]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/sfc/efx.c
sfc: Correct reporting and validation of TX interrupt coalescing
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
64d8ad6d 24#include <linux/cpu_rmap.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
c459302d
BH
71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72const char *efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
84};
85
8ceee660
BH
86#define EFX_MAX_MTU (9 * 1024)
87
1ab00629
SH
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
8ceee660
BH
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
8ceee660
BH
100/*
101 * Use separate channels for TX and RX events
102 *
28b581ab
NT
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
8ceee660 105 *
28b581ab 106 * This is only used in MSI-X interrupt mode
8ceee660 107 */
28b581ab 108static unsigned int separate_tx_channels;
8313aca3 109module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
110MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
8ceee660
BH
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 122 */
d215697f 123static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 124
8ceee660
BH
125/* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
131 */
132static unsigned int allow_bad_hwaddr;
133
134/* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
139 */
140static unsigned int rx_irq_mod_usec = 60;
141
142/* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
144 *
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
150 */
151static unsigned int tx_irq_mod_usec = 150;
152
153/* This is the first interrupt mode to try out of:
154 * 0 => MSI-X
155 * 1 => MSI
156 * 2 => legacy
157 */
158static unsigned int interrupt_mode;
159
160/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
163 *
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
166 */
167static unsigned int rss_cpus;
168module_param(rss_cpus, uint, 0444);
169MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
170
84ae48fe
BH
171static int phy_flash_cfg;
172module_param(phy_flash_cfg, int, 0644);
173MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
174
6fb70fd1
BH
175static unsigned irq_adapt_low_thresh = 10000;
176module_param(irq_adapt_low_thresh, uint, 0644);
177MODULE_PARM_DESC(irq_adapt_low_thresh,
178 "Threshold score for reducing IRQ moderation");
179
180static unsigned irq_adapt_high_thresh = 20000;
181module_param(irq_adapt_high_thresh, uint, 0644);
182MODULE_PARM_DESC(irq_adapt_high_thresh,
183 "Threshold score for increasing IRQ moderation");
184
62776d03
BH
185static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189module_param(debug, uint, 0);
190MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
191
8ceee660
BH
192/**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
4642610c
BH
197
198static void efx_remove_channels(struct efx_nic *efx);
8ceee660 199static void efx_remove_port(struct efx_nic *efx);
e8f14992 200static void efx_init_napi(struct efx_nic *efx);
8ceee660 201static void efx_fini_napi(struct efx_nic *efx);
e8f14992 202static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
203static void efx_fini_struct(struct efx_nic *efx);
204static void efx_start_all(struct efx_nic *efx);
205static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
206
207#define EFX_ASSERT_RESET_SERIALISED(efx) \
208 do { \
332c1ce9
BH
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
8ceee660
BH
211 ASSERT_RTNL(); \
212 } while (0)
213
214/**************************************************************************
215 *
216 * Event queue processing
217 *
218 *************************************************************************/
219
220/* Process channel's event queue
221 *
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
226 */
fa236e18 227static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 228{
42cbe2d7 229 struct efx_nic *efx = channel->efx;
fa236e18 230 int spent;
8ceee660 231
a7d529ae 232 if (unlikely(efx->reset_pending || !channel->enabled))
42cbe2d7 233 return 0;
8ceee660 234
fa236e18
BH
235 spent = efx_nic_process_eventq(channel, budget);
236 if (spent == 0)
42cbe2d7 237 return 0;
8ceee660
BH
238
239 /* Deliver last RX packet. */
240 if (channel->rx_pkt) {
241 __efx_rx_packet(channel, channel->rx_pkt,
242 channel->rx_pkt_csummed);
243 channel->rx_pkt = NULL;
244 }
245
8ceee660
BH
246 efx_rx_strategy(channel);
247
f7d12cdc 248 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 249
fa236e18 250 return spent;
8ceee660
BH
251}
252
253/* Mark channel as finished processing
254 *
255 * Note that since we will not receive further interrupts for this
256 * channel before we finish processing and call the eventq_read_ack()
257 * method, there is no need to use the interrupt hold-off timers.
258 */
259static inline void efx_channel_processed(struct efx_channel *channel)
260{
5b9e207c
BH
261 /* The interrupt handler for this channel may set work_pending
262 * as soon as we acknowledge the events we've seen. Make sure
263 * it's cleared before then. */
dc8cfa55 264 channel->work_pending = false;
5b9e207c
BH
265 smp_wmb();
266
152b6a62 267 efx_nic_eventq_read_ack(channel);
8ceee660
BH
268}
269
270/* NAPI poll handler
271 *
272 * NAPI guarantees serialisation of polls of the same device, which
273 * provides the guarantee required by efx_process_channel().
274 */
275static int efx_poll(struct napi_struct *napi, int budget)
276{
277 struct efx_channel *channel =
278 container_of(napi, struct efx_channel, napi_str);
62776d03 279 struct efx_nic *efx = channel->efx;
fa236e18 280 int spent;
8ceee660 281
62776d03
BH
282 netif_vdbg(efx, intr, efx->net_dev,
283 "channel %d NAPI poll executing on CPU %d\n",
284 channel->channel, raw_smp_processor_id());
8ceee660 285
fa236e18 286 spent = efx_process_channel(channel, budget);
8ceee660 287
fa236e18 288 if (spent < budget) {
a4900ac9 289 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
290 efx->irq_rx_adaptive &&
291 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
292 if (unlikely(channel->irq_mod_score <
293 irq_adapt_low_thresh)) {
0d86ebd8
BH
294 if (channel->irq_moderation > 1) {
295 channel->irq_moderation -= 1;
ef2b90ee 296 efx->type->push_irq_moderation(channel);
0d86ebd8 297 }
6fb70fd1
BH
298 } else if (unlikely(channel->irq_mod_score >
299 irq_adapt_high_thresh)) {
0d86ebd8
BH
300 if (channel->irq_moderation <
301 efx->irq_rx_moderation) {
302 channel->irq_moderation += 1;
ef2b90ee 303 efx->type->push_irq_moderation(channel);
0d86ebd8 304 }
6fb70fd1 305 }
6fb70fd1
BH
306 channel->irq_count = 0;
307 channel->irq_mod_score = 0;
308 }
309
64d8ad6d
BH
310 efx_filter_rfs_expire(channel);
311
8ceee660 312 /* There is no race here; although napi_disable() will
288379f0 313 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
314 * since efx_channel_processed() will have no effect if
315 * interrupts have already been disabled.
316 */
288379f0 317 napi_complete(napi);
8ceee660
BH
318 efx_channel_processed(channel);
319 }
320
fa236e18 321 return spent;
8ceee660
BH
322}
323
324/* Process the eventq of the specified channel immediately on this CPU
325 *
326 * Disable hardware generated interrupts, wait for any existing
327 * processing to finish, then directly poll (and ack ) the eventq.
328 * Finally reenable NAPI and interrupts.
329 *
d4fabcc8
BH
330 * This is for use only during a loopback self-test. It must not
331 * deliver any packets up the stack as this can result in deadlock.
8ceee660
BH
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335 struct efx_nic *efx = channel->efx;
336
8313aca3 337 BUG_ON(channel->channel >= efx->n_channels);
8ceee660 338 BUG_ON(!channel->enabled);
d4fabcc8 339 BUG_ON(!efx->loopback_selftest);
8ceee660
BH
340
341 /* Disable interrupts and wait for ISRs to complete */
152b6a62 342 efx_nic_disable_interrupts(efx);
94dec6a2 343 if (efx->legacy_irq) {
8ceee660 344 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
345 efx->legacy_irq_enabled = false;
346 }
64ee3120 347 if (channel->irq)
8ceee660
BH
348 synchronize_irq(channel->irq);
349
350 /* Wait for any NAPI processing to complete */
351 napi_disable(&channel->napi_str);
352
353 /* Poll the channel */
ecc910f5 354 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
355
356 /* Ack the eventq. This may cause an interrupt to be generated
357 * when they are reenabled */
358 efx_channel_processed(channel);
359
360 napi_enable(&channel->napi_str);
94dec6a2
BH
361 if (efx->legacy_irq)
362 efx->legacy_irq_enabled = true;
152b6a62 363 efx_nic_enable_interrupts(efx);
8ceee660
BH
364}
365
366/* Create event queue
367 * Event queue memory allocations are done only once. If the channel
368 * is reset, the memory buffer will be reused; this guards against
369 * errors during channel reset and also simplifies interrupt handling.
