]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/xilinx/xilinx_axienet_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
CommitLineData
09c434b8 1// SPDX-License-Identifier: GPL-2.0-only
8a3b7a25
DB
2/*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
59a54f30
MS
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
f5203a3d 10 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
59a54f30 11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
8a3b7a25
DB
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
23 */
24
09a0354c 25#include <linux/clk.h>
8a3b7a25
DB
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
8a3b7a25
DB
28#include <linux/module.h>
29#include <linux/netdevice.h>
30#include <linux/of_mdio.h>
da90e380 31#include <linux/of_net.h>
8a3b7a25 32#include <linux/of_platform.h>
9d5e8ec6 33#include <linux/of_irq.h>
8a3b7a25
DB
34#include <linux/of_address.h>
35#include <linux/skbuff.h>
36#include <linux/spinlock.h>
37#include <linux/phy.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40
41#include "xilinx_axienet.h"
42
8b09ca82
RH
43/* Descriptors defines for Tx and Rx DMA */
44#define TX_BD_NUM_DEFAULT 64
45#define RX_BD_NUM_DEFAULT 1024
46#define TX_BD_NUM_MAX 4096
47#define RX_BD_NUM_MAX 4096
8a3b7a25
DB
48
49/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
50#define DRIVER_NAME "xaxienet"
51#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
52#define DRIVER_VERSION "1.00a"
53
867d03bc 54#define AXIENET_REGS_N 40
8a3b7a25
DB
55
56/* Match table for of_platform binding */
74847f23 57static const struct of_device_id axienet_of_match[] = {
8a3b7a25
DB
58 { .compatible = "xlnx,axi-ethernet-1.00.a", },
59 { .compatible = "xlnx,axi-ethernet-1.01.a", },
60 { .compatible = "xlnx,axi-ethernet-2.01.a", },
61 {},
62};
63
64MODULE_DEVICE_TABLE(of, axienet_of_match);
65
66/* Option table for setting up Axi Ethernet hardware options */
67static struct axienet_option axienet_options[] = {
68 /* Turn on jumbo packet support for both Rx and Tx */
69 {
70 .opt = XAE_OPTION_JUMBO,
71 .reg = XAE_TC_OFFSET,
72 .m_or = XAE_TC_JUM_MASK,
73 }, {
74 .opt = XAE_OPTION_JUMBO,
75 .reg = XAE_RCW1_OFFSET,
76 .m_or = XAE_RCW1_JUM_MASK,
77 }, { /* Turn on VLAN packet support for both Rx and Tx */
78 .opt = XAE_OPTION_VLAN,
79 .reg = XAE_TC_OFFSET,
80 .m_or = XAE_TC_VLAN_MASK,
81 }, {
82 .opt = XAE_OPTION_VLAN,
83 .reg = XAE_RCW1_OFFSET,
84 .m_or = XAE_RCW1_VLAN_MASK,
85 }, { /* Turn on FCS stripping on receive packets */
86 .opt = XAE_OPTION_FCS_STRIP,
87 .reg = XAE_RCW1_OFFSET,
88 .m_or = XAE_RCW1_FCS_MASK,
89 }, { /* Turn on FCS insertion on transmit packets */
90 .opt = XAE_OPTION_FCS_INSERT,
91 .reg = XAE_TC_OFFSET,
92 .m_or = XAE_TC_FCS_MASK,
93 }, { /* Turn off length/type field checking on receive packets */
94 .opt = XAE_OPTION_LENTYPE_ERR,
95 .reg = XAE_RCW1_OFFSET,
96 .m_or = XAE_RCW1_LT_DIS_MASK,
97 }, { /* Turn on Rx flow control */
98 .opt = XAE_OPTION_FLOW_CONTROL,
99 .reg = XAE_FCC_OFFSET,
100 .m_or = XAE_FCC_FCRX_MASK,
101 }, { /* Turn on Tx flow control */
102 .opt = XAE_OPTION_FLOW_CONTROL,
103 .reg = XAE_FCC_OFFSET,
104 .m_or = XAE_FCC_FCTX_MASK,
105 }, { /* Turn on promiscuous frame filtering */
106 .opt = XAE_OPTION_PROMISC,
107 .reg = XAE_FMI_OFFSET,
108 .m_or = XAE_FMI_PM_MASK,
109 }, { /* Enable transmitter */
110 .opt = XAE_OPTION_TXEN,
111 .reg = XAE_TC_OFFSET,
112 .m_or = XAE_TC_TX_MASK,
113 }, { /* Enable receiver */
114 .opt = XAE_OPTION_RXEN,
115 .reg = XAE_RCW1_OFFSET,
116 .m_or = XAE_RCW1_RX_MASK,
117 },
118 {}
119};
120
121/**
122 * axienet_dma_in32 - Memory mapped Axi DMA register read
123 * @lp: Pointer to axienet local structure
124 * @reg: Address offset from the base address of the Axi DMA core
125 *
b0d081c5 126 * Return: The contents of the Axi DMA register
8a3b7a25
DB
127 *
128 * This function returns the contents of the corresponding Axi DMA register.
129 */
130static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
131{
d85f5f3e 132 return ioread32(lp->dma_regs + reg);
8a3b7a25
DB
133}
134
135/**
136 * axienet_dma_out32 - Memory mapped Axi DMA register write.
137 * @lp: Pointer to axienet local structure
138 * @reg: Address offset from the base address of the Axi DMA core
139 * @value: Value to be written into the Axi DMA register
140 *
141 * This function writes the desired value into the corresponding Axi DMA
142 * register.
143 */
144static inline void axienet_dma_out32(struct axienet_local *lp,
145 off_t reg, u32 value)
146{
d85f5f3e 147 iowrite32(value, lp->dma_regs + reg);
8a3b7a25
DB
148}
149
150/**
151 * axienet_dma_bd_release - Release buffer descriptor rings
152 * @ndev: Pointer to the net_device structure
153 *
154 * This function is used to release the descriptors allocated in
155 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
156 * driver stop api is called.
157 */
158static void axienet_dma_bd_release(struct net_device *ndev)
159{
160 int i;
161 struct axienet_local *lp = netdev_priv(ndev);
162
8b09ca82 163 for (i = 0; i < lp->rx_bd_num; i++) {
8a3b7a25
DB
164 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
165 lp->max_frm_size, DMA_FROM_DEVICE);
23e6b2dc 166 dev_kfree_skb(lp->rx_bd_v[i].skb);
8a3b7a25
DB
167 }
168
169 if (lp->rx_bd_v) {
170 dma_free_coherent(ndev->dev.parent,
8b09ca82 171 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
8a3b7a25
DB
172 lp->rx_bd_v,
173 lp->rx_bd_p);
174 }
175 if (lp->tx_bd_v) {
176 dma_free_coherent(ndev->dev.parent,
8b09ca82 177 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
8a3b7a25
DB
178 lp->tx_bd_v,
179 lp->tx_bd_p);
180 }
181}
182
183/**
184 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
185 * @ndev: Pointer to the net_device structure
186 *
b0d081c5 187 * Return: 0, on success -ENOMEM, on failure
8a3b7a25
DB
188 *
189 * This function is called to initialize the Rx and Tx DMA descriptor
190 * rings. This initializes the descriptors with required default values
191 * and is called when Axi Ethernet driver reset is called.
