]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/sfc/efx.c
Merge tag 'v4.4-rockchip-dts32-fixes1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
8ceee660 20#include <linux/ethtool.h>
aa6ef27e 21#include <linux/topology.h>
5a0e3ad6 22#include <linux/gfp.h>
626950db 23#include <linux/aer.h>
b28405b0 24#include <linux/interrupt.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
dd40781e 28#include "selftest.h"
7fa8d547 29#include "sriov.h"
8ceee660 30
8880f4ec 31#include "mcdi.h"
fd371e32 32#include "workarounds.h"
8880f4ec 33
c459302d
BH
34/**************************************************************************
35 *
36 * Type name strings
37 *
38 **************************************************************************
39 */
40
41/* Loopback mode names (see LOOPBACK_MODE()) */
42const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 43const char *const efx_loopback_mode_names[] = {
c459302d 44 [LOOPBACK_NONE] = "NONE",
e58f69f4 45 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
46 [LOOPBACK_GMAC] = "GMAC",
47 [LOOPBACK_XGMII] = "XGMII",
48 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
49 [LOOPBACK_XAUI] = "XAUI",
50 [LOOPBACK_GMII] = "GMII",
51 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
52 [LOOPBACK_XGBR] = "XGBR",
53 [LOOPBACK_XFI] = "XFI",
54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
58 [LOOPBACK_GPHY] = "GPHY",
59 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
60 [LOOPBACK_PCS] = "PCS",
61 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
62 [LOOPBACK_XPORT] = "XPORT",
63 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 64 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 67 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
68 [LOOPBACK_XFI_WS] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
71};
72
c459302d 73const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 74const char *const efx_reset_type_names[] = {
626950db
AR
75 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
76 [RESET_TYPE_ALL] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
087e9025 80 [RESET_TYPE_DATAPATH] = "DATAPATH",
e283546c 81 [RESET_TYPE_MC_BIST] = "MC_BIST",
626950db
AR
82 [RESET_TYPE_DISABLE] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
3de82b91 86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
626950db
AR
87 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
e283546c 89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
c459302d
BH
90};
91
1ab00629
SH
92/* Reset workqueue. If any NIC has a hardware failure then a reset will be
93 * queued onto this work queue. This is not a per-nic work queue, because
94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95 */
96static struct workqueue_struct *reset_workqueue;
97
74cd60a4
JC
98/* How often and how many times to poll for a reset while waiting for a
99 * BIST that another function started to complete.
100 */
101#define BIST_WAIT_DELAY_MS 100
102#define BIST_WAIT_DELAY_COUNT 100
103
8ceee660
BH
104/**************************************************************************
105 *
106 * Configurable values
107 *
108 *************************************************************************/
109
8ceee660
BH
110/*
111 * Use separate channels for TX and RX events
112 *
28b581ab
NT
113 * Set this to 1 to use separate channels for TX and RX. It allows us
114 * to control interrupt affinity separately for TX and RX.
8ceee660 115 *
28b581ab 116 * This is only used in MSI-X interrupt mode
8ceee660 117 */
b0fbdae1
SS
118bool efx_separate_tx_channels;
119module_param(efx_separate_tx_channels, bool, 0444);
120MODULE_PARM_DESC(efx_separate_tx_channels,
28b581ab 121 "Use separate channels for TX and RX");
8ceee660
BH
122
123/* This is the weight assigned to each of the (per-channel) virtual
124 * NAPI devices.
125 */
126static int napi_weight = 64;
127
128/* This is the time (in jiffies) between invocations of the hardware
626950db
AR
129 * monitor.
130 * On Falcon-based NICs, this will:
e254c274
BH
131 * - Check the on-board hardware monitor;
132 * - Poll the link state and reconfigure the hardware as necessary.
626950db
AR
133 * On Siena-based NICs for power systems with EEH support, this will give EEH a
134 * chance to start.
8ceee660 135 */
d215697f 136static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 137
8ceee660
BH
138/* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * The default for RX should strike a balance between increasing the
142 * round-trip latency and reducing overhead.
143 */
144static unsigned int rx_irq_mod_usec = 60;
145
146/* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
148 *
149 * This default is chosen to ensure that a 10G link does not go idle
150 * while a TX queue is stopped after it has become full. A queue is
151 * restarted when it drops below half full. The time this takes (assuming
152 * worst case 3 descriptors per packet and 1024 descriptors) is
153 * 512 / 3 * 1.2 = 205 usec.
154 */
155static unsigned int tx_irq_mod_usec = 150;
156
157/* This is the first interrupt mode to try out of:
158 * 0 => MSI-X
159 * 1 => MSI
160 * 2 => legacy
161 */
162static unsigned int interrupt_mode;
163
164/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165 * i.e. the number of CPUs among which we may distribute simultaneous
166 * interrupt handling.
167 *
168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 169 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
170 */
171static unsigned int rss_cpus;
172module_param(rss_cpus, uint, 0444);
173MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174
b9cc977d
BH
175static bool phy_flash_cfg;
176module_param(phy_flash_cfg, bool, 0644);
84ae48fe
BH
177MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178
e7bed9c8 179static unsigned irq_adapt_low_thresh = 8000;
6fb70fd1
BH
180module_param(irq_adapt_low_thresh, uint, 0644);
181MODULE_PARM_DESC(irq_adapt_low_thresh,
182 "Threshold score for reducing IRQ moderation");
183
e7bed9c8 184static unsigned irq_adapt_high_thresh = 16000;
6fb70fd1
BH
185module_param(irq_adapt_high_thresh, uint, 0644);
186MODULE_PARM_DESC(irq_adapt_high_thresh,
187 "Threshold score for increasing IRQ moderation");
188
62776d03
BH
189static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193module_param(debug, uint, 0);
194MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195
8ceee660
BH
196/**************************************************************************
197 *
198 * Utility functions and prototypes
199 *
200 *************************************************************************/
4642610c 201
261e4d96 202static int efx_soft_enable_interrupts(struct efx_nic *efx);
d8291187 203static void efx_soft_disable_interrupts(struct efx_nic *efx);
7f967c01 204static void efx_remove_channel(struct efx_channel *channel);
4642610c 205static void efx_remove_channels(struct efx_nic *efx);
7f967c01 206static const struct efx_channel_type efx_default_channel_type;
8ceee660 207static void efx_remove_port(struct efx_nic *efx);
7f967c01 208static void efx_init_napi_channel(struct efx_channel *channel);
8ceee660 209static void efx_fini_napi(struct efx_nic *efx);
e8f14992 210static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
211static void efx_fini_struct(struct efx_nic *efx);
212static void efx_start_all(struct efx_nic *efx);
213static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
214
215#define EFX_ASSERT_RESET_SERIALISED(efx) \
216 do { \
f16aeea0 217 if ((efx->state == STATE_READY) || \
626950db 218 (efx->state == STATE_RECOVERY) || \
332c1ce9 219 (efx->state == STATE_DISABLED)) \
8ceee660
BH
220 ASSERT_RTNL(); \
221 } while (0)
222
8b7325b4
BH
223static int efx_check_disabled(struct efx_nic *efx)
224{
626950db 225 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
8b7325b4
BH
226 netif_err(efx, drv, efx->net_dev,
227 "device is disabled due to earlier errors\n");
228 return -EIO;
229 }
230 return 0;
231}
232
8ceee660
BH
233/**************************************************************************
234 *
235 * Event queue processing
236 *
237 *************************************************************************/
238
239/* Process channel's event queue
240 *
241 * This function is responsible for processing the event queue of a
242 * single channel. The caller must guarantee that this function will
243 * never be concurrently called more than once on the same channel,
244 * though different channels may be being processed concurrently.
245 */
fa236e18 246static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 247{
c936835c 248 struct efx_tx_queue *tx_queue;
fa236e18 249 int spent;
8ceee660 250
9f2cb71c 251 if (unlikely(!channel->enabled))
42cbe2d7 252 return 0;
8ceee660 253
c936835c
PD
254 efx_for_each_channel_tx_queue(tx_queue, channel) {
255 tx_queue->pkts_compl = 0;
256 tx_queue->bytes_compl = 0;
257 }
258
fa236e18 259 spent = efx_nic_process_eventq(channel, budget);
d9ab7007
BH
260 if (spent && efx_channel_has_rx_queue(channel)) {
261 struct efx_rx_queue *rx_queue =
262 efx_channel_get_rx_queue(channel);
263
ff734ef4 264 efx_rx_flush_packet(channel);
cce28794 265 efx_fast_push_rx_descriptors(rx_queue, true);
8ceee660
BH
266 }
267
c936835c
PD
268 /* Update BQL */
269 efx_for_each_channel_tx_queue(tx_queue, channel) {
270 if (tx_queue->bytes_compl) {
271 netdev_tx_completed_queue(tx_queue->core_txq,
272 tx_queue->pkts_compl, tx_queue->bytes_compl);
273 }
274 }
275
fa236e18 276 return spent;
8ceee660
BH
277}
278
8ceee660
BH
279/* NAPI poll handler
280 *
281 * NAPI guarantees serialisation of polls of the same device, which
282 * provides the guarantee required by efx_process_channel().
283 */
284static int efx_poll(struct napi_struct *napi, int budget)
285{
286 struct efx_channel *channel =
287 container_of(napi, struct efx_channel, napi_str);
62776d03 288 struct efx_nic *efx = channel->efx;
fa236e18 289 int spent;
8ceee660 290
36763266
AR
291 if (!efx_channel_lock_napi(channel))
292 return budget;
293
62776d03
BH
294 netif_vdbg(efx, intr, efx->net_dev,
295 "channel %d NAPI poll executing on CPU %d\n",
296 channel->channel, raw_smp_processor_id());
8ceee660 297
fa236e18 298 spent = efx_process_channel(channel, budget);
8ceee660 299
fa236e18 300 if (spent < budget) {
9d9a6973 301 if (efx_channel_has_rx_queue(channel) &&
6fb70fd1
BH
302 efx->irq_rx_adaptive &&
303 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
304 if (unlikely(channel->irq_mod_score <
305 irq_adapt_low_thresh)) {
0d86ebd8
BH
306 if (channel->irq_moderation > 1) {
307 channel->irq_moderation -= 1;
ef2b90ee 308 efx->type->push_irq_moderation(channel);
0d86ebd8 309 }
6fb70fd1
BH
310 } else if (unlikely(channel->irq_mod_score >
311 irq_adapt_high_thresh)) {
0d86ebd8
BH
312 if (channel->irq_moderation <
313 efx->irq_rx_moderation) {
314 channel->irq_moderation += 1;
ef2b90ee 315 efx->type->push_irq_moderation(channel);
0d86ebd8 316 }
6fb70fd1 317 }
6fb70fd1
BH
318 channel->irq_count = 0;
319 channel->irq_mod_score = 0;
320 }
321
64d8ad6d
BH
322 efx_filter_rfs_expire(channel);
323
8ceee660 324 /* There is no race here; although napi_disable() will
288379f0 325 * only wait for napi_complete(), this isn't a problem
514bedbc 326 * since efx_nic_eventq_read_ack() will have no effect if
8ceee660
BH
327 * interrupts have already been disabled.
328 */
288379f0 329 napi_complete(napi);
514bedbc 330 efx_nic_eventq_read_ack(channel);
8ceee660
BH
331 }
332
36763266 333 efx_channel_unlock_napi(channel);
fa236e18 334 return spent;
8ceee660
BH
335}
336
8ceee660
BH
337/* Create event queue
338 * Event queue memory allocations are done only once. If the channel
339 * is reset, the memory buffer will be reused; this guards against
340 * errors during channel reset and also simplifies interrupt handling.
341 */
342static int efx_probe_eventq(struct efx_channel *channel)
343{
ecc910f5
SH
344 struct efx_nic *efx = channel->efx;
345 unsigned long entries;
346
86ee5302 347 netif_dbg(efx, probe, efx->net_dev,
62776d03 348 "chan %d create event queue\n", channel->channel);
8ceee660 349
ecc910f5
SH
350 /* Build an event queue with room for one event per tx and rx buffer,
351 * plus some extra for link state events and MCDI completions. */
352 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355
152b6a62 356 return efx_nic_probe_eventq(channel);
8ceee660
BH
357}
358
359/* Prepare channel's event queue */
261e4d96 360static int efx_init_eventq(struct efx_channel *channel)
8ceee660 361{
15acb1ce 362 struct efx_nic *efx = channel->efx;
261e4d96
JC
363 int rc;
364
365 EFX_WARN_ON_PARANOID(channel->eventq_init);
366
15acb1ce 367 netif_dbg(efx, drv, efx->net_dev,
62776d03 368 "chan %d init event queue\n", channel->channel);
8ceee660 369
261e4d96
JC
370 rc = efx_nic_init_eventq(channel);
371 if (rc == 0) {
15acb1ce 372 efx->type->push_irq_moderation(channel);
261e4d96
JC
373 channel->eventq_read_ptr = 0;
374 channel->eventq_init = true;
375 }
376 return rc;
8ceee660
BH
377}
378
9f2cb71c 379/* Enable event queue processing and NAPI */
36763266 380void efx_start_eventq(struct efx_channel *channel)
9f2cb71c
BH
381{
382 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 "chan %d start event queue\n", channel->channel);
384
514bedbc 385 /* Make sure the NAPI handler sees the enabled flag set */
9f2cb71c
BH
386 channel->enabled = true;
387 smp_wmb();
388
36763266 389 efx_channel_enable(channel);
9f2cb71c
BH
390 napi_enable(&channel->napi_str);
391 efx_nic_eventq_read_ack(channel);
392}
393
394/* Disable event queue processing and NAPI */
36763266 395void efx_stop_eventq(struct efx_channel *channel)
9f2cb71c
BH
396{
397 if (!channel->enabled)
398 return;
399
400 napi_disable(&channel->napi_str);
36763266
AR
401 while (!efx_channel_disable(channel))
402 usleep_range(1000, 20000);
9f2cb71c
BH
403 channel->enabled = false;
404}
405
8ceee660
BH
406static void efx_fini_eventq(struct efx_channel *channel)
407{
be3fc09c
BH
408 if (!channel->eventq_init)
409 return;
410
62776d03
BH
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d fini event queue\n", channel->channel);
8ceee660 413
152b6a62 414 efx_nic_fini_eventq(channel);
be3fc09c 415 channel->eventq_init = false;
8ceee660
BH
416}
417
418static void efx_remove_eventq(struct efx_channel *channel)
419{
62776d03
BH
420 netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 "chan %d remove event queue\n", channel->channel);
8ceee660 422
152b6a62 423 efx_nic_remove_eventq(channel);
8ceee660
BH
424}
425
426/**************************************************************************
427 *
428 * Channel handling
429 *
430 *************************************************************************/
431
7f967c01 432/* Allocate and initialise a channel structure. */
4642610c
BH
433static struct efx_channel *
434efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435{
436 struct efx_channel *channel;
437 struct efx_rx_queue *rx_queue;
438 struct efx_tx_queue *tx_queue;
439 int j;
440
7f967c01
BH
441 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 if (!channel)
443 return NULL;
4642610c 444
7f967c01
BH
445 channel->efx = efx;
446 channel->channel = i;
447 channel->type = &efx_default_channel_type;
4642610c 448
7f967c01
BH
449 for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 tx_queue = &channel->tx_queue[j];
451 tx_queue->efx = efx;
452 tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 tx_queue->channel = channel;
454 }
4642610c 455
7f967c01
BH
456 rx_queue = &channel->rx_queue;
457 rx_queue->efx = efx;
458 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 (unsigned long)rx_queue);
4642610c 460
7f967c01
BH
461 return channel;
462}
463
464/* Allocate and initialise a channel structure, copying parameters
465 * (but not resources) from an old channel structure.