370 */
371static int efx_probe_eventq(struct efx_channel *channel)
372{
ecc910f5
SH
373 struct efx_nic *efx = channel->efx;
374 unsigned long entries;
375
62776d03
BH
376 netif_dbg(channel->efx, probe, channel->efx->net_dev,
377 "chan %d create event queue\n", channel->channel);
8ceee660 378
ecc910f5
SH
379 /* Build an event queue with room for one event per tx and rx buffer,
380 * plus some extra for link state events and MCDI completions. */
381 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
382 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
383 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
384
152b6a62 385 return efx_nic_probe_eventq(channel);
8ceee660
BH
386}
387
388/* Prepare channel's event queue */
bc3c90a2 389static void efx_init_eventq(struct efx_channel *channel)
8ceee660 390{
62776d03
BH
391 netif_dbg(channel->efx, drv, channel->efx->net_dev,
392 "chan %d init event queue\n", channel->channel);
8ceee660
BH
393
394 channel->eventq_read_ptr = 0;
395
152b6a62 396 efx_nic_init_eventq(channel);
8ceee660
BH
397}
398
399static void efx_fini_eventq(struct efx_channel *channel)
400{
62776d03
BH
401 netif_dbg(channel->efx, drv, channel->efx->net_dev,
402 "chan %d fini event queue\n", channel->channel);
8ceee660 403
152b6a62 404 efx_nic_fini_eventq(channel);
8ceee660
BH
405}
406
407static void efx_remove_eventq(struct efx_channel *channel)
408{
62776d03
BH
409 netif_dbg(channel->efx, drv, channel->efx->net_dev,
410 "chan %d remove event queue\n", channel->channel);
8ceee660 411
152b6a62 412 efx_nic_remove_eventq(channel);
8ceee660
BH
413}
414
415/**************************************************************************
416 *
417 * Channel handling
418 *
419 *************************************************************************/
420
4642610c
BH
421/* Allocate and initialise a channel structure, optionally copying
422 * parameters (but not resources) from an old channel structure. */
423static struct efx_channel *
424efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
425{
426 struct efx_channel *channel;
427 struct efx_rx_queue *rx_queue;
428 struct efx_tx_queue *tx_queue;
429 int j;
430
431 if (old_channel) {
432 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
433 if (!channel)
434 return NULL;
435
436 *channel = *old_channel;
437
e8f14992 438 channel->napi_dev = NULL;
4642610c
BH
439 memset(&channel->eventq, 0, sizeof(channel->eventq));
440
441 rx_queue = &channel->rx_queue;
442 rx_queue->buffer = NULL;
443 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
444
445 for (j = 0; j < EFX_TXQ_TYPES; j++) {
446 tx_queue = &channel->tx_queue[j];
447 if (tx_queue->channel)
448 tx_queue->channel = channel;
449 tx_queue->buffer = NULL;
450 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
451 }
452 } else {
453 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
454 if (!channel)
455 return NULL;
456
457 channel->efx = efx;
458 channel->channel = i;
459
460 for (j = 0; j < EFX_TXQ_TYPES; j++) {
461 tx_queue = &channel->tx_queue[j];
462 tx_queue->efx = efx;
463 tx_queue->queue = i * EFX_TXQ_TYPES + j;
464 tx_queue->channel = channel;
465 }
466 }
467
4642610c
BH
468 rx_queue = &channel->rx_queue;
469 rx_queue->efx = efx;
470 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
471 (unsigned long)rx_queue);
472
473 return channel;
474}
475
8ceee660
BH
476static int efx_probe_channel(struct efx_channel *channel)
477{
478 struct efx_tx_queue *tx_queue;
479 struct efx_rx_queue *rx_queue;
480 int rc;
481
62776d03
BH
482 netif_dbg(channel->efx, probe, channel->efx->net_dev,
483 "creating channel %d\n", channel->channel);
8ceee660
BH
484
485 rc = efx_probe_eventq(channel);
486 if (rc)
487 goto fail1;
488
489 efx_for_each_channel_tx_queue(tx_queue, channel) {
490 rc = efx_probe_tx_queue(tx_queue);
491 if (rc)
492 goto fail2;
493 }
494
495 efx_for_each_channel_rx_queue(rx_queue, channel) {
496 rc = efx_probe_rx_queue(rx_queue);
497 if (rc)
498 goto fail3;
499 }
500
501 channel->n_rx_frm_trunc = 0;
502
503 return 0;
504
505 fail3:
506 efx_for_each_channel_rx_queue(rx_queue, channel)
507 efx_remove_rx_queue(rx_queue);
508 fail2:
509 efx_for_each_channel_tx_queue(tx_queue, channel)
510 efx_remove_tx_queue(tx_queue);
511 fail1:
512 return rc;
513}
514
515
56536e9c
BH
516static void efx_set_channel_names(struct efx_nic *efx)
517{
518 struct efx_channel *channel;
519 const char *type = "";
520 int number;
521
522 efx_for_each_channel(channel, efx) {
523 number = channel->channel;
a4900ac9
BH
524 if (efx->n_channels > efx->n_rx_channels) {
525 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
526 type = "-rx";
527 } else {
528 type = "-tx";
a4900ac9 529 number -= efx->n_rx_channels;
56536e9c
BH
530 }
531 }
4642610c
BH
532 snprintf(efx->channel_name[channel->channel],
533 sizeof(efx->channel_name[0]),
56536e9c
BH
534 "%s%s-%d", efx->name, type, number);
535 }
536}
537
4642610c
BH
538static int efx_probe_channels(struct efx_nic *efx)
539{
540 struct efx_channel *channel;
541 int rc;
542
543 /* Restart special buffer allocation */
544 efx->next_buffer_table = 0;
545
546 efx_for_each_channel(channel, efx) {
547 rc = efx_probe_channel(channel);
548 if (rc) {
549 netif_err(efx, probe, efx->net_dev,
550 "failed to create channel %d\n",
551 channel->channel);
552 goto fail;
553 }
554 }
555 efx_set_channel_names(efx);
556
557 return 0;
558
559fail:
560 efx_remove_channels(efx);
561 return rc;
562}
563
8ceee660
BH
564/* Channels are shutdown and reinitialised whilst the NIC is running
565 * to propagate configuration changes (mtu, checksum offload), or
566 * to clear hardware error conditions
567 */
bc3c90a2 568static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
569{
570 struct efx_tx_queue *tx_queue;
571 struct efx_rx_queue *rx_queue;
572 struct efx_channel *channel;
8ceee660 573
f7f13b0b
BH
574 /* Calculate the rx buffer allocation parameters required to
575 * support the current MTU, including padding for header
576 * alignment and overruns.
577 */
578 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
579 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 580 efx->type->rx_buffer_hash_size +
f7f13b0b 581 efx->type->rx_buffer_padding);
62b330ba
SH
582 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
583 sizeof(struct efx_rx_page_state));
8ceee660
BH
584
585 /* Initialise the channels */
586 efx_for_each_channel(channel, efx) {
62776d03
BH
587 netif_dbg(channel->efx, drv, channel->efx->net_dev,
588 "init chan %d\n", channel->channel);
8ceee660 589
bc3c90a2 590 efx_init_eventq(channel);
8ceee660 591
bc3c90a2
BH
592 efx_for_each_channel_tx_queue(tx_queue, channel)
593 efx_init_tx_queue(tx_queue);
8ceee660
BH
594
595 /* The rx buffer allocation strategy is MTU dependent */
596 efx_rx_strategy(channel);
597
bc3c90a2
BH
598 efx_for_each_channel_rx_queue(rx_queue, channel)
599 efx_init_rx_queue(rx_queue);
8ceee660
BH
600
601 WARN_ON(channel->rx_pkt != NULL);
602 efx_rx_strategy(channel);
603 }
8ceee660
BH
604}
605
606/* This enables event queue processing and packet transmission.
607 *
608 * Note that this function is not allowed to fail, since that would
609 * introduce too much complexity into the suspend/resume path.
610 */
611static void efx_start_channel(struct efx_channel *channel)
612{
613 struct efx_rx_queue *rx_queue;
614
62776d03
BH
615 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
616 "starting chan %d\n", channel->channel);
8ceee660 617
5b9e207c
BH
618 /* The interrupt handler for this channel may set work_pending
619 * as soon as we enable it. Make sure it's cleared before
620 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
621 channel->work_pending = false;
622 channel->enabled = true;
5b9e207c 623 smp_wmb();
8ceee660 624
90d683af 625 /* Fill the queues before enabling NAPI */
8ceee660
BH
626 efx_for_each_channel_rx_queue(rx_queue, channel)
627 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
628
629 napi_enable(&channel->napi_str);
8ceee660
BH
630}
631
632/* This disables event queue processing and packet transmission.
633 * This function does not guarantee that all queue processing
634 * (e.g. RX refill) is complete.
635 */
636static void efx_stop_channel(struct efx_channel *channel)
637{
8ceee660
BH
638 if (!channel->enabled)
639 return;
640
62776d03
BH
641 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
642 "stop chan %d\n", channel->channel);
8ceee660 643
dc8cfa55 644 channel->enabled = false;
8ceee660 645 napi_disable(&channel->napi_str);
8ceee660
BH
646}
647
648static void efx_fini_channels(struct efx_nic *efx)
649{
650 struct efx_channel *channel;
651 struct efx_tx_queue *tx_queue;
652 struct efx_rx_queue *rx_queue;
6bc5d3a9 653 int rc;
8ceee660
BH
654
655 EFX_ASSERT_RESET_SERIALISED(efx);
656 BUG_ON(efx->port_enabled);
657
152b6a62 658 rc = efx_nic_flush_queues(efx);
fd371e32
SH
659 if (rc && EFX_WORKAROUND_7803(efx)) {
660 /* Schedule a reset to recover from the flush failure. The
661 * descriptor caches reference memory we're about to free,
662 * but falcon_reconfigure_mac_wrapper() won't reconnect
663 * the MACs because of the pending reset. */
62776d03
BH
664 netif_err(efx, drv, efx->net_dev,
665 "Resetting to recover from flush failure\n");
fd371e32
SH
666 efx_schedule_reset(efx, RESET_TYPE_ALL);
667 } else if (rc) {
62776d03 668 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 669 } else {
62776d03
BH
670 netif_dbg(efx, drv, efx->net_dev,
671 "successfully flushed all queues\n");
fd371e32 672 }
6bc5d3a9 673
8ceee660 674 efx_for_each_channel(channel, efx) {
62776d03
BH
675 netif_dbg(channel->efx, drv, channel->efx->net_dev,
676 "shut down chan %d\n", channel->channel);
8ceee660
BH
677
678 efx_for_each_channel_rx_queue(rx_queue, channel)
679 efx_fini_rx_queue(rx_queue);
94b274bf 680 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 681 efx_fini_tx_queue(tx_queue);
8ceee660
BH
682 efx_fini_eventq(channel);
683 }
684}
685
686static void efx_remove_channel(struct efx_channel *channel)
687{
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
690
62776d03
BH
691 netif_dbg(channel->efx, drv, channel->efx->net_dev,
692 "destroy chan %d\n", channel->channel);
8ceee660
BH
693
694 efx_for_each_channel_rx_queue(rx_queue, channel)
695 efx_remove_rx_queue(rx_queue);
94b274bf 696 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
697 efx_remove_tx_queue(tx_queue);
698 efx_remove_eventq(channel);
8ceee660
BH
699}
700
4642610c
BH
701static void efx_remove_channels(struct efx_nic *efx)
702{
703 struct efx_channel *channel;
704
705 efx_for_each_channel(channel, efx)
706 efx_remove_channel(channel);
707}
708
709int
710efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
711{
712 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
713 u32 old_rxq_entries, old_txq_entries;
714 unsigned i;
715 int rc;
716
717 efx_stop_all(efx);
718 efx_fini_channels(efx);
719
720 /* Clone channels */
721 memset(other_channel, 0, sizeof(other_channel));
722 for (i = 0; i < efx->n_channels; i++) {
723 channel = efx_alloc_channel(efx, i, efx->channel[i]);
724 if (!channel) {
725 rc = -ENOMEM;
726 goto out;
727 }
728 other_channel[i] = channel;
729 }
730
731 /* Swap entry counts and channel pointers */
732 old_rxq_entries = efx->rxq_entries;
733 old_txq_entries = efx->txq_entries;
734 efx->rxq_entries = rxq_entries;
735 efx->txq_entries = txq_entries;
736 for (i = 0; i < efx->n_channels; i++) {
737 channel = efx->channel[i];
738 efx->channel[i] = other_channel[i];
739 other_channel[i] = channel;
740 }
741
742 rc = efx_probe_channels(efx);
743 if (rc)
744 goto rollback;
745
e8f14992
BH
746 efx_init_napi(efx);
747
4642610c 748 /* Destroy old channels */
e8f14992
BH
749 for (i = 0; i < efx->n_channels; i++) {
750 efx_fini_napi_channel(other_channel[i]);
4642610c 751 efx_remove_channel(other_channel[i]);
e8f14992 752 }
4642610c
BH
753out:
754 /* Free unused channel structures */
755 for (i = 0; i < efx->n_channels; i++)
756 kfree(other_channel[i]);
757
758 efx_init_channels(efx);
759 efx_start_all(efx);
760 return rc;
761
762rollback:
763 /* Swap back */
764 efx->rxq_entries = old_rxq_entries;
765 efx->txq_entries = old_txq_entries;
766 for (i = 0; i < efx->n_channels; i++) {
767 channel = efx->channel[i];
768 efx->channel[i] = other_channel[i];
769 other_channel[i] = channel;
770 }
771 goto out;
772}
773
90d683af 774void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 775{
90d683af 776 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
777}
778
779/**************************************************************************
780 *
781 * Port handling
782 *
783 **************************************************************************/
784
785/* This ensures that the kernel is kept informed (via
786 * netif_carrier_on/off) of the link status, and also maintains the
787 * link status's stop on the port's TX queue.
