]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/sfc/tx.c
sfc: Implement firmware-assisted TSO for EF10
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / sfc / tx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
738a8f4b 15#include <linux/ipv6.h>
5a0e3ad6 16#include <linux/slab.h>
738a8f4b 17#include <net/ipv6.h>
8ceee660
BH
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
20#include "net_driver.h"
8ceee660 21#include "efx.h"
744093c9 22#include "nic.h"
8ceee660 23#include "workarounds.h"
dfa50be9 24#include "ef10_regs.h"
8ceee660 25
4d566063 26static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
c3940999
TH
27 struct efx_tx_buffer *buffer,
28 unsigned int *pkts_compl,
29 unsigned int *bytes_compl)
8ceee660
BH
30{
31 if (buffer->unmap_len) {
0e33d870 32 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
cc12dac2
BH
33 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
34 buffer->unmap_len);
7668ff9c 35 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
36 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
37 DMA_TO_DEVICE);
8ceee660 38 else
0e33d870
BH
39 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
40 DMA_TO_DEVICE);
8ceee660 41 buffer->unmap_len = 0;
8ceee660
BH
42 }
43
7668ff9c 44 if (buffer->flags & EFX_TX_BUF_SKB) {
c3940999
TH
45 (*pkts_compl)++;
46 (*bytes_compl) += buffer->skb->len;
8ceee660 47 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
62776d03
BH
48 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
49 "TX queue %d transmission id %x complete\n",
50 tx_queue->queue, tx_queue->read_count);
f7251a9c
BH
51 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
52 kfree(buffer->heap_buf);
8ceee660 53 }
7668ff9c 54
f7251a9c
BH
55 buffer->len = 0;
56 buffer->flags = 0;
8ceee660
BH
57}
58
b9b39b62 59static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 60 struct sk_buff *skb);
8ceee660 61
63f19884
BH
62static inline unsigned
63efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
64{
65 /* Depending on the NIC revision, we can use descriptor
66 * lengths up to 8K or 8K-1. However, since PCI Express
67 * devices must split read requests at 4K boundaries, there is
68 * little benefit from using descriptors that cross those
69 * boundaries and we keep things simple by not doing so.
70 */
5b6262d0 71 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
63f19884
BH
72
73 /* Work around hardware bug for unaligned buffers. */
74 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
75 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
76
77 return len;
78}
79
7e6d06f0
BH
80unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
81{
82 /* Header and payload descriptor for each output segment, plus
83 * one for every input fragment boundary within a segment
84 */
85 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
86
dfa50be9
BH
87 /* Possibly one more per segment for the alignment workaround,
88 * or for option descriptors
89 */
90 if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
7e6d06f0
BH
91 max_descs += EFX_TSO_MAX_SEGS;
92
93 /* Possibly more for PCIe page boundaries within input fragments */
94 if (PAGE_SIZE > EFX_PAGE_SIZE)
95 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
96 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
97
98 return max_descs;
99}
100
14bf718f
BH
101/* Get partner of a TX queue, seen as part of the same net core queue */
102static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
103{
104 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
105 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
106 else
107 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
108}
109
110static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
111{
112 /* We need to consider both queues that the net core sees as one */
113 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
114 struct efx_nic *efx = txq1->efx;
115 unsigned int fill_level;
116
117 fill_level = max(txq1->insert_count - txq1->old_read_count,
118 txq2->insert_count - txq2->old_read_count);
119 if (likely(fill_level < efx->txq_stop_thresh))
120 return;
121
122 /* We used the stale old_read_count above, which gives us a
123 * pessimistic estimate of the fill level (which may even
124 * validly be >= efx->txq_entries). Now try again using
125 * read_count (more likely to be a cache miss).
126 *
127 * If we read read_count and then conditionally stop the
128 * queue, it is possible for the completion path to race with
129 * us and complete all outstanding descriptors in the middle,
130 * after which there will be no more completions to wake it.
131 * Therefore we stop the queue first, then read read_count
132 * (with a memory barrier to ensure the ordering), then
133 * restart the queue if the fill level turns out to be low
134 * enough.
135 */
136 netif_tx_stop_queue(txq1->core_txq);
137 smp_mb();
138 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
139 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
140
141 fill_level = max(txq1->insert_count - txq1->old_read_count,
142 txq2->insert_count - txq2->old_read_count);
143 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
144 if (likely(fill_level < efx->txq_stop_thresh)) {
145 smp_mb();
146 if (likely(!efx->loopback_selftest))
147 netif_tx_start_queue(txq1->core_txq);
148 }
149}
150
8ceee660
BH
151/*
152 * Add a socket buffer to a TX queue
153 *
154 * This maps all fragments of a socket buffer for DMA and adds them to
155 * the TX queue. The queue's insert pointer will be incremented by
156 * the number of fragments in the socket buffer.
157 *
158 * If any DMA mapping fails, any mapped fragments will be unmapped,
159 * the queue's insert pointer will be restored to its original value.
160 *
497f5ba3
BH
161 * This function is split out from efx_hard_start_xmit to allow the
162 * loopback test to direct packets via specific TX queues.
163 *
14bf718f 164 * Returns NETDEV_TX_OK.
8ceee660
BH
165 * You must hold netif_tx_lock() to call this function.
