]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
r8152: check code with checkpatch.pl
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
286a8372 5 Copyright(C) 2007-2011 STMicroelectronics Ltd
47dd7a54
GC
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
6a81c26f 31#include <linux/clk.h>
47dd7a54
GC
32#include <linux/kernel.h>
33#include <linux/interrupt.h>
47dd7a54
GC
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/skbuff.h>
37#include <linux/ethtool.h>
38#include <linux/if_ether.h>
39#include <linux/crc32.h>
40#include <linux/mii.h>
01789349 41#include <linux/if.h>
47dd7a54
GC
42#include <linux/if_vlan.h>
43#include <linux/dma-mapping.h>
5a0e3ad6 44#include <linux/slab.h>
70c71606 45#include <linux/prefetch.h>
db88f10a 46#include <linux/pinctrl/consumer.h>
7ac29055
GC
47#ifdef CONFIG_STMMAC_DEBUG_FS
48#include <linux/debugfs.h>
49#include <linux/seq_file.h>
ceb69499 50#endif /* CONFIG_STMMAC_DEBUG_FS */
891434b1
RK
51#include <linux/net_tstamp.h>
52#include "stmmac_ptp.h"
286a8372 53#include "stmmac.h"
c5e4ddbd 54#include <linux/reset.h>
47dd7a54 55
47dd7a54 56#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
47dd7a54
GC
57
58/* Module parameters */
32ceabca 59#define TX_TIMEO 5000
47dd7a54
GC
60static int watchdog = TX_TIMEO;
61module_param(watchdog, int, S_IRUGO | S_IWUSR);
32ceabca 62MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
47dd7a54 63
32ceabca 64static int debug = -1;
47dd7a54 65module_param(debug, int, S_IRUGO | S_IWUSR);
32ceabca 66MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
47dd7a54 67
47d1f71f 68static int phyaddr = -1;
47dd7a54
GC
69module_param(phyaddr, int, S_IRUGO);
70MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72#define DMA_TX_SIZE 256
73static int dma_txsize = DMA_TX_SIZE;
74module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77#define DMA_RX_SIZE 256
78static int dma_rxsize = DMA_RX_SIZE;
79module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82static int flow_ctrl = FLOW_OFF;
83module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86static int pause = PAUSE_TIME;
87module_param(pause, int, S_IRUGO | S_IWUSR);
88MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90#define TC_DEFAULT 64
91static int tc = TC_DEFAULT;
92module_param(tc, int, S_IRUGO | S_IWUSR);
93MODULE_PARM_DESC(tc, "DMA threshold control value");
94
d916701c
GC
95#define DEFAULT_BUFSIZE 1536
96static int buf_sz = DEFAULT_BUFSIZE;
47dd7a54
GC
97module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
47dd7a54
GC
100static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
d765955d
GC
104#define STMMAC_DEFAULT_LPI_TIMER 1000
105static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
f5351ef7 108#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
d765955d 109
4a7d666a
GC
110/* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113static unsigned int chain_mode;
114module_param(chain_mode, int, S_IRUGO);
115MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
47dd7a54 117static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
47dd7a54 118
bfab27a1
GC
119#ifdef CONFIG_STMMAC_DEBUG_FS
120static int stmmac_init_fs(struct net_device *dev);
121static void stmmac_exit_fs(void);
122#endif
123
9125cdd1
GC
124#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
47dd7a54
GC
126/**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it verifies if some wrong parameter is passed to the driver.
129 * Note that wrong parameters are replaced with the default values.
130 */
131static void stmmac_verify_args(void)
132{
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
d916701c
GC
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
47dd7a54
GC
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
d765955d
GC
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
47dd7a54
GC
149}
150
32ceabca
GC
151/**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
cd7201f4
GC
163static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164{
cd7201f4
GC
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
ceb69499
GC
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
cd7201f4
GC
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
ceb69499 189 }
cd7201f4
GC
190}
191
47dd7a54
GC
192static void print_pkt(unsigned char *buf, int len)
193{
194 int j;
83d7af64 195 pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
47dd7a54
GC
196 for (j = 0; j < len; j++) {
197 if ((j % 16) == 0)
83d7af64
GC
198 pr_debug("\n %03x:", j);
199 pr_debug(" %02x", buf[j]);
47dd7a54 200 }
83d7af64 201 pr_debug("\n");
47dd7a54 202}
47dd7a54
GC
203
204/* minimum number of free TX descriptors required to wake up TX process */
205#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
206
207static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208{
209 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210}
211
32ceabca
GC
212/**
213 * stmmac_hw_fix_mac_speed: callback for speed selection
214 * @priv: driver private structure
215 * Description: on some platforms (e.g. ST), some HW system configuraton
216 * registers have to be set according to the link speed negotiated.
9dfeb4d9
GC
217 */
218static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219{
220 struct phy_device *phydev = priv->phydev;
221
222 if (likely(priv->plat->fix_mac_speed))
ceb69499 223 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
9dfeb4d9
GC
224}
225
32ceabca
GC
226/**
227 * stmmac_enable_eee_mode: Check and enter in LPI mode
228 * @priv: driver private structure
229 * Description: this function is to verify and enter in LPI mode for EEE.
230 */
d765955d
GC
231static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232{
233 /* Check and enter in LPI mode */
234 if ((priv->dirty_tx == priv->cur_tx) &&
235 (priv->tx_path_in_lpi_mode == false))
7ed24bbe 236 priv->hw->mac->set_eee_mode(priv->hw);
d765955d
GC
237}
238
32ceabca
GC
239/**
240 * stmmac_disable_eee_mode: disable/exit from EEE
241 * @priv: driver private structure
242 * Description: this function is to exit and disable EEE in case of
243 * LPI state is true. This is called by the xmit.
244 */
d765955d
GC
245void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246{
7ed24bbe 247 priv->hw->mac->reset_eee_mode(priv->hw);
d765955d
GC
248 del_timer_sync(&priv->eee_ctrl_timer);
249 priv->tx_path_in_lpi_mode = false;
250}
251
252/**
32ceabca 253 * stmmac_eee_ctrl_timer: EEE TX SW timer.
d765955d
GC
254 * @arg : data hook
255 * Description:
32ceabca 256 * if there is no data transfer and if we are not in LPI state,
d765955d
GC
257 * then MAC Transmitter can be moved to LPI state.
258 */
259static void stmmac_eee_ctrl_timer(unsigned long arg)
260{
261 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262
263 stmmac_enable_eee_mode(priv);
f5351ef7 264 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
d765955d
GC
265}
266
267/**
32ceabca
GC
268 * stmmac_eee_init: init EEE
269 * @priv: driver private structure
d765955d
GC
270 * Description:
271 * If the EEE support has been enabled while configuring the driver,
272 * if the GMAC actually supports the EEE (from the HW cap reg) and the
273 * phy can also manage EEE, so enable the LPI state and start the timer
274 * to verify if the tx path can enter in LPI state.
275 */
276bool stmmac_eee_init(struct stmmac_priv *priv)
277{
278 bool ret = false;
279
f5351ef7
GC
280 /* Using PCS we cannot dial with the phy registers at this stage
281 * so we do not support extra feature like EEE.
282 */
283 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
284 (priv->pcs == STMMAC_PCS_RTBI))
285 goto out;
286
d765955d
GC
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
83bf79b6
GC
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
d765955d 291 /* Check if the PHY supports EEE */
83bf79b6
GC
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 if (priv->eee_active) {
299 pr_debug("stmmac: disable EEE\n");
300 del_timer_sync(&priv->eee_ctrl_timer);
7ed24bbe 301 priv->hw->mac->set_eee_timer(priv->hw, 0,
83bf79b6
GC
302 tx_lpi_timer);
303 }
304 priv->eee_active = 0;
d765955d 305 goto out;
83bf79b6
GC
306 }
307 /* Activate the EEE and start timers */
f5351ef7
GC
308 if (!priv->eee_active) {
309 priv->eee_active = 1;
310 init_timer(&priv->eee_ctrl_timer);
311 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
312 priv->eee_ctrl_timer.data = (unsigned long)priv;
313 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
314 add_timer(&priv->eee_ctrl_timer);
315
7ed24bbe 316 priv->hw->mac->set_eee_timer(priv->hw,
f5351ef7 317 STMMAC_DEFAULT_LIT_LS,
83bf79b6 318 tx_lpi_timer);
f5351ef7
GC
319 } else
320 /* Set HW EEE according to the speed */
7ed24bbe 321 priv->hw->mac->set_eee_pls(priv->hw,
f5351ef7 322 priv->phydev->link);
d765955d 323
83bf79b6 324 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
d765955d
GC
325
326 ret = true;
327 }
328out:
329 return ret;
330}
331
32ceabca
GC
332/* stmmac_get_tx_hwtstamp: get HW TX timestamps
333 * @priv: driver private structure
891434b1
RK
334 * @entry : descriptor index to be used.
335 * @skb : the socket buffer
336 * Description :
337 * This function will read timestamp from the descriptor & pass it to stack.
338 * and also perform some sanity checks.
339 */
340static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
ceb69499 341 unsigned int entry, struct sk_buff *skb)
891434b1
RK
342{
343 struct skb_shared_hwtstamps shhwtstamp;
344 u64 ns;
345 void *desc = NULL;
346
347 if (!priv->hwts_tx_en)
348 return;
349
ceb69499 350 /* exit if skb doesn't support hw tstamp */
75e4364f 351 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
891434b1
RK
352 return;
353
354 if (priv->adv_ts)
355 desc = (priv->dma_etx + entry);
356 else
357 desc = (priv->dma_tx + entry);
358
359 /* check tx tstamp status */
360 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
361 return;
362
363 /* get the valid tstamp */
364 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
365
366 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
367 shhwtstamp.hwtstamp = ns_to_ktime(ns);
368 /* pass tstamp to stack */
369 skb_tstamp_tx(skb, &shhwtstamp);
370
371 return;
372}
373
32ceabca
GC
374/* stmmac_get_rx_hwtstamp: get HW RX timestamps
375 * @priv: driver private structure
891434b1
RK
376 * @entry : descriptor index to be used.
377 * @skb : the socket buffer
378 * Description :
379 * This function will read received packet's timestamp from the descriptor
380 * and pass it to stack. It also perform some sanity checks.
381 */
382static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
ceb69499 383 unsigned int entry, struct sk_buff *skb)
891434b1
RK
384{
385 struct skb_shared_hwtstamps *shhwtstamp = NULL;
386 u64 ns;
387 void *desc = NULL;
388
389 if (!priv->hwts_rx_en)
390 return;
391
392 if (priv->adv_ts)
393 desc = (priv->dma_erx + entry);
394 else
395 desc = (priv->dma_rx + entry);
396
ceb69499 397 /* exit if rx tstamp is not valid */
891434b1
RK
398 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
399 return;
400
401 /* get valid tstamp */
402 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
403 shhwtstamp = skb_hwtstamps(skb);
404 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
405 shhwtstamp->hwtstamp = ns_to_ktime(ns);
406}
407
408/**
409 * stmmac_hwtstamp_ioctl - control hardware timestamping.
410 * @dev: device pointer.
411 * @ifr: An IOCTL specefic structure, that can contain a pointer to
412 * a proprietary structure used to pass information to the driver.
413 * Description:
414 * This function configures the MAC to enable/disable both outgoing(TX)
415 * and incoming(RX) packets time stamping based on user input.
416 * Return Value:
417 * 0 on success and an appropriate -ve integer on failure.