788 */
fdaa9aed 789void efx_link_status_changed(struct efx_nic *efx)
8ceee660 790{
eb50c0d6
BH
791 struct efx_link_state *link_state = &efx->link_state;
792
8ceee660
BH
793 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
794 * that no events are triggered between unregister_netdev() and the
795 * driver unloading. A more general condition is that NETDEV_CHANGE
796 * can only be generated between NETDEV_UP and NETDEV_DOWN */
797 if (!netif_running(efx->net_dev))
798 return;
799
eb50c0d6 800 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
801 efx->n_link_state_changes++;
802
eb50c0d6 803 if (link_state->up)
8ceee660
BH
804 netif_carrier_on(efx->net_dev);
805 else
806 netif_carrier_off(efx->net_dev);
807 }
808
809 /* Status message for kernel log */
eb50c0d6 810 if (link_state->up) {
62776d03
BH
811 netif_info(efx, link, efx->net_dev,
812 "link up at %uMbps %s-duplex (MTU %d)%s\n",
813 link_state->speed, link_state->fd ? "full" : "half",
814 efx->net_dev->mtu,
815 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 816 } else {
62776d03 817 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
818 }
819
820}
821
d3245b28
BH
822void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
823{
824 efx->link_advertising = advertising;
825 if (advertising) {
826 if (advertising & ADVERTISED_Pause)
827 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
828 else
829 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
830 if (advertising & ADVERTISED_Asym_Pause)
831 efx->wanted_fc ^= EFX_FC_TX;
832 }
833}
834
b5626946 835void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
836{
837 efx->wanted_fc = wanted_fc;
838 if (efx->link_advertising) {
839 if (wanted_fc & EFX_FC_RX)
840 efx->link_advertising |= (ADVERTISED_Pause |
841 ADVERTISED_Asym_Pause);
842 else
843 efx->link_advertising &= ~(ADVERTISED_Pause |
844 ADVERTISED_Asym_Pause);
845 if (wanted_fc & EFX_FC_TX)
846 efx->link_advertising ^= ADVERTISED_Asym_Pause;
847 }
848}
849
115122af
BH
850static void efx_fini_port(struct efx_nic *efx);
851
d3245b28
BH
852/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
853 * the MAC appropriately. All other PHY configuration changes are pushed
854 * through phy_op->set_settings(), and pushed asynchronously to the MAC
855 * through efx_monitor().
856 *
857 * Callers must hold the mac_lock
858 */
859int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 860{
d3245b28
BH
861 enum efx_phy_mode phy_mode;
862 int rc;
8ceee660 863
d3245b28 864 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 865
a816f75a
BH
866 /* Serialise the promiscuous flag with efx_set_multicast_list. */
867 if (efx_dev_registered(efx)) {
868 netif_addr_lock_bh(efx->net_dev);
869 netif_addr_unlock_bh(efx->net_dev);
870 }
871
d3245b28
BH
872 /* Disable PHY transmit in mac level loopbacks */
873 phy_mode = efx->phy_mode;
177dfcd8
BH
874 if (LOOPBACK_INTERNAL(efx))
875 efx->phy_mode |= PHY_MODE_TX_DISABLED;
876 else
877 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 878
d3245b28 879 rc = efx->type->reconfigure_port(efx);
8ceee660 880
d3245b28
BH
881 if (rc)
882 efx->phy_mode = phy_mode;
177dfcd8 883
d3245b28 884 return rc;
8ceee660
BH
885}
886
887/* Reinitialise the MAC to pick up new PHY settings, even if the port is
888 * disabled. */
d3245b28 889int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 890{
d3245b28
BH
891 int rc;
892
8ceee660
BH
893 EFX_ASSERT_RESET_SERIALISED(efx);
894
895 mutex_lock(&efx->mac_lock);
d3245b28 896 rc = __efx_reconfigure_port(efx);
8ceee660 897 mutex_unlock(&efx->mac_lock);
d3245b28
BH
898
899 return rc;
8ceee660
BH
900}
901
8be4f3e6
BH
902/* Asynchronous work item for changing MAC promiscuity and multicast
903 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
904 * MAC directly. */
766ca0fa
BH
905static void efx_mac_work(struct work_struct *data)
906{
907 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
908
909 mutex_lock(&efx->mac_lock);
8be4f3e6 910 if (efx->port_enabled) {
ef2b90ee 911 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
912 efx->mac_op->reconfigure(efx);
913 }
766ca0fa
BH
914 mutex_unlock(&efx->mac_lock);
915}
916
8ceee660
BH
917static int efx_probe_port(struct efx_nic *efx)
918{
7e300bc8 919 unsigned char *perm_addr;
8ceee660
BH
920 int rc;
921
62776d03 922 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 923
ff3b00a0
SH
924 if (phy_flash_cfg)
925 efx->phy_mode = PHY_MODE_SPECIAL;
926
ef2b90ee
BH
927 /* Connect up MAC/PHY operations table */
928 rc = efx->type->probe_port(efx);
8ceee660 929 if (rc)
e42de262 930 return rc;
8ceee660
BH
931
932 /* Sanity check MAC address */
7e300bc8
BH
933 perm_addr = efx->net_dev->perm_addr;
934 if (is_valid_ether_addr(perm_addr)) {
935 memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
8ceee660 936 } else {
62776d03 937 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
7e300bc8 938 perm_addr);
8ceee660
BH
939 if (!allow_bad_hwaddr) {
940 rc = -EINVAL;
941 goto err;
942 }
943 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
944 netif_info(efx, probe, efx->net_dev,
945 "using locally-generated MAC %pM\n",
946 efx->net_dev->dev_addr);
8ceee660
BH
947 }
948
949 return 0;
950
951 err:
e42de262 952 efx->type->remove_port(efx);
8ceee660
BH
953 return rc;
954}
955
956static int efx_init_port(struct efx_nic *efx)
957{
958 int rc;
959
62776d03 960 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 961
1dfc5cea
BH
962 mutex_lock(&efx->mac_lock);
963
177dfcd8 964 rc = efx->phy_op->init(efx);
8ceee660 965 if (rc)
1dfc5cea 966 goto fail1;
8ceee660 967
dc8cfa55 968 efx->port_initialized = true;
1dfc5cea 969
d3245b28
BH
970 /* Reconfigure the MAC before creating dma queues (required for
971 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
972 efx->mac_op->reconfigure(efx);
973
974 /* Ensure the PHY advertises the correct flow control settings */
975 rc = efx->phy_op->reconfigure(efx);
976 if (rc)
977 goto fail2;
978
1dfc5cea 979 mutex_unlock(&efx->mac_lock);
8ceee660 980 return 0;
177dfcd8 981
1dfc5cea 982fail2:
177dfcd8 983 efx->phy_op->fini(efx);
1dfc5cea
BH
984fail1:
985 mutex_unlock(&efx->mac_lock);
177dfcd8 986 return rc;
8ceee660
BH
987}
988
8ceee660
BH
989static void efx_start_port(struct efx_nic *efx)
990{
62776d03 991 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
992 BUG_ON(efx->port_enabled);
993
994 mutex_lock(&efx->mac_lock);
dc8cfa55 995 efx->port_enabled = true;
8be4f3e6
BH
996
997 /* efx_mac_work() might have been scheduled after efx_stop_port(),
998 * and then cancelled by efx_flush_all() */
ef2b90ee 999 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
1000 efx->mac_op->reconfigure(efx);
1001
8ceee660
BH
1002 mutex_unlock(&efx->mac_lock);
1003}
1004
fdaa9aed 1005/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
1006static void efx_stop_port(struct efx_nic *efx)
1007{
62776d03 1008 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1009
1010 mutex_lock(&efx->mac_lock);
dc8cfa55 1011 efx->port_enabled = false;
8ceee660
BH
1012 mutex_unlock(&efx->mac_lock);
1013
1014 /* Serialise against efx_set_multicast_list() */
55668611 1015 if (efx_dev_registered(efx)) {
b9e40857
DM
1016 netif_addr_lock_bh(efx->net_dev);
1017 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1018 }
1019}
1020
1021static void efx_fini_port(struct efx_nic *efx)
1022{
62776d03 1023 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1024
1025 if (!efx->port_initialized)
1026 return;
1027
177dfcd8 1028 efx->phy_op->fini(efx);
dc8cfa55 1029 efx->port_initialized = false;
8ceee660 1030
eb50c0d6 1031 efx->link_state.up = false;
8ceee660
BH
1032 efx_link_status_changed(efx);
1033}
1034
1035static void efx_remove_port(struct efx_nic *efx)
1036{
62776d03 1037 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1038
ef2b90ee 1039 efx->type->remove_port(efx);
8ceee660
BH
1040}
1041
1042/**************************************************************************
1043 *
1044 * NIC handling
1045 *
1046 **************************************************************************/
1047
1048/* This configures the PCI device to enable I/O and DMA. */
1049static int efx_init_io(struct efx_nic *efx)
1050{
1051 struct pci_dev *pci_dev = efx->pci_dev;
1052 dma_addr_t dma_mask = efx->type->max_dma_mask;
d88d6b05 1053 bool use_wc;
8ceee660
BH
1054 int rc;
1055
62776d03 1056 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1057
1058 rc = pci_enable_device(pci_dev);
1059 if (rc) {
62776d03
BH
1060 netif_err(efx, probe, efx->net_dev,
1061 "failed to enable PCI device\n");
8ceee660
BH
1062 goto fail1;
1063 }
1064
1065 pci_set_master(pci_dev);
1066
1067 /* Set the PCI DMA mask. Try all possibilities from our
1068 * genuine mask down to 32 bits, because some architectures
1069 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1070 * masks event though they reject 46 bit masks.
1071 */
1072 while (dma_mask > 0x7fffffffUL) {
1073 if (pci_dma_supported(pci_dev, dma_mask) &&
1074 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1075 break;
1076 dma_mask >>= 1;
1077 }
1078 if (rc) {
62776d03
BH
1079 netif_err(efx, probe, efx->net_dev,
1080 "could not find a suitable DMA mask\n");
8ceee660
BH
1081 goto fail2;
1082 }
62776d03
BH
1083 netif_dbg(efx, probe, efx->net_dev,
1084 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1085 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1086 if (rc) {
1087 /* pci_set_consistent_dma_mask() is not *allowed* to
1088 * fail with a mask that pci_set_dma_mask() accepted,
1089 * but just in case...
