]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * File Name: | |
3 | * defxx.c | |
4 | * | |
5 | * Copyright Information: | |
6 | * Copyright Digital Equipment Corporation 1996. | |
7 | * | |
8 | * This software may be used and distributed according to the terms of | |
9 | * the GNU General Public License, incorporated herein by reference. | |
10 | * | |
11 | * Abstract: | |
12 | * A Linux device driver supporting the Digital Equipment Corporation | |
e89a2cfb MR |
13 | * FDDI TURBOchannel, EISA and PCI controller families. Supported |
14 | * adapters include: | |
1da177e4 | 15 | * |
e89a2cfb MR |
16 | * DEC FDDIcontroller/TURBOchannel (DEFTA) |
17 | * DEC FDDIcontroller/EISA (DEFEA) | |
18 | * DEC FDDIcontroller/PCI (DEFPA) | |
1da177e4 LT |
19 | * |
20 | * The original author: | |
21 | * LVS Lawrence V. Stefani <lstefani@yahoo.com> | |
22 | * | |
23 | * Maintainers: | |
24 | * macro Maciej W. Rozycki <macro@linux-mips.org> | |
25 | * | |
26 | * Credits: | |
27 | * I'd like to thank Patricia Cross for helping me get started with | |
28 | * Linux, David Davies for a lot of help upgrading and configuring | |
29 | * my development system and for answering many OS and driver | |
30 | * development questions, and Alan Cox for recommendations and | |
31 | * integration help on getting FDDI support into Linux. LVS | |
32 | * | |
33 | * Driver Architecture: | |
34 | * The driver architecture is largely based on previous driver work | |
35 | * for other operating systems. The upper edge interface and | |
36 | * functions were largely taken from existing Linux device drivers | |
37 | * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C | |
38 | * driver. | |
39 | * | |
40 | * Adapter Probe - | |
41 | * The driver scans for supported EISA adapters by reading the | |
42 | * SLOT ID register for each EISA slot and making a match | |
43 | * against the expected value. | |
44 | * | |
45 | * Bus-Specific Initialization - | |
46 | * This driver currently supports both EISA and PCI controller | |
47 | * families. While the custom DMA chip and FDDI logic is similar | |
48 | * or identical, the bus logic is very different. After | |
49 | * initialization, the only bus-specific differences is in how the | |
50 | * driver enables and disables interrupts. Other than that, the | |
51 | * run-time critical code behaves the same on both families. | |
52 | * It's important to note that both adapter families are configured | |
53 | * to I/O map, rather than memory map, the adapter registers. | |
54 | * | |
55 | * Driver Open/Close - | |
56 | * In the driver open routine, the driver ISR (interrupt service | |
57 | * routine) is registered and the adapter is brought to an | |
58 | * operational state. In the driver close routine, the opposite | |
59 | * occurs; the driver ISR is deregistered and the adapter is | |
60 | * brought to a safe, but closed state. Users may use consecutive | |
61 | * commands to bring the adapter up and down as in the following | |
62 | * example: | |
63 | * ifconfig fddi0 up | |
64 | * ifconfig fddi0 down | |
65 | * ifconfig fddi0 up | |
66 | * | |
67 | * Driver Shutdown - | |
68 | * Apparently, there is no shutdown or halt routine support under | |
69 | * Linux. This routine would be called during "reboot" or | |
70 | * "shutdown" to allow the driver to place the adapter in a safe | |
71 | * state before a warm reboot occurs. To be really safe, the user | |
72 | * should close the adapter before shutdown (eg. ifconfig fddi0 down) | |
73 | * to ensure that the adapter DMA engine is taken off-line. However, | |
74 | * the current driver code anticipates this problem and always issues | |
75 | * a soft reset of the adapter at the beginning of driver initialization. | |
76 | * A future driver enhancement in this area may occur in 2.1.X where | |
77 | * Alan indicated that a shutdown handler may be implemented. | |
78 | * | |
79 | * Interrupt Service Routine - | |
80 | * The driver supports shared interrupts, so the ISR is registered for | |
81 | * each board with the appropriate flag and the pointer to that board's | |
82 | * device structure. This provides the context during interrupt | |
83 | * processing to support shared interrupts and multiple boards. | |
84 | * | |
85 | * Interrupt enabling/disabling can occur at many levels. At the host | |
86 | * end, you can disable system interrupts, or disable interrupts at the | |
87 | * PIC (on Intel systems). Across the bus, both EISA and PCI adapters | |
88 | * have a bus-logic chip interrupt enable/disable as well as a DMA | |
89 | * controller interrupt enable/disable. | |
90 | * | |
91 | * The driver currently enables and disables adapter interrupts at the | |
92 | * bus-logic chip and assumes that Linux will take care of clearing or | |
93 | * acknowledging any host-based interrupt chips. | |
94 | * | |
95 | * Control Functions - | |
96 | * Control functions are those used to support functions such as adding | |
97 | * or deleting multicast addresses, enabling or disabling packet | |
98 | * reception filters, or other custom/proprietary commands. Presently, | |
99 | * the driver supports the "get statistics", "set multicast list", and | |
100 | * "set mac address" functions defined by Linux. A list of possible | |
101 | * enhancements include: | |
102 | * | |
103 | * - Custom ioctl interface for executing port interface commands | |
104 | * - Custom ioctl interface for adding unicast addresses to | |
105 | * adapter CAM (to support bridge functions). | |
106 | * - Custom ioctl interface for supporting firmware upgrades. | |
107 | * | |
108 | * Hardware (port interface) Support Routines - | |
109 | * The driver function names that start with "dfx_hw_" represent | |
110 | * low-level port interface routines that are called frequently. They | |
111 | * include issuing a DMA or port control command to the adapter, | |
112 | * resetting the adapter, or reading the adapter state. Since the | |
113 | * driver initialization and run-time code must make calls into the | |
114 | * port interface, these routines were written to be as generic and | |
115 | * usable as possible. | |
116 | * | |
117 | * Receive Path - | |
118 | * The adapter DMA engine supports a 256 entry receive descriptor block | |
119 | * of which up to 255 entries can be used at any given time. The | |
120 | * architecture is a standard producer, consumer, completion model in | |
121 | * which the driver "produces" receive buffers to the adapter, the | |
122 | * adapter "consumes" the receive buffers by DMAing incoming packet data, | |
123 | * and the driver "completes" the receive buffers by servicing the | |
124 | * incoming packet, then "produces" a new buffer and starts the cycle | |
125 | * again. Receive buffers can be fragmented in up to 16 fragments | |
126 | * (descriptor entries). For simplicity, this driver posts | |
127 | * single-fragment receive buffers of 4608 bytes, then allocates a | |
128 | * sk_buff, copies the data, then reposts the buffer. To reduce CPU | |
129 | * utilization, a better approach would be to pass up the receive | |
130 | * buffer (no extra copy) then allocate and post a replacement buffer. | |
131 | * This is a performance enhancement that should be looked into at | |
132 | * some point. | |
133 | * | |
134 | * Transmit Path - | |
135 | * Like the receive path, the adapter DMA engine supports a 256 entry | |
136 | * transmit descriptor block of which up to 255 entries can be used at | |
137 | * any given time. Transmit buffers can be fragmented in up to 255 | |
138 | * fragments (descriptor entries). This driver always posts one | |
139 | * fragment per transmit packet request. | |
140 | * | |
141 | * The fragment contains the entire packet from FC to end of data. | |