418 */
419static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
420{
421 struct stmmac_priv *priv = netdev_priv(dev);
422 struct hwtstamp_config config;
423 struct timespec now;
424 u64 temp = 0;
425 u32 ptp_v2 = 0;
426 u32 tstamp_all = 0;
427 u32 ptp_over_ipv4_udp = 0;
428 u32 ptp_over_ipv6_udp = 0;
429 u32 ptp_over_ethernet = 0;
430 u32 snap_type_sel = 0;
431 u32 ts_master_en = 0;
432 u32 ts_event_en = 0;
433 u32 value = 0;
434
435 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
436 netdev_alert(priv->dev, "No support for HW time stamping\n");
437 priv->hwts_tx_en = 0;
438 priv->hwts_rx_en = 0;
439
440 return -EOPNOTSUPP;
441 }
442
443 if (copy_from_user(&config, ifr->ifr_data,
ceb69499 444 sizeof(struct hwtstamp_config)))
891434b1
RK
445 return -EFAULT;
446
447 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
448 __func__, config.flags, config.tx_type, config.rx_filter);
449
450 /* reserved for future extensions */
451 if (config.flags)
452 return -EINVAL;
453
5f3da328
BH
454 if (config.tx_type != HWTSTAMP_TX_OFF &&
455 config.tx_type != HWTSTAMP_TX_ON)
891434b1 456 return -ERANGE;
891434b1
RK
457
458 if (priv->adv_ts) {
459 switch (config.rx_filter) {
891434b1 460 case HWTSTAMP_FILTER_NONE:
ceb69499 461 /* time stamp no incoming packet at all */
891434b1
RK
462 config.rx_filter = HWTSTAMP_FILTER_NONE;
463 break;
464
891434b1 465 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
ceb69499 466 /* PTP v1, UDP, any kind of event packet */
891434b1
RK
467 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
468 /* take time stamp for all event messages */
469 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
470
471 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
472 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
473 break;
474
891434b1 475 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
ceb69499 476 /* PTP v1, UDP, Sync packet */
891434b1
RK
477 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
478 /* take time stamp for SYNC messages only */
479 ts_event_en = PTP_TCR_TSEVNTENA;
480
481 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 break;
484
891434b1 485 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
ceb69499 486 /* PTP v1, UDP, Delay_req packet */
891434b1
RK
487 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
488 /* take time stamp for Delay_Req messages only */
489 ts_master_en = PTP_TCR_TSMSTRENA;
490 ts_event_en = PTP_TCR_TSEVNTENA;
491
492 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
493 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
494 break;
495
891434b1 496 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
ceb69499 497 /* PTP v2, UDP, any kind of event packet */
891434b1
RK
498 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
499 ptp_v2 = PTP_TCR_TSVER2ENA;
500 /* take time stamp for all event messages */
501 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
502
503 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
504 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
505 break;
506
891434b1 507 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
ceb69499 508 /* PTP v2, UDP, Sync packet */
891434b1
RK
509 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
510 ptp_v2 = PTP_TCR_TSVER2ENA;
511 /* take time stamp for SYNC messages only */
512 ts_event_en = PTP_TCR_TSEVNTENA;
513
514 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
515 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
516 break;
517
891434b1 518 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
ceb69499 519 /* PTP v2, UDP, Delay_req packet */
891434b1
RK
520 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
521 ptp_v2 = PTP_TCR_TSVER2ENA;
522 /* take time stamp for Delay_Req messages only */
523 ts_master_en = PTP_TCR_TSMSTRENA;
524 ts_event_en = PTP_TCR_TSEVNTENA;
525
526 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
527 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
528 break;
529
891434b1 530 case HWTSTAMP_FILTER_PTP_V2_EVENT:
ceb69499 531 /* PTP v2/802.AS1 any layer, any kind of event packet */
891434b1
RK
532 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
533 ptp_v2 = PTP_TCR_TSVER2ENA;
534 /* take time stamp for all event messages */
535 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
536
537 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
538 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
539 ptp_over_ethernet = PTP_TCR_TSIPENA;
540 break;
541
891434b1 542 case HWTSTAMP_FILTER_PTP_V2_SYNC:
ceb69499 543 /* PTP v2/802.AS1, any layer, Sync packet */
891434b1
RK
544 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
545 ptp_v2 = PTP_TCR_TSVER2ENA;
546 /* take time stamp for SYNC messages only */
547 ts_event_en = PTP_TCR_TSEVNTENA;
548
549 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
550 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
551 ptp_over_ethernet = PTP_TCR_TSIPENA;
552 break;
553
891434b1 554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ceb69499 555 /* PTP v2/802.AS1, any layer, Delay_req packet */
891434b1
RK
556 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
557 ptp_v2 = PTP_TCR_TSVER2ENA;
558 /* take time stamp for Delay_Req messages only */
559 ts_master_en = PTP_TCR_TSMSTRENA;
560 ts_event_en = PTP_TCR_TSEVNTENA;
561
562 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
563 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
564 ptp_over_ethernet = PTP_TCR_TSIPENA;
565 break;
566
891434b1 567 case HWTSTAMP_FILTER_ALL:
ceb69499 568 /* time stamp any incoming packet */
891434b1
RK
569 config.rx_filter = HWTSTAMP_FILTER_ALL;
570 tstamp_all = PTP_TCR_TSENALL;
571 break;
572
573 default:
574 return -ERANGE;
575 }
576 } else {
577 switch (config.rx_filter) {
578 case HWTSTAMP_FILTER_NONE:
579 config.rx_filter = HWTSTAMP_FILTER_NONE;
580 break;
581 default:
582 /* PTP v1, UDP, any kind of event packet */
583 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
584 break;
585 }
586 }
587 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
5f3da328 588 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
891434b1
RK
589
590 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
591 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
592 else {
593 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
ceb69499
GC
594 tstamp_all | ptp_v2 | ptp_over_ethernet |
595 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
596 ts_master_en | snap_type_sel);
891434b1
RK
597
598 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
599
600 /* program Sub Second Increment reg */
601 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
602
603 /* calculate default added value:
604 * formula is :
605 * addend = (2^32)/freq_div_ratio;
606 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
607 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
608 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
609 * achive 20ns accuracy.
610 *
611 * 2^x * y == (y << x), hence
612 * 2^32 * 50000000 ==> (50000000 << 32)
613 */
ceb69499 614 temp = (u64) (50000000ULL << 32);
891434b1
RK
615 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
616 priv->hw->ptp->config_addend(priv->ioaddr,
617 priv->default_addend);
618
619 /* initialize system time */
620 getnstimeofday(&now);
621 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
622 now.tv_nsec);
623 }
624
625 return copy_to_user(ifr->ifr_data, &config,
626 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
627}
628
32ceabca
GC
629/**
630 * stmmac_init_ptp: init PTP
631 * @priv: driver private structure
632 * Description: this is to verify if the HW supports the PTPv1 or v2.
633 * This is done by looking at the HW cap. register.
634 * Also it registers the ptp driver.
635 */
92ba6888 636static int stmmac_init_ptp(struct stmmac_priv *priv)
891434b1 637{
92ba6888
RK
638 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
639 return -EOPNOTSUPP;
640
7cd01399
VB
641 priv->adv_ts = 0;
642 if (priv->dma_cap.atime_stamp && priv->extend_desc)
643 priv->adv_ts = 1;
644
645 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
646 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
647
648 if (netif_msg_hw(priv) && priv->adv_ts)
649 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
891434b1
RK
650
651 priv->hw->ptp = &stmmac_ptp;
652 priv->hwts_tx_en = 0;
653 priv->hwts_rx_en = 0;
92ba6888
RK
654
655 return stmmac_ptp_register(priv);
656}
657
658static void stmmac_release_ptp(struct stmmac_priv *priv)
659{
660 stmmac_ptp_unregister(priv);
891434b1
RK
661}
662
47dd7a54
GC
663/**
664 * stmmac_adjust_link
665 * @dev: net device structure
666 * Description: it adjusts the link parameters.
667 */
668static void stmmac_adjust_link(struct net_device *dev)
669{
670 struct stmmac_priv *priv = netdev_priv(dev);
671 struct phy_device *phydev = priv->phydev;
47dd7a54
GC
672 unsigned long flags;
673 int new_state = 0;
674 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
675
676 if (phydev == NULL)
677 return;
678
47dd7a54 679 spin_lock_irqsave(&priv->lock, flags);
d765955d 680
47dd7a54 681 if (phydev->link) {
ad01b7d4 682 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
47dd7a54
GC
683
684 /* Now we make sure that we can be in full duplex mode.
685 * If not, we operate in half-duplex mode. */
686 if (phydev->duplex != priv->oldduplex) {
687 new_state = 1;
688 if (!(phydev->duplex))
db98a0b0 689 ctrl &= ~priv->hw->link.duplex;
47dd7a54 690 else
db98a0b0 691 ctrl |= priv->hw->link.duplex;
47dd7a54
GC
692 priv->oldduplex = phydev->duplex;
693 }
694 /* Flow Control operation */
695 if (phydev->pause)
7ed24bbe 696 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
db98a0b0 697 fc, pause_time);
47dd7a54
GC
698
699 if (phydev->speed != priv->speed) {
700 new_state = 1;
701 switch (phydev->speed) {
702 case 1000:
9dfeb4d9 703 if (likely(priv->plat->has_gmac))
db98a0b0 704 ctrl &= ~priv->hw->link.port;
ceb69499 705 stmmac_hw_fix_mac_speed(priv);
47dd7a54
GC
706 break;
707 case 100:
708 case 10:
9dfeb4d9 709 if (priv->plat->has_gmac) {
db98a0b0 710 ctrl |= priv->hw->link.port;
47dd7a54 711 if (phydev->speed == SPEED_100) {
db98a0b0 712 ctrl |= priv->hw->link.speed;
47dd7a54 713 } else {
db98a0b0 714 ctrl &= ~(priv->hw->link.speed);
47dd7a54
GC
715 }
716 } else {
db98a0b0 717 ctrl &= ~priv->hw->link.port;
47dd7a54 718 }
9dfeb4d9 719 stmmac_hw_fix_mac_speed(priv);
47dd7a54
GC
720 break;
721 default:
722 if (netif_msg_link(priv))
ceb69499
GC
723 pr_warn("%s: Speed (%d) not 10/100\n",
724 dev->name, phydev->speed);
47dd7a54
GC
725 break;
726 }
727
728 priv->speed = phydev->speed;
729 }
730
ad01b7d4 731 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
47dd7a54
GC
732
733 if (!priv->oldlink) {
734 new_state = 1;
735 priv->oldlink = 1;
736 }
737 } else if (priv->oldlink) {
738 new_state = 1;
739 priv->oldlink = 0;
740 priv->speed = 0;
741 priv->oldduplex = -1;
742 }
743
744 if (new_state && netif_msg_link(priv))
745 phy_print_status(phydev);
746
f5351ef7
GC
747 /* At this stage, it could be needed to setup the EEE or adjust some
748 * MAC related HW registers.
749 */
750 priv->eee_enabled = stmmac_eee_init(priv);
d765955d 751
47dd7a54 752 spin_unlock_irqrestore(&priv->lock, flags);
47dd7a54
GC
753}
754
32ceabca
GC
755/**
756 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
757 * @priv: driver private structure
758 * Description: this is to verify if the HW supports the PCS.
759 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
760 * configured for the TBI, RTBI, or SGMII PHY interface.
761 */
e58bb43f
GC
762static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
763{
764 int interface = priv->plat->interface;
765
766 if (priv->dma_cap.pcs) {
0d909dcd
BA
767 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
768 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
769 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
770 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
e58bb43f
GC
771 pr_debug("STMMAC: PCS RGMII support enable\n");
772 priv->pcs = STMMAC_PCS_RGMII;
0d909dcd 773 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
e58bb43f
GC
774 pr_debug("STMMAC: PCS SGMII support enable\n");
775 priv->pcs = STMMAC_PCS_SGMII;
776 }
777 }
778}
779
47dd7a54
GC
780/**
781 * stmmac_init_phy - PHY initialization
782 * @dev: net device structure
783 * Description: it initializes the driver's PHY state, and attaches the PHY
784 * to the mac driver.
785 * Return value:
786 * 0 on success
787 */
788static int stmmac_init_phy(struct net_device *dev)
789{
790 struct stmmac_priv *priv = netdev_priv(dev);
791 struct phy_device *phydev;
d765955d 792 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
109cdd66 793 char bus_id[MII_BUS_ID_SIZE];
79ee1dc3 794 int interface = priv->plat->interface;
9cbadf09 795 int max_speed = priv->plat->max_speed;
47dd7a54
GC
796 priv->oldlink = 0;
797 priv->speed = 0;
798 priv->oldduplex = -1;
799
f142af2e
SK
800 if (priv->plat->phy_bus_name)
801 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
ceb69499 802 priv->plat->phy_bus_name, priv->plat->bus_id);
f142af2e
SK
803 else
804 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
ceb69499 805 priv->plat->bus_id);
f142af2e 806
d765955d 807 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
36bcfe7d 808 priv->plat->phy_addr);
d765955d 809 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
47dd7a54 810
f9a8f83b 811 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
47dd7a54
GC
812
813 if (IS_ERR(phydev)) {
814 pr_err("%s: Could not attach to PHY\n", dev->name);
815 return PTR_ERR(phydev);
816 }
817
79ee1dc3 818 /* Stop Advertising 1000BASE Capability if interface is not GMII */
c5b9b4e4 819 if ((interface == PHY_INTERFACE_MODE_MII) ||
9cbadf09
SK
820 (interface == PHY_INTERFACE_MODE_RMII) ||
821 (max_speed < 1000 && max_speed > 0))
c5b9b4e4
SK
822 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
823 SUPPORTED_1000baseT_Full);
79ee1dc3 824
47dd7a54
GC
825 /*
826 * Broken HW is sometimes missing the pull-up resistor on the
827 * MDIO line, which results in reads to non-existent devices returning
828 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
829 * device as well.
830 * Note: phydev->phy_id is the result of reading the UID PHY registers.
831 */
832 if (phydev->phy_id == 0) {
833 phy_disconnect(phydev);
834 return -ENODEV;
835 }
836 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
36bcfe7d 837 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
47dd7a54
GC
838
839 priv->phydev = phydev;
840
841 return 0;
842}
843
47dd7a54 844/**
32ceabca
GC
845 * stmmac_display_ring: display ring
846 * @head: pointer to the head of the ring passed.
47dd7a54 847 * @size: size of the ring.
32ceabca 848 * @extend_desc: to verify if extended descriptors are used.
c24602ef 849 * Description: display the control/status and buffer descriptors.
47dd7a54 850 */
c24602ef 851static void stmmac_display_ring(void *head, int size, int extend_desc)
47dd7a54 852{
47dd7a54 853 int i;
ceb69499
GC
854 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
855 struct dma_desc *p = (struct dma_desc *)head;
c24602ef 856
47dd7a54 857 for (i = 0; i < size; i++) {
c24602ef
GC
858 u64 x;
859 if (extend_desc) {
860 x = *(u64 *) ep;
861 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
ceb69499
GC
862 i, (unsigned int)virt_to_phys(ep),
863 (unsigned int)x, (unsigned int)(x >> 32),
c24602ef
GC
864 ep->basic.des2, ep->basic.des3);
865 ep++;
866 } else {
867 x = *(u64 *) p;
868 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
ceb69499
GC
869 i, (unsigned int)virt_to_phys(p),
870 (unsigned int)x, (unsigned int)(x >> 32),
c24602ef
GC
871 p->des2, p->des3);
872 p++;
873 }
47dd7a54
GC
874 pr_info("\n");
875 }
876}
877
c24602ef
GC
878static void stmmac_display_rings(struct stmmac_priv *priv)
879{
880 unsigned int txsize = priv->dma_tx_size;
881 unsigned int rxsize = priv->dma_rx_size;
882
883 if (priv->extend_desc) {
884 pr_info("Extended RX descriptor ring:\n");
ceb69499 885 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
c24602ef 886 pr_info("Extended TX descriptor ring:\n");
ceb69499 887 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
c24602ef
GC
888 } else {
889 pr_info("RX descriptor ring:\n");
890 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
891 pr_info("TX descriptor ring:\n");
892 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
893 }
894}
895
286a8372
GC
896static int stmmac_set_bfsize(int mtu, int bufsize)
897{
898 int ret = bufsize;
899
900 if (mtu >= BUF_SIZE_4KiB)
901 ret = BUF_SIZE_8KiB;
902 else if (mtu >= BUF_SIZE_2KiB)
903 ret = BUF_SIZE_4KiB;
d916701c 904 else if (mtu > DEFAULT_BUFSIZE)
286a8372
GC
905 ret = BUF_SIZE_2KiB;
906 else
d916701c 907 ret = DEFAULT_BUFSIZE;
286a8372
GC
908
909 return ret;
910}
911
32ceabca
GC
912/**
913 * stmmac_clear_descriptors: clear descriptors
914 * @priv: driver private structure
915 * Description: this function is called to clear the tx and rx descriptors
916 * in case of both basic and extended descriptors are used.
