queue(netdev);
952
953 return 0;
954}
955
956/* Bring down the interface/HW */
957void emac_mac_down(struct emac_adapter *adpt)
958{
959 struct net_device *netdev = adpt->netdev;
960
961 netif_stop_queue(netdev);
962 napi_disable(&adpt->rx_q.napi);
963
964 phy_stop(adpt->phydev);
b9b17deb 965
93966b71
TT
966 /* Interrupts must be disabled before the PHY is disconnected, to
967 * avoid a race condition where adjust_link is null when we get
968 * an interrupt.
969 */
b9b17deb
TT
970 writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
971 writel(0, adpt->base + EMAC_INT_MASK);
972 synchronize_irq(adpt->irq.irq);
b9b17deb 973
93966b71
TT
974 phy_disconnect(adpt->phydev);
975
b9b17deb
TT
976 emac_mac_reset(adpt);
977
978 emac_tx_q_descs_free(adpt);
979 netdev_reset_queue(adpt->netdev);
980 emac_rx_q_free_descs(adpt);
981}
982
983/* Consume next received packet descriptor */
984static bool emac_rx_process_rrd(struct emac_adapter *adpt,
985 struct emac_rx_queue *rx_q,
986 struct emac_rrd *rrd)
987{
988 u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
989
990 rrd->word[3] = *(hw_rrd + 3);
991
992 if (!RRD_UPDT(rrd))
993 return false;
994
995 rrd->word[4] = 0;
996 rrd->word[5] = 0;
997
998 rrd->word[0] = *(hw_rrd++);
999 rrd->word[1] = *(hw_rrd++);
1000 rrd->word[2] = *(hw_rrd++);
1001
1002 if (unlikely(RRD_NOR(rrd) != 1)) {
1003 netdev_err(adpt->netdev,
1004 "error: multi-RFD not support yet! nor:%lu\n",
1005 RRD_NOR(rrd));
1006 }
1007
1008 /* mark rrd as processed */
1009 RRD_UPDT_SET(rrd, 0);
1010 *hw_rrd = rrd->word[3];
1011
1012 if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1013 rx_q->rrd.consume_idx = 0;
1014
1015 return true;
1016}
1017
1018/* Produce new transmit descriptor */
1019static void emac_tx_tpd_create(struct emac_adapter *adpt,
1020 struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1021{
1022 u32 *hw_tpd;
1023
1024 tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1025 hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1026
1027 if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1028 tx_q->tpd.produce_idx = 0;
1029
1030 *(hw_tpd++) = tpd->word[0];
1031 *(hw_tpd++) = tpd->word[1];
1032 *(hw_tpd++) = tpd->word[2];
1033 *hw_tpd = tpd->word[3];
1034}
1035
1036/* Mark the last transmit descriptor as such (for the transmit packet) */
1037static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1038 struct emac_tx_queue *tx_q)
1039{
1040 u32 *hw_tpd =
1041 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1042 u32 tmp_tpd;
1043
1044 tmp_tpd = *(hw_tpd + 1);
1045 tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1046 *(hw_tpd + 1) = tmp_tpd;
1047}
1048
1049static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1050{
1051 struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1052 u32 consume_idx = RRD_SI(rrd);
1053 unsigned int i;
1054
1055 for (i = 0; i < RRD_NOR(rrd); i++) {
1056 rfbuf[consume_idx].skb = NULL;
1057 if (++consume_idx == rx_q->rfd.count)
1058 consume_idx = 0;
1059 }
1060
1061 rx_q->rfd.consume_idx = consume_idx;
1062 rx_q->rfd.process_idx = consume_idx;
1063}
1064
1065/* Push the received skb to upper layers */