166 */
497f5ba3 167netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
8ceee660
BH
168{
169 struct efx_nic *efx = tx_queue->efx;
0e33d870 170 struct device *dma_dev = &efx->pci_dev->dev;
8ceee660
BH
171 struct efx_tx_buffer *buffer;
172 skb_frag_t *fragment;
14bf718f 173 unsigned int len, unmap_len = 0, insert_ptr;
8ceee660
BH
174 dma_addr_t dma_addr, unmap_addr = 0;
175 unsigned int dma_len;
7668ff9c 176 unsigned short dma_flags;
14bf718f 177 int i = 0;
8ceee660
BH
178
179 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
180
9bc183d7 181 if (skb_shinfo(skb)->gso_size)
b9b39b62
BH
182 return efx_enqueue_skb_tso(tx_queue, skb);
183
8ceee660
BH
184 /* Get size of the initial fragment */
185 len = skb_headlen(skb);
186
bb145a9e
BH
187 /* Pad if necessary */
188 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
189 EFX_BUG_ON_PARANOID(skb->data_len);
190 len = 32 + 1;
191 if (skb_pad(skb, len - skb->len))
192 return NETDEV_TX_OK;
193 }
194
0e33d870 195 /* Map for DMA. Use dma_map_single rather than dma_map_page
8ceee660
BH
196 * since this is more efficient on machines with sparse
197 * memory.
198 */
7668ff9c 199 dma_flags = EFX_TX_BUF_MAP_SINGLE;
0e33d870 200 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
8ceee660
BH
201
202 /* Process all fragments */
203 while (1) {
0e33d870
BH
204 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
205 goto dma_err;
8ceee660
BH
206
207 /* Store fields for marking in the per-fragment final
208 * descriptor */
209 unmap_len = len;
210 unmap_addr = dma_addr;
211
212 /* Add to TX queue, splitting across DMA boundaries */
213 do {
ecc910f5 214 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
8ceee660 215 buffer = &tx_queue->buffer[insert_ptr];
7668ff9c 216 EFX_BUG_ON_PARANOID(buffer->flags);
8ceee660 217 EFX_BUG_ON_PARANOID(buffer->len);
8ceee660
BH
218 EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
63f19884
BH
220 dma_len = efx_max_tx_len(efx, dma_addr);
221 if (likely(dma_len >= len))
8ceee660
BH
222 dma_len = len;
223
8ceee660
BH
224 /* Fill out per descriptor fields */
225 buffer->len = dma_len;
226 buffer->dma_addr = dma_addr;
7668ff9c 227 buffer->flags = EFX_TX_BUF_CONT;
8ceee660
BH
228 len -= dma_len;
229 dma_addr += dma_len;
230 ++tx_queue->insert_count;
231 } while (len);
232
233 /* Transfer ownership of the unmapping to the final buffer */
7668ff9c 234 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
8ceee660
BH
235 buffer->unmap_len = unmap_len;
236 unmap_len = 0;
237
238 /* Get address and size of next fragment */
239 if (i >= skb_shinfo(skb)->nr_frags)
240 break;
241 fragment = &skb_shinfo(skb)->frags[i];
9e903e08 242 len = skb_frag_size(fragment);
8ceee660
BH
243 i++;
244 /* Map for DMA */
7668ff9c 245 dma_flags = 0;
0e33d870 246 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
5d6bcdfe 247 DMA_TO_DEVICE);
8ceee660
BH
248 }
249
250 /* Transfer ownership of the skb to the final buffer */
251 buffer->skb = skb;
7668ff9c 252 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
8ceee660 253
c3940999
TH
254 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
255
8ceee660 256 /* Pass off to hardware */
152b6a62 257 efx_nic_push_buffers(tx_queue);
8ceee660 258
14bf718f
BH
259 efx_tx_maybe_stop_queue(tx_queue);
260
8ceee660
BH
261 return NETDEV_TX_OK;
262
0e33d870 263 dma_err:
62776d03
BH
264 netif_err(efx, tx_err, efx->net_dev,
265 " TX queue %d could not map skb with %d bytes %d "
266 "fragments for DMA\n", tx_queue->queue, skb->len,
267 skb_shinfo(skb)->nr_frags + 1);
8ceee660
BH
268
269 /* Mark the packet as transmitted, and free the SKB ourselves */
9bc183d7 270 dev_kfree_skb_any(skb);
8ceee660 271
8ceee660
BH
272 /* Work backwards until we hit the original insert pointer value */
273 while (tx_queue->insert_count != tx_queue->write_count) {
c3940999 274 unsigned int pkts_compl = 0, bytes_compl = 0;
8ceee660 275 --tx_queue->insert_count;
ecc910f5 276 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
8ceee660 277 buffer = &tx_queue->buffer[insert_ptr];
c3940999 278 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
8ceee660
BH
279 }
280
281 /* Free the fragment we were mid-way through pushing */
ecbd95c1 282 if (unmap_len) {
7668ff9c 283 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
284 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
285 DMA_TO_DEVICE);
ecbd95c1 286 else
0e33d870
BH
287 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
288 DMA_TO_DEVICE);
ecbd95c1 289 }
8ceee660 290
14bf718f 291 return NETDEV_TX_OK;
8ceee660
BH
292}
293
294/* Remove packets from the TX queue
295 *
296 * This removes packets from the TX queue, up to and including the
297 * specified index.
