]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
net: ethernet: fs-enet: use phy_ethtool_{get|set}_link_ksettings
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
286a8372 5 Copyright(C) 2007-2011 STMicroelectronics Ltd
47dd7a54
GC
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
6a81c26f 31#include <linux/clk.h>
47dd7a54
GC
32#include <linux/kernel.h>
33#include <linux/interrupt.h>
47dd7a54
GC
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/skbuff.h>
37#include <linux/ethtool.h>
38#include <linux/if_ether.h>
39#include <linux/crc32.h>
40#include <linux/mii.h>
01789349 41#include <linux/if.h>
47dd7a54
GC
42#include <linux/if_vlan.h>
43#include <linux/dma-mapping.h>
5a0e3ad6 44#include <linux/slab.h>
70c71606 45#include <linux/prefetch.h>
db88f10a 46#include <linux/pinctrl/consumer.h>
50fb4f74 47#ifdef CONFIG_DEBUG_FS
7ac29055
GC
48#include <linux/debugfs.h>
49#include <linux/seq_file.h>
50fb4f74 50#endif /* CONFIG_DEBUG_FS */
891434b1
RK
51#include <linux/net_tstamp.h>
52#include "stmmac_ptp.h"
286a8372 53#include "stmmac.h"
c5e4ddbd 54#include <linux/reset.h>
5790cf3c 55#include <linux/of_mdio.h>
19d857c9 56#include "dwmac1000.h"
47dd7a54 57
47dd7a54 58#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
f748be53 59#define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
47dd7a54
GC
60
61/* Module parameters */
32ceabca 62#define TX_TIMEO 5000
47dd7a54
GC
63static int watchdog = TX_TIMEO;
64module_param(watchdog, int, S_IRUGO | S_IWUSR);
32ceabca 65MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
47dd7a54 66
32ceabca 67static int debug = -1;
47dd7a54 68module_param(debug, int, S_IRUGO | S_IWUSR);
32ceabca 69MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
47dd7a54 70
47d1f71f 71static int phyaddr = -1;
47dd7a54
GC
72module_param(phyaddr, int, S_IRUGO);
73MODULE_PARM_DESC(phyaddr, "Physical device address");
74
e3ad57c9 75#define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
120e87f9 76#define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
47dd7a54
GC
77
78static int flow_ctrl = FLOW_OFF;
79module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82static int pause = PAUSE_TIME;
83module_param(pause, int, S_IRUGO | S_IWUSR);
84MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86#define TC_DEFAULT 64
87static int tc = TC_DEFAULT;
88module_param(tc, int, S_IRUGO | S_IWUSR);
89MODULE_PARM_DESC(tc, "DMA threshold control value");
90
d916701c
GC
91#define DEFAULT_BUFSIZE 1536
92static int buf_sz = DEFAULT_BUFSIZE;
47dd7a54
GC
93module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
22ad3838
GC
96#define STMMAC_RX_COPYBREAK 256
97
47dd7a54
GC
98static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
d765955d
GC
102#define STMMAC_DEFAULT_LPI_TIMER 1000
103static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
f5351ef7 106#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
d765955d 107
4a7d666a
GC
108/* By default the driver will use the ring mode to manage tx and rx descriptors
109 * but passing this value so user can force to use the chain instead of the ring
110 */
111static unsigned int chain_mode;
112module_param(chain_mode, int, S_IRUGO);
113MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
47dd7a54 115static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
47dd7a54 116
50fb4f74 117#ifdef CONFIG_DEBUG_FS
bfab27a1 118static int stmmac_init_fs(struct net_device *dev);
466c5ac8 119static void stmmac_exit_fs(struct net_device *dev);
bfab27a1
GC
120#endif
121
9125cdd1
GC
122#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
47dd7a54
GC
124/**
125 * stmmac_verify_args - verify the driver parameters.
732fdf0e
GC
126 * Description: it checks the driver parameters and set a default in case of
127 * errors.
47dd7a54
GC
128 */
129static void stmmac_verify_args(void)
130{
131 if (unlikely(watchdog < 0))
132 watchdog = TX_TIMEO;
d916701c
GC
133 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 buf_sz = DEFAULT_BUFSIZE;
47dd7a54
GC
135 if (unlikely(flow_ctrl > 1))
136 flow_ctrl = FLOW_AUTO;
137 else if (likely(flow_ctrl < 0))
138 flow_ctrl = FLOW_OFF;
139 if (unlikely((pause < 0) || (pause > 0xffff)))
140 pause = PAUSE_TIME;
d765955d
GC
141 if (eee_timer < 0)
142 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
47dd7a54
GC
143}
144
32ceabca
GC
145/**
146 * stmmac_clk_csr_set - dynamically set the MDC clock
147 * @priv: driver private structure
148 * Description: this is to dynamically set the MDC clock according to the csr
149 * clock input.
150 * Note:
151 * If a specific clk_csr value is passed from the platform
152 * this means that the CSR Clock Range selection cannot be
153 * changed at run-time and it is fixed (as reported in the driver
154 * documentation). Viceversa the driver will try to set the MDC
155 * clock dynamically according to the actual clock input.
156 */
cd7201f4
GC
157static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158{
cd7201f4
GC
159 u32 clk_rate;
160
161 clk_rate = clk_get_rate(priv->stmmac_clk);
162
163 /* Platform provided default clk_csr would be assumed valid
ceb69499
GC
164 * for all other cases except for the below mentioned ones.
165 * For values higher than the IEEE 802.3 specified frequency
166 * we can not estimate the proper divider as it is not known
167 * the frequency of clk_csr_i. So we do not change the default
168 * divider.
169 */
cd7201f4
GC
170 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 if (clk_rate < CSR_F_35M)
172 priv->clk_csr = STMMAC_CSR_20_35M;
173 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 priv->clk_csr = STMMAC_CSR_35_60M;
175 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 priv->clk_csr = STMMAC_CSR_60_100M;
177 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 priv->clk_csr = STMMAC_CSR_100_150M;
179 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 priv->clk_csr = STMMAC_CSR_150_250M;
19d857c9 181 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
cd7201f4 182 priv->clk_csr = STMMAC_CSR_250_300M;
ceb69499 183 }
cd7201f4
GC
184}
185
47dd7a54
GC
186static void print_pkt(unsigned char *buf, int len)
187{
424c4f78
AS
188 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
47dd7a54 190}
47dd7a54 191
47dd7a54
GC
192static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193{
e3ad57c9
GC
194 unsigned avail;
195
196 if (priv->dirty_tx > priv->cur_tx)
197 avail = priv->dirty_tx - priv->cur_tx - 1;
198 else
199 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200
201 return avail;
202}
203
204static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205{
206 unsigned dirty;
207
208 if (priv->dirty_rx <= priv->cur_rx)
209 dirty = priv->cur_rx - priv->dirty_rx;
210 else
211 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212
213 return dirty;
47dd7a54
GC
214}
215
32ceabca 216/**
732fdf0e 217 * stmmac_hw_fix_mac_speed - callback for speed selection
32ceabca
GC
218 * @priv: driver private structure
219 * Description: on some platforms (e.g. ST), some HW system configuraton
220 * registers have to be set according to the link speed negotiated.
9dfeb4d9
GC
221 */
222static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223{
224 struct phy_device *phydev = priv->phydev;
225
226 if (likely(priv->plat->fix_mac_speed))
ceb69499 227 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
9dfeb4d9
GC
228}
229
32ceabca 230/**
732fdf0e 231 * stmmac_enable_eee_mode - check and enter in LPI mode
32ceabca 232 * @priv: driver private structure
732fdf0e
GC
233 * Description: this function is to verify and enter in LPI mode in case of
234 * EEE.
32ceabca 235 */
d765955d
GC
236static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237{
238 /* Check and enter in LPI mode */
239 if ((priv->dirty_tx == priv->cur_tx) &&
240 (priv->tx_path_in_lpi_mode == false))
7ed24bbe 241 priv->hw->mac->set_eee_mode(priv->hw);
d765955d
GC
242}
243
32ceabca 244/**
732fdf0e 245 * stmmac_disable_eee_mode - disable and exit from LPI mode
32ceabca
GC
246 * @priv: driver private structure
247 * Description: this function is to exit and disable EEE in case of
248 * LPI state is true. This is called by the xmit.
249 */
d765955d
GC
250void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251{
7ed24bbe 252 priv->hw->mac->reset_eee_mode(priv->hw);
d765955d
GC
253 del_timer_sync(&priv->eee_ctrl_timer);
254 priv->tx_path_in_lpi_mode = false;
255}
256
257/**
732fdf0e 258 * stmmac_eee_ctrl_timer - EEE TX SW timer.
d765955d
GC
259 * @arg : data hook
260 * Description:
32ceabca 261 * if there is no data transfer and if we are not in LPI state,
d765955d
GC
262 * then MAC Transmitter can be moved to LPI state.
263 */
264static void stmmac_eee_ctrl_timer(unsigned long arg)
265{
266 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267
268 stmmac_enable_eee_mode(priv);
f5351ef7 269 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
d765955d
GC
270}
271
272/**
732fdf0e 273 * stmmac_eee_init - init EEE
32ceabca 274 * @priv: driver private structure
d765955d 275 * Description:
732fdf0e
GC
276 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
277 * can also manage EEE, this function enable the LPI state and start related
278 * timer.
d765955d
GC
279 */
280bool stmmac_eee_init(struct stmmac_priv *priv)
281{
4741cf9c 282 unsigned long flags;
d765955d
GC
283 bool ret = false;
284
f5351ef7
GC
285 /* Using PCS we cannot dial with the phy registers at this stage
286 * so we do not support extra feature like EEE.
287 */
288 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
289 (priv->pcs == STMMAC_PCS_RTBI))
290 goto out;
291
d765955d
GC
292 /* MAC core supports the EEE feature. */
293 if (priv->dma_cap.eee) {
83bf79b6
GC
294 int tx_lpi_timer = priv->tx_lpi_timer;
295
d765955d 296 /* Check if the PHY supports EEE */
83bf79b6
GC
297 if (phy_init_eee(priv->phydev, 1)) {
298 /* To manage at run-time if the EEE cannot be supported
299 * anymore (for example because the lp caps have been
300 * changed).
301 * In that case the driver disable own timers.
302 */
4741cf9c 303 spin_lock_irqsave(&priv->lock, flags);
83bf79b6
GC
304 if (priv->eee_active) {
305 pr_debug("stmmac: disable EEE\n");
306 del_timer_sync(&priv->eee_ctrl_timer);
7ed24bbe 307 priv->hw->mac->set_eee_timer(priv->hw, 0,
83bf79b6
GC
308 tx_lpi_timer);
309 }
310 priv->eee_active = 0;
4741cf9c 311 spin_unlock_irqrestore(&priv->lock, flags);
d765955d 312 goto out;
83bf79b6
GC
313 }
314 /* Activate the EEE and start timers */
4741cf9c 315 spin_lock_irqsave(&priv->lock, flags);
f5351ef7
GC
316 if (!priv->eee_active) {
317 priv->eee_active = 1;
ccb36da1
VT
318 setup_timer(&priv->eee_ctrl_timer,
319 stmmac_eee_ctrl_timer,
320 (unsigned long)priv);
321 mod_timer(&priv->eee_ctrl_timer,
322 STMMAC_LPI_T(eee_timer));
f5351ef7 323
7ed24bbe 324 priv->hw->mac->set_eee_timer(priv->hw,
f5351ef7 325 STMMAC_DEFAULT_LIT_LS,
83bf79b6 326 tx_lpi_timer);
71965352
GC
327 }
328 /* Set HW EEE according to the speed */
329 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
d765955d 330
d765955d 331 ret = true;
4741cf9c
GC
332 spin_unlock_irqrestore(&priv->lock, flags);
333
334 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
d765955d
GC
335 }
336out:
337 return ret;
338}
339
732fdf0e 340/* stmmac_get_tx_hwtstamp - get HW TX timestamps
32ceabca 341 * @priv: driver private structure
891434b1
RK
342 * @entry : descriptor index to be used.
343 * @skb : the socket buffer
344 * Description :
345 * This function will read timestamp from the descriptor & pass it to stack.
346 * and also perform some sanity checks.
347 */
348static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
ceb69499 349 unsigned int entry, struct sk_buff *skb)
891434b1
RK
350{
351 struct skb_shared_hwtstamps shhwtstamp;
352 u64 ns;
353 void *desc = NULL;
354
355 if (!priv->hwts_tx_en)
356 return;
357
ceb69499 358 /* exit if skb doesn't support hw tstamp */
75e4364f 359 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
891434b1
RK
360 return;
361
362 if (priv->adv_ts)
363 desc = (priv->dma_etx + entry);
364 else
365 desc = (priv->dma_tx + entry);
366
367 /* check tx tstamp status */
368 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
369 return;
370
371 /* get the valid tstamp */
372 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
373
374 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
375 shhwtstamp.hwtstamp = ns_to_ktime(ns);
376 /* pass tstamp to stack */
377 skb_tstamp_tx(skb, &shhwtstamp);
378
379 return;
380}
381
732fdf0e 382/* stmmac_get_rx_hwtstamp - get HW RX timestamps
32ceabca 383 * @priv: driver private structure
891434b1
RK
384 * @entry : descriptor index to be used.
385 * @skb : the socket buffer
386 * Description :
387 * This function will read received packet's timestamp from the descriptor
388 * and pass it to stack. It also perform some sanity checks.
389 */
390static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
ceb69499 391 unsigned int entry, struct sk_buff *skb)
891434b1
RK
392{
393 struct skb_shared_hwtstamps *shhwtstamp = NULL;
394 u64 ns;
395 void *desc = NULL;
396
397 if (!priv->hwts_rx_en)
398 return;
399
400 if (priv->adv_ts)
401 desc = (priv->dma_erx + entry);
402 else
403 desc = (priv->dma_rx + entry);
404
ceb69499 405 /* exit if rx tstamp is not valid */
891434b1
RK
406 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
407 return;
408
409 /* get valid tstamp */
410 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
411 shhwtstamp = skb_hwtstamps(skb);
412 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
413 shhwtstamp->hwtstamp = ns_to_ktime(ns);
414}
415
416/**
417 * stmmac_hwtstamp_ioctl - control hardware timestamping.
418 * @dev: device pointer.
419 * @ifr: An IOCTL specefic structure, that can contain a pointer to
420 * a proprietary structure used to pass information to the driver.
421 * Description:
422 * This function configures the MAC to enable/disable both outgoing(TX)
423 * and incoming(RX) packets time stamping based on user input.
424 * Return Value:
425 * 0 on success and an appropriate -ve integer on failure.