917 */
c24602ef
GC
918static void stmmac_clear_descriptors(struct stmmac_priv *priv)
919{
920 int i;
921 unsigned int txsize = priv->dma_tx_size;
922 unsigned int rxsize = priv->dma_rx_size;
923
924 /* Clear the Rx/Tx descriptors */
925 for (i = 0; i < rxsize; i++)
926 if (priv->extend_desc)
927 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
928 priv->use_riwt, priv->mode,
929 (i == rxsize - 1));
930 else
931 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
932 priv->use_riwt, priv->mode,
933 (i == rxsize - 1));
934 for (i = 0; i < txsize; i++)
935 if (priv->extend_desc)
936 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
937 priv->mode,
938 (i == txsize - 1));
939 else
940 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
941 priv->mode,
942 (i == txsize - 1));
943}
944
945static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
946 int i)
947{
948 struct sk_buff *skb;
949
950 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
951 GFP_KERNEL);
56329137 952 if (!skb) {
c24602ef 953 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
56329137 954 return -ENOMEM;
c24602ef
GC
955 }
956 skb_reserve(skb, NET_IP_ALIGN);
957 priv->rx_skbuff[i] = skb;
958 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
959 priv->dma_buf_sz,
960 DMA_FROM_DEVICE);
56329137
BZ
961 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
962 pr_err("%s: DMA mapping error\n", __func__);
963 dev_kfree_skb_any(skb);
964 return -EINVAL;
965 }
c24602ef
GC
966
967 p->des2 = priv->rx_skbuff_dma[i];
968
29896a67 969 if ((priv->hw->mode->init_desc3) &&
c24602ef 970 (priv->dma_buf_sz == BUF_SIZE_16KiB))
29896a67 971 priv->hw->mode->init_desc3(p);
c24602ef
GC
972
973 return 0;
974}
975
56329137
BZ
976static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
977{
978 if (priv->rx_skbuff[i]) {
979 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
980 priv->dma_buf_sz, DMA_FROM_DEVICE);
981 dev_kfree_skb_any(priv->rx_skbuff[i]);
982 }
983 priv->rx_skbuff[i] = NULL;
984}
985
47dd7a54
GC
986/**
987 * init_dma_desc_rings - init the RX/TX descriptor rings
988 * @dev: net device structure
989 * Description: this function initializes the DMA RX/TX descriptors
286a8372
GC
990 * and allocates the socket buffers. It suppors the chained and ring
991 * modes.
47dd7a54 992 */
56329137 993static int init_dma_desc_rings(struct net_device *dev)
47dd7a54
GC
994{
995 int i;
996 struct stmmac_priv *priv = netdev_priv(dev);
47dd7a54
GC
997 unsigned int txsize = priv->dma_tx_size;
998 unsigned int rxsize = priv->dma_rx_size;
4a7d666a 999 unsigned int bfsize = 0;
56329137 1000 int ret = -ENOMEM;
47dd7a54 1001
29896a67
GC
1002 if (priv->hw->mode->set_16kib_bfsize)
1003 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
286a8372 1004
4a7d666a 1005 if (bfsize < BUF_SIZE_16KiB)
286a8372 1006 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
47dd7a54 1007
2618abb7
VB
1008 priv->dma_buf_sz = bfsize;
1009
83d7af64
GC
1010 if (netif_msg_probe(priv))
1011 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1012 txsize, rxsize, bfsize);
47dd7a54 1013
83d7af64 1014 if (netif_msg_probe(priv)) {
c24602ef
GC
1015 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1016 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
47dd7a54 1017
83d7af64
GC
1018 /* RX INITIALIZATION */
1019 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1020 }
47dd7a54 1021 for (i = 0; i < rxsize; i++) {
c24602ef
GC
1022 struct dma_desc *p;
1023 if (priv->extend_desc)
1024 p = &((priv->dma_erx + i)->basic);
1025 else
1026 p = priv->dma_rx + i;
47dd7a54 1027
56329137
BZ
1028 ret = stmmac_init_rx_buffers(priv, p, i);
1029 if (ret)
1030 goto err_init_rx_buffers;
286a8372 1031
83d7af64
GC
1032 if (netif_msg_probe(priv))
1033 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1034 priv->rx_skbuff[i]->data,
1035 (unsigned int)priv->rx_skbuff_dma[i]);
47dd7a54
GC
1036 }
1037 priv->cur_rx = 0;
1038 priv->dirty_rx = (unsigned int)(i - rxsize);
47dd7a54
GC
1039 buf_sz = bfsize;
1040
c24602ef
GC
1041 /* Setup the chained descriptor addresses */
1042 if (priv->mode == STMMAC_CHAIN_MODE) {
1043 if (priv->extend_desc) {
29896a67
GC
1044 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1045 rxsize, 1);
1046 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1047 txsize, 1);
c24602ef 1048 } else {
29896a67
GC
1049 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1050 rxsize, 0);
1051 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1052 txsize, 0);
c24602ef
GC
1053 }
1054 }
1055
47dd7a54
GC
1056 /* TX INITIALIZATION */
1057 for (i = 0; i < txsize; i++) {
c24602ef
GC
1058 struct dma_desc *p;
1059 if (priv->extend_desc)
1060 p = &((priv->dma_etx + i)->basic);
1061 else
1062 p = priv->dma_tx + i;
1063 p->des2 = 0;
cf32deec 1064 priv->tx_skbuff_dma[i] = 0;
47dd7a54 1065 priv->tx_skbuff[i] = NULL;
47dd7a54 1066 }
286a8372 1067
47dd7a54
GC
1068 priv->dirty_tx = 0;
1069 priv->cur_tx = 0;
1070
c24602ef 1071 stmmac_clear_descriptors(priv);
47dd7a54 1072
c24602ef
GC
1073 if (netif_msg_hw(priv))
1074 stmmac_display_rings(priv);
56329137
BZ
1075
1076 return 0;
1077err_init_rx_buffers:
1078 while (--i >= 0)
1079 stmmac_free_rx_buffers(priv, i);
56329137 1080 return ret;
47dd7a54
GC
1081}
1082
1083static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1084{
1085 int i;
1086
56329137
BZ
1087 for (i = 0; i < priv->dma_rx_size; i++)
1088 stmmac_free_rx_buffers(priv, i);
47dd7a54
GC
1089}
1090
1091static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1092{
1093 int i;
1094
1095 for (i = 0; i < priv->dma_tx_size; i++) {
75e4364f 1096 struct dma_desc *p;
1097
1098 if (priv->extend_desc)
1099 p = &((priv->dma_etx + i)->basic);
1100 else
1101 p = priv->dma_tx + i;
1102
1103 if (priv->tx_skbuff_dma[i]) {
1104 dma_unmap_single(priv->device,
1105 priv->tx_skbuff_dma[i],
1106 priv->hw->desc->get_tx_len(p),
1107 DMA_TO_DEVICE);
1108 priv->tx_skbuff_dma[i] = 0;
1109 }
c24602ef 1110
75e4364f 1111 if (priv->tx_skbuff[i] != NULL) {
47dd7a54
GC
1112 dev_kfree_skb_any(priv->tx_skbuff[i]);
1113 priv->tx_skbuff[i] = NULL;
1114 }
1115 }
47dd7a54
GC
1116}
1117
09f8d696
SK
1118static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1119{
1120 unsigned int txsize = priv->dma_tx_size;
1121 unsigned int rxsize = priv->dma_rx_size;
1122 int ret = -ENOMEM;
1123
1124 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1125 GFP_KERNEL);
1126 if (!priv->rx_skbuff_dma)
1127 return -ENOMEM;
1128
1129 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1130 GFP_KERNEL);
1131 if (!priv->rx_skbuff)
1132 goto err_rx_skbuff;
1133
1134 priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1135 GFP_KERNEL);
1136 if (!priv->tx_skbuff_dma)
1137 goto err_tx_skbuff_dma;
1138
1139 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1140 GFP_KERNEL);
1141 if (!priv->tx_skbuff)
1142 goto err_tx_skbuff;
1143
1144 if (priv->extend_desc) {
1145 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1146 sizeof(struct
1147 dma_extended_desc),
1148 &priv->dma_rx_phy,
1149 GFP_KERNEL);
1150 if (!priv->dma_erx)
1151 goto err_dma;
1152
1153 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1154 sizeof(struct
1155 dma_extended_desc),
1156 &priv->dma_tx_phy,
1157 GFP_KERNEL);
1158 if (!priv->dma_etx) {
1159 dma_free_coherent(priv->device, priv->dma_rx_size *
1160 sizeof(struct dma_extended_desc),
1161 priv->dma_erx, priv->dma_rx_phy);
1162 goto err_dma;
1163 }
1164 } else {
1165 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1166 sizeof(struct dma_desc),
1167 &priv->dma_rx_phy,
1168 GFP_KERNEL);
1169 if (!priv->dma_rx)
1170 goto err_dma;
1171
1172 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1173 sizeof(struct dma_desc),
1174 &priv->dma_tx_phy,
1175 GFP_KERNEL);
1176 if (!priv->dma_tx) {
1177 dma_free_coherent(priv->device, priv->dma_rx_size *
1178 sizeof(struct dma_desc),
1179 priv->dma_rx, priv->dma_rx_phy);
1180 goto err_dma;
1181 }
1182 }
1183
1184 return 0;
1185
1186err_dma:
1187 kfree(priv->tx_skbuff);
1188err_tx_skbuff:
1189 kfree(priv->tx_skbuff_dma);
1190err_tx_skbuff_dma:
1191 kfree(priv->rx_skbuff);
1192err_rx_skbuff:
1193 kfree(priv->rx_skbuff_dma);
1194 return ret;
1195}
1196
47dd7a54
GC
1197static void free_dma_desc_resources(struct stmmac_priv *priv)
1198{
1199 /* Release the DMA TX/RX socket buffers */
1200 dma_free_rx_skbufs(priv);
1201 dma_free_tx_skbufs(priv);
1202
ceb69499 1203 /* Free DMA regions of consistent memory previously allocated */
c24602ef
GC
1204 if (!priv->extend_desc) {
1205 dma_free_coherent(priv->device,
1206 priv->dma_tx_size * sizeof(struct dma_desc),
1207 priv->dma_tx, priv->dma_tx_phy);
1208 dma_free_coherent(priv->device,
1209 priv->dma_rx_size * sizeof(struct dma_desc),
1210 priv->dma_rx, priv->dma_rx_phy);
1211 } else {
1212 dma_free_coherent(priv->device, priv->dma_tx_size *
1213 sizeof(struct dma_extended_desc),
1214 priv->dma_etx, priv->dma_tx_phy);
1215 dma_free_coherent(priv->device, priv->dma_rx_size *
1216 sizeof(struct dma_extended_desc),
1217 priv->dma_erx, priv->dma_rx_phy);
1218 }
47dd7a54
GC
1219 kfree(priv->rx_skbuff_dma);
1220 kfree(priv->rx_skbuff);
cf32deec 1221 kfree(priv->tx_skbuff_dma);
47dd7a54 1222 kfree(priv->tx_skbuff);
47dd7a54
GC
1223}
1224
47dd7a54
GC
1225/**
1226 * stmmac_dma_operation_mode - HW DMA operation mode
32ceabca 1227 * @priv: driver private structure
47dd7a54 1228 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
ebbb293f 1229 * or Store-And-Forward capability.
47dd7a54
GC
1230 */
1231static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1232{
e2a240c7
SZ
1233 if (priv->plat->force_thresh_dma_mode)
1234 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1235 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
61b8013a
SK
1236 /*
1237 * In case of GMAC, SF mode can be enabled
1238 * to perform the TX COE in HW. This depends on:
ebbb293f
GC
1239 * 1) TX COE if actually supported
1240 * 2) There is no bugged Jumbo frame support
1241 * that needs to not insert csum in the TDES.
1242 */
ceb69499 1243 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
ebbb293f
GC
1244 tc = SF_DMA_MODE;
1245 } else
1246 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
47dd7a54
GC
1247}
1248
47dd7a54 1249/**
9125cdd1 1250 * stmmac_tx_clean:
32ceabca 1251 * @priv: driver private structure
47dd7a54
GC
1252 * Description: it reclaims resources after transmission completes.