1090 */
62776d03
BH
1091 netif_err(efx, probe, efx->net_dev,
1092 "failed to set consistent DMA mask\n");
8ceee660
BH
1093 goto fail2;
1094 }
1095
dc803df8
BH
1096 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1097 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1098 if (rc) {
62776d03
BH
1099 netif_err(efx, probe, efx->net_dev,
1100 "request for memory BAR failed\n");
8ceee660
BH
1101 rc = -EIO;
1102 goto fail3;
1103 }
d88d6b05
SH
1104
1105 /* bug22643: If SR-IOV is enabled then tx push over a write combined
1106 * mapping is unsafe. We need to disable write combining in this case.
1107 * MSI is unsupported when SR-IOV is enabled, and the firmware will
1108 * have removed the MSI capability. So write combining is safe if
1109 * there is an MSI capability.
1110 */
1111 use_wc = (!EFX_WORKAROUND_22643(efx) ||
1112 pci_find_capability(pci_dev, PCI_CAP_ID_MSI));
1113 if (use_wc)
1114 efx->membase = ioremap_wc(efx->membase_phys,
1115 efx->type->mem_map_size);
1116 else
1117 efx->membase = ioremap_nocache(efx->membase_phys,
1118 efx->type->mem_map_size);
8ceee660 1119 if (!efx->membase) {
62776d03
BH
1120 netif_err(efx, probe, efx->net_dev,
1121 "could not map memory BAR at %llx+%x\n",
1122 (unsigned long long)efx->membase_phys,
1123 efx->type->mem_map_size);
8ceee660
BH
1124 rc = -ENOMEM;
1125 goto fail4;
1126 }
62776d03
BH
1127 netif_dbg(efx, probe, efx->net_dev,
1128 "memory BAR at %llx+%x (virtual %p)\n",
1129 (unsigned long long)efx->membase_phys,
1130 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1131
1132 return 0;
1133
1134 fail4:
dc803df8 1135 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1136 fail3:
2c118e0f 1137 efx->membase_phys = 0;
8ceee660
BH
1138 fail2:
1139 pci_disable_device(efx->pci_dev);
1140 fail1:
1141 return rc;
1142}
1143
1144static void efx_fini_io(struct efx_nic *efx)
1145{
62776d03 1146 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1147
1148 if (efx->membase) {
1149 iounmap(efx->membase);
1150 efx->membase = NULL;
1151 }
1152
1153 if (efx->membase_phys) {
dc803df8 1154 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1155 efx->membase_phys = 0;
8ceee660
BH
1156 }
1157
1158 pci_disable_device(efx->pci_dev);
1159}
1160
a4900ac9
BH
1161/* Get number of channels wanted. Each channel will have its own IRQ,
1162 * 1 RX queue and/or 2 TX queues. */
1163static int efx_wanted_channels(void)
46123d04 1164{
2f8975fb 1165 cpumask_var_t core_mask;
46123d04
BH
1166 int count;
1167 int cpu;
5b874e25
BH
1168
1169 if (rss_cpus)
1170 return rss_cpus;
46123d04 1171
79f55997 1172 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 1173 printk(KERN_WARNING
3977d033 1174 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1175 return 1;
1176 }
1177
46123d04
BH
1178 count = 0;
1179 for_each_online_cpu(cpu) {
2f8975fb 1180 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 1181 ++count;
2f8975fb 1182 cpumask_or(core_mask, core_mask,
fbd59a8d 1183 topology_core_cpumask(cpu));
46123d04
BH
1184 }
1185 }
1186
2f8975fb 1187 free_cpumask_var(core_mask);
46123d04
BH
1188 return count;
1189}
1190
64d8ad6d
BH
1191static int
1192efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1193{
1194#ifdef CONFIG_RFS_ACCEL
1195 int i, rc;
1196
1197 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1198 if (!efx->net_dev->rx_cpu_rmap)
1199 return -ENOMEM;
1200 for (i = 0; i < efx->n_rx_channels; i++) {
1201 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1202 xentries[i].vector);
1203 if (rc) {
1204 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1205 efx->net_dev->rx_cpu_rmap = NULL;
1206 return rc;
1207 }
1208 }
1209#endif
1210 return 0;
1211}
1212
46123d04
BH
1213/* Probe the number and type of interrupts we are able to obtain, and
1214 * the resulting numbers of channels and RX queues.
1215 */
64d8ad6d 1216static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1217{
46123d04
BH
1218 int max_channels =
1219 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1220 int rc, i;
1221
1222 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1223 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1224 int n_channels;
aa6ef27e 1225
a4900ac9
BH
1226 n_channels = efx_wanted_channels();
1227 if (separate_tx_channels)
1228 n_channels *= 2;
1229 n_channels = min(n_channels, max_channels);
8ceee660 1230
a4900ac9 1231 for (i = 0; i < n_channels; i++)
8ceee660 1232 xentries[i].entry = i;
a4900ac9 1233 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1234 if (rc > 0) {
62776d03
BH
1235 netif_err(efx, drv, efx->net_dev,
1236 "WARNING: Insufficient MSI-X vectors"
1237 " available (%d < %d).\n", rc, n_channels);
1238 netif_err(efx, drv, efx->net_dev,
1239 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1240 EFX_BUG_ON_PARANOID(rc >= n_channels);
1241 n_channels = rc;
8ceee660 1242 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1243 n_channels);
8ceee660
BH
1244 }
1245
1246 if (rc == 0) {
a4900ac9
BH
1247 efx->n_channels = n_channels;
1248 if (separate_tx_channels) {
1249 efx->n_tx_channels =
1250 max(efx->n_channels / 2, 1U);
1251 efx->n_rx_channels =
1252 max(efx->n_channels -
1253 efx->n_tx_channels, 1U);
1254 } else {
1255 efx->n_tx_channels = efx->n_channels;
1256 efx->n_rx_channels = efx->n_channels;
1257 }
64d8ad6d
BH
1258 rc = efx_init_rx_cpu_rmap(efx, xentries);
1259 if (rc) {
1260 pci_disable_msix(efx->pci_dev);
1261 return rc;
1262 }
a4900ac9 1263 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1264 efx_get_channel(efx, i)->irq =
1265 xentries[i].vector;
8ceee660
BH
1266 } else {
1267 /* Fall back to single channel MSI */
1268 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1269 netif_err(efx, drv, efx->net_dev,
1270 "could not enable MSI-X\n");
8ceee660
BH
1271 }
1272 }
1273
1274 /* Try single interrupt MSI */
1275 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1276 efx->n_channels = 1;
a4900ac9
BH
1277 efx->n_rx_channels = 1;
1278 efx->n_tx_channels = 1;
8ceee660
BH
1279 rc = pci_enable_msi(efx->pci_dev);
1280 if (rc == 0) {
f7d12cdc 1281 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1282 } else {
62776d03
BH
1283 netif_err(efx, drv, efx->net_dev,
1284 "could not enable MSI\n");
8ceee660
BH
1285 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1286 }
1287 }
1288
1289 /* Assume legacy interrupts */
1290 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1291 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1292 efx->n_rx_channels = 1;
1293 efx->n_tx_channels = 1;
8ceee660
BH
1294 efx->legacy_irq = efx->pci_dev->irq;
1295 }
64d8ad6d
BH
1296
1297 return 0;
8ceee660
BH
1298}
1299
1300static void efx_remove_interrupts(struct efx_nic *efx)
1301{
1302 struct efx_channel *channel;
1303
1304 /* Remove MSI/MSI-X interrupts */
64ee3120 1305 efx_for_each_channel(channel, efx)
8ceee660
BH
1306 channel->irq = 0;
1307 pci_disable_msi(efx->pci_dev);
1308 pci_disable_msix(efx->pci_dev);
1309
1310 /* Remove legacy interrupt */
1311 efx->legacy_irq = 0;
1312}
1313
8831da7b 1314static void efx_set_channels(struct efx_nic *efx)
8ceee660 1315{
602a5322
BH
1316 struct efx_channel *channel;
1317 struct efx_tx_queue *tx_queue;
1318
97653431 1319 efx->tx_channel_offset =
a4900ac9 1320 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322
BH
1321
1322 /* We need to adjust the TX queue numbers if we have separate
1323 * RX-only and TX-only channels.
1324 */
1325 efx_for_each_channel(channel, efx) {
1326 efx_for_each_channel_tx_queue(tx_queue, channel)
1327 tx_queue->queue -= (efx->tx_channel_offset *
1328 EFX_TXQ_TYPES);
1329 }
8ceee660
BH
1330}
1331
1332static int efx_probe_nic(struct efx_nic *efx)
1333{
765c9f46 1334 size_t i;
8ceee660
BH
1335 int rc;
1336
62776d03 1337 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1338
1339 /* Carry out hardware-type specific initialisation */
ef2b90ee 1340 rc = efx->type->probe(efx);
8ceee660
BH
1341 if (rc)
1342 return rc;
1343
a4900ac9 1344 /* Determine the number of channels and queues by trying to hook
8ceee660 1345 * in MSI-X interrupts. */
64d8ad6d
BH
1346 rc = efx_probe_interrupts(efx);
1347 if (rc)
1348 goto fail;
8ceee660 1349
5d3a6fca
BH
1350 if (efx->n_channels > 1)
1351 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1352 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1353 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1354
8831da7b 1355 efx_set_channels(efx);
c4f4adc7
BH
1356 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1357 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1358
1359 /* Initialise the interrupt moderation settings */
6fb70fd1 1360 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1361
1362 return 0;
64d8ad6d
BH
1363
1364fail:
1365 efx->type->remove(efx);
1366 return rc;
8ceee660
BH
1367}
1368
1369static void efx_remove_nic(struct efx_nic *efx)
1370{
62776d03 1371 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1372
1373 efx_remove_interrupts(efx);
ef2b90ee 1374 efx->type->remove(efx);
8ceee660
BH
1375}
1376
1377/**************************************************************************
1378 *
1379 * NIC startup/shutdown
1380 *
1381 *************************************************************************/
1382
1383static int efx_probe_all(struct efx_nic *efx)
1384{
8ceee660
BH
1385 int rc;
1386
8ceee660
BH
1387 rc = efx_probe_nic(efx);
1388 if (rc) {
62776d03 1389 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1390 goto fail1;
1391 }
1392
8ceee660
BH
1393 rc = efx_probe_port(efx);
1394 if (rc) {
62776d03 1395 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1396 goto fail2;
1397 }
1398
ecc910f5 1399 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1400 rc = efx_probe_channels(efx);
1401 if (rc)
1402 goto fail3;
8ceee660 1403
64eebcfd
BH
1404 rc = efx_probe_filters(efx);
1405 if (rc) {
1406 netif_err(efx, probe, efx->net_dev,
1407 "failed to create filter tables\n");
1408 goto fail4;
1409 }
1410
8ceee660
BH
1411 return 0;
1412
64eebcfd
BH
1413 fail4:
1414 efx_remove_channels(efx);
8ceee660 1415 fail3:
8ceee660
BH
1416 efx_remove_port(efx);
1417 fail2:
1418 efx_remove_nic(efx);
1419 fail1:
1420 return rc;
1421}
1422
1423/* Called after previous invocation(s) of efx_stop_all, restarts the
1424 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1425 * and ensures that the port is scheduled to be reconfigured.
