]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/via/via-rhine.c
Merge remote-tracking branches 'spi/topic/s3c64xx', 'spi/topic/sc18is602', 'spi/topic...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / via / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
207070f5 35#define DRV_VERSION "1.5.1"
38f49e88 36#define DRV_RELDATE "2010-10-09"
1da177e4 37
eb939922 38#include <linux/types.h>
1da177e4
LT
39
40/* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
fc3e0f8a
FR
42static int debug = 0;
43#define RHINE_MSG_DEFAULT \
44 (0x0000)
1da177e4
LT
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
eb939922 58static bool avoid_D3;
b933b4d9 59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77#define TX_RING_SIZE 16
78#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 79#define RX_RING_SIZE 64
1da177e4
LT
80
81/* Operational parameters that usually are not changed. */
82
83/* Time in jiffies before concluding the transmitter is hung. */
84#define TX_TIMEOUT (2*HZ)
85
86#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88#include <linux/module.h>
89#include <linux/moduleparam.h>
90#include <linux/kernel.h>
91#include <linux/string.h>
92#include <linux/timer.h>
93#include <linux/errno.h>
94#include <linux/ioport.h>
1da177e4
LT
95#include <linux/interrupt.h>
96#include <linux/pci.h>
1e7f0bd8 97#include <linux/dma-mapping.h>
1da177e4
LT
98#include <linux/netdevice.h>
99#include <linux/etherdevice.h>
100#include <linux/skbuff.h>
101#include <linux/init.h>
102#include <linux/delay.h>
103#include <linux/mii.h>
104#include <linux/ethtool.h>
105#include <linux/crc32.h>
38f49e88 106#include <linux/if_vlan.h>
1da177e4 107#include <linux/bitops.h>
c0d7a021 108#include <linux/workqueue.h>
1da177e4
LT
109#include <asm/processor.h> /* Processor type for cache alignment. */
110#include <asm/io.h>
111#include <asm/irq.h>
112#include <asm/uaccess.h>
e84df485 113#include <linux/dmi.h>
1da177e4
LT
114
115/* These identify the driver base version and may not be removed. */
76e239e1 116static const char version[] =
df4511fe 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4
LT
118
119/* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121#ifdef CONFIG_VIA_RHINE_MMIO
122#define USE_MMIO
123#else
124#endif
125
126MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128MODULE_LICENSE("GPL");
129
1da177e4
LT
130module_param(debug, int, 0);
131module_param(rx_copybreak, int, 0);
b933b4d9 132module_param(avoid_D3, bool, 0);
fc3e0f8a 133MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
1da177e4 134MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 135MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 136
38f49e88
RL
137#define MCAM_SIZE 32
138#define VCAM_SIZE 32
139
1da177e4
LT
140/*
141 Theory of Operation
142
143I. Board Compatibility
144
145This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146controller.
147
148II. Board-specific settings
149
150Boards with this chip are functional only in a bus-master PCI slot.
151
152Many operational settings are loaded from the EEPROM to the Config word at
153offset 0x78. For most of these settings, this driver assumes that they are
154correct.
155If this driver is compiled to use PCI memory space operations the EEPROM
156must be configured to enable memory ops.
157
158III. Driver operation
159
160IIIa. Ring buffers
161
162This driver uses two statically allocated fixed-size descriptor lists
163formed into rings by a branch from the final descriptor to the beginning of
164the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166IIIb/c. Transmit/Receive Structure
167
168This driver attempts to use a zero-copy receive and transmit scheme.
169
170Alas, all data buffers are required to start on a 32 bit boundary, so
171the driver must often copy transmit packets into bounce buffers.
172
173The driver allocates full frame size skbuffs for the Rx ring buffers at
174open() time and passes the skb->data field to the chip as receive data
175buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176a fresh skbuff is allocated and the frame is copied to the new skbuff.
177When the incoming frame is larger, the skbuff is passed directly up the
178protocol stack. Buffers consumed this way are replaced by newly allocated
179skbuffs in the last phase of rhine_rx().
180
181The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182using a full-sized skbuff for small frames vs. the copying costs of larger
183frames. New boards are typically used in generously configured machines
184and the underfilled buffers have negligible impact compared to the benefit of
185a single allocation size, so the default value of zero results in never
186copying packets. When copying is done, the cost is usually mitigated by using
187a combined copy/checksum routine. Copying also preloads the cache, which is
188most useful with small frames.
189
190Since the VIA chips are only able to transfer data to buffers on 32 bit
191boundaries, the IP header at offset 14 in an ethernet frame isn't
192longword aligned for further processing. Copying these unaligned buffers
193has the beneficial effect of 16-byte aligning the IP header.
194
195IIId. Synchronization
196
197The driver runs as two independent, single-threaded flows of control. One
198is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
199netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
201
202The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
203netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204the ring is not available it stops the transmit queue by
205calling netif_stop_queue.
1da177e4
LT
206
207The interrupt handler has exclusive control over the Rx ring and records stats
208from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209empty by incrementing the dirty_tx mark. If at least half of the entries in
210the Rx ring are available the transmit queue is woken up if it was stopped.
211
212IV. Notes
213
214IVb. References
215
216Preliminary VT86C100A manual from http://www.via.com.tw/
217http://www.scyld.com/expert/100mbps.html
218http://www.scyld.com/expert/NWay.html
219ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223IVc. Errata
224
225The VT86C100A manual is not reliable information.
226The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227in significant performance degradation for bounce buffer copies on transmit
228and unaligned IP headers on receive.
229The chip does not pad to minimum transmit length.
230
231*/
232
233
234/* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238*/
239
240enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255};
256
257enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263};
264/*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270/* Beware of PCI posted writes */
271#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
a3aa1884 273static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
46009c8b
JG
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
278 { } /* terminate list */
279};
280MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283/* Offsets to the device registers. */
284enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 286 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299};
300
301/* Bits in ConfigD */
302enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305};
306
38f49e88
RL
307/* Bits in the TxConfig (TCR) register */
308enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317};
318
319/* Bits in the CamCon (CAMC) register */
320enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325};
326
327/* Bits in the PCIBusConfig1 (BCR1) register */
328enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339};
340
1da177e4
LT
341#ifdef USE_MMIO
342/* Registers we check that mmio and reg are the same. */
343static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346};
347#endif
348
349/* Bits in the interrupt status/mask registers. */
350enum intr_status_bits {
7ab87ff4
FR
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
1da177e4
LT
370};
371
372/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379};
380
381/* The Rx and Tx buffer descriptors. */
382struct rx_desc {
53c03f5c
AV
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
1da177e4
LT
387};
388struct tx_desc {
53c03f5c
AV
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
1da177e4
LT
393};
394
395/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396#define TXDESC 0x00e08000
397
398enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400};
401
402/* Bits in *_desc.*_status */
403enum desc_status_bits {
404 DescOwn=0x80000000
405};
406
38f49e88
RL
407/* Bits in *_desc.*_length */
408enum desc_length_bits {
409 DescTag=0x00010000
410};
411
1da177e4
LT
412/* Bits in ChipCmd. */
413enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418};
419
f7b5d1b9
JG
420struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
424};
425
1da177e4 426struct rhine_private {
38f49e88
RL
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429
1da177e4
LT
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
435
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443
4be5de25 444 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
448
449 struct pci_dev *pdev;
450 long pioaddr;
bea3348e
SH
451 struct net_device *dev;
452 struct napi_struct napi;
1da177e4 453 spinlock_t lock;
7ab87ff4
FR
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
c0d7a021 457 struct work_struct reset_task;
1da177e4 458
fc3e0f8a
FR
459 u32 msg_enable;
460
1da177e4
LT
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
f7b5d1b9
JG
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
1da177e4
LT
469 u8 wolopts;
470
471 u8 tx_thresh, rx_thresh;
472
473 struct mii_if_info mii_if;
474 void __iomem *base;
475};
476
38f49e88
RL
477#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480
481#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
484
485#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488
489#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492
493
1da177e4
LT
494static int mdio_read(struct net_device *dev, int phy_id, int location);
495static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496static int rhine_open(struct net_device *dev);
c0d7a021 497static void rhine_reset_task(struct work_struct *work);
7ab87ff4 498static void rhine_slow_event_task(struct work_struct *work);
1da177e4 499static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
500static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
7d12e780 502static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 503static void rhine_tx(struct net_device *dev);
633949a1 504static int rhine_rx(struct net_device *dev, int limit);
1da177e4 505static void rhine_set_rx_mode(struct net_device *dev);
f7b5d1b9
JG
506static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
1da177e4 508static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 509static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 510static int rhine_close(struct net_device *dev);
80d5c368
PM
511static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 __be16 proto, u16 vid);
513static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 __be16 proto, u16 vid);
7ab87ff4 515static void rhine_restart_tx(struct net_device *dev);
1da177e4 516
3f8c91a7 517static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
a384a33b
FR
518{
519 void __iomem *ioaddr = rp->base;
520 int i;
521
522 for (i = 0; i < 1024; i++) {
3f8c91a7
AM
523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
524
525 if (low ^ has_mask_bits)
a384a33b
FR
526 break;
527 udelay(10);
528 }
529 if (i > 64) {
fc3e0f8a 530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
3f8c91a7 531 "count: %04d\n", low ? "low" : "high", reg, mask, i);
a384a33b
FR
532 }
533}
534
535static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
536{
3f8c91a7 537 rhine_wait_bit(rp, reg, mask, false);
a384a33b
FR
538}
539
540static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
541{
3f8c91a7 542 rhine_wait_bit(rp, reg, mask, true);
a384a33b 543}
1da177e4 544
a20a28bc 545static u32 rhine_get_events(struct rhine_private *rp)
1da177e4 546{
1da177e4
LT
547 void __iomem *ioaddr = rp->base;
548 u32 intr_status;
549
550 intr_status = ioread16(ioaddr + IntrStatus);
551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 if (rp->quirks & rqStatusWBRace)
553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 return intr_status;
555}
556
a20a28bc
FR
557static void rhine_ack_events(struct rhine_private *rp, u32 mask)
558{
559 void __iomem *ioaddr = rp->base;
560
561 if (rp->quirks & rqStatusWBRace)
562 iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 iowrite16(mask, ioaddr + IntrStatus);
7ab87ff4 564 mmiowb();
a20a28bc
FR
565}
566
1da177e4
LT
567/*
568 * Get power related registers into sane state.