1253 */
9125cdd1 1254static void stmmac_tx_clean(struct stmmac_priv *priv)
47dd7a54
GC
1255{
1256 unsigned int txsize = priv->dma_tx_size;
47dd7a54 1257
a9097a96
GC
1258 spin_lock(&priv->tx_lock);
1259
9125cdd1
GC
1260 priv->xstats.tx_clean++;
1261
47dd7a54
GC
1262 while (priv->dirty_tx != priv->cur_tx) {
1263 int last;
1264 unsigned int entry = priv->dirty_tx % txsize;
1265 struct sk_buff *skb = priv->tx_skbuff[entry];
c24602ef
GC
1266 struct dma_desc *p;
1267
1268 if (priv->extend_desc)
ceb69499 1269 p = (struct dma_desc *)(priv->dma_etx + entry);
c24602ef
GC
1270 else
1271 p = priv->dma_tx + entry;
47dd7a54
GC
1272
1273 /* Check if the descriptor is owned by the DMA. */
db98a0b0 1274 if (priv->hw->desc->get_tx_owner(p))
47dd7a54
GC
1275 break;
1276
c24602ef 1277 /* Verify tx error by looking at the last segment. */
db98a0b0 1278 last = priv->hw->desc->get_tx_ls(p);
47dd7a54
GC
1279 if (likely(last)) {
1280 int tx_error =
ceb69499
GC
1281 priv->hw->desc->tx_status(&priv->dev->stats,
1282 &priv->xstats, p,
1283 priv->ioaddr);
47dd7a54
GC
1284 if (likely(tx_error == 0)) {
1285 priv->dev->stats.tx_packets++;
1286 priv->xstats.tx_pkt_n++;
1287 } else
1288 priv->dev->stats.tx_errors++;
891434b1
RK
1289
1290 stmmac_get_tx_hwtstamp(priv, entry, skb);
47dd7a54 1291 }
83d7af64
GC
1292 if (netif_msg_tx_done(priv))
1293 pr_debug("%s: curr %d, dirty %d\n", __func__,
1294 priv->cur_tx, priv->dirty_tx);
47dd7a54 1295
cf32deec
RK
1296 if (likely(priv->tx_skbuff_dma[entry])) {
1297 dma_unmap_single(priv->device,
1298 priv->tx_skbuff_dma[entry],
db98a0b0 1299 priv->hw->desc->get_tx_len(p),
47dd7a54 1300 DMA_TO_DEVICE);
cf32deec
RK
1301 priv->tx_skbuff_dma[entry] = 0;
1302 }
29896a67 1303 priv->hw->mode->clean_desc3(priv, p);
47dd7a54
GC
1304
1305 if (likely(skb != NULL)) {
7c565c33 1306 dev_consume_skb_any(skb);
47dd7a54
GC
1307 priv->tx_skbuff[entry] = NULL;
1308 }
1309
4a7d666a 1310 priv->hw->desc->release_tx_desc(p, priv->mode);
47dd7a54 1311
13497f58 1312 priv->dirty_tx++;
47dd7a54
GC
1313 }
1314 if (unlikely(netif_queue_stopped(priv->dev) &&
1315 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1316 netif_tx_lock(priv->dev);
1317 if (netif_queue_stopped(priv->dev) &&
ceb69499 1318 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
83d7af64
GC
1319 if (netif_msg_tx_done(priv))
1320 pr_debug("%s: restart transmit\n", __func__);
47dd7a54
GC
1321 netif_wake_queue(priv->dev);
1322 }
1323 netif_tx_unlock(priv->dev);
1324 }
d765955d
GC
1325
1326 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1327 stmmac_enable_eee_mode(priv);
f5351ef7 1328 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
d765955d 1329 }
a9097a96 1330 spin_unlock(&priv->tx_lock);
47dd7a54
GC
1331}
1332
9125cdd1 1333static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
47dd7a54 1334{
7284a3f1 1335 priv->hw->dma->enable_dma_irq(priv->ioaddr);
47dd7a54
GC
1336}
1337
9125cdd1 1338static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
47dd7a54 1339{
7284a3f1 1340 priv->hw->dma->disable_dma_irq(priv->ioaddr);
47dd7a54
GC
1341}
1342
47dd7a54 1343/**
32ceabca
GC
1344 * stmmac_tx_err: irq tx error mng function
1345 * @priv: driver private structure
47dd7a54
GC
1346 * Description: it cleans the descriptors and restarts the transmission
1347 * in case of errors.
1348 */
1349static void stmmac_tx_err(struct stmmac_priv *priv)
1350{
c24602ef
GC
1351 int i;
1352 int txsize = priv->dma_tx_size;
47dd7a54
GC
1353 netif_stop_queue(priv->dev);
1354
ad01b7d4 1355 priv->hw->dma->stop_tx(priv->ioaddr);
47dd7a54 1356 dma_free_tx_skbufs(priv);
c24602ef
GC
1357 for (i = 0; i < txsize; i++)
1358 if (priv->extend_desc)
1359 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1360 priv->mode,
1361 (i == txsize - 1));
1362 else
1363 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1364 priv->mode,
1365 (i == txsize - 1));
47dd7a54
GC
1366 priv->dirty_tx = 0;
1367 priv->cur_tx = 0;
ad01b7d4 1368 priv->hw->dma->start_tx(priv->ioaddr);
47dd7a54
GC
1369
1370 priv->dev->stats.tx_errors++;
1371 netif_wake_queue(priv->dev);
47dd7a54
GC
1372}
1373
32ceabca
GC
1374/**
1375 * stmmac_dma_interrupt: DMA ISR
1376 * @priv: driver private structure
1377 * Description: this is the DMA ISR. It is called by the main ISR.
1378 * It calls the dwmac dma routine to understand which type of interrupt
1379 * happened. In case of there is a Normal interrupt and either TX or RX
1380 * interrupt happened so the NAPI is scheduled.
1381 */
aec7ff27
GC
1382static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1383{
aec7ff27
GC
1384 int status;
1385
ad01b7d4 1386 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
9125cdd1
GC
1387 if (likely((status & handle_rx)) || (status & handle_tx)) {
1388 if (likely(napi_schedule_prep(&priv->napi))) {
1389 stmmac_disable_dma_irq(priv);
1390 __napi_schedule(&priv->napi);
1391 }
1392 }
1393 if (unlikely(status & tx_hard_error_bump_tc)) {
aec7ff27
GC
1394 /* Try to bump up the dma threshold on this failure */
1395 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1396 tc += 64;
ad01b7d4 1397 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
aec7ff27 1398 priv->xstats.threshold = tc;
47dd7a54 1399 }
aec7ff27
GC
1400 } else if (unlikely(status == tx_hard_error))
1401 stmmac_tx_err(priv);
47dd7a54
GC
1402}
1403
32ceabca
GC
1404/**
1405 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1406 * @priv: driver private structure
1407 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1408 */
1c901a46
GC
1409static void stmmac_mmc_setup(struct stmmac_priv *priv)
1410{
1411 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
ceb69499 1412 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1c901a46 1413
1c901a46 1414 dwmac_mmc_intr_all_mask(priv->ioaddr);
4f795b25
GC
1415
1416 if (priv->dma_cap.rmon) {
1417 dwmac_mmc_ctrl(priv->ioaddr, mode);
1418 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1419 } else
aae54cff 1420 pr_info(" No MAC Management Counters available\n");
1c901a46
GC
1421}
1422
f0b9d786
GC
1423static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1424{
1425 u32 hwid = priv->hw->synopsys_uid;
1426
ceb69499 1427 /* Check Synopsys Id (not available on old chips) */
f0b9d786
GC
1428 if (likely(hwid)) {
1429 u32 uid = ((hwid & 0x0000ff00) >> 8);
1430 u32 synid = (hwid & 0x000000ff);
1431
cf3f047b 1432 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
f0b9d786
GC
1433 uid, synid);
1434
1435 return synid;
1436 }
1437 return 0;
1438}
e7434821 1439
19e30c14 1440/**
32ceabca
GC
1441 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1442 * @priv: driver private structure
1443 * Description: select the Enhanced/Alternate or Normal descriptors.
1444 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1445 * supported by the HW cap. register.
ff3dd78c 1446 */
19e30c14
GC
1447static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1448{
1449 if (priv->plat->enh_desc) {
1450 pr_info(" Enhanced/Alternate descriptors\n");
c24602ef
GC
1451
1452 /* GMAC older than 3.50 has no extended descriptors */
1453 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1454 pr_info("\tEnabled extended descriptors\n");
1455 priv->extend_desc = 1;
1456 } else
1457 pr_warn("Extended descriptors not supported\n");
1458
19e30c14
GC
1459 priv->hw->desc = &enh_desc_ops;
1460 } else {
1461 pr_info(" Normal descriptors\n");
1462 priv->hw->desc = &ndesc_ops;
1463 }
1464}
1465
1466/**
32ceabca
GC
1467 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1468 * @priv: driver private structure
19e30c14
GC
1469 * Description:
1470 * new GMAC chip generations have a new register to indicate the
1471 * presence of the optional feature/functions.
1472 * This can be also used to override the value passed through the
1473 * platform and necessary for old MAC10/100 and GMAC chips.
e7434821
GC
1474 */
1475static int stmmac_get_hw_features(struct stmmac_priv *priv)
1476{
5e6efe88 1477 u32 hw_cap = 0;
3c20f72f 1478
5e6efe88
GC
1479 if (priv->hw->dma->get_hw_feature) {
1480 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
e7434821 1481
1db123fb
RK
1482 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1483 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1484 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1485 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
ceb69499 1486 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1db123fb
RK
1487 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1488 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1489 priv->dma_cap.pmt_remote_wake_up =
ceb69499 1490 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1db123fb 1491 priv->dma_cap.pmt_magic_frame =
ceb69499 1492 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
19e30c14 1493 /* MMC */
1db123fb 1494 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
ceb69499 1495 /* IEEE 1588-2002 */
1db123fb 1496 priv->dma_cap.time_stamp =
ceb69499
GC
1497 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1498 /* IEEE 1588-2008 */
1db123fb 1499 priv->dma_cap.atime_stamp =
ceb69499 1500 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
e7434821 1501 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1db123fb
RK
1502 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1503 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
e7434821 1504 /* TX and RX csum */
1db123fb
RK
1505 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1506 priv->dma_cap.rx_coe_type1 =
ceb69499 1507 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1db123fb 1508 priv->dma_cap.rx_coe_type2 =
ceb69499 1509 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1db123fb 1510 priv->dma_cap.rxfifo_over_2048 =
ceb69499 1511 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
e7434821 1512 /* TX and RX number of channels */
1db123fb 1513 priv->dma_cap.number_rx_channel =
ceb69499 1514 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1db123fb 1515 priv->dma_cap.number_tx_channel =
ceb69499
GC
1516 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1517 /* Alternate (enhanced) DESC mode */
1518 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
19e30c14 1519 }
e7434821
GC
1520
1521 return hw_cap;
1522}
1523
32ceabca
GC
1524/**
1525 * stmmac_check_ether_addr: check if the MAC addr is valid
1526 * @priv: driver private structure
1527 * Description:
1528 * it is to verify if the MAC address is valid, in case of failures it
1529 * generates a random MAC address
1530 */
bfab27a1
GC
1531static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1532{
bfab27a1 1533 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
7ed24bbe 1534 priv->hw->mac->get_umac_addr(priv->hw,
bfab27a1 1535 priv->dev->dev_addr, 0);
ceb69499 1536 if (!is_valid_ether_addr(priv->dev->dev_addr))
f2cedb63 1537 eth_hw_addr_random(priv->dev);
c88460b7
HG
1538 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1539 priv->dev->dev_addr);
bfab27a1 1540 }
bfab27a1
GC
1541}
1542
32ceabca
GC
1543/**
1544 * stmmac_init_dma_engine: DMA init.
1545 * @priv: driver private structure
1546 * Description:
1547 * It inits the DMA invoking the specific MAC/GMAC callback.
1548 * Some DMA parameters can be passed from the platform;
1549 * in case of these are not passed a default is kept for the MAC or GMAC.
1550 */
0f1f88a8
GC
1551static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1552{
1553 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
b9cde0a8 1554 int mixed_burst = 0;
c24602ef 1555 int atds = 0;
0f1f88a8 1556
0f1f88a8
GC
1557 if (priv->plat->dma_cfg) {
1558 pbl = priv->plat->dma_cfg->pbl;
1559 fixed_burst = priv->plat->dma_cfg->fixed_burst;
b9cde0a8 1560 mixed_burst = priv->plat->dma_cfg->mixed_burst;
0f1f88a8
GC
1561 burst_len = priv->plat->dma_cfg->burst_len;
1562 }
1563
c24602ef
GC
1564 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1565 atds = 1;
1566
b9cde0a8 1567 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
0f1f88a8 1568 burst_len, priv->dma_tx_phy,
c24602ef 1569 priv->dma_rx_phy, atds);
0f1f88a8
GC
1570}
1571
9125cdd1 1572/**
32ceabca 1573 * stmmac_tx_timer: mitigation sw timer for tx.
9125cdd1
GC
1574 * @data: data pointer
1575 * Description:
1576 * This is the timer handler to directly invoke the stmmac_tx_clean.
1577 */
1578static void stmmac_tx_timer(unsigned long data)
1579{
1580 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1581
1582 stmmac_tx_clean(priv);
1583}
1584
1585/**
32ceabca
GC
1586 * stmmac_init_tx_coalesce: init tx mitigation options.
1587 * @priv: driver private structure
9125cdd1
GC
1588 * Description:
1589 * This inits the transmit coalesce parameters: i.e. timer rate,
1590 * timer handler and default threshold used for enabling the
1591 * interrupt on completion bit.
1592 */
1593static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1594{
1595 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1596 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1597 init_timer(&priv->txtimer);
1598 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1599 priv->txtimer.data = (unsigned long)priv;
1600 priv->txtimer.function = stmmac_tx_timer;
1601 add_timer(&priv->txtimer);
1602}
1603
523f11b5
SK
1604/**
1605 * stmmac_hw_setup: setup mac in a usable state.
1606 * @dev : pointer to the device structure.
1607 * Description:
1608 * This function sets up the ip in a usable state.
1609 * Return value:
1610 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1611 * file on failure.