466 */
467static struct efx_channel *
468efx_copy_channel(const struct efx_channel *old_channel)
469{
470 struct efx_channel *channel;
471 struct efx_rx_queue *rx_queue;
472 struct efx_tx_queue *tx_queue;
473 int j;
4642610c 474
7f967c01
BH
475 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 if (!channel)
477 return NULL;
478
479 *channel = *old_channel;
480
481 channel->napi_dev = NULL;
482 memset(&channel->eventq, 0, sizeof(channel->eventq));
4642610c 483
7f967c01
BH
484 for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 tx_queue = &channel->tx_queue[j];
486 if (tx_queue->channel)
4642610c 487 tx_queue->channel = channel;
7f967c01
BH
488 tx_queue->buffer = NULL;
489 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
4642610c
BH
490 }
491
4642610c 492 rx_queue = &channel->rx_queue;
7f967c01
BH
493 rx_queue->buffer = NULL;
494 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
4642610c
BH
495 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 (unsigned long)rx_queue);
497
498 return channel;
499}
500
8ceee660
BH
501static int efx_probe_channel(struct efx_channel *channel)
502{
503 struct efx_tx_queue *tx_queue;
504 struct efx_rx_queue *rx_queue;
505 int rc;
506
62776d03
BH
507 netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 "creating channel %d\n", channel->channel);
8ceee660 509
7f967c01
BH
510 rc = channel->type->pre_probe(channel);
511 if (rc)
512 goto fail;
513
8ceee660
BH
514 rc = efx_probe_eventq(channel);
515 if (rc)
7f967c01 516 goto fail;
8ceee660
BH
517
518 efx_for_each_channel_tx_queue(tx_queue, channel) {
519 rc = efx_probe_tx_queue(tx_queue);
520 if (rc)
7f967c01 521 goto fail;
8ceee660
BH
522 }
523
524 efx_for_each_channel_rx_queue(rx_queue, channel) {
525 rc = efx_probe_rx_queue(rx_queue);
526 if (rc)
7f967c01 527 goto fail;
8ceee660
BH
528 }
529
8ceee660
BH
530 return 0;
531
7f967c01
BH
532fail:
533 efx_remove_channel(channel);
8ceee660
BH
534 return rc;
535}
536
7f967c01
BH
537static void
538efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539{
540 struct efx_nic *efx = channel->efx;
541 const char *type;
542 int number;
543
544 number = channel->channel;
545 if (efx->tx_channel_offset == 0) {
546 type = "";
547 } else if (channel->channel < efx->tx_channel_offset) {
548 type = "-rx";
549 } else {
550 type = "-tx";
551 number -= efx->tx_channel_offset;
552 }
553 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554}
8ceee660 555
56536e9c
BH
556static void efx_set_channel_names(struct efx_nic *efx)
557{
558 struct efx_channel *channel;
56536e9c 559
7f967c01
BH
560 efx_for_each_channel(channel, efx)
561 channel->type->get_name(channel,
d8291187
BH
562 efx->msi_context[channel->channel].name,
563 sizeof(efx->msi_context[0].name));
56536e9c
BH
564}
565
4642610c
BH
566static int efx_probe_channels(struct efx_nic *efx)
567{
568 struct efx_channel *channel;
569 int rc;
570
571 /* Restart special buffer allocation */
572 efx->next_buffer_table = 0;
573
c92aaff1
BH
574 /* Probe channels in reverse, so that any 'extra' channels
575 * use the start of the buffer table. This allows the traffic
576 * channels to be resized without moving them or wasting the
577 * entries before them.
578 */
579 efx_for_each_channel_rev(channel, efx) {
4642610c
BH
580 rc = efx_probe_channel(channel);
581 if (rc) {
582 netif_err(efx, probe, efx->net_dev,
583 "failed to create channel %d\n",
584 channel->channel);
585 goto fail;
586 }
587 }
588 efx_set_channel_names(efx);
589
590 return 0;
591
592fail:
593 efx_remove_channels(efx);
594 return rc;
595}
596
8ceee660
BH
597/* Channels are shutdown and reinitialised whilst the NIC is running
598 * to propagate configuration changes (mtu, checksum offload), or
599 * to clear hardware error conditions
600 */
9f2cb71c 601static void efx_start_datapath(struct efx_nic *efx)
8ceee660 602{
85740cdf 603 bool old_rx_scatter = efx->rx_scatter;
8ceee660
BH
604 struct efx_tx_queue *tx_queue;
605 struct efx_rx_queue *rx_queue;
606 struct efx_channel *channel;
85740cdf 607 size_t rx_buf_len;
8ceee660 608
f7f13b0b
BH
609 /* Calculate the rx buffer allocation parameters required to
610 * support the current MTU, including padding for header
611 * alignment and overruns.
612 */
43a3739d 613 efx->rx_dma_len = (efx->rx_prefix_size +
272baeeb
BH
614 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
615 efx->type->rx_buffer_padding);
85740cdf 616 rx_buf_len = (sizeof(struct efx_rx_page_state) +
2ec03014 617 efx->rx_ip_align + efx->rx_dma_len);
85740cdf 618 if (rx_buf_len <= PAGE_SIZE) {
e8c68c0a 619 efx->rx_scatter = efx->type->always_rx_scatter;
85740cdf 620 efx->rx_buffer_order = 0;
85740cdf 621 } else if (efx->type->can_rx_scatter) {
950c54df 622 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
85740cdf 623 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
950c54df
BH
624 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
625 EFX_RX_BUF_ALIGNMENT) >
626 PAGE_SIZE);
85740cdf
BH
627 efx->rx_scatter = true;
628 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
629 efx->rx_buffer_order = 0;
85740cdf
BH
630 } else {
631 efx->rx_scatter = false;
632 efx->rx_buffer_order = get_order(rx_buf_len);
85740cdf
BH
633 }
634
1648a23f
DP
635 efx_rx_config_page_split(efx);
636 if (efx->rx_buffer_order)
637 netif_dbg(efx, drv, efx->net_dev,
638 "RX buf len=%u; page order=%u batch=%u\n",
639 efx->rx_dma_len, efx->rx_buffer_order,
640 efx->rx_pages_per_batch);
641 else
642 netif_dbg(efx, drv, efx->net_dev,
643 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 efx->rx_dma_len, efx->rx_page_buf_step,
645 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
2768935a 646
e8c68c0a 647 /* RX filters may also have scatter-enabled flags */
85740cdf 648 if (efx->rx_scatter != old_rx_scatter)
add72477 649 efx->type->filter_update_rx_scatter(efx);
8ceee660 650
14bf718f
BH
651 /* We must keep at least one descriptor in a TX ring empty.
652 * We could avoid this when the queue size does not exactly
653 * match the hardware ring size, but it's not that important.
654 * Therefore we stop the queue when one more skb might fill
655 * the ring completely. We wake it when half way back to
656 * empty.
657 */
658 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
659 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
660
8ceee660
BH
661 /* Initialise the channels */
662 efx_for_each_channel(channel, efx) {
3881d8ab 663 efx_for_each_channel_tx_queue(tx_queue, channel) {
bc3c90a2 664 efx_init_tx_queue(tx_queue);
3881d8ab
AR
665 atomic_inc(&efx->active_queues);
666 }
8ceee660 667
9f2cb71c 668 efx_for_each_channel_rx_queue(rx_queue, channel) {
bc3c90a2 669 efx_init_rx_queue(rx_queue);
3881d8ab 670 atomic_inc(&efx->active_queues);
cce28794
JC
671 efx_stop_eventq(channel);
672 efx_fast_push_rx_descriptors(rx_queue, false);
673 efx_start_eventq(channel);
9f2cb71c 674 }
8ceee660 675
85740cdf 676 WARN_ON(channel->rx_pkt_n_frags);
8ceee660 677 }
8ceee660 678
2ea4dc28
AR
679 efx_ptp_start_datapath(efx);
680
9f2cb71c
BH
681 if (netif_device_present(efx->net_dev))
682 netif_tx_wake_all_queues(efx->net_dev);
8ceee660
BH
683}
684
9f2cb71c 685static void efx_stop_datapath(struct efx_nic *efx)
8ceee660
BH
686{
687 struct efx_channel *channel;
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
6bc5d3a9 690 int rc;
8ceee660
BH
691
692 EFX_ASSERT_RESET_SERIALISED(efx);
693 BUG_ON(efx->port_enabled);
694
2ea4dc28
AR
695 efx_ptp_stop_datapath(efx);
696
d8aec745
BH
697 /* Stop RX refill */
698 efx_for_each_channel(channel, efx) {
699 efx_for_each_channel_rx_queue(rx_queue, channel)
700 rx_queue->refill_enabled = false;
701 }
702
8ceee660 703 efx_for_each_channel(channel, efx) {
9f2cb71c
BH
704 /* RX packet processing is pipelined, so wait for the
705 * NAPI handler to complete. At least event queue 0
706 * might be kept active by non-data events, so don't
707 * use napi_synchronize() but actually disable NAPI
708 * temporarily.
709 */
710 if (efx_channel_has_rx_queue(channel)) {
711 efx_stop_eventq(channel);
712 efx_start_eventq(channel);
713 }
e42c3d85 714 }
8ceee660 715
e42c3d85
BH
716 rc = efx->type->fini_dmaq(efx);
717 if (rc && EFX_WORKAROUND_7803(efx)) {
718 /* Schedule a reset to recover from the flush failure. The
719 * descriptor caches reference memory we're about to free,
720 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 * the MACs because of the pending reset.
722 */
723 netif_err(efx, drv, efx->net_dev,
724 "Resetting to recover from flush failure\n");
725 efx_schedule_reset(efx, RESET_TYPE_ALL);
726 } else if (rc) {
727 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
728 } else {
729 netif_dbg(efx, drv, efx->net_dev,
730 "successfully flushed all queues\n");
731 }
732
733 efx_for_each_channel(channel, efx) {
8ceee660
BH
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_fini_rx_queue(rx_queue);
94b274bf 736 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 737 efx_fini_tx_queue(tx_queue);
8ceee660
BH
738 }
739}
740
741static void efx_remove_channel(struct efx_channel *channel)
742{
743 struct efx_tx_queue *tx_queue;
744 struct efx_rx_queue *rx_queue;
745
62776d03
BH
746 netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 "destroy chan %d\n", channel->channel);
8ceee660
BH
748
749 efx_for_each_channel_rx_queue(rx_queue, channel)
750 efx_remove_rx_queue(rx_queue);
94b274bf 751 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
752 efx_remove_tx_queue(tx_queue);
753 efx_remove_eventq(channel);
c31e5f9f 754 channel->type->post_remove(channel);
8ceee660
BH
755}
756
4642610c
BH
757static void efx_remove_channels(struct efx_nic *efx)
758{
759 struct efx_channel *channel;
760
761 efx_for_each_channel(channel, efx)
762 efx_remove_channel(channel);
763}
764
765int
766efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767{
768 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 u32 old_rxq_entries, old_txq_entries;
7f967c01 770 unsigned i, next_buffer_table = 0;
261e4d96 771 int rc, rc2;
8b7325b4
BH
772
773 rc = efx_check_disabled(efx);
774 if (rc)
775 return rc;
7f967c01
BH
776
777 /* Not all channels should be reallocated. We must avoid
778 * reallocating their buffer table entries.
779 */
780 efx_for_each_channel(channel, efx) {
781 struct efx_rx_queue *rx_queue;
782 struct efx_tx_queue *tx_queue;
783
784 if (channel->type->copy)
785 continue;
786 next_buffer_table = max(next_buffer_table,
787 channel->eventq.index +
788 channel->eventq.entries);
789 efx_for_each_channel_rx_queue(rx_queue, channel)
790 next_buffer_table = max(next_buffer_table,
791 rx_queue->rxd.index +
792 rx_queue->rxd.entries);
793 efx_for_each_channel_tx_queue(tx_queue, channel)
794 next_buffer_table = max(next_buffer_table,
795 tx_queue->txd.index +
796 tx_queue->txd.entries);
797 }
4642610c 798
29c69a48 799 efx_device_detach_sync(efx);
4642610c 800 efx_stop_all(efx);
d8291187 801 efx_soft_disable_interrupts(efx);
4642610c 802
7f967c01 803 /* Clone channels (where possible) */
4642610c
BH
804 memset(other_channel, 0, sizeof(other_channel));
805 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
806 channel = efx->channel[i];
807 if (channel->type->copy)
808 channel = channel->type->copy(channel);
4642610c
BH
809 if (!channel) {
810 rc = -ENOMEM;
811 goto out;
812 }
813 other_channel[i] = channel;
814 }
815
816 /* Swap entry counts and channel pointers */
817 old_rxq_entries = efx->rxq_entries;
818 old_txq_entries = efx->txq_entries;
819 efx->rxq_entries = rxq_entries;
820 efx->txq_entries = txq_entries;
821 for (i = 0; i < efx->n_channels; i++) {
822 channel = efx->channel[i];
823 efx->channel[i] = other_channel[i];
824 other_channel[i] = channel;
825 }
826
7f967c01
BH
827 /* Restart buffer table allocation */
828 efx->next_buffer_table = next_buffer_table;
e8f14992 829
e8f14992 830 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
831 channel = efx->channel[i];
832 if (!channel->type->copy)
833 continue;
834 rc = efx_probe_channel(channel);
835 if (rc)
836 goto rollback;
837 efx_init_napi_channel(efx->channel[i]);
e8f14992 838 }
7f967c01 839
4642610c 840out:
7f967c01
BH
841 /* Destroy unused channel structures */
842 for (i = 0; i < efx->n_channels; i++) {
843 channel = other_channel[i];
844 if (channel && channel->type->copy) {
845 efx_fini_napi_channel(channel);
846 efx_remove_channel(channel);
847 kfree(channel);
848 }
849 }
4642610c 850
261e4d96
JC
851 rc2 = efx_soft_enable_interrupts(efx);
852 if (rc2) {
853 rc = rc ? rc : rc2;
854 netif_err(efx, drv, efx->net_dev,
855 "unable to restart interrupts on channel reallocation\n");
856 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 } else {
858 efx_start_all(efx);
859 netif_device_attach(efx->net_dev);
860 }
4642610c
BH
861 return rc;
862
863rollback:
864 /* Swap back */
865 efx->rxq_entries = old_rxq_entries;
866 efx->txq_entries = old_txq_entries;
867 for (i = 0; i < efx->n_channels; i++) {
868 channel = efx->channel[i];
869 efx->channel[i] = other_channel[i];
870 other_channel[i] = channel;
871 }
872 goto out;
873}
874
90d683af 875void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 876{
90d683af 877 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
878}
879
7f967c01
BH
880static const struct efx_channel_type efx_default_channel_type = {
881 .pre_probe = efx_channel_dummy_op_int,
c31e5f9f 882 .post_remove = efx_channel_dummy_op_void,
7f967c01
BH
883 .get_name = efx_get_channel_name,
884 .copy = efx_copy_channel,
885 .keep_eventq = false,
886};
887
888int efx_channel_dummy_op_int(struct efx_channel *channel)
889{
890 return 0;
891}
892
c31e5f9f
SH
893void efx_channel_dummy_op_void(struct efx_channel *channel)
894{
895}
896
8ceee660
BH
897/**************************************************************************
898 *
899 * Port handling
900 *
901 **************************************************************************/
902
903/* This ensures that the kernel is kept informed (via
904 * netif_carrier_on/off) of the link status, and also maintains the
905 * link status's stop on the port's TX queue.
