]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/sun/cassini.c
net/mlx5e: Use shared mappings for restoring from metadata
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / sun / cassini.c
CommitLineData
56cb4e50 1// SPDX-License-Identifier: GPL-2.0+
1f26dac3
DM
2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 *
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 *
1f26dac3
DM
7 * This driver uses the sungem driver (c) David Miller
8 * (davem@redhat.com) as its basis.
9 *
10 * The cassini chip has a number of features that distinguish it from
11 * the gem chip:
12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
13 * load balancing (non-VLAN mode)
14 * batching of multiple packets
15 * multiple CPU dispatching
16 * page-based RX descriptor engine with separate completion rings
17 * Gigabit support (GMII and PCS interface)
18 * MIF link up/down detection works
19 *
20 * RX is handled by page sized buffers that are attached as fragments to
21 * the skb. here's what's done:
22 * -- driver allocates pages at a time and keeps reference counts
23 * on them.
24 * -- the upper protocol layers assume that the header is in the skb
25 * itself. as a result, cassini will copy a small amount (64 bytes)
26 * to make them happy.
27 * -- driver appends the rest of the data pages as frags to skbuffs
28 * and increments the reference count
29 * -- on page reclamation, the driver swaps the page with a spare page.
30 * if that page is still in use, it frees its reference to that page,
31 * and allocates a new page for use. otherwise, it just recycles the
6aa20a22 32 * the page.
1f26dac3
DM
33 *
34 * NOTE: cassini can parse the header. however, it's not worth it
35 * as long as the network stack requires a header copy.
36 *
37 * TX has 4 queues. currently these queues are used in a round-robin
38 * fashion for load balancing. They can also be used for QoS. for that
39 * to work, however, QoS information needs to be exposed down to the driver
25985edc 40 * level so that subqueues get targeted to particular transmit rings.
1f26dac3
DM
41 * alternatively, the queues can be configured via use of the all-purpose
42 * ioctl.
43 *
44 * RX DATA: the rx completion ring has all the info, but the rx desc
45 * ring has all of the data. RX can conceivably come in under multiple
46 * interrupts, but the INT# assignment needs to be set up properly by
47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48 * that. also, the two descriptor rings are designed to distinguish between
6aa20a22 49 * encrypted and non-encrypted packets, but we use them for buffering
1f26dac3
DM
50 * instead.
51 *
6aa20a22 52 * by default, the selective clear mask is set up to process rx packets.
1f26dac3
DM
53 */
54
436d27d1 55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1f26dac3
DM
56
57#include <linux/module.h>
58#include <linux/kernel.h>
59#include <linux/types.h>
60#include <linux/compiler.h>
61#include <linux/slab.h>
62#include <linux/delay.h>
63#include <linux/init.h>
a6b7a407 64#include <linux/interrupt.h>
fcaa4066 65#include <linux/vmalloc.h>
1f26dac3
DM
66#include <linux/ioport.h>
67#include <linux/pci.h>
68#include <linux/mm.h>
69#include <linux/highmem.h>
70#include <linux/list.h>
71#include <linux/dma-mapping.h>
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/ethtool.h>
77#include <linux/crc32.h>
78#include <linux/random.h>
79#include <linux/mii.h>
80#include <linux/ip.h>
81#include <linux/tcp.h>
758df69e 82#include <linux/mutex.h>
fcaa4066 83#include <linux/firmware.h>
1f26dac3
DM
84
85#include <net/checksum.h>
86
60063497 87#include <linux/atomic.h>
1f26dac3
DM
88#include <asm/io.h>
89#include <asm/byteorder.h>
7c0f6ba6 90#include <linux/uaccess.h>
1f26dac3 91
4679026d
CW
92#define cas_page_map(x) kmap_atomic((x))
93#define cas_page_unmap(x) kunmap_atomic((x))
1f26dac3
DM
94#define CAS_NCPUS num_online_cpus()
95
1f26dac3 96#define cas_skb_release(x) netif_rx(x)
1f26dac3
DM
97
98/* select which firmware to use */
6aa20a22 99#define USE_HP_WORKAROUND
1f26dac3
DM
100#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
101#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
102
103#include "cassini.h"
104
105#define USE_TX_COMPWB /* use completion writeback registers */
106#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
107#define USE_RX_BLANK /* hw interrupt mitigation */
108#undef USE_ENTROPY_DEV /* don't test for entropy device */
109
110/* NOTE: these aren't useable unless PCI interrupts can be assigned.
111 * also, we need to make cp->lock finer-grained.
112 */
113#undef USE_PCI_INTB
114#undef USE_PCI_INTC
115#undef USE_PCI_INTD
116#undef USE_QOS
117
118#undef USE_VPD_DEBUG /* debug vpd information if defined */
119
120/* rx processing options */
121#define USE_PAGE_ORDER /* specify to allocate large rx pages */
122#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
123#define RX_COPY_ALWAYS 0 /* if 0, use frags */
124#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
125#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
126
127#define DRV_MODULE_NAME "cassini"
b1443e2f
DM
128#define DRV_MODULE_VERSION "1.6"
129#define DRV_MODULE_RELDATE "21 May 2008"
1f26dac3
DM
130
131#define CAS_DEF_MSG_ENABLE \
132 (NETIF_MSG_DRV | \
133 NETIF_MSG_PROBE | \
134 NETIF_MSG_LINK | \
135 NETIF_MSG_TIMER | \
136 NETIF_MSG_IFDOWN | \
137 NETIF_MSG_IFUP | \
138 NETIF_MSG_RX_ERR | \
139 NETIF_MSG_TX_ERR)
140
141/* length of time before we decide the hardware is borked,
142 * and dev->tx_timeout() should be called to fix the problem
143 */
144#define CAS_TX_TIMEOUT (HZ)
145#define CAS_LINK_TIMEOUT (22*HZ/10)
146#define CAS_LINK_FAST_TIMEOUT (1)
147
148/* timeout values for state changing. these specify the number
149 * of 10us delays to be used before giving up.
150 */
151#define STOP_TRIES_PHY 1000
152#define STOP_TRIES 5000
153
6aa20a22 154/* specify a minimum frame size to deal with some fifo issues
1f26dac3
DM
155 * max mtu == 2 * page size - ethernet header - 64 - swivel =
156 * 2 * page_size - 0x50
157 */
158#define CAS_MIN_FRAME 97
159#define CAS_1000MB_MIN_FRAME 255
160#define CAS_MIN_MTU 60
161#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
162
163#if 1
164/*
165 * Eliminate these and use separate atomic counters for each, to
166 * avoid a race condition.
167 */
168#else
169#define CAS_RESET_MTU 1
170#define CAS_RESET_ALL 2
171#define CAS_RESET_SPARE 3
172#endif
173
f73d12bd 174static char version[] =
1f26dac3
DM
175 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
176
8d3b33f6
RR
177static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
178static int link_mode;
179
1f26dac3
DM
180MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
181MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
182MODULE_LICENSE("GPL");
fcaa4066 183MODULE_FIRMWARE("sun/cassini.bin");
8d3b33f6 184module_param(cassini_debug, int, 0);
1f26dac3 185MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
8d3b33f6 186module_param(link_mode, int, 0);
1f26dac3
DM
187MODULE_PARM_DESC(link_mode, "default link mode");
188
189/*
190 * Work around for a PCS bug in which the link goes down due to the chip
191 * being confused and never showing a link status of "up."
192 */
193#define DEFAULT_LINKDOWN_TIMEOUT 5
6aa20a22 194/*
1f26dac3
DM
195 * Value in seconds, for user input.
196 */
197static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
8d3b33f6 198module_param(linkdown_timeout, int, 0);
1f26dac3
DM
199MODULE_PARM_DESC(linkdown_timeout,
200"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
201
202/*
203 * value in 'ticks' (units used by jiffies). Set when we init the
204 * module because 'HZ' in actually a function call on some flavors of
205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
206 */
207static int link_transition_timeout;
208
209
1f26dac3 210
f73d12bd 211static u16 link_modes[] = {
1f26dac3
DM
212 BMCR_ANENABLE, /* 0 : autoneg */
213 0, /* 1 : 10bt half duplex */
214 BMCR_SPEED100, /* 2 : 100bt half duplex */
215 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
216 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
217 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
218};
219
9baa3c34 220static const struct pci_device_id cas_pci_tbl[] = {
1f26dac3
DM
221 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
223 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
225 { 0, }
226};
227
228MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
229
230static void cas_set_link_modes(struct cas *cp);
231
232static inline void cas_lock_tx(struct cas *cp)
233{
234 int i;
235
6aa20a22 236 for (i = 0; i < N_TX_RINGS; i++)
a9de0500 237 spin_lock_nested(&cp->tx_lock[i], i);
1f26dac3
DM
238}
239
1f26dac3
DM
240/* WTZ: QA was finding deadlock problems with the previous
241 * versions after long test runs with multiple cards per machine.
242 * See if replacing cas_lock_all with safer versions helps. The
243 * symptoms QA is reporting match those we'd expect if interrupts
244 * aren't being properly restored, and we fixed a previous deadlock
245 * with similar symptoms by using save/restore versions in other
246 * places.
247 */
248#define cas_lock_all_save(cp, flags) \
249do { \
250 struct cas *xxxcp = (cp); \
251 spin_lock_irqsave(&xxxcp->lock, flags); \
252 cas_lock_tx(xxxcp); \
253} while (0)
254
255static inline void cas_unlock_tx(struct cas *cp)
256{
257 int i;
258
6aa20a22
JG
259 for (i = N_TX_RINGS; i > 0; i--)
260 spin_unlock(&cp->tx_lock[i - 1]);
1f26dac3
DM
261}
262
1f26dac3
DM
263#define cas_unlock_all_restore(cp, flags) \
264do { \
265 struct cas *xxxcp = (cp); \
266 cas_unlock_tx(xxxcp); \
267 spin_unlock_irqrestore(&xxxcp->lock, flags); \
268} while (0)
269
270static void cas_disable_irq(struct cas *cp, const int ring)
271{
272 /* Make sure we won't get any more interrupts */
273 if (ring == 0) {
274 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
275 return;
276 }
277
278 /* disable completion interrupts and selectively mask */
279 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
280 switch (ring) {
281#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
282#ifdef USE_PCI_INTB
283 case 1:
284#endif
285#ifdef USE_PCI_INTC
286 case 2:
287#endif
288#ifdef USE_PCI_INTD
289 case 3:
290#endif
6aa20a22 291 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
1f26dac3
DM
292 cp->regs + REG_PLUS_INTRN_MASK(ring));
293 break;
294#endif
295 default:
296 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
297 REG_PLUS_INTRN_MASK(ring));
298 break;
299 }
300 }
301}
302
303static inline void cas_mask_intr(struct cas *cp)
304{
305 int i;
306
307 for (i = 0; i < N_RX_COMP_RINGS; i++)
308 cas_disable_irq(cp, i);
309}
310
311static void cas_enable_irq(struct cas *cp, const int ring)
312{
313 if (ring == 0) { /* all but TX_DONE */
314 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
315 return;
316 }
317
318 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
319 switch (ring) {
320#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
321#ifdef USE_PCI_INTB
322 case 1:
323#endif
324#ifdef USE_PCI_INTC
325 case 2:
326#endif
327#ifdef USE_PCI_INTD
328 case 3:
329#endif
330 writel(INTRN_MASK_RX_EN, cp->regs +
331 REG_PLUS_INTRN_MASK(ring));
332 break;
333#endif
334 default:
335 break;
336 }
337 }
338}
339
340static inline void cas_unmask_intr(struct cas *cp)
341{
342 int i;
343
344 for (i = 0; i < N_RX_COMP_RINGS; i++)
345 cas_enable_irq(cp, i);
346}
347
348static inline void cas_entropy_gather(struct cas *cp)
349{
350#ifdef USE_ENTROPY_DEV
351 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
352 return;
353
354 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
355 readl(cp->regs + REG_ENTROPY_IV),
356 sizeof(uint64_t)*8);
357#endif
358}
359
360static inline void cas_entropy_reset(struct cas *cp)
361{
362#ifdef USE_ENTROPY_DEV
363 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
364 return;
365
6aa20a22 366 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
1f26dac3
DM
367 cp->regs + REG_BIM_LOCAL_DEV_EN);
368 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
369 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
370
371 /* if we read back 0x0, we don't have an entropy device */
372 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
373 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
374#endif
375}
376
6aa20a22 377/* access to the phy. the following assumes that we've initialized the MIF to
1f26dac3
DM
378 * be in frame rather than bit-bang mode
379 */
380static u16 cas_phy_read(struct cas *cp, int reg)
381{
382 u32 cmd;
383 int limit = STOP_TRIES_PHY;
384
385 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
386 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
387 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
388 cmd |= MIF_FRAME_TURN_AROUND_MSB;
389 writel(cmd, cp->regs + REG_MIF_FRAME);
6aa20a22 390
1f26dac3
DM
391 /* poll for completion */
392 while (limit-- > 0) {
393 udelay(10);
394 cmd = readl(cp->regs + REG_MIF_FRAME);
395 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
807540ba 396 return cmd & MIF_FRAME_DATA_MASK;
1f26dac3
DM
397 }
398 return 0xFFFF; /* -1 */
399}
400
401static int cas_phy_write(struct cas *cp, int reg, u16 val)
402{
403 int limit = STOP_TRIES_PHY;
404 u32 cmd;
405
406 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
407 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
408 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
409 cmd |= MIF_FRAME_TURN_AROUND_MSB;
410 cmd |= val & MIF_FRAME_DATA_MASK;
411 writel(cmd, cp->regs + REG_MIF_FRAME);
6aa20a22 412
1f26dac3
DM
413 /* poll for completion */
414 while (limit-- > 0) {
415 udelay(10);
416 cmd = readl(cp->regs + REG_MIF_FRAME);
417 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
418 return 0;
419 }
420 return -1;
421}
422
423static void cas_phy_powerup(struct cas *cp)
424{
6aa20a22 425 u16 ctl = cas_phy_read(cp, MII_BMCR);
1f26dac3
DM
426
427 if ((ctl & BMCR_PDOWN) == 0)
428 return;
429 ctl &= ~BMCR_PDOWN;
430 cas_phy_write(cp, MII_BMCR, ctl);
431}
432
433static void cas_phy_powerdown(struct cas *cp)
434{
6aa20a22 435 u16 ctl = cas_phy_read(cp, MII_BMCR);
1f26dac3
DM
436
437 if (ctl & BMCR_PDOWN)
438 return;
439 ctl |= BMCR_PDOWN;
440 cas_phy_write(cp, MII_BMCR, ctl);
441}
442
443/* cp->lock held. note: the last put_page will free the buffer */
444static int cas_page_free(struct cas *cp, cas_page_t *page)
445{
dcc82bb0
CJ
446 dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
447 DMA_FROM_DEVICE);
1f26dac3
DM
448 __free_pages(page->buffer, cp->page_order);
449 kfree(page);
450 return 0;
451}
452
453#ifdef RX_COUNT_BUFFERS
454#define RX_USED_ADD(x, y) ((x)->used += (y))
455#define RX_USED_SET(x, y) ((x)->used = (y))
456#else
d0ea5cbd
JB
457#define RX_USED_ADD(x, y) do { } while(0)
458#define RX_USED_SET(x, y) do { } while(0)
1f26dac3
DM
459#endif
460
461/* local page allocation routines for the receive buffers. jumbo pages
462 * require at least 8K contiguous and 8K aligned buffers.
463 */
9e24974d 464static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
1f26dac3
DM
465{
466 cas_page_t *page;
467
468 page = kmalloc(sizeof(cas_page_t), flags);
469 if (!page)
470 return NULL;
471
472 INIT_LIST_HEAD(&page->list);
473 RX_USED_SET(page, 0);
474 page->buffer = alloc_pages(flags, cp->page_order);
475 if (!page->buffer)
476 goto page_err;
dcc82bb0
CJ
477 page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
478 cp->page_size, DMA_FROM_DEVICE);
1f26dac3
DM
479 return page;
480
481page_err:
482 kfree(page);
483 return NULL;
484}
485
486/* initialize spare pool of rx buffers, but allocate during the open */
487static void cas_spare_init(struct cas *cp)
488{
b54f440c 489 spin_lock(&cp->rx_inuse_lock);
1f26dac3
DM
490 INIT_LIST_HEAD(&cp->rx_inuse_list);
491 spin_unlock(&cp->rx_inuse_lock);
492
493 spin_lock(&cp->rx_spare_lock);
494 INIT_LIST_HEAD(&cp->rx_spare_list);
495 cp->rx_spares_needed = RX_SPARE_COUNT;
496 spin_unlock(&cp->rx_spare_lock);
497}
498
499/* used on close. free all the spare buffers. */
500static void cas_spare_free(struct cas *cp)
501{
502 struct list_head list, *elem, *tmp;
503
504 /* free spare buffers */
505 INIT_LIST_HEAD(&list);
506 spin_lock(&cp->rx_spare_lock);
9bd512f6 507 list_splice_init(&cp->rx_spare_list, &list);
1f26dac3
DM
508 spin_unlock(&cp->rx_spare_lock);
509 list_for_each_safe(elem, tmp, &list) {
510 cas_page_free(cp, list_entry(elem, cas_page_t, list));
511 }
512
513 INIT_LIST_HEAD(&list);
514#if 1
515 /*
516 * Looks like Adrian had protected this with a different
517 * lock than used everywhere else to manipulate this list.
518 */
519 spin_lock(&cp->rx_inuse_lock);
9bd512f6 520 list_splice_init(&cp->rx_inuse_list, &list);
1f26dac3
DM
521 spin_unlock(&cp->rx_inuse_lock);
522#else
523 spin_lock(&cp->rx_spare_lock);
9bd512f6 524 list_splice_init(&cp->rx_inuse_list, &list);
1f26dac3
DM
525 spin_unlock(&cp->rx_spare_lock);
526#endif
527 list_for_each_safe(elem, tmp, &list) {
528 cas_page_free(cp, list_entry(elem, cas_page_t, list));
529 }
530}
531
532/* replenish spares if needed */
9e24974d 533static void cas_spare_recover(struct cas *cp, const gfp_t flags)
1f26dac3
DM
534{
535 struct list_head list, *elem, *tmp;
536 int needed, i;
537
538 /* check inuse list. if we don't need any more free buffers,
539 * just free it
540 */
541
542 /* make a local copy of the list */
543 INIT_LIST_HEAD(&list);
544 spin_lock(&cp->rx_inuse_lock);
9bd512f6 545 list_splice_init(&cp->rx_inuse_list, &list);
1f26dac3 546 spin_unlock(&cp->rx_inuse_lock);
6aa20a22 547
1f26dac3
DM
548 list_for_each_safe(elem, tmp, &list) {
549 cas_page_t *page = list_entry(elem, cas_page_t, list);
550
e286781d
NP
551 /*
552 * With the lockless pagecache, cassini buffering scheme gets
553 * slightly less accurate: we might find that a page has an
554 * elevated reference count here, due to a speculative ref,
555 * and skip it as in-use. Ideally we would be able to reclaim
556 * it. However this would be such a rare case, it doesn't
557 * matter too much as we should pick it up the next time round.
558 *
559 * Importantly, if we find that the page has a refcount of 1
560 * here (our refcount), then we know it is definitely not inuse
561 * so we can reuse it.
562 */
9de4dfb4 563 if (page_count(page->buffer) > 1)
1f26dac3
DM
564 continue;
565
566 list_del(elem);
567 spin_lock(&cp->rx_spare_lock);
568 if (cp->rx_spares_needed > 0) {
569 list_add(elem, &cp->rx_spare_list);
570 cp->rx_spares_needed--;
571 spin_unlock(&cp->rx_spare_lock);
572 } else {
573 spin_unlock(&cp->rx_spare_lock);
574 cas_page_free(cp, page);
575 }
576 }
577
578 /* put any inuse buffers back on the list */
579 if (!list_empty(&list)) {
580 spin_lock(&cp->rx_inuse_lock);
581 list_splice(&list, &cp->rx_inuse_list);
582 spin_unlock(&cp->rx_inuse_lock);
583 }
6aa20a22 584
1f26dac3
DM
585 spin_lock(&cp->rx_spare_lock);
586 needed = cp->rx_spares_needed;
587 spin_unlock(&cp->rx_spare_lock);
588 if (!needed)
589 return;
590
591 /* we still need spares, so try to allocate some */
592 INIT_LIST_HEAD(&list);
593 i = 0;
594 while (i < needed) {
595 cas_page_t *spare = cas_page_alloc(cp, flags);
6aa20a22 596 if (!spare)
1f26dac3
DM
597 break;
598 list_add(&spare->list, &list);
599 i++;
600 }
601
602 spin_lock(&cp->rx_spare_lock);
603 list_splice(&list, &cp->rx_spare_list);
604 cp->rx_spares_needed -= i;
605 spin_unlock(&cp->rx_spare_lock);
606}
607
608/* pull a page from the list. */
609static cas_page_t *cas_page_dequeue(struct cas *cp)
610{
611 struct list_head *entry;
612 int recover;
613
614 spin_lock(&cp->rx_spare_lock);
615 if (list_empty(&cp->rx_spare_list)) {
616 /* try to do a quick recovery */
617 spin_unlock(&cp->rx_spare_lock);
618 cas_spare_recover(cp, GFP_ATOMIC);
619 spin_lock(&cp->rx_spare_lock);
620 if (list_empty(&cp->rx_spare_list)) {
436d27d1
JP
621 netif_err(cp, rx_err, cp->dev,
622 "no spare buffers available\n");
1f26dac3
DM
623 spin_unlock(&cp->rx_spare_lock);
624 return NULL;
625 }
626 }
627
628 entry = cp->rx_spare_list.next;
629 list_del(entry);
630 recover = ++cp->rx_spares_needed;
631 spin_unlock(&cp->rx_spare_lock);
632
633 /* trigger the timer to do the recovery */
634 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
635#if 1
636 atomic_inc(&cp->reset_task_pending);
637 atomic_inc(&cp->reset_task_pending_spare);
638 schedule_work(&cp->reset_task);
639#else
640 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
641 schedule_work(&cp->reset_task);
642#endif
643 }
644 return list_entry(entry, cas_page_t, list);
645}
646
647
648static void cas_mif_poll(struct cas *cp, const int enable)
649{
650 u32 cfg;
6aa20a22
JG
651
652 cfg = readl(cp->regs + REG_MIF_CFG);
1f26dac3
DM
653 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
654
655 if (cp->phy_type & CAS_PHY_MII_MDIO1)
6aa20a22 656 cfg |= MIF_CFG_PHY_SELECT;
1f26dac3
DM
657
658 /* poll and interrupt on link status change. */
659 if (enable) {
660 cfg |= MIF_CFG_POLL_EN;
661 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
662 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
663 }
6aa20a22
JG
664 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
665 cp->regs + REG_MIF_MASK);
1f26dac3
DM
666 writel(cfg, cp->regs + REG_MIF_CFG);
667}
668
669/* Must be invoked under cp->lock */
2c784b00
PR
670static void cas_begin_auto_negotiation(struct cas *cp,
671 const struct ethtool_link_ksettings *ep)
1f26dac3
DM
672{
673 u16 ctl;
674#if 1
675 int lcntl;
676 int changed = 0;
677 int oldstate = cp->lstate;
678 int link_was_not_down = !(oldstate == link_down);
679#endif
680 /* Setup link parameters */
681 if (!ep)
682 goto start_aneg;
683 lcntl = cp->link_cntl;
2c784b00 684 if (ep->base.autoneg == AUTONEG_ENABLE) {
1f26dac3 685 cp->link_cntl = BMCR_ANENABLE;
2c784b00
PR
686 } else {
687 u32 speed = ep->base.speed;
1f26dac3 688 cp->link_cntl = 0;
25db0338 689 if (speed == SPEED_100)
1f26dac3 690 cp->link_cntl |= BMCR_SPEED100;
25db0338 691 else if (speed == SPEED_1000)
1f26dac3 692 cp->link_cntl |= CAS_BMCR_SPEED1000;
2c784b00 693 if (ep->base.duplex == DUPLEX_FULL)
1f26dac3
DM
694 cp->link_cntl |= BMCR_FULLDPLX;
695 }
696#if 1
697 changed = (lcntl != cp->link_cntl);
698#endif
699start_aneg:
700 if (cp->lstate == link_up) {
436d27d1 701 netdev_info(cp->dev, "PCS link down\n");
1f26dac3
DM
702 } else {
703 if (changed) {
436d27d1 704 netdev_info(cp->dev, "link configuration changed\n");
1f26dac3
DM
705 }
706 }
707 cp->lstate = link_down;
708 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
709 if (!cp->hw_running)
710 return;
711#if 1
712 /*
713 * WTZ: If the old state was link_up, we turn off the carrier
714 * to replicate everything we do elsewhere on a link-down
6aa20a22 715 * event when we were already in a link-up state..