192 */
193static int axienet_dma_bd_init(struct net_device *ndev)
194{
195 u32 cr;
196 int i;
197 struct sk_buff *skb;
198 struct axienet_local *lp = netdev_priv(ndev);
199
200 /* Reset the indexes which are used for accessing the BDs */
201 lp->tx_bd_ci = 0;
202 lp->tx_bd_tail = 0;
203 lp->rx_bd_ci = 0;
204
850a7503 205 /* Allocate the Tx and Rx buffer descriptors. */
750afb08 206 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
8b09ca82 207 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
750afb08 208 &lp->tx_bd_p, GFP_KERNEL);
d0320f75 209 if (!lp->tx_bd_v)
8a3b7a25 210 goto out;
8a3b7a25 211
750afb08 212 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
8b09ca82 213 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
750afb08 214 &lp->rx_bd_p, GFP_KERNEL);
d0320f75 215 if (!lp->rx_bd_v)
8a3b7a25 216 goto out;
8a3b7a25 217
8b09ca82 218 for (i = 0; i < lp->tx_bd_num; i++) {
8a3b7a25
DB
219 lp->tx_bd_v[i].next = lp->tx_bd_p +
220 sizeof(*lp->tx_bd_v) *
8b09ca82 221 ((i + 1) % lp->tx_bd_num);
8a3b7a25
DB
222 }
223
8b09ca82 224 for (i = 0; i < lp->rx_bd_num; i++) {
8a3b7a25
DB
225 lp->rx_bd_v[i].next = lp->rx_bd_p +
226 sizeof(*lp->rx_bd_v) *
8b09ca82 227 ((i + 1) % lp->rx_bd_num);
8a3b7a25
DB
228
229 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 230 if (!skb)
8a3b7a25 231 goto out;
8a3b7a25 232
23e6b2dc 233 lp->rx_bd_v[i].skb = skb;
8a3b7a25
DB
234 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
235 skb->data,
236 lp->max_frm_size,
237 DMA_FROM_DEVICE);
238 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
239 }
240
241 /* Start updating the Rx channel control register */
242 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
243 /* Update the interrupt coalesce count */
244 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
245 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
246 /* Update the delay timer count */
247 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
248 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
249 /* Enable coalesce, delay timer and error interrupts */
250 cr |= XAXIDMA_IRQ_ALL_MASK;
251 /* Write to the Rx channel control register */
252 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
253
254 /* Start updating the Tx channel control register */
255 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
256 /* Update the interrupt coalesce count */
257 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
258 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
259 /* Update the delay timer count */
260 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
261 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
262 /* Enable coalesce, delay timer and error interrupts */
263 cr |= XAXIDMA_IRQ_ALL_MASK;
264 /* Write to the Tx channel control register */
265 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
266
267 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
268 * halted state. This will make the Rx side ready for reception.
269 */
8a3b7a25
DB
270 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
271 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
272 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
273 cr | XAXIDMA_CR_RUNSTOP_MASK);
274 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
8b09ca82 275 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
8a3b7a25
DB
276
277 /* Write to the RS (Run-stop) bit in the Tx channel control register.
278 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
279 * tail pointer register that the Tx channel will start transmitting.
280 */
8a3b7a25
DB
281 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
282 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
283 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
284 cr | XAXIDMA_CR_RUNSTOP_MASK);
285
286 return 0;
287out:
288 axienet_dma_bd_release(ndev);
289 return -ENOMEM;
290}
291
292/**
293 * axienet_set_mac_address - Write the MAC address
294 * @ndev: Pointer to the net_device structure
295 * @address: 6 byte Address to be written as MAC address
296 *
297 * This function is called to initialize the MAC address of the Axi Ethernet
298 * core. It writes to the UAW0 and UAW1 registers of the core.
299 */
da90e380
TK
300static void axienet_set_mac_address(struct net_device *ndev,
301 const void *address)
8a3b7a25
DB
302{
303 struct axienet_local *lp = netdev_priv(ndev);
304
305 if (address)
306 memcpy(ndev->dev_addr, address, ETH_ALEN);
307 if (!is_valid_ether_addr(ndev->dev_addr))
452349c3 308 eth_hw_addr_random(ndev);
8a3b7a25
DB
309
310 /* Set up unicast MAC address filter set its mac address */
311 axienet_iow(lp, XAE_UAW0_OFFSET,
312 (ndev->dev_addr[0]) |
313 (ndev->dev_addr[1] << 8) |
314 (ndev->dev_addr[2] << 16) |
315 (ndev->dev_addr[3] << 24));
316 axienet_iow(lp, XAE_UAW1_OFFSET,
317 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
318 ~XAE_UAW1_UNICASTADDR_MASK) |
319 (ndev->dev_addr[4] |
320 (ndev->dev_addr[5] << 8))));
321}
322
323/**
324 * netdev_set_mac_address - Write the MAC address (from outside the driver)
325 * @ndev: Pointer to the net_device structure
326 * @p: 6 byte Address to be written as MAC address
327 *
b0d081c5 328 * Return: 0 for all conditions. Presently, there is no failure case.
8a3b7a25
DB
329 *
330 * This function is called to initialize the MAC address of the Axi Ethernet
331 * core. It calls the core specific axienet_set_mac_address. This is the
332 * function that goes into net_device_ops structure entry ndo_set_mac_address.
333 */
334static int netdev_set_mac_address(struct net_device *ndev, void *p)
335{
336 struct sockaddr *addr = p;
337 axienet_set_mac_address(ndev, addr->sa_data);
338 return 0;
339}
340
341/**
342 * axienet_set_multicast_list - Prepare the multicast table
343 * @ndev: Pointer to the net_device structure
344 *
345 * This function is called to initialize the multicast table during
346 * initialization. The Axi Ethernet basic multicast support has a four-entry
347 * multicast table which is initialized here. Additionally this function
348 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
349 * means whenever the multicast table entries need to be updated this
350 * function gets called.
351 */
352static void axienet_set_multicast_list(struct net_device *ndev)
353{
354 int i;
355 u32 reg, af0reg, af1reg;
356 struct axienet_local *lp = netdev_priv(ndev);
357
358 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
359 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
360 /* We must make the kernel realize we had to move into
361 * promiscuous mode. If it was a promiscuous mode request
850a7503
MS
362 * the flag is already set. If not we set it.
363 */
8a3b7a25
DB
364 ndev->flags |= IFF_PROMISC;
365 reg = axienet_ior(lp, XAE_FMI_OFFSET);
366 reg |= XAE_FMI_PM_MASK;
367 axienet_iow(lp, XAE_FMI_OFFSET, reg);
368 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
369 } else if (!netdev_mc_empty(ndev)) {
370 struct netdev_hw_addr *ha;
371
372 i = 0;
373 netdev_for_each_mc_addr(ha, ndev) {
374 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
375 break;
376
377 af0reg = (ha->addr[0]);
378 af0reg |= (ha->addr[1] << 8);
379 af0reg |= (ha->addr[2] << 16);
380 af0reg |= (ha->addr[3] << 24);
381
382 af1reg = (ha->addr[4]);
383 af1reg |= (ha->addr[5] << 8);
384
385 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
386 reg |= i;
387
388 axienet_iow(lp, XAE_FMI_OFFSET, reg);
389 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
390 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
391 i++;
392 }
393 } else {
394 reg = axienet_ior(lp, XAE_FMI_OFFSET);
395 reg &= ~XAE_FMI_PM_MASK;
396
397 axienet_iow(lp, XAE_FMI_OFFSET, reg);
398
399 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
400 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
401 reg |= i;
402
403 axienet_iow(lp, XAE_FMI_OFFSET, reg);
404 axienet_iow(lp, XAE_AF0_OFFSET, 0);
405 axienet_iow(lp, XAE_AF1_OFFSET, 0);
406 }
407
408 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
409 }
410}
411
412/**
413 * axienet_setoptions - Set an Axi Ethernet option
414 * @ndev: Pointer to the net_device structure
415 * @options: Option to be enabled/disabled
416 *
417 * The Axi Ethernet core has multiple features which can be selectively turned
418 * on or off. The typical options could be jumbo frame option, basic VLAN
419 * option, promiscuous mode option etc. This function is used to set or clear
420 * these options in the Axi Ethernet hardware. This is done through
421 * axienet_option structure .
422 */
423static void axienet_setoptions(struct net_device *ndev, u32 options)
424{
425 int reg;
426 struct axienet_local *lp = netdev_priv(ndev);
427 struct axienet_option *tp = &axienet_options[0];
428
429 while (tp->opt) {
430 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
431 if (options & tp->opt)
432 reg |= tp->m_or;
433 axienet_iow(lp, tp->reg, reg);
434 tp++;
435 }
436
437 lp->options |= options;
438}
439
489d4d77 440static void __axienet_device_reset(struct axienet_local *lp)
8a3b7a25
DB
441{
442 u32 timeout;
443 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
444 * process of Axi DMA takes a while to complete as all pending
445 * commands/transfers will be flushed or completed during this
850a7503 446 * reset process.
489d4d77
RH
447 * Note that even though both TX and RX have their own reset register,
448 * they both reset the entire DMA core, so only one needs to be used.
850a7503 449 */
489d4d77 450 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
8a3b7a25 451 timeout = DELAY_OF_ONE_MILLISEC;
489d4d77
RH
452 while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
453 XAXIDMA_CR_RESET_MASK) {
8a3b7a25
DB
454 udelay(1);
455 if (--timeout == 0) {
c81a97b5
ST
456 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
457 __func__);
8a3b7a25
DB
458 break;
459 }
460 }
461}
462
463/**
464 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
465 * @ndev: Pointer to the net_device structure
466 *
467 * This function is called to reset and initialize the Axi Ethernet core. This
468 * is typically called during initialization. It does a reset of the Axi DMA
469 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
470 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
471 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
472 * core.