1612 */
1613static int stmmac_hw_setup(struct net_device *dev)
1614{
1615 struct stmmac_priv *priv = netdev_priv(dev);
1616 int ret;
1617
1618 ret = init_dma_desc_rings(dev);
1619 if (ret < 0) {
1620 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1621 return ret;
1622 }
1623 /* DMA initialization and SW reset */
1624 ret = stmmac_init_dma_engine(priv);
1625 if (ret < 0) {
1626 pr_err("%s: DMA engine initialization failed\n", __func__);
1627 return ret;
1628 }
1629
1630 /* Copy the MAC addr into the HW */
7ed24bbe 1631 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
523f11b5
SK
1632
1633 /* If required, perform hw setup of the bus. */
1634 if (priv->plat->bus_setup)
1635 priv->plat->bus_setup(priv->ioaddr);
1636
1637 /* Initialize the MAC Core */
7ed24bbe 1638 priv->hw->mac->core_init(priv->hw, dev->mtu);
523f11b5
SK
1639
1640 /* Enable the MAC Rx/Tx */
1641 stmmac_set_mac(priv->ioaddr, true);
1642
1643 /* Set the HW DMA mode and the COE */
1644 stmmac_dma_operation_mode(priv);
1645
1646 stmmac_mmc_setup(priv);
1647
1648 ret = stmmac_init_ptp(priv);
7509edd6 1649 if (ret && ret != -EOPNOTSUPP)
523f11b5
SK
1650 pr_warn("%s: failed PTP initialisation\n", __func__);
1651
1652#ifdef CONFIG_STMMAC_DEBUG_FS
1653 ret = stmmac_init_fs(dev);
1654 if (ret < 0)
1655 pr_warn("%s: failed debugFS registration\n", __func__);
1656#endif
1657 /* Start the ball rolling... */
1658 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1659 priv->hw->dma->start_tx(priv->ioaddr);
1660 priv->hw->dma->start_rx(priv->ioaddr);
1661
1662 /* Dump DMA/MAC registers */
1663 if (netif_msg_hw(priv)) {
7ed24bbe 1664 priv->hw->mac->dump_regs(priv->hw);
523f11b5
SK
1665 priv->hw->dma->dump_regs(priv->ioaddr);
1666 }
1667 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1668
1669 priv->eee_enabled = stmmac_eee_init(priv);
1670
1671 stmmac_init_tx_coalesce(priv);
1672
1673 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1674 priv->rx_riwt = MAX_DMA_RIWT;
1675 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1676 }
1677
1678 if (priv->pcs && priv->hw->mac->ctrl_ane)
7ed24bbe 1679 priv->hw->mac->ctrl_ane(priv->hw, 0);
523f11b5
SK
1680
1681 return 0;
1682}
1683
47dd7a54
GC
1684/**
1685 * stmmac_open - open entry point of the driver
1686 * @dev : pointer to the device structure.
1687 * Description:
1688 * This function is the open entry point of the driver.
1689 * Return value:
1690 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1691 * file on failure.
1692 */
1693static int stmmac_open(struct net_device *dev)
1694{
1695 struct stmmac_priv *priv = netdev_priv(dev);
47dd7a54
GC
1696 int ret;
1697
4bfcbd7a
FV
1698 stmmac_check_ether_addr(priv);
1699
4d8f0825
BA
1700 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1701 priv->pcs != STMMAC_PCS_RTBI) {
e58bb43f
GC
1702 ret = stmmac_init_phy(dev);
1703 if (ret) {
1704 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1705 __func__, ret);
89df20d9 1706 return ret;
e58bb43f 1707 }
f66ffe28 1708 }
47dd7a54 1709
523f11b5
SK
1710 /* Extra statistics */
1711 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1712 priv->xstats.threshold = tc;
1713
47dd7a54
GC
1714 /* Create and initialize the TX/RX descriptors chains. */
1715 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1716 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1717 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
56329137 1718
7262b7b2 1719 ret = alloc_dma_desc_resources(priv);
09f8d696
SK
1720 if (ret < 0) {
1721 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1722 goto dma_desc_error;
1723 }
1724
523f11b5 1725 ret = stmmac_hw_setup(dev);
56329137 1726 if (ret < 0) {
523f11b5 1727 pr_err("%s: Hw setup failed\n", __func__);
c9324d18 1728 goto init_error;
47dd7a54
GC
1729 }
1730
523f11b5
SK
1731 if (priv->phydev)
1732 phy_start(priv->phydev);
47dd7a54 1733
f66ffe28
GC
1734 /* Request the IRQ lines */
1735 ret = request_irq(dev->irq, stmmac_interrupt,
ceb69499 1736 IRQF_SHARED, dev->name, dev);
f66ffe28
GC
1737 if (unlikely(ret < 0)) {
1738 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1739 __func__, dev->irq, ret);
c9324d18 1740 goto init_error;
f66ffe28
GC
1741 }
1742
7a13f8f5
FV
1743 /* Request the Wake IRQ in case of another line is used for WoL */
1744 if (priv->wol_irq != dev->irq) {
1745 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1746 IRQF_SHARED, dev->name, dev);
1747 if (unlikely(ret < 0)) {
ceb69499
GC
1748 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1749 __func__, priv->wol_irq, ret);
c9324d18 1750 goto wolirq_error;
7a13f8f5
FV
1751 }
1752 }
1753
d765955d 1754 /* Request the IRQ lines */
d7ec8584 1755 if (priv->lpi_irq > 0) {
d765955d
GC
1756 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1757 dev->name, dev);
1758 if (unlikely(ret < 0)) {
1759 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1760 __func__, priv->lpi_irq, ret);
c9324d18 1761 goto lpiirq_error;
d765955d
GC
1762 }
1763 }
1764
47dd7a54 1765 napi_enable(&priv->napi);
47dd7a54 1766 netif_start_queue(dev);
f66ffe28 1767
47dd7a54 1768 return 0;
f66ffe28 1769
c9324d18 1770lpiirq_error:
d765955d
GC
1771 if (priv->wol_irq != dev->irq)
1772 free_irq(priv->wol_irq, dev);
c9324d18 1773wolirq_error:
7a13f8f5
FV
1774 free_irq(dev->irq, dev);
1775
c9324d18
GC
1776init_error:
1777 free_dma_desc_resources(priv);
56329137 1778dma_desc_error:
f66ffe28
GC
1779 if (priv->phydev)
1780 phy_disconnect(priv->phydev);
4bfcbd7a 1781
f66ffe28 1782 return ret;
47dd7a54
GC
1783}
1784
1785/**
1786 * stmmac_release - close entry point of the driver
1787 * @dev : device pointer.
1788 * Description:
1789 * This is the stop entry point of the driver.
1790 */
1791static int stmmac_release(struct net_device *dev)
1792{
1793 struct stmmac_priv *priv = netdev_priv(dev);
1794
d765955d
GC
1795 if (priv->eee_enabled)
1796 del_timer_sync(&priv->eee_ctrl_timer);
1797
47dd7a54
GC
1798 /* Stop and disconnect the PHY */
1799 if (priv->phydev) {
1800 phy_stop(priv->phydev);
1801 phy_disconnect(priv->phydev);
1802 priv->phydev = NULL;
1803 }
1804
1805 netif_stop_queue(dev);
1806
47dd7a54 1807 napi_disable(&priv->napi);
47dd7a54 1808
9125cdd1
GC
1809 del_timer_sync(&priv->txtimer);
1810
47dd7a54
GC
1811 /* Free the IRQ lines */
1812 free_irq(dev->irq, dev);
7a13f8f5
FV
1813 if (priv->wol_irq != dev->irq)
1814 free_irq(priv->wol_irq, dev);
d7ec8584 1815 if (priv->lpi_irq > 0)
d765955d 1816 free_irq(priv->lpi_irq, dev);
47dd7a54
GC
1817
1818 /* Stop TX/RX DMA and clear the descriptors */
ad01b7d4
GC
1819 priv->hw->dma->stop_tx(priv->ioaddr);
1820 priv->hw->dma->stop_rx(priv->ioaddr);
47dd7a54
GC
1821
1822 /* Release and free the Rx/Tx resources */
1823 free_dma_desc_resources(priv);
1824
19449bfc 1825 /* Disable the MAC Rx/Tx */
bfab27a1 1826 stmmac_set_mac(priv->ioaddr, false);
47dd7a54
GC
1827
1828 netif_carrier_off(dev);
1829
bfab27a1
GC
1830#ifdef CONFIG_STMMAC_DEBUG_FS
1831 stmmac_exit_fs();
1832#endif
bfab27a1 1833
92ba6888
RK
1834 stmmac_release_ptp(priv);
1835
47dd7a54
GC
1836 return 0;
1837}
1838
47dd7a54 1839/**
32ceabca 1840 * stmmac_xmit: Tx entry point of the driver
47dd7a54
GC
1841 * @skb : the socket buffer
1842 * @dev : device pointer
32ceabca
GC
1843 * Description : this is the tx entry point of the driver.
1844 * It programs the chain or the ring and supports oversized frames
1845 * and SG feature.
47dd7a54
GC
1846 */
1847static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1848{
1849 struct stmmac_priv *priv = netdev_priv(dev);
1850 unsigned int txsize = priv->dma_tx_size;
1851 unsigned int entry;
4a7d666a 1852 int i, csum_insertion = 0, is_jumbo = 0;
47dd7a54
GC
1853 int nfrags = skb_shinfo(skb)->nr_frags;
1854 struct dma_desc *desc, *first;
286a8372 1855 unsigned int nopaged_len = skb_headlen(skb);
29896a67 1856 unsigned int enh_desc = priv->plat->enh_desc;
47dd7a54
GC
1857
1858 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1859 if (!netif_queue_stopped(dev)) {
1860 netif_stop_queue(dev);
1861 /* This is a hard error, log it. */
ceb69499 1862 pr_err("%s: Tx Ring full when queue awake\n", __func__);
47dd7a54
GC
1863 }
1864 return NETDEV_TX_BUSY;
1865 }
1866
a9097a96
GC
1867 spin_lock(&priv->tx_lock);
1868
d765955d
GC
1869 if (priv->tx_path_in_lpi_mode)
1870 stmmac_disable_eee_mode(priv);
1871
47dd7a54
GC
1872 entry = priv->cur_tx % txsize;
1873
5e982f3b 1874 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
47dd7a54 1875
c24602ef 1876 if (priv->extend_desc)
ceb69499 1877 desc = (struct dma_desc *)(priv->dma_etx + entry);
c24602ef
GC
1878 else
1879 desc = priv->dma_tx + entry;
1880
47dd7a54
GC
1881 first = desc;
1882
4a7d666a 1883 /* To program the descriptors according to the size of the frame */
29896a67
GC
1884 if (enh_desc)
1885 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1886
4a7d666a 1887 if (likely(!is_jumbo)) {
47dd7a54 1888 desc->des2 = dma_map_single(priv->device, skb->data,
ceb69499 1889 nopaged_len, DMA_TO_DEVICE);
cf32deec 1890 priv->tx_skbuff_dma[entry] = desc->des2;
db98a0b0 1891 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
4a7d666a 1892 csum_insertion, priv->mode);
29896a67 1893 } else {
c24602ef 1894 desc = first;
29896a67
GC
1895 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1896 }
47dd7a54
GC
1897
1898 for (i = 0; i < nfrags; i++) {
9e903e08
ED
1899 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1900 int len = skb_frag_size(frag);
47dd7a54 1901
75e4364f 1902 priv->tx_skbuff[entry] = NULL;
47dd7a54 1903 entry = (++priv->cur_tx) % txsize;
c24602ef 1904 if (priv->extend_desc)
ceb69499 1905 desc = (struct dma_desc *)(priv->dma_etx + entry);
c24602ef
GC
1906 else
1907 desc = priv->dma_tx + entry;
47dd7a54 1908
f722380d
IC
1909 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1910 DMA_TO_DEVICE);
cf32deec 1911 priv->tx_skbuff_dma[entry] = desc->des2;
4a7d666a
GC
1912 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1913 priv->mode);
eb0dc4bb 1914 wmb();
db98a0b0 1915 priv->hw->desc->set_tx_owner(desc);
8e839891 1916 wmb();
47dd7a54
GC
1917 }
1918
75e4364f 1919 priv->tx_skbuff[entry] = skb;
1920
9125cdd1 1921 /* Finalize the latest segment. */
db98a0b0 1922 priv->hw->desc->close_tx_desc(desc);
73cfe264 1923
eb0dc4bb 1924 wmb();
9125cdd1
GC
1925 /* According to the coalesce parameter the IC bit for the latest
1926 * segment could be reset and the timer re-started to invoke the
1927 * stmmac_tx function. This approach takes care about the fragments.
1928 */
1929 priv->tx_count_frames += nfrags + 1;
1930 if (priv->tx_coal_frames > priv->tx_count_frames) {
1931 priv->hw->desc->clear_tx_ic(desc);
1932 priv->xstats.tx_reset_ic_bit++;
9125cdd1
GC
1933 mod_timer(&priv->txtimer,
1934 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1935 } else
1936 priv->tx_count_frames = 0;
eb0dc4bb 1937
47dd7a54 1938 /* To avoid raise condition */
db98a0b0 1939 priv->hw->desc->set_tx_owner(first);
8e839891 1940 wmb();
47dd7a54
GC
1941
1942 priv->cur_tx++;
1943
47dd7a54 1944 if (netif_msg_pktdata(priv)) {
83d7af64 1945 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
ceb69499
GC
1946 __func__, (priv->cur_tx % txsize),
1947 (priv->dirty_tx % txsize), entry, first, nfrags);
83d7af64 1948
c24602ef
GC
1949 if (priv->extend_desc)
1950 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1951 else
1952 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1953
83d7af64 1954 pr_debug(">>> frame to be transmitted: ");
47dd7a54
GC
1955 print_pkt(skb->data, skb->len);
1956 }
47dd7a54 1957 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
83d7af64
GC
1958 if (netif_msg_hw(priv))
1959 pr_debug("%s: stop transmitted packets\n", __func__);
47dd7a54
GC
1960 netif_stop_queue(dev);
1961 }
1962
1963 dev->stats.tx_bytes += skb->len;
1964
891434b1
RK
1965 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1966 priv->hwts_tx_en)) {
1967 /* declare that device is doing timestamping */
1968 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1969 priv->hw->desc->enable_tx_timestamp(first);
1970 }
1971
1972 if (!priv->hwts_tx_en)
1973 skb_tx_timestamp(skb);
3e82ce12 1974
52f64fae
RC
1975 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1976
a9097a96
GC
1977 spin_unlock(&priv->tx_lock);
1978
47dd7a54
GC
1979 return NETDEV_TX_OK;
1980}
1981
b9381985
VB
1982static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1983{
1984 struct ethhdr *ehdr;
1985 u16 vlanid;
1986
1987 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1988 NETIF_F_HW_VLAN_CTAG_RX &&
1989 !__vlan_get_tag(skb, &vlanid)) {
1990 /* pop the vlan tag */
1991 ehdr = (struct ethhdr *)skb->data;
1992 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1993 skb_pull(skb, VLAN_HLEN);
1994 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1995 }
1996}
1997
1998
32ceabca
GC
1999/**
2000 * stmmac_rx_refill: refill used skb preallocated buffers
2001 * @priv: driver private structure
2002 * Description : this is to reallocate the skb for the reception process
2003 * that is based on zero-copy.