569 * Notify user about past WOL event.
570 */
571static void rhine_power_init(struct net_device *dev)
572{
573 struct rhine_private *rp = netdev_priv(dev);
574 void __iomem *ioaddr = rp->base;
575 u16 wolstat;
576
577 if (rp->quirks & rqWOL) {
578 /* Make sure chip is in power state D0 */
579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
580
581 /* Disable "force PME-enable" */
582 iowrite8(0x80, ioaddr + WOLcgClr);
583
584 /* Clear power-event config bits (WOL) */
585 iowrite8(0xFF, ioaddr + WOLcrClr);
586 /* More recent cards can manage two additional patterns */
587 if (rp->quirks & rq6patterns)
588 iowrite8(0x03, ioaddr + WOLcrClr1);
589
590 /* Save power-event status bits */
591 wolstat = ioread8(ioaddr + PwrcsrSet);
592 if (rp->quirks & rq6patterns)
593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
594
595 /* Clear power-event status bits */
596 iowrite8(0xFF, ioaddr + PwrcsrClr);
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + PwrcsrClr1);
599
600 if (wolstat) {
601 char *reason;
602 switch (wolstat) {
603 case WOLmagic:
604 reason = "Magic packet";
605 break;
606 case WOLlnkon:
607 reason = "Link went up";
608 break;
609 case WOLlnkoff:
610 reason = "Link went down";
611 break;
612 case WOLucast:
613 reason = "Unicast packet";
614 break;
615 case WOLbmcast:
616 reason = "Multicast/broadcast packet";
617 break;
618 default:
619 reason = "Unknown";
620 }
df4511fe
JP
621 netdev_info(dev, "Woke system up. Reason: %s\n",
622 reason);
1da177e4
LT
623 }
624 }
625}
626
627static void rhine_chip_reset(struct net_device *dev)
628{
629 struct rhine_private *rp = netdev_priv(dev);
630 void __iomem *ioaddr = rp->base;
fc3e0f8a 631 u8 cmd1;
1da177e4
LT
632
633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 IOSYNC;
635
636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 637 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
638
639 /* Force reset */
640 if (rp->quirks & rqForceReset)
641 iowrite8(0x40, ioaddr + MiscCmd);
642
643 /* Reset can take somewhat longer (rare) */
a384a33b 644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
1da177e4
LT
645 }
646
fc3e0f8a
FR
647 cmd1 = ioread8(ioaddr + ChipCmd1);
648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 "failed" : "succeeded");
1da177e4
LT
650}
651
652#ifdef USE_MMIO
653static void enable_mmio(long pioaddr, u32 quirks)
654{
655 int n;
656 if (quirks & rqRhineI) {
657 /* More recent docs say that this bit is reserved ... */
658 n = inb(pioaddr + ConfigA) | 0x20;
659 outb(n, pioaddr + ConfigA);
660 } else {
661 n = inb(pioaddr + ConfigD) | 0x80;
662 outb(n, pioaddr + ConfigD);
663 }
664}
665#endif
666
667/*
668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669 * (plus 0x6C for Rhine-I/II)
670 */
76e239e1 671static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
1da177e4
LT
672{
673 struct rhine_private *rp = netdev_priv(dev);
674 void __iomem *ioaddr = rp->base;
a384a33b 675 int i;
1da177e4
LT
676
677 outb(0x20, pioaddr + MACRegEEcsr);
a384a33b
FR
678 for (i = 0; i < 1024; i++) {
679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 break;
681 }
682 if (i > 512)
683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
1da177e4
LT
684
685#ifdef USE_MMIO
686 /*
687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 * it is not known if that still works with the "win98-reboot" problem.
690 */
691 enable_mmio(pioaddr, rp->quirks);
692#endif
693
694 /* Turn off EEPROM-controlled wake-up (magic packet) */
695 if (rp->quirks & rqWOL)
696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
697
698}
699
700#ifdef CONFIG_NET_POLL_CONTROLLER
701static void rhine_poll(struct net_device *dev)
702{
05d334ec
FR
703 struct rhine_private *rp = netdev_priv(dev);
704 const int irq = rp->pdev->irq;
705
706 disable_irq(irq);
707 rhine_interrupt(irq, dev);
708 enable_irq(irq);
1da177e4
LT
709}
710#endif
711
269f3114
FR
712static void rhine_kick_tx_threshold(struct rhine_private *rp)
713{
714 if (rp->tx_thresh < 0xe0) {
715 void __iomem *ioaddr = rp->base;
716
717 rp->tx_thresh += 0x20;
718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
719 }
720}
721
7ab87ff4
FR
722static void rhine_tx_err(struct rhine_private *rp, u32 status)
723{
724 struct net_device *dev = rp->dev;
725
726 if (status & IntrTxAborted) {
fc3e0f8a
FR
727 netif_info(rp, tx_err, dev,
728 "Abort %08x, frame dropped\n", status);
7ab87ff4
FR
729 }
730
731 if (status & IntrTxUnderrun) {
732 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
733 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
735 }
736
fc3e0f8a
FR
737 if (status & IntrTxDescRace)
738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
7ab87ff4
FR
739
740 if ((status & IntrTxError) &&
741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
743 netif_info(rp, tx_err, dev, "Unspecified error. "
744 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
745 }
746
747 rhine_restart_tx(dev);
748}
749
750static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
751{
752 void __iomem *ioaddr = rp->base;
753 struct net_device_stats *stats = &rp->dev->stats;
754
755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
757
758 /*
759 * Clears the "tally counters" for CRC errors and missed frames(?).
760 * It has been reported that some chips need a write of 0 to clear
761 * these, for others the counters are set to 1 when written to and
762 * instead cleared when read. So we clear them both ways ...