473 */
474static void axienet_device_reset(struct net_device *ndev)
475{
476 u32 axienet_status;
477 struct axienet_local *lp = netdev_priv(ndev);
478
489d4d77 479 __axienet_device_reset(lp);
8a3b7a25
DB
480
481 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
f080a8c3 482 lp->options |= XAE_OPTION_VLAN;
8a3b7a25
DB
483 lp->options &= (~XAE_OPTION_JUMBO);
484
485 if ((ndev->mtu > XAE_MTU) &&
f080a8c3
ST
486 (ndev->mtu <= XAE_JUMBO_MTU)) {
487 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
488 XAE_TRL_SIZE;
489
490 if (lp->max_frm_size <= lp->rxmem)
491 lp->options |= XAE_OPTION_JUMBO;
8a3b7a25
DB
492 }
493
494 if (axienet_dma_bd_init(ndev)) {
c81a97b5
ST
495 netdev_err(ndev, "%s: descriptor allocation failed\n",
496 __func__);
8a3b7a25
DB
497 }
498
499 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
500 axienet_status &= ~XAE_RCW1_RX_MASK;
501 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
502
503 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
504 if (axienet_status & XAE_INT_RXRJECT_MASK)
505 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
522856ce
RH
506 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
507 XAE_INT_RECV_ERROR_MASK : 0);
8a3b7a25
DB
508
509 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510
511 /* Sync default options with HW but leave receiver and
850a7503
MS
512 * transmitter disabled.
513 */
8a3b7a25
DB
514 axienet_setoptions(ndev, lp->options &
515 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
516 axienet_set_mac_address(ndev, NULL);
517 axienet_set_multicast_list(ndev);
518 axienet_setoptions(ndev, lp->options);
519
860e9538 520 netif_trans_update(ndev);
8a3b7a25
DB
521}
522
8a3b7a25
DB
523/**
524 * axienet_start_xmit_done - Invoked once a transmit is completed by the
525 * Axi DMA Tx channel.
526 * @ndev: Pointer to the net_device structure
527 *
528 * This function is invoked from the Axi DMA Tx isr to notify the completion
529 * of transmit operation. It clears fields in the corresponding Tx BDs and
530 * unmaps the corresponding buffer so that CPU can regain ownership of the
531 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
532 * required.
533 */
534static void axienet_start_xmit_done(struct net_device *ndev)
535{
536 u32 size = 0;
537 u32 packets = 0;
538 struct axienet_local *lp = netdev_priv(ndev);
539 struct axidma_bd *cur_p;
540 unsigned int status = 0;
541
542 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
543 status = cur_p->status;
544 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
545 dma_unmap_single(ndev->dev.parent, cur_p->phys,
546 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
547 DMA_TO_DEVICE);
23e6b2dc
RH
548 if (cur_p->skb)
549 dev_consume_skb_irq(cur_p->skb);
8a3b7a25
DB
550 /*cur_p->phys = 0;*/
551 cur_p->app0 = 0;
552 cur_p->app1 = 0;
553 cur_p->app2 = 0;
554 cur_p->app4 = 0;
555 cur_p->status = 0;
23e6b2dc 556 cur_p->skb = NULL;
8a3b7a25
DB
557
558 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
559 packets++;
560
8b09ca82
RH
561 if (++lp->tx_bd_ci >= lp->tx_bd_num)
562 lp->tx_bd_ci = 0;
8a3b7a25
DB
563 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
564 status = cur_p->status;
565 }
566
567 ndev->stats.tx_packets += packets;
568 ndev->stats.tx_bytes += size;
7de44285
RH
569
570 /* Matches barrier in axienet_start_xmit */
571 smp_mb();
572
8a3b7a25
DB
573 netif_wake_queue(ndev);
574}
575
576/**
577 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
578 * @lp: Pointer to the axienet_local structure
579 * @num_frag: The number of BDs to check for
580 *
b0d081c5 581 * Return: 0, on success
8a3b7a25
DB
582 * NETDEV_TX_BUSY, if any of the descriptors are not free
583 *
584 * This function is invoked before BDs are allocated and transmission starts.
585 * This function returns 0 if a BD or group of BDs can be allocated for
586 * transmission. If the BD or any of the BDs are not free the function
587 * returns a busy status. This is invoked from axienet_start_xmit.
588 */
589static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
590 int num_frag)
591{
592 struct axidma_bd *cur_p;
8b09ca82 593 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
8a3b7a25
DB
594 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
595 return NETDEV_TX_BUSY;
596 return 0;
597}
598
599/**
600 * axienet_start_xmit - Starts the transmission.
601 * @skb: sk_buff pointer that contains data to be Txed.
602 * @ndev: Pointer to net_device structure.
603 *
b0d081c5 604 * Return: NETDEV_TX_OK, on success
8a3b7a25
DB
605 * NETDEV_TX_BUSY, if any of the descriptors are not free
606 *
607 * This function is invoked from upper layers to initiate transmission. The
608 * function uses the next available free BDs and populates their fields to
609 * start the transmission. Additionally if checksum offloading is supported,
610 * it populates AXI Stream Control fields with appropriate values.
611 */
81255af8
Y
612static netdev_tx_t
613axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
8a3b7a25
DB
614{
615 u32 ii;
616 u32 num_frag;
617 u32 csum_start_off;
618 u32 csum_index_off;
619 skb_frag_t *frag;
620 dma_addr_t tail_p;
621 struct axienet_local *lp = netdev_priv(ndev);
622 struct axidma_bd *cur_p;
623
624 num_frag = skb_shinfo(skb)->nr_frags;
625 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
626
627 if (axienet_check_tx_bd_space(lp, num_frag)) {
7de44285
RH
628 if (netif_queue_stopped(ndev))
629 return NETDEV_TX_BUSY;
630
631 netif_stop_queue(ndev);
632
633 /* Matches barrier in axienet_start_xmit_done */
634 smp_mb();
635
636 /* Space might have just been freed - check again */
637 if (axienet_check_tx_bd_space(lp, num_frag))
638 return NETDEV_TX_BUSY;
639
640 netif_wake_queue(ndev);
8a3b7a25
DB
641 }
642
643 if (skb->ip_summed == CHECKSUM_PARTIAL) {
644 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
645 /* Tx Full Checksum Offload Enabled */
646 cur_p->app0 |= 2;
647 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
648 csum_start_off = skb_transport_offset(skb);
649 csum_index_off = csum_start_off + skb->csum_offset;
650 /* Tx Partial Checksum Offload Enabled */
651 cur_p->app0 |= 1;
652 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
653 }
654 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
655 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
656 }
657
658 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
659 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
660 skb_headlen(skb), DMA_TO_DEVICE);
661
662 for (ii = 0; ii < num_frag; ii++) {
8b09ca82
RH
663 if (++lp->tx_bd_tail >= lp->tx_bd_num)
664 lp->tx_bd_tail = 0;
8a3b7a25
DB
665 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
666 frag = &skb_shinfo(skb)->frags[ii];
667 cur_p->phys = dma_map_single(ndev->dev.parent,
668 skb_frag_address(frag),
669 skb_frag_size(frag),
670 DMA_TO_DEVICE);
671 cur_p->cntrl = skb_frag_size(frag);
672 }
673
674 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
23e6b2dc 675 cur_p->skb = skb;
8a3b7a25
DB
676
677 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
678 /* Start the transfer */
679 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
8b09ca82
RH
680 if (++lp->tx_bd_tail >= lp->tx_bd_num)
681 lp->tx_bd_tail = 0;
8a3b7a25
DB
682
683 return NETDEV_TX_OK;
684}
685
686/**
687 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
688 * BD processing.
689 * @ndev: Pointer to net_device structure.
690 *
691 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
692 * does minimal processing and invokes "netif_rx" to complete further
693 * processing.