2004 */
47dd7a54
GC
2005static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2006{
2007 unsigned int rxsize = priv->dma_rx_size;
2008 int bfsize = priv->dma_buf_sz;
47dd7a54
GC
2009
2010 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2011 unsigned int entry = priv->dirty_rx % rxsize;
c24602ef
GC
2012 struct dma_desc *p;
2013
2014 if (priv->extend_desc)
ceb69499 2015 p = (struct dma_desc *)(priv->dma_erx + entry);
c24602ef
GC
2016 else
2017 p = priv->dma_rx + entry;
2018
47dd7a54
GC
2019 if (likely(priv->rx_skbuff[entry] == NULL)) {
2020 struct sk_buff *skb;
2021
acb600de 2022 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
47dd7a54
GC
2023
2024 if (unlikely(skb == NULL))
2025 break;
2026
2027 priv->rx_skbuff[entry] = skb;
2028 priv->rx_skbuff_dma[entry] =
2029 dma_map_single(priv->device, skb->data, bfsize,
2030 DMA_FROM_DEVICE);
2031
c24602ef 2032 p->des2 = priv->rx_skbuff_dma[entry];
286a8372 2033
29896a67 2034 priv->hw->mode->refill_desc3(priv, p);
286a8372 2035
83d7af64
GC
2036 if (netif_msg_rx_status(priv))
2037 pr_debug("\trefill entry #%d\n", entry);
47dd7a54 2038 }
eb0dc4bb 2039 wmb();
c24602ef 2040 priv->hw->desc->set_rx_owner(p);
8e839891 2041 wmb();
47dd7a54 2042 }
47dd7a54
GC
2043}
2044
32ceabca
GC
2045/**
2046 * stmmac_rx_refill: refill used skb preallocated buffers
2047 * @priv: driver private structure
2048 * @limit: napi bugget.
2049 * Description : this the function called by the napi poll method.
2050 * It gets all the frames inside the ring.
2051 */
47dd7a54
GC
2052static int stmmac_rx(struct stmmac_priv *priv, int limit)
2053{
2054 unsigned int rxsize = priv->dma_rx_size;
2055 unsigned int entry = priv->cur_rx % rxsize;
2056 unsigned int next_entry;
2057 unsigned int count = 0;
ceb69499 2058 int coe = priv->plat->rx_coe;
47dd7a54 2059
83d7af64
GC
2060 if (netif_msg_rx_status(priv)) {
2061 pr_debug("%s: descriptor ring:\n", __func__);
c24602ef 2062 if (priv->extend_desc)
ceb69499 2063 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
c24602ef
GC
2064 else
2065 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
47dd7a54 2066 }
c24602ef 2067 while (count < limit) {
47dd7a54 2068 int status;
9401bb5c 2069 struct dma_desc *p;
47dd7a54 2070
c24602ef 2071 if (priv->extend_desc)
ceb69499 2072 p = (struct dma_desc *)(priv->dma_erx + entry);
c24602ef 2073 else
ceb69499 2074 p = priv->dma_rx + entry;
c24602ef
GC
2075
2076 if (priv->hw->desc->get_rx_owner(p))
47dd7a54
GC
2077 break;
2078
2079 count++;
2080
2081 next_entry = (++priv->cur_rx) % rxsize;
c24602ef 2082 if (priv->extend_desc)
9401bb5c 2083 prefetch(priv->dma_erx + next_entry);
c24602ef 2084 else
9401bb5c 2085 prefetch(priv->dma_rx + next_entry);
47dd7a54
GC
2086
2087 /* read the status of the incoming frame */
c24602ef
GC
2088 status = priv->hw->desc->rx_status(&priv->dev->stats,
2089 &priv->xstats, p);
2090 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2091 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2092 &priv->xstats,
2093 priv->dma_erx +
2094 entry);
891434b1 2095 if (unlikely(status == discard_frame)) {
47dd7a54 2096 priv->dev->stats.rx_errors++;
891434b1
RK
2097 if (priv->hwts_rx_en && !priv->extend_desc) {
2098 /* DESC2 & DESC3 will be overwitten by device
2099 * with timestamp value, hence reinitialize
2100 * them in stmmac_rx_refill() function so that
2101 * device can reuse it.
2102 */
2103 priv->rx_skbuff[entry] = NULL;
2104 dma_unmap_single(priv->device,
ceb69499
GC
2105 priv->rx_skbuff_dma[entry],
2106 priv->dma_buf_sz,
2107 DMA_FROM_DEVICE);
891434b1
RK
2108 }
2109 } else {
47dd7a54 2110 struct sk_buff *skb;
3eeb2997 2111 int frame_len;
47dd7a54 2112
ceb69499
GC
2113 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2114
3eeb2997 2115 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
ceb69499
GC
2116 * Type frames (LLC/LLC-SNAP)
2117 */
3eeb2997
GC
2118 if (unlikely(status != llc_snap))
2119 frame_len -= ETH_FCS_LEN;
47dd7a54 2120
83d7af64 2121 if (netif_msg_rx_status(priv)) {
47dd7a54 2122 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
ceb69499 2123 p, entry, p->des2);
83d7af64
GC
2124 if (frame_len > ETH_FRAME_LEN)
2125 pr_debug("\tframe size %d, COE: %d\n",
2126 frame_len, status);
2127 }
47dd7a54
GC
2128 skb = priv->rx_skbuff[entry];
2129 if (unlikely(!skb)) {
2130 pr_err("%s: Inconsistent Rx descriptor chain\n",
ceb69499 2131 priv->dev->name);
47dd7a54
GC
2132 priv->dev->stats.rx_dropped++;
2133 break;
2134 }
2135 prefetch(skb->data - NET_IP_ALIGN);
2136 priv->rx_skbuff[entry] = NULL;
2137
891434b1
RK
2138 stmmac_get_rx_hwtstamp(priv, entry, skb);
2139
47dd7a54
GC
2140 skb_put(skb, frame_len);
2141 dma_unmap_single(priv->device,
2142 priv->rx_skbuff_dma[entry],
2143 priv->dma_buf_sz, DMA_FROM_DEVICE);
83d7af64 2144
47dd7a54 2145 if (netif_msg_pktdata(priv)) {
83d7af64 2146 pr_debug("frame received (%dbytes)", frame_len);
47dd7a54
GC
2147 print_pkt(skb->data, frame_len);
2148 }
83d7af64 2149
b9381985
VB
2150 stmmac_rx_vlan(priv->dev, skb);
2151
47dd7a54
GC
2152 skb->protocol = eth_type_trans(skb, priv->dev);
2153
ceb69499 2154 if (unlikely(!coe))
bc8acf2c 2155 skb_checksum_none_assert(skb);
62a2ab93 2156 else
47dd7a54 2157 skb->ip_summed = CHECKSUM_UNNECESSARY;
62a2ab93
GC
2158
2159 napi_gro_receive(&priv->napi, skb);
47dd7a54
GC
2160
2161 priv->dev->stats.rx_packets++;
2162 priv->dev->stats.rx_bytes += frame_len;
47dd7a54
GC
2163 }
2164 entry = next_entry;
47dd7a54
GC
2165 }
2166
2167 stmmac_rx_refill(priv);
2168
2169 priv->xstats.rx_pkt_n += count;
2170
2171 return count;
2172}
2173
2174/**
2175 * stmmac_poll - stmmac poll method (NAPI)
2176 * @napi : pointer to the napi structure.
2177 * @budget : maximum number of packets that the current CPU can receive from
2178 * all interfaces.
2179 * Description :
9125cdd1 2180 * To look at the incoming frames and clear the tx resources.
47dd7a54
GC
2181 */
2182static int stmmac_poll(struct napi_struct *napi, int budget)
2183{
2184 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2185 int work_done = 0;
2186
9125cdd1
GC
2187 priv->xstats.napi_poll++;
2188 stmmac_tx_clean(priv);
47dd7a54 2189
9125cdd1 2190 work_done = stmmac_rx(priv, budget);
47dd7a54
GC
2191 if (work_done < budget) {
2192 napi_complete(napi);
9125cdd1 2193 stmmac_enable_dma_irq(priv);
47dd7a54
GC
2194 }
2195 return work_done;
2196}
2197
2198/**
2199 * stmmac_tx_timeout
2200 * @dev : Pointer to net device structure
2201 * Description: this function is called when a packet transmission fails to
7284a3f1 2202 * complete within a reasonable time. The driver will mark the error in the
47dd7a54
GC
2203 * netdev structure and arrange for the device to be reset to a sane state
2204 * in order to transmit a new packet.
2205 */
2206static void stmmac_tx_timeout(struct net_device *dev)
2207{
2208 struct stmmac_priv *priv = netdev_priv(dev);
2209
2210 /* Clear Tx resources and restart transmitting again */
2211 stmmac_tx_err(priv);
47dd7a54
GC
2212}
2213
47dd7a54 2214/**
01789349 2215 * stmmac_set_rx_mode - entry point for multicast addressing
47dd7a54
GC
2216 * @dev : pointer to the device structure
2217 * Description:
2218 * This function is a driver entry point which gets called by the kernel
2219 * whenever multicast addresses must be enabled/disabled.
2220 * Return value:
2221 * void.
2222 */
01789349 2223static void stmmac_set_rx_mode(struct net_device *dev)
47dd7a54
GC
2224{
2225 struct stmmac_priv *priv = netdev_priv(dev);
2226
2227 spin_lock(&priv->lock);
3b57de95 2228 priv->hw->mac->set_filter(priv->hw, dev);
47dd7a54 2229 spin_unlock(&priv->lock);
47dd7a54
GC
2230}
2231
2232/**
2233 * stmmac_change_mtu - entry point to change MTU size for the device.
2234 * @dev : device pointer.
2235 * @new_mtu : the new MTU size for the device.
2236 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2237 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2238 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2239 * Return value:
2240 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2241 * file on failure.
2242 */
2243static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2244{
2245 struct stmmac_priv *priv = netdev_priv(dev);
2246 int max_mtu;
2247
2248 if (netif_running(dev)) {
2249 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2250 return -EBUSY;
2251 }
2252
48febf7e 2253 if (priv->plat->enh_desc)
47dd7a54
GC
2254 max_mtu = JUMBO_LEN;
2255 else
45db81e1 2256 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
47dd7a54 2257
2618abb7
VB
2258 if (priv->plat->maxmtu < max_mtu)
2259 max_mtu = priv->plat->maxmtu;
2260
47dd7a54
GC
2261 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2262 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2263 return -EINVAL;
2264 }
2265
5e982f3b
MM
2266 dev->mtu = new_mtu;
2267 netdev_update_features(dev);
2268
2269 return 0;
2270}
2271
c8f44aff 2272static netdev_features_t stmmac_fix_features(struct net_device *dev,
ceb69499 2273 netdev_features_t features)
5e982f3b
MM
2274{
2275 struct stmmac_priv *priv = netdev_priv(dev);
2276
38912bdb 2277 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5e982f3b 2278 features &= ~NETIF_F_RXCSUM;
38912bdb
DS
2279 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2280 features &= ~NETIF_F_IPV6_CSUM;
5e982f3b
MM
2281 if (!priv->plat->tx_coe)
2282 features &= ~NETIF_F_ALL_CSUM;
2283
ebbb293f
GC
2284 /* Some GMAC devices have a bugged Jumbo frame support that
2285 * needs to have the Tx COE disabled for oversized frames
2286 * (due to limited buffer sizes). In this case we disable
ceb69499
GC
2287 * the TX csum insertionin the TDES and not use SF.
2288 */
5e982f3b
MM
2289 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2290 features &= ~NETIF_F_ALL_CSUM;
ebbb293f 2291
5e982f3b 2292 return features;
47dd7a54
GC
2293}
2294
32ceabca
GC
2295/**
2296 * stmmac_interrupt - main ISR
2297 * @irq: interrupt number.
2298 * @dev_id: to pass the net device pointer.
2299 * Description: this is the main driver interrupt service routine.
2300 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2301 * interrupts.
2302 */
47dd7a54
GC
2303static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2304{
2305 struct net_device *dev = (struct net_device *)dev_id;
2306 struct stmmac_priv *priv = netdev_priv(dev);
2307
89f7f2cf
SK
2308 if (priv->irq_wake)
2309 pm_wakeup_event(priv->device, 0);
2310
47dd7a54
GC
2311 if (unlikely(!dev)) {
2312 pr_err("%s: invalid dev pointer\n", __func__);
2313 return IRQ_NONE;
2314 }
2315
d765955d
GC
2316 /* To handle GMAC own interrupts */
2317 if (priv->plat->has_gmac) {
7ed24bbe 2318 int status = priv->hw->mac->host_irq_status(priv->hw,
0982a0f6 2319 &priv->xstats);
d765955d 2320 if (unlikely(status)) {
d765955d 2321 /* For LPI we need to save the tx status */
0982a0f6 2322 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
d765955d 2323 priv->tx_path_in_lpi_mode = true;
0982a0f6 2324 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
d765955d 2325 priv->tx_path_in_lpi_mode = false;
d765955d
GC
2326 }
2327 }
aec7ff27 2328
d765955d 2329 /* To handle DMA interrupts */
aec7ff27 2330 stmmac_dma_interrupt(priv);
47dd7a54
GC
2331
2332 return IRQ_HANDLED;
2333}
2334
2335#ifdef CONFIG_NET_POLL_CONTROLLER
2336/* Polling receive - used by NETCONSOLE and other diagnostic tools
ceb69499
GC
2337 * to allow network I/O with interrupts disabled.