298 */
4d566063 299static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
c3940999
TH
300 unsigned int index,
301 unsigned int *pkts_compl,
302 unsigned int *bytes_compl)
8ceee660
BH
303{
304 struct efx_nic *efx = tx_queue->efx;
305 unsigned int stop_index, read_ptr;
8ceee660 306
ecc910f5
SH
307 stop_index = (index + 1) & tx_queue->ptr_mask;
308 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
309
310 while (read_ptr != stop_index) {
311 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
ba8977bd
BH
312
313 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
314 unlikely(buffer->len == 0)) {
62776d03
BH
315 netif_err(efx, tx_err, efx->net_dev,
316 "TX queue %d spurious TX completion id %x\n",
317 tx_queue->queue, read_ptr);
8ceee660
BH
318 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
319 return;
320 }
321
c3940999 322 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
8ceee660
BH
323
324 ++tx_queue->read_count;
ecc910f5 325 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
326 }
327}
328
8ceee660
BH
329/* Initiate a packet transmission. We use one channel per CPU
330 * (sharing when we have more CPUs than channels). On Falcon, the TX
331 * completion events will be directed back to the CPU that transmitted
332 * the packet, which should be cache-efficient.
333 *
334 * Context: non-blocking.
335 * Note that returning anything other than NETDEV_TX_OK will cause the
336 * OS to free the skb.
337 */
61357325 338netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
2d0cc56d 339 struct net_device *net_dev)
8ceee660 340{
767e468c 341 struct efx_nic *efx = netdev_priv(net_dev);
60ac1065 342 struct efx_tx_queue *tx_queue;
94b274bf 343 unsigned index, type;
60ac1065 344
e4abce85 345 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
a7ef5933 346
7c236c43
SH
347 /* PTP "event" packet */
348 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
349 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
350 return efx_ptp_tx(efx, skb);
351 }
352
94b274bf
BH
353 index = skb_get_queue_mapping(skb);
354 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
355 if (index >= efx->n_tx_channels) {
356 index -= efx->n_tx_channels;
357 type |= EFX_TXQ_TYPE_HIGHPRI;
358 }
359 tx_queue = efx_get_tx_queue(efx, index, type);
60ac1065 360
497f5ba3 361 return efx_enqueue_skb(tx_queue, skb);
8ceee660
BH
362}
363
60031fcc
BH
364void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
365{
94b274bf
BH
366 struct efx_nic *efx = tx_queue->efx;
367
60031fcc 368 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
94b274bf
BH
369 tx_queue->core_txq =
370 netdev_get_tx_queue(efx->net_dev,
371 tx_queue->queue / EFX_TXQ_TYPES +
372 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
373 efx->n_tx_channels : 0));
374}
375
376int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
377{
378 struct efx_nic *efx = netdev_priv(net_dev);
379 struct efx_channel *channel;
380 struct efx_tx_queue *tx_queue;
381 unsigned tc;
382 int rc;
383
384 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
385 return -EINVAL;
386
387 if (num_tc == net_dev->num_tc)
388 return 0;
389
390 for (tc = 0; tc < num_tc; tc++) {
391 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
392 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
393 }
394
395 if (num_tc > net_dev->num_tc) {
396 /* Initialise high-priority queues as necessary */
397 efx_for_each_channel(channel, efx) {
398 efx_for_each_possible_channel_tx_queue(tx_queue,
399 channel) {
400 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
401 continue;
402 if (!tx_queue->buffer) {
403 rc = efx_probe_tx_queue(tx_queue);
404 if (rc)
405 return rc;
406 }
407 if (!tx_queue->initialised)
408 efx_init_tx_queue(tx_queue);
409 efx_init_tx_queue_core_txq(tx_queue);
410 }
411 }
412 } else {
413 /* Reduce number of classes before number of queues */
414 net_dev->num_tc = num_tc;
415 }
416
417 rc = netif_set_real_num_tx_queues(net_dev,
418 max_t(int, num_tc, 1) *
419 efx->n_tx_channels);
420 if (rc)
421 return rc;
422
423 /* Do not destroy high-priority queues when they become
424 * unused. We would have to flush them first, and it is
425 * fairly difficult to flush a subset of TX queues. Leave
426 * it to efx_fini_channels().
427 */
428
429 net_dev->num_tc = num_tc;
430 return 0;
60031fcc
BH
431}
432
8ceee660
BH
433void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
434{
435 unsigned fill_level;
436 struct efx_nic *efx = tx_queue->efx;
14bf718f 437 struct efx_tx_queue *txq2;
c3940999 438 unsigned int pkts_compl = 0, bytes_compl = 0;
8ceee660 439
ecc910f5 440 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
8ceee660 441
c3940999
TH
442 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
443 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
8ceee660 444
02e12165
BH
445 if (pkts_compl > 1)
446 ++tx_queue->merge_events;
447
14bf718f
BH
448 /* See if we need to restart the netif queue. This memory
449 * barrier ensures that we write read_count (inside
450 * efx_dequeue_buffers()) before reading the queue status.