694 */
695static void axienet_recv(struct net_device *ndev)
696{
697 u32 length;
698 u32 csumstatus;
699 u32 size = 0;
700 u32 packets = 0;
38e96b35 701 dma_addr_t tail_p = 0;
8a3b7a25
DB
702 struct axienet_local *lp = netdev_priv(ndev);
703 struct sk_buff *skb, *new_skb;
704 struct axidma_bd *cur_p;
705
8a3b7a25
DB
706 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
707
708 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
38e96b35 709 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
8a3b7a25
DB
710
711 dma_unmap_single(ndev->dev.parent, cur_p->phys,
712 lp->max_frm_size,
713 DMA_FROM_DEVICE);
714
23e6b2dc
RH
715 skb = cur_p->skb;
716 cur_p->skb = NULL;
717 length = cur_p->app4 & 0x0000FFFF;
718
8a3b7a25
DB
719 skb_put(skb, length);
720 skb->protocol = eth_type_trans(skb, ndev);
721 /*skb_checksum_none_assert(skb);*/
722 skb->ip_summed = CHECKSUM_NONE;
723
724 /* if we're doing Rx csum offload, set it up */
725 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
726 csumstatus = (cur_p->app2 &
727 XAE_FULL_CSUM_STATUS_MASK) >> 3;
728 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
729 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
730 skb->ip_summed = CHECKSUM_UNNECESSARY;
731 }
732 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
ceffc4ac 733 skb->protocol == htons(ETH_P_IP) &&
8a3b7a25
DB
734 skb->len > 64) {
735 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
736 skb->ip_summed = CHECKSUM_COMPLETE;
737 }
738
739 netif_rx(skb);
740
741 size += length;
742 packets++;
743
744 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 745 if (!new_skb)
8a3b7a25 746 return;
720a43ef 747
8a3b7a25
DB
748 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
749 lp->max_frm_size,
750 DMA_FROM_DEVICE);
751 cur_p->cntrl = lp->max_frm_size;
752 cur_p->status = 0;
23e6b2dc 753 cur_p->skb = new_skb;
8a3b7a25 754
8b09ca82
RH
755 if (++lp->rx_bd_ci >= lp->rx_bd_num)
756 lp->rx_bd_ci = 0;
8a3b7a25
DB
757 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
758 }
759
760 ndev->stats.rx_packets += packets;
761 ndev->stats.rx_bytes += size;
762
38e96b35
PC
763 if (tail_p)
764 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
8a3b7a25
DB
765}
766
767/**
768 * axienet_tx_irq - Tx Done Isr.
769 * @irq: irq number
770 * @_ndev: net_device pointer
771 *
9cbc1b68 772 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
8a3b7a25
DB
773 *
774 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
775 * to complete the BD processing.
776 */
777static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
778{
779 u32 cr;
780 unsigned int status;
781 struct net_device *ndev = _ndev;
782 struct axienet_local *lp = netdev_priv(ndev);
783
784 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
785 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 786 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
787 axienet_start_xmit_done(lp->ndev);
788 goto out;
789 }
790 if (!(status & XAXIDMA_IRQ_ALL_MASK))
9cbc1b68 791 return IRQ_NONE;
8a3b7a25
DB
792 if (status & XAXIDMA_IRQ_ERROR_MASK) {
793 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
794 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
795 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
796
797 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
798 /* Disable coalesce, delay timer and error interrupts */
799 cr &= (~XAXIDMA_IRQ_ALL_MASK);
800 /* Write to the Tx channel control register */
801 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
802
803 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
804 /* Disable coalesce, delay timer and error interrupts */
805 cr &= (~XAXIDMA_IRQ_ALL_MASK);
806 /* Write to the Rx channel control register */
807 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
808
809 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 810 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
811 }
812out:
8a3b7a25
DB
813 return IRQ_HANDLED;
814}
815
816/**
817 * axienet_rx_irq - Rx Isr.
818 * @irq: irq number
819 * @_ndev: net_device pointer
820 *
9cbc1b68 821 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
8a3b7a25
DB
822 *
823 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
824 * processing.
825 */
826static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
827{
828 u32 cr;
829 unsigned int status;
830 struct net_device *ndev = _ndev;
831 struct axienet_local *lp = netdev_priv(ndev);
832
833 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
834 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 835 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
836 axienet_recv(lp->ndev);
837 goto out;
838 }
839 if (!(status & XAXIDMA_IRQ_ALL_MASK))
9cbc1b68 840 return IRQ_NONE;
8a3b7a25
DB
841 if (status & XAXIDMA_IRQ_ERROR_MASK) {
842 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
843 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
844 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
845
846 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
847 /* Disable coalesce, delay timer and error interrupts */
848 cr &= (~XAXIDMA_IRQ_ALL_MASK);
849 /* Finally write to the Tx channel control register */
850 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
851
852 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
853 /* Disable coalesce, delay timer and error interrupts */
854 cr &= (~XAXIDMA_IRQ_ALL_MASK);
855 /* write to the Rx channel control register */
856 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
857
858 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 859 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
860 }
861out:
8a3b7a25
DB
862 return IRQ_HANDLED;
863}
864
522856ce
RH
865/**
866 * axienet_eth_irq - Ethernet core Isr.
867 * @irq: irq number
868 * @_ndev: net_device pointer
869 *
870 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
871 *
872 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
873 */
874static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
875{
876 struct net_device *ndev = _ndev;
877 struct axienet_local *lp = netdev_priv(ndev);
878 unsigned int pending;
879
880 pending = axienet_ior(lp, XAE_IP_OFFSET);
881 if (!pending)
882 return IRQ_NONE;
883
884 if (pending & XAE_INT_RXFIFOOVR_MASK)
885 ndev->stats.rx_missed_errors++;
886
887 if (pending & XAE_INT_RXRJECT_MASK)
888 ndev->stats.rx_frame_errors++;
889
890 axienet_iow(lp, XAE_IS_OFFSET, pending);
891 return IRQ_HANDLED;
892}
893
aecb55be
JM
894static void axienet_dma_err_handler(unsigned long data);
895
8a3b7a25
DB
896/**
897 * axienet_open - Driver open routine.
898 * @ndev: Pointer to net_device structure
899 *
b0d081c5 900 * Return: 0, on success.
8a3b7a25
DB
901 * non-zero error value on failure
902 *
f5203a3d
RH
903 * This is the driver open routine. It calls phylink_start to start the
904 * PHY device.
8a3b7a25
DB
905 * It also allocates interrupt service routines, enables the interrupt lines
906 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
907 * descriptors are initialized.
908 */
909static int axienet_open(struct net_device *ndev)
910{
7789e9ed 911 int ret;
8a3b7a25
DB
912 struct axienet_local *lp = netdev_priv(ndev);
913
914 dev_dbg(&ndev->dev, "axienet_open()\n");
915
8a3b7a25
DB
916 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
917 * When we do an Axi Ethernet reset, it resets the complete core
7789e9ed
RH
918 * including the MDIO. MDIO must be disabled before resetting
919 * and re-enabled afterwards.
920 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
850a7503 921 */
7789e9ed
RH
922 mutex_lock(&lp->mii_bus->mdio_lock);
923 axienet_mdio_disable(lp);
8a3b7a25 924 axienet_device_reset(ndev);
7789e9ed
RH
925 ret = axienet_mdio_enable(lp);
926 mutex_unlock(&lp->mii_bus->mdio_lock);
8a3b7a25
DB
927 if (ret < 0)
928 return ret;
929
f5203a3d
RH
930 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
931 if (ret) {
932 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
933 return ret;
8a3b7a25
DB
934 }
935
f5203a3d
RH
936 phylink_start(lp->phylink);
937
71c6c837
XF
938 /* Enable tasklets for Axi DMA error handling */
939 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
940 (unsigned long) lp);
941
8a3b7a25 942 /* Enable interrupts for Axi DMA Tx */
9cbc1b68
RH
943 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
944 ndev->name, ndev);
8a3b7a25
DB
945 if (ret)
946 goto err_tx_irq;
947 /* Enable interrupts for Axi DMA Rx */
9cbc1b68
RH
948 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
949 ndev->name, ndev);
8a3b7a25
DB
950 if (ret)
951 goto err_rx_irq;
522856ce
RH
952 /* Enable interrupts for Axi Ethernet core (if defined) */
953 if (lp->eth_irq > 0) {
954 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
955 ndev->name, ndev);
956 if (ret)
957 goto err_eth_irq;
958 }
71c6c837 959
8a3b7a25
DB
960 return 0;
961
522856ce
RH
962err_eth_irq:
963 free_irq(lp->rx_irq, ndev);
8a3b7a25
DB
964err_rx_irq:
965 free_irq(lp->tx_irq, ndev);
966err_tx_irq:
f5203a3d
RH
967 phylink_stop(lp->phylink);
968 phylink_disconnect_phy(lp->phylink);
71c6c837 969 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
970 dev_err(lp->dev, "request_irq() failed\n");
971 return ret;
972}
973
974/**
975 * axienet_stop - Driver stop routine.
976 * @ndev: Pointer to net_device structure
977 *
b0d081c5 978 * Return: 0, on success.