142 | * Before posting the buffer to the adapter, the driver sets a three-byte | |
143 | * packet request header (PRH) which is required by the Motorola MAC chip | |
144 | * used on the adapters. The PRH tells the MAC the type of token to | |
145 | * receive/send, whether or not to generate and append the CRC, whether | |
146 | * synchronous or asynchronous framing is used, etc. Since the PRH | |
147 | * definition is not necessarily consistent across all FDDI chipsets, | |
148 | * the driver, rather than the common FDDI packet handler routines, | |
149 | * sets these bytes. | |
150 | * | |
151 | * To reduce the amount of descriptor fetches needed per transmit request, | |
152 | * the driver takes advantage of the fact that there are at least three | |
153 | * bytes available before the skb->data field on the outgoing transmit | |
154 | * request. This is guaranteed by having fddi_setup() in net_init.c set | |
155 | * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest | |
156 | * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" | |
157 | * bytes which we'll use to store the PRH. | |
158 | * | |
159 | * There's a subtle advantage to adding these pad bytes to the | |
160 | * hard_header_len, it ensures that the data portion of the packet for | |
161 | * an 802.2 SNAP frame is longword aligned. Other FDDI driver | |
162 | * implementations may not need the extra padding and can start copying | |
163 | * or DMAing directly from the FC byte which starts at skb->data. Should | |
164 | * another driver implementation need ADDITIONAL padding, the net_init.c | |
165 | * module should be updated and dev->hard_header_len should be increased. | |
166 | * NOTE: To maintain the alignment on the data portion of the packet, | |
167 | * dev->hard_header_len should always be evenly divisible by 4 and at | |
168 | * least 24 bytes in size. | |
169 | * | |
170 | * Modification History: | |
171 | * Date Name Description | |
172 | * 16-Aug-96 LVS Created. | |
173 | * 20-Aug-96 LVS Updated dfx_probe so that version information | |
174 | * string is only displayed if 1 or more cards are | |
175 | * found. Changed dfx_rcv_queue_process to copy | |
176 | * 3 NULL bytes before FC to ensure that data is | |
177 | * longword aligned in receive buffer. | |
178 | * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable | |
179 | * LLC group promiscuous mode if multicast list | |
180 | * is too large. LLC individual/group promiscuous | |
181 | * mode is now disabled if IFF_PROMISC flag not set. | |
182 | * dfx_xmt_queue_pkt no longer checks for NULL skb | |
183 | * on Alan Cox recommendation. Added node address | |
184 | * override support. | |
185 | * 12-Sep-96 LVS Reset current address to factory address during | |
186 | * device open. Updated transmit path to post a | |
187 | * single fragment which includes PRH->end of data. | |
188 | * Mar 2000 AC Did various cleanups for 2.3.x | |
189 | * Jun 2000 jgarzik PCI and resource alloc cleanups | |
190 | * Jul 2000 tjeerd Much cleanup and some bug fixes | |
191 | * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup | |
192 | * Feb 2001 Skb allocation fixes | |
193 | * Feb 2001 davej PCI enable cleanups. | |
194 | * 04 Aug 2003 macro Converted to the DMA API. | |
195 | * 14 Aug 2004 macro Fix device names reported. | |
feea1db2 | 196 | * 14 Jun 2005 macro Use irqreturn_t. |
b2e68aa3 | 197 | * 23 Oct 2006 macro Big-endian host support. |
e89a2cfb | 198 | * 14 Dec 2006 macro TURBOchannel support. |
8848761f | 199 | * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts. |
1da177e4 LT |
200 | */ |
201 | ||
202 | /* Include files */ | |
e89a2cfb | 203 | #include <linux/bitops.h> |
fcdff139 | 204 | #include <linux/compiler.h> |
1da177e4 | 205 | #include <linux/delay.h> |
e89a2cfb MR |
206 | #include <linux/dma-mapping.h> |
207 | #include <linux/eisa.h> | |
208 | #include <linux/errno.h> | |
209 | #include <linux/fddidevice.h> | |
e89a2cfb MR |
210 | #include <linux/interrupt.h> |
211 | #include <linux/ioport.h> | |
212 | #include <linux/kernel.h> | |
213 | #include <linux/module.h> | |
1da177e4 | 214 | #include <linux/netdevice.h> |
e89a2cfb | 215 | #include <linux/pci.h> |
1da177e4 | 216 | #include <linux/skbuff.h> |
e89a2cfb MR |
217 | #include <linux/slab.h> |
218 | #include <linux/string.h> | |
219 | #include <linux/tc.h> | |
1da177e4 LT |
220 | |
221 | #include <asm/byteorder.h> | |
222 | #include <asm/io.h> | |
223 | ||
224 | #include "defxx.h" | |
225 | ||
226 | /* Version information string should be updated prior to each new release! */ | |
227 | #define DRV_NAME "defxx" | |
8848761f MR |
228 | #define DRV_VERSION "v1.11" |
229 | #define DRV_RELDATE "2014/07/01" | |
1da177e4 | 230 | |
06324664 | 231 | static const char version[] = |
1da177e4 LT |
232 | DRV_NAME ": " DRV_VERSION " " DRV_RELDATE |
233 | " Lawrence V. Stefani and others\n"; | |
234 | ||
235 | #define DYNAMIC_BUFFERS 1 | |
236 | ||
237 | #define SKBUFF_RX_COPYBREAK 200 | |
238 | /* | |
239 | * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte | |
240 | * alignment for compatibility with old EISA boards. | |
241 | */ | |
242 | #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) | |
243 | ||
e89a2cfb MR |
244 | #ifdef CONFIG_EISA |
245 | #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) | |
246 | #else | |
247 | #define DFX_BUS_EISA(dev) 0 | |
248 | #endif | |
249 | ||
250 | #ifdef CONFIG_TC | |
251 | #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) | |
252 | #else | |
253 | #define DFX_BUS_TC(dev) 0 | |
254 | #endif | |
255 | ||
256 | #ifdef CONFIG_DEFXX_MMIO | |
257 | #define DFX_MMIO 1 | |
258 | #else | |
259 | #define DFX_MMIO 0 | |
260 | #endif | |
261 | ||
1da177e4 LT |
262 | /* Define module-wide (static) routines */ |
263 | ||
264 | static void dfx_bus_init(struct net_device *dev); | |
e89a2cfb | 265 | static void dfx_bus_uninit(struct net_device *dev); |
1da177e4 LT |
266 | static void dfx_bus_config_check(DFX_board_t *bp); |
267 | ||
e89a2cfb MR |
268 | static int dfx_driver_init(struct net_device *dev, |
269 | const char *print_name, | |
270 | resource_size_t bar_start); | |
1da177e4 LT |
271 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers); |
272 | ||
273 | static int dfx_open(struct net_device *dev); | |
274 | static int dfx_close(struct net_device *dev); | |
275 | ||
276 | static void dfx_int_pr_halt_id(DFX_board_t *bp); | |
277 | static void dfx_int_type_0_process(DFX_board_t *bp); | |
278 | static void dfx_int_common(struct net_device *dev); | |
7d12e780 | 279 | static irqreturn_t dfx_interrupt(int irq, void *dev_id); |
1da177e4 LT |
280 | |
281 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); | |
282 | static void dfx_ctl_set_multicast_list(struct net_device *dev); | |
283 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); | |
284 | static int dfx_ctl_update_cam(DFX_board_t *bp); | |
285 | static int dfx_ctl_update_filters(DFX_board_t *bp); | |
286 | ||
287 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp); | |
288 | static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); | |
289 | static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); | |
290 | static int dfx_hw_adap_state_rd(DFX_board_t *bp); | |
291 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); | |
292 | ||
293 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); | |
294 | static void dfx_rcv_queue_process(DFX_board_t *bp); | |
1b037474 | 295 | #ifdef DYNAMIC_BUFFERS |
1da177e4 | 296 | static void dfx_rcv_flush(DFX_board_t *bp); |
1b037474 MR |
297 | #else |
298 | static inline void dfx_rcv_flush(DFX_board_t *bp) {} | |
299 | #endif | |
1da177e4 | 300 | |
61357325 SH |
301 | static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, |
302 | struct net_device *dev); | |
1da177e4 LT |
303 | static int dfx_xmt_done(DFX_board_t *bp); |