1f26dac3
DM
716 */
717 if (oldstate == link_up)
718 netif_carrier_off(cp->dev);
719 if (changed && link_was_not_down) {
720 /*
721 * WTZ: This branch will simply schedule a full reset after
722 * we explicitly changed link modes in an ioctl. See if this
6aa20a22 723 * fixes the link-problems we were having for forced mode.
1f26dac3
DM
724 */
725 atomic_inc(&cp->reset_task_pending);
726 atomic_inc(&cp->reset_task_pending_all);
727 schedule_work(&cp->reset_task);
728 cp->timer_ticks = 0;
729 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
730 return;
731 }
732#endif
733 if (cp->phy_type & CAS_PHY_SERDES) {
734 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
735
736 if (cp->link_cntl & BMCR_ANENABLE) {
737 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
738 cp->lstate = link_aneg;
739 } else {
740 if (cp->link_cntl & BMCR_FULLDPLX)
741 val |= PCS_MII_CTRL_DUPLEX;
742 val &= ~PCS_MII_AUTONEG_EN;
743 cp->lstate = link_force_ok;
744 }
745 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
746 writel(val, cp->regs + REG_PCS_MII_CTRL);
747
748 } else {
749 cas_mif_poll(cp, 0);
750 ctl = cas_phy_read(cp, MII_BMCR);
6aa20a22 751 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
1f26dac3
DM
752 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
753 ctl |= cp->link_cntl;
754 if (ctl & BMCR_ANENABLE) {
755 ctl |= BMCR_ANRESTART;
756 cp->lstate = link_aneg;
757 } else {
758 cp->lstate = link_force_ok;
759 }
760 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
761 cas_phy_write(cp, MII_BMCR, ctl);
762 cas_mif_poll(cp, 1);
763 }
764
765 cp->timer_ticks = 0;
766 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
767}
768
769/* Must be invoked under cp->lock. */
770static int cas_reset_mii_phy(struct cas *cp)
771{
772 int limit = STOP_TRIES_PHY;
773 u16 val;
6aa20a22 774
1f26dac3
DM
775 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
776 udelay(100);
ff01b916 777 while (--limit) {
1f26dac3
DM
778 val = cas_phy_read(cp, MII_BMCR);
779 if ((val & BMCR_RESET) == 0)
780 break;
781 udelay(10);
782 }
807540ba 783 return limit <= 0;
1f26dac3
DM
784}
785
15627e84 786static void cas_saturn_firmware_init(struct cas *cp)
fcaa4066
JS
787{
788 const struct firmware *fw;
789 const char fw_name[] = "sun/cassini.bin";
790 int err;
791
792 if (PHY_NS_DP83065 != cp->phy_id)
15627e84 793 return;
fcaa4066
JS
794
795 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
796 if (err) {
436d27d1 797 pr_err("Failed to load firmware \"%s\"\n",
fcaa4066 798 fw_name);
15627e84 799 return;
fcaa4066
JS
800 }
801 if (fw->size < 2) {
436d27d1 802 pr_err("bogus length %zu in \"%s\"\n",
fcaa4066 803 fw->size, fw_name);
fcaa4066
JS
804 goto out;
805 }
806 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
807 cp->fw_size = fw->size - 2;
808 cp->fw_data = vmalloc(cp->fw_size);
15627e84 809 if (!cp->fw_data)
fcaa4066 810 goto out;
fcaa4066
JS
811 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
812out:
813 release_firmware(fw);
fcaa4066
JS
814}
815
1f26dac3
DM
816static void cas_saturn_firmware_load(struct cas *cp)
817{
fcaa4066 818 int i;
1f26dac3 819
15627e84
BH
820 if (!cp->fw_data)
821 return;
822
1f26dac3
DM
823 cas_phy_powerdown(cp);
824
825 /* expanded memory access mode */
826 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
827
828 /* pointer configuration for new firmware */
829 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
830 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
832 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
833 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
834 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
835 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
836 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
837
838 /* download new firmware */
839 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
fcaa4066
JS
840 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
841 for (i = 0; i < cp->fw_size; i++)
842 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
1f26dac3
DM
843
844 /* enable firmware */
845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
846 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
847}
848
849
850/* phy initialization */
851static void cas_phy_init(struct cas *cp)
852{
853 u16 val;
854
855 /* if we're in MII/GMII mode, set up phy */
856 if (CAS_PHY_MII(cp->phy_type)) {
857 writel(PCS_DATAPATH_MODE_MII,
858 cp->regs + REG_PCS_DATAPATH_MODE);
859
860 cas_mif_poll(cp, 0);
861 cas_reset_mii_phy(cp); /* take out of isolate mode */
862
863 if (PHY_LUCENT_B0 == cp->phy_id) {
864 /* workaround link up/down issue with lucent */
865 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
866 cas_phy_write(cp, MII_BMCR, 0x00f1);
867 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
868
869 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
870 /* workarounds for broadcom phy */
871 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
872 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
873 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
874 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
875 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
876 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
877 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
878 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
879 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
880 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
881 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
882
883 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
884 val = cas_phy_read(cp, BROADCOM_MII_REG4);
885 val = cas_phy_read(cp, BROADCOM_MII_REG4);
886 if (val & 0x0080) {
887 /* link workaround */
6aa20a22 888 cas_phy_write(cp, BROADCOM_MII_REG4,
1f26dac3
DM
889 val & ~0x0080);
890 }
6aa20a22 891
1f26dac3 892 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
6aa20a22
JG
893 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
894 SATURN_PCFG_FSI : 0x0,
1f26dac3
DM
895 cp->regs + REG_SATURN_PCFG);
896
897 /* load firmware to address 10Mbps auto-negotiation
6aa20a22 898 * issue. NOTE: this will need to be changed if the
1f26dac3
DM
899 * default firmware gets fixed.
900 */
901 if (PHY_NS_DP83065 == cp->phy_id) {
902 cas_saturn_firmware_load(cp);
903 }
904 cas_phy_powerup(cp);
905 }
906
907 /* advertise capabilities */
908 val = cas_phy_read(cp, MII_BMCR);
909 val &= ~BMCR_ANENABLE;
910 cas_phy_write(cp, MII_BMCR, val);
911 udelay(10);
912
913 cas_phy_write(cp, MII_ADVERTISE,
914 cas_phy_read(cp, MII_ADVERTISE) |
915 (ADVERTISE_10HALF | ADVERTISE_10FULL |
916 ADVERTISE_100HALF | ADVERTISE_100FULL |
6aa20a22 917 CAS_ADVERTISE_PAUSE |
1f26dac3 918 CAS_ADVERTISE_ASYM_PAUSE));
6aa20a22 919
1f26dac3
DM
920 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
921 /* make sure that we don't advertise half
922 * duplex to avoid a chip issue
923 */
924 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
925 val &= ~CAS_ADVERTISE_1000HALF;
926 val |= CAS_ADVERTISE_1000FULL;
927 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
928 }
929
930 } else {
931 /* reset pcs for serdes */
932 u32 val;
933 int limit;
934
935 writel(PCS_DATAPATH_MODE_SERDES,
936 cp->regs + REG_PCS_DATAPATH_MODE);
937
938 /* enable serdes pins on saturn */
939 if (cp->cas_flags & CAS_FLAG_SATURN)
940 writel(0, cp->regs + REG_SATURN_PCFG);
941
942 /* Reset PCS unit. */
943 val = readl(cp->regs + REG_PCS_MII_CTRL);
944 val |= PCS_MII_RESET;
945 writel(val, cp->regs + REG_PCS_MII_CTRL);
946
947 limit = STOP_TRIES;
ff01b916 948 while (--limit > 0) {
1f26dac3 949 udelay(10);
6aa20a22 950 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
1f26dac3
DM
951 PCS_MII_RESET) == 0)
952 break;
953 }
954 if (limit <= 0)
436d27d1
JP
955 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
956 readl(cp->regs + REG_PCS_STATE_MACHINE));
1f26dac3
DM
957
958 /* Make sure PCS is disabled while changing advertisement
959 * configuration.
960 */
961 writel(0x0, cp->regs + REG_PCS_CFG);
962
963 /* Advertise all capabilities except half-duplex. */
964 val = readl(cp->regs + REG_PCS_MII_ADVERT);
965 val &= ~PCS_MII_ADVERT_HD;
6aa20a22 966 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
1f26dac3
DM
967 PCS_MII_ADVERT_ASYM_PAUSE);
968 writel(val, cp->regs + REG_PCS_MII_ADVERT);
969
970 /* enable PCS */
971 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
972
973 /* pcs workaround: enable sync detect */
974 writel(PCS_SERDES_CTRL_SYNCD_EN,
975 cp->regs + REG_PCS_SERDES_CTRL);
976 }
977}
978
979
980static int cas_pcs_link_check(struct cas *cp)
981{
982 u32 stat, state_machine;
983 int retval = 0;
984
985 /* The link status bit latches on zero, so you must
986 * read it twice in such a case to see a transition
987 * to the link being up.
988 */
989 stat = readl(cp->regs + REG_PCS_MII_STATUS);
990 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
991 stat = readl(cp->regs + REG_PCS_MII_STATUS);
992
993 /* The remote-fault indication is only valid
994 * when autoneg has completed.
995 */
996 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
997 PCS_MII_STATUS_REMOTE_FAULT)) ==
436d27d1
JP
998 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
999 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1f26dac3
DM
1000
1001 /* work around link detection issue by querying the PCS state
1002 * machine directly.
1003 */
1004 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1005 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1006 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1007 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1008 stat |= PCS_MII_STATUS_LINK_STATUS;
1009 }
1010
1011 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1012 if (cp->lstate != link_up) {
1013 if (cp->opened) {
1014 cp->lstate = link_up;
1015 cp->link_transition = LINK_TRANSITION_LINK_UP;
6aa20a22 1016
1f26dac3
DM
1017 cas_set_link_modes(cp);
1018 netif_carrier_on(cp->dev);
1019 }
1020 }
1021 } else if (cp->lstate == link_up) {
1022 cp->lstate = link_down;
1023 if (link_transition_timeout != 0 &&
1024 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1025 !cp->link_transition_jiffies_valid) {
1026 /*
6aa20a22
JG
1027 * force a reset, as a workaround for the
1028 * link-failure problem. May want to move this to a
1f26dac3
DM
1029 * point a bit earlier in the sequence. If we had
1030 * generated a reset a short time ago, we'll wait for
1031 * the link timer to check the status until a
1032 * timer expires (link_transistion_jiffies_valid is
1033 * true when the timer is running.) Instead of using
1034 * a system timer, we just do a check whenever the
1035 * link timer is running - this clears the flag after
1036 * a suitable delay.
1037 */
1038 retval = 1;
1039 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1040 cp->link_transition_jiffies = jiffies;
1041 cp->link_transition_jiffies_valid = 1;
1042 } else {
1043 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1044 }
1045 netif_carrier_off(cp->dev);
436d27d1
JP
1046 if (cp->opened)
1047 netif_info(cp, link, cp->dev, "PCS link down\n");
1f26dac3
DM
1048
1049 /* Cassini only: if you force a mode, there can be
1050 * sync problems on link down. to fix that, the following
1051 * things need to be checked:
1052 * 1) read serialink state register
1053 * 2) read pcs status register to verify link down.
1054 * 3) if link down and serial link == 0x03, then you need
1055 * to global reset the chip.
1056 */
1057 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1058 /* should check to see if we're in a forced mode */
1059 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1060 if (stat == 0x03)
1061 return 1;
1062 }
1063 } else if (cp->lstate == link_down) {
1064 if (link_transition_timeout != 0 &&
1065 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1066 !cp->link_transition_jiffies_valid) {
1067 /* force a reset, as a workaround for the
1068 * link-failure problem. May want to move
1069 * this to a point a bit earlier in the
1070 * sequence.
1071 */
1072 retval = 1;
1073 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1074 cp->link_transition_jiffies = jiffies;
1075 cp->link_transition_jiffies_valid = 1;
1076 } else {
1077 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1078 }
1079 }
1080
1081 return retval;
1082}
1083
6aa20a22 1084static int cas_pcs_interrupt(struct net_device *dev,
1f26dac3
DM
1085 struct cas *cp, u32 status)
1086{
1087 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1088
6aa20a22 1089 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1f26dac3
DM
1090 return 0;
1091 return cas_pcs_link_check(cp);
1092}
1093
6aa20a22 1094static int cas_txmac_interrupt(struct net_device *dev,
1f26dac3
DM
1095 struct cas *cp, u32 status)
1096{
1097 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1098
1099 if (!txmac_stat)
1100 return 0;
1101
436d27d1
JP
1102 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1103 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1f26dac3
DM
1104
1105 /* Defer timer expiration is quite normal,
1106 * don't even log the event.
1107 */
1108 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1109 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1110 return 0;
1111
1112 spin_lock(&cp->stat_lock[0]);
1113 if (txmac_stat & MAC_TX_UNDERRUN) {
436d27d1 1114 netdev_err(dev, "TX MAC xmit underrun\n");
1f26dac3
DM
1115 cp->net_stats[0].tx_fifo_errors++;
1116 }
1117
1118 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
436d27d1 1119 netdev_err(dev, "TX MAC max packet size error\n");
1f26dac3
DM
1120 cp->net_stats[0].tx_errors++;
1121 }
1122
1123 /* The rest are all cases of one of the 16-bit TX
1124 * counters expiring.
1125 */
1126 if (txmac_stat & MAC_TX_COLL_NORMAL)
1127 cp->net_stats[0].collisions += 0x10000;
1128
1129 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1130 cp->net_stats[0].tx_aborted_errors += 0x10000;
1131 cp->net_stats[0].collisions += 0x10000;
1132 }
1133
1134 if (txmac_stat & MAC_TX_COLL_LATE) {
1135 cp->net_stats[0].tx_aborted_errors += 0x10000;
1136 cp->net_stats[0].collisions += 0x10000;
1137 }
1138 spin_unlock(&cp->stat_lock[0]);
1139
1140 /* We do not keep track of MAC_TX_COLL_FIRST and
1141 * MAC_TX_PEAK_ATTEMPTS events.
1142 */
1143 return 0;
1144}
1145
6aa20a22 1146static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1f26dac3
DM
1147{
1148 cas_hp_inst_t *inst;
1149 u32 val;
1150 int i;
1151
1152 i = 0;
1153 while ((inst = firmware) && inst->note) {
1154 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155
1156 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1157 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1158 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159
1160 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1163 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1165 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1166 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1167 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168
1169 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1172 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1173 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1174 ++firmware;
1175 ++i;
1176 }
1177}
1178
1179static void cas_init_rx_dma(struct cas *cp)
1180{
6aa20a22 1181 u64 desc_dma = cp->block_dvma;
1f26dac3
DM
1182 u32 val;
1183 int i, size;
1184
1185 /* rx free descriptors */
6aa20a22 1186 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1f26dac3
DM
1187 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1188 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1189 if ((N_RX_DESC_RINGS > 1) &&
1190 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1191 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1192 writel(val, cp->regs + REG_RX_CFG);
1193
6aa20a22 1194 val = (unsigned long) cp->init_rxds[0] -
1f26dac3
DM
1195 (unsigned long) cp->init_block;
1196 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1197 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1198 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199
1200 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
6aa20a22 1201 /* rx desc 2 is for IPSEC packets. however,
1f26dac3
DM
1202 * we don't it that for that purpose.
1203 */
6aa20a22 1204 val = (unsigned long) cp->init_rxds[1] -
1f26dac3
DM
1205 (unsigned long) cp->init_block;
1206 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
6aa20a22 1207 writel((desc_dma + val) & 0xffffffff, cp->regs +
1f26dac3 1208 REG_PLUS_RX_DB1_LOW);
6aa20a22 1209 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1f26dac3
DM
1210 REG_PLUS_RX_KICK1);
1211 }
6aa20a22 1212
1f26dac3 1213 /* rx completion registers */
6aa20a22 1214 val = (unsigned long) cp->init_rxcs[0] -
1f26dac3
DM
1215 (unsigned long) cp->init_block;
1216 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1217 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218
1219 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1220 /* rx comp 2-4 */
1221 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
6aa20a22 1222 val = (unsigned long) cp->init_rxcs[i] -
1f26dac3 1223 (unsigned long) cp->init_block;
6aa20a22 1224 writel((desc_dma + val) >> 32, cp->regs +
1f26dac3 1225 REG_PLUS_RX_CBN_HI(i));
6aa20a22 1226 writel((desc_dma + val) & 0xffffffff, cp->regs +
1f26dac3
DM
1227 REG_PLUS_RX_CBN_LOW(i));
1228 }
1229 }
1230
1231 /* read selective clear regs to prevent spurious interrupts
1232 * on reset because complete == kick.
1233 * selective clear set up to prevent interrupts on resets
1234 */
1235 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1236 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1237 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1238 for (i = 1; i < N_RX_COMP_RINGS; i++)
1239 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1240
1241 /* 2 is different from 3 and 4 */
1242 if (N_RX_COMP_RINGS > 1)
6aa20a22 1243 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1f26dac3
DM
1244 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1245
6aa20a22
JG
1246 for (i = 2; i < N_RX_COMP_RINGS; i++)
1247 writel(INTR_RX_DONE_ALT,
1f26dac3
DM
1248 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1249 }
1250
1251 /* set up pause thresholds */
1252 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1253 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
6aa20a22 1254 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1f26dac3
DM
1255 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1256 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
6aa20a22 1257
1f26dac3
DM
1258 /* zero out dma reassembly buffers */
1259 for (i = 0; i < 64; i++) {
1260 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1261 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1262 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1263 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1264 }
1265
1266 /* make sure address register is 0 for normal operation */
1267 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1268 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1269
1270 /* interrupt mitigation */
1271#ifdef USE_RX_BLANK
1272 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1273 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1274 writel(val, cp->regs + REG_RX_BLANK);
1275#else
1276 writel(0x0, cp->regs + REG_RX_BLANK);
1277#endif
1278
1279 /* interrupt generation as a function of low water marks for
1280 * free desc and completion entries. these are used to trigger
1281 * housekeeping for rx descs. we don't use the free interrupt
1282 * as it's not very useful
1283 */
1284 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1285 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1286 writel(val, cp->regs + REG_RX_AE_THRESH);
1287 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1288 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1289 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1290 }
1291
1292 /* Random early detect registers. useful for congestion avoidance.
1293 * this should be tunable.
1294 */
1295 writel(0x0, cp->regs + REG_RX_RED);
6aa20a22 1296
1f26dac3
DM
1297 /* receive page sizes. default == 2K (0x800) */
1298 val = 0;
1299 if (cp->page_size == 0x1000)
1300 val = 0x1;
1301 else if (cp->page_size == 0x2000)
1302 val = 0x2;
1303 else if (cp->page_size == 0x4000)
1304 val = 0x3;
6aa20a22 1305
1f26dac3
DM
1306 /* round mtu + offset. constrain to page size. */
1307 size = cp->dev->mtu + 64;
1308 if (size > cp->page_size)
1309 size = cp->page_size;
1310
1311 if (size <= 0x400)
1312 i = 0x0;
1313 else if (size <= 0x800)
1314 i = 0x1;
1315 else if (size <= 0x1000)
1316 i = 0x2;
1317 else
1318 i = 0x3;
1319
1320 cp->mtu_stride = 1 << (i + 10);
1321 val = CAS_BASE(RX_PAGE_SIZE, val);
6aa20a22 1322 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1f26dac3
DM
1323 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1324 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1325 writel(val, cp->regs + REG_RX_PAGE_SIZE);
6aa20a22 1326
1f26dac3
DM
1327 /* enable the header parser if desired */
1328 if (CAS_HP_FIRMWARE == cas_prog_null)
1329 return;
1330
1331 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1332 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1333 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1334 writel(val, cp->regs + REG_HP_CFG);
1335}
1336
1337static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1338{
1339 memset(rxc, 0, sizeof(*rxc));
6aa20a22 1340 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1f26dac3
DM
1341}
1342
1343/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1344 * flipping is protected by the fact that the chip will not
1345 * hand back the same page index while it's being processed.