426 */
427static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
428{
429 struct stmmac_priv *priv = netdev_priv(dev);
430 struct hwtstamp_config config;
0a624155 431 struct timespec64 now;
891434b1
RK
432 u64 temp = 0;
433 u32 ptp_v2 = 0;
434 u32 tstamp_all = 0;
435 u32 ptp_over_ipv4_udp = 0;
436 u32 ptp_over_ipv6_udp = 0;
437 u32 ptp_over_ethernet = 0;
438 u32 snap_type_sel = 0;
439 u32 ts_master_en = 0;
440 u32 ts_event_en = 0;
441 u32 value = 0;
19d857c9 442 u32 sec_inc;
891434b1
RK
443
444 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
445 netdev_alert(priv->dev, "No support for HW time stamping\n");
446 priv->hwts_tx_en = 0;
447 priv->hwts_rx_en = 0;
448
449 return -EOPNOTSUPP;
450 }
451
452 if (copy_from_user(&config, ifr->ifr_data,
ceb69499 453 sizeof(struct hwtstamp_config)))
891434b1
RK
454 return -EFAULT;
455
456 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
457 __func__, config.flags, config.tx_type, config.rx_filter);
458
459 /* reserved for future extensions */
460 if (config.flags)
461 return -EINVAL;
462
5f3da328
BH
463 if (config.tx_type != HWTSTAMP_TX_OFF &&
464 config.tx_type != HWTSTAMP_TX_ON)
891434b1 465 return -ERANGE;
891434b1
RK
466
467 if (priv->adv_ts) {
468 switch (config.rx_filter) {
891434b1 469 case HWTSTAMP_FILTER_NONE:
ceb69499 470 /* time stamp no incoming packet at all */
891434b1
RK
471 config.rx_filter = HWTSTAMP_FILTER_NONE;
472 break;
473
891434b1 474 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
ceb69499 475 /* PTP v1, UDP, any kind of event packet */
891434b1
RK
476 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
477 /* take time stamp for all event messages */
478 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
479
480 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
481 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
482 break;
483
891434b1 484 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
ceb69499 485 /* PTP v1, UDP, Sync packet */
891434b1
RK
486 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
487 /* take time stamp for SYNC messages only */
488 ts_event_en = PTP_TCR_TSEVNTENA;
489
490 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
491 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
492 break;
493
891434b1 494 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
ceb69499 495 /* PTP v1, UDP, Delay_req packet */
891434b1
RK
496 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
497 /* take time stamp for Delay_Req messages only */
498 ts_master_en = PTP_TCR_TSMSTRENA;
499 ts_event_en = PTP_TCR_TSEVNTENA;
500
501 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
502 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
503 break;
504
891434b1 505 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
ceb69499 506 /* PTP v2, UDP, any kind of event packet */
891434b1
RK
507 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
508 ptp_v2 = PTP_TCR_TSVER2ENA;
509 /* take time stamp for all event messages */
510 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
511
512 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
513 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
514 break;
515
891434b1 516 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
ceb69499 517 /* PTP v2, UDP, Sync packet */
891434b1
RK
518 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
519 ptp_v2 = PTP_TCR_TSVER2ENA;
520 /* take time stamp for SYNC messages only */
521 ts_event_en = PTP_TCR_TSEVNTENA;
522
523 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
524 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
525 break;
526
891434b1 527 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
ceb69499 528 /* PTP v2, UDP, Delay_req packet */
891434b1
RK
529 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
530 ptp_v2 = PTP_TCR_TSVER2ENA;
531 /* take time stamp for Delay_Req messages only */
532 ts_master_en = PTP_TCR_TSMSTRENA;
533 ts_event_en = PTP_TCR_TSEVNTENA;
534
535 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
536 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
537 break;
538
891434b1 539 case HWTSTAMP_FILTER_PTP_V2_EVENT:
ceb69499 540 /* PTP v2/802.AS1 any layer, any kind of event packet */
891434b1
RK
541 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
542 ptp_v2 = PTP_TCR_TSVER2ENA;
543 /* take time stamp for all event messages */
544 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
545
546 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 ptp_over_ethernet = PTP_TCR_TSIPENA;
549 break;
550
891434b1 551 case HWTSTAMP_FILTER_PTP_V2_SYNC:
ceb69499 552 /* PTP v2/802.AS1, any layer, Sync packet */
891434b1
RK
553 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
554 ptp_v2 = PTP_TCR_TSVER2ENA;
555 /* take time stamp for SYNC messages only */
556 ts_event_en = PTP_TCR_TSEVNTENA;
557
558 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
559 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
560 ptp_over_ethernet = PTP_TCR_TSIPENA;
561 break;
562
891434b1 563 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ceb69499 564 /* PTP v2/802.AS1, any layer, Delay_req packet */
891434b1
RK
565 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
566 ptp_v2 = PTP_TCR_TSVER2ENA;
567 /* take time stamp for Delay_Req messages only */
568 ts_master_en = PTP_TCR_TSMSTRENA;
569 ts_event_en = PTP_TCR_TSEVNTENA;
570
571 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
572 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
573 ptp_over_ethernet = PTP_TCR_TSIPENA;
574 break;
575
891434b1 576 case HWTSTAMP_FILTER_ALL:
ceb69499 577 /* time stamp any incoming packet */
891434b1
RK
578 config.rx_filter = HWTSTAMP_FILTER_ALL;
579 tstamp_all = PTP_TCR_TSENALL;
580 break;
581
582 default:
583 return -ERANGE;
584 }
585 } else {
586 switch (config.rx_filter) {
587 case HWTSTAMP_FILTER_NONE:
588 config.rx_filter = HWTSTAMP_FILTER_NONE;
589 break;
590 default:
591 /* PTP v1, UDP, any kind of event packet */
592 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
593 break;
594 }
595 }
596 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
5f3da328 597 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
891434b1
RK
598
599 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
600 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
601 else {
602 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
ceb69499
GC
603 tstamp_all | ptp_v2 | ptp_over_ethernet |
604 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
605 ts_master_en | snap_type_sel);
891434b1
RK
606 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
607
608 /* program Sub Second Increment reg */
19d857c9
PR
609 sec_inc = priv->hw->ptp->config_sub_second_increment(
610 priv->ioaddr, priv->clk_ptp_rate);
611 temp = div_u64(1000000000ULL, sec_inc);
891434b1
RK
612
613 /* calculate default added value:
614 * formula is :
615 * addend = (2^32)/freq_div_ratio;
19d857c9 616 * where, freq_div_ratio = 1e9ns/sec_inc
891434b1 617 */
19d857c9 618 temp = (u64)(temp << 32);
5566401f 619 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
891434b1
RK
620 priv->hw->ptp->config_addend(priv->ioaddr,
621 priv->default_addend);
622
623 /* initialize system time */
0a624155
AB
624 ktime_get_real_ts64(&now);
625
626 /* lower 32 bits of tv_sec are safe until y2106 */
627 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
891434b1
RK
628 now.tv_nsec);
629 }
630
631 return copy_to_user(ifr->ifr_data, &config,
632 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633}
634
32ceabca 635/**
732fdf0e 636 * stmmac_init_ptp - init PTP
32ceabca 637 * @priv: driver private structure
732fdf0e 638 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
32ceabca 639 * This is done by looking at the HW cap. register.
732fdf0e 640 * This function also registers the ptp driver.
32ceabca 641 */
92ba6888 642static int stmmac_init_ptp(struct stmmac_priv *priv)
891434b1 643{
92ba6888
RK
644 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645 return -EOPNOTSUPP;
646
5566401f
GC
647 /* Fall-back to main clock in case of no PTP ref is passed */
648 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649 if (IS_ERR(priv->clk_ptp_ref)) {
650 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651 priv->clk_ptp_ref = NULL;
652 } else {
653 clk_prepare_enable(priv->clk_ptp_ref);
654 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
655 }
656
7cd01399
VB
657 priv->adv_ts = 0;
658 if (priv->dma_cap.atime_stamp && priv->extend_desc)
659 priv->adv_ts = 1;
660
661 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
662 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
663
664 if (netif_msg_hw(priv) && priv->adv_ts)
665 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
891434b1
RK
666
667 priv->hw->ptp = &stmmac_ptp;
668 priv->hwts_tx_en = 0;
669 priv->hwts_rx_en = 0;
92ba6888
RK
670
671 return stmmac_ptp_register(priv);
672}
673
674static void stmmac_release_ptp(struct stmmac_priv *priv)
675{
5566401f
GC
676 if (priv->clk_ptp_ref)
677 clk_disable_unprepare(priv->clk_ptp_ref);
92ba6888 678 stmmac_ptp_unregister(priv);
891434b1
RK
679}
680
47dd7a54 681/**
732fdf0e 682 * stmmac_adjust_link - adjusts the link parameters
47dd7a54 683 * @dev: net device structure
732fdf0e
GC
684 * Description: this is the helper called by the physical abstraction layer
685 * drivers to communicate the phy link status. According the speed and duplex
686 * this driver can invoke registered glue-logic as well.
687 * It also invoke the eee initialization because it could happen when switch
688 * on different networks (that are eee capable).
47dd7a54
GC
689 */
690static void stmmac_adjust_link(struct net_device *dev)
691{
692 struct stmmac_priv *priv = netdev_priv(dev);
693 struct phy_device *phydev = priv->phydev;
47dd7a54
GC
694 unsigned long flags;
695 int new_state = 0;
696 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697
698 if (phydev == NULL)
699 return;
700
47dd7a54 701 spin_lock_irqsave(&priv->lock, flags);
d765955d 702
47dd7a54 703 if (phydev->link) {
ad01b7d4 704 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
47dd7a54
GC
705
706 /* Now we make sure that we can be in full duplex mode.
707 * If not, we operate in half-duplex mode. */
708 if (phydev->duplex != priv->oldduplex) {
709 new_state = 1;
710 if (!(phydev->duplex))
db98a0b0 711 ctrl &= ~priv->hw->link.duplex;
47dd7a54 712 else
db98a0b0 713 ctrl |= priv->hw->link.duplex;
47dd7a54
GC
714 priv->oldduplex = phydev->duplex;
715 }
716 /* Flow Control operation */
717 if (phydev->pause)
7ed24bbe 718 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
db98a0b0 719 fc, pause_time);
47dd7a54
GC
720
721 if (phydev->speed != priv->speed) {
722 new_state = 1;
723 switch (phydev->speed) {
724 case 1000:
f748be53
AT
725 if (likely((priv->plat->has_gmac) ||
726 (priv->plat->has_gmac4)))
db98a0b0 727 ctrl &= ~priv->hw->link.port;
ceb69499 728 stmmac_hw_fix_mac_speed(priv);
47dd7a54
GC
729 break;
730 case 100:
731 case 10:
f748be53
AT
732 if (likely((priv->plat->has_gmac) ||
733 (priv->plat->has_gmac4))) {
db98a0b0 734 ctrl |= priv->hw->link.port;
47dd7a54 735 if (phydev->speed == SPEED_100) {
db98a0b0 736 ctrl |= priv->hw->link.speed;
47dd7a54 737 } else {
db98a0b0 738 ctrl &= ~(priv->hw->link.speed);
47dd7a54
GC
739 }
740 } else {
db98a0b0 741 ctrl &= ~priv->hw->link.port;
47dd7a54 742 }
9dfeb4d9 743 stmmac_hw_fix_mac_speed(priv);
47dd7a54
GC
744 break;
745 default:
746 if (netif_msg_link(priv))
ceb69499
GC
747 pr_warn("%s: Speed (%d) not 10/100\n",
748 dev->name, phydev->speed);
47dd7a54
GC
749 break;
750 }
751
752 priv->speed = phydev->speed;
753 }
754
ad01b7d4 755 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
47dd7a54
GC
756
757 if (!priv->oldlink) {
758 new_state = 1;
759 priv->oldlink = 1;
760 }
761 } else if (priv->oldlink) {
762 new_state = 1;
763 priv->oldlink = 0;
764 priv->speed = 0;
765 priv->oldduplex = -1;
766 }
767
768 if (new_state && netif_msg_link(priv))
769 phy_print_status(phydev);
770
4741cf9c
GC
771 spin_unlock_irqrestore(&priv->lock, flags);
772
52f95bbf
GC
773 if (phydev->is_pseudo_fixed_link)
774 /* Stop PHY layer to call the hook to adjust the link in case
775 * of a switch is attached to the stmmac driver.
776 */
777 phydev->irq = PHY_IGNORE_INTERRUPT;
778 else
779 /* At this stage, init the EEE if supported.
780 * Never called in case of fixed_link.
781 */
782 priv->eee_enabled = stmmac_eee_init(priv);
47dd7a54
GC
783}
784
32ceabca 785/**
732fdf0e 786 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
32ceabca
GC
787 * @priv: driver private structure
788 * Description: this is to verify if the HW supports the PCS.
789 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
790 * configured for the TBI, RTBI, or SGMII PHY interface.
791 */
e58bb43f
GC
792static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
793{
794 int interface = priv->plat->interface;
795
796 if (priv->dma_cap.pcs) {
0d909dcd
BA
797 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
798 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
799 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
800 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
e58bb43f
GC
801 pr_debug("STMMAC: PCS RGMII support enable\n");
802 priv->pcs = STMMAC_PCS_RGMII;
0d909dcd 803 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
e58bb43f
GC
804 pr_debug("STMMAC: PCS SGMII support enable\n");
805 priv->pcs = STMMAC_PCS_SGMII;
806 }
807 }
808}
809
47dd7a54
GC
810/**
811 * stmmac_init_phy - PHY initialization
812 * @dev: net device structure
813 * Description: it initializes the driver's PHY state, and attaches the PHY
814 * to the mac driver.
815 * Return value:
816 * 0 on success
817 */
818static int stmmac_init_phy(struct net_device *dev)
819{
820 struct stmmac_priv *priv = netdev_priv(dev);
821 struct phy_device *phydev;
d765955d 822 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
109cdd66 823 char bus_id[MII_BUS_ID_SIZE];
79ee1dc3 824 int interface = priv->plat->interface;
9cbadf09 825 int max_speed = priv->plat->max_speed;
47dd7a54
GC
826 priv->oldlink = 0;
827 priv->speed = 0;
828 priv->oldduplex = -1;
829
5790cf3c
MO
830 if (priv->plat->phy_node) {
831 phydev = of_phy_connect(dev, priv->plat->phy_node,
832 &stmmac_adjust_link, 0, interface);
833 } else {
a7657f12
GC
834 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
835 priv->plat->bus_id);
5790cf3c
MO
836
837 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
838 priv->plat->phy_addr);
839 pr_debug("stmmac_init_phy: trying to attach to %s\n",
840 phy_id_fmt);
841
842 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
843 interface);
844 }
47dd7a54 845
dfc50fca 846 if (IS_ERR_OR_NULL(phydev)) {
47dd7a54 847 pr_err("%s: Could not attach to PHY\n", dev->name);
dfc50fca
AB
848 if (!phydev)
849 return -ENODEV;
850
47dd7a54
GC
851 return PTR_ERR(phydev);
852 }
853
79ee1dc3 854 /* Stop Advertising 1000BASE Capability if interface is not GMII */
c5b9b4e4 855 if ((interface == PHY_INTERFACE_MODE_MII) ||
9cbadf09 856 (interface == PHY_INTERFACE_MODE_RMII) ||
a77e4acc 857 (max_speed < 1000 && max_speed > 0))
c5b9b4e4
SK
858 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
859 SUPPORTED_1000baseT_Full);
79ee1dc3 860
47dd7a54
GC
861 /*
862 * Broken HW is sometimes missing the pull-up resistor on the
863 * MDIO line, which results in reads to non-existent devices returning
864 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
865 * device as well.
866 * Note: phydev->phy_id is the result of reading the UID PHY registers.
867 */
27732381 868 if (!priv->plat->phy_node && phydev->phy_id == 0) {
47dd7a54
GC
869 phy_disconnect(phydev);
870 return -ENODEV;
871 }
8e99fc5f 872
47dd7a54 873 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
36bcfe7d 874 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
47dd7a54
GC
875
876 priv->phydev = phydev;
877
878 return 0;
879}
880
c24602ef
GC
881static void stmmac_display_rings(struct stmmac_priv *priv)
882{
d0225e7d
AT
883 void *head_rx, *head_tx;
884
c24602ef 885 if (priv->extend_desc) {
d0225e7d
AT
886 head_rx = (void *)priv->dma_erx;
887 head_tx = (void *)priv->dma_etx;
c24602ef 888 } else {
d0225e7d
AT
889 head_rx = (void *)priv->dma_rx;
890 head_tx = (void *)priv->dma_tx;
c24602ef 891 }
d0225e7d
AT
892
893 /* Display Rx ring */
894 priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
895 /* Display Tx ring */
896 priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
c24602ef
GC
897}
898
286a8372
GC
899static int stmmac_set_bfsize(int mtu, int bufsize)
900{
901 int ret = bufsize;
902
903 if (mtu >= BUF_SIZE_4KiB)
904 ret = BUF_SIZE_8KiB;
905 else if (mtu >= BUF_SIZE_2KiB)
906 ret = BUF_SIZE_4KiB;
d916701c 907 else if (mtu > DEFAULT_BUFSIZE)
286a8372
GC
908 ret = BUF_SIZE_2KiB;
909 else
d916701c 910 ret = DEFAULT_BUFSIZE;
286a8372
GC
911
912 return ret;
913}
914
32ceabca 915/**
732fdf0e 916 * stmmac_clear_descriptors - clear descriptors
32ceabca
GC
917 * @priv: driver private structure
918 * Description: this function is called to clear the tx and rx descriptors
919 * in case of both basic and extended descriptors are used.
920 */
c24602ef
GC
921static void stmmac_clear_descriptors(struct stmmac_priv *priv)
922{
923 int i;
c24602ef
GC
924
925 /* Clear the Rx/Tx descriptors */
e3ad57c9 926 for (i = 0; i < DMA_RX_SIZE; i++)
c24602ef
GC
927 if (priv->extend_desc)
928 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
929 priv->use_riwt, priv->mode,
e3ad57c9 930 (i == DMA_RX_SIZE - 1));
c24602ef
GC
931 else
932 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
933 priv->use_riwt, priv->mode,
e3ad57c9
GC
934 (i == DMA_RX_SIZE - 1));
935 for (i = 0; i < DMA_TX_SIZE; i++)
c24602ef
GC
936 if (priv->extend_desc)
937 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
938 priv->mode,
e3ad57c9 939 (i == DMA_TX_SIZE - 1));
c24602ef
GC
940 else
941 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
942 priv->mode,
e3ad57c9 943 (i == DMA_TX_SIZE - 1));
c24602ef
GC
944}
945
732fdf0e
GC
946/**
947 * stmmac_init_rx_buffers - init the RX descriptor buffer.
948 * @priv: driver private structure
949 * @p: descriptor pointer
950 * @i: descriptor index
951 * @flags: gfp flag.
952 * Description: this function is called to allocate a receive buffer, perform
953 * the DMA mapping and init the descriptor.