2338 */
47dd7a54
GC
2339static void stmmac_poll_controller(struct net_device *dev)
2340{
2341 disable_irq(dev->irq);
2342 stmmac_interrupt(dev->irq, dev);
2343 enable_irq(dev->irq);
2344}
2345#endif
2346
2347/**
2348 * stmmac_ioctl - Entry point for the Ioctl
2349 * @dev: Device pointer.
2350 * @rq: An IOCTL specefic structure, that can contain a pointer to
2351 * a proprietary structure used to pass information to the driver.
2352 * @cmd: IOCTL command
2353 * Description:
32ceabca 2354 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
47dd7a54
GC
2355 */
2356static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2357{
2358 struct stmmac_priv *priv = netdev_priv(dev);
891434b1 2359 int ret = -EOPNOTSUPP;
47dd7a54
GC
2360
2361 if (!netif_running(dev))
2362 return -EINVAL;
2363
891434b1
RK
2364 switch (cmd) {
2365 case SIOCGMIIPHY:
2366 case SIOCGMIIREG:
2367 case SIOCSMIIREG:
2368 if (!priv->phydev)
2369 return -EINVAL;
2370 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2371 break;
2372 case SIOCSHWTSTAMP:
2373 ret = stmmac_hwtstamp_ioctl(dev, rq);
2374 break;
2375 default:
2376 break;
2377 }
28b04113 2378
47dd7a54
GC
2379 return ret;
2380}
2381
7ac29055
GC
2382#ifdef CONFIG_STMMAC_DEBUG_FS
2383static struct dentry *stmmac_fs_dir;
2384static struct dentry *stmmac_rings_status;
e7434821 2385static struct dentry *stmmac_dma_cap;
7ac29055 2386
c24602ef 2387static void sysfs_display_ring(void *head, int size, int extend_desc,
ceb69499 2388 struct seq_file *seq)
7ac29055 2389{
7ac29055 2390 int i;
ceb69499
GC
2391 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2392 struct dma_desc *p = (struct dma_desc *)head;
7ac29055 2393
c24602ef
GC
2394 for (i = 0; i < size; i++) {
2395 u64 x;
2396 if (extend_desc) {
2397 x = *(u64 *) ep;
2398 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
ceb69499
GC
2399 i, (unsigned int)virt_to_phys(ep),
2400 (unsigned int)x, (unsigned int)(x >> 32),
c24602ef
GC
2401 ep->basic.des2, ep->basic.des3);
2402 ep++;
2403 } else {
2404 x = *(u64 *) p;
2405 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
ceb69499
GC
2406 i, (unsigned int)virt_to_phys(ep),
2407 (unsigned int)x, (unsigned int)(x >> 32),
c24602ef
GC
2408 p->des2, p->des3);
2409 p++;
2410 }
7ac29055
GC
2411 seq_printf(seq, "\n");
2412 }
c24602ef 2413}
7ac29055 2414
c24602ef
GC
2415static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2416{
2417 struct net_device *dev = seq->private;
2418 struct stmmac_priv *priv = netdev_priv(dev);
2419 unsigned int txsize = priv->dma_tx_size;
2420 unsigned int rxsize = priv->dma_rx_size;
7ac29055 2421
c24602ef
GC
2422 if (priv->extend_desc) {
2423 seq_printf(seq, "Extended RX descriptor ring:\n");
ceb69499 2424 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
c24602ef 2425 seq_printf(seq, "Extended TX descriptor ring:\n");
ceb69499 2426 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
c24602ef
GC
2427 } else {
2428 seq_printf(seq, "RX descriptor ring:\n");
2429 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2430 seq_printf(seq, "TX descriptor ring:\n");
2431 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
7ac29055
GC
2432 }
2433
2434 return 0;
2435}
2436
2437static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2438{
2439 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2440}
2441
2442static const struct file_operations stmmac_rings_status_fops = {
2443 .owner = THIS_MODULE,
2444 .open = stmmac_sysfs_ring_open,
2445 .read = seq_read,
2446 .llseek = seq_lseek,
74863948 2447 .release = single_release,
7ac29055
GC
2448};
2449
e7434821
GC
2450static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2451{
2452 struct net_device *dev = seq->private;
2453 struct stmmac_priv *priv = netdev_priv(dev);
2454
19e30c14 2455 if (!priv->hw_cap_support) {
e7434821
GC
2456 seq_printf(seq, "DMA HW features not supported\n");
2457 return 0;
2458 }
2459
2460 seq_printf(seq, "==============================\n");
2461 seq_printf(seq, "\tDMA HW features\n");
2462 seq_printf(seq, "==============================\n");
2463
2464 seq_printf(seq, "\t10/100 Mbps %s\n",
2465 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2466 seq_printf(seq, "\t1000 Mbps %s\n",
2467 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2468 seq_printf(seq, "\tHalf duple %s\n",
2469 (priv->dma_cap.half_duplex) ? "Y" : "N");
2470 seq_printf(seq, "\tHash Filter: %s\n",
2471 (priv->dma_cap.hash_filter) ? "Y" : "N");
2472 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2473 (priv->dma_cap.multi_addr) ? "Y" : "N");
2474 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2475 (priv->dma_cap.pcs) ? "Y" : "N");
2476 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2477 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2478 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2479 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2480 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2481 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2482 seq_printf(seq, "\tRMON module: %s\n",
2483 (priv->dma_cap.rmon) ? "Y" : "N");
2484 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2485 (priv->dma_cap.time_stamp) ? "Y" : "N");
2486 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2487 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2488 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2489 (priv->dma_cap.eee) ? "Y" : "N");
2490 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2491 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2492 (priv->dma_cap.tx_coe) ? "Y" : "N");
2493 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2494 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2495 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2496 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2497 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2498 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2499 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2500 priv->dma_cap.number_rx_channel);
2501 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2502 priv->dma_cap.number_tx_channel);
2503 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2504 (priv->dma_cap.enh_desc) ? "Y" : "N");
2505
2506 return 0;
2507}
2508
2509static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2510{
2511 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2512}
2513
2514static const struct file_operations stmmac_dma_cap_fops = {
2515 .owner = THIS_MODULE,
2516 .open = stmmac_sysfs_dma_cap_open,
2517 .read = seq_read,
2518 .llseek = seq_lseek,
74863948 2519 .release = single_release,
e7434821
GC
2520};
2521
7ac29055
GC
2522static int stmmac_init_fs(struct net_device *dev)
2523{
2524 /* Create debugfs entries */
2525 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2526
2527 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2528 pr_err("ERROR %s, debugfs create directory failed\n",
2529 STMMAC_RESOURCE_NAME);
2530
2531 return -ENOMEM;
2532 }
2533
2534 /* Entry to report DMA RX/TX rings */
2535 stmmac_rings_status = debugfs_create_file("descriptors_status",
ceb69499
GC
2536 S_IRUGO, stmmac_fs_dir, dev,
2537 &stmmac_rings_status_fops);
7ac29055
GC
2538
2539 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2540 pr_info("ERROR creating stmmac ring debugfs file\n");
2541 debugfs_remove(stmmac_fs_dir);
2542
2543 return -ENOMEM;
2544 }
2545
e7434821
GC
2546 /* Entry to report the DMA HW features */
2547 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2548 dev, &stmmac_dma_cap_fops);
2549
2550 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2551 pr_info("ERROR creating stmmac MMC debugfs file\n");
2552 debugfs_remove(stmmac_rings_status);
2553 debugfs_remove(stmmac_fs_dir);
2554
2555 return -ENOMEM;
2556 }
2557
7ac29055
GC
2558 return 0;
2559}
2560
2561static void stmmac_exit_fs(void)
2562{
2563 debugfs_remove(stmmac_rings_status);
e7434821 2564 debugfs_remove(stmmac_dma_cap);
7ac29055
GC
2565 debugfs_remove(stmmac_fs_dir);
2566}
2567#endif /* CONFIG_STMMAC_DEBUG_FS */
2568
47dd7a54
GC
2569static const struct net_device_ops stmmac_netdev_ops = {
2570 .ndo_open = stmmac_open,
2571 .ndo_start_xmit = stmmac_xmit,
2572 .ndo_stop = stmmac_release,
2573 .ndo_change_mtu = stmmac_change_mtu,
5e982f3b 2574 .ndo_fix_features = stmmac_fix_features,
01789349 2575 .ndo_set_rx_mode = stmmac_set_rx_mode,
47dd7a54
GC
2576 .ndo_tx_timeout = stmmac_tx_timeout,
2577 .ndo_do_ioctl = stmmac_ioctl,
47dd7a54
GC
2578#ifdef CONFIG_NET_POLL_CONTROLLER
2579 .ndo_poll_controller = stmmac_poll_controller,
2580#endif
2581 .ndo_set_mac_address = eth_mac_addr,
2582};
2583
cf3f047b
GC
2584/**
2585 * stmmac_hw_init - Init the MAC device
32ceabca 2586 * @priv: driver private structure
cf3f047b
GC
2587 * Description: this function detects which MAC device
2588 * (GMAC/MAC10-100) has to attached, checks the HW capability
2589 * (if supported) and sets the driver's features (for example
2590 * to use the ring or chaine mode or support the normal/enh
2591 * descriptor structure).
2592 */
2593static int stmmac_hw_init(struct stmmac_priv *priv)
2594{
c24602ef 2595 int ret;
cf3f047b
GC
2596 struct mac_device_info *mac;
2597
2598 /* Identify the MAC HW device */
03f2eecd
MKB
2599 if (priv->plat->has_gmac) {
2600 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3b57de95
VB
2601 mac = dwmac1000_setup(priv->ioaddr,
2602 priv->plat->multicast_filter_bins,
2603 priv->plat->unicast_filter_entries);
03f2eecd 2604 } else {
cf3f047b 2605 mac = dwmac100_setup(priv->ioaddr);
03f2eecd 2606 }
cf3f047b
GC
2607 if (!mac)
2608 return -ENOMEM;
2609
2610 priv->hw = mac;
2611
cf3f047b 2612 /* Get and dump the chip ID */
cffb13f4 2613 priv->synopsys_id = stmmac_get_synopsys_id(priv);
cf3f047b 2614
4a7d666a 2615 /* To use the chained or ring mode */
ceb69499 2616 if (chain_mode) {
29896a67 2617 priv->hw->mode = &chain_mode_ops;
4a7d666a
GC
2618 pr_info(" Chain mode enabled\n");
2619 priv->mode = STMMAC_CHAIN_MODE;
2620 } else {
29896a67 2621 priv->hw->mode = &ring_mode_ops;
4a7d666a
GC
2622 pr_info(" Ring mode enabled\n");
2623 priv->mode = STMMAC_RING_MODE;
2624 }
2625
cf3f047b
GC
2626 /* Get the HW capability (new GMAC newer than 3.50a) */
2627 priv->hw_cap_support = stmmac_get_hw_features(priv);
2628 if (priv->hw_cap_support) {
2629 pr_info(" DMA HW capability register supported");
2630
2631 /* We can override some gmac/dma configuration fields: e.g.
2632 * enh_desc, tx_coe (e.g. that are passed through the
2633 * platform) with the values from the HW capability
2634 * register (if supported).
2635 */
2636 priv->plat->enh_desc = priv->dma_cap.enh_desc;
cf3f047b 2637 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
38912bdb
DS
2638
2639 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2640
2641 if (priv->dma_cap.rx_coe_type2)
2642 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2643 else if (priv->dma_cap.rx_coe_type1)
2644 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2645
cf3f047b
GC
2646 } else
2647 pr_info(" No HW DMA feature register supported");
2648
61369d02
BA
2649 /* To use alternate (extended) or normal descriptor structures */
2650 stmmac_selec_desc_mode(priv);
2651
7ed24bbe 2652 ret = priv->hw->mac->rx_ipc(priv->hw);
38912bdb 2653 if (!ret) {
ceb69499 2654 pr_warn(" RX IPC Checksum Offload not configured.\n");
38912bdb
DS
2655 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2656 }
2657
2658 if (priv->plat->rx_coe)
2659 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2660 priv->plat->rx_coe);
cf3f047b
GC
2661 if (priv->plat->tx_coe)
2662 pr_info(" TX Checksum insertion supported\n");
2663
2664 if (priv->plat->pmt) {
2665 pr_info(" Wake-Up On Lan supported\n");
2666 device_set_wakeup_capable(priv->device, 1);
2667 }
2668
c24602ef 2669 return 0;
cf3f047b
GC
2670}
2671
47dd7a54 2672/**
bfab27a1
GC
2673 * stmmac_dvr_probe
2674 * @device: device pointer
ff3dd78c
GC
2675 * @plat_dat: platform data pointer
2676 * @addr: iobase memory address
bfab27a1
GC
2677 * Description: this is the main probe function used to
2678 * call the alloc_etherdev, allocate the priv structure.