763 */
764 iowrite32(0, ioaddr + RxMissed);
765 ioread16(ioaddr + RxCRCErrs);
766 ioread16(ioaddr + RxMissed);
767}
768
769#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
770 IntrRxErr | \
771 IntrRxEmpty | \
772 IntrRxOverflow | \
773 IntrRxDropped | \
774 IntrRxNoBuf | \
775 IntrRxWakeUp)
776
777#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
778 IntrTxAborted | \
779 IntrTxUnderrun | \
780 IntrTxDescRace)
781#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
782
783#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
784 RHINE_EVENT_NAPI_TX | \
785 IntrStatsMax)
786#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
787#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
788
bea3348e 789static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 790{
bea3348e
SH
791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 struct net_device *dev = rp->dev;
633949a1 793 void __iomem *ioaddr = rp->base;
7ab87ff4
FR
794 u16 enable_mask = RHINE_EVENT & 0xffff;
795 int work_done = 0;
796 u32 status;
797
798 status = rhine_get_events(rp);
799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
800
801 if (status & RHINE_EVENT_NAPI_RX)
802 work_done += rhine_rx(dev, budget);
803
804 if (status & RHINE_EVENT_NAPI_TX) {
805 if (status & RHINE_EVENT_NAPI_TX_ERR) {
7ab87ff4 806 /* Avoid scavenging before Tx engine turned off */
a384a33b 807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
fc3e0f8a
FR
808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 netif_warn(rp, tx_err, dev, "Tx still on\n");
7ab87ff4 810 }
fc3e0f8a 811
7ab87ff4
FR
812 rhine_tx(dev);
813
814 if (status & RHINE_EVENT_NAPI_TX_ERR)
815 rhine_tx_err(rp, status);
816 }
817
818 if (status & IntrStatsMax) {
819 spin_lock(&rp->lock);
820 rhine_update_rx_crc_and_missed_errord(rp);
821 spin_unlock(&rp->lock);
822 }
633949a1 823
7ab87ff4
FR
824 if (status & RHINE_EVENT_SLOW) {
825 enable_mask &= ~RHINE_EVENT_SLOW;
826 schedule_work(&rp->slow_event_task);
827 }
633949a1 828
bea3348e 829 if (work_done < budget) {
288379f0 830 napi_complete(napi);
7ab87ff4
FR
831 iowrite16(enable_mask, ioaddr + IntrEnable);
832 mmiowb();
633949a1 833 }
bea3348e 834 return work_done;
633949a1 835}
633949a1 836
76e239e1 837static void rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
838{
839 struct rhine_private *rp = netdev_priv(dev);
840
841 /* Reset the chip to erase previous misconfiguration. */
842 rhine_chip_reset(dev);
843
844 /* Rhine-I needs extra time to recuperate before EEPROM reload */
845 if (rp->quirks & rqRhineI)
846 msleep(5);
847
848 /* Reload EEPROM controlled bytes cleared by soft reset */
849 rhine_reload_eeprom(pioaddr, dev);
850}
851
5d1d07d8
SH
852static const struct net_device_ops rhine_netdev_ops = {
853 .ndo_open = rhine_open,
854 .ndo_stop = rhine_close,
855 .ndo_start_xmit = rhine_start_tx,
f7b5d1b9 856 .ndo_get_stats64 = rhine_get_stats64,
afc4b13d 857 .ndo_set_rx_mode = rhine_set_rx_mode,
635ecaa7 858 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 859 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 860 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
861 .ndo_do_ioctl = netdev_ioctl,
862 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
865#ifdef CONFIG_NET_POLL_CONTROLLER
866 .ndo_poll_controller = rhine_poll,
867#endif
868};
869
1dd06ae8 870static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
871{
872 struct net_device *dev;
873 struct rhine_private *rp;
874 int i, rc;
1da177e4
LT
875 u32 quirks;
876 long pioaddr;
877 long memaddr;
878 void __iomem *ioaddr;
879 int io_size, phy_id;
880 const char *name;
881#ifdef USE_MMIO
882 int bar = 1;
883#else
884 int bar = 0;
885#endif
886
887/* when built into the kernel, we only print version if device is found */
888#ifndef MODULE
df4511fe 889 pr_info_once("%s\n", version);
1da177e4
LT
890#endif
891
1da177e4
LT
892 io_size = 256;
893 phy_id = 0;
894 quirks = 0;
895 name = "Rhine";
44c10138 896 if (pdev->revision < VTunknown0) {
1da177e4
LT
897 quirks = rqRhineI;
898 io_size = 128;
899 }
44c10138 900 else if (pdev->revision >= VT6102) {
1da177e4 901 quirks = rqWOL | rqForceReset;
44c10138 902 if (pdev->revision < VT6105) {
1da177e4
LT
903 name = "Rhine II";
904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
905 }
906 else {
907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 908 if (pdev->revision >= VT6105_B0)
1da177e4 909 quirks |= rq6patterns;
44c10138 910 if (pdev->revision < VT6105M)
1da177e4
LT
911 name = "Rhine III";
912 else
913 name = "Rhine III (Management Adapter)";
914 }
915 }
916
917 rc = pci_enable_device(pdev);
918 if (rc)
919 goto err_out;
920
921 /* this should always be supported */
284901a9 922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4 923 if (rc) {
df4511fe
JP
924 dev_err(&pdev->dev,
925 "32-bit PCI DMA addresses not supported by the card!?\n");
ae996154 926 goto err_out_pci_disable;
1da177e4
LT
927 }
928
929 /* sanity check */
930 if ((pci_resource_len(pdev, 0) < io_size) ||
931 (pci_resource_len(pdev, 1) < io_size)) {
932 rc = -EIO;
df4511fe 933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
ae996154 934 goto err_out_pci_disable;
1da177e4
LT
935 }
936
937 pioaddr = pci_resource_start(pdev, 0);
938 memaddr = pci_resource_start(pdev, 1);
939
940 pci_set_master(pdev);
941
942 dev = alloc_etherdev(sizeof(struct rhine_private));
943 if (!dev) {
944 rc = -ENOMEM;
ae996154 945 goto err_out_pci_disable;
1da177e4 946 }
1da177e4
LT
947 SET_NETDEV_DEV(dev, &pdev->dev);
948
949 rp = netdev_priv(dev);
bea3348e 950 rp->dev = dev;
1da177e4
LT
951 rp->quirks = quirks;
952 rp->pioaddr = pioaddr;
953 rp->pdev = pdev;
fc3e0f8a 954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
1da177e4
LT
955
956 rc = pci_request_regions(pdev, DRV_NAME);
957 if (rc)
958 goto err_out_free_netdev;
959
960 ioaddr = pci_iomap(pdev, bar, io_size);
961 if (!ioaddr) {
962 rc = -EIO;
df4511fe
JP
963 dev_err(&pdev->dev,
964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 pci_name(pdev), io_size, memaddr);
1da177e4
LT
966 goto err_out_free_res;
967 }
968
969#ifdef USE_MMIO
970 enable_mmio(pioaddr, quirks);
971
972 /* Check that selected MMIO registers match the PIO ones */
973 i = 0;
974 while (mmio_verify_registers[i]) {
975 int reg = mmio_verify_registers[i++];
976 unsigned char a = inb(pioaddr+reg);
977 unsigned char b = readb(ioaddr+reg);
978 if (a != b) {
979 rc = -EIO;
df4511fe
JP
980 dev_err(&pdev->dev,
981 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 reg, a, b);
1da177e4
LT
983 goto err_out_unmap;
984 }
985 }
986#endif /* USE_MMIO */
987
1da177e4
LT
988 rp->base = ioaddr;
989
827da44c
JS
990 u64_stats_init(&rp->tx_stats.syncp);
991 u64_stats_init(&rp->rx_stats.syncp);
992
1da177e4
LT
993 /* Get chip registers into a sane state */
994 rhine_power_init(dev);
995 rhine_hw_init(dev, pioaddr);
996
997 for (i = 0; i < 6; i++)
998 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
999
482e3feb
JP
1000 if (!is_valid_ether_addr(dev->dev_addr)) {
1001 /* Report it and use a random ethernet address instead */
1002 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
f2cedb63 1003 eth_hw_addr_random(dev);
482e3feb
JP
1004 netdev_info(dev, "Using random MAC address: %pM\n",
1005 dev->dev_addr);
1da177e4
LT
1006 }
1007
1008 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1009 if (!phy_id)
1010 phy_id = ioread8(ioaddr + 0x6C);
1011
1da177e4 1012 spin_lock_init(&rp->lock);
7ab87ff4 1013 mutex_init(&rp->task_lock);
c0d7a021 1014 INIT_WORK(&rp->reset_task, rhine_reset_task);
7ab87ff4 1015 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
c0d7a021 1016
1da177e4
LT
1017 rp->mii_if.dev = dev;
1018 rp->mii_if.mdio_read = mdio_read;
1019 rp->mii_if.mdio_write = mdio_write;
1020 rp->mii_if.phy_id_mask = 0x1f;
1021 rp->mii_if.reg_num_mask = 0x1f;
1022
1023 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
1024 dev->netdev_ops = &rhine_netdev_ops;
1025 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 1026 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 1027
bea3348e 1028 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 1029
1da177e4
LT
1030 if (rp->quirks & rqRhineI)
1031 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1032
38f49e88 1033 if (pdev->revision >= VT6105M)
f646968f
PM
1034 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1035 NETIF_F_HW_VLAN_CTAG_RX |
1036 NETIF_F_HW_VLAN_CTAG_FILTER;
38f49e88 1037
1da177e4
LT
1038 /* dev->name not defined before register_netdev()! */
1039 rc = register_netdev(dev);
1040 if (rc)
1041 goto err_out_unmap;
1042
df4511fe
JP
1043 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1044 name,
1da177e4 1045#ifdef USE_MMIO
df4511fe 1046 memaddr,
1da177e4 1047#else
df4511fe 1048 (long)ioaddr,
1da177e4 1049#endif
df4511fe 1050 dev->dev_addr, pdev->irq);
1da177e4
LT
1051
1052 pci_set_drvdata(pdev, dev);
1053
1054 {
1055 u16 mii_cmd;
1056 int mii_status = mdio_read(dev, phy_id, 1);
1057 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1058 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1059 if (mii_status != 0xffff && mii_status != 0x0000) {
1060 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
1061 netdev_info(dev,
1062 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1063 phy_id,
1064 mii_status, rp->mii_if.advertising,
1065 mdio_read(dev, phy_id, 5));