1066static void emac_receive_skb(struct emac_rx_queue *rx_q,
1067 struct sk_buff *skb,
1068 u16 vlan_tag, bool vlan_flag)
1069{
1070 if (vlan_flag) {
1071 u16 vlan;
1072
1073 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1074 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1075 }
1076
1077 napi_gro_receive(&rx_q->napi, skb);
1078}
1079
1080/* Process receive event */
1081void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1082 int *num_pkts, int max_pkts)
1083{
1084 u32 proc_idx, hw_consume_idx, num_consume_pkts;
1085 struct net_device *netdev = adpt->netdev;
1086 struct emac_buffer *rfbuf;
1087 unsigned int count = 0;
1088 struct emac_rrd rrd;
1089 struct sk_buff *skb;
1090 u32 reg;
1091
1092 reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1093
1094 hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1095 num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1096 (hw_consume_idx - rx_q->rrd.consume_idx) :
1097 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1098
1099 do {
1100 if (!num_consume_pkts)
1101 break;
1102
1103 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1104 break;
1105
1106 if (likely(RRD_NOR(&rrd) == 1)) {
1107 /* good receive */
1108 rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1109 dma_unmap_single(adpt->netdev->dev.parent,
1110 rfbuf->dma_addr, rfbuf->length,
1111 DMA_FROM_DEVICE);
1112 rfbuf->dma_addr = 0;
1113 skb = rfbuf->skb;
1114 } else {
1115 netdev_err(adpt->netdev,
1116 "error: multi-RFD not support yet!\n");
1117 break;
1118 }
1119 emac_rx_rfd_clean(rx_q, &rrd);
1120 num_consume_pkts--;
1121 count++;
1122
1123 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1124 * with DF set are marked as error), drop packets based on the
1125 * error mask rather than the summary bit (ignoring L4F errors)
1126 */
1127 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1128 netif_dbg(adpt, rx_status, adpt->netdev,
1129 "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1130 rrd.word[0], rrd.word[1],
1131 rrd.word[2], rrd.word[3]);
1132
1133 dev_kfree_skb(skb);
1134 continue;
1135 }
1136
1137 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1138 skb->dev = netdev;
1139 skb->protocol = eth_type_trans(skb, skb->dev);
1140 if (netdev->features & NETIF_F_RXCSUM)
1141 skb->ip_summed = RRD_L4F(&rrd) ?
1142 CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1143 else
1144 skb_checksum_none_assert(skb);
1145
1146 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1147 (bool)RRD_CVTAG(&rrd));
1148
b9b17deb
TT
1149 (*num_pkts)++;
1150 } while (*num_pkts < max_pkts);
1151
1152 if (count) {
1153 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1154 rx_q->process_mask;
1155 emac_reg_update32(adpt->base + rx_q->process_reg,
1156 rx_q->process_mask, proc_idx);
1157 emac_mac_rx_descs_refill(adpt, rx_q);
1158 }
1159}
1160
1161/* get the number of free transmit descriptors */
1162static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1163{
1164 u32 produce_idx = tx_q->tpd.produce_idx;
1165 u32 consume_idx = tx_q->tpd.consume_idx;
1166
1167 return (consume_idx > produce_idx) ?