47dd7a54 2679 */
bfab27a1 2680struct stmmac_priv *stmmac_dvr_probe(struct device *device,
cf3f047b
GC
2681 struct plat_stmmacenet_data *plat_dat,
2682 void __iomem *addr)
47dd7a54
GC
2683{
2684 int ret = 0;
bfab27a1
GC
2685 struct net_device *ndev = NULL;
2686 struct stmmac_priv *priv;
47dd7a54 2687
bfab27a1 2688 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
41de8d4c 2689 if (!ndev)
bfab27a1 2690 return NULL;
bfab27a1
GC
2691
2692 SET_NETDEV_DEV(ndev, device);
2693
2694 priv = netdev_priv(ndev);
2695 priv->device = device;
2696 priv->dev = ndev;
47dd7a54 2697
bfab27a1 2698 ether_setup(ndev);
47dd7a54 2699
bfab27a1 2700 stmmac_set_ethtool_ops(ndev);
cf3f047b
GC
2701 priv->pause = pause;
2702 priv->plat = plat_dat;
2703 priv->ioaddr = addr;
2704 priv->dev->base_addr = (unsigned long)addr;
2705
2706 /* Verify driver arguments */
2707 stmmac_verify_args();
bfab27a1 2708
cf3f047b 2709 /* Override with kernel parameters if supplied XXX CRS XXX
ceb69499
GC
2710 * this needs to have multiple instances
2711 */
cf3f047b
GC
2712 if ((phyaddr >= 0) && (phyaddr <= 31))
2713 priv->plat->phy_addr = phyaddr;
2714
62866e98
CYT
2715 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2716 if (IS_ERR(priv->stmmac_clk)) {
2717 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2718 __func__);
c5e4ddbd 2719 ret = PTR_ERR(priv->stmmac_clk);
62866e98
CYT
2720 goto error_clk_get;
2721 }
2722 clk_prepare_enable(priv->stmmac_clk);
2723
c5e4ddbd
CYT
2724 priv->stmmac_rst = devm_reset_control_get(priv->device,
2725 STMMAC_RESOURCE_NAME);
2726 if (IS_ERR(priv->stmmac_rst)) {
2727 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2728 ret = -EPROBE_DEFER;
2729 goto error_hw_init;
2730 }
2731 dev_info(priv->device, "no reset control found\n");
2732 priv->stmmac_rst = NULL;
2733 }
2734 if (priv->stmmac_rst)
2735 reset_control_deassert(priv->stmmac_rst);
2736
cf3f047b 2737 /* Init MAC and get the capabilities */
c24602ef
GC
2738 ret = stmmac_hw_init(priv);
2739 if (ret)
62866e98 2740 goto error_hw_init;
cf3f047b
GC
2741
2742 ndev->netdev_ops = &stmmac_netdev_ops;
bfab27a1 2743
cf3f047b
GC
2744 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2745 NETIF_F_RXCSUM;
bfab27a1
GC
2746 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2747 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
47dd7a54
GC
2748#ifdef STMMAC_VLAN_TAG_USED
2749 /* Both mac100 and gmac support receive VLAN tag detection */
f646968f 2750 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
47dd7a54
GC
2751#endif
2752 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2753
47dd7a54
GC
2754 if (flow_ctrl)
2755 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2756
62a2ab93
GC
2757 /* Rx Watchdog is available in the COREs newer than the 3.40.
2758 * In some case, for example on bugged HW this feature
2759 * has to be disable and this can be done by passing the
2760 * riwt_off field from the platform.
2761 */
2762 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2763 priv->use_riwt = 1;
2764 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2765 }
2766
bfab27a1 2767 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
47dd7a54 2768
f8e96161 2769 spin_lock_init(&priv->lock);
a9097a96 2770 spin_lock_init(&priv->tx_lock);
f8e96161 2771
bfab27a1 2772 ret = register_netdev(ndev);
47dd7a54 2773 if (ret) {
cf3f047b 2774 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
6a81c26f 2775 goto error_netdev_register;
47dd7a54
GC
2776 }
2777
cd7201f4
GC
2778 /* If a specific clk_csr value is passed from the platform
2779 * this means that the CSR Clock Range selection cannot be
2780 * changed at run-time and it is fixed. Viceversa the driver'll try to
2781 * set the MDC clock dynamically according to the csr actual
2782 * clock input.
2783 */
2784 if (!priv->plat->clk_csr)
2785 stmmac_clk_csr_set(priv);
2786 else
2787 priv->clk_csr = priv->plat->clk_csr;
2788
e58bb43f
GC
2789 stmmac_check_pcs_mode(priv);
2790
4d8f0825
BA
2791 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2792 priv->pcs != STMMAC_PCS_RTBI) {
e58bb43f
GC
2793 /* MDIO bus Registration */
2794 ret = stmmac_mdio_register(ndev);
2795 if (ret < 0) {
2796 pr_debug("%s: MDIO bus (id: %d) registration failed",
2797 __func__, priv->plat->bus_id);
2798 goto error_mdio_register;
2799 }
4bfcbd7a
FV
2800 }
2801
bfab27a1 2802 return priv;
47dd7a54 2803
6a81c26f 2804error_mdio_register:
34a52f36 2805 unregister_netdev(ndev);
6a81c26f
VK
2806error_netdev_register:
2807 netif_napi_del(&priv->napi);
62866e98
CYT
2808error_hw_init:
2809 clk_disable_unprepare(priv->stmmac_clk);
2810error_clk_get:
34a52f36 2811 free_netdev(ndev);
47dd7a54 2812
c5e4ddbd 2813 return ERR_PTR(ret);
47dd7a54
GC
2814}
2815
2816/**
2817 * stmmac_dvr_remove
bfab27a1 2818 * @ndev: net device pointer
47dd7a54 2819 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
bfab27a1 2820 * changes the link status, releases the DMA descriptor rings.
47dd7a54 2821 */
bfab27a1 2822int stmmac_dvr_remove(struct net_device *ndev)
47dd7a54 2823{
aec7ff27 2824 struct stmmac_priv *priv = netdev_priv(ndev);
47dd7a54
GC
2825
2826 pr_info("%s:\n\tremoving driver", __func__);
2827
ad01b7d4
GC
2828 priv->hw->dma->stop_rx(priv->ioaddr);
2829 priv->hw->dma->stop_tx(priv->ioaddr);
47dd7a54 2830
bfab27a1 2831 stmmac_set_mac(priv->ioaddr, false);
4d8f0825
BA
2832 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2833 priv->pcs != STMMAC_PCS_RTBI)
e58bb43f 2834 stmmac_mdio_unregister(ndev);
47dd7a54 2835 netif_carrier_off(ndev);
47dd7a54 2836 unregister_netdev(ndev);
c5e4ddbd
CYT
2837 if (priv->stmmac_rst)
2838 reset_control_assert(priv->stmmac_rst);
62866e98 2839 clk_disable_unprepare(priv->stmmac_clk);
47dd7a54
GC
2840 free_netdev(ndev);
2841
2842 return 0;
2843}
2844
2845#ifdef CONFIG_PM
bfab27a1 2846int stmmac_suspend(struct net_device *ndev)
47dd7a54 2847{
874bd42d 2848 struct stmmac_priv *priv = netdev_priv(ndev);
f8c5a875 2849 unsigned long flags;
47dd7a54 2850
874bd42d 2851 if (!ndev || !netif_running(ndev))
47dd7a54
GC
2852 return 0;
2853
102463b1
FV
2854 if (priv->phydev)
2855 phy_stop(priv->phydev);
2856
f8c5a875 2857 spin_lock_irqsave(&priv->lock, flags);
47dd7a54 2858
874bd42d
GC
2859 netif_device_detach(ndev);
2860 netif_stop_queue(ndev);
47dd7a54 2861
874bd42d
GC
2862 napi_disable(&priv->napi);
2863
2864 /* Stop TX/RX DMA */
2865 priv->hw->dma->stop_tx(priv->ioaddr);
2866 priv->hw->dma->stop_rx(priv->ioaddr);
c24602ef
GC
2867
2868 stmmac_clear_descriptors(priv);
874bd42d
GC
2869
2870 /* Enable Power down mode by programming the PMT regs */
89f7f2cf 2871 if (device_may_wakeup(priv->device)) {
7ed24bbe 2872 priv->hw->mac->pmt(priv->hw, priv->wolopts);
89f7f2cf
SK
2873 priv->irq_wake = 1;
2874 } else {
bfab27a1 2875 stmmac_set_mac(priv->ioaddr, false);
db88f10a 2876 pinctrl_pm_select_sleep_state(priv->device);
ba1377ff 2877 /* Disable clock in case of PWM is off */
a630844d 2878 clk_disable_unprepare(priv->stmmac_clk);
ba1377ff 2879 }
f8c5a875 2880 spin_unlock_irqrestore(&priv->lock, flags);
2d871aa0
VB
2881
2882 priv->oldlink = 0;
2883 priv->speed = 0;
2884 priv->oldduplex = -1;
47dd7a54
GC
2885 return 0;
2886}
2887
bfab27a1 2888int stmmac_resume(struct net_device *ndev)
47dd7a54 2889{
874bd42d 2890 struct stmmac_priv *priv = netdev_priv(ndev);
f8c5a875 2891 unsigned long flags;
47dd7a54 2892
874bd42d 2893 if (!netif_running(ndev))
47dd7a54
GC
2894 return 0;
2895
f8c5a875 2896 spin_lock_irqsave(&priv->lock, flags);
c4433be6 2897
47dd7a54
GC
2898 /* Power Down bit, into the PM register, is cleared
2899 * automatically as soon as a magic packet or a Wake-up frame
2900 * is received. Anyway, it's better to manually clear
2901 * this bit because it can generate problems while resuming
ceb69499
GC
2902 * from another devices (e.g. serial console).
2903 */
623997fb 2904 if (device_may_wakeup(priv->device)) {
7ed24bbe 2905 priv->hw->mac->pmt(priv->hw, 0);
89f7f2cf 2906 priv->irq_wake = 0;
623997fb 2907 } else {
db88f10a 2908 pinctrl_pm_select_default_state(priv->device);
ba1377ff 2909 /* enable the clk prevously disabled */
a630844d 2910 clk_prepare_enable(priv->stmmac_clk);
623997fb
SK
2911 /* reset the phy so that it's ready */
2912 if (priv->mii)
2913 stmmac_mdio_reset(priv->mii);
2914 }
47dd7a54 2915
874bd42d 2916 netif_device_attach(ndev);
47dd7a54 2917
623997fb 2918 stmmac_hw_setup(ndev);
47dd7a54 2919
47dd7a54
GC
2920 napi_enable(&priv->napi);
2921
874bd42d 2922 netif_start_queue(ndev);
47dd7a54 2923
f8c5a875 2924 spin_unlock_irqrestore(&priv->lock, flags);
102463b1
FV
2925
2926 if (priv->phydev)
2927 phy_start(priv->phydev);
2928
47dd7a54
GC
2929 return 0;
2930}
874bd42d 2931#endif /* CONFIG_PM */
47dd7a54 2932
33d5e332
GC
2933/* Driver can be configured w/ and w/ both PCI and Platf drivers
2934 * depending on the configuration selected.
2935 */
ba27ec66
GC
2936static int __init stmmac_init(void)
2937{
493682b8 2938 int ret;
ba27ec66 2939
493682b8
KK
2940 ret = stmmac_register_platform();
2941 if (ret)
2942 goto err;
2943 ret = stmmac_register_pci();
2944 if (ret)
2945 goto err_pci;
33d5e332 2946 return 0;
493682b8
KK
2947err_pci:
2948 stmmac_unregister_platform();
2949err:
2950 pr_err("stmmac: driver registration failed\n");
2951 return ret;
ba27ec66
GC
2952}
2953
2954static void __exit stmmac_exit(void)
2955{
33d5e332
GC
2956 stmmac_unregister_platform();
2957 stmmac_unregister_pci();
ba27ec66
GC
2958}
2959
2960module_init(stmmac_init);
2961module_exit(stmmac_exit);
2962
47dd7a54
GC
2963#ifndef MODULE
2964static int __init stmmac_cmdline_opt(char *str)
2965{
2966 char *opt;
2967
2968 if (!str || !*str)
2969 return -EINVAL;
2970 while ((opt = strsep(&str, ",")) != NULL) {
f3240e28 2971 if (!strncmp(opt, "debug:", 6)) {
ea2ab871 2972 if (kstrtoint(opt + 6, 0, &debug))
f3240e28
GC
2973 goto err;
2974 } else if (!strncmp(opt, "phyaddr:", 8)) {
ea2ab871 2975 if (kstrtoint(opt + 8, 0, &phyaddr))
f3240e28
GC
2976 goto err;
2977 } else if (!strncmp(opt, "dma_txsize:", 11)) {
ea2ab871 2978 if (kstrtoint(opt + 11, 0, &dma_txsize))
f3240e28
GC
2979 goto err;
2980 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
ea2ab871 2981 if (kstrtoint(opt + 11, 0, &dma_rxsize))
f3240e28
GC
2982 goto err;
2983 } else if (!strncmp(opt, "buf_sz:", 7)) {
ea2ab871 2984 if (kstrtoint(opt + 7, 0, &buf_sz))
f3240e28
GC
2985 goto err;
2986 } else if (!strncmp(opt, "tc:", 3)) {
ea2ab871 2987 if (kstrtoint(opt + 3, 0, &tc))
f3240e28
GC
2988 goto err;
2989 } else if (!strncmp(opt, "watchdog:", 9)) {
ea2ab871 2990 if (kstrtoint(opt + 9, 0, &watchdog))
f3240e28
GC
2991 goto err;
2992 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
ea2ab871 2993 if (kstrtoint(opt + 10, 0, &flow_ctrl))
f3240e28
GC
2994 goto err;
2995 } else if (!strncmp(opt, "pause:", 6)) {
ea2ab871 2996 if (kstrtoint(opt + 6, 0, &pause))
f3240e28 2997 goto err;
506f669c 2998 } else if (!strncmp(opt, "eee_timer:", 10)) {
d765955d
GC
2999 if (kstrtoint(opt + 10, 0, &eee_timer))
3000 goto err;
4a7d666a
GC
3001 } else if (!strncmp(opt, "chain_mode:", 11)) {
3002 if (kstrtoint(opt + 11, 0, &chain_mode))
3003 goto err;
f3240e28 3004 }
47dd7a54
GC
3005 }
3006 return 0;
f3240e28
GC
3007
3008err:
3009 pr_err("%s: ERROR broken module parameter conversion", __func__);
3010 return -EINVAL;
47dd7a54
GC
3011}
3012
3013__setup("stmmaceth=", stmmac_cmdline_opt);
ceb69499 3014#endif /* MODULE */
6fc0d0f2
GC
3015
3016MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3017MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3018MODULE_LICENSE("GPL");