1da177e4
LT
1066
1067 /* set IFF_RUNNING */
1068 if (mii_status & BMSR_LSTATUS)
1069 netif_carrier_on(dev);
1070 else
1071 netif_carrier_off(dev);
1072
1073 }
1074 }
1075 rp->mii_if.phy_id = phy_id;
fc3e0f8a
FR
1076 if (avoid_D3)
1077 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1da177e4
LT
1078
1079 return 0;
1080
1081err_out_unmap:
1082 pci_iounmap(pdev, ioaddr);
1083err_out_free_res:
1084 pci_release_regions(pdev);
1085err_out_free_netdev:
1086 free_netdev(dev);
ae996154
RL
1087err_out_pci_disable:
1088 pci_disable_device(pdev);
1da177e4
LT
1089err_out:
1090 return rc;
1091}
1092
1093static int alloc_ring(struct net_device* dev)
1094{
1095 struct rhine_private *rp = netdev_priv(dev);
1096 void *ring;
1097 dma_addr_t ring_dma;
1098
1099 ring = pci_alloc_consistent(rp->pdev,
1100 RX_RING_SIZE * sizeof(struct rx_desc) +
1101 TX_RING_SIZE * sizeof(struct tx_desc),
1102 &ring_dma);
1103 if (!ring) {
df4511fe 1104 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
1105 return -ENOMEM;
1106 }
1107 if (rp->quirks & rqRhineI) {
1108 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1109 PKT_BUF_SZ * TX_RING_SIZE,
1110 &rp->tx_bufs_dma);
1111 if (rp->tx_bufs == NULL) {
1112 pci_free_consistent(rp->pdev,
1113 RX_RING_SIZE * sizeof(struct rx_desc) +
1114 TX_RING_SIZE * sizeof(struct tx_desc),
1115 ring, ring_dma);
1116 return -ENOMEM;
1117 }
1118 }
1119
1120 rp->rx_ring = ring;
1121 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1122 rp->rx_ring_dma = ring_dma;
1123 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1124
1125 return 0;
1126}
1127
1128static void free_ring(struct net_device* dev)
1129{
1130 struct rhine_private *rp = netdev_priv(dev);
1131
1132 pci_free_consistent(rp->pdev,
1133 RX_RING_SIZE * sizeof(struct rx_desc) +
1134 TX_RING_SIZE * sizeof(struct tx_desc),
1135 rp->rx_ring, rp->rx_ring_dma);
1136 rp->tx_ring = NULL;
1137
1138 if (rp->tx_bufs)
1139 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1140 rp->tx_bufs, rp->tx_bufs_dma);
1141
1142 rp->tx_bufs = NULL;
1143
1144}
1145
1146static void alloc_rbufs(struct net_device *dev)
1147{
1148 struct rhine_private *rp = netdev_priv(dev);
1149 dma_addr_t next;
1150 int i;
1151
1152 rp->dirty_rx = rp->cur_rx = 0;
1153
1154 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1155 rp->rx_head_desc = &rp->rx_ring[0];
1156 next = rp->rx_ring_dma;
1157
1158 /* Init the ring entries */
1159 for (i = 0; i < RX_RING_SIZE; i++) {
1160 rp->rx_ring[i].rx_status = 0;
1161 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1162 next += sizeof(struct rx_desc);
1163 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1164 rp->rx_skbuff[i] = NULL;
1165 }
1166 /* Mark the last entry as wrapping the ring. */
1167 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1168
1169 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1170 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 1171 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1172 rp->rx_skbuff[i] = skb;
1173 if (skb == NULL)
1174 break;
1da177e4
LT
1175
1176 rp->rx_skbuff_dma[i] =
689be439 1177 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4 1178 PCI_DMA_FROMDEVICE);
9b4fe5fb
NH
1179 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1180 rp->rx_skbuff_dma[i] = 0;
1181 dev_kfree_skb(skb);
1182 break;
1183 }
1da177e4
LT
1184 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1185 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1186 }
1187 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1188}
1189
1190static void free_rbufs(struct net_device* dev)
1191{
1192 struct rhine_private *rp = netdev_priv(dev);
1193 int i;
1194
1195 /* Free all the skbuffs in the Rx queue. */
1196 for (i = 0; i < RX_RING_SIZE; i++) {
1197 rp->rx_ring[i].rx_status = 0;
1198 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1199 if (rp->rx_skbuff[i]) {
1200 pci_unmap_single(rp->pdev,
1201 rp->rx_skbuff_dma[i],
1202 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1203 dev_kfree_skb(rp->rx_skbuff[i]);
1204 }
1205 rp->rx_skbuff[i] = NULL;
1206 }
1207}
1208
1209static void alloc_tbufs(struct net_device* dev)
1210{
1211 struct rhine_private *rp = netdev_priv(dev);
1212 dma_addr_t next;
1213 int i;
1214
1215 rp->dirty_tx = rp->cur_tx = 0;
1216 next = rp->tx_ring_dma;
1217 for (i = 0; i < TX_RING_SIZE; i++) {
1218 rp->tx_skbuff[i] = NULL;
1219 rp->tx_ring[i].tx_status = 0;
1220 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1221 next += sizeof(struct tx_desc);
1222 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1223 if (rp->quirks & rqRhineI)
1224 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1225 }
1226 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1227
1228}
1229
1230static void free_tbufs(struct net_device* dev)
1231{
1232 struct rhine_private *rp = netdev_priv(dev);
1233 int i;
1234
1235 for (i = 0; i < TX_RING_SIZE; i++) {
1236 rp->tx_ring[i].tx_status = 0;
1237 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1238 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1239 if (rp->tx_skbuff[i]) {
1240 if (rp->tx_skbuff_dma[i]) {
1241 pci_unmap_single(rp->pdev,
1242 rp->tx_skbuff_dma[i],
1243 rp->tx_skbuff[i]->len,
1244 PCI_DMA_TODEVICE);
1245 }
1246 dev_kfree_skb(rp->tx_skbuff[i]);
1247 }
1248 rp->tx_skbuff[i] = NULL;
1249 rp->tx_buf[i] = NULL;
1250 }
1251}
1252
1253static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1254{
1255 struct rhine_private *rp = netdev_priv(dev);
1256 void __iomem *ioaddr = rp->base;
1257
fc3e0f8a 1258 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1da177e4
LT
1259
1260 if (rp->mii_if.full_duplex)
1261 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1262 ioaddr + ChipCmd1);
1263 else
1264 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1265 ioaddr + ChipCmd1);
fc3e0f8a
FR
1266
1267 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1268 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1269}
1270
1271/* Called after status of force_media possibly changed */
0761be4f 1272static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2 1273{
fc3e0f8a
FR
1274 struct net_device *dev = mii->dev;
1275 struct rhine_private *rp = netdev_priv(dev);
1276
00b428c2
RL
1277 if (mii->force_media) {
1278 /* autoneg is off: Link is always assumed to be up */
fc3e0f8a
FR
1279 if (!netif_carrier_ok(dev))
1280 netif_carrier_on(dev);
1281 } else /* Let MMI library update carrier status */
1282 rhine_check_media(dev, 0);
1283
1284 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1285 mii->force_media, netif_carrier_ok(dev));
1da177e4
LT
1286}
1287
38f49e88
RL
1288/**
1289 * rhine_set_cam - set CAM multicast filters
1290 * @ioaddr: register block of this Rhine
1291 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1292 * @addr: multicast address (6 bytes)
1293 *
1294 * Load addresses into multicast filters.
1295 */
1296static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1297{
1298 int i;
1299
1300 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1301 wmb();
1302
1303 /* Paranoid -- idx out of range should never happen */
1304 idx &= (MCAM_SIZE - 1);
1305
1306 iowrite8((u8) idx, ioaddr + CamAddr);
1307
1308 for (i = 0; i < 6; i++, addr++)
1309 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1310 udelay(10);
1311 wmb();
1312
1313 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1314 udelay(10);
1315
1316 iowrite8(0, ioaddr + CamCon);
1317}
1318
1319/**
1320 * rhine_set_vlan_cam - set CAM VLAN filters
1321 * @ioaddr: register block of this Rhine
1322 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1323 * @addr: VLAN ID (2 bytes)
1324 *
1325 * Load addresses into VLAN filters.
1326 */
1327static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1328{
1329 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1330 wmb();
1331
1332 /* Paranoid -- idx out of range should never happen */
1333 idx &= (VCAM_SIZE - 1);
1334
1335 iowrite8((u8) idx, ioaddr + CamAddr);
1336
1337 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1338 udelay(10);
1339 wmb();
1340
1341 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1342 udelay(10);
1343
1344 iowrite8(0, ioaddr + CamCon);
1345}
1346
1347/**
1348 * rhine_set_cam_mask - set multicast CAM mask
1349 * @ioaddr: register block of this Rhine
1350 * @mask: multicast CAM mask
1351 *
1352 * Mask sets multicast filters active/inactive.
1353 */
1354static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1355{
1356 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1357 wmb();
1358
1359 /* write mask */
1360 iowrite32(mask, ioaddr + CamMask);
1361
1362 /* disable CAMEN */
1363 iowrite8(0, ioaddr + CamCon);
1364}
1365
1366/**
1367 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1368 * @ioaddr: register block of this Rhine
1369 * @mask: VLAN CAM mask
1370 *
1371 * Mask sets VLAN filters active/inactive.
1372 */
1373static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1374{
1375 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1376 wmb();
1377
1378 /* write mask */
1379 iowrite32(mask, ioaddr + CamMask);
1380
1381 /* disable CAMEN */
1382 iowrite8(0, ioaddr + CamCon);
1383}
1384
1385/**
1386 * rhine_init_cam_filter - initialize CAM filters
1387 * @dev: network device
1388 *
1389 * Initialize (disable) hardware VLAN and multicast support on this
1390 * Rhine.