1168 (consume_idx - produce_idx - 1) :
1169 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1170}
1171
1172/* Process transmit event */
1173void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1174{
1175 u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1176 u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1177 struct emac_buffer *tpbuf;
1178
1179 hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1180
1181 while (tx_q->tpd.consume_idx != hw_consume_idx) {
1182 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1183 if (tpbuf->dma_addr) {
1184 dma_unmap_single(adpt->netdev->dev.parent,
1185 tpbuf->dma_addr, tpbuf->length,
1186 DMA_TO_DEVICE);
1187 tpbuf->dma_addr = 0;
1188 }
1189
1190 if (tpbuf->skb) {
1191 pkts_compl++;
1192 bytes_compl += tpbuf->skb->len;
1193 dev_kfree_skb_irq(tpbuf->skb);
1194 tpbuf->skb = NULL;
1195 }
1196
1197 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1198 tx_q->tpd.consume_idx = 0;
1199 }
1200
1201 netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1202
1203 if (netif_queue_stopped(adpt->netdev))
1204 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1205 netif_wake_queue(adpt->netdev);
1206}
1207
1208/* Initialize all queue data structures */
1209void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1210 struct emac_adapter *adpt)
1211{
1212 adpt->rx_q.netdev = adpt->netdev;
1213
1214 adpt->rx_q.produce_reg = EMAC_MAILBOX_0;
1215 adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1216 adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1217
1218 adpt->rx_q.process_reg = EMAC_MAILBOX_0;
1219 adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1220 adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1221
1222 adpt->rx_q.consume_reg = EMAC_MAILBOX_3;
1223 adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1224 adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1225
1226 adpt->rx_q.irq = &adpt->irq;
1227 adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT;
1228
1229 adpt->tx_q.produce_reg = EMAC_MAILBOX_15;
1230 adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1231 adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1232
1233 adpt->tx_q.consume_reg = EMAC_MAILBOX_2;
1234 adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1235 adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1236}
1237
1238/* Fill up transmit descriptors with TSO and Checksum offload information */
1239static int emac_tso_csum(struct emac_adapter *adpt,
1240 struct emac_tx_queue *tx_q,
1241 struct sk_buff *skb,
1242 struct emac_tpd *tpd)
1243{
1244 unsigned int hdr_len;
1245 int ret;
1246
1247 if (skb_is_gso(skb)) {
1248 if (skb_header_cloned(skb)) {
1249 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1250 if (unlikely(ret))
1251 return ret;
1252 }
1253
1254 if (skb->protocol == htons(ETH_P_IP)) {
1255 u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1256 + ntohs(ip_hdr(skb)->tot_len);
1257 if (skb->len > pkt_len)
1258 pskb_trim(skb, pkt_len);
1259 }
1260
1261 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1262 if (unlikely(skb->len == hdr_len)) {
1263 /* we only need to do csum */
1264 netif_warn(adpt, tx_err, adpt->netdev,
1265 "tso not needed for packet with 0 data\n");
1266 goto do_csum;
1267 }
1268
1269 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1270 ip_hdr(skb)->check = 0;
1271 tcp_hdr(skb)->check =
1272 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1273 ip_hdr(skb)->daddr,
1274 0, IPPROTO_TCP, 0);
1275 TPD_IPV4_SET(tpd, 1);
1276 }
1277
1278 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1279 /* ipv6 tso need an extra tpd */
1280 struct emac_tpd extra_tpd;
1281
1282 memset(tpd, 0, sizeof(*tpd));
1283 memset(&extra_tpd, 0, sizeof(extra_tpd));
1284
1285 ipv6_hdr(skb)->payload_len = 0;
1286 tcp_hdr(skb)->check =
1287 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1288 &ipv6_hdr(skb)->daddr,
1289 0, IPPROTO_TCP, 0);
1290 TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1291 TPD_LSO_SET(&extra_tpd, 1);
1292 TPD_LSOV_SET(&extra_tpd, 1);
1293 emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1294 TPD_LSOV_SET(tpd, 1);
1295 }
1296
1297 TPD_LSO_SET(tpd, 1);
1298 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1299 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1300 return 0;
1301 }
1302
1303do_csum:
1304 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1305 unsigned int css, cso;
1306
1307 cso = skb_transport_offset(skb);
1308 if (unlikely(cso & 0x1)) {
1309 netdev_err(adpt->netdev,
1310 "error: payload offset should be even\n");
1311 return -EINVAL;
1312 }
1313 css = cso + skb->csum_offset;
1314