304 | static void dfx_xmt_flush(DFX_board_t *bp); | |
305 | ||
306 | /* Define module-wide (static) variables */ | |
307 | ||
e89a2cfb MR |
308 | static struct pci_driver dfx_pci_driver; |
309 | static struct eisa_driver dfx_eisa_driver; | |
310 | static struct tc_driver dfx_tc_driver; | |
1da177e4 | 311 | |
6aa20a22 | 312 | |
1da177e4 LT |
313 | /* |
314 | * ======================= | |
1da177e4 LT |
315 | * = dfx_port_write_long = |
316 | * = dfx_port_read_long = | |
317 | * ======================= | |
6aa20a22 | 318 | * |
1da177e4 LT |
319 | * Overview: |
320 | * Routines for reading and writing values from/to adapter | |
6aa20a22 | 321 | * |
1da177e4 LT |
322 | * Returns: |
323 | * None | |
6aa20a22 | 324 | * |
1da177e4 | 325 | * Arguments: |
e89a2cfb MR |
326 | * bp - pointer to board information |
327 | * offset - register offset from base I/O address | |
328 | * data - for dfx_port_write_long, this is a value to write; | |
329 | * for dfx_port_read_long, this is a pointer to store | |
330 | * the read value | |
1da177e4 LT |
331 | * |
332 | * Functional Description: | |
333 | * These routines perform the correct operation to read or write | |
334 | * the adapter register. | |
6aa20a22 | 335 | * |
1da177e4 LT |
336 | * EISA port block base addresses are based on the slot number in which the |
337 | * controller is installed. For example, if the EISA controller is installed | |
338 | * in slot 4, the port block base address is 0x4000. If the controller is | |
339 | * installed in slot 2, the port block base address is 0x2000, and so on. | |
340 | * This port block can be used to access PDQ, ESIC, and DEFEA on-board | |
341 | * registers using the register offsets defined in DEFXX.H. | |
342 | * | |
343 | * PCI port block base addresses are assigned by the PCI BIOS or system | |
e89a2cfb | 344 | * firmware. There is one 128 byte port block which can be accessed. It |
1da177e4 LT |
345 | * allows for I/O mapping of both PDQ and PFI registers using the register |
346 | * offsets defined in DEFXX.H. | |
347 | * | |
348 | * Return Codes: | |
349 | * None | |
350 | * | |
351 | * Assumptions: | |
e89a2cfb | 352 | * bp->base is a valid base I/O address for this adapter. |
1da177e4 LT |
353 | * offset is a valid register offset for this adapter. |
354 | * | |
355 | * Side Effects: | |
356 | * Rather than produce macros for these functions, these routines | |
357 | * are defined using "inline" to ensure that the compiler will | |
358 | * generate inline code and not waste a procedure call and return. | |
359 | * This provides all the benefits of macros, but with the | |
360 | * advantage of strict data type checking. | |
361 | */ | |
362 | ||
e89a2cfb MR |
363 | static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) |
364 | { | |
365 | writel(data, bp->base.mem + offset); | |
366 | mb(); | |
367 | } | |
1da177e4 | 368 | |
e89a2cfb MR |
369 | static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) |
370 | { | |
371 | outl(data, bp->base.port + offset); | |
372 | } | |
1da177e4 | 373 | |
e89a2cfb MR |
374 | static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) |
375 | { | |
fcdff139 | 376 | struct device __maybe_unused *bdev = bp->bus_dev; |
e89a2cfb MR |
377 | int dfx_bus_tc = DFX_BUS_TC(bdev); |
378 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
1da177e4 | 379 | |
e89a2cfb MR |
380 | if (dfx_use_mmio) |
381 | dfx_writel(bp, offset, data); | |
382 | else | |
383 | dfx_outl(bp, offset, data); | |
384 | } | |
1da177e4 | 385 | |
1da177e4 | 386 | |
e89a2cfb MR |
387 | static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) |
388 | { | |
389 | mb(); | |
390 | *data = readl(bp->base.mem + offset); | |
391 | } | |
1da177e4 | 392 | |
e89a2cfb MR |
393 | static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) |
394 | { | |
395 | *data = inl(bp->base.port + offset); | |
396 | } | |
1da177e4 | 397 | |
e89a2cfb MR |
398 | static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) |
399 | { | |
fcdff139 | 400 | struct device __maybe_unused *bdev = bp->bus_dev; |
e89a2cfb MR |
401 | int dfx_bus_tc = DFX_BUS_TC(bdev); |
402 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
1da177e4 | 403 | |
e89a2cfb MR |
404 | if (dfx_use_mmio) |
405 | dfx_readl(bp, offset, data); | |
406 | else | |
407 | dfx_inl(bp, offset, data); | |
408 | } | |
1da177e4 | 409 | |
1da177e4 | 410 | |
e89a2cfb MR |
411 | /* |
412 | * ================ | |
413 | * = dfx_get_bars = | |
414 | * ================ | |
415 | * | |
416 | * Overview: | |
4d0438e5 | 417 | * Retrieves the address ranges used to access control and status |
e89a2cfb MR |
418 | * registers. |
419 | * | |
420 | * Returns: | |
421 | * None | |
422 | * | |
423 | * Arguments: | |
424 | * bdev - pointer to device information | |
4d0438e5 MR |
425 | * bar_start - pointer to store the start addresses |
426 | * bar_len - pointer to store the lengths of the areas | |
e89a2cfb MR |
427 | * |
428 | * Assumptions: | |
429 | * I am sure there are some. | |
430 | * | |
431 | * Side Effects: | |
432 | * None | |
433 | */ | |
434 | static void dfx_get_bars(struct device *bdev, | |
435 | resource_size_t *bar_start, resource_size_t *bar_len) | |
436 | { | |
5349d937 | 437 | int dfx_bus_pci = dev_is_pci(bdev); |
e89a2cfb MR |
438 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
439 | int dfx_bus_tc = DFX_BUS_TC(bdev); | |
440 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
1da177e4 | 441 | |
e89a2cfb MR |
442 | if (dfx_bus_pci) { |
443 | int num = dfx_use_mmio ? 0 : 1; | |
1da177e4 | 444 | |
4d0438e5 MR |
445 | bar_start[0] = pci_resource_start(to_pci_dev(bdev), num); |
446 | bar_len[0] = pci_resource_len(to_pci_dev(bdev), num); | |
447 | bar_start[2] = bar_start[1] = 0; | |
448 | bar_len[2] = bar_len[1] = 0; | |
e89a2cfb MR |
449 | } |
450 | if (dfx_bus_eisa) { | |
451 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | |
fef85fc4 MR |
452 | resource_size_t bar_lo; |
453 | resource_size_t bar_hi; | |
e89a2cfb MR |
454 | |
455 | if (dfx_use_mmio) { | |
fef85fc4 MR |
456 | bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2); |
457 | bar_lo <<= 8; | |
458 | bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1); | |
459 | bar_lo <<= 8; | |
460 | bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0); | |
461 | bar_lo <<= 8; | |
4d0438e5 | 462 | bar_start[0] = bar_lo; |
fef85fc4 MR |
463 | bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2); |
464 | bar_hi <<= 8; | |
465 | bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1); | |
466 | bar_hi <<= 8; | |
467 | bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0); | |
468 | bar_hi <<= 8; | |
4d0438e5 MR |
469 | bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) + |
470 | 1; | |
e89a2cfb | 471 | } else { |
4d0438e5 MR |
472 | bar_start[0] = base_addr; |
473 | bar_len[0] = PI_ESIC_K_CSR_IO_LEN; | |
e89a2cfb | 474 | } |
4d0438e5 MR |
475 | bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF; |
476 | bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN; | |
477 | bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR; | |
478 | bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN; | |
e89a2cfb MR |
479 | } |
480 | if (dfx_bus_tc) { | |
4d0438e5 MR |
481 | bar_start[0] = to_tc_dev(bdev)->resource.start + |
482 | PI_TC_K_CSR_OFFSET; | |
483 | bar_len[0] = PI_TC_K_CSR_LEN; | |
484 | bar_start[2] = bar_start[1] = 0; | |
485 | bar_len[2] = bar_len[1] = 0; | |
e89a2cfb MR |
486 | } |
487 | } | |
6aa20a22 | 488 | |
fd8f4997 SH |
489 | static const struct net_device_ops dfx_netdev_ops = { |
490 | .ndo_open = dfx_open, | |
491 | .ndo_stop = dfx_close, | |
492 | .ndo_start_xmit = dfx_xmt_queue_pkt, | |
493 | .ndo_get_stats = dfx_ctl_get_stats, | |
afc4b13d | 494 | .ndo_set_rx_mode = dfx_ctl_set_multicast_list, |