1346 */
1347static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1348{
1349 cas_page_t *page = cp->rx_pages[1][index];
1350 cas_page_t *new;
1351
9de4dfb4 1352 if (page_count(page->buffer) == 1)
1f26dac3
DM
1353 return page;
1354
1355 new = cas_page_dequeue(cp);
1356 if (new) {
1357 spin_lock(&cp->rx_inuse_lock);
1358 list_add(&page->list, &cp->rx_inuse_list);
1359 spin_unlock(&cp->rx_inuse_lock);
1360 }
1361 return new;
1362}
6aa20a22 1363
1f26dac3 1364/* this needs to be changed if we actually use the ENC RX DESC ring */
6aa20a22 1365static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1f26dac3
DM
1366 const int index)
1367{
1368 cas_page_t **page0 = cp->rx_pages[0];
1369 cas_page_t **page1 = cp->rx_pages[1];
1370
1371 /* swap if buffer is in use */
9de4dfb4 1372 if (page_count(page0[index]->buffer) > 1) {
1f26dac3
DM
1373 cas_page_t *new = cas_page_spare(cp, index);
1374 if (new) {
1375 page1[index] = page0[index];
1376 page0[index] = new;
1377 }
6aa20a22 1378 }
1f26dac3
DM
1379 RX_USED_SET(page0[index], 0);
1380 return page0[index];
1381}
1382
1383static void cas_clean_rxds(struct cas *cp)
1384{
1385 /* only clean ring 0 as ring 1 is used for spare buffers */
1386 struct cas_rx_desc *rxd = cp->init_rxds[0];
1387 int i, size;
1388
1389 /* release all rx flows */
1390 for (i = 0; i < N_RX_FLOWS; i++) {
1391 struct sk_buff *skb;
1392 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1393 cas_skb_release(skb);
1394 }
1395 }
1396
1397 /* initialize descriptors */
1398 size = RX_DESC_RINGN_SIZE(0);
1399 for (i = 0; i < size; i++) {
1400 cas_page_t *page = cas_page_swap(cp, 0, i);
1401 rxd[i].buffer = cpu_to_le64(page->dma_addr);
6aa20a22 1402 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1f26dac3
DM
1403 CAS_BASE(RX_INDEX_RING, 0));
1404 }
1405
6aa20a22 1406 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1f26dac3
DM
1407 cp->rx_last[0] = 0;
1408 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1409}
1410
1411static void cas_clean_rxcs(struct cas *cp)
1412{
1413 int i, j;
1414
1415 /* take ownership of rx comp descriptors */
1416 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1417 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1418 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1419 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1420 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1421 cas_rxc_init(rxc + j);
1422 }
1423 }
1424}
1425
1426#if 0
1427/* When we get a RX fifo overflow, the RX unit is probably hung
1428 * so we do the following.
1429 *
1430 * If any part of the reset goes wrong, we return 1 and that causes the
1431 * whole chip to be reset.
1432 */
1433static int cas_rxmac_reset(struct cas *cp)
1434{
1435 struct net_device *dev = cp->dev;
1436 int limit;
1437 u32 val;
1438
1439 /* First, reset MAC RX. */
1440 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1441 for (limit = 0; limit < STOP_TRIES; limit++) {
1442 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1443 break;
1444 udelay(10);
1445 }
1446 if (limit == STOP_TRIES) {
436d27d1 1447 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1f26dac3
DM
1448 return 1;
1449 }
1450
1451 /* Second, disable RX DMA. */
1452 writel(0, cp->regs + REG_RX_CFG);
1453 for (limit = 0; limit < STOP_TRIES; limit++) {
1454 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455 break;
1456 udelay(10);
1457 }
1458 if (limit == STOP_TRIES) {
436d27d1 1459 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1f26dac3
DM
1460 return 1;
1461 }
1462
1463 mdelay(5);
1464
1465 /* Execute RX reset command. */
1466 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1467 for (limit = 0; limit < STOP_TRIES; limit++) {
1468 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1469 break;
1470 udelay(10);
1471 }
1472 if (limit == STOP_TRIES) {
436d27d1 1473 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1f26dac3
DM
1474 return 1;
1475 }
1476
1477 /* reset driver rx state */
1478 cas_clean_rxds(cp);
1479 cas_clean_rxcs(cp);
1480
1481 /* Now, reprogram the rest of RX unit. */
1482 cas_init_rx_dma(cp);
1483
1484 /* re-enable */
1485 val = readl(cp->regs + REG_RX_CFG);
1486 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1487 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1488 val = readl(cp->regs + REG_MAC_RX_CFG);
1489 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1490 return 0;
1491}
1492#endif
1493
1494static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1495 u32 status)
1496{
1497 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1498
1499 if (!stat)
1500 return 0;
1501
436d27d1 1502 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1f26dac3
DM
1503
1504 /* these are all rollovers */
1505 spin_lock(&cp->stat_lock[0]);
6aa20a22 1506 if (stat & MAC_RX_ALIGN_ERR)
1f26dac3
DM
1507 cp->net_stats[0].rx_frame_errors += 0x10000;
1508
1509 if (stat & MAC_RX_CRC_ERR)
1510 cp->net_stats[0].rx_crc_errors += 0x10000;
1511
1512 if (stat & MAC_RX_LEN_ERR)
1513 cp->net_stats[0].rx_length_errors += 0x10000;
1514
1515 if (stat & MAC_RX_OVERFLOW) {
1516 cp->net_stats[0].rx_over_errors++;
1517 cp->net_stats[0].rx_fifo_errors++;
1518 }
1519
1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521 * events.
1522 */
1523 spin_unlock(&cp->stat_lock[0]);
1524 return 0;
1525}
1526
1527static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528 u32 status)
1529{
1530 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1531
1532 if (!stat)
1533 return 0;
1534
436d27d1
JP
1535 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1536 "mac interrupt, stat: 0x%x\n", stat);
1f26dac3
DM
1537
1538 /* This interrupt is just for pause frame and pause
1539 * tracking. It is useful for diagnostics and debug
1540 * but probably by default we will mask these events.
1541 */
1542 if (stat & MAC_CTRL_PAUSE_STATE)
1543 cp->pause_entered++;
1544
1545 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1546 cp->pause_last_time_recvd = (stat >> 16);
1547
1548 return 0;
1549}
1550
6aa20a22 1551
1f26dac3
DM
1552/* Must be invoked under cp->lock. */
1553static inline int cas_mdio_link_not_up(struct cas *cp)
1554{
1555 u16 val;
6aa20a22 1556
1f26dac3
DM
1557 switch (cp->lstate) {
1558 case link_force_ret:
436d27d1 1559 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1f26dac3
DM
1560 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1561 cp->timer_ticks = 5;
1562 cp->lstate = link_force_ok;
1563 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1564 break;
6aa20a22 1565
1f26dac3
DM
1566 case link_aneg:
1567 val = cas_phy_read(cp, MII_BMCR);
1568
1569 /* Try forced modes. we try things in the following order:
1570 * 1000 full -> 100 full/half -> 10 half
1571 */
1572 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1573 val |= BMCR_FULLDPLX;
6aa20a22 1574 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1f26dac3
DM
1575 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1576 cas_phy_write(cp, MII_BMCR, val);
1577 cp->timer_ticks = 5;
1578 cp->lstate = link_force_try;
1579 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1580 break;
1581
1582 case link_force_try:
1583 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1584 val = cas_phy_read(cp, MII_BMCR);
1585 cp->timer_ticks = 5;
1586 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1587 val &= ~CAS_BMCR_SPEED1000;
1588 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1589 cas_phy_write(cp, MII_BMCR, val);
1590 break;
1591 }
1592
1593 if (val & BMCR_SPEED100) {
1594 if (val & BMCR_FULLDPLX) /* fd failed */
1595 val &= ~BMCR_FULLDPLX;
1596 else { /* 100Mbps failed */
1597 val &= ~BMCR_SPEED100;
1598 }
1599 cas_phy_write(cp, MII_BMCR, val);
1600 break;
1601 }
2a86b4a7 1602 break;
1f26dac3
DM
1603 default:
1604 break;
1605 }
1606 return 0;
1607}
1608
1609
1610/* must be invoked with cp->lock held */
1611static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1612{
1613 int restart;
1614
1615 if (bmsr & BMSR_LSTATUS) {
1616 /* Ok, here we got a link. If we had it due to a forced
6aa20a22 1617 * fallback, and we were configured for autoneg, we
1f26dac3
DM
1618 * retry a short autoneg pass. If you know your hub is
1619 * broken, use ethtool ;)
1620 */
6aa20a22 1621 if ((cp->lstate == link_force_try) &&
1f26dac3
DM
1622 (cp->link_cntl & BMCR_ANENABLE)) {
1623 cp->lstate = link_force_ret;
1624 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1625 cas_mif_poll(cp, 0);
1626 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1627 cp->timer_ticks = 5;
436d27d1
JP
1628 if (cp->opened)
1629 netif_info(cp, link, cp->dev,
1630 "Got link after fallback, retrying autoneg once...\n");
1f26dac3
DM
1631 cas_phy_write(cp, MII_BMCR,
1632 cp->link_fcntl | BMCR_ANENABLE |
1633 BMCR_ANRESTART);
1634 cas_mif_poll(cp, 1);
1635
1636 } else if (cp->lstate != link_up) {
1637 cp->lstate = link_up;
1638 cp->link_transition = LINK_TRANSITION_LINK_UP;
1639
1640 if (cp->opened) {
1641 cas_set_link_modes(cp);
1642 netif_carrier_on(cp->dev);
1643 }
1644 }
1645 return 0;
1646 }
1647
1648 /* link not up. if the link was previously up, we restart the
1649 * whole process
1650 */
1651 restart = 0;
1652 if (cp->lstate == link_up) {
1653 cp->lstate = link_down;
1654 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1655
1656 netif_carrier_off(cp->dev);
436d27d1
JP
1657 if (cp->opened)
1658 netif_info(cp, link, cp->dev, "Link down\n");
1f26dac3 1659 restart = 1;
6aa20a22 1660
1f26dac3
DM
1661 } else if (++cp->timer_ticks > 10)
1662 cas_mdio_link_not_up(cp);
6aa20a22 1663
1f26dac3
DM
1664 return restart;
1665}
1666
1667static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1668 u32 status)
1669{
1670 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1671 u16 bmsr;
1672
1673 /* check for a link change */
1674 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1675 return 0;
1676
1677 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1678 return cas_mii_link_check(cp, bmsr);
1679}
1680
1681static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1682 u32 status)
1683{
1684 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1685
1686 if (!stat)
1687 return 0;
1688
436d27d1
JP
1689 netdev_err(dev, "PCI error [%04x:%04x]",
1690 stat, readl(cp->regs + REG_BIM_DIAG));
1f26dac3
DM
1691
1692 /* cassini+ has this reserved */
1693 if ((stat & PCI_ERR_BADACK) &&
1694 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
436d27d1 1695 pr_cont(" <No ACK64# during ABS64 cycle>");
1f26dac3
DM
1696
1697 if (stat & PCI_ERR_DTRTO)
436d27d1 1698 pr_cont(" <Delayed transaction timeout>");
1f26dac3 1699 if (stat & PCI_ERR_OTHER)
436d27d1 1700 pr_cont(" <other>");
1f26dac3 1701 if (stat & PCI_ERR_BIM_DMA_WRITE)
436d27d1 1702 pr_cont(" <BIM DMA 0 write req>");
1f26dac3 1703 if (stat & PCI_ERR_BIM_DMA_READ)
436d27d1
JP
1704 pr_cont(" <BIM DMA 0 read req>");
1705 pr_cont("\n");
1f26dac3
DM
1706
1707 if (stat & PCI_ERR_OTHER) {
0800d88e 1708 int pci_errs;
1f26dac3
DM
1709
1710 /* Interrogate PCI config space for the
1711 * true cause.
1712 */
0800d88e
HK
1713 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1714
1715 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1716 if (pci_errs & PCI_STATUS_PARITY)
436d27d1 1717 netdev_err(dev, "PCI parity error detected\n");
0800d88e 1718 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
436d27d1 1719 netdev_err(dev, "PCI target abort\n");
0800d88e 1720 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
436d27d1 1721 netdev_err(dev, "PCI master acks target abort\n");
0800d88e 1722 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
436d27d1 1723 netdev_err(dev, "PCI master abort\n");
0800d88e 1724 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
436d27d1 1725 netdev_err(dev, "PCI system error SERR#\n");
0800d88e 1726 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
436d27d1 1727 netdev_err(dev, "PCI parity error\n");
1f26dac3
DM
1728 }
1729
1730 /* For all PCI errors, we should reset the chip. */
1731 return 1;
1732}
1733
1734/* All non-normal interrupt conditions get serviced here.
1735 * Returns non-zero if we should just exit the interrupt
1736 * handler right now (ie. if we reset the card which invalidates
1737 * all of the other original irq status bits).
1738 */
1739static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1740 u32 status)
1741{
1742 if (status & INTR_RX_TAG_ERROR) {
1743 /* corrupt RX tag framing */
436d27d1
JP
1744 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1745 "corrupt rx tag framing\n");
1f26dac3
DM
1746 spin_lock(&cp->stat_lock[0]);
1747 cp->net_stats[0].rx_errors++;
1748 spin_unlock(&cp->stat_lock[0]);
1749 goto do_reset;
1750 }
1751
1752 if (status & INTR_RX_LEN_MISMATCH) {
1753 /* length mismatch. */
436d27d1
JP
1754 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1755 "length mismatch for rx frame\n");
1f26dac3
DM
1756 spin_lock(&cp->stat_lock[0]);
1757 cp->net_stats[0].rx_errors++;
1758 spin_unlock(&cp->stat_lock[0]);
1759 goto do_reset;
1760 }
1761
1762 if (status & INTR_PCS_STATUS) {
1763 if (cas_pcs_interrupt(dev, cp, status))
1764 goto do_reset;
1765 }
1766
1767 if (status & INTR_TX_MAC_STATUS) {
1768 if (cas_txmac_interrupt(dev, cp, status))
1769 goto do_reset;
1770 }
1771
1772 if (status & INTR_RX_MAC_STATUS) {
1773 if (cas_rxmac_interrupt(dev, cp, status))
1774 goto do_reset;
1775 }
1776
1777 if (status & INTR_MAC_CTRL_STATUS) {
1778 if (cas_mac_interrupt(dev, cp, status))
1779 goto do_reset;
1780 }
1781
1782 if (status & INTR_MIF_STATUS) {
1783 if (cas_mif_interrupt(dev, cp, status))
1784 goto do_reset;
1785 }
1786
1787 if (status & INTR_PCI_ERROR_STATUS) {
1788 if (cas_pci_interrupt(dev, cp, status))
1789 goto do_reset;
1790 }
1791 return 0;
1792
1793do_reset:
1794#if 1
1795 atomic_inc(&cp->reset_task_pending);
1796 atomic_inc(&cp->reset_task_pending_all);
436d27d1 1797 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1f26dac3
DM
1798 schedule_work(&cp->reset_task);
1799#else
1800 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
436d27d1 1801 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1f26dac3
DM
1802 schedule_work(&cp->reset_task);
1803#endif
1804 return 1;
1805}
1806
1807/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1808 * determining whether to do a netif_stop/wakeup
1809 */
1810#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1811#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1812static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1813 const int len)
1814{
1815 unsigned long off = addr + len;
1816
1817 if (CAS_TABORT(cp) == 1)
1818 return 0;
1819 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1820 return 0;
1821 return TX_TARGET_ABORT_LEN;
1822}
1823
1824static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1825{
1826 struct cas_tx_desc *txds;
1827 struct sk_buff **skbs;
1828 struct net_device *dev = cp->dev;
1829 int entry, count;
1830
1831 spin_lock(&cp->tx_lock[ring]);
1832 txds = cp->init_txds[ring];
1833 skbs = cp->tx_skbs[ring];
1834 entry = cp->tx_old[ring];
1835
1836 count = TX_BUFF_COUNT(ring, entry, limit);
1837 while (entry != limit) {
1838 struct sk_buff *skb = skbs[entry];
1839 dma_addr_t daddr;
1840 u32 dlen;
1841 int frag;
1842
1843 if (!skb) {
1844 /* this should never occur */
1845 entry = TX_DESC_NEXT(ring, entry);
1846 continue;
1847 }
1848
1849 /* however, we might get only a partial skb release. */
1850 count -= skb_shinfo(skb)->nr_frags +
1851 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1852 if (count < 0)
1853 break;
1854
436d27d1
JP
1855 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1856 "tx[%d] done, slot %d\n", ring, entry);
1f26dac3
DM
1857
1858 skbs[entry] = NULL;
1859 cp->tx_tiny_use[ring][entry].nbufs = 0;
6aa20a22 1860
1f26dac3
DM
1861 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1862 struct cas_tx_desc *txd = txds + entry;
1863
1864 daddr = le64_to_cpu(txd->buffer);
1865 dlen = CAS_VAL(TX_DESC_BUFLEN,
1866 le64_to_cpu(txd->control));
dcc82bb0
CJ
1867 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1868 DMA_TO_DEVICE);
1f26dac3
DM
1869 entry = TX_DESC_NEXT(ring, entry);
1870
1871 /* tiny buffer may follow */
1872 if (cp->tx_tiny_use[ring][entry].used) {
1873 cp->tx_tiny_use[ring][entry].used = 0;
1874 entry = TX_DESC_NEXT(ring, entry);
6aa20a22 1875 }
1f26dac3
DM
1876 }
1877
1878 spin_lock(&cp->stat_lock[ring]);
1879 cp->net_stats[ring].tx_packets++;
1880 cp->net_stats[ring].tx_bytes += skb->len;
1881 spin_unlock(&cp->stat_lock[ring]);
98fcd70b 1882 dev_consume_skb_irq(skb);
1f26dac3
DM
1883 }
1884 cp->tx_old[ring] = entry;
1885
1886 /* this is wrong for multiple tx rings. the net device needs
1887 * multiple queues for this to do the right thing. we wait
1888 * for 2*packets to be available when using tiny buffers
1889 */
1890 if (netif_queue_stopped(dev) &&
1891 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1892 netif_wake_queue(dev);
1893 spin_unlock(&cp->tx_lock[ring]);
1894}
1895
1896static void cas_tx(struct net_device *dev, struct cas *cp,
1897 u32 status)
1898{
1899 int limit, ring;
1900#ifdef USE_TX_COMPWB
1901 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1902#endif
436d27d1
JP
1903 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1904 "tx interrupt, status: 0x%x, %llx\n",
1905 status, (unsigned long long)compwb);
1f26dac3
DM
1906 /* process all the rings */
1907 for (ring = 0; ring < N_TX_RINGS; ring++) {
1908#ifdef USE_TX_COMPWB
1909 /* use the completion writeback registers */
1910 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1911 CAS_VAL(TX_COMPWB_LSB, compwb);
1912 compwb = TX_COMPWB_NEXT(compwb);
1913#else
1914 limit = readl(cp->regs + REG_TX_COMPN(ring));
1915#endif
6aa20a22 1916 if (cp->tx_old[ring] != limit)
1f26dac3
DM
1917 cas_tx_ringN(cp, ring, limit);
1918 }
1919}
1920
1921
6aa20a22
JG
1922static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1923 int entry, const u64 *words,
1f26dac3
DM
1924 struct sk_buff **skbref)
1925{
1926 int dlen, hlen, len, i, alloclen;
1927 int off, swivel = RX_SWIVEL_OFF_VAL;
1928 struct cas_page *page;
1929 struct sk_buff *skb;
1930 void *addr, *crcaddr;
e5e02540 1931 __sum16 csum;
6aa20a22 1932 char *p;
1f26dac3
DM
1933
1934 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1935 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1936 len = hlen + dlen;
1937
6aa20a22 1938 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1f26dac3 1939 alloclen = len;
6aa20a22 1940 else
1f26dac3
DM
1941 alloclen = max(hlen, RX_COPY_MIN);
1942
dae2e9f4 1943 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
6aa20a22 1944 if (skb == NULL)
1f26dac3
DM
1945 return -1;
1946
1947 *skbref = skb;
1f26dac3
DM
1948 skb_reserve(skb, swivel);
1949
1950 p = skb->data;
1951 addr = crcaddr = NULL;
1952 if (hlen) { /* always copy header pages */
1953 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1954 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22 1955 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1f26dac3
DM
1956 swivel;
1957
1958 i = hlen;
1959 if (!dlen) /* attach FCS */
1960 i += cp->crc_size;
dcc82bb0
CJ
1961 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1962 i, DMA_FROM_DEVICE);
1f26dac3
DM
1963 addr = cas_page_map(page->buffer);
1964 memcpy(p, addr + off, i);
dcc82bb0
CJ
1965 dma_sync_single_for_device(&cp->pdev->dev,
1966 page->dma_addr + off, i,
1967 DMA_FROM_DEVICE);
1f26dac3
DM
1968 cas_page_unmap(addr);
1969 RX_USED_ADD(page, 0x100);
1970 p += hlen;
1971 swivel = 0;
6aa20a22 1972 }
1f26dac3
DM
1973
1974
1975 if (alloclen < (hlen + dlen)) {
1976 skb_frag_t *frag = skb_shinfo(skb)->frags;
1977
1978 /* normal or jumbo packets. we use frags */
1979 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1980 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1981 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1982
1983 hlen = min(cp->page_size - off, dlen);
1984 if (hlen < 0) {
436d27d1
JP
1985 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1986 "rx page overflow: %d\n", hlen);
1f26dac3
DM
1987 dev_kfree_skb_irq(skb);
1988 return -1;
1989 }
1990 i = hlen;
1991 if (i == dlen) /* attach FCS */
1992 i += cp->crc_size;
dcc82bb0
CJ
1993 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1994 i, DMA_FROM_DEVICE);
1f26dac3
DM
1995
1996 /* make sure we always copy a header */
1997 swivel = 0;
1998 if (p == (char *) skb->data) { /* not split */
1999 addr = cas_page_map(page->buffer);
2000 memcpy(p, addr + off, RX_COPY_MIN);
dcc82bb0
CJ
2001 dma_sync_single_for_device(&cp->pdev->dev,
2002 page->dma_addr + off, i,
2003 DMA_FROM_DEVICE);
1f26dac3
DM
2004 cas_page_unmap(addr);
2005 off += RX_COPY_MIN;
2006 swivel = RX_COPY_MIN;
2007 RX_USED_ADD(page, cp->mtu_stride);
2008 } else {
2009 RX_USED_ADD(page, hlen);
2010 }
2011 skb_put(skb, alloclen);
2012
2013 skb_shinfo(skb)->nr_frags++;
2014 skb->data_len += hlen - swivel;
d011a231 2015 skb->truesize += hlen - swivel;
1f26dac3
DM
2016 skb->len += hlen - swivel;
2017
18324d69
IC
2018 __skb_frag_set_page(frag, page->buffer);
2019 __skb_frag_ref(frag);
b54c9d5b 2020 skb_frag_off_set(frag, off);
9e903e08 2021 skb_frag_size_set(frag, hlen - swivel);
6aa20a22 2022
1f26dac3
DM
2023 /* any more data? */
2024 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2025 hlen = dlen;
2026 off = 0;
2027
2028 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2029 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
dcc82bb0
CJ
2030 dma_sync_single_for_cpu(&cp->pdev->dev,
2031 page->dma_addr,
2032 hlen + cp->crc_size,
2033 DMA_FROM_DEVICE);
2034 dma_sync_single_for_device(&cp->pdev->dev,
2035 page->dma_addr,
2036 hlen + cp->crc_size,
2037 DMA_FROM_DEVICE);
1f26dac3
DM
2038
2039 skb_shinfo(skb)->nr_frags++;
2040 skb->data_len += hlen;
6aa20a22 2041 skb->len += hlen;
1f26dac3
DM
2042 frag++;
2043
18324d69
IC
2044 __skb_frag_set_page(frag, page->buffer);
2045 __skb_frag_ref(frag);
b54c9d5b 2046 skb_frag_off_set(frag, 0);
9e903e08 2047 skb_frag_size_set(frag, hlen);
1f26dac3
DM
2048 RX_USED_ADD(page, hlen + cp->crc_size);
2049 }
2050
2051 if (cp->crc_size) {
2052 addr = cas_page_map(page->buffer);
2053 crcaddr = addr + off + hlen;
2054 }
2055
2056 } else {
2057 /* copying packet */
2058 if (!dlen)
2059 goto end_copy_pkt;
2060
2061 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2062 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2064 hlen = min(cp->page_size - off, dlen);
2065 if (hlen < 0) {
436d27d1
JP
2066 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2067 "rx page overflow: %d\n", hlen);
1f26dac3
DM
2068 dev_kfree_skb_irq(skb);
2069 return -1;
2070 }
2071 i = hlen;
2072 if (i == dlen) /* attach FCS */
2073 i += cp->crc_size;
dcc82bb0
CJ
2074 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2075 i, DMA_FROM_DEVICE);
1f26dac3
DM
2076 addr = cas_page_map(page->buffer);
2077 memcpy(p, addr + off, i);
dcc82bb0
CJ
2078 dma_sync_single_for_device(&cp->pdev->dev,
2079 page->dma_addr + off, i,
2080 DMA_FROM_DEVICE);
1f26dac3
DM
2081 cas_page_unmap(addr);
2082 if (p == (char *) skb->data) /* not split */
2083 RX_USED_ADD(page, cp->mtu_stride);
2084 else
2085 RX_USED_ADD(page, i);
6aa20a22 2086
1f26dac3
DM
2087 /* any more data? */
2088 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2089 p += hlen;
2090 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2091 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
dcc82bb0
CJ
2092 dma_sync_single_for_cpu(&cp->pdev->dev,
2093 page->dma_addr,
2094 dlen + cp->crc_size,
2095 DMA_FROM_DEVICE);
1f26dac3
DM
2096 addr = cas_page_map(page->buffer);
2097 memcpy(p, addr, dlen + cp->crc_size);
dcc82bb0
CJ
2098 dma_sync_single_for_device(&cp->pdev->dev,
2099 page->dma_addr,
2100 dlen + cp->crc_size,
2101 DMA_FROM_DEVICE);
1f26dac3 2102 cas_page_unmap(addr);
6aa20a22 2103 RX_USED_ADD(page, dlen + cp->crc_size);
1f26dac3
DM
2104 }
2105end_copy_pkt:
2106 if (cp->crc_size) {
2107 addr = NULL;
2108 crcaddr = skb->data + alloclen;
2109 }
2110 skb_put(skb, alloclen);
2111 }
2112
e5e02540 2113 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
1f26dac3
DM
2114 if (cp->crc_size) {
2115 /* checksum includes FCS. strip it out. */
e5e02540
AV
2116 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2117 csum_unfold(csum)));
1f26dac3
DM
2118 if (addr)
2119 cas_page_unmap(addr);
2120 }
1f26dac3 2121 skb->protocol = eth_type_trans(skb, cp->dev);
b1443e2f
DM
2122 if (skb->protocol == htons(ETH_P_IP)) {
2123 skb->csum = csum_unfold(~csum);
2124 skb->ip_summed = CHECKSUM_COMPLETE;
2125 } else
bc8acf2c 2126 skb_checksum_none_assert(skb);
1f26dac3
DM
2127 return len;
2128}
2129
2130
2131/* we can handle up to 64 rx flows at a time. we do the same thing
6aa20a22 2132 * as nonreassm except that we batch up the buffers.