8a3b7a25 979 *
f5203a3d 980 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
8a3b7a25
DB
981 * device. It also removes the interrupt handlers and disables the interrupts.
982 * The Axi DMA Tx/Rx BDs are released.
983 */
984static int axienet_stop(struct net_device *ndev)
985{
489d4d77
RH
986 u32 cr, sr;
987 int count;
8a3b7a25
DB
988 struct axienet_local *lp = netdev_priv(ndev);
989
990 dev_dbg(&ndev->dev, "axienet_close()\n");
991
f5203a3d
RH
992 phylink_stop(lp->phylink);
993 phylink_disconnect_phy(lp->phylink);
994
8a3b7a25
DB
995 axienet_setoptions(ndev, lp->options &
996 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
997
489d4d77
RH
998 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
999 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1000 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1001
1002 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1003 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1004 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1005
1006 axienet_iow(lp, XAE_IE_OFFSET, 0);
1007
1008 /* Give DMAs a chance to halt gracefully */
1009 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1010 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1011 msleep(20);
1012 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1013 }
1014
1015 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1016 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1017 msleep(20);
1018 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1019 }
1020
1021 /* Do a reset to ensure DMA is really stopped */
1022 mutex_lock(&lp->mii_bus->mdio_lock);
1023 axienet_mdio_disable(lp);
1024 __axienet_device_reset(lp);
1025 axienet_mdio_enable(lp);
1026 mutex_unlock(&lp->mii_bus->mdio_lock);
1027
175c0dff 1028 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25 1029
522856ce
RH
1030 if (lp->eth_irq > 0)
1031 free_irq(lp->eth_irq, ndev);
8a3b7a25
DB
1032 free_irq(lp->tx_irq, ndev);
1033 free_irq(lp->rx_irq, ndev);
1034
8a3b7a25
DB
1035 axienet_dma_bd_release(ndev);
1036 return 0;
1037}
1038
1039/**
1040 * axienet_change_mtu - Driver change mtu routine.
1041 * @ndev: Pointer to net_device structure
1042 * @new_mtu: New mtu value to be applied
1043 *
b0d081c5 1044 * Return: Always returns 0 (success).
8a3b7a25
DB
1045 *
1046 * This is the change mtu driver routine. It checks if the Axi Ethernet
1047 * hardware supports jumbo frames before changing the mtu. This can be
1048 * called only when the device is not up.
1049 */
1050static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1051{
1052 struct axienet_local *lp = netdev_priv(ndev);
1053
1054 if (netif_running(ndev))
1055 return -EBUSY;
f080a8c3
ST
1056
1057 if ((new_mtu + VLAN_ETH_HLEN +
1058 XAE_TRL_SIZE) > lp->rxmem)
1059 return -EINVAL;
1060
f080a8c3 1061 ndev->mtu = new_mtu;
8a3b7a25
DB
1062
1063 return 0;
1064}
1065
1066#ifdef CONFIG_NET_POLL_CONTROLLER
1067/**
1068 * axienet_poll_controller - Axi Ethernet poll mechanism.
1069 * @ndev: Pointer to net_device structure
1070 *
1071 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1072 * to polling the ISRs and are enabled back after the polling is done.
1073 */
1074static void axienet_poll_controller(struct net_device *ndev)
1075{
1076 struct axienet_local *lp = netdev_priv(ndev);
1077 disable_irq(lp->tx_irq);
1078 disable_irq(lp->rx_irq);
1079 axienet_rx_irq(lp->tx_irq, ndev);
1080 axienet_tx_irq(lp->rx_irq, ndev);
1081 enable_irq(lp->tx_irq);
1082 enable_irq(lp->rx_irq);
1083}
1084#endif
1085
1086static const struct net_device_ops axienet_netdev_ops = {
1087 .ndo_open = axienet_open,
1088 .ndo_stop = axienet_stop,
1089 .ndo_start_xmit = axienet_start_xmit,
1090 .ndo_change_mtu = axienet_change_mtu,
1091 .ndo_set_mac_address = netdev_set_mac_address,
1092 .ndo_validate_addr = eth_validate_addr,
1093 .ndo_set_rx_mode = axienet_set_multicast_list,
1094#ifdef CONFIG_NET_POLL_CONTROLLER
1095 .ndo_poll_controller = axienet_poll_controller,
1096#endif
1097};
1098
8a3b7a25
DB
1099/**
1100 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1101 * @ndev: Pointer to net_device structure
1102 * @ed: Pointer to ethtool_drvinfo structure
1103 *
1104 * This implements ethtool command for getting the driver information.
1105 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1106 */
1107static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1108 struct ethtool_drvinfo *ed)
1109{
7826d43f
JP
1110 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1111 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
8a3b7a25
DB
1112}
1113
1114/**
1115 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1116 * AxiEthernet core.
1117 * @ndev: Pointer to net_device structure
1118 *
1119 * This implements ethtool command for getting the total register length
1120 * information.
b0d081c5
MS
1121 *
1122 * Return: the total regs length
8a3b7a25
DB
1123 */
1124static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1125{
1126 return sizeof(u32) * AXIENET_REGS_N;
1127}
1128
1129/**
1130 * axienet_ethtools_get_regs - Dump the contents of all registers present
1131 * in AxiEthernet core.
1132 * @ndev: Pointer to net_device structure
1133 * @regs: Pointer to ethtool_regs structure
1134 * @ret: Void pointer used to return the contents of the registers.
1135 *
1136 * This implements ethtool command for getting the Axi Ethernet register dump.
1137 * Issue "ethtool -d ethX" to execute this function.
1138 */
1139static void axienet_ethtools_get_regs(struct net_device *ndev,
1140 struct ethtool_regs *regs, void *ret)
1141{
1142 u32 *data = (u32 *) ret;
1143 size_t len = sizeof(u32) * AXIENET_REGS_N;
1144 struct axienet_local *lp = netdev_priv(ndev);
1145
1146 regs->version = 0;
1147 regs->len = len;
1148
1149 memset(data, 0, len);
1150 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1151 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1152 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1153 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1154 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1155 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1156 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1157 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1158 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1159 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1160 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1161 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1162 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1163 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1164 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1165 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1166 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1167 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1168 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1169 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1170 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1171 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1172 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1173 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1174 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1175 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1176 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1177 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1178 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1179 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1180 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1181 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
867d03bc
RH
1182 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1183 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1184 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1185 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1186 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1187 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1188 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1189 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
8a3b7a25
DB
1190}
1191
8b09ca82
RH
1192static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1193 struct ethtool_ringparam *ering)
1194{
1195 struct axienet_local *lp = netdev_priv(ndev);
1196
1197 ering->rx_max_pending = RX_BD_NUM_MAX;
1198 ering->rx_mini_max_pending = 0;
1199 ering->rx_jumbo_max_pending = 0;
1200 ering->tx_max_pending = TX_BD_NUM_MAX;
1201 ering->rx_pending = lp->rx_bd_num;
1202 ering->rx_mini_pending = 0;
1203 ering->rx_jumbo_pending = 0;
1204 ering->tx_pending = lp->tx_bd_num;
1205}
1206
1207static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1208 struct ethtool_ringparam *ering)
1209{
1210 struct axienet_local *lp = netdev_priv(ndev);
1211
1212 if (ering->rx_pending > RX_BD_NUM_MAX ||
1213 ering->rx_mini_pending ||
1214 ering->rx_jumbo_pending ||
1215 ering->rx_pending > TX_BD_NUM_MAX)
1216 return -EINVAL;
1217
1218 if (netif_running(ndev))
1219 return -EBUSY;
1220
1221 lp->rx_bd_num = ering->rx_pending;
1222 lp->tx_bd_num = ering->tx_pending;
1223 return 0;
1224}
1225
8a3b7a25
DB
1226/**
1227 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1228 * Tx and Rx paths.
1229 * @ndev: Pointer to net_device structure
1230 * @epauseparm: Pointer to ethtool_pauseparam structure.
1231 *
1232 * This implements ethtool command for getting axi ethernet pause frame
1233 * setting. Issue "ethtool -a ethX" to execute this function.
1234 */
1235static void
1236axienet_ethtools_get_pauseparam(struct net_device *ndev,
1237 struct ethtool_pauseparam *epauseparm)
1238{
8a3b7a25 1239 struct axienet_local *lp = netdev_priv(ndev);
f5203a3d
RH
1240
1241 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
8a3b7a25
DB
1242}
1243
1244/**
1245 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1246 * settings.