1391 */
1392static void rhine_init_cam_filter(struct net_device *dev)
1393{
1394 struct rhine_private *rp = netdev_priv(dev);
1395 void __iomem *ioaddr = rp->base;
1396
1397 /* Disable all CAMs */
1398 rhine_set_vlan_cam_mask(ioaddr, 0);
1399 rhine_set_cam_mask(ioaddr, 0);
1400
1401 /* disable hardware VLAN support */
1402 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1403 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1404}
1405
1406/**
1407 * rhine_update_vcam - update VLAN CAM filters
1408 * @rp: rhine_private data of this Rhine
1409 *
1410 * Update VLAN CAM filters to match configuration change.
1411 */
1412static void rhine_update_vcam(struct net_device *dev)
1413{
1414 struct rhine_private *rp = netdev_priv(dev);
1415 void __iomem *ioaddr = rp->base;
1416 u16 vid;
1417 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1418 unsigned int i = 0;
1419
1420 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1421 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1422 vCAMmask |= 1 << i;
1423 if (++i >= VCAM_SIZE)
1424 break;
1425 }
1426 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1427}
1428
80d5c368 1429static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1430{
1431 struct rhine_private *rp = netdev_priv(dev);
1432
7ab87ff4 1433 spin_lock_bh(&rp->lock);
38f49e88
RL
1434 set_bit(vid, rp->active_vlans);
1435 rhine_update_vcam(dev);
7ab87ff4 1436 spin_unlock_bh(&rp->lock);
8e586137 1437 return 0;
38f49e88
RL
1438}
1439
80d5c368 1440static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1441{
1442 struct rhine_private *rp = netdev_priv(dev);
1443
7ab87ff4 1444 spin_lock_bh(&rp->lock);
38f49e88
RL
1445 clear_bit(vid, rp->active_vlans);
1446 rhine_update_vcam(dev);
7ab87ff4 1447 spin_unlock_bh(&rp->lock);
8e586137 1448 return 0;
38f49e88
RL
1449}
1450
1da177e4
LT
1451static void init_registers(struct net_device *dev)
1452{
1453 struct rhine_private *rp = netdev_priv(dev);
1454 void __iomem *ioaddr = rp->base;
1455 int i;
1456
1457 for (i = 0; i < 6; i++)
1458 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1459
1460 /* Initialize other registers. */
1461 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1462 /* Configure initial FIFO thresholds. */
1463 iowrite8(0x20, ioaddr + TxConfig);
1464 rp->tx_thresh = 0x20;
1465 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1466
1467 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1468 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1469
1470 rhine_set_rx_mode(dev);
1471
38f49e88
RL
1472 if (rp->pdev->revision >= VT6105M)
1473 rhine_init_cam_filter(dev);
1474
bea3348e 1475 napi_enable(&rp->napi);
ab197668 1476
7ab87ff4 1477 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1da177e4
LT
1478
1479 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1480 ioaddr + ChipCmd);
1481 rhine_check_media(dev, 1);
1482}
1483
1484/* Enable MII link status auto-polling (required for IntrLinkChange) */
a384a33b 1485static void rhine_enable_linkmon(struct rhine_private *rp)
1da177e4 1486{
a384a33b
FR
1487 void __iomem *ioaddr = rp->base;
1488
1da177e4
LT
1489 iowrite8(0, ioaddr + MIICmd);
1490 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1491 iowrite8(0x80, ioaddr + MIICmd);
1492
a384a33b 1493 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1494
1495 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1496}
1497
1498/* Disable MII link status auto-polling (required for MDIO access) */
a384a33b 1499static void rhine_disable_linkmon(struct rhine_private *rp)
1da177e4 1500{
a384a33b
FR
1501 void __iomem *ioaddr = rp->base;
1502
1da177e4
LT
1503 iowrite8(0, ioaddr + MIICmd);
1504
a384a33b 1505 if (rp->quirks & rqRhineI) {
1da177e4
LT
1506 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1507
38bb6b28
JL
1508 /* Can be called from ISR. Evil. */
1509 mdelay(1);
1da177e4
LT
1510
1511 /* 0x80 must be set immediately before turning it off */
1512 iowrite8(0x80, ioaddr + MIICmd);
1513
a384a33b 1514 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1515
1516 /* Heh. Now clear 0x80 again. */
1517 iowrite8(0, ioaddr + MIICmd);
1518 }
1519 else
a384a33b 1520 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1da177e4
LT
1521}
1522
1523/* Read and write over the MII Management Data I/O (MDIO) interface. */
1524
1525static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1526{
1527 struct rhine_private *rp = netdev_priv(dev);
1528 void __iomem *ioaddr = rp->base;
1529 int result;
1530
a384a33b 1531 rhine_disable_linkmon(rp);
1da177e4
LT
1532
1533 /* rhine_disable_linkmon already cleared MIICmd */
1534 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1535 iowrite8(regnum, ioaddr + MIIRegAddr);
1536 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
a384a33b 1537 rhine_wait_bit_low(rp, MIICmd, 0x40);
1da177e4
LT
1538 result = ioread16(ioaddr + MIIData);
1539
a384a33b 1540 rhine_enable_linkmon(rp);
1da177e4
LT
1541 return result;
1542}
1543
1544static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1545{
1546 struct rhine_private *rp = netdev_priv(dev);
1547 void __iomem *ioaddr = rp->base;
1548
a384a33b 1549 rhine_disable_linkmon(rp);
1da177e4
LT
1550
1551 /* rhine_disable_linkmon already cleared MIICmd */
1552 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1553 iowrite8(regnum, ioaddr + MIIRegAddr);
1554 iowrite16(value, ioaddr + MIIData);
1555 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
a384a33b 1556 rhine_wait_bit_low(rp, MIICmd, 0x20);
1da177e4 1557
a384a33b 1558 rhine_enable_linkmon(rp);
1da177e4
LT
1559}
1560
7ab87ff4
FR
1561static void rhine_task_disable(struct rhine_private *rp)
1562{
1563 mutex_lock(&rp->task_lock);
1564 rp->task_enable = false;
1565 mutex_unlock(&rp->task_lock);
1566
1567 cancel_work_sync(&rp->slow_event_task);
1568 cancel_work_sync(&rp->reset_task);
1569}
1570
1571static void rhine_task_enable(struct rhine_private *rp)
1572{
1573 mutex_lock(&rp->task_lock);
1574 rp->task_enable = true;
1575 mutex_unlock(&rp->task_lock);
1576}
1577
1da177e4
LT
1578static int rhine_open(struct net_device *dev)
1579{
1580 struct rhine_private *rp = netdev_priv(dev);
1581 void __iomem *ioaddr = rp->base;
1582 int rc;
1583
76781382 1584 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1585 dev);
1586 if (rc)
1587 return rc;
1588
fc3e0f8a 1589 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1da177e4
LT
1590
1591 rc = alloc_ring(dev);
1592 if (rc) {
1593 free_irq(rp->pdev->irq, dev);
1594 return rc;
1595 }
1596 alloc_rbufs(dev);
1597 alloc_tbufs(dev);
1598 rhine_chip_reset(dev);
7ab87ff4 1599 rhine_task_enable(rp);
1da177e4 1600 init_registers(dev);
fc3e0f8a
FR
1601
1602 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1603 __func__, ioread16(ioaddr + ChipCmd),
1604 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1605
1606 netif_start_queue(dev);
1607
1608 return 0;
1609}
1610
c0d7a021 1611static void rhine_reset_task(struct work_struct *work)
1da177e4 1612{
c0d7a021
JP
1613 struct rhine_private *rp = container_of(work, struct rhine_private,
1614 reset_task);
1615 struct net_device *dev = rp->dev;
1da177e4 1616
7ab87ff4 1617 mutex_lock(&rp->task_lock);
1da177e4 1618
7ab87ff4
FR
1619 if (!rp->task_enable)
1620 goto out_unlock;
bea3348e 1621
7ab87ff4 1622 napi_disable(&rp->napi);
a926592f 1623 netif_tx_disable(dev);
c0d7a021 1624 spin_lock_bh(&rp->lock);
1da177e4
LT
1625
1626 /* clear all descriptors */
1627 free_tbufs(dev);
1628 free_rbufs(dev);
1629 alloc_tbufs(dev);
1630 alloc_rbufs(dev);
1631
1632 /* Reinitialize the hardware. */
1633 rhine_chip_reset(dev);