1f26dac3
DM
2133 * NOTE: we currently just treat each flow as a bunch of packets that
2134 * we pass up. a better way would be to coalesce the packets
2135 * into a jumbo packet. to do that, we need to do the following:
2136 * 1) the first packet will have a clean split between header and
2137 * data. save both.
2138 * 2) each time the next flow packet comes in, extend the
2139 * data length and merge the checksums.
2140 * 3) on flow release, fix up the header.
2141 * 4) make sure the higher layer doesn't care.
6aa20a22 2142 * because packets get coalesced, we shouldn't run into fragment count
1f26dac3
DM
2143 * issues.
2144 */
2145static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2146 struct sk_buff *skb)
2147{
2148 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2149 struct sk_buff_head *flow = &cp->rx_flows[flowid];
6aa20a22
JG
2150
2151 /* this is protected at a higher layer, so no need to
1f26dac3
DM
2152 * do any additional locking here. stick the buffer
2153 * at the end.
2154 */
43f59c89 2155 __skb_queue_tail(flow, skb);
1f26dac3
DM
2156 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2157 while ((skb = __skb_dequeue(flow))) {
2158 cas_skb_release(skb);
2159 }
2160 }
2161}
2162
2163/* put rx descriptor back on ring. if a buffer is in use by a higher
2164 * layer, this will need to put in a replacement.
2165 */
2166static void cas_post_page(struct cas *cp, const int ring, const int index)
2167{
2168 cas_page_t *new;
2169 int entry;
2170
2171 entry = cp->rx_old[ring];
2172
2173 new = cas_page_swap(cp, ring, index);
2174 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2175 cp->init_rxds[ring][entry].index =
6aa20a22 2176 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
1f26dac3
DM
2177 CAS_BASE(RX_INDEX_RING, ring));
2178
2179 entry = RX_DESC_ENTRY(ring, entry + 1);
2180 cp->rx_old[ring] = entry;
6aa20a22 2181
1f26dac3
DM
2182 if (entry % 4)
2183 return;
2184
2185 if (ring == 0)
2186 writel(entry, cp->regs + REG_RX_KICK);
2187 else if ((N_RX_DESC_RINGS > 1) &&
6aa20a22 2188 (cp->cas_flags & CAS_FLAG_REG_PLUS))
1f26dac3
DM
2189 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2190}
2191
2192
2193/* only when things are bad */
2194static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2195{
2196 unsigned int entry, last, count, released;
2197 int cluster;
2198 cas_page_t **page = cp->rx_pages[ring];
2199
2200 entry = cp->rx_old[ring];
2201
436d27d1
JP
2202 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2203 "rxd[%d] interrupt, done: %d\n", ring, entry);
1f26dac3
DM
2204
2205 cluster = -1;
6aa20a22 2206 count = entry & 0x3;
1f26dac3
DM
2207 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2208 released = 0;
2209 while (entry != last) {
2210 /* make a new buffer if it's still in use */
9de4dfb4 2211 if (page_count(page[entry]->buffer) > 1) {
1f26dac3
DM
2212 cas_page_t *new = cas_page_dequeue(cp);
2213 if (!new) {
6aa20a22 2214 /* let the timer know that we need to
1f26dac3
DM
2215 * do this again
2216 */
2217 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2218 if (!timer_pending(&cp->link_timer))
6aa20a22 2219 mod_timer(&cp->link_timer, jiffies +
1f26dac3
DM
2220 CAS_LINK_FAST_TIMEOUT);
2221 cp->rx_old[ring] = entry;
2222 cp->rx_last[ring] = num ? num - released : 0;
2223 return -ENOMEM;
2224 }
2225 spin_lock(&cp->rx_inuse_lock);
2226 list_add(&page[entry]->list, &cp->rx_inuse_list);
2227 spin_unlock(&cp->rx_inuse_lock);
6aa20a22 2228 cp->init_rxds[ring][entry].buffer =
1f26dac3
DM
2229 cpu_to_le64(new->dma_addr);
2230 page[entry] = new;
6aa20a22 2231
1f26dac3
DM
2232 }
2233
2234 if (++count == 4) {
2235 cluster = entry;
2236 count = 0;
2237 }
2238 released++;
2239 entry = RX_DESC_ENTRY(ring, entry + 1);
2240 }
2241 cp->rx_old[ring] = entry;
2242
6aa20a22 2243 if (cluster < 0)
1f26dac3
DM
2244 return 0;
2245
2246 if (ring == 0)
2247 writel(cluster, cp->regs + REG_RX_KICK);
2248 else if ((N_RX_DESC_RINGS > 1) &&
6aa20a22 2249 (cp->cas_flags & CAS_FLAG_REG_PLUS))
1f26dac3
DM
2250 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2251 return 0;
2252}
2253
2254
2255/* process a completion ring. packets are set up in three basic ways:
2256 * small packets: should be copied header + data in single buffer.
2257 * large packets: header and data in a single buffer.
6aa20a22 2258 * split packets: header in a separate buffer from data.
1f26dac3 2259 * data may be in multiple pages. data may be > 256
6aa20a22 2260 * bytes but in a single page.
1f26dac3
DM
2261 *
2262 * NOTE: RX page posting is done in this routine as well. while there's
2263 * the capability of using multiple RX completion rings, it isn't
2264 * really worthwhile due to the fact that the page posting will
6aa20a22 2265 * force serialization on the single descriptor ring.
1f26dac3
DM
2266 */
2267static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2268{
2269 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2270 int entry, drops;
2271 int npackets = 0;
2272
436d27d1
JP
2273 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2274 "rx[%d] interrupt, done: %d/%d\n",
2275 ring,
2276 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
1f26dac3
DM
2277
2278 entry = cp->rx_new[ring];
2279 drops = 0;
2280 while (1) {
2281 struct cas_rx_comp *rxc = rxcs + entry;
3f649ab7 2282 struct sk_buff *skb;
1f26dac3
DM
2283 int type, len;
2284 u64 words[4];
2285 int i, dring;
2286
2287 words[0] = le64_to_cpu(rxc->word1);
2288 words[1] = le64_to_cpu(rxc->word2);
2289 words[2] = le64_to_cpu(rxc->word3);
2290 words[3] = le64_to_cpu(rxc->word4);
2291
2292 /* don't touch if still owned by hw */
2293 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2294 if (type == 0)
2295 break;
2296
2297 /* hw hasn't cleared the zero bit yet */
2298 if (words[3] & RX_COMP4_ZERO) {
2299 break;
2300 }
2301
2302 /* get info on the packet */
2303 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2304 spin_lock(&cp->stat_lock[ring]);
2305 cp->net_stats[ring].rx_errors++;
2306 if (words[3] & RX_COMP4_LEN_MISMATCH)
2307 cp->net_stats[ring].rx_length_errors++;
2308 if (words[3] & RX_COMP4_BAD)
2309 cp->net_stats[ring].rx_crc_errors++;
2310 spin_unlock(&cp->stat_lock[ring]);
2311
2312 /* We'll just return it to Cassini. */
2313 drop_it:
2314 spin_lock(&cp->stat_lock[ring]);
2315 ++cp->net_stats[ring].rx_dropped;
2316 spin_unlock(&cp->stat_lock[ring]);
2317 goto next;
2318 }
2319
2320 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2321 if (len < 0) {
2322 ++drops;
2323 goto drop_it;
2324 }
2325
2326 /* see if it's a flow re-assembly or not. the driver
2327 * itself handles release back up.
2328 */
2329 if (RX_DONT_BATCH || (type == 0x2)) {
2330 /* non-reassm: these always get released */
6aa20a22 2331 cas_skb_release(skb);
1f26dac3
DM
2332 } else {
2333 cas_rx_flow_pkt(cp, words, skb);
2334 }
2335
2336 spin_lock(&cp->stat_lock[ring]);
2337 cp->net_stats[ring].rx_packets++;
2338 cp->net_stats[ring].rx_bytes += len;
2339 spin_unlock(&cp->stat_lock[ring]);
1f26dac3
DM
2340
2341 next:
2342 npackets++;
2343
2344 /* should it be released? */
2345 if (words[0] & RX_COMP1_RELEASE_HDR) {
2346 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2347 dring = CAS_VAL(RX_INDEX_RING, i);
2348 i = CAS_VAL(RX_INDEX_NUM, i);
2349 cas_post_page(cp, dring, i);
2350 }
6aa20a22 2351
1f26dac3
DM
2352 if (words[0] & RX_COMP1_RELEASE_DATA) {
2353 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2354 dring = CAS_VAL(RX_INDEX_RING, i);
2355 i = CAS_VAL(RX_INDEX_NUM, i);
2356 cas_post_page(cp, dring, i);
2357 }
2358
2359 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2360 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2361 dring = CAS_VAL(RX_INDEX_RING, i);
2362 i = CAS_VAL(RX_INDEX_NUM, i);
2363 cas_post_page(cp, dring, i);
2364 }
2365
2366 /* skip to the next entry */
6aa20a22 2367 entry = RX_COMP_ENTRY(ring, entry + 1 +
1f26dac3
DM
2368 CAS_VAL(RX_COMP1_SKIP, words[0]));
2369#ifdef USE_NAPI
2370 if (budget && (npackets >= budget))
2371 break;
2372#endif
2373 }
2374 cp->rx_new[ring] = entry;
2375
2376 if (drops)
436d27d1 2377 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
1f26dac3
DM
2378 return npackets;
2379}
2380
2381
2382/* put completion entries back on the ring */
2383static void cas_post_rxcs_ringN(struct net_device *dev,
2384 struct cas *cp, int ring)
2385{
2386 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2387 int last, entry;
2388
2389 last = cp->rx_cur[ring];
6aa20a22 2390 entry = cp->rx_new[ring];
436d27d1
JP
2391 netif_printk(cp, intr, KERN_DEBUG, dev,
2392 "rxc[%d] interrupt, done: %d/%d\n",
2393 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
6aa20a22 2394
1f26dac3
DM
2395 /* zero and re-mark descriptors */
2396 while (last != entry) {
2397 cas_rxc_init(rxc + last);
2398 last = RX_COMP_ENTRY(ring, last + 1);
2399 }
2400 cp->rx_cur[ring] = last;
2401
2402 if (ring == 0)
2403 writel(last, cp->regs + REG_RX_COMP_TAIL);
6aa20a22 2404 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
1f26dac3
DM
2405 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2406}
2407
2408
2409
6aa20a22 2410/* cassini can use all four PCI interrupts for the completion ring.
1f26dac3
DM
2411 * rings 3 and 4 are identical
2412 */
2413#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
6aa20a22 2414static inline void cas_handle_irqN(struct net_device *dev,
1f26dac3
DM
2415 struct cas *cp, const u32 status,
2416 const int ring)
2417{
6aa20a22 2418 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
1f26dac3
DM
2419 cas_post_rxcs_ringN(dev, cp, ring);
2420}
2421
7d12e780 2422static irqreturn_t cas_interruptN(int irq, void *dev_id)
1f26dac3
DM
2423{
2424 struct net_device *dev = dev_id;
2425 struct cas *cp = netdev_priv(dev);
2426 unsigned long flags;
3d015565 2427 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
1f26dac3
DM
2428 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2429
2430 /* check for shared irq */
2431 if (status == 0)
2432 return IRQ_NONE;
2433
1f26dac3
DM
2434 spin_lock_irqsave(&cp->lock, flags);
2435 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2436#ifdef USE_NAPI
2437 cas_mask_intr(cp);
288379f0 2438 napi_schedule(&cp->napi);
1f26dac3
DM
2439#else
2440 cas_rx_ringN(cp, ring, 0);
2441#endif
2442 status &= ~INTR_RX_DONE_ALT;
2443 }
2444
2445 if (status)
2446 cas_handle_irqN(dev, cp, status, ring);
2447 spin_unlock_irqrestore(&cp->lock, flags);
2448 return IRQ_HANDLED;
2449}
2450#endif
2451
2452#ifdef USE_PCI_INTB
2453/* everything but rx packets */
2454static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2455{
2456 if (status & INTR_RX_BUF_UNAVAIL_1) {
6aa20a22 2457 /* Frame arrived, no free RX buffers available.
1f26dac3
DM
2458 * NOTE: we can get this on a link transition. */
2459 cas_post_rxds_ringN(cp, 1, 0);
2460 spin_lock(&cp->stat_lock[1]);
2461 cp->net_stats[1].rx_dropped++;
2462 spin_unlock(&cp->stat_lock[1]);
2463 }
2464
6aa20a22
JG
2465 if (status & INTR_RX_BUF_AE_1)
2466 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
1f26dac3
DM
2467 RX_AE_FREEN_VAL(1));
2468
2469 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2470 cas_post_rxcs_ringN(cp, 1);
2471}
2472
2473/* ring 2 handles a few more events than 3 and 4 */
7d12e780 2474static irqreturn_t cas_interrupt1(int irq, void *dev_id)
1f26dac3
DM
2475{
2476 struct net_device *dev = dev_id;
2477 struct cas *cp = netdev_priv(dev);
2478 unsigned long flags;
2479 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2480
2481 /* check for shared interrupt */
2482 if (status == 0)
2483 return IRQ_NONE;
2484
2485 spin_lock_irqsave(&cp->lock, flags);
2486 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2487#ifdef USE_NAPI
2488 cas_mask_intr(cp);
288379f0 2489 napi_schedule(&cp->napi);
1f26dac3
DM
2490#else
2491 cas_rx_ringN(cp, 1, 0);
2492#endif
2493 status &= ~INTR_RX_DONE_ALT;
2494 }
2495 if (status)
2496 cas_handle_irq1(cp, status);
2497 spin_unlock_irqrestore(&cp->lock, flags);
2498 return IRQ_HANDLED;
2499}
2500#endif
2501
2502static inline void cas_handle_irq(struct net_device *dev,
2503 struct cas *cp, const u32 status)
2504{
2505 /* housekeeping interrupts */
2506 if (status & INTR_ERROR_MASK)
2507 cas_abnormal_irq(dev, cp, status);
2508
2509 if (status & INTR_RX_BUF_UNAVAIL) {
6aa20a22 2510 /* Frame arrived, no free RX buffers available.
1f26dac3
DM
2511 * NOTE: we can get this on a link transition.