fd8f4997 SH |
495 | .ndo_set_mac_address = dfx_ctl_set_mac_address, |
496 | }; | |
497 | ||
b9178e91 MR |
498 | static void dfx_register_res_alloc_err(const char *print_name, bool mmio, |
499 | bool eisa) | |
500 | { | |
501 | pr_err("%s: Cannot use %s, no address set, aborting\n", | |
502 | print_name, mmio ? "MMIO" : "I/O"); | |
503 | pr_err("%s: Recompile driver with \"CONFIG_DEFXX_MMIO=%c\"\n", | |
504 | print_name, mmio ? 'n' : 'y'); | |
505 | if (eisa && mmio) | |
506 | pr_err("%s: Or run ECU and set adapter's MMIO location\n", | |
507 | print_name); | |
508 | } | |
509 | ||
510 | static void dfx_register_res_err(const char *print_name, bool mmio, | |
511 | unsigned long start, unsigned long len) | |
512 | { | |
513 | pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n", | |
514 | print_name, mmio ? "MMIO" : "I/O", len, start); | |
515 | } | |
516 | ||
1da177e4 | 517 | /* |
e89a2cfb MR |
518 | * ================ |
519 | * = dfx_register = | |
520 | * ================ | |
6aa20a22 | 521 | * |
1da177e4 | 522 | * Overview: |
e89a2cfb | 523 | * Initializes a supported FDDI controller |
6aa20a22 | 524 | * |
1da177e4 LT |
525 | * Returns: |
526 | * Condition code | |
6aa20a22 | 527 | * |
1da177e4 | 528 | * Arguments: |
e89a2cfb | 529 | * bdev - pointer to device information |
1da177e4 LT |
530 | * |
531 | * Functional Description: | |
532 | * | |
533 | * Return Codes: | |
534 | * 0 - This device (fddi0, fddi1, etc) configured successfully | |
535 | * -EBUSY - Failed to get resources, or dfx_driver_init failed. | |
536 | * | |
537 | * Assumptions: | |
538 | * It compiles so it should work :-( (PCI cards do :-) | |
539 | * | |
540 | * Side Effects: | |
541 | * Device structures for FDDI adapters (fddi0, fddi1, etc) are | |
542 | * initialized and the board resources are read and stored in | |
543 | * the device structure. | |
544 | */ | |
c354dfc3 | 545 | static int dfx_register(struct device *bdev) |
1da177e4 LT |
546 | { |
547 | static int version_disp; | |
5349d937 | 548 | int dfx_bus_pci = dev_is_pci(bdev); |
fef85fc4 | 549 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
e89a2cfb MR |
550 | int dfx_bus_tc = DFX_BUS_TC(bdev); |
551 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
fb28ad35 | 552 | const char *print_name = dev_name(bdev); |
1da177e4 LT |
553 | struct net_device *dev; |
554 | DFX_board_t *bp; /* board pointer */ | |
62f2aaab SM |
555 | resource_size_t bar_start[3] = {0}; /* pointers to ports */ |
556 | resource_size_t bar_len[3] = {0}; /* resource length */ | |
1da177e4 | 557 | int alloc_size; /* total buffer size used */ |
e89a2cfb MR |
558 | struct resource *region; |
559 | int err = 0; | |
1da177e4 LT |
560 | |
561 | if (!version_disp) { /* display version info if adapter is found */ | |
562 | version_disp = 1; /* set display flag to TRUE so that */ | |
563 | printk(version); /* we only display this string ONCE */ | |
564 | } | |
565 | ||
1da177e4 LT |
566 | dev = alloc_fddidev(sizeof(*bp)); |
567 | if (!dev) { | |
e89a2cfb | 568 | printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", |
1da177e4 LT |
569 | print_name); |
570 | return -ENOMEM; | |
571 | } | |
572 | ||
573 | /* Enable PCI device. */ | |
a65da0c3 MR |
574 | if (dfx_bus_pci) { |
575 | err = pci_enable_device(to_pci_dev(bdev)); | |
576 | if (err) { | |
577 | pr_err("%s: Cannot enable PCI device, aborting\n", | |
578 | print_name); | |
579 | goto err_out; | |
580 | } | |
1da177e4 LT |
581 | } |
582 | ||
e89a2cfb MR |
583 | SET_NETDEV_DEV(dev, bdev); |
584 | ||
585 | bp = netdev_priv(dev); | |
586 | bp->bus_dev = bdev; | |
587 | dev_set_drvdata(bdev, dev); | |
1da177e4 | 588 | |
4d0438e5 | 589 | dfx_get_bars(bdev, bar_start, bar_len); |
b9178e91 MR |
590 | if (bar_len[0] == 0 || |
591 | (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) { | |
592 | dfx_register_res_alloc_err(print_name, dfx_use_mmio, | |
593 | dfx_bus_eisa); | |
fef85fc4 | 594 | err = -ENXIO; |
b9178e91 | 595 | goto err_out_disable; |
fef85fc4 | 596 | } |
1da177e4 | 597 | |
e89a2cfb | 598 | if (dfx_use_mmio) |
4d0438e5 MR |
599 | region = request_mem_region(bar_start[0], bar_len[0], |
600 | print_name); | |
e89a2cfb | 601 | else |
4d0438e5 | 602 | region = request_region(bar_start[0], bar_len[0], print_name); |
e89a2cfb | 603 | if (!region) { |
b9178e91 MR |
604 | dfx_register_res_err(print_name, dfx_use_mmio, |
605 | bar_start[0], bar_len[0]); | |
1da177e4 | 606 | err = -EBUSY; |
e89a2cfb | 607 | goto err_out_disable; |
1da177e4 | 608 | } |
4d0438e5 MR |
609 | if (bar_start[1] != 0) { |
610 | region = request_region(bar_start[1], bar_len[1], print_name); | |
611 | if (!region) { | |
b9178e91 MR |
612 | dfx_register_res_err(print_name, 0, |
613 | bar_start[1], bar_len[1]); | |
4d0438e5 MR |
614 | err = -EBUSY; |
615 | goto err_out_csr_region; | |
616 | } | |
617 | } | |
618 | if (bar_start[2] != 0) { | |
619 | region = request_region(bar_start[2], bar_len[2], print_name); | |
620 | if (!region) { | |
b9178e91 MR |
621 | dfx_register_res_err(print_name, 0, |
622 | bar_start[2], bar_len[2]); | |
4d0438e5 MR |
623 | err = -EBUSY; |
624 | goto err_out_bh_region; | |
625 | } | |
626 | } | |
1da177e4 | 627 | |
e89a2cfb MR |
628 | /* Set up I/O base address. */ |
629 | if (dfx_use_mmio) { | |
4d0438e5 | 630 | bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]); |
e89a2cfb MR |
631 | if (!bp->base.mem) { |
632 | printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); | |
8a323526 | 633 | err = -ENOMEM; |
4d0438e5 | 634 | goto err_out_esic_region; |
e89a2cfb MR |
635 | } |
636 | } else { | |
4d0438e5 MR |
637 | bp->base.port = bar_start[0]; |
638 | dev->base_addr = bar_start[0]; | |
e89a2cfb | 639 | } |
1da177e4 | 640 | |
e89a2cfb | 641 | /* Initialize new device structure */ |
fd8f4997 | 642 | dev->netdev_ops = &dfx_netdev_ops; |
1da177e4 | 643 | |
e89a2cfb MR |
644 | if (dfx_bus_pci) |
645 | pci_set_master(to_pci_dev(bdev)); | |
1da177e4 | 646 | |
4d0438e5 | 647 | if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) { |
1da177e4 | 648 | err = -ENODEV; |
e89a2cfb | 649 | goto err_out_unmap; |
1da177e4 LT |
650 | } |
651 | ||
652 | err = register_netdev(dev); | |
653 | if (err) | |
654 | goto err_out_kfree; | |
655 | ||
656 | printk("%s: registered as %s\n", print_name, dev->name); | |
657 | return 0; | |
658 | ||
659 | err_out_kfree: | |
660 | alloc_size = sizeof(PI_DESCR_BLOCK) + | |
661 | PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + | |
662 | #ifndef DYNAMIC_BUFFERS | |
663 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | |
664 | #endif | |
665 | sizeof(PI_CONSUMER_BLOCK) + | |
666 | (PI_ALIGN_K_DESC_BLK - 1); | |
667 | if (bp->kmalloced) | |
e89a2cfb MR |
668 | dma_free_coherent(bdev, alloc_size, |
669 | bp->kmalloced, bp->kmalloced_dma); | |
670 | ||
671 | err_out_unmap: | |
672 | if (dfx_use_mmio) | |
673 | iounmap(bp->base.mem); | |
674 | ||
4d0438e5 MR |
675 | err_out_esic_region: |
676 | if (bar_start[2] != 0) | |
677 | release_region(bar_start[2], bar_len[2]); | |
678 | ||
679 | err_out_bh_region: | |
680 | if (bar_start[1] != 0) | |
681 | release_region(bar_start[1], bar_len[1]); | |
682 | ||
683 | err_out_csr_region: | |
e89a2cfb | 684 | if (dfx_use_mmio) |
4d0438e5 | 685 | release_mem_region(bar_start[0], bar_len[0]); |
e89a2cfb | 686 | else |
4d0438e5 | 687 | release_region(bar_start[0], bar_len[0]); |
e89a2cfb MR |
688 | |
689 | err_out_disable: | |
690 | if (dfx_bus_pci) | |
691 | pci_disable_device(to_pci_dev(bdev)); | |
692 | ||
1da177e4 LT |
693 | err_out: |
694 | free_netdev(dev); | |
695 | return err; | |
696 | } | |
697 | ||
6aa20a22 | 698 | |
1da177e4 LT |
699 | /* |
700 | * ================ | |
701 | * = dfx_bus_init = | |
702 | * ================ | |
6aa20a22 | 703 | * |
1da177e4 | 704 | * Overview: |