1634 init_registers(dev);
1635
c0d7a021 1636 spin_unlock_bh(&rp->lock);
1da177e4 1637
1ae5dc34 1638 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1639 dev->stats.tx_errors++;
1da177e4 1640 netif_wake_queue(dev);
7ab87ff4
FR
1641
1642out_unlock:
1643 mutex_unlock(&rp->task_lock);
1da177e4
LT
1644}
1645
c0d7a021
JP
1646static void rhine_tx_timeout(struct net_device *dev)
1647{
1648 struct rhine_private *rp = netdev_priv(dev);
1649 void __iomem *ioaddr = rp->base;
1650
df4511fe
JP
1651 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1652 ioread16(ioaddr + IntrStatus),
1653 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1654
1655 schedule_work(&rp->reset_task);
1656}
1657
61357325
SH
1658static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1659 struct net_device *dev)
1da177e4
LT
1660{
1661 struct rhine_private *rp = netdev_priv(dev);
1662 void __iomem *ioaddr = rp->base;
1663 unsigned entry;
1664
1665 /* Caution: the write order is important here, set the field
1666 with the "ownership" bits last. */
1667
1668 /* Calculate the next Tx descriptor entry. */
1669 entry = rp->cur_tx % TX_RING_SIZE;
1670
5b057c6b 1671 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1672 return NETDEV_TX_OK;
1da177e4
LT
1673
1674 rp->tx_skbuff[entry] = skb;
1675
1676 if ((rp->quirks & rqRhineI) &&
84fa7933 1677 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1678 /* Must use alignment buffer. */
1679 if (skb->len > PKT_BUF_SZ) {
1680 /* packet too long, drop it */
1681 dev_kfree_skb(skb);
1682 rp->tx_skbuff[entry] = NULL;
553e2335 1683 dev->stats.tx_dropped++;
6ed10654 1684 return NETDEV_TX_OK;
1da177e4 1685 }
3e0d167a
CB
1686
1687 /* Padding is not copied and so must be redone. */
1da177e4 1688 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1689 if (skb->len < ETH_ZLEN)
1690 memset(rp->tx_buf[entry] + skb->len, 0,
1691 ETH_ZLEN - skb->len);
1da177e4
LT
1692 rp->tx_skbuff_dma[entry] = 0;
1693 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1694 (rp->tx_buf[entry] -
1695 rp->tx_bufs));
1696 } else {
1697 rp->tx_skbuff_dma[entry] =
1698 pci_map_single(rp->pdev, skb->data, skb->len,
1699 PCI_DMA_TODEVICE);
9b4fe5fb
NH
1700 if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1701 dev_kfree_skb(skb);
1702 rp->tx_skbuff_dma[entry] = 0;
1703 dev->stats.tx_dropped++;
1704 return NETDEV_TX_OK;
1705 }
1da177e4
LT
1706 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1707 }
1708
1709 rp->tx_ring[entry].desc_length =
1710 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1711
38f49e88 1712 if (unlikely(vlan_tx_tag_present(skb))) {
207070f5
RL
1713 u16 vid_pcp = vlan_tx_tag_get(skb);
1714
1715 /* drop CFI/DEI bit, register needs VID and PCP */
1716 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1717 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1718 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
38f49e88
RL
1719 /* request tagging */
1720 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1721 }
1722 else
1723 rp->tx_ring[entry].tx_status = 0;
1724
1da177e4 1725 /* lock eth irq */
1da177e4 1726 wmb();
38f49e88 1727 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1728 wmb();
1729
1730 rp->cur_tx++;
1731
1732 /* Non-x86 Todo: explicitly flush cache lines here. */
1733
38f49e88
RL
1734 if (vlan_tx_tag_present(skb))
1735 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1736 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1737
1da177e4
LT
1738 /* Wake the potentially-idle transmit channel */
1739 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1740 ioaddr + ChipCmd1);
1741 IOSYNC;
1742
1743 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1744 netif_stop_queue(dev);
1745
fc3e0f8a
FR
1746 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1747 rp->cur_tx - 1, entry);
1748
6ed10654 1749 return NETDEV_TX_OK;
1da177e4
LT
1750}
1751
7ab87ff4
FR
1752static void rhine_irq_disable(struct rhine_private *rp)
1753{
1754 iowrite16(0x0000, rp->base + IntrEnable);
1755 mmiowb();
1756}
1757
1da177e4
LT
1758/* The interrupt handler does all of the Rx thread work and cleans up
1759 after the Tx thread. */
7d12e780 1760static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1761{
1762 struct net_device *dev = dev_instance;
1763 struct rhine_private *rp = netdev_priv(dev);
7ab87ff4 1764 u32 status;
1da177e4
LT
1765 int handled = 0;
1766
7ab87ff4 1767 status = rhine_get_events(rp);
1da177e4 1768
fc3e0f8a 1769 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
633949a1 1770
7ab87ff4
FR
1771 if (status & RHINE_EVENT) {
1772 handled = 1;
1da177e4 1773
7ab87ff4
FR
1774 rhine_irq_disable(rp);
1775 napi_schedule(&rp->napi);
1776 }
1da177e4 1777
7ab87ff4 1778 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
fc3e0f8a
FR
1779 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1780 status);
1da177e4
LT
1781 }
1782
1da177e4
LT
1783 return IRQ_RETVAL(handled);
1784}
1785
1786/* This routine is logically part of the interrupt handler, but isolated
1787 for clarity. */
1788static void rhine_tx(struct net_device *dev)
1789{
1790 struct rhine_private *rp = netdev_priv(dev);
1791 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1792
1da177e4
LT
1793 /* find and cleanup dirty tx descriptors */
1794 while (rp->dirty_tx != rp->cur_tx) {
1795 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
fc3e0f8a
FR
1796 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1797 entry, txstatus);
1da177e4
LT
1798 if (txstatus & DescOwn)
1799 break;
1800 if (txstatus & 0x8000) {
fc3e0f8a
FR
1801 netif_dbg(rp, tx_done, dev,
1802 "Transmit error, Tx status %08x\n", txstatus);
553e2335
ED
1803 dev->stats.tx_errors++;
1804 if (txstatus & 0x0400)
1805 dev->stats.tx_carrier_errors++;
1806 if (txstatus & 0x0200)
1807 dev->stats.tx_window_errors++;
1808 if (txstatus & 0x0100)
1809 dev->stats.tx_aborted_errors++;
1810 if (txstatus & 0x0080)
1811 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1812 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1813 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1814 dev->stats.tx_fifo_errors++;
1da177e4
LT
1815 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1816 break; /* Keep the skb - we try again */
1817 }
1818 /* Transmitter restarted in 'abnormal' handler. */
1819 } else {
1820 if (rp->quirks & rqRhineI)
553e2335 1821 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1822 else
553e2335 1823 dev->stats.collisions += txstatus & 0x0F;
fc3e0f8a
FR
1824 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1825 (txstatus >> 3) & 0xF, txstatus & 0xF);
f7b5d1b9
JG
1826
1827 u64_stats_update_begin(&rp->tx_stats.syncp);
1828 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1829 rp->tx_stats.packets++;
1830 u64_stats_update_end(&rp->tx_stats.syncp);
1da177e4
LT
1831 }
1832 /* Free the original skb. */
1833 if (rp->tx_skbuff_dma[entry]) {
1834 pci_unmap_single(rp->pdev,
1835 rp->tx_skbuff_dma[entry],
1836 rp->tx_skbuff[entry]->len,
1837 PCI_DMA_TODEVICE);
1838 }
559bcac3 1839 dev_kfree_skb(rp->tx_skbuff[entry]);
1da177e4
LT
1840 rp->tx_skbuff[entry] = NULL;
1841 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1842 }
1843 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1844 netif_wake_queue(dev);
1da177e4
LT
1845}
1846
38f49e88
RL
1847/**
1848 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1849 * @skb: pointer to sk_buff
1850 * @data_size: used data area of the buffer including CRC
1851 *
1852 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1853 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1854 * aligned following the CRC.