2512 */
2513 cas_post_rxds_ringN(cp, 0, 0);
2514 spin_lock(&cp->stat_lock[0]);
2515 cp->net_stats[0].rx_dropped++;
2516 spin_unlock(&cp->stat_lock[0]);
2517 } else if (status & INTR_RX_BUF_AE) {
2518 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2519 RX_AE_FREEN_VAL(0));
2520 }
2521
2522 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2523 cas_post_rxcs_ringN(dev, cp, 0);
2524}
2525
7d12e780 2526static irqreturn_t cas_interrupt(int irq, void *dev_id)
1f26dac3
DM
2527{
2528 struct net_device *dev = dev_id;
2529 struct cas *cp = netdev_priv(dev);
2530 unsigned long flags;
2531 u32 status = readl(cp->regs + REG_INTR_STATUS);
2532
2533 if (status == 0)
2534 return IRQ_NONE;
2535
2536 spin_lock_irqsave(&cp->lock, flags);
2537 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2538 cas_tx(dev, cp, status);
2539 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2540 }
2541
2542 if (status & INTR_RX_DONE) {
2543#ifdef USE_NAPI
2544 cas_mask_intr(cp);
288379f0 2545 napi_schedule(&cp->napi);
1f26dac3
DM
2546#else
2547 cas_rx_ringN(cp, 0, 0);
2548#endif
2549 status &= ~INTR_RX_DONE;
2550 }
2551
2552 if (status)
2553 cas_handle_irq(dev, cp, status);
2554 spin_unlock_irqrestore(&cp->lock, flags);
2555 return IRQ_HANDLED;
2556}
2557
2558
2559#ifdef USE_NAPI
bea3348e 2560static int cas_poll(struct napi_struct *napi, int budget)
1f26dac3 2561{
bea3348e
SH
2562 struct cas *cp = container_of(napi, struct cas, napi);
2563 struct net_device *dev = cp->dev;
86216268 2564 int i, enable_intr, credits;
1f26dac3
DM
2565 u32 status = readl(cp->regs + REG_INTR_STATUS);
2566 unsigned long flags;
2567
2568 spin_lock_irqsave(&cp->lock, flags);
2569 cas_tx(dev, cp, status);
2570 spin_unlock_irqrestore(&cp->lock, flags);
2571
2572 /* NAPI rx packets. we spread the credits across all of the
2573 * rxc rings
bea3348e
SH
2574 *
2575 * to make sure we're fair with the work we loop through each
6aa20a22 2576 * ring N_RX_COMP_RING times with a request of
bea3348e 2577 * budget / N_RX_COMP_RINGS
1f26dac3
DM
2578 */
2579 enable_intr = 1;
2580 credits = 0;
2581 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2582 int j;
2583 for (j = 0; j < N_RX_COMP_RINGS; j++) {
bea3348e
SH
2584 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2585 if (credits >= budget) {
1f26dac3
DM
2586 enable_intr = 0;
2587 goto rx_comp;
2588 }
2589 }
2590 }
2591
2592rx_comp:
1f26dac3
DM
2593 /* final rx completion */
2594 spin_lock_irqsave(&cp->lock, flags);
2595 if (status)
2596 cas_handle_irq(dev, cp, status);
2597
2598#ifdef USE_PCI_INTB
2599 if (N_RX_COMP_RINGS > 1) {
2600 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2601 if (status)
2602 cas_handle_irq1(dev, cp, status);
2603 }
2604#endif
2605
2606#ifdef USE_PCI_INTC
2607 if (N_RX_COMP_RINGS > 2) {
2608 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2609 if (status)
2610 cas_handle_irqN(dev, cp, status, 2);
2611 }
2612#endif
2613
2614#ifdef USE_PCI_INTD
2615 if (N_RX_COMP_RINGS > 3) {
2616 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2617 if (status)
2618 cas_handle_irqN(dev, cp, status, 3);
2619 }
2620#endif
2621 spin_unlock_irqrestore(&cp->lock, flags);
2622 if (enable_intr) {
288379f0 2623 napi_complete(napi);
1f26dac3 2624 cas_unmask_intr(cp);
1f26dac3 2625 }
bea3348e 2626 return credits;
1f26dac3
DM
2627}
2628#endif
2629
2630#ifdef CONFIG_NET_POLL_CONTROLLER
2631static void cas_netpoll(struct net_device *dev)
2632{
2633 struct cas *cp = netdev_priv(dev);
2634
2635 cas_disable_irq(cp, 0);
7d12e780 2636 cas_interrupt(cp->pdev->irq, dev);
1f26dac3
DM
2637 cas_enable_irq(cp, 0);
2638
2639#ifdef USE_PCI_INTB
2640 if (N_RX_COMP_RINGS > 1) {
2641 /* cas_interrupt1(); */
2642 }
2643#endif
2644#ifdef USE_PCI_INTC
2645 if (N_RX_COMP_RINGS > 2) {
2646 /* cas_interruptN(); */
2647 }
2648#endif
2649#ifdef USE_PCI_INTD
2650 if (N_RX_COMP_RINGS > 3) {
2651 /* cas_interruptN(); */
2652 }
2653#endif
2654}
2655#endif
2656
0290bd29 2657static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
1f26dac3
DM
2658{
2659 struct cas *cp = netdev_priv(dev);
2660
436d27d1 2661 netdev_err(dev, "transmit timed out, resetting\n");
1f26dac3 2662 if (!cp->hw_running) {
436d27d1 2663 netdev_err(dev, "hrm.. hw not running!\n");
1f26dac3
DM
2664 return;
2665 }
2666
436d27d1
JP
2667 netdev_err(dev, "MIF_STATE[%08x]\n",
2668 readl(cp->regs + REG_MIF_STATE_MACHINE));
2669
2670 netdev_err(dev, "MAC_STATE[%08x]\n",
2671 readl(cp->regs + REG_MAC_STATE_MACHINE));
2672
2673 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2674 readl(cp->regs + REG_TX_CFG),
2675 readl(cp->regs + REG_MAC_TX_STATUS),
2676 readl(cp->regs + REG_MAC_TX_CFG),
2677 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2678 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2679 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2680 readl(cp->regs + REG_TX_SM_1),
2681 readl(cp->regs + REG_TX_SM_2));
2682
2683 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2684 readl(cp->regs + REG_RX_CFG),
2685 readl(cp->regs + REG_MAC_RX_STATUS),
2686 readl(cp->regs + REG_MAC_RX_CFG));
2687
2688 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2689 readl(cp->regs + REG_HP_STATE_MACHINE),
2690 readl(cp->regs + REG_HP_STATUS0),
2691 readl(cp->regs + REG_HP_STATUS1),
2692 readl(cp->regs + REG_HP_STATUS2));
1f26dac3
DM
2693
2694#if 1
2695 atomic_inc(&cp->reset_task_pending);
2696 atomic_inc(&cp->reset_task_pending_all);
2697 schedule_work(&cp->reset_task);
2698#else
2699 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2700 schedule_work(&cp->reset_task);
2701#endif
2702}
2703
2704static inline int cas_intme(int ring, int entry)
2705{
2706 /* Algorithm: IRQ every 1/2 of descriptors. */
2707 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2708 return 1;
2709 return 0;
2710}
2711
2712
2713static void cas_write_txd(struct cas *cp, int ring, int entry,
2714 dma_addr_t mapping, int len, u64 ctrl, int last)
2715{
2716 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2717
2718 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2719 if (cas_intme(ring, entry))
2720 ctrl |= TX_DESC_INTME;
2721 if (last)
2722 ctrl |= TX_DESC_EOF;
2723 txd->control = cpu_to_le64(ctrl);
2724 txd->buffer = cpu_to_le64(mapping);
2725}
2726
6aa20a22 2727static inline void *tx_tiny_buf(struct cas *cp, const int ring,
1f26dac3
DM
2728 const int entry)
2729{
2730 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2731}
2732
6aa20a22 2733static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
1f26dac3
DM
2734 const int entry, const int tentry)
2735{
2736 cp->tx_tiny_use[ring][tentry].nbufs++;
2737 cp->tx_tiny_use[ring][entry].used = 1;
2738 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2739}
2740
6aa20a22 2741static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
1f26dac3
DM
2742 struct sk_buff *skb)
2743{
2744 struct net_device *dev = cp->dev;
2745 int entry, nr_frags, frag, tabort, tentry;
2746 dma_addr_t mapping;
2747 unsigned long flags;
2748 u64 ctrl;
2749 u32 len;
2750
2751 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2752
2753 /* This is a hard error, log it. */
6aa20a22 2754 if (TX_BUFFS_AVAIL(cp, ring) <=
1f26dac3
DM
2755 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2756 netif_stop_queue(dev);
2757 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
436d27d1 2758 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1f26dac3
DM
2759 return 1;
2760 }
2761
2762 ctrl = 0;
84fa7933 2763 if (skb->ip_summed == CHECKSUM_PARTIAL) {
0d0b1672 2764 const u64 csum_start_off = skb_checksum_start_offset(skb);
ea2ae17d 2765 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1f26dac3 2766
6aa20a22 2767 ctrl = TX_DESC_CSUM_EN |
1f26dac3
DM
2768 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2769 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2770 }
2771
2772 entry = cp->tx_new[ring];
2773 cp->tx_skbs[ring][entry] = skb;
2774
2775 nr_frags = skb_shinfo(skb)->nr_frags;
2776 len = skb_headlen(skb);
dcc82bb0
CJ
2777 mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2778 offset_in_page(skb->data), len, DMA_TO_DEVICE);
1f26dac3
DM
2779
2780 tentry = entry;
2781 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2782 if (unlikely(tabort)) {
2783 /* NOTE: len is always > tabort */
6aa20a22 2784 cas_write_txd(cp, ring, entry, mapping, len - tabort,
1f26dac3
DM
2785 ctrl | TX_DESC_SOF, 0);
2786 entry = TX_DESC_NEXT(ring, entry);
2787
d626f62b
ACM
2788 skb_copy_from_linear_data_offset(skb, len - tabort,
2789 tx_tiny_buf(cp, ring, entry), tabort);
1f26dac3
DM
2790 mapping = tx_tiny_map(cp, ring, entry, tentry);
2791 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2792 (nr_frags == 0));
2793 } else {
6aa20a22 2794 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
1f26dac3
DM
2795 TX_DESC_SOF, (nr_frags == 0));
2796 }
2797 entry = TX_DESC_NEXT(ring, entry);
2798
2799 for (frag = 0; frag < nr_frags; frag++) {
9e903e08 2800 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
1f26dac3 2801
9e903e08 2802 len = skb_frag_size(fragp);
18324d69 2803 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
5d6bcdfe 2804 DMA_TO_DEVICE);
1f26dac3 2805
b54c9d5b 2806 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
1f26dac3
DM
2807 if (unlikely(tabort)) {
2808 void *addr;
2809
2810 /* NOTE: len is always > tabort */
2811 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812 ctrl, 0);
2813 entry = TX_DESC_NEXT(ring, entry);
6aa20a22 2814
18324d69 2815 addr = cas_page_map(skb_frag_page(fragp));
1f26dac3 2816 memcpy(tx_tiny_buf(cp, ring, entry),
b54c9d5b 2817 addr + skb_frag_off(fragp) + len - tabort,
1f26dac3
DM
2818 tabort);
2819 cas_page_unmap(addr);
2820 mapping = tx_tiny_map(cp, ring, entry, tentry);
2821 len = tabort;
2822 }
2823
2824 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2825 (frag + 1 == nr_frags));
2826 entry = TX_DESC_NEXT(ring, entry);
2827 }
2828
2829 cp->tx_new[ring] = entry;
2830 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2831 netif_stop_queue(dev);
2832
436d27d1
JP
2833 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2834 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2835 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
1f26dac3
DM
2836 writel(entry, cp->regs + REG_TX_KICKN(ring));
2837 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2838 return 0;
6aa20a22 2839}
1f26dac3 2840
61357325 2841static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
1f26dac3
DM
2842{
2843 struct cas *cp = netdev_priv(dev);
2844
2845 /* this is only used as a load-balancing hint, so it doesn't
2846 * need to be SMP safe
2847 */
6aa20a22 2848 static int ring;
1f26dac3 2849
5b057c6b 2850 if (skb_padto(skb, cp->min_frame_size))
6ed10654 2851 return NETDEV_TX_OK;
1f26dac3
DM
2852
2853 /* XXX: we need some higher-level QoS hooks to steer packets to
2854 * individual queues.
2855 */
2856 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
5b548140 2857 return NETDEV_TX_BUSY;
6ed10654 2858 return NETDEV_TX_OK;
1f26dac3
DM
2859}
2860
2861static void cas_init_tx_dma(struct cas *cp)
2862{
2863 u64 desc_dma = cp->block_dvma;
2864 unsigned long off;
2865 u32 val;
2866 int i;
2867
2868 /* set up tx completion writeback registers. must be 8-byte aligned */
2869#ifdef USE_TX_COMPWB
2870 off = offsetof(struct cas_init_block, tx_compwb);
2871 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2872 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2873#endif
2874
2875 /* enable completion writebacks, enable paced mode,
2876 * disable read pipe, and disable pre-interrupt compwbs
2877 */
6aa20a22 2878 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
1f26dac3 2879 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
6aa20a22 2880 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
1f26dac3
DM
2881 TX_CFG_INTR_COMPWB_DIS;
2882
2883 /* write out tx ring info and tx desc bases */
2884 for (i = 0; i < MAX_TX_RINGS; i++) {
6aa20a22 2885 off = (unsigned long) cp->init_txds[i] -
1f26dac3
DM
2886 (unsigned long) cp->init_block;
2887
2888 val |= CAS_TX_RINGN_BASE(i);
2889 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2890 writel((desc_dma + off) & 0xffffffff, cp->regs +
2891 REG_TX_DBN_LOW(i));
2892 /* don't zero out the kick register here as the system
2893 * will wedge
2894 */
2895 }
2896 writel(val, cp->regs + REG_TX_CFG);
2897
2898 /* program max burst sizes. these numbers should be different
2899 * if doing QoS.
2900 */
2901#ifdef USE_QOS
2902 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2903 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2904 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2905 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2906#else
2907 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2908 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2909 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2910 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2911#endif
2912}
2913
2914/* Must be invoked under cp->lock. */
2915static inline void cas_init_dma(struct cas *cp)
2916{
2917 cas_init_tx_dma(cp);
2918 cas_init_rx_dma(cp);
2919}
2920
d7b855c2
JP
2921static void cas_process_mc_list(struct cas *cp)
2922{
2923 u16 hash_table[16];
2924 u32 crc;
22bedad3 2925 struct netdev_hw_addr *ha;
d7b855c2
JP
2926 int i = 1;
2927
2928 memset(hash_table, 0, sizeof(hash_table));
22bedad3 2929 netdev_for_each_mc_addr(ha, cp->dev) {
d7b855c2
JP
2930 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2931 /* use the alternate mac address registers for the
2932 * first 15 multicast addresses
2933 */
22bedad3 2934 writel((ha->addr[4] << 8) | ha->addr[5],
d7b855c2 2935 cp->regs + REG_MAC_ADDRN(i*3 + 0));
22bedad3 2936 writel((ha->addr[2] << 8) | ha->addr[3],
d7b855c2 2937 cp->regs + REG_MAC_ADDRN(i*3 + 1));
22bedad3 2938 writel((ha->addr[0] << 8) | ha->addr[1],
d7b855c2
JP
2939 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2940 i++;
2941 }
2942 else {
2943 /* use hw hash table for the next series of
2944 * multicast addresses
2945 */
22bedad3 2946 crc = ether_crc_le(ETH_ALEN, ha->addr);
d7b855c2
JP
2947 crc >>= 24;
2948 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2949 }
2950 }
2951 for (i = 0; i < 16; i++)
2952 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2953}
2954
1f26dac3
DM
2955/* Must be invoked under cp->lock. */
2956static u32 cas_setup_multicast(struct cas *cp)
2957{
2958 u32 rxcfg = 0;
2959 int i;
6aa20a22 2960
1f26dac3
DM
2961 if (cp->dev->flags & IFF_PROMISC) {
2962 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2963
2964 } else if (cp->dev->flags & IFF_ALLMULTI) {
2965 for (i=0; i < 16; i++)
2966 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2967 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2968
2969 } else {
d7b855c2 2970 cas_process_mc_list(cp);
1f26dac3
DM
2971 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2972 }
2973
2974 return rxcfg;
2975}
2976
2977/* must be invoked under cp->stat_lock[N_TX_RINGS] */
2978static void cas_clear_mac_err(struct cas *cp)
2979{
2980 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2981 writel(0, cp->regs + REG_MAC_COLL_FIRST);
2982 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2983 writel(0, cp->regs + REG_MAC_COLL_LATE);
2984 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2985 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2986 writel(0, cp->regs + REG_MAC_RECV_FRAME);
2987 writel(0, cp->regs + REG_MAC_LEN_ERR);
2988 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2989 writel(0, cp->regs + REG_MAC_FCS_ERR);
2990 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2991}
2992
2993
2994static void cas_mac_reset(struct cas *cp)
2995{
2996 int i;
2997
2998 /* do both TX and RX reset */
2999 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3000 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3001
3002 /* wait for TX */
3003 i = STOP_TRIES;
3004 while (i-- > 0) {
3005 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3006 break;
3007 udelay(10);
3008 }
3009
3010 /* wait for RX */
3011 i = STOP_TRIES;
3012 while (i-- > 0) {
3013 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3014 break;
3015 udelay(10);
3016 }
3017
3018 if (readl(cp->regs + REG_MAC_TX_RESET) |
3019 readl(cp->regs + REG_MAC_RX_RESET))
436d27d1
JP
3020 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3021 readl(cp->regs + REG_MAC_TX_RESET),
3022 readl(cp->regs + REG_MAC_RX_RESET),
3023 readl(cp->regs + REG_MAC_STATE_MACHINE));
1f26dac3
DM
3024}
3025
3026
3027/* Must be invoked under cp->lock. */
3028static void cas_init_mac(struct cas *cp)
3029{
3030 unsigned char *e = &cp->dev->dev_addr[0];
3031 int i;
1f26dac3
DM
3032 cas_mac_reset(cp);
3033
3034 /* setup core arbitration weight register */
3035 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3036
1f26dac3
DM
3037#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3038 /* set the infinite burst register for chips that don't have
3039 * pci issues.
3040 */
3041 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3042 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3043#endif
3044
3045 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3046
3047 writel(0x00, cp->regs + REG_MAC_IPG0);
3048 writel(0x08, cp->regs + REG_MAC_IPG1);
3049 writel(0x04, cp->regs + REG_MAC_IPG2);
6aa20a22 3050
1f26dac3 3051 /* change later for 802.3z */
6aa20a22 3052 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
1f26dac3
DM
3053
3054 /* min frame + FCS */
3055 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3056
3057 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
6aa20a22 3058 * specify the maximum frame size to prevent RX tag errors on
1f26dac3
DM
3059 * oversized frames.
3060 */
3061 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
6aa20a22
JG
3062 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3063 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
1f26dac3
DM
3064 cp->regs + REG_MAC_FRAMESIZE_MAX);
3065
6aa20a22 3066 /* NOTE: crc_size is used as a surrogate for half-duplex.
1f26dac3
DM
3067 * workaround saturn half-duplex issue by increasing preamble
3068 * size to 65 bytes.
3069 */
3070 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3071 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3072 else
3073 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3074 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3075 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3076 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3077
3078 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3079
3080 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3081 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3082 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3083 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3084 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3085
3086 /* setup mac address in perfect filter array */
3087 for (i = 0; i < 45; i++)
3088 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3089
3090 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3091 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3092 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3093
3094 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3095 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3096 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3097
1f26dac3 3098 cp->mac_rx_cfg = cas_setup_multicast(cp);
ff08546b 3099
1f26dac3
DM
3100 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3101 cas_clear_mac_err(cp);
3102 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3103
3104 /* Setup MAC interrupts. We want to get all of the interesting
3105 * counter expiration events, but we do not want to hear about
3106 * normal rx/tx as the DMA engine tells us that.
3107 */
3108 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3109 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3110
3111 /* Don't enable even the PAUSE interrupts for now, we
3112 * make no use of those events other than to record them.
3113 */
3114 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3115}
3116
3117/* Must be invoked under cp->lock. */
3118static void cas_init_pause_thresholds(struct cas *cp)
3119{
3120 /* Calculate pause thresholds. Setting the OFF threshold to the
3121 * full RX fifo size effectively disables PAUSE generation
3122 */
3123 if (cp->rx_fifo_size <= (2 * 1024)) {
3124 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3125 } else {
3126 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3127 if (max_frame * 3 > cp->rx_fifo_size) {
3128 cp->rx_pause_off = 7104;
3129 cp->rx_pause_on = 960;
3130 } else {
3131 int off = (cp->rx_fifo_size - (max_frame * 2));
3132 int on = off - max_frame;
3133 cp->rx_pause_off = off;
3134 cp->rx_pause_on = on;
3135 }
3136 }
3137}
3138
3139static int cas_vpd_match(const void __iomem *p, const char *str)
3140{
3141 int len = strlen(str) + 1;
3142 int i;
6aa20a22 3143
1f26dac3
DM
3144 for (i = 0; i < len; i++) {
3145 if (readb(p + i) != str[i])
3146 return 0;
3147 }
3148 return 1;
3149}
3150
3151
3152/* get the mac address by reading the vpd information in the rom.
3153 * also get the phy type and determine if there's an entropy generator.
3154 * NOTE: this is a bit convoluted for the following reasons:
3155 * 1) vpd info has order-dependent mac addresses for multinic cards
3156 * 2) the only way to determine the nic order is to use the slot
3157 * number.
3158 * 3) fiber cards don't have bridges, so their slot numbers don't
3159 * mean anything.
6aa20a22 3160 * 4) we don't actually know we have a fiber card until after
1f26dac3
DM
3161 * the mac addresses are parsed.
3162 */
3163static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3164 const int offset)
3165{
3166 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3167 void __iomem *base, *kstart;
3168 int i, len;
3169 int found = 0;
3170#define VPD_FOUND_MAC 0x01
3171#define VPD_FOUND_PHY 0x02
3172
3173 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3174 int mac_off = 0;
3175
92d76e81 3176#if defined(CONFIG_SPARC)
4e3dbdb1
RM
3177 const unsigned char *addr;
3178#endif
3179
1f26dac3
DM
3180 /* give us access to the PROM */
3181 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3182 cp->regs + REG_BIM_LOCAL_DEV_EN);
3183
3184 /* check for an expansion rom */
3185 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3186 goto use_random_mac_addr;
3187
3188 /* search for beginning of vpd */
46d7031e 3189 base = NULL;
1f26dac3
DM
3190 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3191 /* check for PCIR */
3192 if ((readb(p + i + 0) == 0x50) &&
3193 (readb(p + i + 1) == 0x43) &&
3194 (readb(p + i + 2) == 0x49) &&
3195 (readb(p + i + 3) == 0x52)) {
6aa20a22 3196 base = p + (readb(p + i + 8) |
1f26dac3
DM
3197 (readb(p + i + 9) << 8));
3198 break;
6aa20a22 3199 }
1f26dac3
DM
3200 }
3201
3202 if (!base || (readb(base) != 0x82))
3203 goto use_random_mac_addr;
6aa20a22 3204
1f26dac3
DM
3205 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3206 while (i < EXPANSION_ROM_SIZE) {
3207 if (readb(base + i) != 0x90) /* no vpd found */
3208 goto use_random_mac_addr;
3209
3210 /* found a vpd field */
3211 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3212
3213 /* extract keywords */
3214 kstart = base + i + 3;
3215 p = kstart;
3216 while ((p - kstart) < len) {
3217 int klen = readb(p + 2);
3218 int j;
3219 char type;
3220
3221 p += 3;
6aa20a22 3222
1f26dac3
DM
3223 /* look for the following things:
3224 * -- correct length == 29
6aa20a22
JG
3225 * 3 (type) + 2 (size) +
3226 * 18 (strlen("local-mac-address") + 1) +
3227 * 6 (mac addr)
1f26dac3
DM
3228 * -- VPD Instance 'I'
3229 * -- VPD Type Bytes 'B'
3230 * -- VPD data length == 6
3231 * -- property string == local-mac-address
6aa20a22 3232 *
1f26dac3 3233 * -- correct length == 24
6aa20a22
JG
3234 * 3 (type) + 2 (size) +
3235 * 12 (strlen("entropy-dev") + 1) +
1f26dac3
DM
3236 * 7 (strlen("vms110") + 1)
3237 * -- VPD Instance 'I'
3238 * -- VPD Type String 'B'
3239 * -- VPD data length == 7
3240 * -- property string == entropy-dev
3241 *
3242 * -- correct length == 18
6aa20a22
JG
3243 * 3 (type) + 2 (size) +
3244 * 9 (strlen("phy-type") + 1) +
1f26dac3
DM
3245 * 4 (strlen("pcs") + 1)
3246 * -- VPD Instance 'I'
3247 * -- VPD Type String 'S'
3248 * -- VPD data length == 4
3249 * -- property string == phy-type
6aa20a22 3250 *
1f26dac3 3251 * -- correct length == 23
6aa20a22
JG
3252 * 3 (type) + 2 (size) +
3253 * 14 (strlen("phy-interface") + 1) +
1f26dac3
DM
3254 * 4 (strlen("pcs") + 1)
3255 * -- VPD Instance 'I'
3256 * -- VPD Type String 'S'
3257 * -- VPD data length == 4
3258 * -- property string == phy-interface
3259 */
3260 if (readb(p) != 'I')
3261 goto next;
3262
3263 /* finally, check string and length */
3264 type = readb(p + 3);
3265 if (type == 'B') {
3266 if ((klen == 29) && readb(p + 4) == 6 &&
6aa20a22 3267 cas_vpd_match(p + 5,
1f26dac3 3268 "local-mac-address")) {
6aa20a22 3269 if (mac_off++ > offset)
1f26dac3
DM
3270 goto next;
3271
3272 /* set mac address */
6aa20a22
JG
3273 for (j = 0; j < 6; j++)
3274 dev_addr[j] =
1f26dac3
DM
3275 readb(p + 23 + j);
3276 goto found_mac;
3277 }
3278 }
3279
3280 if (type != 'S')
3281 goto next;
3282
3283#ifdef USE_ENTROPY_DEV
6aa20a22 3284 if ((klen == 24) &&
1f26dac3
DM
3285 cas_vpd_match(p + 5, "entropy-dev") &&
3286 cas_vpd_match(p + 17, "vms110")) {
3287 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3288 goto next;
3289 }
3290#endif
3291
3292 if (found & VPD_FOUND_PHY)
3293 goto next;
3294
3295 if ((klen == 18) && readb(p + 4) == 4 &&
3296 cas_vpd_match(p + 5, "phy-type")) {
3297 if (cas_vpd_match(p + 14, "pcs")) {
3298 phy_type = CAS_PHY_SERDES;
3299 goto found_phy;
3300 }
3301 }
6aa20a22 3302
1f26dac3
DM
3303 if ((klen == 23) && readb(p + 4) == 4 &&
3304 cas_vpd_match(p + 5, "phy-interface")) {
3305 if (cas_vpd_match(p + 19, "pcs")) {
3306 phy_type = CAS_PHY_SERDES;
3307 goto found_phy;
3308 }
3309 }
3310found_mac:
3311 found |= VPD_FOUND_MAC;
3312 goto next;
3313
3314found_phy:
3315 found |= VPD_FOUND_PHY;
3316
3317next:
3318 p += klen;
3319 }
3320 i += len + 3;
3321 }
3322
3323use_random_mac_addr:
3324 if (found & VPD_FOUND_MAC)
3325 goto done;
3326
92d76e81 3327#if defined(CONFIG_SPARC)
4e3dbdb1
RM
3328 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3329 if (addr != NULL) {
d458cdf7 3330 memcpy(dev_addr, addr, ETH_ALEN);
4e3dbdb1
RM
3331 goto done;
3332 }
3333#endif
3334
1f26dac3 3335 /* Sun MAC prefix then 3 random bytes. */
436d27d1 3336 pr_info("MAC address not found in ROM VPD\n");
1f26dac3
DM
3337 dev_addr[0] = 0x08;
3338 dev_addr[1] = 0x00;
3339 dev_addr[2] = 0x20;
3340 get_random_bytes(dev_addr + 3, 3);
3341
3342done:
3343 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3344 return phy_type;
3345}
3346
3347/* check pci invariants */
3348static void cas_check_pci_invariants(struct cas *cp)
3349{
3350 struct pci_dev *pdev = cp->pdev;
1f26dac3
DM
3351
3352 cp->cas_flags = 0;
1f26dac3
DM
3353 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3354 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
44c10138 3355 if (pdev->revision >= CAS_ID_REVPLUS)
1f26dac3 3356 cp->cas_flags |= CAS_FLAG_REG_PLUS;
44c10138 3357 if (pdev->revision < CAS_ID_REVPLUS02u)
1f26dac3
DM
3358 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3359
3360 /* Original Cassini supports HW CSUM, but it's not
3361 * enabled by default as it can trigger TX hangs.