1426 * This function is safe to call multiple times when the NIC is in any
1427 * state. */
1428static void efx_start_all(struct efx_nic *efx)
1429{
1430 struct efx_channel *channel;
1431
1432 EFX_ASSERT_RESET_SERIALISED(efx);
1433
1434 /* Check that it is appropriate to restart the interface. All
1435 * of these flags are safe to read under just the rtnl lock */
1436 if (efx->port_enabled)
1437 return;
1438 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1439 return;
55668611 1440 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1441 return;
1442
1443 /* Mark the port as enabled so port reconfigurations can start, then
1444 * restart the transmit interface early so the watchdog timer stops */
1445 efx_start_port(efx);
8ceee660 1446
e4abce85 1447 if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
c04bfc6b
BH
1448 netif_tx_wake_all_queues(efx->net_dev);
1449
1450 efx_for_each_channel(channel, efx)
8ceee660
BH
1451 efx_start_channel(channel);
1452
94dec6a2
BH
1453 if (efx->legacy_irq)
1454 efx->legacy_irq_enabled = true;
152b6a62 1455 efx_nic_enable_interrupts(efx);
8ceee660 1456
8880f4ec
BH
1457 /* Switch to event based MCDI completions after enabling interrupts.
1458 * If a reset has been scheduled, then we need to stay in polled mode.
1459 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1460 * reset_pending [modified from an atomic context], we instead guarantee
1461 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1462 efx_mcdi_mode_event(efx);
a7d529ae 1463 if (efx->reset_pending)
8880f4ec
BH
1464 efx_mcdi_mode_poll(efx);
1465
78c1f0a0
SH
1466 /* Start the hardware monitor if there is one. Otherwise (we're link
1467 * event driven), we have to poll the PHY because after an event queue
1468 * flush, we could have a missed a link state change */
1469 if (efx->type->monitor != NULL) {
8ceee660
BH
1470 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1471 efx_monitor_interval);
78c1f0a0
SH
1472 } else {
1473 mutex_lock(&efx->mac_lock);
1474 if (efx->phy_op->poll(efx))
1475 efx_link_status_changed(efx);
1476 mutex_unlock(&efx->mac_lock);
1477 }
55edc6e6 1478
ef2b90ee 1479 efx->type->start_stats(efx);
8ceee660
BH
1480}
1481
1482/* Flush all delayed work. Should only be called when no more delayed work
1483 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1484 * since we're holding the rtnl_lock at this point. */
1485static void efx_flush_all(struct efx_nic *efx)
1486{
8ceee660
BH
1487 /* Make sure the hardware monitor is stopped */
1488 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1489 /* Stop scheduled port reconfigurations */
766ca0fa 1490 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1491}
1492
1493/* Quiesce hardware and software without bringing the link down.
1494 * Safe to call multiple times, when the nic and interface is in any
1495 * state. The caller is guaranteed to subsequently be in a position
1496 * to modify any hardware and software state they see fit without
1497 * taking locks. */
1498static void efx_stop_all(struct efx_nic *efx)
1499{
1500 struct efx_channel *channel;
1501
1502 EFX_ASSERT_RESET_SERIALISED(efx);
1503
1504 /* port_enabled can be read safely under the rtnl lock */
1505 if (!efx->port_enabled)
1506 return;
1507
ef2b90ee 1508 efx->type->stop_stats(efx);
55edc6e6 1509
8880f4ec
BH
1510 /* Switch to MCDI polling on Siena before disabling interrupts */
1511 efx_mcdi_mode_poll(efx);
1512
8ceee660 1513 /* Disable interrupts and wait for ISR to complete */
152b6a62 1514 efx_nic_disable_interrupts(efx);
94dec6a2 1515 if (efx->legacy_irq) {
8ceee660 1516 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
1517 efx->legacy_irq_enabled = false;
1518 }
64ee3120 1519 efx_for_each_channel(channel, efx) {
8ceee660
BH
1520 if (channel->irq)
1521 synchronize_irq(channel->irq);
b3475645 1522 }
8ceee660
BH
1523
1524 /* Stop all NAPI processing and synchronous rx refills */
1525 efx_for_each_channel(channel, efx)
1526 efx_stop_channel(channel);
1527
1528 /* Stop all asynchronous port reconfigurations. Since all
1529 * event processing has already been stopped, there is no
1530 * window to loose phy events */
1531 efx_stop_port(efx);
1532
fdaa9aed 1533 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1534 efx_flush_all(efx);
1535
8ceee660
BH
1536 /* Stop the kernel transmit interface late, so the watchdog
1537 * timer isn't ticking over the flush */
55668611 1538 if (efx_dev_registered(efx)) {
c04bfc6b 1539 netif_tx_stop_all_queues(efx->net_dev);
8ceee660
BH
1540 netif_tx_lock_bh(efx->net_dev);
1541 netif_tx_unlock_bh(efx->net_dev);
1542 }
1543}
1544
1545static void efx_remove_all(struct efx_nic *efx)
1546{
64eebcfd 1547 efx_remove_filters(efx);
4642610c 1548 efx_remove_channels(efx);
8ceee660
BH
1549 efx_remove_port(efx);
1550 efx_remove_nic(efx);
1551}
1552
8ceee660
BH
1553/**************************************************************************
1554 *
1555 * Interrupt moderation
1556 *
1557 **************************************************************************/
1558
b548f976 1559static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution)
0d86ebd8 1560{
b548f976
BH
1561 if (usecs == 0)
1562 return 0;
0d86ebd8
BH
1563 if (usecs < resolution)
1564 return 1; /* never round down to 0 */
1565 return usecs / resolution;
1566}
1567
8ceee660 1568/* Set interrupt moderation parameters */
b548f976
BH
1569void efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1570 unsigned int rx_usecs, bool rx_adaptive)
8ceee660 1571{
f7d12cdc 1572 struct efx_channel *channel;
152b6a62
BH
1573 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1574 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1575
1576 EFX_ASSERT_RESET_SERIALISED(efx);
1577
6fb70fd1 1578 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1579 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1580 efx_for_each_channel(channel, efx) {
525da907 1581 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1582 channel->irq_moderation = rx_ticks;
525da907 1583 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1584 channel->irq_moderation = tx_ticks;
1585 }
8ceee660
BH
1586}
1587
a0c4faf5
BH
1588void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1589 unsigned int *rx_usecs, bool *rx_adaptive)
1590{
1591 *rx_adaptive = efx->irq_rx_adaptive;
1592 *rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION;
1593
1594 /* If channels are shared between RX and TX, so is IRQ
1595 * moderation. Otherwise, IRQ moderation is the same for all
1596 * TX channels and is not adaptive.
1597 */
1598 if (efx->tx_channel_offset == 0)
1599 *tx_usecs = *rx_usecs;
1600 else
1601 *tx_usecs =
1602 efx->channel[efx->tx_channel_offset]->irq_moderation *
1603 EFX_IRQ_MOD_RESOLUTION;
1604}
1605
8ceee660
BH
1606/**************************************************************************
1607 *
1608 * Hardware monitor
1609 *
1610 **************************************************************************/
1611
e254c274 1612/* Run periodically off the general workqueue */
8ceee660
BH
1613static void efx_monitor(struct work_struct *data)
1614{
1615 struct efx_nic *efx = container_of(data, struct efx_nic,
1616 monitor_work.work);
8ceee660 1617
62776d03
BH
1618 netif_vdbg(efx, timer, efx->net_dev,
1619 "hardware monitor executing on CPU %d\n",
1620 raw_smp_processor_id());
ef2b90ee 1621 BUG_ON(efx->type->monitor == NULL);
8ceee660 1622
8ceee660
BH
1623 /* If the mac_lock is already held then it is likely a port
1624 * reconfiguration is already in place, which will likely do
e254c274
BH
1625 * most of the work of monitor() anyway. */
1626 if (mutex_trylock(&efx->mac_lock)) {
1627 if (efx->port_enabled)
1628 efx->type->monitor(efx);
1629 mutex_unlock(&efx->mac_lock);
1630 }
8ceee660 1631
8ceee660
BH
1632 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1633 efx_monitor_interval);
1634}
1635
1636/**************************************************************************
1637 *
1638 * ioctls
1639 *
1640 *************************************************************************/
1641
1642/* Net device ioctl
1643 * Context: process, rtnl_lock() held.
1644 */
1645static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1646{
767e468c 1647 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1648 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1649
1650 EFX_ASSERT_RESET_SERIALISED(efx);
1651
68e7f45e
BH
1652 /* Convert phy_id from older PRTAD/DEVAD format */
1653 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1654 (data->phy_id & 0xfc00) == 0x0400)
1655 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1656
1657 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1658}
1659
1660/**************************************************************************
1661 *
1662 * NAPI interface
1663 *
1664 **************************************************************************/
1665
e8f14992 1666static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1667{
1668 struct efx_channel *channel;
8ceee660
BH
1669
1670 efx_for_each_channel(channel, efx) {
1671 channel->napi_dev = efx->net_dev;
718cff1e
BH
1672 netif_napi_add(channel->napi_dev, &channel->napi_str,
1673 efx_poll, napi_weight);
8ceee660 1674 }
e8f14992
BH
1675}
1676
1677static void efx_fini_napi_channel(struct efx_channel *channel)
1678{
1679 if (channel->napi_dev)
1680 netif_napi_del(&channel->napi_str);
1681 channel->napi_dev = NULL;
8ceee660
BH
1682}
1683
1684static void efx_fini_napi(struct efx_nic *efx)
1685{
1686 struct efx_channel *channel;
1687
e8f14992
BH
1688 efx_for_each_channel(channel, efx)
1689 efx_fini_napi_channel(channel);
8ceee660
BH
1690}
1691
1692/**************************************************************************
1693 *
1694 * Kernel netpoll interface
1695 *
1696 *************************************************************************/
1697
1698#ifdef CONFIG_NET_POLL_CONTROLLER
1699
1700/* Although in the common case interrupts will be disabled, this is not
1701 * guaranteed. However, all our work happens inside the NAPI callback,
1702 * so no locking is required.
1703 */
1704static void efx_netpoll(struct net_device *net_dev)
1705{
767e468c 1706 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1707 struct efx_channel *channel;
1708
64ee3120 1709 efx_for_each_channel(channel, efx)
8ceee660
BH
1710 efx_schedule_channel(channel);
1711}
1712
1713#endif
1714
1715/**************************************************************************
1716 *
1717 * Kernel net device interface
1718 *
1719 *************************************************************************/
1720
1721/* Context: process, rtnl_lock() held. */
1722static int efx_net_open(struct net_device *net_dev)
1723{
767e468c 1724 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1725 EFX_ASSERT_RESET_SERIALISED(efx);
1726
62776d03
BH
1727 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1728 raw_smp_processor_id());
8ceee660 1729
f4bd954e
BH
1730 if (efx->state == STATE_DISABLED)
1731 return -EIO;
f8b87c17
BH
1732 if (efx->phy_mode & PHY_MODE_SPECIAL)
1733 return -EBUSY;
8880f4ec
BH
1734 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1735 return -EIO;
f8b87c17 1736
78c1f0a0
SH
1737 /* Notify the kernel of the link state polled during driver load,
1738 * before the monitor starts running */
1739 efx_link_status_changed(efx);
1740
8ceee660
BH
1741 efx_start_all(efx);
1742 return 0;
1743}
1744
1745/* Context: process, rtnl_lock() held.