451 */
8ceee660 452 smp_mb();
c04bfc6b 453 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
9d1aea62 454 likely(efx->port_enabled) &&
e4abce85 455 likely(netif_device_present(efx->net_dev))) {
14bf718f
BH
456 txq2 = efx_tx_queue_partner(tx_queue);
457 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
458 txq2->insert_count - txq2->read_count);
459 if (fill_level <= efx->txq_wake_thresh)
c04bfc6b 460 netif_tx_wake_queue(tx_queue->core_txq);
8ceee660 461 }
cd38557d
BH
462
463 /* Check whether the hardware queue is now empty */
464 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
465 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
466 if (tx_queue->read_count == tx_queue->old_write_count) {
467 smp_mb();
468 tx_queue->empty_read_count =
469 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
470 }
471 }
8ceee660
BH
472}
473
f7251a9c
BH
474/* Size of page-based TSO header buffers. Larger blocks must be
475 * allocated from the heap.
476 */
477#define TSOH_STD_SIZE 128
478#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
479
480/* At most half the descriptors in the queue at any time will refer to
481 * a TSO header buffer, since they must always be followed by a
482 * payload descriptor referring to an skb.
483 */
484static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
485{
486 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
487}
488
8ceee660
BH
489int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
490{
491 struct efx_nic *efx = tx_queue->efx;
ecc910f5 492 unsigned int entries;
7668ff9c 493 int rc;
8ceee660 494
ecc910f5
SH
495 /* Create the smallest power-of-two aligned ring */
496 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
497 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
498 tx_queue->ptr_mask = entries - 1;
499
500 netif_dbg(efx, probe, efx->net_dev,
501 "creating TX queue %d size %#x mask %#x\n",
502 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
8ceee660
BH
503
504 /* Allocate software ring */
c2e4e25a 505 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
ecc910f5 506 GFP_KERNEL);
60ac1065
BH
507 if (!tx_queue->buffer)
508 return -ENOMEM;
8ceee660 509
f7251a9c
BH
510 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
511 tx_queue->tsoh_page =
512 kcalloc(efx_tsoh_page_count(tx_queue),
513 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
514 if (!tx_queue->tsoh_page) {
515 rc = -ENOMEM;
516 goto fail1;
517 }
518 }
519
8ceee660 520 /* Allocate hardware ring */
152b6a62 521 rc = efx_nic_probe_tx(tx_queue);
8ceee660 522 if (rc)
f7251a9c 523 goto fail2;
8ceee660
BH
524
525 return 0;
526
f7251a9c
BH
527fail2:
528 kfree(tx_queue->tsoh_page);
529 tx_queue->tsoh_page = NULL;
530fail1:
8ceee660
BH
531 kfree(tx_queue->buffer);
532 tx_queue->buffer = NULL;
8ceee660
BH
533 return rc;
534}
535
bc3c90a2 536void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660 537{
62776d03
BH
538 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
539 "initialising TX queue %d\n", tx_queue->queue);
8ceee660
BH
540
541 tx_queue->insert_count = 0;
542 tx_queue->write_count = 0;
cd38557d 543 tx_queue->old_write_count = 0;
8ceee660
BH
544 tx_queue->read_count = 0;
545 tx_queue->old_read_count = 0;
cd38557d 546 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
8ceee660
BH
547
548 /* Set up TX descriptor ring */
152b6a62 549 efx_nic_init_tx(tx_queue);
94b274bf
BH
550
551 tx_queue->initialised = true;
8ceee660
BH
552}
553
e42c3d85 554void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
555{
556 struct efx_tx_buffer *buffer;
557
e42c3d85
BH
558 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
559 "shutting down TX queue %d\n", tx_queue->queue);
560
8ceee660
BH
561 if (!tx_queue->buffer)
562 return;
563
564 /* Free any buffers left in the ring */
565 while (tx_queue->read_count != tx_queue->write_count) {
c3940999 566 unsigned int pkts_compl = 0, bytes_compl = 0;
ecc910f5 567 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
c3940999 568 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
8ceee660
BH
569
570 ++tx_queue->read_count;
571 }
c3940999 572 netdev_tx_reset_queue(tx_queue->core_txq);
8ceee660
BH
573}
574
8ceee660
BH
575void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
576{
f7251a9c
BH
577 int i;
578
94b274bf
BH
579 if (!tx_queue->buffer)
580 return;
581
62776d03
BH
582 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
583 "destroying TX queue %d\n", tx_queue->queue);
152b6a62 584 efx_nic_remove_tx(tx_queue);
8ceee660 585
f7251a9c
BH
586 if (tx_queue->tsoh_page) {
587 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
588 efx_nic_free_buffer(tx_queue->efx,
589 &tx_queue->tsoh_page[i]);
590 kfree(tx_queue->tsoh_page);
591 tx_queue->tsoh_page = NULL;
592 }
593
8ceee660
BH
594 kfree(tx_queue->buffer);
595 tx_queue->buffer = NULL;
8ceee660
BH
596}
597
598
b9b39b62
BH
599/* Efx TCP segmentation acceleration.
600 *
601 * Why? Because by doing it here in the driver we can go significantly
602 * faster than the GSO.
603 *
604 * Requires TX checksum offload support.
605 */
606
607/* Number of bytes inserted at the start of a TSO header buffer,
608 * similar to NET_IP_ALIGN.