1247 * @ndev: Pointer to net_device structure
b0d081c5 1248 * @epauseparm:Pointer to ethtool_pauseparam structure
8a3b7a25
DB
1249 *
1250 * This implements ethtool command for enabling flow control on Rx and Tx
1251 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1252 * function.
b0d081c5
MS
1253 *
1254 * Return: 0 on success, -EFAULT if device is running
8a3b7a25
DB
1255 */
1256static int
1257axienet_ethtools_set_pauseparam(struct net_device *ndev,
1258 struct ethtool_pauseparam *epauseparm)
1259{
8a3b7a25
DB
1260 struct axienet_local *lp = netdev_priv(ndev);
1261
f5203a3d 1262 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
8a3b7a25
DB
1263}
1264
1265/**
1266 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1267 * @ndev: Pointer to net_device structure
1268 * @ecoalesce: Pointer to ethtool_coalesce structure
1269 *
1270 * This implements ethtool command for getting the DMA interrupt coalescing
1271 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1272 * execute this function.
b0d081c5
MS
1273 *
1274 * Return: 0 always
8a3b7a25
DB
1275 */
1276static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1277 struct ethtool_coalesce *ecoalesce)
1278{
1279 u32 regval = 0;
1280 struct axienet_local *lp = netdev_priv(ndev);
1281 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1282 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1283 >> XAXIDMA_COALESCE_SHIFT;
1284 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1285 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1286 >> XAXIDMA_COALESCE_SHIFT;
1287 return 0;
1288}
1289
1290/**
1291 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1292 * @ndev: Pointer to net_device structure
1293 * @ecoalesce: Pointer to ethtool_coalesce structure
1294 *
1295 * This implements ethtool command for setting the DMA interrupt coalescing
1296 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1297 * prompt to execute this function.
b0d081c5
MS
1298 *
1299 * Return: 0, on success, Non-zero error value on failure.
8a3b7a25
DB
1300 */
1301static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1302 struct ethtool_coalesce *ecoalesce)
1303{
1304 struct axienet_local *lp = netdev_priv(ndev);
1305
1306 if (netif_running(ndev)) {
c81a97b5
ST
1307 netdev_err(ndev,
1308 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1309 return -EFAULT;
1310 }
1311
1312 if ((ecoalesce->rx_coalesce_usecs) ||
1313 (ecoalesce->rx_coalesce_usecs_irq) ||
1314 (ecoalesce->rx_max_coalesced_frames_irq) ||
1315 (ecoalesce->tx_coalesce_usecs) ||
1316 (ecoalesce->tx_coalesce_usecs_irq) ||
1317 (ecoalesce->tx_max_coalesced_frames_irq) ||
1318 (ecoalesce->stats_block_coalesce_usecs) ||
1319 (ecoalesce->use_adaptive_rx_coalesce) ||
1320 (ecoalesce->use_adaptive_tx_coalesce) ||
1321 (ecoalesce->pkt_rate_low) ||
1322 (ecoalesce->rx_coalesce_usecs_low) ||
1323 (ecoalesce->rx_max_coalesced_frames_low) ||
1324 (ecoalesce->tx_coalesce_usecs_low) ||
1325 (ecoalesce->tx_max_coalesced_frames_low) ||
1326 (ecoalesce->pkt_rate_high) ||
1327 (ecoalesce->rx_coalesce_usecs_high) ||
1328 (ecoalesce->rx_max_coalesced_frames_high) ||
1329 (ecoalesce->tx_coalesce_usecs_high) ||
1330 (ecoalesce->tx_max_coalesced_frames_high) ||
1331 (ecoalesce->rate_sample_interval))
1332 return -EOPNOTSUPP;
1333 if (ecoalesce->rx_max_coalesced_frames)
1334 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1335 if (ecoalesce->tx_max_coalesced_frames)
1336 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1337
1338 return 0;
1339}
1340
f5203a3d
RH
1341static int
1342axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1343 struct ethtool_link_ksettings *cmd)
1344{
1345 struct axienet_local *lp = netdev_priv(ndev);
1346
1347 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1348}
1349
1350static int
1351axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1352 const struct ethtool_link_ksettings *cmd)
1353{
1354 struct axienet_local *lp = netdev_priv(ndev);
1355
1356 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1357}
1358
c7735f1b 1359static const struct ethtool_ops axienet_ethtool_ops = {
8a3b7a25
DB
1360 .get_drvinfo = axienet_ethtools_get_drvinfo,
1361 .get_regs_len = axienet_ethtools_get_regs_len,
1362 .get_regs = axienet_ethtools_get_regs,
1363 .get_link = ethtool_op_get_link,
8b09ca82
RH
1364 .get_ringparam = axienet_ethtools_get_ringparam,
1365 .set_ringparam = axienet_ethtools_set_ringparam,
8a3b7a25
DB
1366 .get_pauseparam = axienet_ethtools_get_pauseparam,
1367 .set_pauseparam = axienet_ethtools_set_pauseparam,
1368 .get_coalesce = axienet_ethtools_get_coalesce,
1369 .set_coalesce = axienet_ethtools_set_coalesce,
f5203a3d
RH
1370 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1371 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1372};
1373
1374static void axienet_validate(struct phylink_config *config,
1375 unsigned long *supported,
1376 struct phylink_link_state *state)
1377{
1378 struct net_device *ndev = to_net_dev(config->dev);
1379 struct axienet_local *lp = netdev_priv(ndev);
1380 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1381
1382 /* Only support the mode we are configured for */
1383 if (state->interface != PHY_INTERFACE_MODE_NA &&
1384 state->interface != lp->phy_mode) {
1385 netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1386 phy_modes(state->interface),
1387 phy_modes(lp->phy_mode));
1388 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1389 return;
1390 }
1391
1392 phylink_set(mask, Autoneg);
1393 phylink_set_port_modes(mask);
1394
1395 phylink_set(mask, Asym_Pause);
1396 phylink_set(mask, Pause);
1397 phylink_set(mask, 1000baseX_Full);
1398 phylink_set(mask, 10baseT_Full);
1399 phylink_set(mask, 100baseT_Full);
1400 phylink_set(mask, 1000baseT_Full);
1401
1402 bitmap_and(supported, supported, mask,
1403 __ETHTOOL_LINK_MODE_MASK_NBITS);
1404 bitmap_and(state->advertising, state->advertising, mask,
1405 __ETHTOOL_LINK_MODE_MASK_NBITS);
1406}
1407
d46b7e4f
RK
1408static void axienet_mac_pcs_get_state(struct phylink_config *config,
1409 struct phylink_link_state *state)
f5203a3d
RH
1410{
1411 struct net_device *ndev = to_net_dev(config->dev);
1412 struct axienet_local *lp = netdev_priv(ndev);
1413 u32 emmc_reg, fcc_reg;
1414
1415 state->interface = lp->phy_mode;
1416
1417 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1418 if (emmc_reg & XAE_EMMC_LINKSPD_1000)
1419 state->speed = SPEED_1000;
1420 else if (emmc_reg & XAE_EMMC_LINKSPD_100)
1421 state->speed = SPEED_100;
1422 else
1423 state->speed = SPEED_10;
1424
1425 state->pause = 0;
1426 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1427 if (fcc_reg & XAE_FCC_FCTX_MASK)
1428 state->pause |= MLO_PAUSE_TX;
1429 if (fcc_reg & XAE_FCC_FCRX_MASK)
1430 state->pause |= MLO_PAUSE_RX;
1431
1432 state->an_complete = 0;
1433 state->duplex = 1;
f5203a3d
RH
1434}
1435
1436static void axienet_mac_an_restart(struct phylink_config *config)
1437{
1438 /* Unsupported, do nothing */
1439}
1440
1441static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1442 const struct phylink_link_state *state)
1443{
1444 struct net_device *ndev = to_net_dev(config->dev);
1445 struct axienet_local *lp = netdev_priv(ndev);
1446 u32 emmc_reg, fcc_reg;
1447
1448 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1449 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1450
1451 switch (state->speed) {
1452 case SPEED_1000:
1453 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1454 break;
1455 case SPEED_100:
1456 emmc_reg |= XAE_EMMC_LINKSPD_100;
1457 break;
1458 case SPEED_10:
1459 emmc_reg |= XAE_EMMC_LINKSPD_10;
1460 break;
1461 default:
1462 dev_err(&ndev->dev,
1463 "Speed other than 10, 100 or 1Gbps is not supported\n");
1464 break;
1465 }
1466
1467 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1468
1469 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1470 if (state->pause & MLO_PAUSE_TX)
1471 fcc_reg |= XAE_FCC_FCTX_MASK;
1472 else
1473 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1474 if (state->pause & MLO_PAUSE_RX)
1475 fcc_reg |= XAE_FCC_FCRX_MASK;
1476 else
1477 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1478 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1479}
1480
1481static void axienet_mac_link_down(struct phylink_config *config,
1482 unsigned int mode,
1483 phy_interface_t interface)
1484{
1485 /* nothing meaningful to do */
1486}
1487
1488static void axienet_mac_link_up(struct phylink_config *config,
1489 unsigned int mode,
1490 phy_interface_t interface,
1491 struct phy_device *phy)
1492{
1493 /* nothing meaningful to do */
1494}
1495
1496static const struct phylink_mac_ops axienet_phylink_ops = {
1497 .validate = axienet_validate,
d46b7e4f 1498 .mac_pcs_get_state = axienet_mac_pcs_get_state,
f5203a3d
RH
1499 .mac_an_restart = axienet_mac_an_restart,
1500 .mac_config = axienet_mac_config,
1501 .mac_link_down = axienet_mac_link_down,
1502 .mac_link_up = axienet_mac_link_up,
8a3b7a25
DB
1503};
1504
1505/**
1506 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1507 * @data: Data passed
1508 *
1509 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1510 * Tx/Rx BDs.