1315 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1316 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1317 TPD_CSX_SET(tpd, 1);
1318 }
1319
1320 return 0;
1321}
1322
1323/* Fill up transmit descriptors */
1324static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1325 struct emac_tx_queue *tx_q, struct sk_buff *skb,
1326 struct emac_tpd *tpd)
1327{
1328 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1329 unsigned int first = tx_q->tpd.produce_idx;
1330 unsigned int len = skb_headlen(skb);
1331 struct emac_buffer *tpbuf = NULL;
1332 unsigned int mapped_len = 0;
1333 unsigned int i;
1334 int count = 0;
1335 int ret;
1336
1337 /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1338 if (TPD_LSO(tpd)) {
1339 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1340
1341 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1342 tpbuf->length = mapped_len;
1343 tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1344 skb->data, tpbuf->length,
1345 DMA_TO_DEVICE);
1346 ret = dma_mapping_error(adpt->netdev->dev.parent,
1347 tpbuf->dma_addr);
1348 if (ret)
1349 goto error;
1350
1351 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1352 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1353 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1354 emac_tx_tpd_create(adpt, tx_q, tpd);
1355 count++;
1356 }
1357
1358 if (mapped_len < len) {
1359 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1360 tpbuf->length = len - mapped_len;
1361 tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1362 skb->data + mapped_len,
1363 tpbuf->length, DMA_TO_DEVICE);
1364 ret = dma_mapping_error(adpt->netdev->dev.parent,
1365 tpbuf->dma_addr);
1366 if (ret)
1367 goto error;
1368
1369 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1370 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1371 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1372 emac_tx_tpd_create(adpt, tx_q, tpd);
1373 count++;
1374 }
1375
1376 for (i = 0; i < nr_frags; i++) {
1377 struct skb_frag_struct *frag;
1378
1379 frag = &skb_shinfo(skb)->frags[i];
1380
1381 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1382 tpbuf->length = frag->size;
1383 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1384 frag->page.p, frag->page_offset,
1385 tpbuf->length, DMA_TO_DEVICE);
1386 ret = dma_mapping_error(adpt->netdev->dev.parent,
1387 tpbuf->dma_addr);
1388 if (ret)
1389 goto error;
1390
1391 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1392 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1393 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1394 emac_tx_tpd_create(adpt, tx_q, tpd);
1395 count++;
1396 }
1397
1398 /* The last tpd */
1399 wmb();
1400 emac_tx_tpd_mark_last(adpt, tx_q);
1401
1402 /* The last buffer info contain the skb address,
1403 * so it will be freed after unmap
1404 */
1405 tpbuf->skb = skb;
1406
1407 return;
1408
1409error:
1410 /* One of the memory mappings failed, so undo everything */
1411 tx_q->tpd.produce_idx = first;
1412
1413 while (count--) {
1414 tpbuf = GET_TPD_BUFFER(tx_q, first);
1415 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1416 tpbuf->length, DMA_TO_DEVICE);
1417 tpbuf->dma_addr = 0;
1418 tpbuf->length = 0;
1419
1420 if (++first == tx_q->tpd.count)
1421 first = 0;
1422 }
1423
1424 dev_kfree_skb(skb);
1425}
1426
1427/* Transmit the packet using specified transmit queue */
1428int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1429 struct sk_buff *skb)
1430{
1431 struct emac_tpd tpd;
1432 u32 prod_idx;
1433
1434 memset(&tpd, 0, sizeof(tpd));
1435
1436 if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1437 dev_kfree_skb_any(skb);
1438 return NETDEV_TX_OK;
1439 }
1440
1441 if (skb_vlan_tag_present(skb)) {
1442 u16 tag;
1443
1444 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1445 TPD_CVLAN_TAG_SET(&tpd, tag);
1446 TPD_INSTC_SET(&tpd, 1);
1447 }
1448
1449 if (skb_network_offset(skb) != ETH_HLEN)
1450 TPD_TYP_SET(&tpd, 1);
1451
1452 emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1453
1454 netdev_sent_queue(adpt->netdev, skb->len);
1455
1456 /* Make sure the are enough free descriptors to hold one
1457 * maximum-sized SKB. We need one desc for each fragment,
1458 * one for the checksum (emac_tso_csum), one for TSO, and
1459 * and one for the SKB header.
1460 */
1461 if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1462 netif_stop_queue(adpt->netdev);
1463
1464 /* update produce idx */
1465 prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1466 tx_q->produce_mask;
1467 emac_reg_update32(adpt->base + tx_q->produce_reg,
1468 tx_q->produce_mask, prod_idx);
1469
1470 return NETDEV_TX_OK;
1471}