954 */
c24602ef 955static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
777da230 956 int i, gfp_t flags)
c24602ef
GC
957{
958 struct sk_buff *skb;
959
4ec49a37 960 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
56329137 961 if (!skb) {
c24602ef 962 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
56329137 963 return -ENOMEM;
c24602ef 964 }
c24602ef
GC
965 priv->rx_skbuff[i] = skb;
966 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
967 priv->dma_buf_sz,
968 DMA_FROM_DEVICE);
56329137
BZ
969 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
970 pr_err("%s: DMA mapping error\n", __func__);
971 dev_kfree_skb_any(skb);
972 return -EINVAL;
973 }
c24602ef 974
f748be53
AT
975 if (priv->synopsys_id >= DWMAC_CORE_4_00)
976 p->des0 = priv->rx_skbuff_dma[i];
977 else
978 p->des2 = priv->rx_skbuff_dma[i];
c24602ef 979
29896a67 980 if ((priv->hw->mode->init_desc3) &&
c24602ef 981 (priv->dma_buf_sz == BUF_SIZE_16KiB))
29896a67 982 priv->hw->mode->init_desc3(p);
c24602ef
GC
983
984 return 0;
985}
986
56329137
BZ
987static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
988{
989 if (priv->rx_skbuff[i]) {
990 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
991 priv->dma_buf_sz, DMA_FROM_DEVICE);
992 dev_kfree_skb_any(priv->rx_skbuff[i]);
993 }
994 priv->rx_skbuff[i] = NULL;
995}
996
47dd7a54
GC
997/**
998 * init_dma_desc_rings - init the RX/TX descriptor rings
999 * @dev: net device structure
732fdf0e
GC
1000 * @flags: gfp flag.
1001 * Description: this function initializes the DMA RX/TX descriptors
286a8372
GC
1002 * and allocates the socket buffers. It suppors the chained and ring
1003 * modes.
47dd7a54 1004 */
777da230 1005static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
47dd7a54
GC
1006{
1007 int i;
1008 struct stmmac_priv *priv = netdev_priv(dev);
4a7d666a 1009 unsigned int bfsize = 0;
56329137 1010 int ret = -ENOMEM;
47dd7a54 1011
29896a67
GC
1012 if (priv->hw->mode->set_16kib_bfsize)
1013 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
286a8372 1014
4a7d666a 1015 if (bfsize < BUF_SIZE_16KiB)
286a8372 1016 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
47dd7a54 1017
2618abb7
VB
1018 priv->dma_buf_sz = bfsize;
1019
83d7af64 1020 if (netif_msg_probe(priv)) {
c24602ef
GC
1021 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1022 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
47dd7a54 1023
83d7af64
GC
1024 /* RX INITIALIZATION */
1025 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1026 }
e3ad57c9 1027 for (i = 0; i < DMA_RX_SIZE; i++) {
c24602ef
GC
1028 struct dma_desc *p;
1029 if (priv->extend_desc)
1030 p = &((priv->dma_erx + i)->basic);
1031 else
1032 p = priv->dma_rx + i;
47dd7a54 1033
777da230 1034 ret = stmmac_init_rx_buffers(priv, p, i, flags);
56329137
BZ
1035 if (ret)
1036 goto err_init_rx_buffers;
286a8372 1037
83d7af64
GC
1038 if (netif_msg_probe(priv))
1039 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1040 priv->rx_skbuff[i]->data,
1041 (unsigned int)priv->rx_skbuff_dma[i]);
47dd7a54
GC
1042 }
1043 priv->cur_rx = 0;
e3ad57c9 1044 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
47dd7a54
GC
1045 buf_sz = bfsize;
1046
c24602ef
GC
1047 /* Setup the chained descriptor addresses */
1048 if (priv->mode == STMMAC_CHAIN_MODE) {
1049 if (priv->extend_desc) {
29896a67 1050 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
e3ad57c9 1051 DMA_RX_SIZE, 1);
29896a67 1052 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
e3ad57c9 1053 DMA_TX_SIZE, 1);
c24602ef 1054 } else {
29896a67 1055 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
e3ad57c9 1056 DMA_RX_SIZE, 0);
29896a67 1057 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
e3ad57c9 1058 DMA_TX_SIZE, 0);
c24602ef
GC
1059 }
1060 }
1061
47dd7a54 1062 /* TX INITIALIZATION */
e3ad57c9 1063 for (i = 0; i < DMA_TX_SIZE; i++) {
c24602ef
GC
1064 struct dma_desc *p;
1065 if (priv->extend_desc)
1066 p = &((priv->dma_etx + i)->basic);
1067 else
1068 p = priv->dma_tx + i;
f748be53
AT
1069
1070 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1071 p->des0 = 0;
1072 p->des1 = 0;
1073 p->des2 = 0;
1074 p->des3 = 0;
1075 } else {
1076 p->des2 = 0;
1077 }
1078
362b37be
GC
1079 priv->tx_skbuff_dma[i].buf = 0;
1080 priv->tx_skbuff_dma[i].map_as_page = false;
553e2ab3 1081 priv->tx_skbuff_dma[i].len = 0;
2a6d8e17 1082 priv->tx_skbuff_dma[i].last_segment = false;
47dd7a54 1083 priv->tx_skbuff[i] = NULL;
47dd7a54 1084 }
286a8372 1085
47dd7a54
GC
1086 priv->dirty_tx = 0;
1087 priv->cur_tx = 0;
38979574 1088 netdev_reset_queue(priv->dev);
47dd7a54 1089
c24602ef 1090 stmmac_clear_descriptors(priv);
47dd7a54 1091
c24602ef
GC
1092 if (netif_msg_hw(priv))
1093 stmmac_display_rings(priv);
56329137
BZ
1094
1095 return 0;
1096err_init_rx_buffers:
1097 while (--i >= 0)
1098 stmmac_free_rx_buffers(priv, i);
56329137 1099 return ret;
47dd7a54
GC
1100}
1101
1102static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1103{
1104 int i;
1105
e3ad57c9 1106 for (i = 0; i < DMA_RX_SIZE; i++)
56329137 1107 stmmac_free_rx_buffers(priv, i);
47dd7a54
GC
1108}
1109
1110static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1111{
1112 int i;
1113
e3ad57c9 1114 for (i = 0; i < DMA_TX_SIZE; i++) {
75e4364f 1115 struct dma_desc *p;
1116
1117 if (priv->extend_desc)
1118 p = &((priv->dma_etx + i)->basic);
1119 else
1120 p = priv->dma_tx + i;
1121
362b37be
GC
1122 if (priv->tx_skbuff_dma[i].buf) {
1123 if (priv->tx_skbuff_dma[i].map_as_page)
1124 dma_unmap_page(priv->device,
1125 priv->tx_skbuff_dma[i].buf,
553e2ab3 1126 priv->tx_skbuff_dma[i].len,
362b37be
GC
1127 DMA_TO_DEVICE);
1128 else
1129 dma_unmap_single(priv->device,
1130 priv->tx_skbuff_dma[i].buf,
553e2ab3 1131 priv->tx_skbuff_dma[i].len,
362b37be 1132 DMA_TO_DEVICE);
75e4364f 1133 }
c24602ef 1134
75e4364f 1135 if (priv->tx_skbuff[i] != NULL) {
47dd7a54
GC
1136 dev_kfree_skb_any(priv->tx_skbuff[i]);
1137 priv->tx_skbuff[i] = NULL;
362b37be
GC
1138 priv->tx_skbuff_dma[i].buf = 0;
1139 priv->tx_skbuff_dma[i].map_as_page = false;
47dd7a54
GC
1140 }
1141 }
47dd7a54
GC
1142}
1143
732fdf0e
GC
1144/**
1145 * alloc_dma_desc_resources - alloc TX/RX resources.
1146 * @priv: private structure
1147 * Description: according to which descriptor can be used (extend or basic)
1148 * this function allocates the resources for TX and RX paths. In case of
1149 * reception, for example, it pre-allocated the RX socket buffer in order to
1150 * allow zero-copy mechanism.
1151 */
09f8d696
SK
1152static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1153{
09f8d696
SK
1154 int ret = -ENOMEM;
1155
e3ad57c9 1156 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
09f8d696
SK
1157 GFP_KERNEL);
1158 if (!priv->rx_skbuff_dma)
1159 return -ENOMEM;
1160
e3ad57c9 1161 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
09f8d696
SK
1162 GFP_KERNEL);
1163 if (!priv->rx_skbuff)
1164 goto err_rx_skbuff;
1165
e3ad57c9 1166 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
362b37be 1167 sizeof(*priv->tx_skbuff_dma),
09f8d696
SK
1168 GFP_KERNEL);
1169 if (!priv->tx_skbuff_dma)
1170 goto err_tx_skbuff_dma;
1171
e3ad57c9 1172 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
09f8d696
SK
1173 GFP_KERNEL);
1174 if (!priv->tx_skbuff)
1175 goto err_tx_skbuff;
1176
1177 if (priv->extend_desc) {
e3ad57c9 1178 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
f1590670
AB
1179 sizeof(struct
1180 dma_extended_desc),
1181 &priv->dma_rx_phy,
1182 GFP_KERNEL);
09f8d696
SK
1183 if (!priv->dma_erx)
1184 goto err_dma;
1185
e3ad57c9 1186 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
f1590670
AB
1187 sizeof(struct
1188 dma_extended_desc),
1189 &priv->dma_tx_phy,
1190 GFP_KERNEL);
09f8d696 1191 if (!priv->dma_etx) {
e3ad57c9 1192 dma_free_coherent(priv->device, DMA_RX_SIZE *
f1590670
AB
1193 sizeof(struct dma_extended_desc),
1194 priv->dma_erx, priv->dma_rx_phy);
09f8d696
SK
1195 goto err_dma;
1196 }
1197 } else {
e3ad57c9 1198 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
f1590670
AB
1199 sizeof(struct dma_desc),
1200 &priv->dma_rx_phy,
1201 GFP_KERNEL);
09f8d696
SK
1202 if (!priv->dma_rx)
1203 goto err_dma;
1204
e3ad57c9 1205 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
f1590670
AB
1206 sizeof(struct dma_desc),
1207 &priv->dma_tx_phy,
1208 GFP_KERNEL);
09f8d696 1209 if (!priv->dma_tx) {
e3ad57c9 1210 dma_free_coherent(priv->device, DMA_RX_SIZE *
f1590670
AB
1211 sizeof(struct dma_desc),
1212 priv->dma_rx, priv->dma_rx_phy);
09f8d696
SK
1213 goto err_dma;
1214 }
1215 }
1216
1217 return 0;
1218
1219err_dma:
1220 kfree(priv->tx_skbuff);
1221err_tx_skbuff:
1222 kfree(priv->tx_skbuff_dma);
1223err_tx_skbuff_dma:
1224 kfree(priv->rx_skbuff);
1225err_rx_skbuff:
1226 kfree(priv->rx_skbuff_dma);
1227 return ret;
1228}
1229
47dd7a54
GC
1230static void free_dma_desc_resources(struct stmmac_priv *priv)
1231{
1232 /* Release the DMA TX/RX socket buffers */
1233 dma_free_rx_skbufs(priv);
1234 dma_free_tx_skbufs(priv);
1235
ceb69499 1236 /* Free DMA regions of consistent memory previously allocated */
c24602ef
GC
1237 if (!priv->extend_desc) {
1238 dma_free_coherent(priv->device,
e3ad57c9 1239 DMA_TX_SIZE * sizeof(struct dma_desc),
c24602ef
GC
1240 priv->dma_tx, priv->dma_tx_phy);
1241 dma_free_coherent(priv->device,
e3ad57c9 1242 DMA_RX_SIZE * sizeof(struct dma_desc),
c24602ef
GC
1243 priv->dma_rx, priv->dma_rx_phy);
1244 } else {
e3ad57c9 1245 dma_free_coherent(priv->device, DMA_TX_SIZE *
c24602ef
GC
1246 sizeof(struct dma_extended_desc),
1247 priv->dma_etx, priv->dma_tx_phy);
e3ad57c9 1248 dma_free_coherent(priv->device, DMA_RX_SIZE *
c24602ef
GC
1249 sizeof(struct dma_extended_desc),
1250 priv->dma_erx, priv->dma_rx_phy);
1251 }
47dd7a54
GC
1252 kfree(priv->rx_skbuff_dma);
1253 kfree(priv->rx_skbuff);
cf32deec 1254 kfree(priv->tx_skbuff_dma);
47dd7a54 1255 kfree(priv->tx_skbuff);
47dd7a54
GC
1256}
1257
47dd7a54
GC
1258/**
1259 * stmmac_dma_operation_mode - HW DMA operation mode
32ceabca 1260 * @priv: driver private structure
732fdf0e
GC
1261 * Description: it is used for configuring the DMA operation mode register in
1262 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
47dd7a54
GC
1263 */
1264static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1265{
f88203a2
VB
1266 int rxfifosz = priv->plat->rx_fifo_size;
1267
e2a240c7 1268 if (priv->plat->force_thresh_dma_mode)
f88203a2 1269 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
e2a240c7 1270 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
61b8013a
SK
1271 /*
1272 * In case of GMAC, SF mode can be enabled
1273 * to perform the TX COE in HW. This depends on:
ebbb293f
GC
1274 * 1) TX COE if actually supported
1275 * 2) There is no bugged Jumbo frame support
1276 * that needs to not insert csum in the TDES.
1277 */
f88203a2
VB
1278 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1279 rxfifosz);
b2dec116 1280 priv->xstats.threshold = SF_DMA_MODE;
ebbb293f 1281 } else
f88203a2
VB
1282 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1283 rxfifosz);
47dd7a54
GC
1284}
1285
47dd7a54 1286/**
732fdf0e 1287 * stmmac_tx_clean - to manage the transmission completion
32ceabca 1288 * @priv: driver private structure
732fdf0e 1289 * Description: it reclaims the transmit resources after transmission completes.
47dd7a54 1290 */
9125cdd1 1291static void stmmac_tx_clean(struct stmmac_priv *priv)
47dd7a54 1292{
38979574 1293 unsigned int bytes_compl = 0, pkts_compl = 0;
e3ad57c9 1294 unsigned int entry = priv->dirty_tx;
47dd7a54 1295
a9097a96
GC
1296 spin_lock(&priv->tx_lock);
1297
9125cdd1
GC
1298 priv->xstats.tx_clean++;
1299
e3ad57c9 1300 while (entry != priv->cur_tx) {
47dd7a54 1301 struct sk_buff *skb = priv->tx_skbuff[entry];
c24602ef 1302 struct dma_desc *p;
c363b658 1303 int status;
c24602ef
GC
1304
1305 if (priv->extend_desc)
ceb69499 1306 p = (struct dma_desc *)(priv->dma_etx + entry);
c24602ef
GC
1307 else
1308 p = priv->dma_tx + entry;
47dd7a54 1309
c363b658 1310 status = priv->hw->desc->tx_status(&priv->dev->stats,
ceb69499
GC
1311 &priv->xstats, p,
1312 priv->ioaddr);
c363b658
FG
1313 /* Check if the descriptor is owned by the DMA */
1314 if (unlikely(status & tx_dma_own))
1315 break;
1316
1317 /* Just consider the last segment and ...*/
1318 if (likely(!(status & tx_not_ls))) {
1319 /* ... verify the status error condition */
1320 if (unlikely(status & tx_err)) {
1321 priv->dev->stats.tx_errors++;
1322 } else {
47dd7a54
GC
1323 priv->dev->stats.tx_packets++;
1324 priv->xstats.tx_pkt_n++;
c363b658 1325 }
891434b1 1326 stmmac_get_tx_hwtstamp(priv, entry, skb);
47dd7a54 1327 }
47dd7a54 1328
362b37be
GC
1329 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1330 if (priv->tx_skbuff_dma[entry].map_as_page)
1331 dma_unmap_page(priv->device,
1332 priv->tx_skbuff_dma[entry].buf,
553e2ab3 1333 priv->tx_skbuff_dma[entry].len,
362b37be
GC
1334 DMA_TO_DEVICE);
1335 else
1336 dma_unmap_single(priv->device,
1337 priv->tx_skbuff_dma[entry].buf,
553e2ab3 1338 priv->tx_skbuff_dma[entry].len,
362b37be
GC
1339 DMA_TO_DEVICE);
1340 priv->tx_skbuff_dma[entry].buf = 0;
f748be53 1341 priv->tx_skbuff_dma[entry].len = 0;
362b37be 1342 priv->tx_skbuff_dma[entry].map_as_page = false;
cf32deec 1343 }
f748be53
AT
1344
1345 if (priv->hw->mode->clean_desc3)
1346 priv->hw->mode->clean_desc3(priv, p);
1347
2a6d8e17 1348 priv->tx_skbuff_dma[entry].last_segment = false;
96951366 1349 priv->tx_skbuff_dma[entry].is_jumbo = false;
47dd7a54
GC
1350
1351 if (likely(skb != NULL)) {
38979574
BG
1352 pkts_compl++;
1353 bytes_compl += skb->len;
7c565c33 1354 dev_consume_skb_any(skb);
47dd7a54
GC
1355 priv->tx_skbuff[entry] = NULL;
1356 }
1357
4a7d666a 1358 priv->hw->desc->release_tx_desc(p, priv->mode);
47dd7a54 1359
e3ad57c9 1360 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
47dd7a54 1361 }
fbc80823 1362 priv->dirty_tx = entry;
38979574
BG
1363
1364 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1365
47dd7a54 1366 if (unlikely(netif_queue_stopped(priv->dev) &&
e3ad57c9 1367 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
47dd7a54
GC
1368 netif_tx_lock(priv->dev);
1369 if (netif_queue_stopped(priv->dev) &&
e3ad57c9 1370 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
83d7af64
GC
1371 if (netif_msg_tx_done(priv))
1372 pr_debug("%s: restart transmit\n", __func__);
47dd7a54
GC
1373 netif_wake_queue(priv->dev);
1374 }
1375 netif_tx_unlock(priv->dev);
1376 }
d765955d
GC
1377
1378 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1379 stmmac_enable_eee_mode(priv);
f5351ef7 1380 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
d765955d 1381 }
a9097a96 1382 spin_unlock(&priv->tx_lock);
47dd7a54
GC
1383}
1384
9125cdd1 1385static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
47dd7a54 1386{
7284a3f1 1387 priv->hw->dma->enable_dma_irq(priv->ioaddr);
47dd7a54
GC
1388}
1389
9125cdd1 1390static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
47dd7a54 1391{
7284a3f1 1392 priv->hw->dma->disable_dma_irq(priv->ioaddr);
47dd7a54
GC
1393}
1394
47dd7a54 1395/**
732fdf0e 1396 * stmmac_tx_err - to manage the tx error
32ceabca 1397 * @priv: driver private structure
47dd7a54 1398 * Description: it cleans the descriptors and restarts the transmission
732fdf0e 1399 * in case of transmission errors.