906 */
fdaa9aed 907void efx_link_status_changed(struct efx_nic *efx)
8ceee660 908{
eb50c0d6
BH
909 struct efx_link_state *link_state = &efx->link_state;
910
8ceee660
BH
911 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 * that no events are triggered between unregister_netdev() and the
913 * driver unloading. A more general condition is that NETDEV_CHANGE
914 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 if (!netif_running(efx->net_dev))
916 return;
917
eb50c0d6 918 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
919 efx->n_link_state_changes++;
920
eb50c0d6 921 if (link_state->up)
8ceee660
BH
922 netif_carrier_on(efx->net_dev);
923 else
924 netif_carrier_off(efx->net_dev);
925 }
926
927 /* Status message for kernel log */
2aa9ef11 928 if (link_state->up)
62776d03 929 netif_info(efx, link, efx->net_dev,
964e6135 930 "link up at %uMbps %s-duplex (MTU %d)\n",
62776d03 931 link_state->speed, link_state->fd ? "full" : "half",
964e6135 932 efx->net_dev->mtu);
2aa9ef11 933 else
62776d03 934 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
935}
936
d3245b28
BH
937void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
938{
939 efx->link_advertising = advertising;
940 if (advertising) {
941 if (advertising & ADVERTISED_Pause)
942 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
943 else
944 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
945 if (advertising & ADVERTISED_Asym_Pause)
946 efx->wanted_fc ^= EFX_FC_TX;
947 }
948}
949
b5626946 950void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
951{
952 efx->wanted_fc = wanted_fc;
953 if (efx->link_advertising) {
954 if (wanted_fc & EFX_FC_RX)
955 efx->link_advertising |= (ADVERTISED_Pause |
956 ADVERTISED_Asym_Pause);
957 else
958 efx->link_advertising &= ~(ADVERTISED_Pause |
959 ADVERTISED_Asym_Pause);
960 if (wanted_fc & EFX_FC_TX)
961 efx->link_advertising ^= ADVERTISED_Asym_Pause;
962 }
963}
964
115122af
BH
965static void efx_fini_port(struct efx_nic *efx);
966
0d322413
EC
967/* We assume that efx->type->reconfigure_mac will always try to sync RX
968 * filters and therefore needs to read-lock the filter table against freeing
969 */
970void efx_mac_reconfigure(struct efx_nic *efx)
971{
972 down_read(&efx->filter_sem);
973 efx->type->reconfigure_mac(efx);
974 up_read(&efx->filter_sem);
975}
976
d3245b28
BH
977/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978 * the MAC appropriately. All other PHY configuration changes are pushed
979 * through phy_op->set_settings(), and pushed asynchronously to the MAC
980 * through efx_monitor().
981 *
982 * Callers must hold the mac_lock
983 */
984int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 985{
d3245b28
BH
986 enum efx_phy_mode phy_mode;
987 int rc;
8ceee660 988
d3245b28 989 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 990
d3245b28
BH
991 /* Disable PHY transmit in mac level loopbacks */
992 phy_mode = efx->phy_mode;
177dfcd8
BH
993 if (LOOPBACK_INTERNAL(efx))
994 efx->phy_mode |= PHY_MODE_TX_DISABLED;
995 else
996 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 997
d3245b28 998 rc = efx->type->reconfigure_port(efx);
8ceee660 999
d3245b28
BH
1000 if (rc)
1001 efx->phy_mode = phy_mode;
177dfcd8 1002
d3245b28 1003 return rc;
8ceee660
BH
1004}
1005
1006/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1007 * disabled. */
d3245b28 1008int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 1009{
d3245b28
BH
1010 int rc;
1011
8ceee660
BH
1012 EFX_ASSERT_RESET_SERIALISED(efx);
1013
1014 mutex_lock(&efx->mac_lock);
d3245b28 1015 rc = __efx_reconfigure_port(efx);
8ceee660 1016 mutex_unlock(&efx->mac_lock);
d3245b28
BH
1017
1018 return rc;
8ceee660
BH
1019}
1020
8be4f3e6
BH
1021/* Asynchronous work item for changing MAC promiscuity and multicast
1022 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1023 * MAC directly. */
766ca0fa
BH
1024static void efx_mac_work(struct work_struct *data)
1025{
1026 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1027
1028 mutex_lock(&efx->mac_lock);
30b81cda 1029 if (efx->port_enabled)
0d322413 1030 efx_mac_reconfigure(efx);
766ca0fa
BH
1031 mutex_unlock(&efx->mac_lock);
1032}
1033
8ceee660
BH
1034static int efx_probe_port(struct efx_nic *efx)
1035{
1036 int rc;
1037
62776d03 1038 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 1039
ff3b00a0
SH
1040 if (phy_flash_cfg)
1041 efx->phy_mode = PHY_MODE_SPECIAL;
1042
ef2b90ee
BH
1043 /* Connect up MAC/PHY operations table */
1044 rc = efx->type->probe_port(efx);
8ceee660 1045 if (rc)
e42de262 1046 return rc;
8ceee660 1047
e332bcb3 1048 /* Initialise MAC address to permanent address */
cd84ff4d 1049 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
8ceee660
BH
1050
1051 return 0;
8ceee660
BH
1052}
1053
1054static int efx_init_port(struct efx_nic *efx)
1055{
1056 int rc;
1057
62776d03 1058 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 1059
1dfc5cea
BH
1060 mutex_lock(&efx->mac_lock);
1061
177dfcd8 1062 rc = efx->phy_op->init(efx);
8ceee660 1063 if (rc)
1dfc5cea 1064 goto fail1;
8ceee660 1065
dc8cfa55 1066 efx->port_initialized = true;
1dfc5cea 1067
d3245b28
BH
1068 /* Reconfigure the MAC before creating dma queues (required for
1069 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
0d322413 1070 efx_mac_reconfigure(efx);
d3245b28
BH
1071
1072 /* Ensure the PHY advertises the correct flow control settings */
1073 rc = efx->phy_op->reconfigure(efx);
267d9d73 1074 if (rc && rc != -EPERM)
d3245b28
BH
1075 goto fail2;
1076
1dfc5cea 1077 mutex_unlock(&efx->mac_lock);
8ceee660 1078 return 0;
177dfcd8 1079
1dfc5cea 1080fail2:
177dfcd8 1081 efx->phy_op->fini(efx);
1dfc5cea
BH
1082fail1:
1083 mutex_unlock(&efx->mac_lock);
177dfcd8 1084 return rc;
8ceee660
BH
1085}
1086
8ceee660
BH
1087static void efx_start_port(struct efx_nic *efx)
1088{
62776d03 1089 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
1090 BUG_ON(efx->port_enabled);
1091
1092 mutex_lock(&efx->mac_lock);
dc8cfa55 1093 efx->port_enabled = true;
8be4f3e6 1094
d615c039 1095 /* Ensure MAC ingress/egress is enabled */
0d322413 1096 efx_mac_reconfigure(efx);
8be4f3e6 1097
8ceee660
BH
1098 mutex_unlock(&efx->mac_lock);
1099}
1100
d615c039
BH
1101/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102 * and the async self-test, wait for them to finish and prevent them
1103 * being scheduled again. This doesn't cover online resets, which
1104 * should only be cancelled when removing the device.
1105 */
8ceee660
BH
1106static void efx_stop_port(struct efx_nic *efx)
1107{
62776d03 1108 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660 1109
d615c039
BH
1110 EFX_ASSERT_RESET_SERIALISED(efx);
1111
8ceee660 1112 mutex_lock(&efx->mac_lock);
dc8cfa55 1113 efx->port_enabled = false;
8ceee660
BH
1114 mutex_unlock(&efx->mac_lock);
1115
1116 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
1117 netif_addr_lock_bh(efx->net_dev);
1118 netif_addr_unlock_bh(efx->net_dev);
d615c039
BH
1119
1120 cancel_delayed_work_sync(&efx->monitor_work);
1121 efx_selftest_async_cancel(efx);
1122 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1123}
1124
1125static void efx_fini_port(struct efx_nic *efx)
1126{
62776d03 1127 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1128
1129 if (!efx->port_initialized)
1130 return;
1131
177dfcd8 1132 efx->phy_op->fini(efx);
dc8cfa55 1133 efx->port_initialized = false;
8ceee660 1134
eb50c0d6 1135 efx->link_state.up = false;
8ceee660
BH
1136 efx_link_status_changed(efx);
1137}
1138
1139static void efx_remove_port(struct efx_nic *efx)
1140{
62776d03 1141 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1142
ef2b90ee 1143 efx->type->remove_port(efx);
8ceee660
BH
1144}
1145
1146/**************************************************************************
1147 *
1148 * NIC handling
1149 *
1150 **************************************************************************/
1151
0bcf4a64
BH
1152static LIST_HEAD(efx_primary_list);
1153static LIST_HEAD(efx_unassociated_list);
1154
1155static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1156{
1157 return left->type == right->type &&
1158 left->vpd_sn && right->vpd_sn &&
1159 !strcmp(left->vpd_sn, right->vpd_sn);
1160}
1161
1162static void efx_associate(struct efx_nic *efx)
1163{
1164 struct efx_nic *other, *next;
1165
1166 if (efx->primary == efx) {
1167 /* Adding primary function; look for secondaries */
1168
1169 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1170 list_add_tail(&efx->node, &efx_primary_list);
1171
1172 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1173 node) {
1174 if (efx_same_controller(efx, other)) {
1175 list_del(&other->node);
1176 netif_dbg(other, probe, other->net_dev,
1177 "moving to secondary list of %s %s\n",
1178 pci_name(efx->pci_dev),
1179 efx->net_dev->name);
1180 list_add_tail(&other->node,
1181 &efx->secondary_list);
1182 other->primary = efx;
1183 }
1184 }
1185 } else {
1186 /* Adding secondary function; look for primary */
1187
1188 list_for_each_entry(other, &efx_primary_list, node) {
1189 if (efx_same_controller(efx, other)) {
1190 netif_dbg(efx, probe, efx->net_dev,
1191 "adding to secondary list of %s %s\n",
1192 pci_name(other->pci_dev),
1193 other->net_dev->name);
1194 list_add_tail(&efx->node,
1195 &other->secondary_list);
1196 efx->primary = other;
1197 return;
1198 }
1199 }
1200
1201 netif_dbg(efx, probe, efx->net_dev,
1202 "adding to unassociated list\n");
1203 list_add_tail(&efx->node, &efx_unassociated_list);
1204 }
1205}
1206
1207static void efx_dissociate(struct efx_nic *efx)
1208{
1209 struct efx_nic *other, *next;
1210
1211 list_del(&efx->node);
1212 efx->primary = NULL;
1213
1214 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1215 list_del(&other->node);
1216 netif_dbg(other, probe, other->net_dev,
1217 "moving to unassociated list\n");
1218 list_add_tail(&other->node, &efx_unassociated_list);
1219 other->primary = NULL;
1220 }
1221}
1222
8ceee660
BH
1223/* This configures the PCI device to enable I/O and DMA. */
1224static int efx_init_io(struct efx_nic *efx)
1225{
1226 struct pci_dev *pci_dev = efx->pci_dev;
1227 dma_addr_t dma_mask = efx->type->max_dma_mask;
b105798f 1228 unsigned int mem_map_size = efx->type->mem_map_size(efx);
02246a7f 1229 int rc, bar;
8ceee660 1230
62776d03 1231 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660 1232
02246a7f
SS
1233 bar = efx->type->mem_bar;
1234
8ceee660
BH
1235 rc = pci_enable_device(pci_dev);
1236 if (rc) {
62776d03
BH
1237 netif_err(efx, probe, efx->net_dev,
1238 "failed to enable PCI device\n");
8ceee660
BH
1239 goto fail1;
1240 }
1241
1242 pci_set_master(pci_dev);
1243
1244 /* Set the PCI DMA mask. Try all possibilities from our
1245 * genuine mask down to 32 bits, because some architectures
1246 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 * masks event though they reject 46 bit masks.
1248 */
1249 while (dma_mask > 0x7fffffffUL) {
8722b8fb
CH
1250 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1251 if (rc == 0)
1252 break;
8ceee660
BH
1253 dma_mask >>= 1;
1254 }
1255 if (rc) {
62776d03
BH
1256 netif_err(efx, probe, efx->net_dev,
1257 "could not find a suitable DMA mask\n");
8ceee660
BH
1258 goto fail2;
1259 }
62776d03
BH
1260 netif_dbg(efx, probe, efx->net_dev,
1261 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660 1262
02246a7f
SS
1263 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1264 rc = pci_request_region(pci_dev, bar, "sfc");
8ceee660 1265 if (rc) {
62776d03
BH
1266 netif_err(efx, probe, efx->net_dev,
1267 "request for memory BAR failed\n");
8ceee660
BH
1268 rc = -EIO;
1269 goto fail3;
1270 }
b105798f 1271 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
8ceee660 1272 if (!efx->membase) {
62776d03
BH
1273 netif_err(efx, probe, efx->net_dev,
1274 "could not map memory BAR at %llx+%x\n",
b105798f 1275 (unsigned long long)efx->membase_phys, mem_map_size);
8ceee660
BH
1276 rc = -ENOMEM;
1277 goto fail4;
1278 }
62776d03
BH
1279 netif_dbg(efx, probe, efx->net_dev,
1280 "memory BAR at %llx+%x (virtual %p)\n",
b105798f
BH
1281 (unsigned long long)efx->membase_phys, mem_map_size,
1282 efx->membase);
8ceee660
BH
1283
1284 return 0;
1285
1286 fail4:
02246a7f 1287 pci_release_region(efx->pci_dev, bar);
8ceee660 1288 fail3:
2c118e0f 1289 efx->membase_phys = 0;
8ceee660
BH
1290 fail2:
1291 pci_disable_device(efx->pci_dev);
1292 fail1:
1293 return rc;
1294}
1295
1296static void efx_fini_io(struct efx_nic *efx)
1297{
02246a7f
SS
1298 int bar;
1299
62776d03 1300 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1301
1302 if (efx->membase) {
1303 iounmap(efx->membase);
1304 efx->membase = NULL;
1305 }
1306
1307 if (efx->membase_phys) {
02246a7f
SS
1308 bar = efx->type->mem_bar;
1309 pci_release_region(efx->pci_dev, bar);
2c118e0f 1310 efx->membase_phys = 0;
8ceee660
BH
1311 }
1312
6598dad2
DP
1313 /* Don't disable bus-mastering if VFs are assigned */
1314 if (!pci_vfs_assigned(efx->pci_dev))
1315 pci_disable_device(efx->pci_dev);
8ceee660
BH
1316}
1317
267c0157
JC
1318void efx_set_default_rx_indir_table(struct efx_nic *efx)
1319{
1320 size_t i;
1321
1322 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1323 efx->rx_indir_table[i] =
1324 ethtool_rxfh_indir_default(i, efx->rss_spread);
8ceee660
BH
1325}
1326
a9a52506 1327static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
46123d04 1328{
cdb08f8f 1329 cpumask_var_t thread_mask;
a16e5b24 1330 unsigned int count;
46123d04 1331 int cpu;
5b874e25 1332
cd2d5b52
BH
1333 if (rss_cpus) {
1334 count = rss_cpus;
1335 } else {
1336 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1337 netif_warn(efx, probe, efx->net_dev,
1338 "RSS disabled due to allocation failure\n");
1339 return 1;
1340 }
46123d04 1341
cd2d5b52
BH
1342 count = 0;
1343 for_each_online_cpu(cpu) {
1344 if (!cpumask_test_cpu(cpu, thread_mask)) {
1345 ++count;
1346 cpumask_or(thread_mask, thread_mask,
06931e62 1347 topology_sibling_cpumask(cpu));
cd2d5b52
BH
1348 }
1349 }
1350
1351 free_cpumask_var(thread_mask);
2f8975fb
RR
1352 }
1353
cd2d5b52
BH
1354 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1355 * table entries that are inaccessible to VFs
1356 */
7fa8d547
SS
1357#ifdef CONFIG_SFC_SRIOV
1358 if (efx->type->sriov_wanted) {
1359 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1360 count > efx_vf_size(efx)) {
1361 netif_warn(efx, probe, efx->net_dev,
1362 "Reducing number of RSS channels from %u to %u for "
1363 "VF support. Increase vf-msix-limit to use more "
1364 "channels on the PF.\n",
1365 count, efx_vf_size(efx));
1366 count = efx_vf_size(efx);
1367 }
46123d04 1368 }
7fa8d547 1369#endif
46123d04
BH
1370
1371 return count;
1372}
1373
1374/* Probe the number and type of interrupts we are able to obtain, and
1375 * the resulting numbers of channels and RX queues.