1855 */
1856static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1857{
1858 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 1859 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
1860}
1861
633949a1
RL
1862/* Process up to limit frames from receive ring */
1863static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1864{
1865 struct rhine_private *rp = netdev_priv(dev);
633949a1 1866 int count;
1da177e4 1867 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4 1868
fc3e0f8a
FR
1869 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1870 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1da177e4
LT
1871
1872 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1873 for (count = 0; count < limit; ++count) {
1da177e4
LT
1874 struct rx_desc *desc = rp->rx_head_desc;
1875 u32 desc_status = le32_to_cpu(desc->rx_status);
38f49e88 1876 u32 desc_length = le32_to_cpu(desc->desc_length);
1da177e4
LT
1877 int data_size = desc_status >> 16;
1878
633949a1
RL
1879 if (desc_status & DescOwn)
1880 break;
1881
fc3e0f8a
FR
1882 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1883 desc_status);
633949a1 1884
1da177e4
LT
1885 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1886 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
1887 netdev_warn(dev,
1888 "Oversized Ethernet frame spanned multiple buffers, "
1889 "entry %#x length %d status %08x!\n",
1890 entry, data_size,
1891 desc_status);
1892 netdev_warn(dev,
1893 "Oversized Ethernet frame %p vs %p\n",
1894 rp->rx_head_desc,
1895 &rp->rx_ring[entry]);
553e2335 1896 dev->stats.rx_length_errors++;
1da177e4
LT
1897 } else if (desc_status & RxErr) {
1898 /* There was a error. */
fc3e0f8a
FR
1899 netif_dbg(rp, rx_err, dev,
1900 "%s() Rx error %08x\n", __func__,
1901 desc_status);
553e2335
ED
1902 dev->stats.rx_errors++;
1903 if (desc_status & 0x0030)
1904 dev->stats.rx_length_errors++;
1905 if (desc_status & 0x0048)
1906 dev->stats.rx_fifo_errors++;
1907 if (desc_status & 0x0004)
1908 dev->stats.rx_frame_errors++;
1da177e4
LT
1909 if (desc_status & 0x0002) {
1910 /* this can also be updated outside the interrupt handler */
1911 spin_lock(&rp->lock);
553e2335 1912 dev->stats.rx_crc_errors++;
1da177e4
LT
1913 spin_unlock(&rp->lock);
1914 }
1915 }
1916 } else {
89d71a66 1917 struct sk_buff *skb = NULL;
1da177e4
LT
1918 /* Length should omit the CRC */
1919 int pkt_len = data_size - 4;
38f49e88 1920 u16 vlan_tci = 0;
1da177e4
LT
1921
1922 /* Check if the packet is long enough to accept without
1923 copying to a minimally-sized skbuff. */
89d71a66
ED
1924 if (pkt_len < rx_copybreak)
1925 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1926 if (skb) {
1da177e4
LT
1927 pci_dma_sync_single_for_cpu(rp->pdev,
1928 rp->rx_skbuff_dma[entry],
1929 rp->rx_buf_sz,
1930 PCI_DMA_FROMDEVICE);
1931
8c7b7faa 1932 skb_copy_to_linear_data(skb,
689be439 1933 rp->rx_skbuff[entry]->data,
8c7b7faa 1934 pkt_len);
1da177e4
LT
1935 skb_put(skb, pkt_len);
1936 pci_dma_sync_single_for_device(rp->pdev,
1937 rp->rx_skbuff_dma[entry],
1938 rp->rx_buf_sz,
1939 PCI_DMA_FROMDEVICE);
1940 } else {
1941 skb = rp->rx_skbuff[entry];
1942 if (skb == NULL) {
df4511fe 1943 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1da177e4
LT
1944 break;
1945 }
1946 rp->rx_skbuff[entry] = NULL;
1947 skb_put(skb, pkt_len);
1948 pci_unmap_single(rp->pdev,
1949 rp->rx_skbuff_dma[entry],
1950 rp->rx_buf_sz,
1951 PCI_DMA_FROMDEVICE);
1952 }
38f49e88
RL
1953
1954 if (unlikely(desc_length & DescTag))
1955 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1956
1da177e4 1957 skb->protocol = eth_type_trans(skb, dev);
38f49e88
RL
1958
1959 if (unlikely(desc_length & DescTag))
86a9bad3 1960 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
633949a1 1961 netif_receive_skb(skb);
f7b5d1b9
JG
1962
1963 u64_stats_update_begin(&rp->rx_stats.syncp);
1964 rp->rx_stats.bytes += pkt_len;
1965 rp->rx_stats.packets++;
1966 u64_stats_update_end(&rp->rx_stats.syncp);
1da177e4
LT
1967 }
1968 entry = (++rp->cur_rx) % RX_RING_SIZE;
1969 rp->rx_head_desc = &rp->rx_ring[entry];
1970 }
1971
1972 /* Refill the Rx ring buffers. */
1973 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1974 struct sk_buff *skb;
1975 entry = rp->dirty_rx % RX_RING_SIZE;
1976 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1977 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1978 rp->rx_skbuff[entry] = skb;
1979 if (skb == NULL)
1980 break; /* Better luck next round. */
1da177e4 1981 rp->rx_skbuff_dma[entry] =
689be439 1982 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1983 rp->rx_buf_sz,
1984 PCI_DMA_FROMDEVICE);
9b4fe5fb
NH
1985 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1986 dev_kfree_skb(skb);
1987 rp->rx_skbuff_dma[entry] = 0;
1988 break;
1989 }
1da177e4
LT
1990 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1991 }
1992 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1993 }
633949a1
RL
1994
1995 return count;
1da177e4
LT
1996}
1997
1da177e4
LT
1998static void rhine_restart_tx(struct net_device *dev) {
1999 struct rhine_private *rp = netdev_priv(dev);
2000 void __iomem *ioaddr = rp->base;
2001 int entry = rp->dirty_tx % TX_RING_SIZE;
2002 u32 intr_status;
2003
2004 /*
25985edc 2005 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
2006 * In that case the ISR will be back here RSN anyway.
2007 */
a20a28bc 2008 intr_status = rhine_get_events(rp);
1da177e4
LT
2009
2010 if ((intr_status & IntrTxErrSummary) == 0) {
2011
2012 /* We know better than the chip where it should continue. */
2013 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2014 ioaddr + TxRingPtr);
2015
2016 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2017 ioaddr + ChipCmd);
38f49e88
RL
2018
2019 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2020 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2021 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2022
1da177e4
LT
2023 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2024 ioaddr + ChipCmd1);
2025 IOSYNC;
2026 }
2027 else {
2028 /* This should never happen */
fc3e0f8a
FR
2029 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2030 intr_status);
1da177e4
LT
2031 }
2032
2033}
2034
7ab87ff4 2035static void rhine_slow_event_task(struct work_struct *work)
1da177e4 2036{
7ab87ff4
FR
2037 struct rhine_private *rp =
2038 container_of(work, struct rhine_private, slow_event_task);
2039 struct net_device *dev = rp->dev;
2040 u32 intr_status;
1da177e4 2041
7ab87ff4
FR
2042 mutex_lock(&rp->task_lock);
2043
2044 if (!rp->task_enable)
2045 goto out_unlock;
2046
2047 intr_status = rhine_get_events(rp);
2048 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
1da177e4
LT
2049
2050 if (intr_status & IntrLinkChange)
38bb6b28 2051 rhine_check_media(dev, 0);
1da177e4 2052
fc3e0f8a
FR
2053 if (intr_status & IntrPCIErr)
2054 netif_warn(rp, hw, dev, "PCI error\n");
2055
559bcac3 2056 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
1da177e4 2057
7ab87ff4
FR
2058out_unlock:
2059 mutex_unlock(&rp->task_lock);
1da177e4
LT
2060}
2061
f7b5d1b9
JG
2062static struct rtnl_link_stats64 *
2063rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1da177e4
LT
2064{
2065 struct rhine_private *rp = netdev_priv(dev);
f7b5d1b9 2066 unsigned int start;
1da177e4 2067
7ab87ff4
FR
2068 spin_lock_bh(&rp->lock);
2069 rhine_update_rx_crc_and_missed_errord(rp);
2070 spin_unlock_bh(&rp->lock);
1da177e4 2071
f7b5d1b9
JG
2072 netdev_stats_to_stats64(stats, &dev->stats);
2073
2074 do {
2075 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2076 stats->rx_packets = rp->rx_stats.packets;
2077 stats->rx_bytes = rp->rx_stats.bytes;
2078 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2079
2080 do {
2081 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2082 stats->tx_packets = rp->tx_stats.packets;
2083 stats->tx_bytes = rp->tx_stats.bytes;
2084 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2085
2086 return stats;
1da177e4
LT
2087}
2088
2089static void rhine_set_rx_mode(struct net_device *dev)
2090{
2091 struct rhine_private *rp = netdev_priv(dev);
2092 void __iomem *ioaddr = rp->base;
2093 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
2094 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2095 struct netdev_hw_addr *ha;
1da177e4
LT
2096
2097 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2098 rx_mode = 0x1C;
2099 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2100 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 2101 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2102 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2103 /* Too many to match, or accept all multicasts. */
2104 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2105 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
38f49e88
RL
2106 } else if (rp->pdev->revision >= VT6105M) {
2107 int i = 0;
2108 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2109 netdev_for_each_mc_addr(ha, dev) {
2110 if (i == MCAM_SIZE)
2111 break;
2112 rhine_set_cam(ioaddr, i, ha->addr);
2113 mCAMmask |= 1 << i;
2114 i++;
2115 }
2116 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 2117 } else {
1da177e4 2118 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2119 netdev_for_each_mc_addr(ha, dev) {
2120 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
2121
2122 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2123 }
2124 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2125 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 2126 }
38f49e88
RL
2127 /* enable/disable VLAN receive filtering */
2128 if (rp->pdev->revision >= VT6105M) {
2129 if (dev->flags & IFF_PROMISC)