47dd7a54
GC
1400 */
1401static void stmmac_tx_err(struct stmmac_priv *priv)
1402{
c24602ef 1403 int i;
47dd7a54
GC
1404 netif_stop_queue(priv->dev);
1405
ad01b7d4 1406 priv->hw->dma->stop_tx(priv->ioaddr);
47dd7a54 1407 dma_free_tx_skbufs(priv);
e3ad57c9 1408 for (i = 0; i < DMA_TX_SIZE; i++)
c24602ef
GC
1409 if (priv->extend_desc)
1410 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1411 priv->mode,
e3ad57c9 1412 (i == DMA_TX_SIZE - 1));
c24602ef
GC
1413 else
1414 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1415 priv->mode,
e3ad57c9 1416 (i == DMA_TX_SIZE - 1));
47dd7a54
GC
1417 priv->dirty_tx = 0;
1418 priv->cur_tx = 0;
38979574 1419 netdev_reset_queue(priv->dev);
ad01b7d4 1420 priv->hw->dma->start_tx(priv->ioaddr);
47dd7a54
GC
1421
1422 priv->dev->stats.tx_errors++;
1423 netif_wake_queue(priv->dev);
47dd7a54
GC
1424}
1425
32ceabca 1426/**
732fdf0e 1427 * stmmac_dma_interrupt - DMA ISR
32ceabca
GC
1428 * @priv: driver private structure
1429 * Description: this is the DMA ISR. It is called by the main ISR.
732fdf0e
GC
1430 * It calls the dwmac dma routine and schedule poll method in case of some
1431 * work can be done.
32ceabca 1432 */
aec7ff27
GC
1433static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1434{
aec7ff27 1435 int status;
f88203a2 1436 int rxfifosz = priv->plat->rx_fifo_size;
aec7ff27 1437
ad01b7d4 1438 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
9125cdd1
GC
1439 if (likely((status & handle_rx)) || (status & handle_tx)) {
1440 if (likely(napi_schedule_prep(&priv->napi))) {
1441 stmmac_disable_dma_irq(priv);
1442 __napi_schedule(&priv->napi);
1443 }
1444 }
1445 if (unlikely(status & tx_hard_error_bump_tc)) {
aec7ff27 1446 /* Try to bump up the dma threshold on this failure */
b2dec116
SZ
1447 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1448 (tc <= 256)) {
aec7ff27 1449 tc += 64;
c405abe2 1450 if (priv->plat->force_thresh_dma_mode)
f88203a2
VB
1451 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1452 rxfifosz);
c405abe2
SZ
1453 else
1454 priv->hw->dma->dma_mode(priv->ioaddr, tc,
f88203a2 1455 SF_DMA_MODE, rxfifosz);
aec7ff27 1456 priv->xstats.threshold = tc;
47dd7a54 1457 }
aec7ff27
GC
1458 } else if (unlikely(status == tx_hard_error))
1459 stmmac_tx_err(priv);
47dd7a54
GC
1460}
1461
32ceabca
GC
1462/**
1463 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1464 * @priv: driver private structure
1465 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1466 */
1c901a46
GC
1467static void stmmac_mmc_setup(struct stmmac_priv *priv)
1468{
1469 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
36ff7c1e 1470 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1c901a46 1471
f748be53
AT
1472 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1473 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1474 else
1475 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
36ff7c1e
AT
1476
1477 dwmac_mmc_intr_all_mask(priv->mmcaddr);
4f795b25
GC
1478
1479 if (priv->dma_cap.rmon) {
36ff7c1e 1480 dwmac_mmc_ctrl(priv->mmcaddr, mode);
4f795b25
GC
1481 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1482 } else
aae54cff 1483 pr_info(" No MAC Management Counters available\n");
1c901a46
GC
1484}
1485
19e30c14 1486/**
732fdf0e 1487 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
32ceabca
GC
1488 * @priv: driver private structure
1489 * Description: select the Enhanced/Alternate or Normal descriptors.
732fdf0e
GC
1490 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1491 * supported by the HW capability register.
ff3dd78c 1492 */
19e30c14
GC
1493static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1494{
1495 if (priv->plat->enh_desc) {
1496 pr_info(" Enhanced/Alternate descriptors\n");
c24602ef
GC
1497
1498 /* GMAC older than 3.50 has no extended descriptors */
1499 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1500 pr_info("\tEnabled extended descriptors\n");
1501 priv->extend_desc = 1;
1502 } else
1503 pr_warn("Extended descriptors not supported\n");
1504
19e30c14
GC
1505 priv->hw->desc = &enh_desc_ops;
1506 } else {
1507 pr_info(" Normal descriptors\n");
1508 priv->hw->desc = &ndesc_ops;
1509 }
1510}
1511
1512/**
732fdf0e 1513 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
32ceabca 1514 * @priv: driver private structure
19e30c14
GC
1515 * Description:
1516 * new GMAC chip generations have a new register to indicate the
1517 * presence of the optional feature/functions.
1518 * This can be also used to override the value passed through the
1519 * platform and necessary for old MAC10/100 and GMAC chips.
e7434821
GC
1520 */
1521static int stmmac_get_hw_features(struct stmmac_priv *priv)
1522{
f10a6a35 1523 u32 ret = 0;
3c20f72f 1524
5e6efe88 1525 if (priv->hw->dma->get_hw_feature) {
f10a6a35
AT
1526 priv->hw->dma->get_hw_feature(priv->ioaddr,
1527 &priv->dma_cap);
1528 ret = 1;
19e30c14 1529 }
e7434821 1530
f10a6a35 1531 return ret;
e7434821
GC
1532}
1533
32ceabca 1534/**
732fdf0e 1535 * stmmac_check_ether_addr - check if the MAC addr is valid
32ceabca
GC
1536 * @priv: driver private structure
1537 * Description:
1538 * it is to verify if the MAC address is valid, in case of failures it
1539 * generates a random MAC address
1540 */
bfab27a1
GC
1541static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1542{
bfab27a1 1543 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
7ed24bbe 1544 priv->hw->mac->get_umac_addr(priv->hw,
bfab27a1 1545 priv->dev->dev_addr, 0);
ceb69499 1546 if (!is_valid_ether_addr(priv->dev->dev_addr))
f2cedb63 1547 eth_hw_addr_random(priv->dev);
c88460b7
HG
1548 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1549 priv->dev->dev_addr);
bfab27a1 1550 }
bfab27a1
GC
1551}
1552
32ceabca 1553/**
732fdf0e 1554 * stmmac_init_dma_engine - DMA init.
32ceabca
GC
1555 * @priv: driver private structure
1556 * Description:
1557 * It inits the DMA invoking the specific MAC/GMAC callback.
1558 * Some DMA parameters can be passed from the platform;
1559 * in case of these are not passed a default is kept for the MAC or GMAC.
1560 */
0f1f88a8
GC
1561static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1562{
afea0365 1563 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
b9cde0a8 1564 int mixed_burst = 0;
c24602ef 1565 int atds = 0;
495db273 1566 int ret = 0;
0f1f88a8 1567
0f1f88a8
GC
1568 if (priv->plat->dma_cfg) {
1569 pbl = priv->plat->dma_cfg->pbl;
1570 fixed_burst = priv->plat->dma_cfg->fixed_burst;
b9cde0a8 1571 mixed_burst = priv->plat->dma_cfg->mixed_burst;
afea0365 1572 aal = priv->plat->dma_cfg->aal;
0f1f88a8
GC
1573 }
1574
c24602ef
GC
1575 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1576 atds = 1;
1577
495db273
GC
1578 ret = priv->hw->dma->reset(priv->ioaddr);
1579 if (ret) {
1580 dev_err(priv->device, "Failed to reset the dma\n");
1581 return ret;
1582 }
1583
1584 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
afea0365
GC
1585 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1586
f748be53
AT
1587 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1588 priv->rx_tail_addr = priv->dma_rx_phy +
1589 (DMA_RX_SIZE * sizeof(struct dma_desc));
1590 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1591 STMMAC_CHAN0);
1592
1593 priv->tx_tail_addr = priv->dma_tx_phy +
1594 (DMA_TX_SIZE * sizeof(struct dma_desc));
1595 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1596 STMMAC_CHAN0);
1597 }
1598
1599 if (priv->plat->axi && priv->hw->dma->axi)
afea0365
GC
1600 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1601
495db273 1602 return ret;
0f1f88a8
GC
1603}
1604
9125cdd1 1605/**
732fdf0e 1606 * stmmac_tx_timer - mitigation sw timer for tx.
9125cdd1
GC
1607 * @data: data pointer
1608 * Description:
1609 * This is the timer handler to directly invoke the stmmac_tx_clean.
1610 */
1611static void stmmac_tx_timer(unsigned long data)
1612{
1613 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1614
1615 stmmac_tx_clean(priv);
1616}
1617
1618/**
732fdf0e 1619 * stmmac_init_tx_coalesce - init tx mitigation options.
32ceabca 1620 * @priv: driver private structure
9125cdd1
GC
1621 * Description:
1622 * This inits the transmit coalesce parameters: i.e. timer rate,
1623 * timer handler and default threshold used for enabling the
1624 * interrupt on completion bit.
1625 */
1626static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1627{
1628 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1629 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1630 init_timer(&priv->txtimer);
1631 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1632 priv->txtimer.data = (unsigned long)priv;
1633 priv->txtimer.function = stmmac_tx_timer;
1634 add_timer(&priv->txtimer);
1635}
1636
523f11b5 1637/**
732fdf0e 1638 * stmmac_hw_setup - setup mac in a usable state.
523f11b5
SK
1639 * @dev : pointer to the device structure.
1640 * Description:
732fdf0e
GC
1641 * this is the main function to setup the HW in a usable state because the
1642 * dma engine is reset, the core registers are configured (e.g. AXI,
1643 * Checksum features, timers). The DMA is ready to start receiving and
1644 * transmitting.
523f11b5
SK
1645 * Return value:
1646 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1647 * file on failure.
1648 */
fe131929 1649static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
523f11b5
SK
1650{
1651 struct stmmac_priv *priv = netdev_priv(dev);
1652 int ret;
1653
523f11b5
SK
1654 /* DMA initialization and SW reset */
1655 ret = stmmac_init_dma_engine(priv);
1656 if (ret < 0) {
1657 pr_err("%s: DMA engine initialization failed\n", __func__);
1658 return ret;
1659 }
1660
1661 /* Copy the MAC addr into the HW */
7ed24bbe 1662 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
523f11b5
SK
1663
1664 /* If required, perform hw setup of the bus. */
1665 if (priv->plat->bus_setup)
1666 priv->plat->bus_setup(priv->ioaddr);
1667
1668 /* Initialize the MAC Core */
7ed24bbe 1669 priv->hw->mac->core_init(priv->hw, dev->mtu);
523f11b5 1670
978aded4
GC
1671 ret = priv->hw->mac->rx_ipc(priv->hw);
1672 if (!ret) {
1673 pr_warn(" RX IPC Checksum Offload disabled\n");
1674 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
d2afb5bd 1675 priv->hw->rx_csum = 0;
978aded4
GC
1676 }
1677
523f11b5 1678 /* Enable the MAC Rx/Tx */
f748be53
AT
1679 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1680 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1681 else
1682 stmmac_set_mac(priv->ioaddr, true);
523f11b5
SK
1683
1684 /* Set the HW DMA mode and the COE */
1685 stmmac_dma_operation_mode(priv);
1686
1687 stmmac_mmc_setup(priv);
1688
fe131929
HC
1689 if (init_ptp) {
1690 ret = stmmac_init_ptp(priv);
1691 if (ret && ret != -EOPNOTSUPP)
1692 pr_warn("%s: failed PTP initialisation\n", __func__);
1693 }
523f11b5 1694
50fb4f74 1695#ifdef CONFIG_DEBUG_FS
523f11b5
SK
1696 ret = stmmac_init_fs(dev);
1697 if (ret < 0)
1698 pr_warn("%s: failed debugFS registration\n", __func__);
1699#endif
1700 /* Start the ball rolling... */
1701 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1702 priv->hw->dma->start_tx(priv->ioaddr);
1703 priv->hw->dma->start_rx(priv->ioaddr);
1704
1705 /* Dump DMA/MAC registers */
1706 if (netif_msg_hw(priv)) {
7ed24bbe 1707 priv->hw->mac->dump_regs(priv->hw);
523f11b5
SK
1708 priv->hw->dma->dump_regs(priv->ioaddr);
1709 }
1710 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1711
523f11b5
SK
1712 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1713 priv->rx_riwt = MAX_DMA_RIWT;
1714 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1715 }
1716
1717 if (priv->pcs && priv->hw->mac->ctrl_ane)
7ed24bbe 1718 priv->hw->mac->ctrl_ane(priv->hw, 0);
523f11b5 1719
f748be53
AT
1720 /* set TX ring length */
1721 if (priv->hw->dma->set_tx_ring_len)
1722 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1723 (DMA_TX_SIZE - 1));
1724 /* set RX ring length */
1725 if (priv->hw->dma->set_rx_ring_len)
1726 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1727 (DMA_RX_SIZE - 1));
1728 /* Enable TSO */
1729 if (priv->tso)
1730 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1731
523f11b5
SK
1732 return 0;
1733}
1734
47dd7a54
GC
1735/**
1736 * stmmac_open - open entry point of the driver
1737 * @dev : pointer to the device structure.
1738 * Description:
1739 * This function is the open entry point of the driver.
1740 * Return value:
1741 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1742 * file on failure.
1743 */
1744static int stmmac_open(struct net_device *dev)
1745{
1746 struct stmmac_priv *priv = netdev_priv(dev);
47dd7a54
GC
1747 int ret;
1748
4bfcbd7a
FV
1749 stmmac_check_ether_addr(priv);
1750
4d8f0825
BA
1751 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1752 priv->pcs != STMMAC_PCS_RTBI) {
e58bb43f
GC
1753 ret = stmmac_init_phy(dev);
1754 if (ret) {
1755 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1756 __func__, ret);
89df20d9 1757 return ret;
e58bb43f 1758 }
f66ffe28 1759 }
47dd7a54 1760
523f11b5
SK
1761 /* Extra statistics */
1762 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1763 priv->xstats.threshold = tc;
1764
47dd7a54 1765 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
22ad3838 1766 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
56329137 1767
7262b7b2 1768 ret = alloc_dma_desc_resources(priv);
09f8d696
SK
1769 if (ret < 0) {
1770 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1771 goto dma_desc_error;
1772 }
1773
777da230
GC
1774 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1775 if (ret < 0) {
1776 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1777 goto init_error;
1778 }
1779
fe131929 1780 ret = stmmac_hw_setup(dev, true);
56329137 1781 if (ret < 0) {
523f11b5 1782 pr_err("%s: Hw setup failed\n", __func__);
c9324d18 1783 goto init_error;
47dd7a54
GC
1784 }
1785
777da230
GC
1786 stmmac_init_tx_coalesce(priv);
1787
523f11b5
SK
1788 if (priv->phydev)
1789 phy_start(priv->phydev);
47dd7a54 1790
f66ffe28
GC
1791 /* Request the IRQ lines */
1792 ret = request_irq(dev->irq, stmmac_interrupt,
ceb69499 1793 IRQF_SHARED, dev->name, dev);
f66ffe28
GC
1794 if (unlikely(ret < 0)) {
1795 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1796 __func__, dev->irq, ret);
c9324d18 1797 goto init_error;
f66ffe28
GC
1798 }
1799
7a13f8f5
FV
1800 /* Request the Wake IRQ in case of another line is used for WoL */
1801 if (priv->wol_irq != dev->irq) {
1802 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1803 IRQF_SHARED, dev->name, dev);
1804 if (unlikely(ret < 0)) {
ceb69499
GC
1805 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1806 __func__, priv->wol_irq, ret);
c9324d18 1807 goto wolirq_error;
7a13f8f5
FV
1808 }
1809 }
1810
d765955d 1811 /* Request the IRQ lines */
d7ec8584 1812 if (priv->lpi_irq > 0) {
d765955d
GC
1813 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1814 dev->name, dev);
1815 if (unlikely(ret < 0)) {
1816 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1817 __func__, priv->lpi_irq, ret);
c9324d18 1818 goto lpiirq_error;
d765955d
GC
1819 }
1820 }
1821
47dd7a54 1822 napi_enable(&priv->napi);
47dd7a54 1823 netif_start_queue(dev);
f66ffe28 1824
47dd7a54 1825 return 0;
f66ffe28 1826
c9324d18 1827lpiirq_error:
d765955d
GC
1828 if (priv->wol_irq != dev->irq)
1829 free_irq(priv->wol_irq, dev);
c9324d18 1830wolirq_error:
7a13f8f5
FV
1831 free_irq(dev->irq, dev);
1832
c9324d18
GC
1833init_error:
1834 free_dma_desc_resources(priv);
56329137 1835dma_desc_error:
f66ffe28
GC
1836 if (priv->phydev)
1837 phy_disconnect(priv->phydev);
4bfcbd7a 1838
f66ffe28 1839 return ret;
47dd7a54
GC
1840}
1841
1842/**
1843 * stmmac_release - close entry point of the driver
1844 * @dev : device pointer.