1376 */
64d8ad6d 1377static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1378{
7f967c01
BH
1379 unsigned int extra_channels = 0;
1380 unsigned int i, j;
a16e5b24 1381 int rc;
8ceee660 1382
7f967c01
BH
1383 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1384 if (efx->extra_channel_type[i])
1385 ++extra_channels;
1386
8ceee660 1387 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1388 struct msix_entry xentries[EFX_MAX_CHANNELS];
a16e5b24 1389 unsigned int n_channels;
aa6ef27e 1390
a9a52506 1391 n_channels = efx_wanted_parallelism(efx);
b0fbdae1 1392 if (efx_separate_tx_channels)
a4900ac9 1393 n_channels *= 2;
7f967c01 1394 n_channels += extra_channels;
b105798f 1395 n_channels = min(n_channels, efx->max_channels);
8ceee660 1396
a4900ac9 1397 for (i = 0; i < n_channels; i++)
8ceee660 1398 xentries[i].entry = i;
184603d8
AG
1399 rc = pci_enable_msix_range(efx->pci_dev,
1400 xentries, 1, n_channels);
1401 if (rc < 0) {
1402 /* Fall back to single channel MSI */
1403 efx->interrupt_mode = EFX_INT_MODE_MSI;
1404 netif_err(efx, drv, efx->net_dev,
1405 "could not enable MSI-X\n");
1406 } else if (rc < n_channels) {
62776d03
BH
1407 netif_err(efx, drv, efx->net_dev,
1408 "WARNING: Insufficient MSI-X vectors"
a16e5b24 1409 " available (%d < %u).\n", rc, n_channels);
62776d03
BH
1410 netif_err(efx, drv, efx->net_dev,
1411 "WARNING: Performance may be reduced.\n");
a4900ac9 1412 n_channels = rc;
8ceee660
BH
1413 }
1414
184603d8 1415 if (rc > 0) {
a4900ac9 1416 efx->n_channels = n_channels;
7f967c01
BH
1417 if (n_channels > extra_channels)
1418 n_channels -= extra_channels;
b0fbdae1
SS
1419 if (efx_separate_tx_channels) {
1420 efx->n_tx_channels = min(max(n_channels / 2,
1421 1U),
1422 efx->max_tx_channels);
7f967c01
BH
1423 efx->n_rx_channels = max(n_channels -
1424 efx->n_tx_channels,
1425 1U);
a4900ac9 1426 } else {
b0fbdae1
SS
1427 efx->n_tx_channels = min(n_channels,
1428 efx->max_tx_channels);
7f967c01 1429 efx->n_rx_channels = n_channels;
a4900ac9 1430 }
7f967c01 1431 for (i = 0; i < efx->n_channels; i++)
f7d12cdc
BH
1432 efx_get_channel(efx, i)->irq =
1433 xentries[i].vector;
8ceee660
BH
1434 }
1435 }
1436
1437 /* Try single interrupt MSI */
1438 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1439 efx->n_channels = 1;
a4900ac9
BH
1440 efx->n_rx_channels = 1;
1441 efx->n_tx_channels = 1;
8ceee660
BH
1442 rc = pci_enable_msi(efx->pci_dev);
1443 if (rc == 0) {
f7d12cdc 1444 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1445 } else {
62776d03
BH
1446 netif_err(efx, drv, efx->net_dev,
1447 "could not enable MSI\n");
8ceee660
BH
1448 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1449 }
1450 }
1451
1452 /* Assume legacy interrupts */
1453 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
b0fbdae1 1454 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
a4900ac9
BH
1455 efx->n_rx_channels = 1;
1456 efx->n_tx_channels = 1;
8ceee660
BH
1457 efx->legacy_irq = efx->pci_dev->irq;
1458 }
64d8ad6d 1459
7f967c01
BH
1460 /* Assign extra channels if possible */
1461 j = efx->n_channels;
1462 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1463 if (!efx->extra_channel_type[i])
1464 continue;
1465 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1466 efx->n_channels <= extra_channels) {
1467 efx->extra_channel_type[i]->handle_no_channel(efx);
1468 } else {
1469 --j;
1470 efx_get_channel(efx, j)->type =
1471 efx->extra_channel_type[i];
1472 }
1473 }
1474
cd2d5b52 1475 /* RSS might be usable on VFs even if it is disabled on the PF */
7fa8d547
SS
1476#ifdef CONFIG_SFC_SRIOV
1477 if (efx->type->sriov_wanted) {
1478 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1479 !efx->type->sriov_wanted(efx)) ?
1480 efx->n_rx_channels : efx_vf_size(efx));
1481 return 0;
1482 }
1483#endif
1484 efx->rss_spread = efx->n_rx_channels;
cd2d5b52 1485
64d8ad6d 1486 return 0;
8ceee660
BH
1487}
1488
261e4d96 1489static int efx_soft_enable_interrupts(struct efx_nic *efx)
9f2cb71c 1490{
261e4d96
JC
1491 struct efx_channel *channel, *end_channel;
1492 int rc;
9f2cb71c 1493
8b7325b4
BH
1494 BUG_ON(efx->state == STATE_DISABLED);
1495
d8291187
BH
1496 efx->irq_soft_enabled = true;
1497 smp_wmb();
9f2cb71c
BH
1498
1499 efx_for_each_channel(channel, efx) {
261e4d96
JC
1500 if (!channel->type->keep_eventq) {
1501 rc = efx_init_eventq(channel);
1502 if (rc)
1503 goto fail;
1504 }
9f2cb71c
BH
1505 efx_start_eventq(channel);
1506 }
1507
1508 efx_mcdi_mode_event(efx);
261e4d96
JC
1509
1510 return 0;
1511fail:
1512 end_channel = channel;
1513 efx_for_each_channel(channel, efx) {
1514 if (channel == end_channel)
1515 break;
1516 efx_stop_eventq(channel);
1517 if (!channel->type->keep_eventq)
1518 efx_fini_eventq(channel);
1519 }
1520
1521 return rc;
9f2cb71c
BH
1522}
1523
d8291187 1524static void efx_soft_disable_interrupts(struct efx_nic *efx)
9f2cb71c
BH
1525{
1526 struct efx_channel *channel;
1527
8b7325b4
BH
1528 if (efx->state == STATE_DISABLED)
1529 return;
1530
9f2cb71c
BH
1531 efx_mcdi_mode_poll(efx);
1532
d8291187
BH
1533 efx->irq_soft_enabled = false;
1534 smp_wmb();
1535
1536 if (efx->legacy_irq)
9f2cb71c 1537 synchronize_irq(efx->legacy_irq);
9f2cb71c
BH
1538
1539 efx_for_each_channel(channel, efx) {
1540 if (channel->irq)
1541 synchronize_irq(channel->irq);
1542
1543 efx_stop_eventq(channel);
d8291187 1544 if (!channel->type->keep_eventq)
7f967c01 1545 efx_fini_eventq(channel);
9f2cb71c 1546 }
cade715f
BH
1547
1548 /* Flush the asynchronous MCDI request queue */
1549 efx_mcdi_flush_async(efx);
9f2cb71c
BH
1550}
1551
261e4d96 1552static int efx_enable_interrupts(struct efx_nic *efx)
d8291187 1553{
261e4d96
JC
1554 struct efx_channel *channel, *end_channel;
1555 int rc;
d8291187
BH
1556
1557 BUG_ON(efx->state == STATE_DISABLED);
1558
1559 if (efx->eeh_disabled_legacy_irq) {
1560 enable_irq(efx->legacy_irq);
1561 efx->eeh_disabled_legacy_irq = false;
1562 }
1563
86094f7f 1564 efx->type->irq_enable_master(efx);
d8291187
BH
1565
1566 efx_for_each_channel(channel, efx) {
261e4d96
JC
1567 if (channel->type->keep_eventq) {
1568 rc = efx_init_eventq(channel);
1569 if (rc)
1570 goto fail;
1571 }
1572 }
1573
1574 rc = efx_soft_enable_interrupts(efx);
1575 if (rc)
1576 goto fail;
1577
1578 return 0;
1579
1580fail:
1581 end_channel = channel;
1582 efx_for_each_channel(channel, efx) {
1583 if (channel == end_channel)
1584 break;
d8291187 1585 if (channel->type->keep_eventq)
261e4d96 1586 efx_fini_eventq(channel);
d8291187
BH
1587 }
1588
261e4d96
JC
1589 efx->type->irq_disable_non_ev(efx);
1590
1591 return rc;
d8291187
BH
1592}
1593
1594static void efx_disable_interrupts(struct efx_nic *efx)
1595{
1596 struct efx_channel *channel;
1597
1598 efx_soft_disable_interrupts(efx);
1599
1600 efx_for_each_channel(channel, efx) {
1601 if (channel->type->keep_eventq)
1602 efx_fini_eventq(channel);
1603 }
1604
86094f7f 1605 efx->type->irq_disable_non_ev(efx);
d8291187
BH
1606}
1607
8ceee660
BH
1608static void efx_remove_interrupts(struct efx_nic *efx)
1609{
1610 struct efx_channel *channel;
1611
1612 /* Remove MSI/MSI-X interrupts */
64ee3120 1613 efx_for_each_channel(channel, efx)
8ceee660
BH
1614 channel->irq = 0;
1615 pci_disable_msi(efx->pci_dev);
1616 pci_disable_msix(efx->pci_dev);
1617
1618 /* Remove legacy interrupt */
1619 efx->legacy_irq = 0;
1620}
1621
8831da7b 1622static void efx_set_channels(struct efx_nic *efx)
8ceee660 1623{
602a5322
BH
1624 struct efx_channel *channel;
1625 struct efx_tx_queue *tx_queue;
1626
97653431 1627 efx->tx_channel_offset =
b0fbdae1
SS
1628 efx_separate_tx_channels ?
1629 efx->n_channels - efx->n_tx_channels : 0;
602a5322 1630
79d68b37
SH
1631 /* We need to mark which channels really have RX and TX
1632 * queues, and adjust the TX queue numbers if we have separate
602a5322
BH
1633 * RX-only and TX-only channels.
1634 */
1635 efx_for_each_channel(channel, efx) {
79d68b37
SH
1636 if (channel->channel < efx->n_rx_channels)
1637 channel->rx_queue.core_index = channel->channel;
1638 else
1639 channel->rx_queue.core_index = -1;
1640
602a5322
BH
1641 efx_for_each_channel_tx_queue(tx_queue, channel)
1642 tx_queue->queue -= (efx->tx_channel_offset *
1643 EFX_TXQ_TYPES);
1644 }
8ceee660
BH
1645}
1646
1647static int efx_probe_nic(struct efx_nic *efx)
1648{
1649 int rc;
1650
62776d03 1651 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1652
1653 /* Carry out hardware-type specific initialisation */
ef2b90ee 1654 rc = efx->type->probe(efx);
8ceee660
BH
1655 if (rc)
1656 return rc;
1657
b0fbdae1
SS
1658 do {
1659 if (!efx->max_channels || !efx->max_tx_channels) {
1660 netif_err(efx, drv, efx->net_dev,
1661 "Insufficient resources to allocate"
1662 " any channels\n");
1663 rc = -ENOSPC;
1664 goto fail1;
1665 }
8ceee660 1666
b0fbdae1
SS
1667 /* Determine the number of channels and queues by trying
1668 * to hook in MSI-X interrupts.
1669 */
1670 rc = efx_probe_interrupts(efx);
1671 if (rc)
1672 goto fail1;
52ad762b 1673
b0fbdae1
SS
1674 efx_set_channels(efx);
1675
1676 /* dimension_resources can fail with EAGAIN */
1677 rc = efx->type->dimension_resources(efx);
1678 if (rc != 0 && rc != -EAGAIN)
1679 goto fail2;
1680
1681 if (rc == -EAGAIN)
1682 /* try again with new max_channels */
1683 efx_remove_interrupts(efx);
1684
1685 } while (rc == -EAGAIN);
28e47c49 1686
5d3a6fca 1687 if (efx->n_channels > 1)
267c0157
JC
1688 netdev_rss_key_fill(&efx->rx_hash_key,
1689 sizeof(efx->rx_hash_key));
1690 efx_set_default_rx_indir_table(efx);
5d3a6fca 1691
c4f4adc7
BH
1692 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1693 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1694
1695 /* Initialise the interrupt moderation settings */
9e393b30
BH
1696 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1697 true);
8ceee660
BH
1698
1699 return 0;
64d8ad6d 1700
c15eed22
BH
1701fail2:
1702 efx_remove_interrupts(efx);
1703fail1:
64d8ad6d
BH
1704 efx->type->remove(efx);
1705 return rc;
8ceee660
BH
1706}
1707
1708static void efx_remove_nic(struct efx_nic *efx)
1709{
62776d03 1710 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1711
1712 efx_remove_interrupts(efx);
ef2b90ee 1713 efx->type->remove(efx);
8ceee660
BH
1714}
1715
add72477
BH
1716static int efx_probe_filters(struct efx_nic *efx)
1717{
1718 int rc;
1719
1720 spin_lock_init(&efx->filter_lock);
0d322413
EC
1721 init_rwsem(&efx->filter_sem);
1722 down_write(&efx->filter_sem);
add72477
BH
1723 rc = efx->type->filter_table_probe(efx);
1724 if (rc)
0d322413 1725 goto out_unlock;
add72477
BH
1726
1727#ifdef CONFIG_RFS_ACCEL
1728 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1729 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1730 sizeof(*efx->rps_flow_id),
1731 GFP_KERNEL);
1732 if (!efx->rps_flow_id) {
1733 efx->type->filter_table_remove(efx);
0d322413
EC
1734 rc = -ENOMEM;
1735 goto out_unlock;
add72477
BH
1736 }
1737 }
1738#endif
0d322413
EC
1739out_unlock:
1740 up_write(&efx->filter_sem);
1741 return rc;
add72477
BH
1742}
1743
1744static void efx_remove_filters(struct efx_nic *efx)
1745{
1746#ifdef CONFIG_RFS_ACCEL
1747 kfree(efx->rps_flow_id);
1748#endif
0d322413 1749 down_write(&efx->filter_sem);
add72477 1750 efx->type->filter_table_remove(efx);
0d322413 1751 up_write(&efx->filter_sem);
add72477
BH
1752}
1753
1754static void efx_restore_filters(struct efx_nic *efx)
1755{
0d322413 1756 down_read(&efx->filter_sem);
add72477 1757 efx->type->filter_table_restore(efx);
0d322413 1758 up_read(&efx->filter_sem);
add72477
BH
1759}
1760
8ceee660
BH
1761/**************************************************************************
1762 *
1763 * NIC startup/shutdown
1764 *
1765 *************************************************************************/
1766
1767static int efx_probe_all(struct efx_nic *efx)
1768{
8ceee660
BH
1769 int rc;
1770
8ceee660
BH
1771 rc = efx_probe_nic(efx);
1772 if (rc) {
62776d03 1773 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1774 goto fail1;
1775 }
1776
8ceee660
BH
1777 rc = efx_probe_port(efx);
1778 if (rc) {
62776d03 1779 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1780 goto fail2;
1781 }
1782
7e6d06f0
BH
1783 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1784 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1785 rc = -EINVAL;
1786 goto fail3;
1787 }
ecc910f5 1788 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
8ceee660 1789
6d8aaaf6
DP
1790#ifdef CONFIG_SFC_SRIOV
1791 rc = efx->type->vswitching_probe(efx);
1792 if (rc) /* not fatal; the PF will still work fine */
1793 netif_warn(efx, probe, efx->net_dev,
1794 "failed to setup vswitching rc=%d;"
1795 " VFs may not function\n", rc);
1796#endif
1797
64eebcfd
BH
1798 rc = efx_probe_filters(efx);
1799 if (rc) {
1800 netif_err(efx, probe, efx->net_dev,
1801 "failed to create filter tables\n");
6d8aaaf6 1802 goto fail4;
64eebcfd
BH
1803 }
1804
7f967c01
BH
1805 rc = efx_probe_channels(efx);
1806 if (rc)
6d8aaaf6 1807 goto fail5;
7f967c01 1808
8ceee660
BH
1809 return 0;
1810
6d8aaaf6 1811 fail5:
7f967c01 1812 efx_remove_filters(efx);
6d8aaaf6
DP
1813 fail4:
1814#ifdef CONFIG_SFC_SRIOV
1815 efx->type->vswitching_remove(efx);
1816#endif
8ceee660 1817 fail3:
8ceee660
BH
1818 efx_remove_port(efx);
1819 fail2:
1820 efx_remove_nic(efx);
1821 fail1:
1822 return rc;
1823}
1824
8b7325b4
BH
1825/* If the interface is supposed to be running but is not, start
1826 * the hardware and software data path, regular activity for the port
1827 * (MAC statistics, link polling, etc.) and schedule the port to be
1828 * reconfigured. Interrupts must already be enabled. This function
1829 * is safe to call multiple times, so long as the NIC is not disabled.