e89a2cfb | 705 | * Initializes the bus-specific controller logic. |
6aa20a22 | 706 | * |
1da177e4 LT |
707 | * Returns: |
708 | * None | |
6aa20a22 | 709 | * |
1da177e4 LT |
710 | * Arguments: |
711 | * dev - pointer to device information | |
712 | * | |
713 | * Functional Description: | |
714 | * Determine and save adapter IRQ in device table, | |
715 | * then perform bus-specific logic initialization. | |
716 | * | |
717 | * Return Codes: | |
718 | * None | |
719 | * | |
720 | * Assumptions: | |
e89a2cfb | 721 | * bp->base has already been set with the proper |
1da177e4 LT |
722 | * base I/O address for this device. |
723 | * | |
724 | * Side Effects: | |
725 | * Interrupts are enabled at the adapter bus-specific logic. | |
726 | * Note: Interrupts at the DMA engine (PDQ chip) are not | |
727 | * enabled yet. | |
728 | */ | |
729 | ||
c354dfc3 | 730 | static void dfx_bus_init(struct net_device *dev) |
1da177e4 | 731 | { |
e89a2cfb MR |
732 | DFX_board_t *bp = netdev_priv(dev); |
733 | struct device *bdev = bp->bus_dev; | |
5349d937 | 734 | int dfx_bus_pci = dev_is_pci(bdev); |
e89a2cfb MR |
735 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
736 | int dfx_bus_tc = DFX_BUS_TC(bdev); | |
737 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
738 | u8 val; | |
1da177e4 LT |
739 | |
740 | DBG_printk("In dfx_bus_init...\n"); | |
741 | ||
e89a2cfb | 742 | /* Initialize a pointer back to the net_device struct */ |
1da177e4 LT |
743 | bp->dev = dev; |
744 | ||
745 | /* Initialize adapter based on bus type */ | |
746 | ||
e89a2cfb MR |
747 | if (dfx_bus_tc) |
748 | dev->irq = to_tc_dev(bdev)->interrupt; | |
749 | if (dfx_bus_eisa) { | |
750 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | |
1da177e4 | 751 | |
b98dfaf2 MR |
752 | /* Disable the board before fiddling with the decoders. */ |
753 | outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL); | |
754 | ||
e89a2cfb MR |
755 | /* Get the interrupt level from the ESIC chip. */ |
756 | val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | |
757 | val &= PI_CONFIG_STAT_0_M_IRQ; | |
758 | val >>= PI_CONFIG_STAT_0_V_IRQ; | |
1da177e4 | 759 | |
e89a2cfb MR |
760 | switch (val) { |
761 | case PI_CONFIG_STAT_0_IRQ_K_9: | |
762 | dev->irq = 9; | |
763 | break; | |
1da177e4 | 764 | |
e89a2cfb MR |
765 | case PI_CONFIG_STAT_0_IRQ_K_10: |
766 | dev->irq = 10; | |
767 | break; | |
1da177e4 | 768 | |
e89a2cfb MR |
769 | case PI_CONFIG_STAT_0_IRQ_K_11: |
770 | dev->irq = 11; | |
771 | break; | |
1da177e4 | 772 | |
e89a2cfb MR |
773 | case PI_CONFIG_STAT_0_IRQ_K_15: |
774 | dev->irq = 15; | |
775 | break; | |
776 | } | |
1da177e4 | 777 | |
e89a2cfb | 778 | /* |
fef85fc4 | 779 | * Enable memory decoding (MEMCS1) and/or port decoding |
e89a2cfb | 780 | * (IOCS1/IOCS0) as appropriate in Function Control |
fef85fc4 MR |
781 | * Register. MEMCS1 or IOCS0 is used for PDQ registers, |
782 | * taking 16 32-bit words, while IOCS1 is used for the | |
783 | * Burst Holdoff register, taking a single 32-bit word | |
784 | * only. We use the slot-specific I/O range as per the | |
785 | * ESIC spec, that is set bits 15:12 in the mask registers | |
786 | * to mask them out. | |
e89a2cfb | 787 | */ |
1da177e4 | 788 | |
e89a2cfb | 789 | /* Set the decode range of the board. */ |
b98dfaf2 | 790 | val = 0; |
8a189f12 | 791 | outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1); |
b98dfaf2 MR |
792 | val = PI_DEFEA_K_CSR_IO; |
793 | outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0); | |
794 | ||
795 | val = PI_IO_CMP_M_SLOT; | |
8a189f12 | 796 | outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1); |
b98dfaf2 MR |
797 | val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3; |
798 | outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0); | |
799 | ||
800 | val = 0; | |
801 | outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1); | |
802 | val = PI_DEFEA_K_BURST_HOLDOFF; | |
803 | outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0); | |
804 | ||
805 | val = PI_IO_CMP_M_SLOT; | |
8a189f12 | 806 | outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1); |
b98dfaf2 MR |
807 | val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3; |
808 | outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0); | |
e89a2cfb MR |
809 | |
810 | /* Enable the decoders. */ | |
fef85fc4 | 811 | val = PI_FUNCTION_CNTRL_M_IOCS1; |
e89a2cfb | 812 | if (dfx_use_mmio) |
fef85fc4 MR |
813 | val |= PI_FUNCTION_CNTRL_M_MEMCS1; |
814 | else | |
815 | val |= PI_FUNCTION_CNTRL_M_IOCS0; | |
8a189f12 | 816 | outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL); |
1da177e4 LT |
817 | |
818 | /* | |
e89a2cfb MR |
819 | * Enable access to the rest of the module |
820 | * (including PDQ and packet memory). | |
1da177e4 | 821 | */ |
e89a2cfb | 822 | val = PI_SLOT_CNTRL_M_ENB; |
8a189f12 | 823 | outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL); |
1da177e4 | 824 | |
e89a2cfb MR |
825 | /* |
826 | * Map PDQ registers into memory or port space. This is | |
827 | * done with a bit in the Burst Holdoff register. | |
828 | */ | |
829 | val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); | |
830 | if (dfx_use_mmio) | |
b1a6d3ec | 831 | val |= PI_BURST_HOLDOFF_M_MEM_MAP; |
e89a2cfb | 832 | else |
b1a6d3ec | 833 | val &= ~PI_BURST_HOLDOFF_M_MEM_MAP; |
8a189f12 | 834 | outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF); |
1da177e4 LT |
835 | |
836 | /* Enable interrupts at EISA bus interface chip (ESIC) */ | |
e89a2cfb MR |
837 | val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
838 | val |= PI_CONFIG_STAT_0_M_INT_ENB; | |
8a189f12 | 839 | outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
e89a2cfb MR |
840 | } |
841 | if (dfx_bus_pci) { | |
842 | struct pci_dev *pdev = to_pci_dev(bdev); | |
1da177e4 LT |
843 | |
844 | /* Get the interrupt level from the PCI Configuration Table */ | |
845 | ||
846 | dev->irq = pdev->irq; | |
847 | ||
848 | /* Check Latency Timer and set if less than minimal */ | |
849 | ||
850 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); | |
e89a2cfb | 851 | if (val < PFI_K_LAT_TIMER_MIN) { |
1da177e4 LT |
852 | val = PFI_K_LAT_TIMER_DEF; |
853 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); | |
e89a2cfb | 854 | } |
1da177e4 LT |
855 | |
856 | /* Enable interrupts at PCI bus interface chip (PFI) */ | |
e89a2cfb MR |
857 | val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; |
858 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); | |
859 | } | |
860 | } | |
1da177e4 | 861 | |
e89a2cfb MR |
862 | /* |
863 | * ================== | |
864 | * = dfx_bus_uninit = | |
865 | * ================== | |
866 | * | |
867 | * Overview: | |
868 | * Uninitializes the bus-specific controller logic. | |
869 | * | |
870 | * Returns: | |
871 | * None | |
872 | * | |
873 | * Arguments: | |
874 | * dev - pointer to device information | |
875 | * | |
876 | * Functional Description: | |
877 | * Perform bus-specific logic uninitialization. | |
878 | * | |
879 | * Return Codes: | |
880 | * None | |
881 | * | |
882 | * Assumptions: | |
883 | * bp->base has already been set with the proper | |
884 | * base I/O address for this device. | |
885 | * | |
886 | * Side Effects: | |
887 | * Interrupts are disabled at the adapter bus-specific logic. | |
888 | */ | |
889 | ||
c354dfc3 | 890 | static void dfx_bus_uninit(struct net_device *dev) |
e89a2cfb MR |
891 | { |
892 | DFX_board_t *bp = netdev_priv(dev); | |
893 | struct device *bdev = bp->bus_dev; | |
5349d937 | 894 | int dfx_bus_pci = dev_is_pci(bdev); |
e89a2cfb MR |
895 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
896 | u8 val; | |
897 | ||
898 | DBG_printk("In dfx_bus_uninit...\n"); | |
899 | ||
900 | /* Uninitialize adapter based on bus type */ | |
901 | ||
902 | if (dfx_bus_eisa) { | |
903 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | |
904 | ||
905 | /* Disable interrupts at EISA bus interface chip (ESIC) */ | |
906 | val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | |
907 | val &= ~PI_CONFIG_STAT_0_M_INT_ENB; | |
8a189f12 | 908 | outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
6a931423 MR |
909 | |
910 | /* Disable the board. */ | |
911 | outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL); | |
912 | ||
913 | /* Disable memory and port decoders. */ | |
914 | outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL); | |
e89a2cfb MR |
915 | } |
916 | if (dfx_bus_pci) { | |
917 | /* Disable interrupts at PCI bus interface chip (PFI) */ | |
918 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); | |
1da177e4 | 919 | } |
e89a2cfb | 920 | } |
1da177e4 | 921 | |
6aa20a22 | 922 | |
1da177e4 LT |
923 | /* |
924 | * ======================== | |
925 | * = dfx_bus_config_check = | |
926 | * ======================== | |
6aa20a22 | 927 | * |
1da177e4 LT |
928 | * Overview: |
929 | * Checks the configuration (burst size, full-duplex, etc.) If any parameters | |
930 | * are illegal, then this routine will set new defaults. | |
6aa20a22 | 931 | * |
1da177e4 LT |
932 | * Returns: |
933 | * None | |
6aa20a22 | 934 | * |
1da177e4 LT |
935 | * Arguments: |
936 | * bp - pointer to board information | |
937 | * | |
938 | * Functional Description: | |
939 | * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later | |
940 | * PDQ, and all FDDI PCI controllers, all values are legal. | |
941 | * | |
942 | * Return Codes: | |
943 | * None | |
944 | * | |
945 | * Assumptions: | |
946 | * dfx_adap_init has NOT been called yet so burst size and other items have | |
947 | * not been set. | |
948 | * | |
949 | * Side Effects: | |
950 | * None | |
951 | */ | |
952 | ||
c354dfc3 | 953 | static void dfx_bus_config_check(DFX_board_t *bp) |
1da177e4 | 954 | { |
fcdff139 | 955 | struct device __maybe_unused *bdev = bp->bus_dev; |
e89a2cfb | 956 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
1da177e4 | 957 | int status; /* return code from adapter port control call */ |
1da177e4 LT |
958 | u32 host_data; /* LW data returned from port control call */ |
959 | ||
960 | DBG_printk("In dfx_bus_config_check...\n"); | |
961 | ||
962 | /* Configuration check only valid for EISA adapter */ | |
963 | ||
e89a2cfb | 964 | if (dfx_bus_eisa) { |
1da177e4 LT |
965 | /* |
966 | * First check if revision 2 EISA controller. Rev. 1 cards used | |
967 | * PDQ revision B, so no workaround needed in this case. Rev. 3 | |
968 | * cards used PDQ revision E, so no workaround needed in this | |
969 | * case, either. Only Rev. 2 cards used either Rev. D or E | |
970 | * chips, so we must verify the chip revision on Rev. 2 cards. | |
971 | */ | |
e89a2cfb | 972 | if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { |
1da177e4 | 973 | /* |
e89a2cfb MR |
974 | * Revision 2 FDDI EISA controller found, |
975 | * so let's check PDQ revision of adapter. | |
1da177e4 | 976 | */ |
1da177e4 LT |
977 | status = dfx_hw_port_ctrl_req(bp, |
978 | PI_PCTRL_M_SUB_CMD, | |
979 | PI_SUB_CMD_K_PDQ_REV_GET, | |
980 | 0, | |
981 | &host_data); | |
982 | if ((status != DFX_K_SUCCESS) || (host_data == 2)) | |
983 | { | |
984 | /* | |
985 | * Either we couldn't determine the PDQ revision, or | |
986 | * we determined that it is at revision D. In either case, | |
987 | * we need to implement the workaround. | |
988 | */ | |
989 | ||
990 | /* Ensure that the burst size is set to 8 longwords or less */ | |
991 | ||
992 | switch (bp->burst_size) | |
993 | { | |
994 | case PI_PDATA_B_DMA_BURST_SIZE_32: | |
995 | case PI_PDATA_B_DMA_BURST_SIZE_16: | |
996 | bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; | |
997 | break; | |
998 | ||
999 | default: | |
1000 | break; | |
1001 | } | |
1002 | ||
1003 | /* Ensure that full-duplex mode is not enabled */ | |
1004 | ||
1005 | bp->full_duplex_enb = PI_SNMP_K_FALSE; | |
1006 | } | |
1007 | } | |
1008 | } | |
1009 | } | |
1010 | ||
6aa20a22 | 1011 | |
1da177e4 LT |
1012 | /* |
1013 | * =================== | |
1014 | * = dfx_driver_init = | |
1015 | * =================== | |
6aa20a22 | 1016 | * |
1da177e4 LT |
1017 | * Overview: |
1018 | * Initializes remaining adapter board structure information | |
1019 | * and makes sure adapter is in a safe state prior to dfx_open(). | |
6aa20a22 | 1020 | * |
1da177e4 LT |
1021 | * Returns: |
1022 | * Condition code | |
6aa20a22 | 1023 | * |
1da177e4 LT |
1024 | * Arguments: |
1025 | * dev - pointer to device information | |
1026 | * print_name - printable device name | |
1027 | * | |
1028 | * Functional Description: | |
1029 | * This function allocates additional resources such as the host memory | |
1030 | * blocks needed by the adapter (eg. descriptor and consumer blocks). | |
1031 | * Remaining bus initialization steps are also completed. The adapter | |
1032 | * is also reset so that it is in the DMA_UNAVAILABLE state. The OS | |
1033 | * must call dfx_open() to open the adapter and bring it on-line. | |
1034 | * | |
1035 | * Return Codes: | |
1036 | * DFX_K_SUCCESS - initialization succeeded | |
1037 | * DFX_K_FAILURE - initialization failed - could not allocate memory | |
1038 | * or read adapter MAC address | |
1039 | * | |
1040 | * Assumptions: | |
1041 | * Memory allocated from pci_alloc_consistent() call is physically | |
1042 | * contiguous, locked memory. | |
1043 | * | |
1044 | * Side Effects: | |
1045 | * Adapter is reset and should be in DMA_UNAVAILABLE state before | |
1046 | * returning from this routine. | |
1047 | */ | |
1048 | ||
1dd06ae8 GKH |
1049 | static int dfx_driver_init(struct net_device *dev, const char *print_name, |
1050 | resource_size_t bar_start) | |
1da177e4 | 1051 | { |
e89a2cfb MR |
1052 | DFX_board_t *bp = netdev_priv(dev); |
1053 | struct device *bdev = bp->bus_dev; | |
5349d937 | 1054 | int dfx_bus_pci = dev_is_pci(bdev); |
e89a2cfb MR |
1055 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
1056 | int dfx_bus_tc = DFX_BUS_TC(bdev); | |
1057 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
1058 | int alloc_size; /* total buffer size needed */ | |
1059 | char *top_v, *curr_v; /* virtual addrs into memory block */ | |
1060 | dma_addr_t top_p, curr_p; /* physical addrs into memory block */ | |
eca1ad82 AV |
1061 | u32 data; /* host data register value */ |
1062 | __le32 le32; | |
e89a2cfb | 1063 | char *board_name = NULL; |
1da177e4 LT |
1064 | |
1065 | DBG_printk("In dfx_driver_init...\n"); | |
1066 | ||
1067 | /* Initialize bus-specific hardware registers */ | |
1068 | ||
1069 | dfx_bus_init(dev); | |
1070 | ||
1071 | /* | |
1072 | * Initialize default values for configurable parameters | |
1073 | * | |
1074 | * Note: All of these parameters are ones that a user may | |
1075 | * want to customize. It'd be nice to break these | |
1076 | * out into Space.c or someplace else that's more | |
1077 | * accessible/understandable than this file. | |
1078 | */ | |
1079 | ||
1080 | bp->full_duplex_enb = PI_SNMP_K_FALSE; | |
1081 | bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ | |
1082 | bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; | |
1083 | bp->rcv_bufs_to_post = RCV_BUFS_DEF; | |
1084 | ||
1085 | /* | |
1086 | * Ensure that HW configuration is OK | |
1087 | * | |
1088 | * Note: Depending on the hardware revision, we may need to modify | |
1089 | * some of the configurable parameters to workaround hardware | |
1090 | * limitations. We'll perform this configuration check AFTER | |
1091 | * setting the parameters to their default values. | |
1092 | */ | |
1093 | ||
1094 | dfx_bus_config_check(bp); | |
1095 | ||
1096 | /* Disable PDQ interrupts first */ | |
1097 | ||
1098 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | |
1099 | ||