1746 * Note that the kernel will ignore our return code; this method
1747 * should really be a void.
1748 */
1749static int efx_net_stop(struct net_device *net_dev)
1750{
767e468c 1751 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1752
62776d03
BH
1753 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1754 raw_smp_processor_id());
8ceee660 1755
f4bd954e
BH
1756 if (efx->state != STATE_DISABLED) {
1757 /* Stop the device and flush all the channels */
1758 efx_stop_all(efx);
1759 efx_fini_channels(efx);
1760 efx_init_channels(efx);
1761 }
8ceee660
BH
1762
1763 return 0;
1764}
1765
5b9e207c 1766/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1767static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1768{
767e468c 1769 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1770 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1771
55edc6e6 1772 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1773 efx->type->update_stats(efx);
55edc6e6 1774 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1775
1776 stats->rx_packets = mac_stats->rx_packets;
1777 stats->tx_packets = mac_stats->tx_packets;
1778 stats->rx_bytes = mac_stats->rx_bytes;
1779 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1780 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1781 stats->multicast = mac_stats->rx_multicast;
1782 stats->collisions = mac_stats->tx_collision;
1783 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1784 mac_stats->rx_length_error);
8ceee660
BH
1785 stats->rx_crc_errors = mac_stats->rx_bad;
1786 stats->rx_frame_errors = mac_stats->rx_align_error;
1787 stats->rx_fifo_errors = mac_stats->rx_overflow;
1788 stats->rx_missed_errors = mac_stats->rx_missed;
1789 stats->tx_window_errors = mac_stats->tx_late_collision;
1790
1791 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1792 stats->rx_crc_errors +
1793 stats->rx_frame_errors +
8ceee660
BH
1794 mac_stats->rx_symbol_error);
1795 stats->tx_errors = (stats->tx_window_errors +
1796 mac_stats->tx_bad);
1797
1798 return stats;
1799}
1800
1801/* Context: netif_tx_lock held, BHs disabled. */
1802static void efx_watchdog(struct net_device *net_dev)
1803{
767e468c 1804 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1805
62776d03
BH
1806 netif_err(efx, tx_err, efx->net_dev,
1807 "TX stuck with port_enabled=%d: resetting channels\n",
1808 efx->port_enabled);
8ceee660 1809
739bb23d 1810 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1811}
1812
1813
1814/* Context: process, rtnl_lock() held. */
1815static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1816{
767e468c 1817 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1818 int rc = 0;
1819
1820 EFX_ASSERT_RESET_SERIALISED(efx);
1821
1822 if (new_mtu > EFX_MAX_MTU)
1823 return -EINVAL;
1824
1825 efx_stop_all(efx);
1826
62776d03 1827 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1828
1829 efx_fini_channels(efx);
d3245b28
BH
1830
1831 mutex_lock(&efx->mac_lock);
1832 /* Reconfigure the MAC before enabling the dma queues so that
1833 * the RX buffers don't overflow */
8ceee660 1834 net_dev->mtu = new_mtu;
d3245b28
BH
1835 efx->mac_op->reconfigure(efx);
1836 mutex_unlock(&efx->mac_lock);
1837
bc3c90a2 1838 efx_init_channels(efx);
8ceee660
BH
1839
1840 efx_start_all(efx);
1841 return rc;
8ceee660
BH
1842}
1843
1844static int efx_set_mac_address(struct net_device *net_dev, void *data)
1845{
767e468c 1846 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1847 struct sockaddr *addr = data;
1848 char *new_addr = addr->sa_data;
1849
1850 EFX_ASSERT_RESET_SERIALISED(efx);
1851
1852 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1853 netif_err(efx, drv, efx->net_dev,
1854 "invalid ethernet MAC address requested: %pM\n",
1855 new_addr);
8ceee660
BH
1856 return -EINVAL;
1857 }
1858
1859 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1860
1861 /* Reconfigure the MAC */
d3245b28
BH
1862 mutex_lock(&efx->mac_lock);
1863 efx->mac_op->reconfigure(efx);
1864 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1865
1866 return 0;
1867}
1868
a816f75a 1869/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1870static void efx_set_multicast_list(struct net_device *net_dev)
1871{
767e468c 1872 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1873 struct netdev_hw_addr *ha;
8ceee660 1874 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1875 u32 crc;
1876 int bit;
8ceee660 1877
8be4f3e6 1878 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1879
1880 /* Build multicast hash table */
8be4f3e6 1881 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1882 memset(mc_hash, 0xff, sizeof(*mc_hash));
1883 } else {
1884 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1885 netdev_for_each_mc_addr(ha, net_dev) {
1886 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1887 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1888 set_bit_le(bit, mc_hash->byte);
8ceee660 1889 }
8ceee660 1890
8be4f3e6
BH
1891 /* Broadcast packets go through the multicast hash filter.
1892 * ether_crc_le() of the broadcast address is 0xbe2612ff
1893 * so we always add bit 0xff to the mask.
1894 */
1895 set_bit_le(0xff, mc_hash->byte);
1896 }
a816f75a 1897
8be4f3e6
BH
1898 if (efx->port_enabled)
1899 queue_work(efx->workqueue, &efx->mac_work);
1900 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1901}
1902
abfe9039
BH
1903static int efx_set_features(struct net_device *net_dev, u32 data)
1904{
1905 struct efx_nic *efx = netdev_priv(net_dev);
1906
1907 /* If disabling RX n-tuple filtering, clear existing filters */
1908 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1909 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1910
1911 return 0;
1912}
1913
c3ecb9f3
SH
1914static const struct net_device_ops efx_netdev_ops = {
1915 .ndo_open = efx_net_open,
1916 .ndo_stop = efx_net_stop,
4472702e 1917 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1918 .ndo_tx_timeout = efx_watchdog,
1919 .ndo_start_xmit = efx_hard_start_xmit,
1920 .ndo_validate_addr = eth_validate_addr,
1921 .ndo_do_ioctl = efx_ioctl,
1922 .ndo_change_mtu = efx_change_mtu,
1923 .ndo_set_mac_address = efx_set_mac_address,
afc4b13d 1924 .ndo_set_rx_mode = efx_set_multicast_list,
abfe9039 1925 .ndo_set_features = efx_set_features,
c3ecb9f3
SH
1926#ifdef CONFIG_NET_POLL_CONTROLLER
1927 .ndo_poll_controller = efx_netpoll,
1928#endif
94b274bf 1929 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
1930#ifdef CONFIG_RFS_ACCEL
1931 .ndo_rx_flow_steer = efx_filter_rfs,
1932#endif
c3ecb9f3
SH
1933};
1934
7dde596e
BH
1935static void efx_update_name(struct efx_nic *efx)
1936{
1937 strcpy(efx->name, efx->net_dev->name);
1938 efx_mtd_rename(efx);
1939 efx_set_channel_names(efx);
1940}
1941
8ceee660
BH
1942static int efx_netdev_event(struct notifier_block *this,
1943 unsigned long event, void *ptr)
1944{
d3208b5e 1945 struct net_device *net_dev = ptr;
8ceee660 1946
7dde596e
BH
1947 if (net_dev->netdev_ops == &efx_netdev_ops &&
1948 event == NETDEV_CHANGENAME)
1949 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1950
1951 return NOTIFY_DONE;
1952}
1953
1954static struct notifier_block efx_netdev_notifier = {
1955 .notifier_call = efx_netdev_event,
1956};
1957
06d5e193
BH
1958static ssize_t
1959show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1960{
1961 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1962 return sprintf(buf, "%d\n", efx->phy_type);
1963}
1964static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1965
8ceee660
BH
1966static int efx_register_netdev(struct efx_nic *efx)
1967{
1968 struct net_device *net_dev = efx->net_dev;
c04bfc6b 1969 struct efx_channel *channel;
8ceee660
BH
1970 int rc;
1971
1972 net_dev->watchdog_timeo = 5 * HZ;
1973 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1974 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1975 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1976
8ceee660 1977 /* Clear MAC statistics */
177dfcd8 1978 efx->mac_op->update_stats(efx);
8ceee660
BH
1979 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1980
7dde596e 1981 rtnl_lock();
aed0628d
BH
1982
1983 rc = dev_alloc_name(net_dev, net_dev->name);
1984 if (rc < 0)
1985 goto fail_locked;
7dde596e 1986 efx_update_name(efx);
aed0628d
BH
1987
1988 rc = register_netdevice(net_dev);
1989 if (rc)
1990 goto fail_locked;
1991
c04bfc6b
BH
1992 efx_for_each_channel(channel, efx) {
1993 struct efx_tx_queue *tx_queue;
60031fcc
BH
1994 efx_for_each_channel_tx_queue(tx_queue, channel)
1995 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
1996 }
1997
aed0628d
BH
1998 /* Always start with carrier off; PHY events will detect the link */
1999 netif_carrier_off(efx->net_dev);
2000
7dde596e 2001 rtnl_unlock();
8ceee660 2002
06d5e193
BH
2003 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2004 if (rc) {
62776d03
BH
2005 netif_err(efx, drv, efx->net_dev,
2006 "failed to init net dev attributes\n");
06d5e193
BH
2007 goto fail_registered;
2008 }
2009
8ceee660 2010 return 0;
06d5e193 2011
aed0628d
BH
2012fail_locked:
2013 rtnl_unlock();
62776d03 2014 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
2015 return rc;
2016
06d5e193
BH
2017fail_registered:
2018 unregister_netdev(net_dev);
2019 return rc;
8ceee660
BH
2020}
2021
2022static void efx_unregister_netdev(struct efx_nic *efx)
2023{
f7d12cdc 2024 struct efx_channel *channel;
8ceee660
BH
2025 struct efx_tx_queue *tx_queue;
2026
2027 if (!efx->net_dev)
2028 return;
2029
767e468c 2030 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2031
2032 /* Free up any skbs still remaining. This has to happen before
2033 * we try to unregister the netdev as running their destructors
2034 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2035 efx_for_each_channel(channel, efx) {
2036 efx_for_each_channel_tx_queue(tx_queue, channel)
2037 efx_release_tx_buffers(tx_queue);
2038 }
8ceee660 2039
55668611 2040 if (efx_dev_registered(efx)) {
8ceee660 2041 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 2042 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
2043 unregister_netdev(efx->net_dev);
2044 }
2045}
2046
2047/**************************************************************************
2048 *
2049 * Device reset and suspend
2050 *
2051 **************************************************************************/
2052
2467ca46
BH
2053/* Tears down the entire software state and most of the hardware state
2054 * before reset. */
d3245b28 2055void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2056{
8ceee660
BH
2057 EFX_ASSERT_RESET_SERIALISED(efx);
2058
2467ca46
BH
2059 efx_stop_all(efx);
2060 mutex_lock(&efx->mac_lock);
2061
8ceee660 2062 efx_fini_channels(efx);
4b988280
SH
2063 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2064 efx->phy_op->fini(efx);
ef2b90ee 2065 efx->type->fini(efx);
8ceee660
BH
2066}
2067
2467ca46
BH
2068/* This function will always ensure that the locks acquired in
2069 * efx_reset_down() are released. A failure return code indicates
2070 * that we were unable to reinitialise the hardware, and the
2071 * driver should be disabled. If ok is false, then the rx and tx
2072 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2073int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2074{
2075 int rc;
2076
2467ca46 2077 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2078
ef2b90ee 2079 rc = efx->type->init(efx);
8ceee660 2080 if (rc) {
62776d03 2081 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2082 goto fail;
8ceee660
BH
2083 }
2084
eb9f6744
BH
2085 if (!ok)
2086 goto fail;
2087
4b988280 2088 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2089 rc = efx->phy_op->init(efx);
2090 if (rc)
2091 goto fail;
2092 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2093 netif_err(efx, drv, efx->net_dev,
2094 "could not restore PHY settings\n");
4b988280
SH
2095 }
2096
eb9f6744 2097 efx->mac_op->reconfigure(efx);
8ceee660 2098
eb9f6744 2099 efx_init_channels(efx);
64eebcfd 2100 efx_restore_filters(efx);
eb9f6744 2101
eb9f6744
BH
2102 mutex_unlock(&efx->mac_lock);
2103
2104 efx_start_all(efx);
2105
2106 return 0;
2107
2108fail:
2109 efx->port_initialized = false;
2467ca46
BH
2110
2111 mutex_unlock(&efx->mac_lock);
2112
8ceee660
BH
2113 return rc;
2114}
2115
eb9f6744
BH
2116/* Reset the NIC using the specified method. Note that the reset may
2117 * fail, in which case the card will be left in an unusable state.