1830 * Requires the RTNL lock.
9f2cb71c 1831 */
8ceee660
BH
1832static void efx_start_all(struct efx_nic *efx)
1833{
8ceee660 1834 EFX_ASSERT_RESET_SERIALISED(efx);
8b7325b4 1835 BUG_ON(efx->state == STATE_DISABLED);
8ceee660
BH
1836
1837 /* Check that it is appropriate to restart the interface. All
1838 * of these flags are safe to read under just the rtnl lock */
e283546c
EC
1839 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1840 efx->reset_pending)
8ceee660
BH
1841 return;
1842
8ceee660 1843 efx_start_port(efx);
9f2cb71c 1844 efx_start_datapath(efx);
8880f4ec 1845
626950db
AR
1846 /* Start the hardware monitor if there is one */
1847 if (efx->type->monitor != NULL)
8ceee660
BH
1848 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1849 efx_monitor_interval);
626950db
AR
1850
1851 /* If link state detection is normally event-driven, we have
1852 * to poll now because we could have missed a change
1853 */
1854 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
78c1f0a0
SH
1855 mutex_lock(&efx->mac_lock);
1856 if (efx->phy_op->poll(efx))
1857 efx_link_status_changed(efx);
1858 mutex_unlock(&efx->mac_lock);
1859 }
55edc6e6 1860
ef2b90ee 1861 efx->type->start_stats(efx);
f8f3b5ae
JC
1862 efx->type->pull_stats(efx);
1863 spin_lock_bh(&efx->stats_lock);
1864 efx->type->update_stats(efx, NULL, NULL);
1865 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1866}
1867
8b7325b4
BH
1868/* Quiesce the hardware and software data path, and regular activity
1869 * for the port without bringing the link down. Safe to call multiple
1870 * times with the NIC in almost any state, but interrupts should be
1871 * enabled. Requires the RTNL lock.
1872 */
8ceee660
BH
1873static void efx_stop_all(struct efx_nic *efx)
1874{
8ceee660
BH
1875 EFX_ASSERT_RESET_SERIALISED(efx);
1876
1877 /* port_enabled can be read safely under the rtnl lock */
1878 if (!efx->port_enabled)
1879 return;
1880
f8f3b5ae
JC
1881 /* update stats before we go down so we can accurately count
1882 * rx_nodesc_drops
1883 */
1884 efx->type->pull_stats(efx);
1885 spin_lock_bh(&efx->stats_lock);
1886 efx->type->update_stats(efx, NULL, NULL);
1887 spin_unlock_bh(&efx->stats_lock);
ef2b90ee 1888 efx->type->stop_stats(efx);
8ceee660
BH
1889 efx_stop_port(efx);
1890
29c69a48
BH
1891 /* Stop the kernel transmit interface. This is only valid if
1892 * the device is stopped or detached; otherwise the watchdog
1893 * may fire immediately.
1894 */
1895 WARN_ON(netif_running(efx->net_dev) &&
1896 netif_device_present(efx->net_dev));
9f2cb71c
BH
1897 netif_tx_disable(efx->net_dev);
1898
1899 efx_stop_datapath(efx);
8ceee660
BH
1900}
1901
1902static void efx_remove_all(struct efx_nic *efx)
1903{
4642610c 1904 efx_remove_channels(efx);
7f967c01 1905 efx_remove_filters(efx);
6d8aaaf6
DP
1906#ifdef CONFIG_SFC_SRIOV
1907 efx->type->vswitching_remove(efx);
1908#endif
8ceee660
BH
1909 efx_remove_port(efx);
1910 efx_remove_nic(efx);
1911}
1912
8ceee660
BH
1913/**************************************************************************
1914 *
1915 * Interrupt moderation
1916 *
1917 **************************************************************************/
1918
cc180b69 1919static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1920{
b548f976
BH
1921 if (usecs == 0)
1922 return 0;
cc180b69 1923 if (usecs * 1000 < quantum_ns)
0d86ebd8 1924 return 1; /* never round down to 0 */
cc180b69 1925 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1926}
1927
8ceee660 1928/* Set interrupt moderation parameters */
9e393b30
BH
1929int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1930 unsigned int rx_usecs, bool rx_adaptive,
1931 bool rx_may_override_tx)
8ceee660 1932{
f7d12cdc 1933 struct efx_channel *channel;
cc180b69
BH
1934 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1935 efx->timer_quantum_ns,
1936 1000);
1937 unsigned int tx_ticks;
1938 unsigned int rx_ticks;
8ceee660
BH
1939
1940 EFX_ASSERT_RESET_SERIALISED(efx);
1941
cc180b69 1942 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1943 return -EINVAL;
1944
cc180b69
BH
1945 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1946 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1947
9e393b30
BH
1948 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1949 !rx_may_override_tx) {
1950 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1951 "RX and TX IRQ moderation must be equal\n");
1952 return -EINVAL;
1953 }
1954
6fb70fd1 1955 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1956 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1957 efx_for_each_channel(channel, efx) {
525da907 1958 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1959 channel->irq_moderation = rx_ticks;
525da907 1960 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1961 channel->irq_moderation = tx_ticks;
1962 }
9e393b30
BH
1963
1964 return 0;
8ceee660
BH
1965}
1966
a0c4faf5
BH
1967void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1968 unsigned int *rx_usecs, bool *rx_adaptive)
1969{
cc180b69
BH
1970 /* We must round up when converting ticks to microseconds
1971 * because we round down when converting the other way.
1972 */
1973
a0c4faf5 1974 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1975 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1976 efx->timer_quantum_ns,
1977 1000);
a0c4faf5
BH
1978
1979 /* If channels are shared between RX and TX, so is IRQ
1980 * moderation. Otherwise, IRQ moderation is the same for all
1981 * TX channels and is not adaptive.
1982 */
1983 if (efx->tx_channel_offset == 0)
1984 *tx_usecs = *rx_usecs;
1985 else
cc180b69 1986 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1987 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1988 efx->timer_quantum_ns,
1989 1000);
a0c4faf5
BH
1990}
1991
8ceee660
BH
1992/**************************************************************************
1993 *
1994 * Hardware monitor
1995 *
1996 **************************************************************************/
1997
e254c274 1998/* Run periodically off the general workqueue */
8ceee660
BH
1999static void efx_monitor(struct work_struct *data)
2000{
2001 struct efx_nic *efx = container_of(data, struct efx_nic,
2002 monitor_work.work);
8ceee660 2003
62776d03
BH
2004 netif_vdbg(efx, timer, efx->net_dev,
2005 "hardware monitor executing on CPU %d\n",
2006 raw_smp_processor_id());
ef2b90ee 2007 BUG_ON(efx->type->monitor == NULL);
8ceee660 2008
8ceee660
BH
2009 /* If the mac_lock is already held then it is likely a port
2010 * reconfiguration is already in place, which will likely do
e254c274
BH
2011 * most of the work of monitor() anyway. */
2012 if (mutex_trylock(&efx->mac_lock)) {
2013 if (efx->port_enabled)
2014 efx->type->monitor(efx);
2015 mutex_unlock(&efx->mac_lock);
2016 }
8ceee660 2017
8ceee660
BH
2018 queue_delayed_work(efx->workqueue, &efx->monitor_work,
2019 efx_monitor_interval);
2020}
2021
2022/**************************************************************************
2023 *
2024 * ioctls
2025 *
2026 *************************************************************************/
2027
2028/* Net device ioctl
2029 * Context: process, rtnl_lock() held.
2030 */
2031static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2032{
767e468c 2033 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 2034 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660 2035
7c236c43 2036 if (cmd == SIOCSHWTSTAMP)
433dc9b3
BH
2037 return efx_ptp_set_ts_config(efx, ifr);
2038 if (cmd == SIOCGHWTSTAMP)
2039 return efx_ptp_get_ts_config(efx, ifr);
7c236c43 2040
68e7f45e
BH
2041 /* Convert phy_id from older PRTAD/DEVAD format */
2042 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2043 (data->phy_id & 0xfc00) == 0x0400)
2044 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2045
2046 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
2047}
2048
2049/**************************************************************************
2050 *
2051 * NAPI interface
2052 *
2053 **************************************************************************/
2054
7f967c01
BH
2055static void efx_init_napi_channel(struct efx_channel *channel)
2056{
2057 struct efx_nic *efx = channel->efx;
2058
2059 channel->napi_dev = efx->net_dev;
2060 netif_napi_add(channel->napi_dev, &channel->napi_str,
2061 efx_poll, napi_weight);
36763266 2062 napi_hash_add(&channel->napi_str);
c0f9c7e4 2063 efx_channel_busy_poll_init(channel);
7f967c01
BH
2064}
2065
e8f14992 2066static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
2067{
2068 struct efx_channel *channel;
8ceee660 2069
7f967c01
BH
2070 efx_for_each_channel(channel, efx)
2071 efx_init_napi_channel(channel);
e8f14992
BH
2072}
2073
2074static void efx_fini_napi_channel(struct efx_channel *channel)
2075{
36763266 2076 if (channel->napi_dev) {
e8f14992 2077 netif_napi_del(&channel->napi_str);
36763266
AR
2078 napi_hash_del(&channel->napi_str);
2079 }
e8f14992 2080 channel->napi_dev = NULL;
8ceee660
BH
2081}
2082
2083static void efx_fini_napi(struct efx_nic *efx)
2084{
2085 struct efx_channel *channel;
2086
e8f14992
BH
2087 efx_for_each_channel(channel, efx)
2088 efx_fini_napi_channel(channel);
8ceee660
BH
2089}
2090
2091/**************************************************************************
2092 *
2093 * Kernel netpoll interface
2094 *
2095 *************************************************************************/
2096
2097#ifdef CONFIG_NET_POLL_CONTROLLER
2098
2099/* Although in the common case interrupts will be disabled, this is not
2100 * guaranteed. However, all our work happens inside the NAPI callback,
2101 * so no locking is required.
2102 */
2103static void efx_netpoll(struct net_device *net_dev)
2104{
767e468c 2105 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
2106 struct efx_channel *channel;
2107
64ee3120 2108 efx_for_each_channel(channel, efx)
8ceee660
BH
2109 efx_schedule_channel(channel);
2110}
2111
2112#endif
2113
36763266
AR
2114#ifdef CONFIG_NET_RX_BUSY_POLL
2115static int efx_busy_poll(struct napi_struct *napi)
2116{
2117 struct efx_channel *channel =
2118 container_of(napi, struct efx_channel, napi_str);
2119 struct efx_nic *efx = channel->efx;
2120 int budget = 4;
2121 int old_rx_packets, rx_packets;
2122
2123 if (!netif_running(efx->net_dev))
2124 return LL_FLUSH_FAILED;
2125
c0f9c7e4 2126 if (!efx_channel_try_lock_poll(channel))
36763266
AR
2127 return LL_FLUSH_BUSY;
2128
2129 old_rx_packets = channel->rx_queue.rx_packets;
2130 efx_process_channel(channel, budget);
2131
2132 rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2133
2134 /* There is no race condition with NAPI here.
2135 * NAPI will automatically be rescheduled if it yielded during busy
2136 * polling, because it was not able to take the lock and thus returned
2137 * the full budget.
2138 */
2139 efx_channel_unlock_poll(channel);
2140
2141 return rx_packets;
2142}
2143#endif
2144
8ceee660
BH
2145/**************************************************************************
2146 *
2147 * Kernel net device interface
2148 *
2149 *************************************************************************/
2150
2151/* Context: process, rtnl_lock() held. */
e340be92 2152int efx_net_open(struct net_device *net_dev)
8ceee660 2153{
767e468c 2154 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4
BH
2155 int rc;
2156
62776d03
BH
2157 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2158 raw_smp_processor_id());
8ceee660 2159
8b7325b4
BH
2160 rc = efx_check_disabled(efx);
2161 if (rc)
2162 return rc;
f8b87c17
BH
2163 if (efx->phy_mode & PHY_MODE_SPECIAL)
2164 return -EBUSY;
8880f4ec
BH
2165 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2166 return -EIO;
f8b87c17 2167
78c1f0a0
SH
2168 /* Notify the kernel of the link state polled during driver load,
2169 * before the monitor starts running */
2170 efx_link_status_changed(efx);
2171
8ceee660 2172 efx_start_all(efx);
dd40781e 2173 efx_selftest_async_start(efx);
8ceee660
BH
2174 return 0;
2175}
2176
2177/* Context: process, rtnl_lock() held.
2178 * Note that the kernel will ignore our return code; this method
2179 * should really be a void.