609 */
13e9ab11 610#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
b9b39b62
BH
611#define TSOH_OFFSET 0
612#else
613#define TSOH_OFFSET NET_IP_ALIGN
614#endif
615
b9b39b62 616#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
b9b39b62
BH
617
618/**
619 * struct tso_state - TSO state for an SKB
23d9e60b 620 * @out_len: Remaining length in current segment
b9b39b62 621 * @seqnum: Current sequence number
23d9e60b 622 * @ipv4_id: Current IPv4 ID, host endian
b9b39b62 623 * @packet_space: Remaining space in current packet
23d9e60b
BH
624 * @dma_addr: DMA address of current position
625 * @in_len: Remaining length in current SKB fragment
626 * @unmap_len: Length of SKB fragment
627 * @unmap_addr: DMA address of SKB fragment
7668ff9c 628 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
738a8f4b 629 * @protocol: Network protocol (after any VLAN header)
9714284f
BH
630 * @ip_off: Offset of IP header
631 * @tcp_off: Offset of TCP header
23d9e60b 632 * @header_len: Number of bytes of header
53cb13c6 633 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
dfa50be9
BH
634 * @header_dma_addr: Header DMA address, when using option descriptors
635 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
636 * descriptors
b9b39b62
BH
637 *
638 * The state used during segmentation. It is put into this data structure
639 * just to make it easy to pass into inline functions.
640 */
641struct tso_state {
23d9e60b
BH
642 /* Output position */
643 unsigned out_len;
b9b39b62 644 unsigned seqnum;
dfa50be9 645 u16 ipv4_id;
b9b39b62
BH
646 unsigned packet_space;
647
23d9e60b
BH
648 /* Input position */
649 dma_addr_t dma_addr;
650 unsigned in_len;
651 unsigned unmap_len;
652 dma_addr_t unmap_addr;
7668ff9c 653 unsigned short dma_flags;
23d9e60b 654
738a8f4b 655 __be16 protocol;
9714284f
BH
656 unsigned int ip_off;
657 unsigned int tcp_off;
23d9e60b 658 unsigned header_len;
53cb13c6 659 unsigned int ip_base_len;
dfa50be9
BH
660 dma_addr_t header_dma_addr;
661 unsigned int header_unmap_len;
b9b39b62
BH
662};
663
664
665/*
666 * Verify that our various assumptions about sk_buffs and the conditions
738a8f4b 667 * under which TSO will be attempted hold true. Return the protocol number.
b9b39b62 668 */
738a8f4b 669static __be16 efx_tso_check_protocol(struct sk_buff *skb)
b9b39b62 670{
740847da
BH
671 __be16 protocol = skb->protocol;
672
b9b39b62 673 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
740847da
BH
674 protocol);
675 if (protocol == htons(ETH_P_8021Q)) {
740847da
BH
676 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
677 protocol = veh->h_vlan_encapsulated_proto;
740847da
BH
678 }
679
738a8f4b
BH
680 if (protocol == htons(ETH_P_IP)) {
681 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
682 } else {
683 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
684 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
685 }
b9b39b62
BH
686 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
687 + (tcp_hdr(skb)->doff << 2u)) >
688 skb_headlen(skb));
738a8f4b
BH
689
690 return protocol;
b9b39b62
BH
691}
692
f7251a9c
BH
693static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
694 struct efx_tx_buffer *buffer, unsigned int len)
b9b39b62 695{
f7251a9c 696 u8 *result;
b9b39b62 697
f7251a9c
BH
698 EFX_BUG_ON_PARANOID(buffer->len);
699 EFX_BUG_ON_PARANOID(buffer->flags);
700 EFX_BUG_ON_PARANOID(buffer->unmap_len);
b9b39b62 701
f7251a9c
BH
702 if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
703 unsigned index =
704 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
705 struct efx_buffer *page_buf =
706 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
707 unsigned offset =
708 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
b9b39b62 709
f7251a9c 710 if (unlikely(!page_buf->addr) &&
0d19a540
BH
711 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
712 GFP_ATOMIC))
f7251a9c 713 return NULL;
b9b39b62 714
f7251a9c
BH
715 result = (u8 *)page_buf->addr + offset;
716 buffer->dma_addr = page_buf->dma_addr + offset;
717 buffer->flags = EFX_TX_BUF_CONT;
718 } else {
719 tx_queue->tso_long_headers++;
b9b39b62 720
f7251a9c
BH
721 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
722 if (unlikely(!buffer->heap_buf))
723 return NULL;
724 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
725 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
b9b39b62
BH
726 }
727
f7251a9c 728 buffer->len = len;
b9b39b62 729
f7251a9c 730 return result;
b9b39b62
BH
731}
732
733/**
734 * efx_tx_queue_insert - push descriptors onto the TX queue
735 * @tx_queue: Efx TX queue
736 * @dma_addr: DMA address of fragment
737 * @len: Length of fragment
ecbd95c1 738 * @final_buffer: The final buffer inserted into the queue
b9b39b62 739 *
14bf718f 740 * Push descriptors onto the TX queue.