1845 * Description:
1846 * This is the stop entry point of the driver.
1847 */
1848static int stmmac_release(struct net_device *dev)
1849{
1850 struct stmmac_priv *priv = netdev_priv(dev);
1851
d765955d
GC
1852 if (priv->eee_enabled)
1853 del_timer_sync(&priv->eee_ctrl_timer);
1854
47dd7a54
GC
1855 /* Stop and disconnect the PHY */
1856 if (priv->phydev) {
1857 phy_stop(priv->phydev);
1858 phy_disconnect(priv->phydev);
1859 priv->phydev = NULL;
1860 }
1861
1862 netif_stop_queue(dev);
1863
47dd7a54 1864 napi_disable(&priv->napi);
47dd7a54 1865
9125cdd1
GC
1866 del_timer_sync(&priv->txtimer);
1867
47dd7a54
GC
1868 /* Free the IRQ lines */
1869 free_irq(dev->irq, dev);
7a13f8f5
FV
1870 if (priv->wol_irq != dev->irq)
1871 free_irq(priv->wol_irq, dev);
d7ec8584 1872 if (priv->lpi_irq > 0)
d765955d 1873 free_irq(priv->lpi_irq, dev);
47dd7a54
GC
1874
1875 /* Stop TX/RX DMA and clear the descriptors */
ad01b7d4
GC
1876 priv->hw->dma->stop_tx(priv->ioaddr);
1877 priv->hw->dma->stop_rx(priv->ioaddr);
47dd7a54
GC
1878
1879 /* Release and free the Rx/Tx resources */
1880 free_dma_desc_resources(priv);
1881
19449bfc 1882 /* Disable the MAC Rx/Tx */
bfab27a1 1883 stmmac_set_mac(priv->ioaddr, false);
47dd7a54
GC
1884
1885 netif_carrier_off(dev);
1886
50fb4f74 1887#ifdef CONFIG_DEBUG_FS
466c5ac8 1888 stmmac_exit_fs(dev);
bfab27a1 1889#endif
bfab27a1 1890
92ba6888
RK
1891 stmmac_release_ptp(priv);
1892
47dd7a54
GC
1893 return 0;
1894}
1895
f748be53
AT
1896/**
1897 * stmmac_tso_allocator - close entry point of the driver
1898 * @priv: driver private structure
1899 * @des: buffer start address
1900 * @total_len: total length to fill in descriptors
1901 * @last_segmant: condition for the last descriptor
1902 * Description:
1903 * This function fills descriptor and request new descriptors according to
1904 * buffer length to fill
1905 */
1906static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1907 int total_len, bool last_segment)
1908{
1909 struct dma_desc *desc;
1910 int tmp_len;
1911 u32 buff_size;
1912
1913 tmp_len = total_len;
1914
1915 while (tmp_len > 0) {
1916 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1917 desc = priv->dma_tx + priv->cur_tx;
1918
1919 desc->des0 = des + (total_len - tmp_len);
1920 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1921 TSO_MAX_BUFF_SIZE : tmp_len;
1922
1923 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1924 0, 1,
1925 (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1926 0, 0);
1927
1928 tmp_len -= TSO_MAX_BUFF_SIZE;
1929 }
1930}
1931
1932/**
1933 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1934 * @skb : the socket buffer
1935 * @dev : device pointer
1936 * Description: this is the transmit function that is called on TSO frames
1937 * (support available on GMAC4 and newer chips).
1938 * Diagram below show the ring programming in case of TSO frames:
1939 *
1940 * First Descriptor
1941 * --------
1942 * | DES0 |---> buffer1 = L2/L3/L4 header
1943 * | DES1 |---> TCP Payload (can continue on next descr...)
1944 * | DES2 |---> buffer 1 and 2 len
1945 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1946 * --------
1947 * |
1948 * ...
1949 * |
1950 * --------
1951 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
1952 * | DES1 | --|
1953 * | DES2 | --> buffer 1 and 2 len
1954 * | DES3 |
1955 * --------
1956 *
1957 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1958 */
1959static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1960{
1961 u32 pay_len, mss;
1962 int tmp_pay_len = 0;
1963 struct stmmac_priv *priv = netdev_priv(dev);
1964 int nfrags = skb_shinfo(skb)->nr_frags;
1965 unsigned int first_entry, des;
1966 struct dma_desc *desc, *first, *mss_desc = NULL;
1967 u8 proto_hdr_len;
1968 int i;
1969
1970 spin_lock(&priv->tx_lock);
1971
1972 /* Compute header lengths */
1973 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1974
1975 /* Desc availability based on threshold should be enough safe */
1976 if (unlikely(stmmac_tx_avail(priv) <
1977 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
1978 if (!netif_queue_stopped(dev)) {
1979 netif_stop_queue(dev);
1980 /* This is a hard error, log it. */
1981 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1982 }
1983 spin_unlock(&priv->tx_lock);
1984 return NETDEV_TX_BUSY;
1985 }
1986
1987 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
1988
1989 mss = skb_shinfo(skb)->gso_size;
1990
1991 /* set new MSS value if needed */
1992 if (mss != priv->mss) {
1993 mss_desc = priv->dma_tx + priv->cur_tx;
1994 priv->hw->desc->set_mss(mss_desc, mss);
1995 priv->mss = mss;
1996 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1997 }
1998
1999 if (netif_msg_tx_queued(priv)) {
2000 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2001 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2002 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2003 skb->data_len);
2004 }
2005
2006 first_entry = priv->cur_tx;
2007
2008 desc = priv->dma_tx + first_entry;
2009 first = desc;
2010
2011 /* first descriptor: fill Headers on Buf1 */
2012 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2013 DMA_TO_DEVICE);
2014 if (dma_mapping_error(priv->device, des))
2015 goto dma_map_err;
2016
2017 priv->tx_skbuff_dma[first_entry].buf = des;
2018 priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2019 priv->tx_skbuff[first_entry] = skb;
2020
2021 first->des0 = des;
2022
2023 /* Fill start of payload in buff2 of first descriptor */
2024 if (pay_len)
2025 first->des1 = des + proto_hdr_len;
2026
2027 /* If needed take extra descriptors to fill the remaining payload */
2028 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2029
2030 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2031
2032 /* Prepare fragments */
2033 for (i = 0; i < nfrags; i++) {
2034 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2035
2036 des = skb_frag_dma_map(priv->device, frag, 0,
2037 skb_frag_size(frag),
2038 DMA_TO_DEVICE);
2039
2040 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2041 (i == nfrags - 1));
2042
2043 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2044 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2045 priv->tx_skbuff[priv->cur_tx] = NULL;
2046 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2047 }
2048
2049 priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2050
2051 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2052
2053 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2054 if (netif_msg_hw(priv))
2055 pr_debug("%s: stop transmitted packets\n", __func__);
2056 netif_stop_queue(dev);
2057 }
2058
2059 dev->stats.tx_bytes += skb->len;
2060 priv->xstats.tx_tso_frames++;
2061 priv->xstats.tx_tso_nfrags += nfrags;
2062
2063 /* Manage tx mitigation */
2064 priv->tx_count_frames += nfrags + 1;
2065 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2066 mod_timer(&priv->txtimer,
2067 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2068 } else {
2069 priv->tx_count_frames = 0;
2070 priv->hw->desc->set_tx_ic(desc);
2071 priv->xstats.tx_set_ic_bit++;
2072 }
2073
2074 if (!priv->hwts_tx_en)
2075 skb_tx_timestamp(skb);
2076
2077 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2078 priv->hwts_tx_en)) {
2079 /* declare that device is doing timestamping */
2080 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2081 priv->hw->desc->enable_tx_timestamp(first);
2082 }
2083
2084 /* Complete the first descriptor before granting the DMA */
2085 priv->hw->desc->prepare_tso_tx_desc(first, 1,
2086 proto_hdr_len,
2087 pay_len,
2088 1, priv->tx_skbuff_dma[first_entry].last_segment,
2089 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2090
2091 /* If context desc is used to change MSS */
2092 if (mss_desc)
2093 priv->hw->desc->set_tx_owner(mss_desc);
2094
2095 /* The own bit must be the latest setting done when prepare the
2096 * descriptor and then barrier is needed to make sure that
2097 * all is coherent before granting the DMA engine.
2098 */
2099 smp_wmb();
2100
2101 if (netif_msg_pktdata(priv)) {
2102 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2103 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2104 priv->cur_tx, first, nfrags);
2105
2106 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2107 0);
2108
2109 pr_info(">>> frame to be transmitted: ");
2110 print_pkt(skb->data, skb_headlen(skb));
2111 }
2112
2113 netdev_sent_queue(dev, skb->len);
2114
2115 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2116 STMMAC_CHAN0);
2117
2118 spin_unlock(&priv->tx_lock);
2119 return NETDEV_TX_OK;
2120
2121dma_map_err:
2122 spin_unlock(&priv->tx_lock);
2123 dev_err(priv->device, "Tx dma map failed\n");
2124 dev_kfree_skb(skb);
2125 priv->dev->stats.tx_dropped++;
2126 return NETDEV_TX_OK;
2127}
2128
47dd7a54 2129/**
732fdf0e 2130 * stmmac_xmit - Tx entry point of the driver
47dd7a54
GC
2131 * @skb : the socket buffer
2132 * @dev : device pointer
32ceabca
GC
2133 * Description : this is the tx entry point of the driver.
2134 * It programs the chain or the ring and supports oversized frames
2135 * and SG feature.
47dd7a54
GC
2136 */
2137static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2138{
2139 struct stmmac_priv *priv = netdev_priv(dev);
0e80bdc9 2140 unsigned int nopaged_len = skb_headlen(skb);
4a7d666a 2141 int i, csum_insertion = 0, is_jumbo = 0;
47dd7a54 2142 int nfrags = skb_shinfo(skb)->nr_frags;
0e80bdc9 2143 unsigned int entry, first_entry;
47dd7a54 2144 struct dma_desc *desc, *first;
0e80bdc9 2145 unsigned int enh_desc;
f748be53
AT
2146 unsigned int des;
2147
2148 /* Manage oversized TCP frames for GMAC4 device */
2149 if (skb_is_gso(skb) && priv->tso) {
2150 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2151 return stmmac_tso_xmit(skb, dev);
2152 }
47dd7a54 2153
16ee817e
FG
2154 spin_lock(&priv->tx_lock);
2155
47dd7a54 2156 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
16ee817e 2157 spin_unlock(&priv->tx_lock);
47dd7a54
GC
2158 if (!netif_queue_stopped(dev)) {
2159 netif_stop_queue(dev);
2160 /* This is a hard error, log it. */
ceb69499 2161 pr_err("%s: Tx Ring full when queue awake\n", __func__);
47dd7a54
GC
2162 }
2163 return NETDEV_TX_BUSY;
2164 }
2165
d765955d
GC
2166 if (priv->tx_path_in_lpi_mode)
2167 stmmac_disable_eee_mode(priv);
2168
e3ad57c9 2169 entry = priv->cur_tx;
0e80bdc9 2170 first_entry = entry;
47dd7a54 2171
5e982f3b 2172 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
47dd7a54 2173
0e80bdc9 2174 if (likely(priv->extend_desc))
ceb69499 2175 desc = (struct dma_desc *)(priv->dma_etx + entry);
c24602ef
GC
2176 else
2177 desc = priv->dma_tx + entry;
2178
47dd7a54
GC
2179 first = desc;
2180
0e80bdc9
GC
2181 priv->tx_skbuff[first_entry] = skb;
2182
2183 enh_desc = priv->plat->enh_desc;
4a7d666a 2184 /* To program the descriptors according to the size of the frame */
29896a67
GC
2185 if (enh_desc)
2186 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2187
f748be53
AT
2188 if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2189 DWMAC_CORE_4_00)) {
29896a67 2190 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
362b37be
GC
2191 if (unlikely(entry < 0))
2192 goto dma_map_err;
29896a67 2193 }
47dd7a54
GC
2194
2195 for (i = 0; i < nfrags; i++) {
9e903e08
ED
2196 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2197 int len = skb_frag_size(frag);
be434d50 2198 bool last_segment = (i == (nfrags - 1));
47dd7a54 2199
e3ad57c9
GC
2200 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2201
0e80bdc9 2202 if (likely(priv->extend_desc))
ceb69499 2203 desc = (struct dma_desc *)(priv->dma_etx + entry);
c24602ef
GC
2204 else
2205 desc = priv->dma_tx + entry;
47dd7a54 2206
f748be53
AT
2207 des = skb_frag_dma_map(priv->device, frag, 0, len,
2208 DMA_TO_DEVICE);
2209 if (dma_mapping_error(priv->device, des))
362b37be
GC
2210 goto dma_map_err; /* should reuse desc w/o issues */
2211
0e80bdc9 2212 priv->tx_skbuff[entry] = NULL;
f748be53
AT
2213
2214 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2215 desc->des0 = des;
2216 priv->tx_skbuff_dma[entry].buf = desc->des0;
2217 } else {
2218 desc->des2 = des;
2219 priv->tx_skbuff_dma[entry].buf = desc->des2;
2220 }
2221
362b37be 2222 priv->tx_skbuff_dma[entry].map_as_page = true;
553e2ab3 2223 priv->tx_skbuff_dma[entry].len = len;
0e80bdc9
GC
2224 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2225
2226 /* Prepare the descriptor and set the own bit too */
4a7d666a 2227 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
be434d50 2228 priv->mode, 1, last_segment);
47dd7a54
GC
2229 }
2230
e3ad57c9
GC
2231 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2232
2233 priv->cur_tx = entry;
47dd7a54 2234
47dd7a54 2235 if (netif_msg_pktdata(priv)) {
d0225e7d
AT
2236 void *tx_head;
2237
0e80bdc9
GC
2238 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2239 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2240 entry, first, nfrags);
83d7af64 2241
c24602ef 2242 if (priv->extend_desc)
d0225e7d 2243 tx_head = (void *)priv->dma_etx;
c24602ef 2244 else
d0225e7d
AT
2245 tx_head = (void *)priv->dma_tx;
2246
2247 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
c24602ef 2248
83d7af64 2249 pr_debug(">>> frame to be transmitted: ");
47dd7a54
GC
2250 print_pkt(skb->data, skb->len);
2251 }
0e80bdc9 2252
47dd7a54 2253 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
83d7af64
GC
2254 if (netif_msg_hw(priv))
2255 pr_debug("%s: stop transmitted packets\n", __func__);
47dd7a54
GC
2256 netif_stop_queue(dev);
2257 }
2258
2259 dev->stats.tx_bytes += skb->len;
2260
0e80bdc9
GC
2261 /* According to the coalesce parameter the IC bit for the latest
2262 * segment is reset and the timer re-started to clean the tx status.
2263 * This approach takes care about the fragments: desc is the first
2264 * element in case of no SG.
2265 */
2266 priv->tx_count_frames += nfrags + 1;
2267 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2268 mod_timer(&priv->txtimer,
2269 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2270 } else {
2271 priv->tx_count_frames = 0;
2272 priv->hw->desc->set_tx_ic(desc);
2273 priv->xstats.tx_set_ic_bit++;
891434b1
RK
2274 }
2275
2276 if (!priv->hwts_tx_en)
2277 skb_tx_timestamp(skb);
3e82ce12 2278
0e80bdc9
GC
2279 /* Ready to fill the first descriptor and set the OWN bit w/o any
2280 * problems because all the descriptors are actually ready to be
2281 * passed to the DMA engine.