1100 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | |
1101 | ||
1102 | (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); | |
1103 | ||
1104 | /* Read the factory MAC address from the adapter then save it */ | |
1105 | ||
1106 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, | |
1107 | &data) != DFX_K_SUCCESS) { | |
1108 | printk("%s: Could not read adapter factory MAC address!\n", | |
1109 | print_name); | |
807540ba | 1110 | return DFX_K_FAILURE; |
1da177e4 | 1111 | } |
e89a2cfb MR |
1112 | le32 = cpu_to_le32(data); |
1113 | memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); | |
1da177e4 LT |
1114 | |
1115 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, | |
1116 | &data) != DFX_K_SUCCESS) { | |
1117 | printk("%s: Could not read adapter factory MAC address!\n", | |
1118 | print_name); | |
807540ba | 1119 | return DFX_K_FAILURE; |
1da177e4 | 1120 | } |
e89a2cfb MR |
1121 | le32 = cpu_to_le32(data); |
1122 | memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); | |
1da177e4 LT |
1123 | |
1124 | /* | |
1125 | * Set current address to factory address | |
1126 | * | |
1127 | * Note: Node address override support is handled through | |
1128 | * dfx_ctl_set_mac_address. | |
1129 | */ | |
1130 | ||
1131 | memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); | |
e89a2cfb MR |
1132 | if (dfx_bus_tc) |
1133 | board_name = "DEFTA"; | |
1134 | if (dfx_bus_eisa) | |
1135 | board_name = "DEFEA"; | |
1136 | if (dfx_bus_pci) | |
1137 | board_name = "DEFPA"; | |
4d0438e5 MR |
1138 | pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", |
1139 | print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O", | |
69d279ea | 1140 | (long long)bar_start, dev->irq, dev->dev_addr); |
1da177e4 LT |
1141 | |
1142 | /* | |
1143 | * Get memory for descriptor block, consumer block, and other buffers | |
1144 | * that need to be DMA read or written to by the adapter. | |
1145 | */ | |
1146 | ||
1147 | alloc_size = sizeof(PI_DESCR_BLOCK) + | |
1148 | PI_CMD_REQ_K_SIZE_MAX + | |
1149 | PI_CMD_RSP_K_SIZE_MAX + | |
1150 | #ifndef DYNAMIC_BUFFERS | |
1151 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | |
1152 | #endif | |
1153 | sizeof(PI_CONSUMER_BLOCK) + | |
1154 | (PI_ALIGN_K_DESC_BLK - 1); | |
750afb08 LC |
1155 | bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size, |
1156 | &bp->kmalloced_dma, | |
1157 | GFP_ATOMIC); | |
d0320f75 | 1158 | if (top_v == NULL) |
807540ba | 1159 | return DFX_K_FAILURE; |
d0320f75 | 1160 | |
1da177e4 LT |
1161 | top_p = bp->kmalloced_dma; /* get physical address of buffer */ |
1162 | ||
1163 | /* | |
1164 | * To guarantee the 8K alignment required for the descriptor block, 8K - 1 | |
1165 | * plus the amount of memory needed was allocated. The physical address | |
1166 | * is now 8K aligned. By carving up the memory in a specific order, | |
1167 | * we'll guarantee the alignment requirements for all other structures. | |
1168 | * | |
1169 | * Note: If the assumptions change regarding the non-paged, non-cached, | |
1170 | * physically contiguous nature of the memory block or the address | |
1171 | * alignments, then we'll need to implement a different algorithm | |
1172 | * for allocating the needed memory. | |
1173 | */ | |
1174 | ||
1175 | curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); | |
1176 | curr_v = top_v + (curr_p - top_p); | |
1177 | ||
1178 | /* Reserve space for descriptor block */ | |
1179 | ||
1180 | bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; | |
1181 | bp->descr_block_phys = curr_p; | |
1182 | curr_v += sizeof(PI_DESCR_BLOCK); | |
1183 | curr_p += sizeof(PI_DESCR_BLOCK); | |
1184 | ||
1185 | /* Reserve space for command request buffer */ | |
1186 | ||
1187 | bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; | |
1188 | bp->cmd_req_phys = curr_p; | |
1189 | curr_v += PI_CMD_REQ_K_SIZE_MAX; | |
1190 | curr_p += PI_CMD_REQ_K_SIZE_MAX; | |
1191 | ||
1192 | /* Reserve space for command response buffer */ | |
1193 | ||
1194 | bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; | |
1195 | bp->cmd_rsp_phys = curr_p; | |
1196 | curr_v += PI_CMD_RSP_K_SIZE_MAX; | |
1197 | curr_p += PI_CMD_RSP_K_SIZE_MAX; | |
1198 | ||
1199 | /* Reserve space for the LLC host receive queue buffers */ | |
1200 | ||
1201 | bp->rcv_block_virt = curr_v; | |
1202 | bp->rcv_block_phys = curr_p; | |
1203 | ||
1204 | #ifndef DYNAMIC_BUFFERS | |
1205 | curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); | |
1206 | curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); | |
1207 | #endif | |
1208 | ||
1209 | /* Reserve space for the consumer block */ | |
1210 | ||
1211 | bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; | |
1212 | bp->cons_block_phys = curr_p; | |
1213 | ||
1214 | /* Display virtual and physical addresses if debug driver */ | |
1215 | ||
51ba0ed1 MR |
1216 | DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n", |
1217 | print_name, bp->descr_block_virt, &bp->descr_block_phys); | |
1218 | DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n", | |
1219 | print_name, bp->cmd_req_virt, &bp->cmd_req_phys); | |
1220 | DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n", | |
1221 | print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys); | |
1222 | DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n", | |
1223 | print_name, bp->rcv_block_virt, &bp->rcv_block_phys); | |
1224 | DBG_printk("%s: Consumer block virt = %p, phys = %pad\n", | |
1225 | print_name, bp->cons_block_virt, &bp->cons_block_phys); | |
1da177e4 | 1226 | |
807540ba | 1227 | return DFX_K_SUCCESS; |
1da177e4 LT |
1228 | } |
1229 | ||
6aa20a22 | 1230 | |
1da177e4 LT |
1231 | /* |
1232 | * ================= | |
1233 | * = dfx_adap_init = | |
1234 | * ================= | |
6aa20a22 | 1235 | * |
1da177e4 LT |
1236 | * Overview: |
1237 | * Brings the adapter to the link avail/link unavailable state. | |
6aa20a22 | 1238 | * |
1da177e4 LT |
1239 | * Returns: |
1240 | * Condition code | |
6aa20a22 | 1241 | * |
1da177e4 LT |
1242 | * Arguments: |
1243 | * bp - pointer to board information | |
1244 | * get_buffers - non-zero if buffers to be allocated | |
1245 | * | |
1246 | * Functional Description: | |
1247 | * Issues the low-level firmware/hardware calls necessary to bring | |
1248 | * the adapter up, or to properly reset and restore adapter during | |
1249 | * run-time. | |
1250 | * | |
1251 | * Return Codes: | |
1252 | * DFX_K_SUCCESS - Adapter brought up successfully | |
1253 | * DFX_K_FAILURE - Adapter initialization failed | |
1254 | * | |
1255 | * Assumptions: | |
1256 | * bp->reset_type should be set to a valid reset type value before | |
1257 | * calling this routine. | |
1258 | * | |
1259 | * Side Effects: | |
1260 | * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state | |
1261 | * upon a successful return of this routine. | |
1262 | */ | |
1263 | ||
1264 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers) | |
1265 | { | |
1266 | DBG_printk("In dfx_adap_init...\n"); | |
1267 | ||
1268 | /* Disable PDQ interrupts first */ | |
1269 | ||
1270 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | |
1271 | ||
1272 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | |
1273 | ||
1274 | if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) | |
1275 | { | |
1276 | printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); | |
807540ba | 1277 | return DFX_K_FAILURE; |
1da177e4 LT |
1278 | } |
1279 | ||
1280 | /* | |
1281 | * When the PDQ is reset, some false Type 0 interrupts may be pending, | |
1282 | * so we'll acknowledge all Type 0 interrupts now before continuing. | |
1283 | */ | |
1284 | ||
1285 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); | |
1286 | ||
1287 | /* | |
1288 | * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state | |
1289 | * | |