1511 */
1512static void axienet_dma_err_handler(unsigned long data)
1513{
1514 u32 axienet_status;
1515 u32 cr, i;
8a3b7a25
DB
1516 struct axienet_local *lp = (struct axienet_local *) data;
1517 struct net_device *ndev = lp->ndev;
1518 struct axidma_bd *cur_p;
1519
1520 axienet_setoptions(ndev, lp->options &
1521 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
8a3b7a25
DB
1522 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1523 * When we do an Axi Ethernet reset, it resets the complete core
7789e9ed
RH
1524 * including the MDIO. MDIO must be disabled before resetting
1525 * and re-enabled afterwards.
1526 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
850a7503 1527 */
7789e9ed
RH
1528 mutex_lock(&lp->mii_bus->mdio_lock);
1529 axienet_mdio_disable(lp);
489d4d77 1530 __axienet_device_reset(lp);
7789e9ed
RH
1531 axienet_mdio_enable(lp);
1532 mutex_unlock(&lp->mii_bus->mdio_lock);
8a3b7a25 1533
8b09ca82 1534 for (i = 0; i < lp->tx_bd_num; i++) {
8a3b7a25
DB
1535 cur_p = &lp->tx_bd_v[i];
1536 if (cur_p->phys)
1537 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1538 (cur_p->cntrl &
1539 XAXIDMA_BD_CTRL_LENGTH_MASK),
1540 DMA_TO_DEVICE);
23e6b2dc
RH
1541 if (cur_p->skb)
1542 dev_kfree_skb_irq(cur_p->skb);
8a3b7a25
DB
1543 cur_p->phys = 0;
1544 cur_p->cntrl = 0;
1545 cur_p->status = 0;
1546 cur_p->app0 = 0;
1547 cur_p->app1 = 0;
1548 cur_p->app2 = 0;
1549 cur_p->app3 = 0;
1550 cur_p->app4 = 0;
23e6b2dc 1551 cur_p->skb = NULL;
8a3b7a25
DB
1552 }
1553
8b09ca82 1554 for (i = 0; i < lp->rx_bd_num; i++) {
8a3b7a25
DB
1555 cur_p = &lp->rx_bd_v[i];
1556 cur_p->status = 0;
1557 cur_p->app0 = 0;
1558 cur_p->app1 = 0;
1559 cur_p->app2 = 0;
1560 cur_p->app3 = 0;
1561 cur_p->app4 = 0;
1562 }
1563
1564 lp->tx_bd_ci = 0;
1565 lp->tx_bd_tail = 0;
1566 lp->rx_bd_ci = 0;
1567
1568 /* Start updating the Rx channel control register */
1569 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1570 /* Update the interrupt coalesce count */
1571 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1572 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1573 /* Update the delay timer count */
1574 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1575 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1576 /* Enable coalesce, delay timer and error interrupts */
1577 cr |= XAXIDMA_IRQ_ALL_MASK;
1578 /* Finally write to the Rx channel control register */
1579 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1580
1581 /* Start updating the Tx channel control register */
1582 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1583 /* Update the interrupt coalesce count */
1584 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1585 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1586 /* Update the delay timer count */
1587 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1588 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1589 /* Enable coalesce, delay timer and error interrupts */
1590 cr |= XAXIDMA_IRQ_ALL_MASK;
1591 /* Finally write to the Tx channel control register */
1592 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1593
1594 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
1595 * halted state. This will make the Rx side ready for reception.
1596 */
8a3b7a25
DB
1597 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1598 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1599 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1600 cr | XAXIDMA_CR_RUNSTOP_MASK);
1601 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
8b09ca82 1602 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
8a3b7a25
DB
1603
1604 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1605 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
1606 * tail pointer register that the Tx channel will start transmitting
1607 */
8a3b7a25
DB
1608 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1609 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1610 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1611 cr | XAXIDMA_CR_RUNSTOP_MASK);
1612
1613 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1614 axienet_status &= ~XAE_RCW1_RX_MASK;
1615 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1616
1617 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1618 if (axienet_status & XAE_INT_RXRJECT_MASK)
1619 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
522856ce
RH
1620 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1621 XAE_INT_RECV_ERROR_MASK : 0);
8a3b7a25
DB
1622 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1623
1624 /* Sync default options with HW but leave receiver and
850a7503
MS
1625 * transmitter disabled.
1626 */
8a3b7a25
DB
1627 axienet_setoptions(ndev, lp->options &
1628 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1629 axienet_set_mac_address(ndev, NULL);
1630 axienet_set_multicast_list(ndev);
1631 axienet_setoptions(ndev, lp->options);
1632}
1633
1634/**
2be58620 1635 * axienet_probe - Axi Ethernet probe function.
95219aa5 1636 * @pdev: Pointer to platform device structure.
8a3b7a25 1637 *
b0d081c5 1638 * Return: 0, on success
8a3b7a25
DB
1639 * Non-zero error value on failure.
1640 *
1641 * This is the probe routine for Axi Ethernet driver. This is called before
1642 * any other driver routines are invoked. It allocates and sets up the Ethernet
1643 * device. Parses through device tree and populates fields of
1644 * axienet_local. It registers the Ethernet device.
1645 */
2be58620 1646static int axienet_probe(struct platform_device *pdev)
8a3b7a25 1647{
8495659b 1648 int ret;
8a3b7a25
DB
1649 struct device_node *np;
1650 struct axienet_local *lp;
1651 struct net_device *ndev;
da90e380 1652 const void *mac_addr;
28ef9ebd 1653 struct resource *ethres;
8495659b 1654 u32 value;
8a3b7a25
DB
1655
1656 ndev = alloc_etherdev(sizeof(*lp));
41de8d4c 1657 if (!ndev)
8a3b7a25 1658 return -ENOMEM;
8a3b7a25 1659
95219aa5 1660 platform_set_drvdata(pdev, ndev);
8a3b7a25 1661
95219aa5 1662 SET_NETDEV_DEV(ndev, &pdev->dev);
8a3b7a25 1663 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
28e24c62 1664 ndev->features = NETIF_F_SG;
8a3b7a25
DB
1665 ndev->netdev_ops = &axienet_netdev_ops;
1666 ndev->ethtool_ops = &axienet_ethtool_ops;
1667
d894be57
JW
1668 /* MTU range: 64 - 9000 */
1669 ndev->min_mtu = 64;
1670 ndev->max_mtu = XAE_JUMBO_MTU;
1671
8a3b7a25
DB
1672 lp = netdev_priv(ndev);
1673 lp->ndev = ndev;
95219aa5 1674 lp->dev = &pdev->dev;
8a3b7a25 1675 lp->options = XAE_OPTION_DEFAULTS;
8b09ca82
RH
1676 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1677 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
8a3b7a25 1678 /* Map device registers */
46aa27df
ST
1679 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
fcc028c1 1681 if (IS_ERR(lp->regs)) {
95219aa5 1682 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
fcc028c1 1683 ret = PTR_ERR(lp->regs);
46aa27df 1684 goto free_netdev;
8a3b7a25 1685 }
7fa0043d 1686 lp->regs_start = ethres->start;
46aa27df 1687
8a3b7a25
DB
1688 /* Setup checksum offload, but default to off if not specified */
1689 lp->features = 0;
1690
8495659b
ST
1691 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1692 if (!ret) {
1693 switch (value) {
8a3b7a25
DB
1694 case 1:
1695 lp->csum_offload_on_tx_path =
1696 XAE_FEATURE_PARTIAL_TX_CSUM;
1697 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1698 /* Can checksum TCP/UDP over IPv4. */
1699 ndev->features |= NETIF_F_IP_CSUM;
1700 break;
1701 case 2:
1702 lp->csum_offload_on_tx_path =
1703 XAE_FEATURE_FULL_TX_CSUM;
1704 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1705 /* Can checksum TCP/UDP over IPv4. */
1706 ndev->features |= NETIF_F_IP_CSUM;
1707 break;
1708 default:
1709 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1710 }
1711 }
8495659b
ST
1712 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1713 if (!ret) {
1714 switch (value) {
8a3b7a25
DB
1715 case 1:
1716 lp->csum_offload_on_rx_path =
1717 XAE_FEATURE_PARTIAL_RX_CSUM;
1718 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1719 break;
1720 case 2:
1721 lp->csum_offload_on_rx_path =
1722 XAE_FEATURE_FULL_RX_CSUM;
1723 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1724 break;
1725 default:
1726 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1727 }
1728 }
1729 /* For supporting jumbo frames, the Axi Ethernet hardware must have
f080a8c3
ST
1730 * a larger Rx/Tx Memory. Typically, the size must be large so that
1731 * we can enable jumbo option and start supporting jumbo frames.