2282 */
2283 if (likely(!is_jumbo)) {
2284 bool last_segment = (nfrags == 0);
2285
f748be53
AT
2286 des = dma_map_single(priv->device, skb->data,
2287 nopaged_len, DMA_TO_DEVICE);
2288 if (dma_mapping_error(priv->device, des))
0e80bdc9
GC
2289 goto dma_map_err;
2290
f748be53
AT
2291 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2292 first->des0 = des;
2293 priv->tx_skbuff_dma[first_entry].buf = first->des0;
2294 } else {
2295 first->des2 = des;
2296 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2297 }
2298
0e80bdc9
GC
2299 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2300 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2301
2302 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2303 priv->hwts_tx_en)) {
2304 /* declare that device is doing timestamping */
2305 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2306 priv->hw->desc->enable_tx_timestamp(first);
2307 }
2308
2309 /* Prepare the first descriptor setting the OWN bit too */
2310 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2311 csum_insertion, priv->mode, 1,
2312 last_segment);
2313
2314 /* The own bit must be the latest setting done when prepare the
2315 * descriptor and then barrier is needed to make sure that
2316 * all is coherent before granting the DMA engine.
2317 */
2318 smp_wmb();
2319 }
2320
38979574 2321 netdev_sent_queue(dev, skb->len);
f748be53
AT
2322
2323 if (priv->synopsys_id < DWMAC_CORE_4_00)
2324 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2325 else
2326 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2327 STMMAC_CHAN0);
52f64fae 2328
a9097a96 2329 spin_unlock(&priv->tx_lock);
362b37be 2330 return NETDEV_TX_OK;
a9097a96 2331
362b37be 2332dma_map_err:
758a0ab5 2333 spin_unlock(&priv->tx_lock);
362b37be
GC
2334 dev_err(priv->device, "Tx dma map failed\n");
2335 dev_kfree_skb(skb);
2336 priv->dev->stats.tx_dropped++;
47dd7a54
GC
2337 return NETDEV_TX_OK;
2338}
2339
b9381985
VB
2340static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2341{
2342 struct ethhdr *ehdr;
2343 u16 vlanid;
2344
2345 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2346 NETIF_F_HW_VLAN_CTAG_RX &&
2347 !__vlan_get_tag(skb, &vlanid)) {
2348 /* pop the vlan tag */
2349 ehdr = (struct ethhdr *)skb->data;
2350 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2351 skb_pull(skb, VLAN_HLEN);
2352 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2353 }
2354}
2355
2356
120e87f9
GC
2357static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2358{
2359 if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2360 return 0;
2361
2362 return 1;
2363}
2364
32ceabca 2365/**
732fdf0e 2366 * stmmac_rx_refill - refill used skb preallocated buffers
32ceabca
GC
2367 * @priv: driver private structure
2368 * Description : this is to reallocate the skb for the reception process
2369 * that is based on zero-copy.
2370 */
47dd7a54
GC
2371static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2372{
47dd7a54 2373 int bfsize = priv->dma_buf_sz;
e3ad57c9
GC
2374 unsigned int entry = priv->dirty_rx;
2375 int dirty = stmmac_rx_dirty(priv);
47dd7a54 2376
e3ad57c9 2377 while (dirty-- > 0) {
c24602ef
GC
2378 struct dma_desc *p;
2379
2380 if (priv->extend_desc)
ceb69499 2381 p = (struct dma_desc *)(priv->dma_erx + entry);
c24602ef
GC
2382 else
2383 p = priv->dma_rx + entry;
2384
47dd7a54
GC
2385 if (likely(priv->rx_skbuff[entry] == NULL)) {
2386 struct sk_buff *skb;
2387
acb600de 2388 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
120e87f9
GC
2389 if (unlikely(!skb)) {
2390 /* so for a while no zero-copy! */
2391 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2392 if (unlikely(net_ratelimit()))
2393 dev_err(priv->device,
2394 "fail to alloc skb entry %d\n",
2395 entry);
47dd7a54 2396 break;
120e87f9 2397 }
47dd7a54
GC
2398
2399 priv->rx_skbuff[entry] = skb;
2400 priv->rx_skbuff_dma[entry] =
2401 dma_map_single(priv->device, skb->data, bfsize,
2402 DMA_FROM_DEVICE);
362b37be
GC
2403 if (dma_mapping_error(priv->device,
2404 priv->rx_skbuff_dma[entry])) {
2405 dev_err(priv->device, "Rx dma map failed\n");
2406 dev_kfree_skb(skb);
2407 break;
2408 }
286a8372 2409
f748be53
AT
2410 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2411 p->des0 = priv->rx_skbuff_dma[entry];
2412 p->des1 = 0;
2413 } else {
2414 p->des2 = priv->rx_skbuff_dma[entry];
2415 }
2416 if (priv->hw->mode->refill_desc3)
2417 priv->hw->mode->refill_desc3(priv, p);
286a8372 2418
120e87f9
GC
2419 if (priv->rx_zeroc_thresh > 0)
2420 priv->rx_zeroc_thresh--;
2421
83d7af64
GC
2422 if (netif_msg_rx_status(priv))
2423 pr_debug("\trefill entry #%d\n", entry);
47dd7a54 2424 }
eb0dc4bb 2425 wmb();
f748be53
AT
2426
2427 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2428 priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2429 else
2430 priv->hw->desc->set_rx_owner(p);
2431
8e839891 2432 wmb();
e3ad57c9
GC
2433
2434 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
47dd7a54 2435 }
e3ad57c9 2436 priv->dirty_rx = entry;
47dd7a54
GC
2437}
2438
32ceabca 2439/**
732fdf0e 2440 * stmmac_rx - manage the receive process
32ceabca
GC
2441 * @priv: driver private structure
2442 * @limit: napi bugget.
2443 * Description : this the function called by the napi poll method.
2444 * It gets all the frames inside the ring.
2445 */
47dd7a54
GC
2446static int stmmac_rx(struct stmmac_priv *priv, int limit)
2447{
e3ad57c9 2448 unsigned int entry = priv->cur_rx;
47dd7a54
GC
2449 unsigned int next_entry;
2450 unsigned int count = 0;
d2afb5bd 2451 int coe = priv->hw->rx_csum;
47dd7a54 2452
83d7af64 2453 if (netif_msg_rx_status(priv)) {
d0225e7d
AT
2454 void *rx_head;
2455
83d7af64 2456 pr_debug("%s: descriptor ring:\n", __func__);
c24602ef 2457 if (priv->extend_desc)
d0225e7d 2458 rx_head = (void *)priv->dma_erx;
c24602ef 2459 else
d0225e7d
AT
2460 rx_head = (void *)priv->dma_rx;
2461
2462 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
47dd7a54 2463 }
c24602ef 2464 while (count < limit) {
47dd7a54 2465 int status;
9401bb5c 2466 struct dma_desc *p;
47dd7a54 2467
c24602ef 2468 if (priv->extend_desc)
ceb69499 2469 p = (struct dma_desc *)(priv->dma_erx + entry);
c24602ef 2470 else
ceb69499 2471 p = priv->dma_rx + entry;
c24602ef 2472
c1fa3212
FG
2473 /* read the status of the incoming frame */
2474 status = priv->hw->desc->rx_status(&priv->dev->stats,
2475 &priv->xstats, p);
2476 /* check if managed by the DMA otherwise go ahead */
2477 if (unlikely(status & dma_own))
47dd7a54
GC
2478 break;
2479
2480 count++;
2481
e3ad57c9
GC
2482 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2483 next_entry = priv->cur_rx;
2484
c24602ef 2485 if (priv->extend_desc)
9401bb5c 2486 prefetch(priv->dma_erx + next_entry);
c24602ef 2487 else
9401bb5c 2488 prefetch(priv->dma_rx + next_entry);
47dd7a54 2489
c24602ef
GC
2490 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2491 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2492 &priv->xstats,
2493 priv->dma_erx +
2494 entry);
891434b1 2495 if (unlikely(status == discard_frame)) {
47dd7a54 2496 priv->dev->stats.rx_errors++;
891434b1
RK
2497 if (priv->hwts_rx_en && !priv->extend_desc) {
2498 /* DESC2 & DESC3 will be overwitten by device
2499 * with timestamp value, hence reinitialize
2500 * them in stmmac_rx_refill() function so that
2501 * device can reuse it.
2502 */
2503 priv->rx_skbuff[entry] = NULL;
2504 dma_unmap_single(priv->device,
ceb69499
GC
2505 priv->rx_skbuff_dma[entry],
2506 priv->dma_buf_sz,
2507 DMA_FROM_DEVICE);
891434b1
RK
2508 }
2509 } else {
47dd7a54 2510 struct sk_buff *skb;
3eeb2997 2511 int frame_len;
f748be53
AT
2512 unsigned int des;
2513
2514 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2515 des = p->des0;
2516 else
2517 des = p->des2;
47dd7a54 2518
ceb69499
GC
2519 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2520
f748be53
AT
2521 /* If frame length is greather than skb buffer size
2522 * (preallocated during init) then the packet is
2523 * ignored
2524 */
e527c4a7 2525 if (frame_len > priv->dma_buf_sz) {
f748be53
AT
2526 pr_err("%s: len %d larger than size (%d)\n",
2527 priv->dev->name, frame_len,
2528 priv->dma_buf_sz);
e527c4a7
GC
2529 priv->dev->stats.rx_length_errors++;
2530 break;
2531 }
2532
3eeb2997 2533 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
ceb69499
GC
2534 * Type frames (LLC/LLC-SNAP)
2535 */
3eeb2997
GC
2536 if (unlikely(status != llc_snap))
2537 frame_len -= ETH_FCS_LEN;
47dd7a54 2538
83d7af64 2539 if (netif_msg_rx_status(priv)) {
47dd7a54 2540 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
f748be53 2541 p, entry, des);
83d7af64
GC
2542 if (frame_len > ETH_FRAME_LEN)
2543 pr_debug("\tframe size %d, COE: %d\n",
2544 frame_len, status);
2545 }
22ad3838 2546
f748be53
AT
2547 /* The zero-copy is always used for all the sizes
2548 * in case of GMAC4 because it needs
2549 * to refill the used descriptors, always.
2550 */
2551 if (unlikely(!priv->plat->has_gmac4 &&
2552 ((frame_len < priv->rx_copybreak) ||
2553 stmmac_rx_threshold_count(priv)))) {
22ad3838
GC
2554 skb = netdev_alloc_skb_ip_align(priv->dev,
2555 frame_len);
2556 if (unlikely(!skb)) {
2557 if (net_ratelimit())
2558 dev_warn(priv->device,
2559 "packet dropped\n");
2560 priv->dev->stats.rx_dropped++;
2561 break;
2562 }
2563
2564 dma_sync_single_for_cpu(priv->device,
2565 priv->rx_skbuff_dma
2566 [entry], frame_len,
2567 DMA_FROM_DEVICE);
2568 skb_copy_to_linear_data(skb,
2569 priv->
2570 rx_skbuff[entry]->data,
2571 frame_len);
2572
2573 skb_put(skb, frame_len);
2574 dma_sync_single_for_device(priv->device,
2575 priv->rx_skbuff_dma
2576 [entry], frame_len,
2577 DMA_FROM_DEVICE);
2578 } else {
2579 skb = priv->rx_skbuff[entry];
2580 if (unlikely(!skb)) {
2581 pr_err("%s: Inconsistent Rx chain\n",
2582 priv->dev->name);
2583 priv->dev->stats.rx_dropped++;
2584 break;
2585 }
2586 prefetch(skb->data - NET_IP_ALIGN);
2587 priv->rx_skbuff[entry] = NULL;
120e87f9 2588 priv->rx_zeroc_thresh++;
22ad3838
GC
2589
2590 skb_put(skb, frame_len);
2591 dma_unmap_single(priv->device,
2592 priv->rx_skbuff_dma[entry],
2593 priv->dma_buf_sz,
2594 DMA_FROM_DEVICE);
47dd7a54 2595 }
47dd7a54 2596
891434b1
RK
2597 stmmac_get_rx_hwtstamp(priv, entry, skb);
2598
47dd7a54 2599 if (netif_msg_pktdata(priv)) {
83d7af64 2600 pr_debug("frame received (%dbytes)", frame_len);
47dd7a54
GC
2601 print_pkt(skb->data, frame_len);
2602 }
83d7af64 2603
b9381985
VB
2604 stmmac_rx_vlan(priv->dev, skb);
2605
47dd7a54
GC
2606 skb->protocol = eth_type_trans(skb, priv->dev);
2607
ceb69499 2608 if (unlikely(!coe))
bc8acf2c 2609 skb_checksum_none_assert(skb);
62a2ab93 2610 else
47dd7a54 2611 skb->ip_summed = CHECKSUM_UNNECESSARY;
62a2ab93
GC
2612
2613 napi_gro_receive(&priv->napi, skb);
47dd7a54
GC
2614
2615 priv->dev->stats.rx_packets++;
2616 priv->dev->stats.rx_bytes += frame_len;
47dd7a54
GC
2617 }
2618 entry = next_entry;
47dd7a54
GC
2619 }
2620
2621 stmmac_rx_refill(priv);
2622
2623 priv->xstats.rx_pkt_n += count;
2624
2625 return count;
2626}
2627
2628/**
2629 * stmmac_poll - stmmac poll method (NAPI)
2630 * @napi : pointer to the napi structure.
2631 * @budget : maximum number of packets that the current CPU can receive from
2632 * all interfaces.
2633 * Description :
9125cdd1 2634 * To look at the incoming frames and clear the tx resources.
47dd7a54
GC
2635 */
2636static int stmmac_poll(struct napi_struct *napi, int budget)
2637{
2638 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2639 int work_done = 0;
2640
9125cdd1
GC
2641 priv->xstats.napi_poll++;
2642 stmmac_tx_clean(priv);
47dd7a54 2643
9125cdd1 2644 work_done = stmmac_rx(priv, budget);
47dd7a54
GC
2645 if (work_done < budget) {
2646 napi_complete(napi);
9125cdd1 2647 stmmac_enable_dma_irq(priv);
47dd7a54
GC
2648 }
2649 return work_done;
2650}
2651
2652/**
2653 * stmmac_tx_timeout
2654 * @dev : Pointer to net device structure
2655 * Description: this function is called when a packet transmission fails to
7284a3f1 2656 * complete within a reasonable time. The driver will mark the error in the
47dd7a54
GC
2657 * netdev structure and arrange for the device to be reset to a sane state
2658 * in order to transmit a new packet.
2659 */
2660static void stmmac_tx_timeout(struct net_device *dev)
2661{
2662 struct stmmac_priv *priv = netdev_priv(dev);
2663
2664 /* Clear Tx resources and restart transmitting again */
2665 stmmac_tx_err(priv);
47dd7a54
GC
2666}
2667
47dd7a54 2668/**
01789349 2669 * stmmac_set_rx_mode - entry point for multicast addressing
47dd7a54
GC
2670 * @dev : pointer to the device structure
2671 * Description:
2672 * This function is a driver entry point which gets called by the kernel
2673 * whenever multicast addresses must be enabled/disabled.
2674 * Return value:
2675 * void.
2676 */
01789349 2677static void stmmac_set_rx_mode(struct net_device *dev)
47dd7a54
GC
2678{
2679 struct stmmac_priv *priv = netdev_priv(dev);
2680
3b57de95 2681 priv->hw->mac->set_filter(priv->hw, dev);
47dd7a54
GC
2682}
2683
2684/**
2685 * stmmac_change_mtu - entry point to change MTU size for the device.
2686 * @dev : device pointer.
2687 * @new_mtu : the new MTU size for the device.
2688 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2689 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2690 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2691 * Return value:
2692 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2693 * file on failure.
2694 */
2695static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2696{
2697 struct stmmac_priv *priv = netdev_priv(dev);
2698 int max_mtu;
2699
2700 if (netif_running(dev)) {
2701 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2702 return -EBUSY;
2703 }
2704
f748be53 2705 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
47dd7a54
GC
2706 max_mtu = JUMBO_LEN;
2707 else
45db81e1 2708 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
47dd7a54 2709
2618abb7
VB
2710 if (priv->plat->maxmtu < max_mtu)
2711 max_mtu = priv->plat->maxmtu;
2712
47dd7a54
GC
2713 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2714 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2715 return -EINVAL;
2716 }
2717
5e982f3b 2718 dev->mtu = new_mtu;
f748be53 2719
5e982f3b
MM
2720 netdev_update_features(dev);
2721
2722 return 0;
2723}
2724
c8f44aff 2725static netdev_features_t stmmac_fix_features(struct net_device *dev,
ceb69499 2726 netdev_features_t features)
5e982f3b
MM
2727{
2728 struct stmmac_priv *priv = netdev_priv(dev);
2729
38912bdb 2730 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5e982f3b 2731 features &= ~NETIF_F_RXCSUM;
d2afb5bd 2732
5e982f3b 2733 if (!priv->plat->tx_coe)
a188222b 2734 features &= ~NETIF_F_CSUM_MASK;
5e982f3b 2735
ebbb293f
GC
2736 /* Some GMAC devices have a bugged Jumbo frame support that
2737 * needs to have the Tx COE disabled for oversized frames
2738 * (due to limited buffer sizes). In this case we disable
ceb69499
GC
2739 * the TX csum insertionin the TDES and not use SF.