b9b39b62 741 */
14bf718f
BH
742static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
743 dma_addr_t dma_addr, unsigned len,
744 struct efx_tx_buffer **final_buffer)
b9b39b62
BH
745{
746 struct efx_tx_buffer *buffer;
747 struct efx_nic *efx = tx_queue->efx;
14bf718f 748 unsigned dma_len, insert_ptr;
b9b39b62
BH
749
750 EFX_BUG_ON_PARANOID(len <= 0);
751
b9b39b62 752 while (1) {
ecc910f5 753 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
b9b39b62
BH
754 buffer = &tx_queue->buffer[insert_ptr];
755 ++tx_queue->insert_count;
756
757 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
ecc910f5
SH
758 tx_queue->read_count >=
759 efx->txq_entries);
b9b39b62 760
b9b39b62
BH
761 EFX_BUG_ON_PARANOID(buffer->len);
762 EFX_BUG_ON_PARANOID(buffer->unmap_len);
7668ff9c 763 EFX_BUG_ON_PARANOID(buffer->flags);
b9b39b62
BH
764
765 buffer->dma_addr = dma_addr;
766
63f19884 767 dma_len = efx_max_tx_len(efx, dma_addr);
b9b39b62
BH
768
769 /* If there is enough space to send then do so */
770 if (dma_len >= len)
771 break;
772
7668ff9c
BH
773 buffer->len = dma_len;
774 buffer->flags = EFX_TX_BUF_CONT;
b9b39b62
BH
775 dma_addr += dma_len;
776 len -= dma_len;
777 }
778
779 EFX_BUG_ON_PARANOID(!len);
780 buffer->len = len;
ecbd95c1 781 *final_buffer = buffer;
b9b39b62
BH
782}
783
784
785/*
786 * Put a TSO header into the TX queue.
787 *
788 * This is special-cased because we know that it is small enough to fit in
789 * a single fragment, and we know it doesn't cross a page boundary. It
790 * also allows us to not worry about end-of-packet etc.
791 */
f7251a9c
BH
792static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
793 struct efx_tx_buffer *buffer, u8 *header)
b9b39b62 794{
f7251a9c
BH
795 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
796 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
797 header, buffer->len,
798 DMA_TO_DEVICE);
799 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
800 buffer->dma_addr))) {
801 kfree(buffer->heap_buf);
802 buffer->len = 0;
803 buffer->flags = 0;
804 return -ENOMEM;
805 }
806 buffer->unmap_len = buffer->len;
807 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
808 }
b9b39b62
BH
809
810 ++tx_queue->insert_count;
f7251a9c 811 return 0;
b9b39b62
BH
812}
813
814
f7251a9c
BH
815/* Remove buffers put into a tx_queue. None of the buffers must have
816 * an skb attached.
817 */
b9b39b62
BH
818static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
819{
820 struct efx_tx_buffer *buffer;
821
822 /* Work backwards until we hit the original insert pointer value */
823 while (tx_queue->insert_count != tx_queue->write_count) {
824 --tx_queue->insert_count;
825 buffer = &tx_queue->buffer[tx_queue->insert_count &
ecc910f5 826 tx_queue->ptr_mask];
f7251a9c 827 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
b9b39b62
BH
828 }
829}
830
831
832/* Parse the SKB header and initialise state. */
c78c39e6
BH
833static int tso_start(struct tso_state *st, struct efx_nic *efx,
834 const struct sk_buff *skb)
b9b39b62 835{
dfa50be9
BH
836 bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
837 struct device *dma_dev = &efx->pci_dev->dev;
c78c39e6 838 unsigned int header_len, in_len;
dfa50be9 839 dma_addr_t dma_addr;
c78c39e6 840
9714284f
BH
841 st->ip_off = skb_network_header(skb) - skb->data;
842 st->tcp_off = skb_transport_header(skb) - skb->data;
c78c39e6
BH
843 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
844 in_len = skb_headlen(skb) - header_len;
845 st->header_len = header_len;
846 st->in_len = in_len;
53cb13c6 847 if (st->protocol == htons(ETH_P_IP)) {
9714284f 848 st->ip_base_len = st->header_len - st->ip_off;
738a8f4b 849 st->ipv4_id = ntohs(ip_hdr(skb)->id);
53cb13c6 850 } else {
9714284f 851 st->ip_base_len = st->header_len - st->tcp_off;
738a8f4b 852 st->ipv4_id = 0;
53cb13c6 853 }
b9b39b62
BH
854 st->seqnum = ntohl(tcp_hdr(skb)->seq);
855
856 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
857 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
858 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
859
c78c39e6
BH
860 st->out_len = skb->len - header_len;
861
dfa50be9
BH
862 if (!use_options) {
863 st->header_unmap_len = 0;
864
865 if (likely(in_len == 0)) {
866 st->dma_flags = 0;
867 st->unmap_len = 0;
868 return 0;
869 }
870
871 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
872 in_len, DMA_TO_DEVICE);
873 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
874 st->dma_addr = dma_addr;
875 st->unmap_addr = dma_addr;
876 st->unmap_len = in_len;
877 } else {
878 dma_addr = dma_map_single(dma_dev, skb->data,
879 skb_headlen(skb), DMA_TO_DEVICE);
880 st->header_dma_addr = dma_addr;
881 st->header_unmap_len = skb_headlen(skb);
c78c39e6 882 st->dma_flags = 0;
dfa50be9
BH
883 st->dma_addr = dma_addr + header_len;
884 st->unmap_len = 0;
c78c39e6
BH
885 }
886
dfa50be9 887 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
b9b39b62
BH
888}
889
4d566063
BH
890static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
891 skb_frag_t *frag)
b9b39b62 892{
4a22c4c9 893 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
9e903e08 894 skb_frag_size(frag), DMA_TO_DEVICE);
5d6bcdfe 895 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
7668ff9c 896 st->dma_flags = 0;
9e903e08
ED
897 st->unmap_len = skb_frag_size(frag);
898 st->in_len = skb_frag_size(frag);
23d9e60b 899 st->dma_addr = st->unmap_addr;
ecbd95c1
BH
900 return 0;
901 }
902 return -ENOMEM;
903}
904
b9b39b62
BH
905
906/**
907 * tso_fill_packet_with_fragment - form descriptors for the current fragment
908 * @tx_queue: Efx TX queue
909 * @skb: Socket buffer
910 * @st: TSO state
911 *
912 * Form descriptors for the current fragment, until we reach the end
14bf718f 913 * of fragment or end-of-packet.