1732 * Here we check for memory allocated for Rx/Tx in the hardware from
1733 * the device-tree and accordingly set flags.
1734 */
8495659b 1735 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
ee06b172
A
1736
1737 /* Start with the proprietary, and broken phy_type */
1738 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1739 if (!ret) {
1740 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1741 switch (value) {
1742 case XAE_PHY_TYPE_MII:
1743 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1744 break;
1745 case XAE_PHY_TYPE_GMII:
1746 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1747 break;
1748 case XAE_PHY_TYPE_RGMII_2_0:
1749 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1750 break;
1751 case XAE_PHY_TYPE_SGMII:
1752 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1753 break;
1754 case XAE_PHY_TYPE_1000BASE_X:
1755 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1756 break;
1757 default:
1758 ret = -EINVAL;
1759 goto free_netdev;
1760 }
1761 } else {
0c65b2b9
AL
1762 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1763 if (ret)
ee06b172 1764 goto free_netdev;
ee06b172 1765 }
8a3b7a25
DB
1766
1767 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
95219aa5 1768 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
28ef9ebd
RH
1769 if (np) {
1770 struct resource dmares;
1771
1772 ret = of_address_to_resource(np, 0, &dmares);
1773 if (ret) {
1774 dev_err(&pdev->dev,
1775 "unable to get DMA resource\n");
1776 of_node_put(np);
1777 goto free_netdev;
1778 }
1779 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1780 &dmares);
1781 lp->rx_irq = irq_of_parse_and_map(np, 1);
1782 lp->tx_irq = irq_of_parse_and_map(np, 0);
fa3a419d 1783 of_node_put(np);
28ef9ebd
RH
1784 lp->eth_irq = platform_get_irq(pdev, 0);
1785 } else {
1786 /* Check for these resources directly on the Ethernet node. */
1787 struct resource *res = platform_get_resource(pdev,
1788 IORESOURCE_MEM, 1);
28ef9ebd
RH
1789 lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
1790 lp->rx_irq = platform_get_irq(pdev, 1);
1791 lp->tx_irq = platform_get_irq(pdev, 0);
1792 lp->eth_irq = platform_get_irq(pdev, 2);
46aa27df 1793 }
fcc028c1 1794 if (IS_ERR(lp->dma_regs)) {
46aa27df 1795 dev_err(&pdev->dev, "could not map DMA regs\n");
fcc028c1 1796 ret = PTR_ERR(lp->dma_regs);
46aa27df 1797 goto free_netdev;
8a3b7a25 1798 }
cb59c87d 1799 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
95219aa5 1800 dev_err(&pdev->dev, "could not determine irqs\n");
8a3b7a25 1801 ret = -ENOMEM;
46aa27df 1802 goto free_netdev;
8a3b7a25
DB
1803 }
1804
522856ce
RH
1805 /* Check for Ethernet core IRQ (optional) */
1806 if (lp->eth_irq <= 0)
1807 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
1808
8a3b7a25 1809 /* Retrieve the MAC address */
da90e380 1810 mac_addr = of_get_mac_address(pdev->dev.of_node);
a51645f7 1811 if (IS_ERR(mac_addr)) {
d05a9ed5
RH
1812 dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
1813 PTR_ERR(mac_addr));
1814 mac_addr = NULL;
8a3b7a25 1815 }
da90e380 1816 axienet_set_mac_address(ndev, mac_addr);
8a3b7a25
DB
1817
1818 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1819 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1820
95219aa5 1821 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
46aa27df 1822 if (lp->phy_node) {
09a0354c
RH
1823 lp->clk = devm_clk_get(&pdev->dev, NULL);
1824 if (IS_ERR(lp->clk)) {
1825 dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
1826 PTR_ERR(lp->clk));
1827 lp->clk = NULL;
1828 } else {
1829 ret = clk_prepare_enable(lp->clk);
1830 if (ret) {
1831 dev_err(&pdev->dev, "Unable to enable clock: %d\n",
1832 ret);
1833 goto free_netdev;
1834 }
1835 }
1836
1837 ret = axienet_mdio_setup(lp);
46aa27df 1838 if (ret)
09a0354c
RH
1839 dev_warn(&pdev->dev,
1840 "error registering MDIO bus: %d\n", ret);
46aa27df 1841 }
8a3b7a25 1842
f5203a3d
RH
1843 lp->phylink_config.dev = &ndev->dev;
1844 lp->phylink_config.type = PHYLINK_NETDEV;
1845
1846 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
1847 lp->phy_mode,
1848 &axienet_phylink_ops);
1849 if (IS_ERR(lp->phylink)) {
1850 ret = PTR_ERR(lp->phylink);
1851 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
1852 goto free_netdev;
1853 }
1854
8a3b7a25
DB
1855 ret = register_netdev(lp->ndev);
1856 if (ret) {
1857 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
46aa27df 1858 goto free_netdev;
8a3b7a25
DB
1859 }
1860
8a3b7a25
DB
1861 return 0;
1862
46aa27df 1863free_netdev:
8a3b7a25 1864 free_netdev(ndev);
46aa27df 1865
8a3b7a25
DB
1866 return ret;
1867}
1868
2be58620 1869static int axienet_remove(struct platform_device *pdev)
8a3b7a25 1870{
95219aa5 1871 struct net_device *ndev = platform_get_drvdata(pdev);
8a3b7a25
DB
1872 struct axienet_local *lp = netdev_priv(ndev);
1873
8a3b7a25 1874 unregister_netdev(ndev);
f5203a3d
RH
1875
1876 if (lp->phylink)
1877 phylink_destroy(lp->phylink);
1878
e7a3d116 1879 axienet_mdio_teardown(lp);
8a3b7a25 1880
09a0354c
RH
1881 if (lp->clk)
1882 clk_disable_unprepare(lp->clk);
1883
6f3a59ac 1884 of_node_put(lp->phy_node);
8a3b7a25
DB
1885 lp->phy_node = NULL;
1886
8a3b7a25
DB
1887 free_netdev(ndev);
1888
1889 return 0;
1890}
1891
70c50265
RH
1892static void axienet_shutdown(struct platform_device *pdev)
1893{
1894 struct net_device *ndev = platform_get_drvdata(pdev);
1895
1896 rtnl_lock();
1897 netif_device_detach(ndev);
1898
1899 if (netif_running(ndev))
1900 dev_close(ndev);
1901
1902 rtnl_unlock();
1903}
1904
2be58620
ST
1905static struct platform_driver axienet_driver = {
1906 .probe = axienet_probe,
1907 .remove = axienet_remove,
70c50265 1908 .shutdown = axienet_shutdown,
8a3b7a25 1909 .driver = {
8a3b7a25
DB
1910 .name = "xilinx_axienet",
1911 .of_match_table = axienet_of_match,
1912 },
1913};
1914
2be58620 1915module_platform_driver(axienet_driver);
8a3b7a25
DB
1916
1917MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1918MODULE_AUTHOR("Xilinx");
1919MODULE_LICENSE("GPL");