2740 */
5e982f3b 2741 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
a188222b 2742 features &= ~NETIF_F_CSUM_MASK;
ebbb293f 2743
f748be53
AT
2744 /* Disable tso if asked by ethtool */
2745 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2746 if (features & NETIF_F_TSO)
2747 priv->tso = true;
2748 else
2749 priv->tso = false;
2750 }
2751
5e982f3b 2752 return features;
47dd7a54
GC
2753}
2754
d2afb5bd
GC
2755static int stmmac_set_features(struct net_device *netdev,
2756 netdev_features_t features)
2757{
2758 struct stmmac_priv *priv = netdev_priv(netdev);
2759
2760 /* Keep the COE Type in case of csum is supporting */
2761 if (features & NETIF_F_RXCSUM)
2762 priv->hw->rx_csum = priv->plat->rx_coe;
2763 else
2764 priv->hw->rx_csum = 0;
2765 /* No check needed because rx_coe has been set before and it will be
2766 * fixed in case of issue.
2767 */
2768 priv->hw->mac->rx_ipc(priv->hw);
2769
2770 return 0;
2771}
2772
32ceabca
GC
2773/**
2774 * stmmac_interrupt - main ISR
2775 * @irq: interrupt number.
2776 * @dev_id: to pass the net device pointer.
2777 * Description: this is the main driver interrupt service routine.
732fdf0e
GC
2778 * It can call:
2779 * o DMA service routine (to manage incoming frame reception and transmission
2780 * status)
2781 * o Core interrupts to manage: remote wake-up, management counter, LPI
2782 * interrupts.
32ceabca 2783 */
47dd7a54
GC
2784static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2785{
2786 struct net_device *dev = (struct net_device *)dev_id;
2787 struct stmmac_priv *priv = netdev_priv(dev);
2788
89f7f2cf
SK
2789 if (priv->irq_wake)
2790 pm_wakeup_event(priv->device, 0);
2791
47dd7a54
GC
2792 if (unlikely(!dev)) {
2793 pr_err("%s: invalid dev pointer\n", __func__);
2794 return IRQ_NONE;
2795 }
2796
d765955d 2797 /* To handle GMAC own interrupts */
f748be53 2798 if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
7ed24bbe 2799 int status = priv->hw->mac->host_irq_status(priv->hw,
0982a0f6 2800 &priv->xstats);
d765955d 2801 if (unlikely(status)) {
d765955d 2802 /* For LPI we need to save the tx status */
0982a0f6 2803 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
d765955d 2804 priv->tx_path_in_lpi_mode = true;
0982a0f6 2805 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
d765955d 2806 priv->tx_path_in_lpi_mode = false;
f748be53
AT
2807 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
2808 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2809 priv->rx_tail_addr,
2810 STMMAC_CHAN0);
d765955d
GC
2811 }
2812 }
aec7ff27 2813
d765955d 2814 /* To handle DMA interrupts */
aec7ff27 2815 stmmac_dma_interrupt(priv);
47dd7a54
GC
2816
2817 return IRQ_HANDLED;
2818}
2819
2820#ifdef CONFIG_NET_POLL_CONTROLLER
2821/* Polling receive - used by NETCONSOLE and other diagnostic tools
ceb69499
GC
2822 * to allow network I/O with interrupts disabled.
2823 */
47dd7a54
GC
2824static void stmmac_poll_controller(struct net_device *dev)
2825{
2826 disable_irq(dev->irq);
2827 stmmac_interrupt(dev->irq, dev);
2828 enable_irq(dev->irq);
2829}
2830#endif
2831
2832/**
2833 * stmmac_ioctl - Entry point for the Ioctl
2834 * @dev: Device pointer.
2835 * @rq: An IOCTL specefic structure, that can contain a pointer to
2836 * a proprietary structure used to pass information to the driver.
2837 * @cmd: IOCTL command
2838 * Description:
32ceabca 2839 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
47dd7a54
GC
2840 */
2841static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2842{
2843 struct stmmac_priv *priv = netdev_priv(dev);
891434b1 2844 int ret = -EOPNOTSUPP;
47dd7a54
GC
2845
2846 if (!netif_running(dev))
2847 return -EINVAL;
2848
891434b1
RK
2849 switch (cmd) {
2850 case SIOCGMIIPHY:
2851 case SIOCGMIIREG:
2852 case SIOCSMIIREG:
2853 if (!priv->phydev)
2854 return -EINVAL;
2855 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2856 break;
2857 case SIOCSHWTSTAMP:
2858 ret = stmmac_hwtstamp_ioctl(dev, rq);
2859 break;
2860 default:
2861 break;
2862 }
28b04113 2863
47dd7a54
GC
2864 return ret;
2865}
2866
50fb4f74 2867#ifdef CONFIG_DEBUG_FS
7ac29055 2868static struct dentry *stmmac_fs_dir;
7ac29055 2869
c24602ef 2870static void sysfs_display_ring(void *head, int size, int extend_desc,
ceb69499 2871 struct seq_file *seq)
7ac29055 2872{
7ac29055 2873 int i;
ceb69499
GC
2874 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2875 struct dma_desc *p = (struct dma_desc *)head;
7ac29055 2876
c24602ef
GC
2877 for (i = 0; i < size; i++) {
2878 u64 x;
2879 if (extend_desc) {
2880 x = *(u64 *) ep;
2881 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
ceb69499 2882 i, (unsigned int)virt_to_phys(ep),
f748be53 2883 ep->basic.des0, ep->basic.des1,
c24602ef
GC
2884 ep->basic.des2, ep->basic.des3);
2885 ep++;
2886 } else {
2887 x = *(u64 *) p;
2888 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
ceb69499 2889 i, (unsigned int)virt_to_phys(ep),
f748be53 2890 p->des0, p->des1, p->des2, p->des3);
c24602ef
GC
2891 p++;
2892 }
7ac29055
GC
2893 seq_printf(seq, "\n");
2894 }
c24602ef 2895}
7ac29055 2896
c24602ef
GC
2897static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2898{
2899 struct net_device *dev = seq->private;
2900 struct stmmac_priv *priv = netdev_priv(dev);
7ac29055 2901
c24602ef
GC
2902 if (priv->extend_desc) {
2903 seq_printf(seq, "Extended RX descriptor ring:\n");
e3ad57c9 2904 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
c24602ef 2905 seq_printf(seq, "Extended TX descriptor ring:\n");
e3ad57c9 2906 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
c24602ef
GC
2907 } else {
2908 seq_printf(seq, "RX descriptor ring:\n");
e3ad57c9 2909 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
c24602ef 2910 seq_printf(seq, "TX descriptor ring:\n");
e3ad57c9 2911 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
7ac29055
GC
2912 }
2913
2914 return 0;
2915}
2916
2917static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2918{
2919 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2920}
2921
2922static const struct file_operations stmmac_rings_status_fops = {
2923 .owner = THIS_MODULE,
2924 .open = stmmac_sysfs_ring_open,
2925 .read = seq_read,
2926 .llseek = seq_lseek,
74863948 2927 .release = single_release,
7ac29055
GC
2928};
2929
e7434821
GC
2930static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2931{
2932 struct net_device *dev = seq->private;
2933 struct stmmac_priv *priv = netdev_priv(dev);
2934
19e30c14 2935 if (!priv->hw_cap_support) {
e7434821
GC
2936 seq_printf(seq, "DMA HW features not supported\n");
2937 return 0;
2938 }
2939
2940 seq_printf(seq, "==============================\n");
2941 seq_printf(seq, "\tDMA HW features\n");
2942 seq_printf(seq, "==============================\n");
2943
2944 seq_printf(seq, "\t10/100 Mbps %s\n",
2945 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2946 seq_printf(seq, "\t1000 Mbps %s\n",
2947 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2948 seq_printf(seq, "\tHalf duple %s\n",
2949 (priv->dma_cap.half_duplex) ? "Y" : "N");
2950 seq_printf(seq, "\tHash Filter: %s\n",
2951 (priv->dma_cap.hash_filter) ? "Y" : "N");
2952 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2953 (priv->dma_cap.multi_addr) ? "Y" : "N");
2954 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2955 (priv->dma_cap.pcs) ? "Y" : "N");
2956 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2957 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2958 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2959 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2960 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2961 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2962 seq_printf(seq, "\tRMON module: %s\n",
2963 (priv->dma_cap.rmon) ? "Y" : "N");
2964 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2965 (priv->dma_cap.time_stamp) ? "Y" : "N");
2966 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2967 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2968 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2969 (priv->dma_cap.eee) ? "Y" : "N");
2970 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2971 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2972 (priv->dma_cap.tx_coe) ? "Y" : "N");
f748be53
AT
2973 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2974 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
2975 (priv->dma_cap.rx_coe) ? "Y" : "N");
2976 } else {
2977 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2978 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2979 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2980 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2981 }
e7434821
GC
2982 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2983 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2984 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2985 priv->dma_cap.number_rx_channel);
2986 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2987 priv->dma_cap.number_tx_channel);
2988 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2989 (priv->dma_cap.enh_desc) ? "Y" : "N");
2990
2991 return 0;
2992}
2993
2994static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2995{
2996 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2997}
2998
2999static const struct file_operations stmmac_dma_cap_fops = {
3000 .owner = THIS_MODULE,
3001 .open = stmmac_sysfs_dma_cap_open,
3002 .read = seq_read,
3003 .llseek = seq_lseek,
74863948 3004 .release = single_release,
e7434821
GC
3005};
3006
7ac29055
GC
3007static int stmmac_init_fs(struct net_device *dev)
3008{
466c5ac8
MO
3009 struct stmmac_priv *priv = netdev_priv(dev);
3010
3011 /* Create per netdev entries */
3012 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
7ac29055 3013
466c5ac8
MO
3014 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3015 pr_err("ERROR %s/%s, debugfs create directory failed\n",
3016 STMMAC_RESOURCE_NAME, dev->name);
7ac29055
GC
3017
3018 return -ENOMEM;
3019 }
3020
3021 /* Entry to report DMA RX/TX rings */
466c5ac8
MO
3022 priv->dbgfs_rings_status =
3023 debugfs_create_file("descriptors_status", S_IRUGO,
3024 priv->dbgfs_dir, dev,
3025 &stmmac_rings_status_fops);
7ac29055 3026
466c5ac8 3027 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
7ac29055 3028 pr_info("ERROR creating stmmac ring debugfs file\n");
466c5ac8 3029 debugfs_remove_recursive(priv->dbgfs_dir);
7ac29055
GC
3030
3031 return -ENOMEM;
3032 }
3033
e7434821 3034 /* Entry to report the DMA HW features */
466c5ac8
MO
3035 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3036 priv->dbgfs_dir,
3037 dev, &stmmac_dma_cap_fops);
e7434821 3038
466c5ac8 3039 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
e7434821 3040 pr_info("ERROR creating stmmac MMC debugfs file\n");
466c5ac8 3041 debugfs_remove_recursive(priv->dbgfs_dir);
e7434821
GC
3042
3043 return -ENOMEM;
3044 }
3045
7ac29055
GC
3046 return 0;
3047}
3048
466c5ac8 3049static void stmmac_exit_fs(struct net_device *dev)
7ac29055 3050{
466c5ac8
MO
3051 struct stmmac_priv *priv = netdev_priv(dev);
3052
3053 debugfs_remove_recursive(priv->dbgfs_dir);
7ac29055 3054}
50fb4f74 3055#endif /* CONFIG_DEBUG_FS */
7ac29055 3056
47dd7a54
GC
3057static const struct net_device_ops stmmac_netdev_ops = {
3058 .ndo_open = stmmac_open,
3059 .ndo_start_xmit = stmmac_xmit,
3060 .ndo_stop = stmmac_release,
3061 .ndo_change_mtu = stmmac_change_mtu,
5e982f3b 3062 .ndo_fix_features = stmmac_fix_features,
d2afb5bd 3063 .ndo_set_features = stmmac_set_features,
01789349 3064 .ndo_set_rx_mode = stmmac_set_rx_mode,
47dd7a54
GC
3065 .ndo_tx_timeout = stmmac_tx_timeout,
3066 .ndo_do_ioctl = stmmac_ioctl,
47dd7a54
GC
3067#ifdef CONFIG_NET_POLL_CONTROLLER
3068 .ndo_poll_controller = stmmac_poll_controller,
3069#endif
3070 .ndo_set_mac_address = eth_mac_addr,
3071};
3072
cf3f047b
GC
3073/**
3074 * stmmac_hw_init - Init the MAC device
32ceabca 3075 * @priv: driver private structure
732fdf0e
GC
3076 * Description: this function is to configure the MAC device according to
3077 * some platform parameters or the HW capability register. It prepares the
3078 * driver to use either ring or chain modes and to setup either enhanced or
3079 * normal descriptors.
cf3f047b
GC
3080 */
3081static int stmmac_hw_init(struct stmmac_priv *priv)
3082{
cf3f047b
GC
3083 struct mac_device_info *mac;
3084
3085 /* Identify the MAC HW device */
03f2eecd
MKB
3086 if (priv->plat->has_gmac) {
3087 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3b57de95
VB
3088 mac = dwmac1000_setup(priv->ioaddr,
3089 priv->plat->multicast_filter_bins,
c623d149
AT
3090 priv->plat->unicast_filter_entries,
3091 &priv->synopsys_id);
f748be53
AT
3092 } else if (priv->plat->has_gmac4) {
3093 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3094 mac = dwmac4_setup(priv->ioaddr,
3095 priv->plat->multicast_filter_bins,
3096 priv->plat->unicast_filter_entries,
3097 &priv->synopsys_id);
03f2eecd 3098 } else {
c623d149 3099 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
03f2eecd 3100 }
cf3f047b
GC
3101 if (!mac)
3102 return -ENOMEM;
3103
3104 priv->hw = mac;
3105
4a7d666a 3106 /* To use the chained or ring mode */
f748be53
AT
3107 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3108 priv->hw->mode = &dwmac4_ring_mode_ops;
4a7d666a 3109 } else {
f748be53
AT
3110 if (chain_mode) {
3111 priv->hw->mode = &chain_mode_ops;
3112 pr_info(" Chain mode enabled\n");
3113 priv->mode = STMMAC_CHAIN_MODE;
3114 } else {
3115 priv->hw->mode = &ring_mode_ops;
3116 pr_info(" Ring mode enabled\n");
3117 priv->mode = STMMAC_RING_MODE;
3118 }
4a7d666a
GC
3119 }
3120
cf3f047b
GC
3121 /* Get the HW capability (new GMAC newer than 3.50a) */
3122 priv->hw_cap_support = stmmac_get_hw_features(priv);
3123 if (priv->hw_cap_support) {
3124 pr_info(" DMA HW capability register supported");
3125
3126 /* We can override some gmac/dma configuration fields: e.g.
3127 * enh_desc, tx_coe (e.g. that are passed through the
3128 * platform) with the values from the HW capability
3129 * register (if supported).
3130 */
3131 priv->plat->enh_desc = priv->dma_cap.enh_desc;
cf3f047b 3132 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
38912bdb 3133
f748be53
AT
3134 priv->plat->tx_coe = priv->dma_cap.tx_coe;
3135 /* In case of GMAC4 rx_coe is from HW cap register. */
3136 priv->plat->rx_coe = priv->dma_cap.rx_coe;
38912bdb
DS
3137
3138 if (priv->dma_cap.rx_coe_type2)
3139 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3140 else if (priv->dma_cap.rx_coe_type1)
3141 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3142
cf3f047b
GC
3143 } else
3144 pr_info(" No HW DMA feature register supported");
3145
f748be53
AT
3146 /* To use alternate (extended), normal or GMAC4 descriptor structures */
3147 if (priv->synopsys_id >= DWMAC_CORE_4_00)
3148 priv->hw->desc = &dwmac4_desc_ops;
3149 else
3150 stmmac_selec_desc_mode(priv);
61369d02 3151
d2afb5bd
GC
3152 if (priv->plat->rx_coe) {
3153 priv->hw->rx_csum = priv->plat->rx_coe;
f748be53
AT
3154 pr_info(" RX Checksum Offload Engine supported\n");
3155 if (priv->synopsys_id < DWMAC_CORE_4_00)
3156 pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
d2afb5bd 3157 }
cf3f047b
GC
3158 if (priv->plat->tx_coe)
3159 pr_info(" TX Checksum insertion supported\n");
3160
3161 if (priv->plat->pmt) {
3162 pr_info(" Wake-Up On Lan supported\n");
3163 device_set_wakeup_capable(priv->device, 1);
3164 }
3165
f748be53
AT
3166 if (priv->dma_cap.tsoen)
3167 pr_info(" TSO supported\n");
3168
c24602ef 3169 return 0;
cf3f047b
GC
3170}
3171
47dd7a54 3172/**
bfab27a1
GC
3173 * stmmac_dvr_probe
3174 * @device: device pointer
ff3dd78c 3175 * @plat_dat: platform data pointer
e56788cf 3176 * @res: stmmac resource pointer
bfab27a1
GC
3177 * Description: this is the main probe function used to
3178 * call the alloc_etherdev, allocate the priv structure.
9afec6ef 3179 * Return:
15ffac73 3180 * returns 0 on success, otherwise errno.