8ceee660 2118 *
eb9f6744 2119 * Caller must hold the rtnl_lock.
8ceee660 2120 */
eb9f6744 2121int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2122{
eb9f6744
BH
2123 int rc, rc2;
2124 bool disabled;
8ceee660 2125
62776d03
BH
2126 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2127 RESET_TYPE(method));
8ceee660 2128
e4abce85 2129 netif_device_detach(efx->net_dev);
d3245b28 2130 efx_reset_down(efx, method);
8ceee660 2131
ef2b90ee 2132 rc = efx->type->reset(efx, method);
8ceee660 2133 if (rc) {
62776d03 2134 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2135 goto out;
8ceee660
BH
2136 }
2137
a7d529ae
BH
2138 /* Clear flags for the scopes we covered. We assume the NIC and
2139 * driver are now quiescent so that there is no race here.
2140 */
2141 efx->reset_pending &= -(1 << (method + 1));
8ceee660
BH
2142
2143 /* Reinitialise bus-mastering, which may have been turned off before
2144 * the reset was scheduled. This is still appropriate, even in the
2145 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2146 * can respond to requests. */
2147 pci_set_master(efx->pci_dev);
2148
eb9f6744 2149out:
8ceee660 2150 /* Leave device stopped if necessary */
eb9f6744
BH
2151 disabled = rc || method == RESET_TYPE_DISABLE;
2152 rc2 = efx_reset_up(efx, method, !disabled);
2153 if (rc2) {
2154 disabled = true;
2155 if (!rc)
2156 rc = rc2;
8ceee660
BH
2157 }
2158
eb9f6744 2159 if (disabled) {
f49a4589 2160 dev_close(efx->net_dev);
62776d03 2161 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2162 efx->state = STATE_DISABLED;
f4bd954e 2163 } else {
62776d03 2164 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2165 netif_device_attach(efx->net_dev);
f4bd954e 2166 }
8ceee660
BH
2167 return rc;
2168}
2169
2170/* The worker thread exists so that code that cannot sleep can
2171 * schedule a reset for later.
2172 */
2173static void efx_reset_work(struct work_struct *data)
2174{
eb9f6744 2175 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
a7d529ae 2176 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
8ceee660 2177
a7d529ae 2178 if (!pending)
319ba649
SH
2179 return;
2180
eb9f6744 2181 /* If we're not RUNNING then don't reset. Leave the reset_pending
a7d529ae 2182 * flags set so that efx_pci_probe_main will be retried */
eb9f6744 2183 if (efx->state != STATE_RUNNING) {
62776d03
BH
2184 netif_info(efx, drv, efx->net_dev,
2185 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2186 return;
2187 }
2188
2189 rtnl_lock();
a7d529ae 2190 (void)efx_reset(efx, fls(pending) - 1);
eb9f6744 2191 rtnl_unlock();
8ceee660
BH
2192}
2193
2194void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2195{
2196 enum reset_type method;
2197
8ceee660
BH
2198 switch (type) {
2199 case RESET_TYPE_INVISIBLE:
2200 case RESET_TYPE_ALL:
2201 case RESET_TYPE_WORLD:
2202 case RESET_TYPE_DISABLE:
2203 method = type;
0e2a9c7c
BH
2204 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2205 RESET_TYPE(method));
8ceee660 2206 break;
8ceee660 2207 default:
0e2a9c7c 2208 method = efx->type->map_reset_reason(type);
62776d03
BH
2209 netif_dbg(efx, drv, efx->net_dev,
2210 "scheduling %s reset for %s\n",
2211 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2212 break;
2213 }
8ceee660 2214
a7d529ae 2215 set_bit(method, &efx->reset_pending);
8ceee660 2216
8880f4ec
BH
2217 /* efx_process_channel() will no longer read events once a
2218 * reset is scheduled. So switch back to poll'd MCDI completions. */
2219 efx_mcdi_mode_poll(efx);
2220
1ab00629 2221 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2222}
2223
2224/**************************************************************************
2225 *
2226 * List of NICs we support
2227 *
2228 **************************************************************************/
2229
2230/* PCI device ID table */
a3aa1884 2231static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 2232 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 2233 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 2234 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 2235 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
2236 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2237 .driver_data = (unsigned long) &siena_a0_nic_type},
2238 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2239 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2240 {0} /* end of list */
2241};
2242
2243/**************************************************************************
2244 *
3759433d 2245 * Dummy PHY/MAC operations
8ceee660 2246 *
01aad7b6 2247 * Can be used for some unimplemented operations
8ceee660
BH
2248 * Needed so all function pointers are valid and do not have to be tested
2249 * before use
2250 *
2251 **************************************************************************/
2252int efx_port_dummy_op_int(struct efx_nic *efx)
2253{
2254 return 0;
2255}
2256void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2257
2258static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2259{
2260 return false;
2261}
8ceee660 2262
6c8c2513 2263static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2264 .init = efx_port_dummy_op_int,
d3245b28 2265 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2266 .poll = efx_port_dummy_op_poll,
8ceee660 2267 .fini = efx_port_dummy_op_void,
8ceee660
BH
2268};
2269
8ceee660
BH
2270/**************************************************************************
2271 *
2272 * Data housekeeping
2273 *
2274 **************************************************************************/
2275
2276/* This zeroes out and then fills in the invariants in a struct
2277 * efx_nic (including all sub-structures).
2278 */
6c8c2513 2279static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
8ceee660
BH
2280 struct pci_dev *pci_dev, struct net_device *net_dev)
2281{
4642610c 2282 int i;
8ceee660
BH
2283
2284 /* Initialise common structures */
2285 memset(efx, 0, sizeof(*efx));
2286 spin_lock_init(&efx->biu_lock);
76884835
BH
2287#ifdef CONFIG_SFC_MTD
2288 INIT_LIST_HEAD(&efx->mtd_list);
2289#endif
8ceee660
BH
2290 INIT_WORK(&efx->reset_work, efx_reset_work);
2291 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2292 efx->pci_dev = pci_dev;
62776d03 2293 efx->msg_enable = debug;
8ceee660 2294 efx->state = STATE_INIT;
8ceee660 2295 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2296
2297 efx->net_dev = net_dev;
8ceee660
BH
2298 spin_lock_init(&efx->stats_lock);
2299 mutex_init(&efx->mac_lock);
b895d73e 2300 efx->mac_op = type->default_mac_ops;
8ceee660 2301 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2302 efx->mdio.dev = net_dev;
766ca0fa 2303 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2304
2305 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2306 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2307 if (!efx->channel[i])
2308 goto fail;
8ceee660
BH
2309 }
2310
2311 efx->type = type;
2312
8ceee660
BH
2313 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2314
2315 /* Higher numbered interrupt modes are less capable! */
2316 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2317 interrupt_mode);
2318
6977dc63
BH
2319 /* Would be good to use the net_dev name, but we're too early */
2320 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2321 pci_name(pci_dev));
2322 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2323 if (!efx->workqueue)
4642610c 2324 goto fail;
8d9853d9 2325
8ceee660 2326 return 0;
4642610c
BH
2327
2328fail:
2329 efx_fini_struct(efx);
2330 return -ENOMEM;
8ceee660
BH
2331}
2332
2333static void efx_fini_struct(struct efx_nic *efx)
2334{
8313aca3
BH
2335 int i;
2336
2337 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2338 kfree(efx->channel[i]);
2339
8ceee660
BH
2340 if (efx->workqueue) {
2341 destroy_workqueue(efx->workqueue);
2342 efx->workqueue = NULL;
2343 }
2344}
2345
2346/**************************************************************************
2347 *
2348 * PCI interface
2349 *
2350 **************************************************************************/
2351
2352/* Main body of final NIC shutdown code
2353 * This is called only at module unload (or hotplug removal).
2354 */
2355static void efx_pci_remove_main(struct efx_nic *efx)
2356{
64d8ad6d
BH
2357#ifdef CONFIG_RFS_ACCEL
2358 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2359 efx->net_dev->rx_cpu_rmap = NULL;
2360#endif
152b6a62 2361 efx_nic_fini_interrupt(efx);
8ceee660
BH
2362 efx_fini_channels(efx);
2363 efx_fini_port(efx);
ef2b90ee 2364 efx->type->fini(efx);
8ceee660
BH
2365 efx_fini_napi(efx);
2366 efx_remove_all(efx);
2367}
2368
2369/* Final NIC shutdown
2370 * This is called only at module unload (or hotplug removal).