3362 */
44c10138 3363 if (pdev->revision < CAS_ID_REV2)
1f26dac3
DM
3364 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3365 } else {
3366 /* Only sun has original cassini chips. */
3367 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3368
3369 /* We use a flag because the same phy might be externally
3370 * connected.
3371 */
3372 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3373 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3374 cp->cas_flags |= CAS_FLAG_SATURN;
3375 }
3376}
3377
3378
3379static int cas_check_invariants(struct cas *cp)
3380{
3381 struct pci_dev *pdev = cp->pdev;
3382 u32 cfg;
3383 int i;
3384
3385 /* get page size for rx buffers. */
6aa20a22 3386 cp->page_order = 0;
1f26dac3
DM
3387#ifdef USE_PAGE_ORDER
3388 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3389 /* see if we can allocate larger pages */
6aa20a22
JG
3390 struct page *page = alloc_pages(GFP_ATOMIC,
3391 CAS_JUMBO_PAGE_SHIFT -
1f26dac3
DM
3392 PAGE_SHIFT);
3393 if (page) {
3394 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3395 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3396 } else {
436d27d1 3397 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
1f26dac3
DM
3398 }
3399 }
3400#endif
3401 cp->page_size = (PAGE_SIZE << cp->page_order);
3402
3403 /* Fetch the FIFO configurations. */
3404 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3405 cp->rx_fifo_size = RX_FIFO_SIZE;
3406
6aa20a22 3407 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
1f26dac3
DM
3408 * they're both connected.
3409 */
6aa20a22 3410 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
1f26dac3
DM
3411 PCI_SLOT(pdev->devfn));
3412 if (cp->phy_type & CAS_PHY_SERDES) {
3413 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3414 return 0; /* no more checking needed */
6aa20a22 3415 }
1f26dac3
DM
3416
3417 /* MII */
3418 cfg = readl(cp->regs + REG_MIF_CFG);
3419 if (cfg & MIF_CFG_MDIO_1) {
3420 cp->phy_type = CAS_PHY_MII_MDIO1;
3421 } else if (cfg & MIF_CFG_MDIO_0) {
3422 cp->phy_type = CAS_PHY_MII_MDIO0;
3423 }
3424
3425 cas_mif_poll(cp, 0);
3426 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3427
3428 for (i = 0; i < 32; i++) {
3429 u32 phy_id;
3430 int j;
3431
3432 for (j = 0; j < 3; j++) {
3433 cp->phy_addr = i;
3434 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3435 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3436 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3437 cp->phy_id = phy_id;
3438 goto done;
3439 }
3440 }
3441 }
436d27d1 3442 pr_err("MII phy did not respond [%08x]\n",
1f26dac3
DM
3443 readl(cp->regs + REG_MIF_STATE_MACHINE));
3444 return -1;
3445
3446done:
3447 /* see if we can do gigabit */
3448 cfg = cas_phy_read(cp, MII_BMSR);
6aa20a22 3449 if ((cfg & CAS_BMSR_1000_EXTEND) &&
1f26dac3
DM
3450 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3451 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3452 return 0;
3453}
3454
3455/* Must be invoked under cp->lock. */
3456static inline void cas_start_dma(struct cas *cp)
3457{
3458 int i;
3459 u32 val;
3460 int txfailed = 0;
6aa20a22 3461
1f26dac3
DM
3462 /* enable dma */
3463 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3464 writel(val, cp->regs + REG_TX_CFG);
3465 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3466 writel(val, cp->regs + REG_RX_CFG);
3467
3468 /* enable the mac */
3469 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3470 writel(val, cp->regs + REG_MAC_TX_CFG);
3471 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3472 writel(val, cp->regs + REG_MAC_RX_CFG);
3473
3474 i = STOP_TRIES;
3475 while (i-- > 0) {
3476 val = readl(cp->regs + REG_MAC_TX_CFG);
3477 if ((val & MAC_TX_CFG_EN))
3478 break;
3479 udelay(10);
3480 }
3481 if (i < 0) txfailed = 1;
3482 i = STOP_TRIES;
3483 while (i-- > 0) {
3484 val = readl(cp->regs + REG_MAC_RX_CFG);
3485 if ((val & MAC_RX_CFG_EN)) {
3486 if (txfailed) {
436d27d1
JP
3487 netdev_err(cp->dev,
3488 "enabling mac failed [tx:%08x:%08x]\n",
3489 readl(cp->regs + REG_MIF_STATE_MACHINE),
3490 readl(cp->regs + REG_MAC_STATE_MACHINE));
1f26dac3
DM
3491 }
3492 goto enable_rx_done;
3493 }
3494 udelay(10);
3495 }
436d27d1
JP
3496 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3497 (txfailed ? "tx,rx" : "rx"),
3498 readl(cp->regs + REG_MIF_STATE_MACHINE),
3499 readl(cp->regs + REG_MAC_STATE_MACHINE));
1f26dac3
DM
3500
3501enable_rx_done:
3502 cas_unmask_intr(cp); /* enable interrupts */
3503 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3504 writel(0, cp->regs + REG_RX_COMP_TAIL);
3505
3506 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
6aa20a22
JG
3507 if (N_RX_DESC_RINGS > 1)
3508 writel(RX_DESC_RINGN_SIZE(1) - 4,
1f26dac3
DM
3509 cp->regs + REG_PLUS_RX_KICK1);
3510
6aa20a22 3511 for (i = 1; i < N_RX_COMP_RINGS; i++)
1f26dac3
DM
3512 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3513 }
3514}
3515
3516/* Must be invoked under cp->lock. */
3517static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3518 int *pause)
3519{
3520 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3521 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3522 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3523 if (val & PCS_MII_LPA_ASYM_PAUSE)
3524 *pause |= 0x10;
3525 *spd = 1000;
3526}
3527
3528/* Must be invoked under cp->lock. */
3529static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3530 int *pause)
3531{
3532 u32 val;
3533
3534 *fd = 0;
3535 *spd = 10;
3536 *pause = 0;
6aa20a22 3537
1f26dac3
DM
3538 /* use GMII registers */
3539 val = cas_phy_read(cp, MII_LPA);
3540 if (val & CAS_LPA_PAUSE)
3541 *pause = 0x01;
3542
3543 if (val & CAS_LPA_ASYM_PAUSE)
3544 *pause |= 0x10;
3545
3546 if (val & LPA_DUPLEX)
3547 *fd = 1;
3548 if (val & LPA_100)
3549 *spd = 100;
3550
3551 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3552 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3553 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3554 *spd = 1000;
3555 if (val & CAS_LPA_1000FULL)
3556 *fd = 1;
3557 }
3558}
3559
3560/* A link-up condition has occurred, initialize and enable the
3561 * rest of the chip.
3562 *
3563 * Must be invoked under cp->lock.
3564 */
3565static void cas_set_link_modes(struct cas *cp)
3566{
3567 u32 val;
3568 int full_duplex, speed, pause;
3569
3570 full_duplex = 0;
3571 speed = 10;
3572 pause = 0;
3573
3574 if (CAS_PHY_MII(cp->phy_type)) {
3575 cas_mif_poll(cp, 0);
3576 val = cas_phy_read(cp, MII_BMCR);
3577 if (val & BMCR_ANENABLE) {
6aa20a22 3578 cas_read_mii_link_mode(cp, &full_duplex, &speed,
1f26dac3
DM
3579 &pause);
3580 } else {
3581 if (val & BMCR_FULLDPLX)
3582 full_duplex = 1;
3583
3584 if (val & BMCR_SPEED100)
3585 speed = 100;
3586 else if (val & CAS_BMCR_SPEED1000)
3587 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3588 1000 : 100;
3589 }
3590 cas_mif_poll(cp, 1);
3591
3592 } else {
3593 val = readl(cp->regs + REG_PCS_MII_CTRL);
3594 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3595 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3596 if (val & PCS_MII_CTRL_DUPLEX)
3597 full_duplex = 1;
3598 }
3599 }
3600
436d27d1
JP
3601 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3602 speed, full_duplex ? "full" : "half");
1f26dac3
DM
3603
3604 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3605 if (CAS_PHY_MII(cp->phy_type)) {
3606 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3607 if (!full_duplex)
3608 val |= MAC_XIF_DISABLE_ECHO;
3609 }
6aa20a22 3610 if (full_duplex)
1f26dac3
DM
3611 val |= MAC_XIF_FDPLX_LED;
3612 if (speed == 1000)
3613 val |= MAC_XIF_GMII_MODE;
3614 writel(val, cp->regs + REG_MAC_XIF_CFG);
3615
3616 /* deal with carrier and collision detect. */
3617 val = MAC_TX_CFG_IPG_EN;
3618 if (full_duplex) {
3619 val |= MAC_TX_CFG_IGNORE_CARRIER;
3620 val |= MAC_TX_CFG_IGNORE_COLL;
3621 } else {
3622#ifndef USE_CSMA_CD_PROTO
3623 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3624 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3625#endif
3626 }
3627 /* val now set up for REG_MAC_TX_CFG */
3628
3629 /* If gigabit and half-duplex, enable carrier extension
6aa20a22 3630 * mode. increase slot time to 512 bytes as well.
1f26dac3
DM
3631 * else, disable it and make sure slot time is 64 bytes.
3632 * also activate checksum bug workaround
3633 */
3634 if ((speed == 1000) && !full_duplex) {
6aa20a22 3635 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3636 cp->regs + REG_MAC_TX_CFG);
3637
3638 val = readl(cp->regs + REG_MAC_RX_CFG);
3639 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
6aa20a22 3640 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3641 cp->regs + REG_MAC_RX_CFG);
3642
3643 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3644
3645 cp->crc_size = 4;
3646 /* minimum size gigabit frame at half duplex */
3647 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3648
3649 } else {
3650 writel(val, cp->regs + REG_MAC_TX_CFG);
3651
6aa20a22 3652 /* checksum bug workaround. don't strip FCS when in
1f26dac3
DM
3653 * half-duplex mode
3654 */
3655 val = readl(cp->regs + REG_MAC_RX_CFG);
3656 if (full_duplex) {
3657 val |= MAC_RX_CFG_STRIP_FCS;
3658 cp->crc_size = 0;
3659 cp->min_frame_size = CAS_MIN_MTU;
3660 } else {
3661 val &= ~MAC_RX_CFG_STRIP_FCS;
3662 cp->crc_size = 4;
3663 cp->min_frame_size = CAS_MIN_FRAME;
3664 }
6aa20a22 3665 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3666 cp->regs + REG_MAC_RX_CFG);
3667 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3668 }
3669
3670 if (netif_msg_link(cp)) {
3671 if (pause & 0x01) {
436d27d1
JP
3672 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3673 cp->rx_fifo_size,
3674 cp->rx_pause_off,
3675 cp->rx_pause_on);
1f26dac3 3676 } else if (pause & 0x10) {
436d27d1 3677 netdev_info(cp->dev, "TX pause enabled\n");
1f26dac3 3678 } else {
436d27d1 3679 netdev_info(cp->dev, "Pause is disabled\n");
1f26dac3
DM
3680 }
3681 }
3682
3683 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3684 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3685 if (pause) { /* symmetric or asymmetric pause */
3686 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3687 if (pause & 0x01) { /* symmetric pause */
3688 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
6aa20a22 3689 }
1f26dac3
DM
3690 }
3691 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3692 cas_start_dma(cp);
3693}
3694
3695/* Must be invoked under cp->lock. */
3696static void cas_init_hw(struct cas *cp, int restart_link)
3697{
3698 if (restart_link)
3699 cas_phy_init(cp);
3700
3701 cas_init_pause_thresholds(cp);
3702 cas_init_mac(cp);
3703 cas_init_dma(cp);
3704
3705 if (restart_link) {
3706 /* Default aneg parameters */
3707 cp->timer_ticks = 0;
3708 cas_begin_auto_negotiation(cp, NULL);
3709 } else if (cp->lstate == link_up) {
3710 cas_set_link_modes(cp);
3711 netif_carrier_on(cp->dev);
3712 }
3713}
3714
3715/* Must be invoked under cp->lock. on earlier cassini boards,
3716 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3717 * let it settle out, and then restore pci state.
3718 */
3719static void cas_hard_reset(struct cas *cp)
3720{
6aa20a22 3721 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
1f26dac3
DM
3722 udelay(20);
3723 pci_restore_state(cp->pdev);
3724}
3725
3726
3727static void cas_global_reset(struct cas *cp, int blkflag)
3728{
3729 int limit;
3730
3731 /* issue a global reset. don't use RSTOUT. */
3732 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3733 /* For PCS, when the blkflag is set, we should set the
3734 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3735 * the last autonegotiation from being cleared. We'll
3736 * need some special handling if the chip is set into a
3737 * loopback mode.
3738 */
6aa20a22 3739 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
1f26dac3
DM
3740 cp->regs + REG_SW_RESET);
3741 } else {
3742 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3743 }
3744
3745 /* need to wait at least 3ms before polling register */
3746 mdelay(3);
3747
3748 limit = STOP_TRIES;
3749 while (limit-- > 0) {
3750 u32 val = readl(cp->regs + REG_SW_RESET);
3751 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3752 goto done;
3753 udelay(10);
3754 }
436d27d1 3755 netdev_err(cp->dev, "sw reset failed\n");
1f26dac3
DM
3756
3757done:
3758 /* enable various BIM interrupts */
6aa20a22 3759 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
1f26dac3
DM
3760 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3761
3762 /* clear out pci error status mask for handled errors.
3763 * we don't deal with DMA counter overflows as they happen
3764 * all the time.
3765 */
6aa20a22
JG
3766 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3767 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3768 PCI_ERR_BIM_DMA_READ), cp->regs +
1f26dac3
DM
3769 REG_PCI_ERR_STATUS_MASK);
3770
3771 /* set up for MII by default to address mac rx reset timeout
3772 * issue
3773 */
3774 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3775}
3776
3777static void cas_reset(struct cas *cp, int blkflag)
3778{
3779 u32 val;
3780
3781 cas_mask_intr(cp);
3782 cas_global_reset(cp, blkflag);
3783 cas_mac_reset(cp);
3784 cas_entropy_reset(cp);
3785
3786 /* disable dma engines. */
3787 val = readl(cp->regs + REG_TX_CFG);
3788 val &= ~TX_CFG_DMA_EN;
3789 writel(val, cp->regs + REG_TX_CFG);
3790
3791 val = readl(cp->regs + REG_RX_CFG);
3792 val &= ~RX_CFG_DMA_EN;
3793 writel(val, cp->regs + REG_RX_CFG);
3794
3795 /* program header parser */
3796 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3797 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3798 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3799 } else {
3800 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3801 }
3802
3803 /* clear out error registers */
3804 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3805 cas_clear_mac_err(cp);
3806 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3807}
3808
758df69e 3809/* Shut down the chip, must be called with pm_mutex held. */
1f26dac3
DM
3810static void cas_shutdown(struct cas *cp)
3811{
3812 unsigned long flags;
3813
3814 /* Make us not-running to avoid timers respawning */
3815 cp->hw_running = 0;
3816
3817 del_timer_sync(&cp->link_timer);
3818
3819 /* Stop the reset task */
3820#if 0
3821 while (atomic_read(&cp->reset_task_pending_mtu) ||
3822 atomic_read(&cp->reset_task_pending_spare) ||
3823 atomic_read(&cp->reset_task_pending_all))
3824 schedule();
3825
3826#else
3827 while (atomic_read(&cp->reset_task_pending))
3828 schedule();
6aa20a22 3829#endif
1f26dac3
DM
3830 /* Actually stop the chip */
3831 cas_lock_all_save(cp, flags);
3832 cas_reset(cp, 0);
3833 if (cp->cas_flags & CAS_FLAG_SATURN)
3834 cas_phy_powerdown(cp);
3835 cas_unlock_all_restore(cp, flags);
3836}
3837
3838static int cas_change_mtu(struct net_device *dev, int new_mtu)
3839{
3840 struct cas *cp = netdev_priv(dev);
3841
1f26dac3
DM
3842 dev->mtu = new_mtu;
3843 if (!netif_running(dev) || !netif_device_present(dev))
3844 return 0;
3845
3846 /* let the reset task handle it */
3847#if 1
3848 atomic_inc(&cp->reset_task_pending);
3849 if ((cp->phy_type & CAS_PHY_SERDES)) {
3850 atomic_inc(&cp->reset_task_pending_all);
3851 } else {
3852 atomic_inc(&cp->reset_task_pending_mtu);
3853 }
3854 schedule_work(&cp->reset_task);
3855#else
6aa20a22 3856 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
1f26dac3 3857 CAS_RESET_ALL : CAS_RESET_MTU);
436d27d1 3858 pr_err("reset called in cas_change_mtu\n");
1f26dac3
DM
3859 schedule_work(&cp->reset_task);
3860#endif
3861
43829731 3862 flush_work(&cp->reset_task);
1f26dac3
DM
3863 return 0;
3864}
3865
3866static void cas_clean_txd(struct cas *cp, int ring)
3867{
3868 struct cas_tx_desc *txd = cp->init_txds[ring];
3869 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3870 u64 daddr, dlen;
3871 int i, size;
3872
3873 size = TX_DESC_RINGN_SIZE(ring);
3874 for (i = 0; i < size; i++) {
3875 int frag;
3876
3877 if (skbs[i] == NULL)
3878 continue;
3879
3880 skb = skbs[i];
3881 skbs[i] = NULL;
3882
3883 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3884 int ent = i & (size - 1);
3885
3886 /* first buffer is never a tiny buffer and so
3887 * needs to be unmapped.
3888 */
3889 daddr = le64_to_cpu(txd[ent].buffer);
6aa20a22 3890 dlen = CAS_VAL(TX_DESC_BUFLEN,
1f26dac3 3891 le64_to_cpu(txd[ent].control));
dcc82bb0
CJ
3892 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3893 DMA_TO_DEVICE);
1f26dac3
DM
3894
3895 if (frag != skb_shinfo(skb)->nr_frags) {
3896 i++;
3897
3898 /* next buffer might by a tiny buffer.
3899 * skip past it.
3900 */
3901 ent = i & (size - 1);
3902 if (cp->tx_tiny_use[ring][ent].used)
3903 i++;
3904 }
3905 }
3906 dev_kfree_skb_any(skb);
3907 }
3908
3909 /* zero out tiny buf usage */
3910 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3911}
3912
3913/* freed on close */
3914static inline void cas_free_rx_desc(struct cas *cp, int ring)
3915{
3916 cas_page_t **page = cp->rx_pages[ring];
3917 int i, size;
3918
3919 size = RX_DESC_RINGN_SIZE(ring);
3920 for (i = 0; i < size; i++) {
3921 if (page[i]) {
3922 cas_page_free(cp, page[i]);
3923 page[i] = NULL;
3924 }
3925 }
3926}
3927
3928static void cas_free_rxds(struct cas *cp)
3929{
3930 int i;
3931
3932 for (i = 0; i < N_RX_DESC_RINGS; i++)
3933 cas_free_rx_desc(cp, i);
3934}
3935
3936/* Must be invoked under cp->lock. */
3937static void cas_clean_rings(struct cas *cp)
3938{
3939 int i;
3940
3941 /* need to clean all tx rings */
3942 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3943 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3944 for (i = 0; i < N_TX_RINGS; i++)
3945 cas_clean_txd(cp, i);
3946
3947 /* zero out init block */
3948 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3949 cas_clean_rxds(cp);
3950 cas_clean_rxcs(cp);
3951}
3952
3953/* allocated on open */
3954static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3955{
3956 cas_page_t **page = cp->rx_pages[ring];
3957 int size, i = 0;
3958
3959 size = RX_DESC_RINGN_SIZE(ring);
3960 for (i = 0; i < size; i++) {
6aa20a22 3961 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
1f26dac3
DM
3962 return -1;
3963 }
3964 return 0;
3965}
3966
3967static int cas_alloc_rxds(struct cas *cp)
3968{
3969 int i;
3970
3971 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3972 if (cas_alloc_rx_desc(cp, i) < 0) {
3973 cas_free_rxds(cp);
3974 return -1;
3975 }
3976 }
3977 return 0;
3978}
3979
c4028958 3980static void cas_reset_task(struct work_struct *work)
1f26dac3 3981{
c4028958 3982 struct cas *cp = container_of(work, struct cas, reset_task);
1f26dac3
DM
3983#if 0
3984 int pending = atomic_read(&cp->reset_task_pending);
3985#else
3986 int pending_all = atomic_read(&cp->reset_task_pending_all);
3987 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3988 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3989
3990 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3991 /* We can have more tasks scheduled than actually
3992 * needed.
3993 */
3994 atomic_dec(&cp->reset_task_pending);
3995 return;
3996 }
3997#endif
3998 /* The link went down, we reset the ring, but keep
3999 * DMA stopped. Use this function for reset
4000 * on error as well.
4001 */
4002 if (cp->hw_running) {
4003 unsigned long flags;
4004
4005 /* Make sure we don't get interrupts or tx packets */
4006 netif_device_detach(cp->dev);
4007 cas_lock_all_save(cp, flags);
4008
4009 if (cp->opened) {
4010 /* We call cas_spare_recover when we call cas_open.
4011 * but we do not initialize the lists cas_spare_recover
4012 * uses until cas_open is called.
4013 */
4014 cas_spare_recover(cp, GFP_ATOMIC);
4015 }
4016#if 1
4017 /* test => only pending_spare set */
4018 if (!pending_all && !pending_mtu)
4019 goto done;
4020#else
4021 if (pending == CAS_RESET_SPARE)
4022 goto done;
4023#endif
4024 /* when pending == CAS_RESET_ALL, the following
4025 * call to cas_init_hw will restart auto negotiation.
4026 * Setting the second argument of cas_reset to
4027 * !(pending == CAS_RESET_ALL) will set this argument
6aa20a22 4028 * to 1 (avoiding reinitializing the PHY for the normal
1f26dac3
DM
4029 * PCS case) when auto negotiation is not restarted.