2130 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2131 else
2132 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2133 }
2134 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2135}
2136
2137static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2138{
2139 struct rhine_private *rp = netdev_priv(dev);
2140
23020ab3
RJ
2141 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2142 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2143 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
1da177e4
LT
2144}
2145
2146static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2147{
2148 struct rhine_private *rp = netdev_priv(dev);
2149 int rc;
2150
7ab87ff4 2151 mutex_lock(&rp->task_lock);
1da177e4 2152 rc = mii_ethtool_gset(&rp->mii_if, cmd);
7ab87ff4 2153 mutex_unlock(&rp->task_lock);
1da177e4
LT
2154
2155 return rc;
2156}
2157
2158static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2159{
2160 struct rhine_private *rp = netdev_priv(dev);
2161 int rc;
2162
7ab87ff4 2163 mutex_lock(&rp->task_lock);
1da177e4 2164 rc = mii_ethtool_sset(&rp->mii_if, cmd);
00b428c2 2165 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2166 mutex_unlock(&rp->task_lock);
1da177e4
LT
2167
2168 return rc;
2169}
2170
2171static int netdev_nway_reset(struct net_device *dev)
2172{
2173 struct rhine_private *rp = netdev_priv(dev);
2174
2175 return mii_nway_restart(&rp->mii_if);
2176}
2177
2178static u32 netdev_get_link(struct net_device *dev)
2179{
2180 struct rhine_private *rp = netdev_priv(dev);
2181
2182 return mii_link_ok(&rp->mii_if);
2183}
2184
2185static u32 netdev_get_msglevel(struct net_device *dev)
2186{
fc3e0f8a
FR
2187 struct rhine_private *rp = netdev_priv(dev);
2188
2189 return rp->msg_enable;
1da177e4
LT
2190}
2191
2192static void netdev_set_msglevel(struct net_device *dev, u32 value)
2193{
fc3e0f8a
FR
2194 struct rhine_private *rp = netdev_priv(dev);
2195
2196 rp->msg_enable = value;
1da177e4
LT
2197}
2198
2199static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2200{
2201 struct rhine_private *rp = netdev_priv(dev);
2202
2203 if (!(rp->quirks & rqWOL))
2204 return;
2205
2206 spin_lock_irq(&rp->lock);
2207 wol->supported = WAKE_PHY | WAKE_MAGIC |
2208 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2209 wol->wolopts = rp->wolopts;
2210 spin_unlock_irq(&rp->lock);
2211}
2212
2213static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2214{
2215 struct rhine_private *rp = netdev_priv(dev);
2216 u32 support = WAKE_PHY | WAKE_MAGIC |
2217 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2218
2219 if (!(rp->quirks & rqWOL))
2220 return -EINVAL;
2221
2222 if (wol->wolopts & ~support)
2223 return -EINVAL;
2224
2225 spin_lock_irq(&rp->lock);
2226 rp->wolopts = wol->wolopts;
2227 spin_unlock_irq(&rp->lock);
2228
2229 return 0;
2230}
2231
7282d491 2232static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2233 .get_drvinfo = netdev_get_drvinfo,
2234 .get_settings = netdev_get_settings,
2235 .set_settings = netdev_set_settings,
2236 .nway_reset = netdev_nway_reset,
2237 .get_link = netdev_get_link,
2238 .get_msglevel = netdev_get_msglevel,
2239 .set_msglevel = netdev_set_msglevel,
2240 .get_wol = rhine_get_wol,
2241 .set_wol = rhine_set_wol,
1da177e4
LT
2242};
2243
2244static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2245{
2246 struct rhine_private *rp = netdev_priv(dev);
2247 int rc;
2248
2249 if (!netif_running(dev))
2250 return -EINVAL;
2251
7ab87ff4 2252 mutex_lock(&rp->task_lock);
1da177e4 2253 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
00b428c2 2254 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2255 mutex_unlock(&rp->task_lock);
1da177e4
LT
2256
2257 return rc;
2258}
2259
2260static int rhine_close(struct net_device *dev)
2261{
2262 struct rhine_private *rp = netdev_priv(dev);
2263 void __iomem *ioaddr = rp->base;
2264
7ab87ff4 2265 rhine_task_disable(rp);
bea3348e 2266 napi_disable(&rp->napi);
c0d7a021
JP
2267 netif_stop_queue(dev);
2268
fc3e0f8a
FR
2269 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2270 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2271
2272 /* Switch to loopback mode to avoid hardware races. */
2273 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2274
7ab87ff4 2275 rhine_irq_disable(rp);
1da177e4
LT
2276
2277 /* Stop the chip's Tx and Rx processes. */
2278 iowrite16(CmdStop, ioaddr + ChipCmd);
2279
1da177e4
LT
2280 free_irq(rp->pdev->irq, dev);
2281 free_rbufs(dev);
2282 free_tbufs(dev);
2283 free_ring(dev);
2284
2285 return 0;
2286}
2287
2288
76e239e1 2289static void rhine_remove_one(struct pci_dev *pdev)
1da177e4
LT
2290{
2291 struct net_device *dev = pci_get_drvdata(pdev);
2292 struct rhine_private *rp = netdev_priv(dev);
2293
2294 unregister_netdev(dev);
2295
2296 pci_iounmap(pdev, rp->base);
2297 pci_release_regions(pdev);
2298
2299 free_netdev(dev);
2300 pci_disable_device(pdev);
1da177e4
LT
2301}
2302
d18c3db5 2303static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 2304{
1da177e4
LT
2305 struct net_device *dev = pci_get_drvdata(pdev);
2306 struct rhine_private *rp = netdev_priv(dev);
2307 void __iomem *ioaddr = rp->base;
2308
2309 if (!(rp->quirks & rqWOL))
2310 return; /* Nothing to do for non-WOL adapters */
2311
2312 rhine_power_init(dev);
2313
2314 /* Make sure we use pattern 0, 1 and not 4, 5 */
2315 if (rp->quirks & rq6patterns)
f11cf25e 2316 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4 2317
7ab87ff4
FR
2318 spin_lock(&rp->lock);
2319
1da177e4
LT
2320 if (rp->wolopts & WAKE_MAGIC) {
2321 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2322 /*
2323 * Turn EEPROM-controlled wake-up back on -- some hardware may
2324 * not cooperate otherwise.
2325 */
2326 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2327 }
2328
2329 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2330 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2331
2332 if (rp->wolopts & WAKE_PHY)
2333 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2334
2335 if (rp->wolopts & WAKE_UCAST)
2336 iowrite8(WOLucast, ioaddr + WOLcrSet);
2337
2338 if (rp->wolopts) {
2339 /* Enable legacy WOL (for old motherboards) */
2340 iowrite8(0x01, ioaddr + PwcfgSet);
2341 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2342 }
2343
7ab87ff4
FR
2344 spin_unlock(&rp->lock);
2345
e92b9b3b 2346 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
b933b4d9 2347 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4 2348
e92b9b3b
FR
2349 pci_wake_from_d3(pdev, true);
2350 pci_set_power_state(pdev, PCI_D3hot);
2351 }
1da177e4
LT
2352}
2353
e92b9b3b
FR
2354#ifdef CONFIG_PM_SLEEP
2355static int rhine_suspend(struct device *device)
1da177e4 2356{
e92b9b3b 2357 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2358 struct net_device *dev = pci_get_drvdata(pdev);
2359 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2360
2361 if (!netif_running(dev))
2362 return 0;
2363
7ab87ff4
FR
2364 rhine_task_disable(rp);
2365 rhine_irq_disable(rp);
bea3348e 2366 napi_disable(&rp->napi);
32b0f53e 2367
1da177e4 2368 netif_device_detach(dev);
1da177e4 2369
d18c3db5 2370 rhine_shutdown(pdev);
1da177e4 2371
1da177e4
LT
2372 return 0;
2373}
2374
e92b9b3b 2375static int rhine_resume(struct device *device)
1da177e4 2376{
e92b9b3b 2377 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2378 struct net_device *dev = pci_get_drvdata(pdev);
2379 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2380
2381 if (!netif_running(dev))
2382 return 0;
2383
1da177e4
LT
2384#ifdef USE_MMIO
2385 enable_mmio(rp->pioaddr, rp->quirks);
2386#endif
2387 rhine_power_init(dev);
2388 free_tbufs(dev);
2389 free_rbufs(dev);
2390 alloc_tbufs(dev);
2391 alloc_rbufs(dev);
7ab87ff4
FR
2392 rhine_task_enable(rp);
2393 spin_lock_bh(&rp->lock);
1da177e4 2394 init_registers(dev);
7ab87ff4 2395 spin_unlock_bh(&rp->lock);
1da177e4
LT
2396
2397 netif_device_attach(dev);
2398
2399 return 0;
2400}
e92b9b3b
FR
2401
2402static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2403#define RHINE_PM_OPS (&rhine_pm_ops)
2404
2405#else
2406
2407#define RHINE_PM_OPS NULL
2408
2409#endif /* !CONFIG_PM_SLEEP */
1da177e4
LT
2410
2411static struct pci_driver rhine_driver = {
2412 .name = DRV_NAME,
2413 .id_table = rhine_pci_tbl,
2414 .probe = rhine_init_one,
76e239e1 2415 .remove = rhine_remove_one,
e92b9b3b
FR
2416 .shutdown = rhine_shutdown,
2417 .driver.pm = RHINE_PM_OPS,
1da177e4
LT
2418};
2419
77273eaa 2420static struct dmi_system_id rhine_dmi_table[] __initdata = {
e84df485
RL
2421 {
2422 .ident = "EPIA-M",
2423 .matches = {
2424 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2425 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2426 },
2427 },
2428 {
2429 .ident = "KV7",
2430 .matches = {
2431 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2432 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2433 },
2434 },
2435 { NULL }
2436};
1da177e4
LT
2437
2438static int __init rhine_init(void)
2439{
2440/* when a module, this is printed whether or not devices are found in probe */
2441#ifdef MODULE
df4511fe 2442 pr_info("%s\n", version);
1da177e4 2443#endif
e84df485
RL
2444 if (dmi_check_system(rhine_dmi_table)) {
2445 /* these BIOSes fail at PXE boot if chip is in D3 */
eb939922 2446 avoid_D3 = true;
df4511fe 2447 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2448 }
2449 else if (avoid_D3)
df4511fe 2450 pr_info("avoid_D3 set\n");
e84df485 2451
29917620 2452 return pci_register_driver(&rhine_driver);
1da177e4
LT
2453}
2454
2455
2456static void __exit rhine_cleanup(void)
2457{
2458 pci_unregister_driver(&rhine_driver);
2459}
2460
2461
2462module_init(rhine_init);
2463module_exit(rhine_cleanup);