2180 */
e340be92 2181int efx_net_stop(struct net_device *net_dev)
8ceee660 2182{
767e468c 2183 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2184
62776d03
BH
2185 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2186 raw_smp_processor_id());
8ceee660 2187
8b7325b4
BH
2188 /* Stop the device and flush all the channels */
2189 efx_stop_all(efx);
8ceee660
BH
2190
2191 return 0;
2192}
2193
5b9e207c 2194/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
2195static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2196 struct rtnl_link_stats64 *stats)
8ceee660 2197{
767e468c 2198 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2199
55edc6e6 2200 spin_lock_bh(&efx->stats_lock);
cd0ecc9a 2201 efx->type->update_stats(efx, NULL, stats);
1cb34522
BH
2202 spin_unlock_bh(&efx->stats_lock);
2203
8ceee660
BH
2204 return stats;
2205}
2206
2207/* Context: netif_tx_lock held, BHs disabled. */
2208static void efx_watchdog(struct net_device *net_dev)
2209{
767e468c 2210 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2211
62776d03
BH
2212 netif_err(efx, tx_err, efx->net_dev,
2213 "TX stuck with port_enabled=%d: resetting channels\n",
2214 efx->port_enabled);
8ceee660 2215
739bb23d 2216 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
2217}
2218
2219
2220/* Context: process, rtnl_lock() held. */
2221static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2222{
767e468c 2223 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4 2224 int rc;
8ceee660 2225
8b7325b4
BH
2226 rc = efx_check_disabled(efx);
2227 if (rc)
2228 return rc;
8ceee660
BH
2229 if (new_mtu > EFX_MAX_MTU)
2230 return -EINVAL;
2231
62776d03 2232 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660 2233
29c69a48
BH
2234 efx_device_detach_sync(efx);
2235 efx_stop_all(efx);
2236
d3245b28 2237 mutex_lock(&efx->mac_lock);
8ceee660 2238 net_dev->mtu = new_mtu;
0d322413 2239 efx_mac_reconfigure(efx);
d3245b28
BH
2240 mutex_unlock(&efx->mac_lock);
2241
8ceee660 2242 efx_start_all(efx);
29c69a48 2243 netif_device_attach(efx->net_dev);
6c8eef4a 2244 return 0;
8ceee660
BH
2245}
2246
2247static int efx_set_mac_address(struct net_device *net_dev, void *data)
2248{
767e468c 2249 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2250 struct sockaddr *addr = data;
e0b3ae30 2251 u8 *new_addr = addr->sa_data;
cfc77c2f
SS
2252 u8 old_addr[6];
2253 int rc;
8ceee660 2254
8ceee660 2255 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
2256 netif_err(efx, drv, efx->net_dev,
2257 "invalid ethernet MAC address requested: %pM\n",
2258 new_addr);
504f9b5a 2259 return -EADDRNOTAVAIL;
8ceee660
BH
2260 }
2261
cfc77c2f
SS
2262 /* save old address */
2263 ether_addr_copy(old_addr, net_dev->dev_addr);
cd84ff4d 2264 ether_addr_copy(net_dev->dev_addr, new_addr);
910c8789
SS
2265 if (efx->type->set_mac_address) {
2266 rc = efx->type->set_mac_address(efx);
cfc77c2f
SS
2267 if (rc) {
2268 ether_addr_copy(net_dev->dev_addr, old_addr);
2269 return rc;
2270 }
2271 }
8ceee660
BH
2272
2273 /* Reconfigure the MAC */
d3245b28 2274 mutex_lock(&efx->mac_lock);
0d322413 2275 efx_mac_reconfigure(efx);
d3245b28 2276 mutex_unlock(&efx->mac_lock);
8ceee660
BH
2277
2278 return 0;
2279}
2280
a816f75a 2281/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 2282static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 2283{
767e468c 2284 struct efx_nic *efx = netdev_priv(net_dev);
a816f75a 2285
8be4f3e6
BH
2286 if (efx->port_enabled)
2287 queue_work(efx->workqueue, &efx->mac_work);
2288 /* Otherwise efx_start_port() will do this */
8ceee660
BH
2289}
2290
c8f44aff 2291static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
2292{
2293 struct efx_nic *efx = netdev_priv(net_dev);
2294
2295 /* If disabling RX n-tuple filtering, clear existing filters */
2296 if (net_dev->features & ~data & NETIF_F_NTUPLE)
fbd79120 2297 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
abfe9039
BH
2298
2299 return 0;
2300}
2301
7fa8d547 2302static const struct net_device_ops efx_netdev_ops = {
c3ecb9f3
SH
2303 .ndo_open = efx_net_open,
2304 .ndo_stop = efx_net_stop,
4472702e 2305 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
2306 .ndo_tx_timeout = efx_watchdog,
2307 .ndo_start_xmit = efx_hard_start_xmit,
2308 .ndo_validate_addr = eth_validate_addr,
2309 .ndo_do_ioctl = efx_ioctl,
2310 .ndo_change_mtu = efx_change_mtu,
2311 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 2312 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 2313 .ndo_set_features = efx_set_features,
cd2d5b52 2314#ifdef CONFIG_SFC_SRIOV
7fa8d547
SS
2315 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2316 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2317 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2318 .ndo_get_vf_config = efx_sriov_get_vf_config,
4392dc69 2319 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
1d051e00 2320 .ndo_get_phys_port_id = efx_sriov_get_phys_port_id,
cd2d5b52 2321#endif
c3ecb9f3
SH
2322#ifdef CONFIG_NET_POLL_CONTROLLER
2323 .ndo_poll_controller = efx_netpoll,
2324#endif
94b274bf 2325 .ndo_setup_tc = efx_setup_tc,
36763266
AR
2326#ifdef CONFIG_NET_RX_BUSY_POLL
2327 .ndo_busy_poll = efx_busy_poll,
2328#endif
64d8ad6d
BH
2329#ifdef CONFIG_RFS_ACCEL
2330 .ndo_rx_flow_steer = efx_filter_rfs,
2331#endif
c3ecb9f3
SH
2332};
2333
7dde596e
BH
2334static void efx_update_name(struct efx_nic *efx)
2335{
2336 strcpy(efx->name, efx->net_dev->name);
2337 efx_mtd_rename(efx);
2338 efx_set_channel_names(efx);
2339}
2340
8ceee660
BH
2341static int efx_netdev_event(struct notifier_block *this,
2342 unsigned long event, void *ptr)
2343{
351638e7 2344 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
8ceee660 2345
7fa8d547 2346 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
7dde596e
BH
2347 event == NETDEV_CHANGENAME)
2348 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
2349
2350 return NOTIFY_DONE;
2351}
2352
2353static struct notifier_block efx_netdev_notifier = {
2354 .notifier_call = efx_netdev_event,
2355};
2356
06d5e193
BH
2357static ssize_t
2358show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2359{
2360 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2361 return sprintf(buf, "%d\n", efx->phy_type);
2362}
776fbcc9 2363static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
06d5e193 2364
e7fef9b4
EC
2365#ifdef CONFIG_SFC_MCDI_LOGGING
2366static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2367 char *buf)
2368{
2369 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2370 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2371
2372 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2373}
2374static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2375 const char *buf, size_t count)
2376{
2377 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2378 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2379 bool enable = count > 0 && *buf != '0';
2380
2381 mcdi->logging_enabled = enable;
2382 return count;
2383}
2384static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2385#endif
2386
8ceee660
BH
2387static int efx_register_netdev(struct efx_nic *efx)
2388{
2389 struct net_device *net_dev = efx->net_dev;
c04bfc6b 2390 struct efx_channel *channel;
8ceee660
BH
2391 int rc;
2392
2393 net_dev->watchdog_timeo = 5 * HZ;
2394 net_dev->irq = efx->pci_dev->irq;
7fa8d547
SS
2395 net_dev->netdev_ops = &efx_netdev_ops;
2396 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
8127d661 2397 net_dev->priv_flags |= IFF_UNICAST_FLT;
7ad24ea4 2398 net_dev->ethtool_ops = &efx_ethtool_ops;
7e6d06f0 2399 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
8ceee660 2400
7dde596e 2401 rtnl_lock();
aed0628d 2402
7153f623
BH
2403 /* Enable resets to be scheduled and check whether any were
2404 * already requested. If so, the NIC is probably hosed so we
2405 * abort.
2406 */
2407 efx->state = STATE_READY;
2408 smp_mb(); /* ensure we change state before checking reset_pending */
2409 if (efx->reset_pending) {
2410 netif_err(efx, probe, efx->net_dev,
2411 "aborting probe due to scheduled reset\n");
2412 rc = -EIO;
2413 goto fail_locked;
2414 }
2415
aed0628d
BH
2416 rc = dev_alloc_name(net_dev, net_dev->name);
2417 if (rc < 0)
2418 goto fail_locked;
7dde596e 2419 efx_update_name(efx);
aed0628d 2420
8f8b3d51
BH
2421 /* Always start with carrier off; PHY events will detect the link */
2422 netif_carrier_off(net_dev);
2423
aed0628d
BH
2424 rc = register_netdevice(net_dev);
2425 if (rc)
2426 goto fail_locked;
2427
c04bfc6b
BH
2428 efx_for_each_channel(channel, efx) {
2429 struct efx_tx_queue *tx_queue;
60031fcc
BH
2430 efx_for_each_channel_tx_queue(tx_queue, channel)
2431 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
2432 }
2433
0bcf4a64
BH
2434 efx_associate(efx);
2435
7dde596e 2436 rtnl_unlock();
8ceee660 2437
06d5e193
BH
2438 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2439 if (rc) {
62776d03
BH
2440 netif_err(efx, drv, efx->net_dev,
2441 "failed to init net dev attributes\n");
06d5e193
BH
2442 goto fail_registered;
2443 }
e7fef9b4
EC
2444#ifdef CONFIG_SFC_MCDI_LOGGING
2445 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2446 if (rc) {
2447 netif_err(efx, drv, efx->net_dev,
2448 "failed to init net dev attributes\n");
2449 goto fail_attr_mcdi_logging;
2450 }
2451#endif
06d5e193 2452
8ceee660 2453 return 0;
06d5e193 2454
e7fef9b4
EC
2455#ifdef CONFIG_SFC_MCDI_LOGGING
2456fail_attr_mcdi_logging:
2457 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2458#endif
7153f623
BH
2459fail_registered:
2460 rtnl_lock();
0bcf4a64 2461 efx_dissociate(efx);
7153f623 2462 unregister_netdevice(net_dev);
aed0628d 2463fail_locked:
7153f623 2464 efx->state = STATE_UNINIT;
aed0628d 2465 rtnl_unlock();
62776d03 2466 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d 2467 return rc;
8ceee660
BH
2468}
2469
2470static void efx_unregister_netdev(struct efx_nic *efx)
2471{
8ceee660
BH
2472 if (!efx->net_dev)
2473 return;
2474
767e468c 2475 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660 2476
e7fef9b4
EC
2477 if (efx_dev_registered(efx)) {
2478 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2479#ifdef CONFIG_SFC_MCDI_LOGGING
2480 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2481#endif
2482 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2483 unregister_netdev(efx->net_dev);
2484 }
8ceee660
BH
2485}
2486
2487/**************************************************************************
2488 *
2489 * Device reset and suspend
2490 *
2491 **************************************************************************/
2492
2467ca46
BH
2493/* Tears down the entire software state and most of the hardware state
2494 * before reset. */
d3245b28 2495void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2496{
8ceee660
BH
2497 EFX_ASSERT_RESET_SERIALISED(efx);
2498
e283546c
EC
2499 if (method == RESET_TYPE_MCDI_TIMEOUT)
2500 efx->type->prepare_flr(efx);
2501
2467ca46 2502 efx_stop_all(efx);
d8291187 2503 efx_disable_interrupts(efx);
5642ceef
BH
2504
2505 mutex_lock(&efx->mac_lock);
087e9025
JC
2506 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2507 method != RESET_TYPE_DATAPATH)
4b988280 2508 efx->phy_op->fini(efx);
ef2b90ee 2509 efx->type->fini(efx);
8ceee660
BH
2510}
2511
2467ca46
BH
2512/* This function will always ensure that the locks acquired in
2513 * efx_reset_down() are released. A failure return code indicates
2514 * that we were unable to reinitialise the hardware, and the
2515 * driver should be disabled. If ok is false, then the rx and tx
2516 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2517int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2518{
2519 int rc;
2520
2467ca46 2521 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2522
e283546c
EC
2523 if (method == RESET_TYPE_MCDI_TIMEOUT)
2524 efx->type->finish_flr(efx);
2525
2526 /* Ensure that SRAM is initialised even if we're disabling the device */
ef2b90ee 2527 rc = efx->type->init(efx);
8ceee660 2528 if (rc) {
62776d03 2529 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2530 goto fail;
8ceee660
BH
2531 }
2532
eb9f6744
BH
2533 if (!ok)
2534 goto fail;
2535
087e9025
JC
2536 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2537 method != RESET_TYPE_DATAPATH) {
eb9f6744
BH
2538 rc = efx->phy_op->init(efx);
2539 if (rc)
2540 goto fail;
267d9d73
EC
2541 rc = efx->phy_op->reconfigure(efx);
2542 if (rc && rc != -EPERM)
62776d03
BH
2543 netif_err(efx, drv, efx->net_dev,
2544 "could not restore PHY settings\n");
4b988280
SH
2545 }
2546
261e4d96
JC
2547 rc = efx_enable_interrupts(efx);
2548 if (rc)
2549 goto fail;
6d8aaaf6
DP
2550
2551#ifdef CONFIG_SFC_SRIOV
2552 rc = efx->type->vswitching_restore(efx);
2553 if (rc) /* not fatal; the PF will still work fine */
2554 netif_warn(efx, probe, efx->net_dev,
2555 "failed to restore vswitching rc=%d;"
2556 " VFs may not function\n", rc);
2557#endif
2558
0d322413 2559 down_read(&efx->filter_sem);
64eebcfd 2560 efx_restore_filters(efx);
0d322413 2561 up_read(&efx->filter_sem);
7fa8d547
SS
2562 if (efx->type->sriov_reset)
2563 efx->type->sriov_reset(efx);
eb9f6744 2564
eb9f6744
BH
2565 mutex_unlock(&efx->mac_lock);
2566
2567 efx_start_all(efx);
2568
2569 return 0;
2570
2571fail:
2572 efx->port_initialized = false;
2467ca46
BH
2573
2574 mutex_unlock(&efx->mac_lock);
2575
8ceee660
BH
2576 return rc;
2577}
2578
eb9f6744
BH
2579/* Reset the NIC using the specified method. Note that the reset may
2580 * fail, in which case the card will be left in an unusable state.
8ceee660 2581 *
eb9f6744 2582 * Caller must hold the rtnl_lock.
8ceee660 2583 */
eb9f6744 2584int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2585{
eb9f6744
BH
2586 int rc, rc2;
2587 bool disabled;
8ceee660 2588
62776d03
BH
2589 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2590 RESET_TYPE(method));
8ceee660 2591
c2f3b8e3 2592 efx_device_detach_sync(efx);
d3245b28 2593 efx_reset_down(efx, method);
8ceee660 2594
ef2b90ee 2595 rc = efx->type->reset(efx, method);
8ceee660 2596 if (rc) {
62776d03 2597 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2598 goto out;
8ceee660
BH
2599 }
2600
a7d529ae
BH
2601 /* Clear flags for the scopes we covered. We assume the NIC and
2602 * driver are now quiescent so that there is no race here.