4030 */
4031#if 1
4032 cas_reset(cp, !(pending_all > 0));
4033 if (cp->opened)
4034 cas_clean_rings(cp);
4035 cas_init_hw(cp, (pending_all > 0));
4036#else
4037 cas_reset(cp, !(pending == CAS_RESET_ALL));
4038 if (cp->opened)
4039 cas_clean_rings(cp);
4040 cas_init_hw(cp, pending == CAS_RESET_ALL);
4041#endif
4042
4043done:
4044 cas_unlock_all_restore(cp, flags);
4045 netif_device_attach(cp->dev);
4046 }
4047#if 1
4048 atomic_sub(pending_all, &cp->reset_task_pending_all);
4049 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4050 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4051 atomic_dec(&cp->reset_task_pending);
4052#else
4053 atomic_set(&cp->reset_task_pending, 0);
4054#endif
4055}
4056
0822c5d9 4057static void cas_link_timer(struct timer_list *t)
1f26dac3 4058{
0822c5d9 4059 struct cas *cp = from_timer(cp, t, link_timer);
1f26dac3
DM
4060 int mask, pending = 0, reset = 0;
4061 unsigned long flags;
4062
4063 if (link_transition_timeout != 0 &&
4064 cp->link_transition_jiffies_valid &&
6aa20a22 4065 ((jiffies - cp->link_transition_jiffies) >
1f26dac3 4066 (link_transition_timeout))) {
6aa20a22 4067 /* One-second counter so link-down workaround doesn't
1f26dac3
DM
4068 * cause resets to occur so fast as to fool the switch
4069 * into thinking the link is down.
4070 */
4071 cp->link_transition_jiffies_valid = 0;
4072 }
4073
4074 if (!cp->hw_running)
4075 return;
4076
4077 spin_lock_irqsave(&cp->lock, flags);
4078 cas_lock_tx(cp);
4079 cas_entropy_gather(cp);
4080
4081 /* If the link task is still pending, we just
4082 * reschedule the link timer
4083 */
4084#if 1
4085 if (atomic_read(&cp->reset_task_pending_all) ||
4086 atomic_read(&cp->reset_task_pending_spare) ||
6aa20a22 4087 atomic_read(&cp->reset_task_pending_mtu))
1f26dac3
DM
4088 goto done;
4089#else
6aa20a22 4090 if (atomic_read(&cp->reset_task_pending))
1f26dac3
DM
4091 goto done;
4092#endif
4093
4094 /* check for rx cleaning */
4095 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4096 int i, rmask;
4097
4098 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4099 rmask = CAS_FLAG_RXD_POST(i);
4100 if ((mask & rmask) == 0)
4101 continue;
4102
4103 /* post_rxds will do a mod_timer */
4104 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4105 pending = 1;
4106 continue;
4107 }
4108 cp->cas_flags &= ~rmask;
4109 }
4110 }
4111
4112 if (CAS_PHY_MII(cp->phy_type)) {
4113 u16 bmsr;
4114 cas_mif_poll(cp, 0);
4115 bmsr = cas_phy_read(cp, MII_BMSR);
4116 /* WTZ: Solaris driver reads this twice, but that
4117 * may be due to the PCS case and the use of a
4118 * common implementation. Read it twice here to be
4119 * safe.
4120 */
4121 bmsr = cas_phy_read(cp, MII_BMSR);
4122 cas_mif_poll(cp, 1);
4123 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4124 reset = cas_mii_link_check(cp, bmsr);
4125 } else {
4126 reset = cas_pcs_link_check(cp);
4127 }
4128
4129 if (reset)
4130 goto done;
4131
4132 /* check for tx state machine confusion */
4133 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4134 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4135 u32 wptr, rptr;
4136 int tlm = CAS_VAL(MAC_SM_TLM, val);
4137
4138 if (((tlm == 0x5) || (tlm == 0x3)) &&
4139 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
436d27d1
JP
4140 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4141 "tx err: MAC_STATE[%08x]\n", val);
1f26dac3
DM
4142 reset = 1;
4143 goto done;
4144 }
4145
4146 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4147 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4148 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4149 if ((val == 0) && (wptr != rptr)) {
436d27d1
JP
4150 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4151 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4152 val, wptr, rptr);
1f26dac3
DM
4153 reset = 1;
4154 }
4155
4156 if (reset)
4157 cas_hard_reset(cp);
4158 }
4159
4160done:
4161 if (reset) {
4162#if 1
4163 atomic_inc(&cp->reset_task_pending);
4164 atomic_inc(&cp->reset_task_pending_all);
4165 schedule_work(&cp->reset_task);
4166#else
4167 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
436d27d1 4168 pr_err("reset called in cas_link_timer\n");
1f26dac3
DM
4169 schedule_work(&cp->reset_task);
4170#endif
4171 }
4172
4173 if (!pending)
4174 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4175 cas_unlock_tx(cp);
4176 spin_unlock_irqrestore(&cp->lock, flags);
4177}
4178
6aa20a22 4179/* tiny buffers are used to avoid target abort issues with
1f26dac3
DM
4180 * older cassini's
4181 */
4182static void cas_tx_tiny_free(struct cas *cp)
4183{
4184 struct pci_dev *pdev = cp->pdev;
4185 int i;
4186
4187 for (i = 0; i < N_TX_RINGS; i++) {
4188 if (!cp->tx_tiny_bufs[i])
4189 continue;
4190
dcc82bb0
CJ
4191 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4192 cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
1f26dac3
DM
4193 cp->tx_tiny_bufs[i] = NULL;
4194 }
4195}
4196
4197static int cas_tx_tiny_alloc(struct cas *cp)
4198{
4199 struct pci_dev *pdev = cp->pdev;
4200 int i;
4201
4202 for (i = 0; i < N_TX_RINGS; i++) {
6aa20a22 4203 cp->tx_tiny_bufs[i] =
dcc82bb0
CJ
4204 dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4205 &cp->tx_tiny_dvma[i], GFP_KERNEL);
1f26dac3
DM
4206 if (!cp->tx_tiny_bufs[i]) {
4207 cas_tx_tiny_free(cp);
4208 return -1;
4209 }
4210 }
4211 return 0;
4212}
4213
4214
4215static int cas_open(struct net_device *dev)
4216{
4217 struct cas *cp = netdev_priv(dev);
4218 int hw_was_up, err;
4219 unsigned long flags;
4220
758df69e 4221 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
4222
4223 hw_was_up = cp->hw_running;
4224
758df69e 4225 /* The power-management mutex protects the hw_running
1f26dac3
DM
4226 * etc. state so it is safe to do this bit without cp->lock
4227 */
4228 if (!cp->hw_running) {
4229 /* Reset the chip */
4230 cas_lock_all_save(cp, flags);
4231 /* We set the second arg to cas_reset to zero
6aa20a22 4232 * because cas_init_hw below will have its second
1f26dac3
DM
4233 * argument set to non-zero, which will force
4234 * autonegotiation to start.
4235 */
4236 cas_reset(cp, 0);
4237 cp->hw_running = 1;
4238 cas_unlock_all_restore(cp, flags);
4239 }
4240
87d75b52 4241 err = -ENOMEM;
1f26dac3 4242 if (cas_tx_tiny_alloc(cp) < 0)
87d75b52 4243 goto err_unlock;
1f26dac3
DM
4244
4245 /* alloc rx descriptors */
1f26dac3
DM
4246 if (cas_alloc_rxds(cp) < 0)
4247 goto err_tx_tiny;
6aa20a22 4248
1f26dac3
DM
4249 /* allocate spares */
4250 cas_spare_init(cp);
4251 cas_spare_recover(cp, GFP_KERNEL);
4252
4253 /* We can now request the interrupt as we know it's masked
4254 * on the controller. cassini+ has up to 4 interrupts
6aa20a22 4255 * that can be used, but you need to do explicit pci interrupt
1f26dac3
DM
4256 * mapping to expose them
4257 */
4258 if (request_irq(cp->pdev->irq, cas_interrupt,
1fb9df5d 4259 IRQF_SHARED, dev->name, (void *) dev)) {
436d27d1 4260 netdev_err(cp->dev, "failed to request irq !\n");
1f26dac3
DM
4261 err = -EAGAIN;
4262 goto err_spare;
4263 }
4264
bea3348e
SH
4265#ifdef USE_NAPI
4266 napi_enable(&cp->napi);
4267#endif
1f26dac3
DM
4268 /* init hw */
4269 cas_lock_all_save(cp, flags);
4270 cas_clean_rings(cp);
4271 cas_init_hw(cp, !hw_was_up);
4272 cp->opened = 1;
4273 cas_unlock_all_restore(cp, flags);
4274
4275 netif_start_queue(dev);
758df69e 4276 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4277 return 0;
4278
4279err_spare:
4280 cas_spare_free(cp);
4281 cas_free_rxds(cp);
4282err_tx_tiny:
4283 cas_tx_tiny_free(cp);
87d75b52 4284err_unlock:
758df69e 4285 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4286 return err;
4287}
4288
4289static int cas_close(struct net_device *dev)
4290{
4291 unsigned long flags;
4292 struct cas *cp = netdev_priv(dev);
4293
bea3348e 4294#ifdef USE_NAPI
86216268 4295 napi_disable(&cp->napi);
bea3348e 4296#endif
1f26dac3 4297 /* Make sure we don't get distracted by suspend/resume */
758df69e 4298 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
4299
4300 netif_stop_queue(dev);
4301
4302 /* Stop traffic, mark us closed */
4303 cas_lock_all_save(cp, flags);
6aa20a22 4304 cp->opened = 0;
1f26dac3 4305 cas_reset(cp, 0);
6aa20a22 4306 cas_phy_init(cp);
1f26dac3
DM
4307 cas_begin_auto_negotiation(cp, NULL);
4308 cas_clean_rings(cp);
4309 cas_unlock_all_restore(cp, flags);
4310
4311 free_irq(cp->pdev->irq, (void *) dev);
4312 cas_spare_free(cp);
4313 cas_free_rxds(cp);
4314 cas_tx_tiny_free(cp);
758df69e 4315 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4316 return 0;
4317}
4318
4319static struct {
4320 const char name[ETH_GSTRING_LEN];
4321} ethtool_cassini_statnames[] = {
4322 {"collisions"},
4323 {"rx_bytes"},
4324 {"rx_crc_errors"},
4325 {"rx_dropped"},
4326 {"rx_errors"},
4327 {"rx_fifo_errors"},
4328 {"rx_frame_errors"},
4329 {"rx_length_errors"},
4330 {"rx_over_errors"},
4331 {"rx_packets"},
4332 {"tx_aborted_errors"},
4333 {"tx_bytes"},
4334 {"tx_dropped"},
4335 {"tx_errors"},
4336 {"tx_fifo_errors"},
4337 {"tx_packets"}
4338};
4c3616cd 4339#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
1f26dac3
DM
4340
4341static struct {
4342 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4343} ethtool_register_table[] = {
4344 {-MII_BMSR},
4345 {-MII_BMCR},
4346 {REG_CAWR},
4347 {REG_INF_BURST},
4348 {REG_BIM_CFG},
4349 {REG_RX_CFG},
4350 {REG_HP_CFG},
4351 {REG_MAC_TX_CFG},
4352 {REG_MAC_RX_CFG},
4353 {REG_MAC_CTRL_CFG},
4354 {REG_MAC_XIF_CFG},
4355 {REG_MIF_CFG},
4356 {REG_PCS_CFG},
4357 {REG_SATURN_PCFG},
4358 {REG_PCS_MII_STATUS},
4359 {REG_PCS_STATE_MACHINE},
4360 {REG_MAC_COLL_EXCESS},
4361 {REG_MAC_COLL_LATE}
4362};
e9edda69 4363#define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
1f26dac3
DM
4364#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4365
a232f767 4366static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
1f26dac3 4367{
1f26dac3
DM
4368 u8 *p;
4369 int i;
4370 unsigned long flags;
4371
1f26dac3 4372 spin_lock_irqsave(&cp->lock, flags);
a232f767 4373 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
1f26dac3
DM
4374 u16 hval;
4375 u32 val;
4376 if (ethtool_register_table[i].offsets < 0) {
4377 hval = cas_phy_read(cp,
4378 -ethtool_register_table[i].offsets);
4379 val = hval;
4380 } else {
4381 val= readl(cp->regs+ethtool_register_table[i].offsets);
4382 }
4383 memcpy(p, (u8 *)&val, sizeof(u32));
4384 }
4385 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3
DM
4386}
4387
4388static struct net_device_stats *cas_get_stats(struct net_device *dev)
4389{
4390 struct cas *cp = netdev_priv(dev);
4391 struct net_device_stats *stats = cp->net_stats;
4392 unsigned long flags;
4393 int i;
4394 unsigned long tmp;
4395
4396 /* we collate all of the stats into net_stats[N_TX_RING] */
4397 if (!cp->hw_running)
4398 return stats + N_TX_RINGS;
6aa20a22 4399
1f26dac3
DM
4400 /* collect outstanding stats */
4401 /* WTZ: the Cassini spec gives these as 16 bit counters but
4402 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4403 * in case the chip somehow puts any garbage in the other bits.
4404 * Also, counter usage didn't seem to mach what Adrian did
4405 * in the parts of the code that set these quantities. Made
4406 * that consistent.
4407 */
4408 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
6aa20a22 4409 stats[N_TX_RINGS].rx_crc_errors +=
1f26dac3 4410 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
6aa20a22 4411 stats[N_TX_RINGS].rx_frame_errors +=
1f26dac3 4412 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
6aa20a22 4413 stats[N_TX_RINGS].rx_length_errors +=
1f26dac3
DM
4414 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4415#if 1
4416 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4417 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4418 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4419 stats[N_TX_RINGS].collisions +=
4420 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4421#else
6aa20a22 4422 stats[N_TX_RINGS].tx_aborted_errors +=
1f26dac3
DM
4423 readl(cp->regs + REG_MAC_COLL_EXCESS);
4424 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4425 readl(cp->regs + REG_MAC_COLL_LATE);
4426#endif
4427 cas_clear_mac_err(cp);
4428
4429 /* saved bits that are unique to ring 0 */
4430 spin_lock(&cp->stat_lock[0]);
4431 stats[N_TX_RINGS].collisions += stats[0].collisions;
4432 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4433 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4434 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4435 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4436 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4437 spin_unlock(&cp->stat_lock[0]);
4438
4439 for (i = 0; i < N_TX_RINGS; i++) {
4440 spin_lock(&cp->stat_lock[i]);
6aa20a22 4441 stats[N_TX_RINGS].rx_length_errors +=
1f26dac3
DM
4442 stats[i].rx_length_errors;
4443 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4444 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4445 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4446 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4447 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4448 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4449 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4450 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4451 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4452 memset(stats + i, 0, sizeof(struct net_device_stats));
4453 spin_unlock(&cp->stat_lock[i]);
4454 }
4455 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4456 return stats + N_TX_RINGS;
4457}
4458
4459
4460static void cas_set_multicast(struct net_device *dev)
4461{
4462 struct cas *cp = netdev_priv(dev);
4463 u32 rxcfg, rxcfg_new;
4464 unsigned long flags;
4465 int limit = STOP_TRIES;
6aa20a22 4466
1f26dac3
DM
4467 if (!cp->hw_running)
4468 return;
6aa20a22 4469
1f26dac3
DM
4470 spin_lock_irqsave(&cp->lock, flags);
4471 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4472
4473 /* disable RX MAC and wait for completion */
4474 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4475 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4476 if (!limit--)
4477 break;
4478 udelay(10);
4479 }
4480
4481 /* disable hash filter and wait for completion */
4482 limit = STOP_TRIES;
4483 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4484 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4485 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4486 if (!limit--)
4487 break;
4488 udelay(10);
4489 }
4490
4491 /* program hash filters */
4492 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4493 rxcfg |= rxcfg_new;
4494 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4495 spin_unlock_irqrestore(&cp->lock, flags);
4496}
4497
a232f767
AV
4498static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4499{
4500 struct cas *cp = netdev_priv(dev);
612a94d6
RJ
4501 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4502 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4503 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
a232f767
AV
4504}
4505
2c784b00
PR
4506static int cas_get_link_ksettings(struct net_device *dev,
4507 struct ethtool_link_ksettings *cmd)
1f26dac3
DM
4508{
4509 struct cas *cp = netdev_priv(dev);
4510 u16 bmcr;
4511 int full_duplex, speed, pause;
1f26dac3
DM
4512 unsigned long flags;
4513 enum link_state linkstate = link_up;
2c784b00 4514 u32 supported, advertising;
1f26dac3 4515
2c784b00
PR
4516 advertising = 0;
4517 supported = SUPPORTED_Autoneg;
a232f767 4518 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
2c784b00
PR
4519 supported |= SUPPORTED_1000baseT_Full;
4520 advertising |= ADVERTISED_1000baseT_Full;
1f26dac3
DM
4521 }
4522
a232f767
AV
4523 /* Record PHY settings if HW is on. */
4524 spin_lock_irqsave(&cp->lock, flags);
4525 bmcr = 0;
4526 linkstate = cp->lstate;
4527 if (CAS_PHY_MII(cp->phy_type)) {
2c784b00
PR
4528 cmd->base.port = PORT_MII;
4529 cmd->base.phy_address = cp->phy_addr;
4530 advertising |= ADVERTISED_TP | ADVERTISED_MII |
6aa20a22
JG
4531 ADVERTISED_10baseT_Half |
4532 ADVERTISED_10baseT_Full |
4533 ADVERTISED_100baseT_Half |
a232f767
AV
4534 ADVERTISED_100baseT_Full;
4535
2c784b00 4536 supported |=
6aa20a22 4537 (SUPPORTED_10baseT_Half |
a232f767 4538 SUPPORTED_10baseT_Full |
6aa20a22 4539 SUPPORTED_100baseT_Half |
a232f767
AV
4540 SUPPORTED_100baseT_Full |
4541 SUPPORTED_TP | SUPPORTED_MII);
4542
4543 if (cp->hw_running) {
4544 cas_mif_poll(cp, 0);
4545 bmcr = cas_phy_read(cp, MII_BMCR);
6aa20a22 4546 cas_read_mii_link_mode(cp, &full_duplex,
a232f767
AV
4547 &speed, &pause);
4548 cas_mif_poll(cp, 1);
1f26dac3
DM
4549 }
4550
a232f767 4551 } else {
2c784b00
PR
4552 cmd->base.port = PORT_FIBRE;
4553 cmd->base.phy_address = 0;
4554 supported |= SUPPORTED_FIBRE;
4555 advertising |= ADVERTISED_FIBRE;
a232f767
AV
4556
4557 if (cp->hw_running) {
6aa20a22 4558 /* pcs uses the same bits as mii */
a232f767 4559 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
6aa20a22 4560 cas_read_pcs_link_mode(cp, &full_duplex,
a232f767 4561 &speed, &pause);
1f26dac3 4562 }
a232f767
AV
4563 }
4564 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3 4565
a232f767 4566 if (bmcr & BMCR_ANENABLE) {
2c784b00
PR
4567 advertising |= ADVERTISED_Autoneg;
4568 cmd->base.autoneg = AUTONEG_ENABLE;
4569 cmd->base.speed = ((speed == 10) ?
70739497
DD
4570 SPEED_10 :
4571 ((speed == 1000) ?
2c784b00
PR
4572 SPEED_1000 : SPEED_100));
4573 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
a232f767 4574 } else {
2c784b00
PR
4575 cmd->base.autoneg = AUTONEG_DISABLE;
4576 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
70739497
DD
4577 SPEED_1000 :
4578 ((bmcr & BMCR_SPEED100) ?
2c784b00
PR
4579 SPEED_100 : SPEED_10));
4580 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
a232f767
AV
4581 DUPLEX_FULL : DUPLEX_HALF;
4582 }
4583 if (linkstate != link_up) {
4584 /* Force these to "unknown" if the link is not up and
6aa20a22 4585 * autonogotiation in enabled. We can set the link
a232f767
AV
4586 * speed to 0, but not cmd->duplex,
4587 * because its legal values are 0 and 1. Ethtool will
4588 * print the value reported in parentheses after the
4589 * word "Unknown" for unrecognized values.
4590 *
4591 * If in forced mode, we report the speed and duplex
4592 * settings that we configured.