b9b39b62 914 */
14bf718f
BH
915static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
916 const struct sk_buff *skb,
917 struct tso_state *st)
b9b39b62 918{
ecbd95c1 919 struct efx_tx_buffer *buffer;
14bf718f 920 int n;
b9b39b62 921
23d9e60b 922 if (st->in_len == 0)
14bf718f 923 return;
b9b39b62 924 if (st->packet_space == 0)
14bf718f 925 return;
b9b39b62 926
23d9e60b 927 EFX_BUG_ON_PARANOID(st->in_len <= 0);
b9b39b62
BH
928 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
929
23d9e60b 930 n = min(st->in_len, st->packet_space);
b9b39b62
BH
931
932 st->packet_space -= n;
23d9e60b
BH
933 st->out_len -= n;
934 st->in_len -= n;
b9b39b62 935
14bf718f 936 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
b9b39b62 937
14bf718f
BH
938 if (st->out_len == 0) {
939 /* Transfer ownership of the skb */
940 buffer->skb = skb;
941 buffer->flags = EFX_TX_BUF_SKB;
942 } else if (st->packet_space != 0) {
943 buffer->flags = EFX_TX_BUF_CONT;
944 }
945
946 if (st->in_len == 0) {
947 /* Transfer ownership of the DMA mapping */
948 buffer->unmap_len = st->unmap_len;
949 buffer->flags |= st->dma_flags;
950 st->unmap_len = 0;
ecbd95c1
BH
951 }
952
23d9e60b 953 st->dma_addr += n;
b9b39b62
BH
954}
955
956
957/**
958 * tso_start_new_packet - generate a new header and prepare for the new packet
959 * @tx_queue: Efx TX queue
960 * @skb: Socket buffer
961 * @st: TSO state
962 *
963 * Generate a new header and prepare for the new packet. Return 0 on
f7251a9c 964 * success, or -%ENOMEM if failed to alloc header.
b9b39b62 965 */
4d566063
BH
966static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
967 const struct sk_buff *skb,
968 struct tso_state *st)
b9b39b62 969{
f7251a9c
BH
970 struct efx_tx_buffer *buffer =
971 &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
dfa50be9
BH
972 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
973 u8 tcp_flags_clear;
b9b39b62 974
dfa50be9 975 if (!is_last) {
53cb13c6 976 st->packet_space = skb_shinfo(skb)->gso_size;
dfa50be9 977 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
b9b39b62 978 } else {
53cb13c6 979 st->packet_space = st->out_len;
dfa50be9 980 tcp_flags_clear = 0x00;
b9b39b62 981 }
b9b39b62 982
dfa50be9
BH
983 if (!st->header_unmap_len) {
984 /* Allocate and insert a DMA-mapped header buffer. */
985 struct tcphdr *tsoh_th;
986 unsigned ip_length;
987 u8 *header;
988 int rc;
738a8f4b 989
dfa50be9
BH
990 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
991 if (!header)
992 return -ENOMEM;
738a8f4b 993
dfa50be9
BH
994 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
995
996 /* Copy and update the headers. */
997 memcpy(header, skb->data, st->header_len);
998
999 tsoh_th->seq = htonl(st->seqnum);
1000 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1001
1002 ip_length = st->ip_base_len + st->packet_space;
1003
1004 if (st->protocol == htons(ETH_P_IP)) {
1005 struct iphdr *tsoh_iph =
1006 (struct iphdr *)(header + st->ip_off);
1007
1008 tsoh_iph->tot_len = htons(ip_length);
1009 tsoh_iph->id = htons(st->ipv4_id);
1010 } else {
1011 struct ipv6hdr *tsoh_iph =
1012 (struct ipv6hdr *)(header + st->ip_off);
1013
1014 tsoh_iph->payload_len = htons(ip_length);
1015 }
1016
1017 rc = efx_tso_put_header(tx_queue, buffer, header);
1018 if (unlikely(rc))
1019 return rc;
738a8f4b 1020 } else {
dfa50be9
BH
1021 /* Send the original headers with a TSO option descriptor
1022 * in front
1023 */
1024 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1025
1026 buffer->flags = EFX_TX_BUF_OPTION;
1027 buffer->len = 0;
1028 buffer->unmap_len = 0;
1029 EFX_POPULATE_QWORD_5(buffer->option,
1030 ESF_DZ_TX_DESC_IS_OPT, 1,
1031 ESF_DZ_TX_OPTION_TYPE,
1032 ESE_DZ_TX_OPTION_DESC_TSO,
1033 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1034 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1035 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1036 ++tx_queue->insert_count;
738a8f4b 1037
dfa50be9
BH
1038 /* We mapped the headers in tso_start(). Unmap them
1039 * when the last segment is completed.