2603 */
e283546c
EC
2604 if (method < RESET_TYPE_MAX_METHOD)
2605 efx->reset_pending &= -(1 << (method + 1));
2606 else /* it doesn't fit into the well-ordered scope hierarchy */
2607 __clear_bit(method, &efx->reset_pending);
8ceee660
BH
2608
2609 /* Reinitialise bus-mastering, which may have been turned off before
2610 * the reset was scheduled. This is still appropriate, even in the
2611 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2612 * can respond to requests. */
2613 pci_set_master(efx->pci_dev);
2614
eb9f6744 2615out:
8ceee660 2616 /* Leave device stopped if necessary */
626950db
AR
2617 disabled = rc ||
2618 method == RESET_TYPE_DISABLE ||
2619 method == RESET_TYPE_RECOVER_OR_DISABLE;
eb9f6744
BH
2620 rc2 = efx_reset_up(efx, method, !disabled);
2621 if (rc2) {
2622 disabled = true;
2623 if (!rc)
2624 rc = rc2;
8ceee660
BH
2625 }
2626
eb9f6744 2627 if (disabled) {
f49a4589 2628 dev_close(efx->net_dev);
62776d03 2629 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2630 efx->state = STATE_DISABLED;
f4bd954e 2631 } else {
62776d03 2632 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2633 netif_device_attach(efx->net_dev);
f4bd954e 2634 }
8ceee660
BH
2635 return rc;
2636}
2637
626950db
AR
2638/* Try recovery mechanisms.
2639 * For now only EEH is supported.
2640 * Returns 0 if the recovery mechanisms are unsuccessful.
2641 * Returns a non-zero value otherwise.
2642 */
b28405b0 2643int efx_try_recovery(struct efx_nic *efx)
626950db
AR
2644{
2645#ifdef CONFIG_EEH
2646 /* A PCI error can occur and not be seen by EEH because nothing
2647 * happens on the PCI bus. In this case the driver may fail and
2648 * schedule a 'recover or reset', leading to this recovery handler.
2649 * Manually call the eeh failure check function.
2650 */
12a89dba 2651 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
626950db
AR
2652 if (eeh_dev_check_failure(eehdev)) {
2653 /* The EEH mechanisms will handle the error and reset the
2654 * device if necessary.
2655 */
2656 return 1;
2657 }
2658#endif
2659 return 0;
2660}
2661
74cd60a4
JC
2662static void efx_wait_for_bist_end(struct efx_nic *efx)
2663{
2664 int i;
2665
2666 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2667 if (efx_mcdi_poll_reboot(efx))
2668 goto out;
2669 msleep(BIST_WAIT_DELAY_MS);
2670 }
2671
2672 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2673out:
2674 /* Either way unset the BIST flag. If we found no reboot we probably
2675 * won't recover, but we should try.
2676 */
2677 efx->mc_bist_for_other_fn = false;
2678}
2679
8ceee660
BH
2680/* The worker thread exists so that code that cannot sleep can
2681 * schedule a reset for later.
2682 */
2683static void efx_reset_work(struct work_struct *data)
2684{
eb9f6744 2685 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
626950db
AR
2686 unsigned long pending;
2687 enum reset_type method;
2688
2689 pending = ACCESS_ONCE(efx->reset_pending);
2690 method = fls(pending) - 1;
2691
74cd60a4
JC
2692 if (method == RESET_TYPE_MC_BIST)
2693 efx_wait_for_bist_end(efx);
2694
626950db
AR
2695 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2696 method == RESET_TYPE_RECOVER_OR_ALL) &&
2697 efx_try_recovery(efx))
2698 return;
8ceee660 2699
a7d529ae 2700 if (!pending)
319ba649
SH
2701 return;
2702
eb9f6744 2703 rtnl_lock();
7153f623
BH
2704
2705 /* We checked the state in efx_schedule_reset() but it may
2706 * have changed by now. Now that we have the RTNL lock,
2707 * it cannot change again.
2708 */
2709 if (efx->state == STATE_READY)
626950db 2710 (void)efx_reset(efx, method);
7153f623 2711
eb9f6744 2712 rtnl_unlock();
8ceee660
BH
2713}
2714
2715void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2716{
2717 enum reset_type method;
2718
626950db
AR
2719 if (efx->state == STATE_RECOVERY) {
2720 netif_dbg(efx, drv, efx->net_dev,
2721 "recovering: skip scheduling %s reset\n",
2722 RESET_TYPE(type));
2723 return;
2724 }
2725
8ceee660
BH
2726 switch (type) {
2727 case RESET_TYPE_INVISIBLE:
2728 case RESET_TYPE_ALL:
626950db 2729 case RESET_TYPE_RECOVER_OR_ALL:
8ceee660
BH
2730 case RESET_TYPE_WORLD:
2731 case RESET_TYPE_DISABLE:
626950db 2732 case RESET_TYPE_RECOVER_OR_DISABLE:
087e9025 2733 case RESET_TYPE_DATAPATH:
74cd60a4 2734 case RESET_TYPE_MC_BIST:
e283546c 2735 case RESET_TYPE_MCDI_TIMEOUT:
8ceee660 2736 method = type;
0e2a9c7c
BH
2737 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2738 RESET_TYPE(method));
8ceee660 2739 break;
8ceee660 2740 default:
0e2a9c7c 2741 method = efx->type->map_reset_reason(type);
62776d03
BH
2742 netif_dbg(efx, drv, efx->net_dev,
2743 "scheduling %s reset for %s\n",
2744 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2745 break;
2746 }
8ceee660 2747
a7d529ae 2748 set_bit(method, &efx->reset_pending);
7153f623
BH
2749 smp_mb(); /* ensure we change reset_pending before checking state */
2750
2751 /* If we're not READY then just leave the flags set as the cue
2752 * to abort probing or reschedule the reset later.
2753 */
2754 if (ACCESS_ONCE(efx->state) != STATE_READY)
2755 return;
8ceee660 2756
8880f4ec
BH
2757 /* efx_process_channel() will no longer read events once a
2758 * reset is scheduled. So switch back to poll'd MCDI completions. */
2759 efx_mcdi_mode_poll(efx);
2760
1ab00629 2761 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2762}
2763
2764/**************************************************************************
2765 *
2766 * List of NICs we support
2767 *
2768 **************************************************************************/
2769
2770/* PCI device ID table */
9baa3c34 2771static const struct pci_device_id efx_pci_table[] = {
937383a5
BH
2772 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2773 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2774 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2775 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2776 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2777 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2778 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2779 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2780 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2781 .driver_data = (unsigned long) &siena_a0_nic_type},
8127d661
BH
2782 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2783 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
6f7f8aa6
SS
2784 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
2785 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
3b06a00e
MW
2786 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2787 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
8ceee660
BH
2788 {0} /* end of list */
2789};
2790
2791/**************************************************************************
2792 *
3759433d 2793 * Dummy PHY/MAC operations
8ceee660 2794 *
01aad7b6 2795 * Can be used for some unimplemented operations
8ceee660
BH
2796 * Needed so all function pointers are valid and do not have to be tested
2797 * before use
2798 *
2799 **************************************************************************/
2800int efx_port_dummy_op_int(struct efx_nic *efx)
2801{
2802 return 0;
2803}
2804void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2805
2806static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2807{
2808 return false;
2809}
8ceee660 2810
6c8c2513 2811static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2812 .init = efx_port_dummy_op_int,
d3245b28 2813 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2814 .poll = efx_port_dummy_op_poll,
8ceee660 2815 .fini = efx_port_dummy_op_void,
8ceee660
BH
2816};
2817
8ceee660
BH
2818/**************************************************************************
2819 *
2820 * Data housekeeping
2821 *
2822 **************************************************************************/
2823
2824/* This zeroes out and then fills in the invariants in a struct
2825 * efx_nic (including all sub-structures).
2826 */
adeb15aa 2827static int efx_init_struct(struct efx_nic *efx,
8ceee660
BH
2828 struct pci_dev *pci_dev, struct net_device *net_dev)
2829{
4642610c 2830 int i;
8ceee660
BH
2831
2832 /* Initialise common structures */
0bcf4a64
BH
2833 INIT_LIST_HEAD(&efx->node);
2834 INIT_LIST_HEAD(&efx->secondary_list);
8ceee660 2835 spin_lock_init(&efx->biu_lock);
76884835
BH
2836#ifdef CONFIG_SFC_MTD
2837 INIT_LIST_HEAD(&efx->mtd_list);
2838#endif
8ceee660
BH
2839 INIT_WORK(&efx->reset_work, efx_reset_work);
2840 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
dd40781e 2841 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
8ceee660 2842 efx->pci_dev = pci_dev;
62776d03 2843 efx->msg_enable = debug;
f16aeea0 2844 efx->state = STATE_UNINIT;
8ceee660 2845 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2846
2847 efx->net_dev = net_dev;
43a3739d 2848 efx->rx_prefix_size = efx->type->rx_prefix_size;
2ec03014
AR
2849 efx->rx_ip_align =
2850 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
43a3739d
JC
2851 efx->rx_packet_hash_offset =
2852 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
bd9a265d
JC
2853 efx->rx_packet_ts_offset =
2854 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
8ceee660
BH
2855 spin_lock_init(&efx->stats_lock);
2856 mutex_init(&efx->mac_lock);
2857 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2858 efx->mdio.dev = net_dev;
766ca0fa 2859 INIT_WORK(&efx->mac_work, efx_mac_work);
9f2cb71c 2860 init_waitqueue_head(&efx->flush_wq);
8ceee660
BH
2861
2862 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2863 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2864 if (!efx->channel[i])
2865 goto fail;
d8291187
BH
2866 efx->msi_context[i].efx = efx;
2867 efx->msi_context[i].index = i;
8ceee660
BH
2868 }
2869
8ceee660
BH
2870 /* Higher numbered interrupt modes are less capable! */
2871 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2872 interrupt_mode);
2873
6977dc63
BH
2874 /* Would be good to use the net_dev name, but we're too early */
2875 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2876 pci_name(pci_dev));
2877 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2878 if (!efx->workqueue)
4642610c 2879 goto fail;
8d9853d9 2880
8ceee660 2881 return 0;
4642610c
BH
2882
2883fail:
2884 efx_fini_struct(efx);
2885 return -ENOMEM;
8ceee660
BH
2886}
2887
2888static void efx_fini_struct(struct efx_nic *efx)
2889{
8313aca3
BH
2890 int i;
2891
2892 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2893 kfree(efx->channel[i]);
2894
ef215e64
BH
2895 kfree(efx->vpd_sn);
2896
8ceee660
BH
2897 if (efx->workqueue) {
2898 destroy_workqueue(efx->workqueue);
2899 efx->workqueue = NULL;
2900 }
2901}
2902
e4d112e4
EC
2903void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2904{
2905 u64 n_rx_nodesc_trunc = 0;
2906 struct efx_channel *channel;
2907
2908 efx_for_each_channel(channel, efx)
2909 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2910 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2911 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2912}
2913
8ceee660
BH
2914/**************************************************************************
2915 *
2916 * PCI interface
2917 *
2918 **************************************************************************/
2919
2920/* Main body of final NIC shutdown code
2921 * This is called only at module unload (or hotplug removal).
2922 */
2923static void efx_pci_remove_main(struct efx_nic *efx)
2924{
7153f623
BH
2925 /* Flush reset_work. It can no longer be scheduled since we
2926 * are not READY.
2927 */
2928 BUG_ON(efx->state == STATE_READY);
2929 cancel_work_sync(&efx->reset_work);
2930
d8291187 2931 efx_disable_interrupts(efx);
152b6a62 2932 efx_nic_fini_interrupt(efx);
8ceee660 2933 efx_fini_port(efx);
ef2b90ee 2934 efx->type->fini(efx);
8ceee660
BH
2935 efx_fini_napi(efx);
2936 efx_remove_all(efx);
2937}
2938
2939/* Final NIC shutdown
2a3fc311
DP
2940 * This is called only at module unload (or hotplug removal). A PF can call
2941 * this on its VFs to ensure they are unbound first.
8ceee660
BH
2942 */
2943static void efx_pci_remove(struct pci_dev *pci_dev)
2944{
2945 struct efx_nic *efx;
2946
2947 efx = pci_get_drvdata(pci_dev);
2948 if (!efx)
2949 return;
2950
2951 /* Mark the NIC as fini, then stop the interface */
2952 rtnl_lock();
0bcf4a64 2953 efx_dissociate(efx);
8ceee660 2954 dev_close(efx->net_dev);
d8291187 2955 efx_disable_interrupts(efx);
ea6bb99e 2956 efx->state = STATE_UNINIT;
8ceee660
BH
2957 rtnl_unlock();
2958
7fa8d547
SS
2959 if (efx->type->sriov_fini)
2960 efx->type->sriov_fini(efx);
2961
8ceee660
BH
2962 efx_unregister_netdev(efx);
2963
7dde596e
BH
2964 efx_mtd_remove(efx);
2965
8ceee660
BH
2966 efx_pci_remove_main(efx);
2967
8ceee660 2968 efx_fini_io(efx);
62776d03 2969 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660 2970
8ceee660
BH
2971 efx_fini_struct(efx);
2972 free_netdev(efx->net_dev);
626950db
AR
2973
2974 pci_disable_pcie_error_reporting(pci_dev);
8ceee660
BH
2975};
2976
460eeaa0
BH
2977/* NIC VPD information
2978 * Called during probe to display the part number of the
2979 * installed NIC. VPD is potentially very large but this should
2980 * always appear within the first 512 bytes.
2981 */
2982#define SFC_VPD_LEN 512
ef215e64 2983static void efx_probe_vpd_strings(struct efx_nic *efx)
460eeaa0
BH
2984{
2985 struct pci_dev *dev = efx->pci_dev;
2986 char vpd_data[SFC_VPD_LEN];
2987 ssize_t vpd_size;
ef215e64 2988 int ro_start, ro_size, i, j;
460eeaa0
BH
2989
2990 /* Get the vpd data from the device */
2991 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2992 if (vpd_size <= 0) {
2993 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2994 return;
2995 }
2996
2997 /* Get the Read only section */
ef215e64
BH
2998 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2999 if (ro_start < 0) {
460eeaa0
BH
3000 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3001 return;
3002 }
3003
ef215e64
BH
3004 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3005 j = ro_size;
3006 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
460eeaa0
BH
3007 if (i + j > vpd_size)
3008 j = vpd_size - i;
3009
3010 /* Get the Part number */
3011 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3012 if (i < 0) {
3013 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3014 return;
3015 }
3016
3017 j = pci_vpd_info_field_size(&vpd_data[i]);
3018 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3019 if (i + j > vpd_size) {
3020 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3021 return;
3022 }
3023
3024 netif_info(efx, drv, efx->net_dev,
3025 "Part Number : %.*s\n", j, &vpd_data[i]);
ef215e64
BH
3026
3027 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3028 j = ro_size;
3029 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3030 if (i < 0) {
3031 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3032 return;
3033 }
3034
3035 j = pci_vpd_info_field_size(&vpd_data[i]);
3036 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3037 if (i + j > vpd_size) {
3038 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3039 return;
3040 }
3041
3042 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3043 if (!efx->vpd_sn)
3044 return;
3045
3046 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
460eeaa0
BH
3047}
3048
3049
8ceee660
BH
3050/* Main body of NIC initialisation
3051 * This is called at module load (or hotplug insertion, theoretically).