47dd7a54 3181 */
15ffac73
JE
3182int stmmac_dvr_probe(struct device *device,
3183 struct plat_stmmacenet_data *plat_dat,
3184 struct stmmac_resources *res)
47dd7a54
GC
3185{
3186 int ret = 0;
bfab27a1
GC
3187 struct net_device *ndev = NULL;
3188 struct stmmac_priv *priv;
47dd7a54 3189
bfab27a1 3190 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
41de8d4c 3191 if (!ndev)
15ffac73 3192 return -ENOMEM;
bfab27a1
GC
3193
3194 SET_NETDEV_DEV(ndev, device);
3195
3196 priv = netdev_priv(ndev);
3197 priv->device = device;
3198 priv->dev = ndev;
47dd7a54 3199
bfab27a1 3200 stmmac_set_ethtool_ops(ndev);
cf3f047b
GC
3201 priv->pause = pause;
3202 priv->plat = plat_dat;
e56788cf
JE
3203 priv->ioaddr = res->addr;
3204 priv->dev->base_addr = (unsigned long)res->addr;
3205
3206 priv->dev->irq = res->irq;
3207 priv->wol_irq = res->wol_irq;
3208 priv->lpi_irq = res->lpi_irq;
3209
3210 if (res->mac)
3211 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
cf3f047b 3212
a7a62685 3213 dev_set_drvdata(device, priv->dev);
803f8fc4 3214
cf3f047b
GC
3215 /* Verify driver arguments */
3216 stmmac_verify_args();
bfab27a1 3217
cf3f047b 3218 /* Override with kernel parameters if supplied XXX CRS XXX
ceb69499
GC
3219 * this needs to have multiple instances
3220 */
cf3f047b
GC
3221 if ((phyaddr >= 0) && (phyaddr <= 31))
3222 priv->plat->phy_addr = phyaddr;
3223
62866e98
CYT
3224 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3225 if (IS_ERR(priv->stmmac_clk)) {
3226 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3227 __func__);
c5bb86c3
KHL
3228 /* If failed to obtain stmmac_clk and specific clk_csr value
3229 * is NOT passed from the platform, probe fail.
3230 */
3231 if (!priv->plat->clk_csr) {
3232 ret = PTR_ERR(priv->stmmac_clk);
3233 goto error_clk_get;
3234 } else {
3235 priv->stmmac_clk = NULL;
3236 }
62866e98
CYT
3237 }
3238 clk_prepare_enable(priv->stmmac_clk);
3239
5f9755d2
AB
3240 priv->pclk = devm_clk_get(priv->device, "pclk");
3241 if (IS_ERR(priv->pclk)) {
3242 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3243 ret = -EPROBE_DEFER;
3244 goto error_pclk_get;
3245 }
3246 priv->pclk = NULL;
3247 }
3248 clk_prepare_enable(priv->pclk);
3249
c5e4ddbd
CYT
3250 priv->stmmac_rst = devm_reset_control_get(priv->device,
3251 STMMAC_RESOURCE_NAME);
3252 if (IS_ERR(priv->stmmac_rst)) {
3253 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3254 ret = -EPROBE_DEFER;
3255 goto error_hw_init;
3256 }
3257 dev_info(priv->device, "no reset control found\n");
3258 priv->stmmac_rst = NULL;
3259 }
3260 if (priv->stmmac_rst)
3261 reset_control_deassert(priv->stmmac_rst);
3262
cf3f047b 3263 /* Init MAC and get the capabilities */
c24602ef
GC
3264 ret = stmmac_hw_init(priv);
3265 if (ret)
62866e98 3266 goto error_hw_init;
cf3f047b
GC
3267
3268 ndev->netdev_ops = &stmmac_netdev_ops;
bfab27a1 3269
cf3f047b
GC
3270 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3271 NETIF_F_RXCSUM;
f748be53
AT
3272
3273 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3274 ndev->hw_features |= NETIF_F_TSO;
3275 priv->tso = true;
3276 pr_info(" TSO feature enabled\n");
3277 }
bfab27a1
GC
3278 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3279 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
47dd7a54
GC
3280#ifdef STMMAC_VLAN_TAG_USED
3281 /* Both mac100 and gmac support receive VLAN tag detection */
f646968f 3282 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
47dd7a54
GC
3283#endif
3284 priv->msg_enable = netif_msg_init(debug, default_msg_level);
3285
47dd7a54
GC
3286 if (flow_ctrl)
3287 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
3288
62a2ab93
GC
3289 /* Rx Watchdog is available in the COREs newer than the 3.40.
3290 * In some case, for example on bugged HW this feature
3291 * has to be disable and this can be done by passing the
3292 * riwt_off field from the platform.
3293 */
3294 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3295 priv->use_riwt = 1;
3296 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3297 }
3298
bfab27a1 3299 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
47dd7a54 3300
f8e96161 3301 spin_lock_init(&priv->lock);
a9097a96 3302 spin_lock_init(&priv->tx_lock);
f8e96161 3303
bfab27a1 3304 ret = register_netdev(ndev);
47dd7a54 3305 if (ret) {
cf3f047b 3306 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
6a81c26f 3307 goto error_netdev_register;
47dd7a54
GC
3308 }
3309
cd7201f4
GC
3310 /* If a specific clk_csr value is passed from the platform
3311 * this means that the CSR Clock Range selection cannot be
3312 * changed at run-time and it is fixed. Viceversa the driver'll try to
3313 * set the MDC clock dynamically according to the csr actual
3314 * clock input.
3315 */
3316 if (!priv->plat->clk_csr)
3317 stmmac_clk_csr_set(priv);
3318 else
3319 priv->clk_csr = priv->plat->clk_csr;
3320
e58bb43f
GC
3321 stmmac_check_pcs_mode(priv);
3322
4d8f0825
BA
3323 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3324 priv->pcs != STMMAC_PCS_RTBI) {
e58bb43f
GC
3325 /* MDIO bus Registration */
3326 ret = stmmac_mdio_register(ndev);
3327 if (ret < 0) {
3328 pr_debug("%s: MDIO bus (id: %d) registration failed",
3329 __func__, priv->plat->bus_id);
3330 goto error_mdio_register;
3331 }
4bfcbd7a
FV
3332 }
3333
15ffac73 3334 return 0;
47dd7a54 3335
6a81c26f 3336error_mdio_register:
34a52f36 3337 unregister_netdev(ndev);
6a81c26f
VK
3338error_netdev_register:
3339 netif_napi_del(&priv->napi);
62866e98 3340error_hw_init:
5f9755d2
AB
3341 clk_disable_unprepare(priv->pclk);
3342error_pclk_get:
62866e98
CYT
3343 clk_disable_unprepare(priv->stmmac_clk);
3344error_clk_get:
34a52f36 3345 free_netdev(ndev);
47dd7a54 3346
15ffac73 3347 return ret;
47dd7a54 3348}
b2e2f0c7 3349EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
47dd7a54
GC
3350
3351/**
3352 * stmmac_dvr_remove
f4e7bd81 3353 * @dev: device pointer
47dd7a54 3354 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
bfab27a1 3355 * changes the link status, releases the DMA descriptor rings.
47dd7a54 3356 */
f4e7bd81 3357int stmmac_dvr_remove(struct device *dev)
47dd7a54 3358{
f4e7bd81 3359 struct net_device *ndev = dev_get_drvdata(dev);
aec7ff27 3360 struct stmmac_priv *priv = netdev_priv(ndev);
47dd7a54
GC
3361
3362 pr_info("%s:\n\tremoving driver", __func__);
3363
ad01b7d4
GC
3364 priv->hw->dma->stop_rx(priv->ioaddr);
3365 priv->hw->dma->stop_tx(priv->ioaddr);
47dd7a54 3366
bfab27a1 3367 stmmac_set_mac(priv->ioaddr, false);
47dd7a54 3368 netif_carrier_off(ndev);
47dd7a54 3369 unregister_netdev(ndev);
c5e4ddbd
CYT
3370 if (priv->stmmac_rst)
3371 reset_control_assert(priv->stmmac_rst);
5f9755d2 3372 clk_disable_unprepare(priv->pclk);
62866e98 3373 clk_disable_unprepare(priv->stmmac_clk);
e743471f
BD
3374 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3375 priv->pcs != STMMAC_PCS_RTBI)
3376 stmmac_mdio_unregister(ndev);
47dd7a54
GC
3377 free_netdev(ndev);
3378
3379 return 0;
3380}
b2e2f0c7 3381EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
47dd7a54 3382
732fdf0e
GC
3383/**
3384 * stmmac_suspend - suspend callback
f4e7bd81 3385 * @dev: device pointer
732fdf0e
GC
3386 * Description: this is the function to suspend the device and it is called
3387 * by the platform driver to stop the network queue, release the resources,
3388 * program the PMT register (for WoL), clean and release driver resources.
3389 */
f4e7bd81 3390int stmmac_suspend(struct device *dev)
47dd7a54 3391{
f4e7bd81 3392 struct net_device *ndev = dev_get_drvdata(dev);
874bd42d 3393 struct stmmac_priv *priv = netdev_priv(ndev);
f8c5a875 3394 unsigned long flags;
47dd7a54 3395
874bd42d 3396 if (!ndev || !netif_running(ndev))
47dd7a54
GC
3397 return 0;
3398
102463b1
FV
3399 if (priv->phydev)
3400 phy_stop(priv->phydev);
3401
f8c5a875 3402 spin_lock_irqsave(&priv->lock, flags);
47dd7a54 3403
874bd42d
GC
3404 netif_device_detach(ndev);
3405 netif_stop_queue(ndev);
47dd7a54 3406
874bd42d
GC
3407 napi_disable(&priv->napi);
3408
3409 /* Stop TX/RX DMA */
3410 priv->hw->dma->stop_tx(priv->ioaddr);
3411 priv->hw->dma->stop_rx(priv->ioaddr);
c24602ef 3412
874bd42d 3413 /* Enable Power down mode by programming the PMT regs */
89f7f2cf 3414 if (device_may_wakeup(priv->device)) {
7ed24bbe 3415 priv->hw->mac->pmt(priv->hw, priv->wolopts);
89f7f2cf
SK
3416 priv->irq_wake = 1;
3417 } else {
bfab27a1 3418 stmmac_set_mac(priv->ioaddr, false);
db88f10a 3419 pinctrl_pm_select_sleep_state(priv->device);
ba1377ff 3420 /* Disable clock in case of PWM is off */
5f9755d2 3421 clk_disable(priv->pclk);
777da230 3422 clk_disable(priv->stmmac_clk);
ba1377ff 3423 }
f8c5a875 3424 spin_unlock_irqrestore(&priv->lock, flags);
2d871aa0
VB
3425
3426 priv->oldlink = 0;
3427 priv->speed = 0;
3428 priv->oldduplex = -1;
47dd7a54
GC
3429 return 0;
3430}
b2e2f0c7 3431EXPORT_SYMBOL_GPL(stmmac_suspend);
47dd7a54 3432
732fdf0e
GC
3433/**
3434 * stmmac_resume - resume callback
f4e7bd81 3435 * @dev: device pointer
732fdf0e
GC
3436 * Description: when resume this function is invoked to setup the DMA and CORE
3437 * in a usable state.
3438 */
f4e7bd81 3439int stmmac_resume(struct device *dev)
47dd7a54 3440{
f4e7bd81 3441 struct net_device *ndev = dev_get_drvdata(dev);
874bd42d 3442 struct stmmac_priv *priv = netdev_priv(ndev);
f8c5a875 3443 unsigned long flags;
47dd7a54 3444
874bd42d 3445 if (!netif_running(ndev))
47dd7a54
GC
3446 return 0;
3447
f8c5a875 3448 spin_lock_irqsave(&priv->lock, flags);
c4433be6 3449
47dd7a54
GC
3450 /* Power Down bit, into the PM register, is cleared
3451 * automatically as soon as a magic packet or a Wake-up frame
3452 * is received. Anyway, it's better to manually clear
3453 * this bit because it can generate problems while resuming
ceb69499
GC
3454 * from another devices (e.g. serial console).
3455 */
623997fb 3456 if (device_may_wakeup(priv->device)) {
7ed24bbe 3457 priv->hw->mac->pmt(priv->hw, 0);
89f7f2cf 3458 priv->irq_wake = 0;
623997fb 3459 } else {
db88f10a 3460 pinctrl_pm_select_default_state(priv->device);
ba1377ff 3461 /* enable the clk prevously disabled */
777da230 3462 clk_enable(priv->stmmac_clk);
5f9755d2 3463 clk_enable(priv->pclk);
623997fb
SK
3464 /* reset the phy so that it's ready */
3465 if (priv->mii)
3466 stmmac_mdio_reset(priv->mii);
3467 }
47dd7a54 3468
874bd42d 3469 netif_device_attach(ndev);
47dd7a54 3470
ae79a639
GC
3471 priv->cur_rx = 0;
3472 priv->dirty_rx = 0;
3473 priv->dirty_tx = 0;
3474 priv->cur_tx = 0;
f748be53
AT
3475 /* reset private mss value to force mss context settings at
3476 * next tso xmit (only used for gmac4).
3477 */
3478 priv->mss = 0;
3479
ae79a639
GC
3480 stmmac_clear_descriptors(priv);
3481
fe131929 3482 stmmac_hw_setup(ndev, false);
777da230 3483 stmmac_init_tx_coalesce(priv);
ac316c78 3484 stmmac_set_rx_mode(ndev);
47dd7a54 3485
47dd7a54
GC
3486 napi_enable(&priv->napi);
3487
874bd42d 3488 netif_start_queue(ndev);
47dd7a54 3489
f8c5a875 3490 spin_unlock_irqrestore(&priv->lock, flags);
102463b1
FV
3491
3492 if (priv->phydev)
3493 phy_start(priv->phydev);
3494
47dd7a54
GC
3495 return 0;
3496}
b2e2f0c7 3497EXPORT_SYMBOL_GPL(stmmac_resume);
ba27ec66 3498
47dd7a54
GC
3499#ifndef MODULE
3500static int __init stmmac_cmdline_opt(char *str)
3501{
3502 char *opt;
3503
3504 if (!str || !*str)
3505 return -EINVAL;
3506 while ((opt = strsep(&str, ",")) != NULL) {
f3240e28 3507 if (!strncmp(opt, "debug:", 6)) {
ea2ab871 3508 if (kstrtoint(opt + 6, 0, &debug))
f3240e28
GC
3509 goto err;
3510 } else if (!strncmp(opt, "phyaddr:", 8)) {
ea2ab871 3511 if (kstrtoint(opt + 8, 0, &phyaddr))
f3240e28 3512 goto err;
f3240e28 3513 } else if (!strncmp(opt, "buf_sz:", 7)) {
ea2ab871 3514 if (kstrtoint(opt + 7, 0, &buf_sz))
f3240e28
GC
3515 goto err;
3516 } else if (!strncmp(opt, "tc:", 3)) {
ea2ab871 3517 if (kstrtoint(opt + 3, 0, &tc))
f3240e28
GC
3518 goto err;
3519 } else if (!strncmp(opt, "watchdog:", 9)) {
ea2ab871 3520 if (kstrtoint(opt + 9, 0, &watchdog))
f3240e28
GC
3521 goto err;
3522 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
ea2ab871 3523 if (kstrtoint(opt + 10, 0, &flow_ctrl))
f3240e28
GC
3524 goto err;
3525 } else if (!strncmp(opt, "pause:", 6)) {
ea2ab871 3526 if (kstrtoint(opt + 6, 0, &pause))
f3240e28 3527 goto err;
506f669c 3528 } else if (!strncmp(opt, "eee_timer:", 10)) {
d765955d
GC
3529 if (kstrtoint(opt + 10, 0, &eee_timer))
3530 goto err;
4a7d666a
GC
3531 } else if (!strncmp(opt, "chain_mode:", 11)) {
3532 if (kstrtoint(opt + 11, 0, &chain_mode))
3533 goto err;
f3240e28 3534 }
47dd7a54
GC
3535 }
3536 return 0;
f3240e28
GC
3537
3538err:
3539 pr_err("%s: ERROR broken module parameter conversion", __func__);
3540 return -EINVAL;
47dd7a54
GC
3541}
3542
3543__setup("stmmaceth=", stmmac_cmdline_opt);
ceb69499 3544#endif /* MODULE */
6fc0d0f2 3545
466c5ac8
MO
3546static int __init stmmac_init(void)
3547{
3548#ifdef CONFIG_DEBUG_FS
3549 /* Create debugfs main directory if it doesn't exist yet */
3550 if (!stmmac_fs_dir) {
3551 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3552
3553 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3554 pr_err("ERROR %s, debugfs create directory failed\n",
3555 STMMAC_RESOURCE_NAME);
3556
3557 return -ENOMEM;
3558 }
3559 }
3560#endif
3561
3562 return 0;
3563}
3564
3565static void __exit stmmac_exit(void)
3566{
3567#ifdef CONFIG_DEBUG_FS
3568 debugfs_remove_recursive(stmmac_fs_dir);
3569#endif
3570}
3571
3572module_init(stmmac_init)
3573module_exit(stmmac_exit)
3574
6fc0d0f2
GC
3575MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3576MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3577MODULE_LICENSE("GPL");