1040 */
1041 buffer = &tx_queue->buffer[tx_queue->insert_count &
1042 tx_queue->ptr_mask];
1043 buffer->dma_addr = st->header_dma_addr;
1044 buffer->len = st->header_len;
1045 if (is_last) {
1046 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1047 buffer->unmap_len = st->header_unmap_len;
1048 /* Ensure we only unmap them once in case of a
1049 * later DMA mapping error and rollback
1050 */
1051 st->header_unmap_len = 0;
1052 } else {
1053 buffer->flags = EFX_TX_BUF_CONT;
1054 buffer->unmap_len = 0;
1055 }
1056 ++tx_queue->insert_count;
738a8f4b 1057 }
b9b39b62 1058
dfa50be9
BH
1059 st->seqnum += skb_shinfo(skb)->gso_size;
1060
1061 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1062 ++st->ipv4_id;
f7251a9c 1063
b9b39b62
BH
1064 ++tx_queue->tso_packets;
1065
b9b39b62
BH
1066 return 0;
1067}
1068
1069
1070/**
1071 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1072 * @tx_queue: Efx TX queue
1073 * @skb: Socket buffer
1074 *
1075 * Context: You must hold netif_tx_lock() to call this function.
1076 *
1077 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1078 * @skb was not enqueued. In all cases @skb is consumed. Return
14bf718f 1079 * %NETDEV_TX_OK.
b9b39b62
BH
1080 */
1081static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 1082 struct sk_buff *skb)
b9b39b62 1083{
ecbd95c1 1084 struct efx_nic *efx = tx_queue->efx;
14bf718f 1085 int frag_i, rc;
b9b39b62 1086 struct tso_state state;
b9b39b62 1087
738a8f4b
BH
1088 /* Find the packet protocol and sanity-check it */
1089 state.protocol = efx_tso_check_protocol(skb);
b9b39b62
BH
1090
1091 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1092
c78c39e6
BH
1093 rc = tso_start(&state, efx, skb);
1094 if (rc)
1095 goto mem_err;
b9b39b62 1096
c78c39e6 1097 if (likely(state.in_len == 0)) {
b9b39b62
BH
1098 /* Grab the first payload fragment. */
1099 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1100 frag_i = 0;
ecbd95c1
BH
1101 rc = tso_get_fragment(&state, efx,
1102 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1103 if (rc)
1104 goto mem_err;
1105 } else {
c78c39e6 1106 /* Payload starts in the header area. */
b9b39b62
BH
1107 frag_i = -1;
1108 }
1109
1110 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1111 goto mem_err;
1112
1113 while (1) {
14bf718f 1114 tso_fill_packet_with_fragment(tx_queue, skb, &state);
b9b39b62
BH
1115
1116 /* Move onto the next fragment? */
23d9e60b 1117 if (state.in_len == 0) {
b9b39b62
BH
1118 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1119 /* End of payload reached. */
1120 break;
ecbd95c1
BH
1121 rc = tso_get_fragment(&state, efx,
1122 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1123 if (rc)
1124 goto mem_err;
1125 }
1126
1127 /* Start at new packet? */
1128 if (state.packet_space == 0 &&
1129 tso_start_new_packet(tx_queue, skb, &state) < 0)
1130 goto mem_err;
1131 }
1132
449fa023
ED
1133 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1134
b9b39b62 1135 /* Pass off to hardware */
152b6a62 1136 efx_nic_push_buffers(tx_queue);
b9b39b62 1137
14bf718f
BH
1138 efx_tx_maybe_stop_queue(tx_queue);
1139
b9b39b62
BH
1140 tx_queue->tso_bursts++;
1141 return NETDEV_TX_OK;
1142
1143 mem_err:
62776d03 1144 netif_err(efx, tx_err, efx->net_dev,
0e33d870 1145 "Out of memory for TSO headers, or DMA mapping error\n");
9bc183d7 1146 dev_kfree_skb_any(skb);
b9b39b62 1147
5988b63a 1148 /* Free the DMA mapping we were in the process of writing out */
23d9e60b 1149 if (state.unmap_len) {
7668ff9c 1150 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
1151 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1152 state.unmap_len, DMA_TO_DEVICE);
ecbd95c1 1153 else
0e33d870
BH
1154 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1155 state.unmap_len, DMA_TO_DEVICE);
ecbd95c1 1156 }
5988b63a 1157
dfa50be9
BH
1158 /* Free the header DMA mapping, if using option descriptors */
1159 if (state.header_unmap_len)
1160 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1161 state.header_unmap_len, DMA_TO_DEVICE);
1162
b9b39b62 1163 efx_enqueue_unwind(tx_queue);
14bf718f 1164 return NETDEV_TX_OK;
b9b39b62 1165}