3052 */
3053static int efx_pci_probe_main(struct efx_nic *efx)
3054{
3055 int rc;
3056
3057 /* Do start-of-day initialisation */
3058 rc = efx_probe_all(efx);
3059 if (rc)
3060 goto fail1;
3061
e8f14992 3062 efx_init_napi(efx);
8ceee660 3063
ef2b90ee 3064 rc = efx->type->init(efx);
8ceee660 3065 if (rc) {
62776d03
BH
3066 netif_err(efx, probe, efx->net_dev,
3067 "failed to initialise NIC\n");
278c0621 3068 goto fail3;
8ceee660
BH
3069 }
3070
3071 rc = efx_init_port(efx);
3072 if (rc) {
62776d03
BH
3073 netif_err(efx, probe, efx->net_dev,
3074 "failed to initialise port\n");
278c0621 3075 goto fail4;
8ceee660
BH
3076 }
3077
152b6a62 3078 rc = efx_nic_init_interrupt(efx);
8ceee660 3079 if (rc)
278c0621 3080 goto fail5;
261e4d96
JC
3081 rc = efx_enable_interrupts(efx);
3082 if (rc)
3083 goto fail6;
8ceee660
BH
3084
3085 return 0;
3086
261e4d96
JC
3087 fail6:
3088 efx_nic_fini_interrupt(efx);
278c0621 3089 fail5:
8ceee660 3090 efx_fini_port(efx);
8ceee660 3091 fail4:
ef2b90ee 3092 efx->type->fini(efx);
8ceee660
BH
3093 fail3:
3094 efx_fini_napi(efx);
8ceee660
BH
3095 efx_remove_all(efx);
3096 fail1:
3097 return rc;
3098}
3099
3100/* NIC initialisation
3101 *
3102 * This is called at module load (or hotplug insertion,
73ba7b68 3103 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
3104 * sets up and registers the network devices with the kernel and hooks
3105 * the interrupt service routine. It does not prepare the device for
3106 * transmission; this is left to the first time one of the network
3107 * interfaces is brought up (i.e. efx_net_open).
3108 */
87d1fc11 3109static int efx_pci_probe(struct pci_dev *pci_dev,
1dd06ae8 3110 const struct pci_device_id *entry)
8ceee660 3111{
8ceee660
BH
3112 struct net_device *net_dev;
3113 struct efx_nic *efx;
fadac6aa 3114 int rc;
8ceee660
BH
3115
3116 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
3117 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3118 EFX_MAX_RX_QUEUES);
8ceee660
BH
3119 if (!net_dev)
3120 return -ENOMEM;
adeb15aa
BH
3121 efx = netdev_priv(net_dev);
3122 efx->type = (const struct efx_nic_type *) entry->driver_data;
3123 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
97bc5415 3124 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 3125 NETIF_F_RXCSUM);
adeb15aa 3126 if (efx->type->offload_features & NETIF_F_V6_CSUM)
738a8f4b 3127 net_dev->features |= NETIF_F_TSO6;
28506563
BH
3128 /* Mask for features that also apply to VLAN devices */
3129 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
3130 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3131 NETIF_F_RXCSUM);
3132 /* All offloads can be toggled */
3133 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
8ceee660 3134 pci_set_drvdata(pci_dev, efx);
62776d03 3135 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
adeb15aa 3136 rc = efx_init_struct(efx, pci_dev, net_dev);
8ceee660
BH
3137 if (rc)
3138 goto fail1;
3139
62776d03 3140 netif_info(efx, probe, efx->net_dev,
ff79c8ac 3141 "Solarflare NIC detected\n");
8ceee660 3142
6f7f8aa6
SS
3143 if (!efx->type->is_vf)
3144 efx_probe_vpd_strings(efx);
460eeaa0 3145
8ceee660
BH
3146 /* Set up basic I/O (BAR mappings etc) */
3147 rc = efx_init_io(efx);
3148 if (rc)
3149 goto fail2;
3150
fadac6aa 3151 rc = efx_pci_probe_main(efx);
fadac6aa
BH
3152 if (rc)
3153 goto fail3;
8ceee660 3154
8ceee660
BH
3155 rc = efx_register_netdev(efx);
3156 if (rc)
fadac6aa 3157 goto fail4;
8ceee660 3158
7fa8d547
SS
3159 if (efx->type->sriov_init) {
3160 rc = efx->type->sriov_init(efx);
3161 if (rc)
3162 netif_err(efx, probe, efx->net_dev,
3163 "SR-IOV can't be enabled rc %d\n", rc);
3164 }
cd2d5b52 3165
62776d03 3166 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5 3167
7c43161c 3168 /* Try to create MTDs, but allow this to fail */
a5211bb5 3169 rtnl_lock();
7c43161c 3170 rc = efx_mtd_probe(efx);
a5211bb5 3171 rtnl_unlock();
7c43161c
BH
3172 if (rc)
3173 netif_warn(efx, probe, efx->net_dev,
3174 "failed to create MTDs (%d)\n", rc);
3175
626950db
AR
3176 rc = pci_enable_pcie_error_reporting(pci_dev);
3177 if (rc && rc != -EINVAL)
3178 netif_warn(efx, probe, efx->net_dev,
3179 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3180
8ceee660
BH
3181 return 0;
3182
8ceee660 3183 fail4:
fadac6aa 3184 efx_pci_remove_main(efx);
8ceee660
BH
3185 fail3:
3186 efx_fini_io(efx);
3187 fail2:
3188 efx_fini_struct(efx);
3189 fail1:
5e2a911c 3190 WARN_ON(rc > 0);
62776d03 3191 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
3192 free_netdev(net_dev);
3193 return rc;
3194}
3195
834e23dd
SS
3196/* efx_pci_sriov_configure returns the actual number of Virtual Functions
3197 * enabled on success
3198 */
3199#ifdef CONFIG_SFC_SRIOV
3200static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3201{
3202 int rc;
3203 struct efx_nic *efx = pci_get_drvdata(dev);
3204
3205 if (efx->type->sriov_configure) {
3206 rc = efx->type->sriov_configure(efx, num_vfs);
3207 if (rc)
3208 return rc;
3209 else
3210 return num_vfs;
3211 } else
3212 return -EOPNOTSUPP;
3213}
3214#endif
3215
89c758fa
BH
3216static int efx_pm_freeze(struct device *dev)
3217{
3218 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3219
61da026d
BH
3220 rtnl_lock();
3221
6032fb56
BH
3222 if (efx->state != STATE_DISABLED) {
3223 efx->state = STATE_UNINIT;
89c758fa 3224
c2f3b8e3 3225 efx_device_detach_sync(efx);
89c758fa 3226
6032fb56 3227 efx_stop_all(efx);
d8291187 3228 efx_disable_interrupts(efx);
6032fb56 3229 }
89c758fa 3230
61da026d
BH
3231 rtnl_unlock();
3232
89c758fa
BH
3233 return 0;
3234}
3235
3236static int efx_pm_thaw(struct device *dev)
3237{
261e4d96 3238 int rc;
89c758fa
BH
3239 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3240
61da026d
BH
3241 rtnl_lock();
3242
6032fb56 3243 if (efx->state != STATE_DISABLED) {
261e4d96
JC
3244 rc = efx_enable_interrupts(efx);
3245 if (rc)
3246 goto fail;
89c758fa 3247
6032fb56
BH
3248 mutex_lock(&efx->mac_lock);
3249 efx->phy_op->reconfigure(efx);
3250 mutex_unlock(&efx->mac_lock);
89c758fa 3251
6032fb56 3252 efx_start_all(efx);
89c758fa 3253
6032fb56 3254 netif_device_attach(efx->net_dev);
89c758fa 3255
6032fb56 3256 efx->state = STATE_READY;
89c758fa 3257
6032fb56
BH
3258 efx->type->resume_wol(efx);
3259 }
89c758fa 3260
61da026d
BH
3261 rtnl_unlock();
3262
319ba649
SH
3263 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3264 queue_work(reset_workqueue, &efx->reset_work);
3265
89c758fa 3266 return 0;
261e4d96
JC
3267
3268fail:
3269 rtnl_unlock();
3270
3271 return rc;
89c758fa
BH
3272}
3273
3274static int efx_pm_poweroff(struct device *dev)
3275{
3276 struct pci_dev *pci_dev = to_pci_dev(dev);
3277 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3278
3279 efx->type->fini(efx);
3280
a7d529ae 3281 efx->reset_pending = 0;
89c758fa
BH
3282
3283 pci_save_state(pci_dev);
3284 return pci_set_power_state(pci_dev, PCI_D3hot);
3285}
3286
3287/* Used for both resume and restore */
3288static int efx_pm_resume(struct device *dev)
3289{
3290 struct pci_dev *pci_dev = to_pci_dev(dev);
3291 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3292 int rc;
3293
3294 rc = pci_set_power_state(pci_dev, PCI_D0);
3295 if (rc)
3296 return rc;
3297 pci_restore_state(pci_dev);
3298 rc = pci_enable_device(pci_dev);
3299 if (rc)
3300 return rc;
3301 pci_set_master(efx->pci_dev);
3302 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3303 if (rc)
3304 return rc;
3305 rc = efx->type->init(efx);
3306 if (rc)
3307 return rc;
261e4d96
JC
3308 rc = efx_pm_thaw(dev);
3309 return rc;
89c758fa
BH
3310}
3311
3312static int efx_pm_suspend(struct device *dev)
3313{
3314 int rc;
3315
3316 efx_pm_freeze(dev);
3317 rc = efx_pm_poweroff(dev);
3318 if (rc)
3319 efx_pm_resume(dev);
3320 return rc;
3321}
3322
18e83e4c 3323static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
3324 .suspend = efx_pm_suspend,
3325 .resume = efx_pm_resume,
3326 .freeze = efx_pm_freeze,
3327 .thaw = efx_pm_thaw,
3328 .poweroff = efx_pm_poweroff,
3329 .restore = efx_pm_resume,
3330};
3331
626950db
AR
3332/* A PCI error affecting this device was detected.
3333 * At this point MMIO and DMA may be disabled.
3334 * Stop the software path and request a slot reset.
3335 */
debd0034 3336static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3337 enum pci_channel_state state)
626950db
AR
3338{
3339 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3340 struct efx_nic *efx = pci_get_drvdata(pdev);
3341
3342 if (state == pci_channel_io_perm_failure)
3343 return PCI_ERS_RESULT_DISCONNECT;
3344
3345 rtnl_lock();
3346
3347 if (efx->state != STATE_DISABLED) {
3348 efx->state = STATE_RECOVERY;
3349 efx->reset_pending = 0;
3350
3351 efx_device_detach_sync(efx);
3352
3353 efx_stop_all(efx);
d8291187 3354 efx_disable_interrupts(efx);
626950db
AR
3355
3356 status = PCI_ERS_RESULT_NEED_RESET;
3357 } else {
3358 /* If the interface is disabled we don't want to do anything
3359 * with it.
3360 */
3361 status = PCI_ERS_RESULT_RECOVERED;
3362 }
3363
3364 rtnl_unlock();
3365
3366 pci_disable_device(pdev);
3367
3368 return status;
3369}
3370
dbedd44e 3371/* Fake a successful reset, which will be performed later in efx_io_resume. */
debd0034 3372static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
626950db
AR
3373{
3374 struct efx_nic *efx = pci_get_drvdata(pdev);
3375 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3376 int rc;
3377
3378 if (pci_enable_device(pdev)) {
3379 netif_err(efx, hw, efx->net_dev,
3380 "Cannot re-enable PCI device after reset.\n");
3381 status = PCI_ERS_RESULT_DISCONNECT;
3382 }
3383
3384 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3385 if (rc) {
3386 netif_err(efx, hw, efx->net_dev,
3387 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3388 /* Non-fatal error. Continue. */
3389 }
3390
3391 return status;
3392}
3393
3394/* Perform the actual reset and resume I/O operations. */
3395static void efx_io_resume(struct pci_dev *pdev)
3396{
3397 struct efx_nic *efx = pci_get_drvdata(pdev);
3398 int rc;
3399
3400 rtnl_lock();
3401
3402 if (efx->state == STATE_DISABLED)
3403 goto out;
3404
3405 rc = efx_reset(efx, RESET_TYPE_ALL);
3406 if (rc) {
3407 netif_err(efx, hw, efx->net_dev,
3408 "efx_reset failed after PCI error (%d)\n", rc);
3409 } else {
3410 efx->state = STATE_READY;
3411 netif_dbg(efx, hw, efx->net_dev,
3412 "Done resetting and resuming IO after PCI error.\n");
3413 }
3414
3415out:
3416 rtnl_unlock();
3417}
3418
3419/* For simplicity and reliability, we always require a slot reset and try to
3420 * reset the hardware when a pci error affecting the device is detected.
3421 * We leave both the link_reset and mmio_enabled callback unimplemented:
3422 * with our request for slot reset the mmio_enabled callback will never be
3423 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3424 */
c300366b 3425static const struct pci_error_handlers efx_err_handlers = {
626950db
AR
3426 .error_detected = efx_io_error_detected,
3427 .slot_reset = efx_io_slot_reset,
3428 .resume = efx_io_resume,
3429};
3430
8ceee660 3431static struct pci_driver efx_pci_driver = {
c5d5f5fd 3432 .name = KBUILD_MODNAME,
8ceee660
BH
3433 .id_table = efx_pci_table,
3434 .probe = efx_pci_probe,
3435 .remove = efx_pci_remove,
89c758fa 3436 .driver.pm = &efx_pm_ops,
626950db 3437 .err_handler = &efx_err_handlers,
834e23dd
SS
3438#ifdef CONFIG_SFC_SRIOV
3439 .sriov_configure = efx_pci_sriov_configure,
3440#endif
8ceee660
BH
3441};
3442
3443/**************************************************************************
3444 *
3445 * Kernel module interface
3446 *
3447 *************************************************************************/
3448
3449module_param(interrupt_mode, uint, 0444);
3450MODULE_PARM_DESC(interrupt_mode,
3451 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3452
3453static int __init efx_init_module(void)
3454{
3455 int rc;
3456
3457 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3458
3459 rc = register_netdevice_notifier(&efx_netdev_notifier);
3460 if (rc)
3461 goto err_notifier;
3462
7fa8d547 3463#ifdef CONFIG_SFC_SRIOV
cd2d5b52
BH
3464 rc = efx_init_sriov();
3465 if (rc)
3466 goto err_sriov;
7fa8d547 3467#endif
cd2d5b52 3468
1ab00629
SH
3469 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3470 if (!reset_workqueue) {
3471 rc = -ENOMEM;
3472 goto err_reset;
3473 }
8ceee660
BH
3474
3475 rc = pci_register_driver(&efx_pci_driver);
3476 if (rc < 0)
3477 goto err_pci;
3478
3479 return 0;
3480
3481 err_pci:
1ab00629
SH
3482 destroy_workqueue(reset_workqueue);
3483 err_reset:
7fa8d547 3484#ifdef CONFIG_SFC_SRIOV
cd2d5b52
BH
3485 efx_fini_sriov();
3486 err_sriov:
7fa8d547 3487#endif
8ceee660
BH
3488 unregister_netdevice_notifier(&efx_netdev_notifier);
3489 err_notifier:
3490 return rc;
3491}
3492
3493static void __exit efx_exit_module(void)
3494{
3495 printk(KERN_INFO "Solarflare NET driver unloading\n");
3496
3497 pci_unregister_driver(&efx_pci_driver);
1ab00629 3498 destroy_workqueue(reset_workqueue);
7fa8d547 3499#ifdef CONFIG_SFC_SRIOV
cd2d5b52 3500 efx_fini_sriov();
7fa8d547 3501#endif
8ceee660
BH
3502 unregister_netdevice_notifier(&efx_netdev_notifier);
3503
3504}
3505
3506module_init(efx_init_module);
3507module_exit(efx_exit_module);
3508
906bb26c
BH
3509MODULE_AUTHOR("Solarflare Communications and "
3510 "Michael Brown <mbrown@fensystems.co.uk>");
6a350fdb 3511MODULE_DESCRIPTION("Solarflare network driver");
8ceee660
BH
3512MODULE_LICENSE("GPL");
3513MODULE_DEVICE_TABLE(pci, efx_pci_table);