4593 */
4594 if (cp->link_cntl & BMCR_ANENABLE) {
2c784b00
PR
4595 cmd->base.speed = 0;
4596 cmd->base.duplex = 0xff;
1f26dac3 4597 } else {
2c784b00 4598 cmd->base.speed = SPEED_10;
a232f767 4599 if (cp->link_cntl & BMCR_SPEED100) {
2c784b00 4600 cmd->base.speed = SPEED_100;
a232f767 4601 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
2c784b00 4602 cmd->base.speed = SPEED_1000;
1f26dac3 4603 }
2c784b00 4604 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
a232f767 4605 DUPLEX_FULL : DUPLEX_HALF;
1f26dac3 4606 }
a232f767 4607 }
2c784b00
PR
4608
4609 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4610 supported);
4611 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4612 advertising);
4613
a232f767
AV
4614 return 0;
4615}
1f26dac3 4616
2c784b00
PR
4617static int cas_set_link_ksettings(struct net_device *dev,
4618 const struct ethtool_link_ksettings *cmd)
a232f767
AV
4619{
4620 struct cas *cp = netdev_priv(dev);
4621 unsigned long flags;
2c784b00 4622 u32 speed = cmd->base.speed;
1f26dac3 4623
a232f767 4624 /* Verify the settings we care about. */
2c784b00
PR
4625 if (cmd->base.autoneg != AUTONEG_ENABLE &&
4626 cmd->base.autoneg != AUTONEG_DISABLE)
a232f767 4627 return -EINVAL;
1f26dac3 4628
2c784b00 4629 if (cmd->base.autoneg == AUTONEG_DISABLE &&
25db0338
DD
4630 ((speed != SPEED_1000 &&
4631 speed != SPEED_100 &&
4632 speed != SPEED_10) ||
2c784b00
PR
4633 (cmd->base.duplex != DUPLEX_HALF &&
4634 cmd->base.duplex != DUPLEX_FULL)))
a232f767 4635 return -EINVAL;
1f26dac3 4636
a232f767
AV
4637 /* Apply settings and restart link process. */
4638 spin_lock_irqsave(&cp->lock, flags);
4639 cas_begin_auto_negotiation(cp, cmd);
4640 spin_unlock_irqrestore(&cp->lock, flags);
4641 return 0;
4642}
1f26dac3 4643
a232f767
AV
4644static int cas_nway_reset(struct net_device *dev)
4645{
4646 struct cas *cp = netdev_priv(dev);
4647 unsigned long flags;
1f26dac3 4648
a232f767
AV
4649 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4650 return -EINVAL;
1f26dac3 4651
a232f767
AV
4652 /* Restart link process. */
4653 spin_lock_irqsave(&cp->lock, flags);
4654 cas_begin_auto_negotiation(cp, NULL);
4655 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3 4656
a232f767
AV
4657 return 0;
4658}
1f26dac3 4659
a232f767
AV
4660static u32 cas_get_link(struct net_device *dev)
4661{
4662 struct cas *cp = netdev_priv(dev);
4663 return cp->lstate == link_up;
4664}
1f26dac3 4665
a232f767
AV
4666static u32 cas_get_msglevel(struct net_device *dev)
4667{
4668 struct cas *cp = netdev_priv(dev);
4669 return cp->msg_enable;
4670}
1f26dac3 4671
a232f767
AV
4672static void cas_set_msglevel(struct net_device *dev, u32 value)
4673{
4674 struct cas *cp = netdev_priv(dev);
4675 cp->msg_enable = value;
4676}
1f26dac3 4677
a232f767
AV
4678static int cas_get_regs_len(struct net_device *dev)
4679{
4680 struct cas *cp = netdev_priv(dev);
4681 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4682}
1f26dac3 4683
a232f767
AV
4684static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4685 void *p)
4686{
4687 struct cas *cp = netdev_priv(dev);
4688 regs->version = 0;
4689 /* cas_read_regs handles locks (cp->lock). */
4690 cas_read_regs(cp, p, regs->len / sizeof(u32));
4691}
1f26dac3 4692
b9f2c044 4693static int cas_get_sset_count(struct net_device *dev, int sset)
a232f767 4694{
b9f2c044
JG
4695 switch (sset) {
4696 case ETH_SS_STATS:
4697 return CAS_NUM_STAT_KEYS;
4698 default:
4699 return -EOPNOTSUPP;
4700 }
a232f767 4701}
1f26dac3 4702
a232f767
AV
4703static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4704{
6aa20a22 4705 memcpy(data, &ethtool_cassini_statnames,
a232f767
AV
4706 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4707}
1f26dac3 4708
a232f767
AV
4709static void cas_get_ethtool_stats(struct net_device *dev,
4710 struct ethtool_stats *estats, u64 *data)
4711{
4712 struct cas *cp = netdev_priv(dev);
4713 struct net_device_stats *stats = cas_get_stats(cp->dev);
4714 int i = 0;
4715 data[i++] = stats->collisions;
4716 data[i++] = stats->rx_bytes;
4717 data[i++] = stats->rx_crc_errors;
4718 data[i++] = stats->rx_dropped;
4719 data[i++] = stats->rx_errors;
4720 data[i++] = stats->rx_fifo_errors;
4721 data[i++] = stats->rx_frame_errors;
4722 data[i++] = stats->rx_length_errors;
4723 data[i++] = stats->rx_over_errors;
4724 data[i++] = stats->rx_packets;
4725 data[i++] = stats->tx_aborted_errors;
4726 data[i++] = stats->tx_bytes;
4727 data[i++] = stats->tx_dropped;
4728 data[i++] = stats->tx_errors;
4729 data[i++] = stats->tx_fifo_errors;
4730 data[i++] = stats->tx_packets;
4731 BUG_ON(i != CAS_NUM_STAT_KEYS);
1f26dac3
DM
4732}
4733
7282d491 4734static const struct ethtool_ops cas_ethtool_ops = {
a232f767 4735 .get_drvinfo = cas_get_drvinfo,
a232f767
AV
4736 .nway_reset = cas_nway_reset,
4737 .get_link = cas_get_link,
4738 .get_msglevel = cas_get_msglevel,
4739 .set_msglevel = cas_set_msglevel,
4740 .get_regs_len = cas_get_regs_len,
4741 .get_regs = cas_get_regs,
b9f2c044 4742 .get_sset_count = cas_get_sset_count,
a232f767
AV
4743 .get_strings = cas_get_strings,
4744 .get_ethtool_stats = cas_get_ethtool_stats,
2c784b00
PR
4745 .get_link_ksettings = cas_get_link_ksettings,
4746 .set_link_ksettings = cas_set_link_ksettings,
a232f767
AV
4747};
4748
1f26dac3
DM
4749static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4750{
4751 struct cas *cp = netdev_priv(dev);
46d7031e 4752 struct mii_ioctl_data *data = if_mii(ifr);
1f26dac3
DM
4753 unsigned long flags;
4754 int rc = -EOPNOTSUPP;
6aa20a22 4755
758df69e 4756 /* Hold the PM mutex while doing ioctl's or we may collide
1f26dac3
DM
4757 * with open/close and power management and oops.
4758 */
758df69e 4759 mutex_lock(&cp->pm_mutex);
1f26dac3 4760 switch (cmd) {
1f26dac3
DM
4761 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4762 data->phy_id = cp->phy_addr;
df561f66 4763 fallthrough;
1f26dac3
DM
4764
4765 case SIOCGMIIREG: /* Read MII PHY register. */
4766 spin_lock_irqsave(&cp->lock, flags);
4767 cas_mif_poll(cp, 0);
4768 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4769 cas_mif_poll(cp, 1);
4770 spin_unlock_irqrestore(&cp->lock, flags);
4771 rc = 0;
4772 break;
4773
4774 case SIOCSMIIREG: /* Write MII PHY register. */
1f26dac3
DM
4775 spin_lock_irqsave(&cp->lock, flags);
4776 cas_mif_poll(cp, 0);
4777 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4778 cas_mif_poll(cp, 1);
4779 spin_unlock_irqrestore(&cp->lock, flags);
4780 break;
4781 default:
4782 break;
ee289b64 4783 }
1f26dac3 4784
758df69e 4785 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4786 return rc;
4787}
4788
9e1848b6
DM
4789/* When this chip sits underneath an Intel 31154 bridge, it is the
4790 * only subordinate device and we can tweak the bridge settings to
4791 * reflect that fact.
4792 */
f73d12bd 4793static void cas_program_bridge(struct pci_dev *cas_pdev)
9e1848b6
DM
4794{
4795 struct pci_dev *pdev = cas_pdev->bus->self;
4796 u32 val;
4797
4798 if (!pdev)
4799 return;
4800
4801 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4802 return;
4803
4804 /* Clear bit 10 (Bus Parking Control) in the Secondary
4805 * Arbiter Control/Status Register which lives at offset
4806 * 0x41. Using a 32-bit word read/modify/write at 0x40
4807 * is much simpler so that's how we do this.
4808 */
4809 pci_read_config_dword(pdev, 0x40, &val);
4810 val &= ~0x00040000;
4811 pci_write_config_dword(pdev, 0x40, val);
4812
4813 /* Max out the Multi-Transaction Timer settings since
4814 * Cassini is the only device present.
4815 *
4816 * The register is 16-bit and lives at 0x50. When the
4817 * settings are enabled, it extends the GRANT# signal
4818 * for a requestor after a transaction is complete. This
4819 * allows the next request to run without first needing
4820 * to negotiate the GRANT# signal back.
4821 *
4822 * Bits 12:10 define the grant duration:
4823 *
4824 * 1 -- 16 clocks
4825 * 2 -- 32 clocks
4826 * 3 -- 64 clocks
4827 * 4 -- 128 clocks
4828 * 5 -- 256 clocks
4829 *
4830 * All other values are illegal.
4831 *
4832 * Bits 09:00 define which REQ/GNT signal pairs get the
4833 * GRANT# signal treatment. We set them all.
4834 */
4835 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4836
4837 /* The Read Prefecth Policy register is 16-bit and sits at
4838 * offset 0x52. It enables a "smart" pre-fetch policy. We
4839 * enable it and max out all of the settings since only one
4840 * device is sitting underneath and thus bandwidth sharing is
4841 * not an issue.
4842 *
4843 * The register has several 3 bit fields, which indicates a
4844 * multiplier applied to the base amount of prefetching the
4845 * chip would do. These fields are at:
4846 *
4847 * 15:13 --- ReRead Primary Bus
4848 * 12:10 --- FirstRead Primary Bus
4849 * 09:07 --- ReRead Secondary Bus
4850 * 06:04 --- FirstRead Secondary Bus
4851 *
4852 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4853 * get enabled on. Bit 3 is a grouped enabler which controls
4854 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4855 * the individual REQ/GNT pairs [2:0].
4856 */
4857 pci_write_config_word(pdev, 0x52,
4858 (0x7 << 13) |
4859 (0x7 << 10) |
4860 (0x7 << 7) |
4861 (0x7 << 4) |
4862 (0xf << 0));
4863
4864 /* Force cacheline size to 0x8 */
4865 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4866
4867 /* Force latency timer to maximum setting so Cassini can
4868 * sit on the bus as long as it likes.
4869 */
4870 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4871}
4872
83d6f035
SH
4873static const struct net_device_ops cas_netdev_ops = {
4874 .ndo_open = cas_open,
4875 .ndo_stop = cas_close,
4876 .ndo_start_xmit = cas_start_xmit,
4877 .ndo_get_stats = cas_get_stats,
afc4b13d 4878 .ndo_set_rx_mode = cas_set_multicast,
83d6f035
SH
4879 .ndo_do_ioctl = cas_ioctl,
4880 .ndo_tx_timeout = cas_tx_timeout,
4881 .ndo_change_mtu = cas_change_mtu,
4882 .ndo_set_mac_address = eth_mac_addr,
4883 .ndo_validate_addr = eth_validate_addr,
4884#ifdef CONFIG_NET_POLL_CONTROLLER
4885 .ndo_poll_controller = cas_netpoll,
4886#endif
4887};
4888
1dd06ae8 4889static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1f26dac3
DM
4890{
4891 static int cas_version_printed = 0;
18e37f2a 4892 unsigned long casreg_len;
1f26dac3
DM
4893 struct net_device *dev;
4894 struct cas *cp;
4895 int i, err, pci_using_dac;
4896 u16 pci_cmd;
4897 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4898
4899 if (cas_version_printed++ == 0)
436d27d1 4900 pr_info("%s", version);
1f26dac3
DM
4901
4902 err = pci_enable_device(pdev);
4903 if (err) {
436d27d1 4904 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
1f26dac3
DM
4905 return err;
4906 }
4907
4908 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9b91cf9d 4909 dev_err(&pdev->dev, "Cannot find proper PCI device "
436d27d1 4910 "base address, aborting\n");
1f26dac3
DM
4911 err = -ENODEV;
4912 goto err_out_disable_pdev;
4913 }
4914
4915 dev = alloc_etherdev(sizeof(*cp));
4916 if (!dev) {
1f26dac3
DM
4917 err = -ENOMEM;
4918 goto err_out_disable_pdev;
4919 }
1f26dac3
DM
4920 SET_NETDEV_DEV(dev, &pdev->dev);
4921
4922 err = pci_request_regions(pdev, dev->name);
4923 if (err) {
436d27d1 4924 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
1f26dac3
DM
4925 goto err_out_free_netdev;
4926 }
4927 pci_set_master(pdev);
4928
4929 /* we must always turn on parity response or else parity
4930 * doesn't get generated properly. disable SERR/PERR as well.
4931 * in addition, we want to turn MWI on.
4932 */
4933 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4934 pci_cmd &= ~PCI_COMMAND_SERR;
4935 pci_cmd |= PCI_COMMAND_PARITY;
4936 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
694625c0 4937 if (pci_try_set_mwi(pdev))
fe3881cf 4938 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
04efb878 4939
9e1848b6
DM
4940 cas_program_bridge(pdev);
4941
1f26dac3
DM
4942 /*
4943 * On some architectures, the default cache line size set
694625c0 4944 * by pci_try_set_mwi reduces perforamnce. We have to increase
1f26dac3
DM
4945 * it for this case. To start, we'll print some configuration
4946 * data.
4947 */
4948#if 1
4949 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4950 &orig_cacheline_size);
4951 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
6aa20a22
JG
4952 cas_cacheline_size =
4953 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
1f26dac3 4954 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
6aa20a22
JG
4955 if (pci_write_config_byte(pdev,
4956 PCI_CACHE_LINE_SIZE,
1f26dac3 4957 cas_cacheline_size)) {
9b91cf9d 4958 dev_err(&pdev->dev, "Could not set PCI cache "
1f26dac3 4959 "line size\n");
5a730153 4960 goto err_out_free_res;
1f26dac3
DM
4961 }
4962 }
4963#endif
4964
4965
4966 /* Configure DMA attributes. */
dcc82bb0 4967 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1f26dac3 4968 pci_using_dac = 1;
dcc82bb0 4969 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1f26dac3 4970 if (err < 0) {
9b91cf9d 4971 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
1f26dac3
DM
4972 "for consistent allocations\n");
4973 goto err_out_free_res;
4974 }
4975
4976 } else {
dcc82bb0 4977 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1f26dac3 4978 if (err) {
9b91cf9d 4979 dev_err(&pdev->dev, "No usable DMA configuration, "
436d27d1 4980 "aborting\n");
1f26dac3
DM
4981 goto err_out_free_res;
4982 }
4983 pci_using_dac = 0;
4984 }
4985
1f26dac3
DM
4986 casreg_len = pci_resource_len(pdev, 0);
4987
4988 cp = netdev_priv(dev);
4989 cp->pdev = pdev;
4990#if 1
4991 /* A value of 0 indicates we never explicitly set it */
4992 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4993#endif
4994 cp->dev = dev;
6aa20a22 4995 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
1f26dac3
DM
4996 cassini_debug;
4997
92d76e81 4998#if defined(CONFIG_SPARC)
4e3dbdb1
RM
4999 cp->of_node = pci_device_to_OF_node(pdev);
5000#endif
5001
1f26dac3
DM
5002 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5003 cp->link_transition_jiffies_valid = 0;
5004
5005 spin_lock_init(&cp->lock);
5006 spin_lock_init(&cp->rx_inuse_lock);
5007 spin_lock_init(&cp->rx_spare_lock);
5008 for (i = 0; i < N_TX_RINGS; i++) {
5009 spin_lock_init(&cp->stat_lock[i]);
5010 spin_lock_init(&cp->tx_lock[i]);
5011 }
5012 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
758df69e 5013 mutex_init(&cp->pm_mutex);
1f26dac3 5014
0822c5d9
KC
5015 timer_setup(&cp->link_timer, cas_link_timer, 0);
5016
1f26dac3
DM
5017#if 1
5018 /* Just in case the implementation of atomic operations
5019 * change so that an explicit initialization is necessary.
5020 */
5021 atomic_set(&cp->reset_task_pending, 0);
5022 atomic_set(&cp->reset_task_pending_all, 0);
5023 atomic_set(&cp->reset_task_pending_spare, 0);
5024 atomic_set(&cp->reset_task_pending_mtu, 0);
5025#endif
c4028958 5026 INIT_WORK(&cp->reset_task, cas_reset_task);
1f26dac3
DM
5027
5028 /* Default link parameters */
bf829370 5029 if (link_mode >= 0 && link_mode < 6)
1f26dac3
DM
5030 cp->link_cntl = link_modes[link_mode];
5031 else
5032 cp->link_cntl = BMCR_ANENABLE;
5033 cp->lstate = link_down;
5034 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5035 netif_carrier_off(cp->dev);
5036 cp->timer_ticks = 0;
5037
5038 /* give us access to cassini registers */
18e37f2a 5039 cp->regs = pci_iomap(pdev, 0, casreg_len);
79ea13ce 5040 if (!cp->regs) {
436d27d1 5041 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
1f26dac3
DM
5042 goto err_out_free_res;
5043 }
5044 cp->casreg_len = casreg_len;
5045
5046 pci_save_state(pdev);
5047 cas_check_pci_invariants(cp);
5048 cas_hard_reset(cp);
5049 cas_reset(cp, 0);
5050 if (cas_check_invariants(cp))
5051 goto err_out_iounmap;
fcaa4066 5052 if (cp->cas_flags & CAS_FLAG_SATURN)
15627e84 5053 cas_saturn_firmware_init(cp);
1f26dac3 5054
5333fdbe 5055 cp->init_block =
dcc82bb0
CJ
5056 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5057 &cp->block_dvma, GFP_KERNEL);
1f26dac3 5058 if (!cp->init_block) {
436d27d1 5059 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
1f26dac3
DM
5060 goto err_out_iounmap;
5061 }
5062
6aa20a22 5063 for (i = 0; i < N_TX_RINGS; i++)
1f26dac3
DM
5064 cp->init_txds[i] = cp->init_block->txds[i];
5065
6aa20a22 5066 for (i = 0; i < N_RX_DESC_RINGS; i++)
1f26dac3
DM
5067 cp->init_rxds[i] = cp->init_block->rxds[i];
5068
6aa20a22 5069 for (i = 0; i < N_RX_COMP_RINGS; i++)
1f26dac3
DM
5070 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5071
5072 for (i = 0; i < N_RX_FLOWS; i++)
5073 skb_queue_head_init(&cp->rx_flows[i]);
5074
83d6f035 5075 dev->netdev_ops = &cas_netdev_ops;
a232f767 5076 dev->ethtool_ops = &cas_ethtool_ops;
1f26dac3 5077 dev->watchdog_timeo = CAS_TX_TIMEOUT;
83d6f035 5078
1f26dac3 5079#ifdef USE_NAPI
bea3348e 5080 netif_napi_add(dev, &cp->napi, cas_poll, 64);
1f26dac3
DM
5081#endif
5082 dev->irq = pdev->irq;
5083 dev->dma = 0;
5084
5085 /* Cassini features. */
5086 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5087 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5088
5089 if (pci_using_dac)
5090 dev->features |= NETIF_F_HIGHDMA;
5091
540bfe30
JW
5092 /* MTU range: 60 - varies or 9000 */
5093 dev->min_mtu = CAS_MIN_MTU;
5094 dev->max_mtu = CAS_MAX_MTU;
5095
1f26dac3 5096 if (register_netdev(dev)) {
436d27d1 5097 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
1f26dac3
DM
5098 goto err_out_free_consistent;
5099 }
5100
5101 i = readl(cp->regs + REG_BIM_CFG);
436d27d1
JP
5102 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5103 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5104 (i & BIM_CFG_32BIT) ? "32" : "64",
5105 (i & BIM_CFG_66MHZ) ? "66" : "33",
5106 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5107 dev->dev_addr);
1f26dac3
DM
5108
5109 pci_set_drvdata(pdev, dev);
5110 cp->hw_running = 1;
5111 cas_entropy_reset(cp);
5112 cas_phy_init(cp);
5113 cas_begin_auto_negotiation(cp, NULL);
5114 return 0;
5115
5116err_out_free_consistent:
dcc82bb0
CJ
5117 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5118 cp->init_block, cp->block_dvma);
1f26dac3
DM
5119
5120err_out_iounmap:
758df69e 5121 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5122 if (cp->hw_running)
5123 cas_shutdown(cp);
758df69e 5124 mutex_unlock(&cp->pm_mutex);
1f26dac3 5125
18e37f2a 5126 pci_iounmap(pdev, cp->regs);
1f26dac3
DM
5127
5128
5129err_out_free_res:
5130 pci_release_regions(pdev);
5131
25985edc 5132 /* Try to restore it in case the error occurred after we
6aa20a22 5133 * set it.
1f26dac3
DM
5134 */
5135 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5136
5137err_out_free_netdev:
5138 free_netdev(dev);
5139
5140err_out_disable_pdev:
5141 pci_disable_device(pdev);
1f26dac3
DM
5142 return -ENODEV;
5143}
5144
f73d12bd 5145static void cas_remove_one(struct pci_dev *pdev)
1f26dac3
DM
5146{
5147 struct net_device *dev = pci_get_drvdata(pdev);
5148 struct cas *cp;
5149 if (!dev)
5150 return;
5151
5152 cp = netdev_priv(dev);
5153 unregister_netdev(dev);
5154
39af455d 5155 vfree(cp->fw_data);
fcaa4066 5156
758df69e 5157 mutex_lock(&cp->pm_mutex);
23f333a2 5158 cancel_work_sync(&cp->reset_task);
1f26dac3
DM
5159 if (cp->hw_running)
5160 cas_shutdown(cp);
758df69e 5161 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5162
5163#if 1
5164 if (cp->orig_cacheline_size) {
5165 /* Restore the cache line size if we had modified
5166 * it.
5167 */
6aa20a22 5168 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1f26dac3
DM
5169 cp->orig_cacheline_size);
5170 }
5171#endif
dcc82bb0
CJ
5172 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5173 cp->init_block, cp->block_dvma);
18e37f2a 5174 pci_iounmap(pdev, cp->regs);
1f26dac3
DM
5175 free_netdev(dev);
5176 pci_release_regions(pdev);
5177 pci_disable_device(pdev);
1f26dac3
DM
5178}
5179
f193f4eb 5180static int __maybe_unused cas_suspend(struct device *dev_d)
1f26dac3 5181{
f193f4eb 5182 struct net_device *dev = dev_get_drvdata(dev_d);
1f26dac3
DM
5183 struct cas *cp = netdev_priv(dev);
5184 unsigned long flags;
5185
758df69e 5186 mutex_lock(&cp->pm_mutex);
6aa20a22 5187
1f26dac3
DM
5188 /* If the driver is opened, we stop the DMA */
5189 if (cp->opened) {
5190 netif_device_detach(dev);
5191
5192 cas_lock_all_save(cp, flags);
5193
5194 /* We can set the second arg of cas_reset to 0
5195 * because on resume, we'll call cas_init_hw with
5196 * its second arg set so that autonegotiation is
5197 * restarted.
5198 */
5199 cas_reset(cp, 0);
5200 cas_clean_rings(cp);
5201 cas_unlock_all_restore(cp, flags);
5202 }
5203
5204 if (cp->hw_running)
5205 cas_shutdown(cp);
758df69e 5206 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5207
5208 return 0;
5209}
5210
847d97e0 5211static int __maybe_unused cas_resume(struct device *dev_d)
1f26dac3 5212{
f193f4eb 5213 struct net_device *dev = dev_get_drvdata(dev_d);
1f26dac3
DM
5214 struct cas *cp = netdev_priv(dev);
5215
436d27d1 5216 netdev_info(dev, "resuming\n");
1f26dac3 5217
758df69e 5218 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5219 cas_hard_reset(cp);
5220 if (cp->opened) {
5221 unsigned long flags;
5222 cas_lock_all_save(cp, flags);
5223 cas_reset(cp, 0);
5224 cp->hw_running = 1;
5225 cas_clean_rings(cp);
5226 cas_init_hw(cp, 1);
5227 cas_unlock_all_restore(cp, flags);
5228
5229 netif_device_attach(dev);
5230 }
758df69e 5231 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5232 return 0;
5233}
f193f4eb
VG
5234
5235static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
1f26dac3
DM
5236
5237static struct pci_driver cas_driver = {
5238 .name = DRV_MODULE_NAME,
5239 .id_table = cas_pci_tbl,
5240 .probe = cas_init_one,
f73d12bd 5241 .remove = cas_remove_one,
f193f4eb 5242 .driver.pm = &cas_pm_ops,
1f26dac3
DM
5243};
5244
5245static int __init cas_init(void)
5246{
5247 if (linkdown_timeout > 0)
5248 link_transition_timeout = linkdown_timeout * HZ;
5249 else
5250 link_transition_timeout = 0;
5251
29917620 5252 return pci_register_driver(&cas_driver);
1f26dac3
DM
5253}
5254
5255static void __exit cas_cleanup(void)
5256{
5257 pci_unregister_driver(&cas_driver);
5258}
5259
5260module_init(cas_init);
5261module_exit(cas_cleanup);