2371 */
2372static void efx_pci_remove(struct pci_dev *pci_dev)
2373{
2374 struct efx_nic *efx;
2375
2376 efx = pci_get_drvdata(pci_dev);
2377 if (!efx)
2378 return;
2379
2380 /* Mark the NIC as fini, then stop the interface */
2381 rtnl_lock();
2382 efx->state = STATE_FINI;
2383 dev_close(efx->net_dev);
2384
2385 /* Allow any queued efx_resets() to complete */
2386 rtnl_unlock();
2387
8ceee660
BH
2388 efx_unregister_netdev(efx);
2389
7dde596e
BH
2390 efx_mtd_remove(efx);
2391
8ceee660
BH
2392 /* Wait for any scheduled resets to complete. No more will be
2393 * scheduled from this point because efx_stop_all() has been
2394 * called, we are no longer registered with driverlink, and
2395 * the net_device's have been removed. */
1ab00629 2396 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2397
2398 efx_pci_remove_main(efx);
2399
8ceee660 2400 efx_fini_io(efx);
62776d03 2401 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2402
2403 pci_set_drvdata(pci_dev, NULL);
2404 efx_fini_struct(efx);
2405 free_netdev(efx->net_dev);
2406};
2407
2408/* Main body of NIC initialisation
2409 * This is called at module load (or hotplug insertion, theoretically).
2410 */
2411static int efx_pci_probe_main(struct efx_nic *efx)
2412{
2413 int rc;
2414
2415 /* Do start-of-day initialisation */
2416 rc = efx_probe_all(efx);
2417 if (rc)
2418 goto fail1;
2419
e8f14992 2420 efx_init_napi(efx);
8ceee660 2421
ef2b90ee 2422 rc = efx->type->init(efx);
8ceee660 2423 if (rc) {
62776d03
BH
2424 netif_err(efx, probe, efx->net_dev,
2425 "failed to initialise NIC\n");
278c0621 2426 goto fail3;
8ceee660
BH
2427 }
2428
2429 rc = efx_init_port(efx);
2430 if (rc) {
62776d03
BH
2431 netif_err(efx, probe, efx->net_dev,
2432 "failed to initialise port\n");
278c0621 2433 goto fail4;
8ceee660
BH
2434 }
2435
bc3c90a2 2436 efx_init_channels(efx);
8ceee660 2437
152b6a62 2438 rc = efx_nic_init_interrupt(efx);
8ceee660 2439 if (rc)
278c0621 2440 goto fail5;
8ceee660
BH
2441
2442 return 0;
2443
278c0621 2444 fail5:
bc3c90a2 2445 efx_fini_channels(efx);
8ceee660 2446 efx_fini_port(efx);
8ceee660 2447 fail4:
ef2b90ee 2448 efx->type->fini(efx);
8ceee660
BH
2449 fail3:
2450 efx_fini_napi(efx);
8ceee660
BH
2451 efx_remove_all(efx);
2452 fail1:
2453 return rc;
2454}
2455
2456/* NIC initialisation
2457 *
2458 * This is called at module load (or hotplug insertion,
2459 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2460 * sets up and registers the network devices with the kernel and hooks
2461 * the interrupt service routine. It does not prepare the device for
2462 * transmission; this is left to the first time one of the network
2463 * interfaces is brought up (i.e. efx_net_open).
2464 */
2465static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2466 const struct pci_device_id *entry)
2467{
6c8c2513 2468 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
8ceee660
BH
2469 struct net_device *net_dev;
2470 struct efx_nic *efx;
2471 int i, rc;
2472
2473 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2474 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2475 EFX_MAX_RX_QUEUES);
8ceee660
BH
2476 if (!net_dev)
2477 return -ENOMEM;
c383b537 2478 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415 2479 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2480 NETIF_F_RXCSUM);
738a8f4b
BH
2481 if (type->offload_features & NETIF_F_V6_CSUM)
2482 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2483 /* Mask for features that also apply to VLAN devices */
2484 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2485 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2486 NETIF_F_RXCSUM);
2487 /* All offloads can be toggled */
2488 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
767e468c 2489 efx = netdev_priv(net_dev);
8ceee660 2490 pci_set_drvdata(pci_dev, efx);
62776d03 2491 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2492 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2493 if (rc)
2494 goto fail1;
2495
62776d03 2496 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2497 "Solarflare NIC detected\n");
8ceee660
BH
2498
2499 /* Set up basic I/O (BAR mappings etc) */
2500 rc = efx_init_io(efx);
2501 if (rc)
2502 goto fail2;
2503
2504 /* No serialisation is required with the reset path because
2505 * we're in STATE_INIT. */
2506 for (i = 0; i < 5; i++) {
2507 rc = efx_pci_probe_main(efx);
8ceee660
BH
2508
2509 /* Serialise against efx_reset(). No more resets will be
2510 * scheduled since efx_stop_all() has been called, and we
2511 * have not and never have been registered with either
2512 * the rtnetlink or driverlink layers. */
1ab00629 2513 cancel_work_sync(&efx->reset_work);
8ceee660 2514
fa402b2e 2515 if (rc == 0) {
a7d529ae 2516 if (efx->reset_pending) {
fa402b2e
SH
2517 /* If there was a scheduled reset during
2518 * probe, the NIC is probably hosed anyway */
2519 efx_pci_remove_main(efx);
2520 rc = -EIO;
2521 } else {
2522 break;
2523 }
2524 }
2525
8ceee660 2526 /* Retry if a recoverably reset event has been scheduled */
a7d529ae
BH
2527 if (efx->reset_pending &
2528 ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2529 !efx->reset_pending)
8ceee660
BH
2530 goto fail3;
2531
a7d529ae 2532 efx->reset_pending = 0;
8ceee660
BH
2533 }
2534
2535 if (rc) {
62776d03 2536 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2537 goto fail4;
2538 }
2539
55edc6e6
BH
2540 /* Switch to the running state before we expose the device to the OS,
2541 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2542 efx->state = STATE_RUNNING;
7dde596e 2543
8ceee660
BH
2544 rc = efx_register_netdev(efx);
2545 if (rc)
2546 goto fail5;
2547
62776d03 2548 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2549
2550 rtnl_lock();
2551 efx_mtd_probe(efx); /* allowed to fail */
2552 rtnl_unlock();
8ceee660
BH
2553 return 0;
2554
2555 fail5:
2556 efx_pci_remove_main(efx);
2557 fail4:
2558 fail3:
2559 efx_fini_io(efx);
2560 fail2:
2561 efx_fini_struct(efx);
2562 fail1:
5e2a911c 2563 WARN_ON(rc > 0);
62776d03 2564 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2565 free_netdev(net_dev);
2566 return rc;
2567}
2568
89c758fa
BH
2569static int efx_pm_freeze(struct device *dev)
2570{
2571 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2572
2573 efx->state = STATE_FINI;
2574
2575 netif_device_detach(efx->net_dev);
2576
2577 efx_stop_all(efx);
2578 efx_fini_channels(efx);
2579
2580 return 0;
2581}
2582
2583static int efx_pm_thaw(struct device *dev)
2584{
2585 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2586
2587 efx->state = STATE_INIT;
2588
2589 efx_init_channels(efx);
2590
2591 mutex_lock(&efx->mac_lock);
2592 efx->phy_op->reconfigure(efx);
2593 mutex_unlock(&efx->mac_lock);
2594
2595 efx_start_all(efx);
2596
2597 netif_device_attach(efx->net_dev);
2598
2599 efx->state = STATE_RUNNING;
2600
2601 efx->type->resume_wol(efx);
2602
319ba649
SH
2603 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2604 queue_work(reset_workqueue, &efx->reset_work);
2605
89c758fa
BH
2606 return 0;
2607}
2608
2609static int efx_pm_poweroff(struct device *dev)
2610{
2611 struct pci_dev *pci_dev = to_pci_dev(dev);
2612 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2613
2614 efx->type->fini(efx);
2615
a7d529ae 2616 efx->reset_pending = 0;
89c758fa
BH
2617
2618 pci_save_state(pci_dev);
2619 return pci_set_power_state(pci_dev, PCI_D3hot);
2620}
2621
2622/* Used for both resume and restore */
2623static int efx_pm_resume(struct device *dev)
2624{
2625 struct pci_dev *pci_dev = to_pci_dev(dev);
2626 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2627 int rc;
2628
2629 rc = pci_set_power_state(pci_dev, PCI_D0);
2630 if (rc)
2631 return rc;
2632 pci_restore_state(pci_dev);
2633 rc = pci_enable_device(pci_dev);
2634 if (rc)
2635 return rc;
2636 pci_set_master(efx->pci_dev);
2637 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2638 if (rc)
2639 return rc;
2640 rc = efx->type->init(efx);
2641 if (rc)
2642 return rc;
2643 efx_pm_thaw(dev);
2644 return 0;
2645}
2646
2647static int efx_pm_suspend(struct device *dev)
2648{
2649 int rc;
2650
2651 efx_pm_freeze(dev);
2652 rc = efx_pm_poweroff(dev);
2653 if (rc)
2654 efx_pm_resume(dev);
2655 return rc;
2656}
2657
2658static struct dev_pm_ops efx_pm_ops = {
2659 .suspend = efx_pm_suspend,
2660 .resume = efx_pm_resume,
2661 .freeze = efx_pm_freeze,
2662 .thaw = efx_pm_thaw,
2663 .poweroff = efx_pm_poweroff,
2664 .restore = efx_pm_resume,
2665};
2666
8ceee660 2667static struct pci_driver efx_pci_driver = {
c5d5f5fd 2668 .name = KBUILD_MODNAME,
8ceee660
BH
2669 .id_table = efx_pci_table,
2670 .probe = efx_pci_probe,
2671 .remove = efx_pci_remove,
89c758fa 2672 .driver.pm = &efx_pm_ops,
8ceee660
BH
2673};
2674
2675/**************************************************************************
2676 *
2677 * Kernel module interface
2678 *
2679 *************************************************************************/
2680
2681module_param(interrupt_mode, uint, 0444);
2682MODULE_PARM_DESC(interrupt_mode,
2683 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2684
2685static int __init efx_init_module(void)
2686{
2687 int rc;
2688
2689 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2690
2691 rc = register_netdevice_notifier(&efx_netdev_notifier);
2692 if (rc)
2693 goto err_notifier;
2694
1ab00629
SH
2695 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2696 if (!reset_workqueue) {
2697 rc = -ENOMEM;
2698 goto err_reset;
2699 }
8ceee660
BH
2700
2701 rc = pci_register_driver(&efx_pci_driver);
2702 if (rc < 0)
2703 goto err_pci;
2704
2705 return 0;
2706
2707 err_pci:
1ab00629
SH
2708 destroy_workqueue(reset_workqueue);
2709 err_reset:
8ceee660
BH
2710 unregister_netdevice_notifier(&efx_netdev_notifier);
2711 err_notifier:
2712 return rc;
2713}
2714
2715static void __exit efx_exit_module(void)
2716{
2717 printk(KERN_INFO "Solarflare NET driver unloading\n");
2718
2719 pci_unregister_driver(&efx_pci_driver);
1ab00629 2720 destroy_workqueue(reset_workqueue);
8ceee660
BH
2721 unregister_netdevice_notifier(&efx_netdev_notifier);
2722
2723}
2724
2725module_init(efx_init_module);
2726module_exit(efx_exit_module);
2727
906bb26c
BH
2728MODULE_AUTHOR("Solarflare Communications and "
2729 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2730MODULE_DESCRIPTION("Solarflare Communications network driver");
2731MODULE_LICENSE("GPL");
2732MODULE_DEVICE_TABLE(pci, efx_pci_table);