1290 | * Note: We only need to clear host copies of these registers. The PDQ reset | |
1291 | * takes care of the on-board register values. | |
1292 | */ | |
1293 | ||
1294 | bp->cmd_req_reg.lword = 0; | |
1295 | bp->cmd_rsp_reg.lword = 0; | |
1296 | bp->rcv_xmt_reg.lword = 0; | |
1297 | ||
1298 | /* Clear consumer block before going to DMA_AVAILABLE state */ | |
1299 | ||
1300 | memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); | |
1301 | ||
1302 | /* Initialize the DMA Burst Size */ | |
1303 | ||
1304 | if (dfx_hw_port_ctrl_req(bp, | |
1305 | PI_PCTRL_M_SUB_CMD, | |
1306 | PI_SUB_CMD_K_BURST_SIZE_SET, | |
1307 | bp->burst_size, | |
1308 | NULL) != DFX_K_SUCCESS) | |
1309 | { | |
1310 | printk("%s: Could not set adapter burst size!\n", bp->dev->name); | |
807540ba | 1311 | return DFX_K_FAILURE; |
1da177e4 LT |
1312 | } |
1313 | ||
1314 | /* | |
1315 | * Set base address of Consumer Block | |
1316 | * | |
1317 | * Assumption: 32-bit physical address of consumer block is 64 byte | |
1318 | * aligned. That is, bits 0-5 of the address must be zero. | |
1319 | */ | |
1320 | ||
1321 | if (dfx_hw_port_ctrl_req(bp, | |
1322 | PI_PCTRL_M_CONS_BLOCK, | |
1323 | bp->cons_block_phys, | |
1324 | 0, | |
1325 | NULL) != DFX_K_SUCCESS) | |
1326 | { | |
1327 | printk("%s: Could not set consumer block address!\n", bp->dev->name); | |
807540ba | 1328 | return DFX_K_FAILURE; |
1da177e4 LT |
1329 | } |
1330 | ||
1331 | /* | |
b2e68aa3 MR |
1332 | * Set the base address of Descriptor Block and bring adapter |
1333 | * to DMA_AVAILABLE state. | |
1da177e4 | 1334 | * |
b2e68aa3 MR |
1335 | * Note: We also set the literal and data swapping requirements |
1336 | * in this command. | |
1da177e4 | 1337 | * |
b2e68aa3 MR |
1338 | * Assumption: 32-bit physical address of descriptor block |
1339 | * is 8Kbyte aligned. | |
1da177e4 | 1340 | */ |
b2e68aa3 MR |
1341 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, |
1342 | (u32)(bp->descr_block_phys | | |
1343 | PI_PDATA_A_INIT_M_BSWAP_INIT), | |
1344 | 0, NULL) != DFX_K_SUCCESS) { | |
1345 | printk("%s: Could not set descriptor block address!\n", | |
1346 | bp->dev->name); | |
1347 | return DFX_K_FAILURE; | |
1348 | } | |
1da177e4 LT |
1349 | |
1350 | /* Set transmit flush timeout value */ | |
1351 | ||
1352 | bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; | |
1353 | bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; | |
1354 | bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ | |
1355 | bp->cmd_req_virt->char_set.item[0].item_index = 0; | |
1356 | bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; | |
1357 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
1358 | { | |
1359 | printk("%s: DMA command request failed!\n", bp->dev->name); | |
807540ba | 1360 | return DFX_K_FAILURE; |
1da177e4 LT |
1361 | } |
1362 | ||
1363 | /* Set the initial values for eFDXEnable and MACTReq MIB objects */ | |
1364 | ||
1365 | bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; | |
1366 | bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; | |
1367 | bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; | |
1368 | bp->cmd_req_virt->snmp_set.item[0].item_index = 0; | |
1369 | bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; | |
1370 | bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; | |
1371 | bp->cmd_req_virt->snmp_set.item[1].item_index = 0; | |
1372 | bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; | |
1373 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
1374 | { | |
1375 | printk("%s: DMA command request failed!\n", bp->dev->name); | |
807540ba | 1376 | return DFX_K_FAILURE; |
1da177e4 LT |
1377 | } |
1378 | ||
1379 | /* Initialize adapter CAM */ | |
1380 | ||
1381 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | |
1382 | { | |
1383 | printk("%s: Adapter CAM update failed!\n", bp->dev->name); | |
807540ba | 1384 | return DFX_K_FAILURE; |
1da177e4 LT |
1385 | } |
1386 | ||
1387 | /* Initialize adapter filters */ | |
1388 | ||
1389 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | |
1390 | { | |
1391 | printk("%s: Adapter filters update failed!\n", bp->dev->name); | |
807540ba | 1392 | return DFX_K_FAILURE; |
1da177e4 LT |
1393 | } |
1394 | ||
1395 | /* | |
1396 | * Remove any existing dynamic buffers (i.e. if the adapter is being | |
1397 | * reinitialized) | |
1398 | */ | |
1399 | ||
1400 | if (get_buffers) | |
1401 | dfx_rcv_flush(bp); | |
1402 | ||
1403 | /* Initialize receive descriptor block and produce buffers */ | |
1404 | ||
1405 | if (dfx_rcv_init(bp, get_buffers)) | |
1406 | { | |
1407 | printk("%s: Receive buffer allocation failed\n", bp->dev->name); | |
1408 | if (get_buffers) | |
1409 | dfx_rcv_flush(bp); | |
807540ba | 1410 | return DFX_K_FAILURE; |
1da177e4 LT |
1411 | } |
1412 | ||
1413 | /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ | |
1414 | ||
1415 | bp->cmd_req_virt->cmd_type = PI_CMD_K_START; | |
1416 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
1417 | { | |
1418 | printk("%s: Start command failed\n", bp->dev->name); | |
1419 | if (get_buffers) | |
1420 | dfx_rcv_flush(bp); | |
807540ba | 1421 | return DFX_K_FAILURE; |
1da177e4 LT |
1422 | } |
1423 | ||
1424 | /* Initialization succeeded, reenable PDQ interrupts */ | |
1425 | ||
1426 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); | |
807540ba | 1427 | return DFX_K_SUCCESS; |
1da177e4 LT |
1428 | } |
1429 | ||
6aa20a22 | 1430 | |
1da177e4 LT |
1431 | /* |
1432 | * ============ | |
1433 | * = dfx_open = | |
1434 | * ============ | |
6aa20a22 | 1435 | * |
1da177e4 LT |
1436 | * Overview: |
1437 | * Opens the adapter | |
6aa20a22 | 1438 | * |
1da177e4 LT |
1439 | * Returns: |
1440 | * Condition code | |
6aa20a22 | 1441 | * |
1da177e4 LT |
1442 | * Arguments: |
1443 | * dev - pointer to device information | |
1444 | * | |
1445 | * Functional Description: | |
1446 | * This function brings the adapter to an operational state. | |
1447 | * | |
1448 | * Return Codes: | |
1449 | * 0 - Adapter was successfully opened | |
1450 | * -EAGAIN - Could not register IRQ or adapter initialization failed | |
1451 | * | |
1452 | * Assumptions: | |
1453 | * This routine should only be called for a device that was | |
1454 | * initialized successfully. | |
1455 | * | |
1456 | * Side Effects: | |
1457 | * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state | |
1458 | * if the open is successful. | |
1459 | */ | |
1460 | ||
1461 | static int dfx_open(struct net_device *dev) | |
1462 | { | |
e89a2cfb | 1463 | DFX_board_t *bp = netdev_priv(dev); |
1da177e4 | 1464 | int ret; |
1da177e4 LT |
1465 | |
1466 | DBG_printk("In dfx_open...\n"); | |
6aa20a22 | 1467 | |
1da177e4 LT |
1468 | /* Register IRQ - support shared interrupts by passing device ptr */ |
1469 | ||
e89a2cfb MR |
1470 | ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, |
1471 | dev); | |
1da177e4 LT |
1472 | if (ret) { |
1473 | printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); | |
1474 | return ret; | |
1475 | } | |
1476 | ||
1477 | /* | |
1478 | * Set current address to factory MAC address | |
1479 | * | |
1480 | * Note: We've already done this step in dfx_driver_init. | |
1481 | * However, it's possible that a user has set a node | |
1482 | * address override, then closed and reopened the | |
1483 | * adapter. Unless we reset the device address field | |
1484 | * now, we'll continue to use the existing modified | |
1485 | * address. | |
1486 | */ | |
1487 | ||
1488 | memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); | |
1489 | ||
1490 | /* Clear local unicast/multicast address tables and counts */ | |
1491 | ||
1492 | memset(bp->uc_table, 0, sizeof(bp->uc_table)); | |
1493 | memset(bp->mc_table, 0, sizeof(bp->mc_table)); | |
1494 | bp->uc_count = 0; | |
1495 | bp->mc_count = 0; | |
1496 | ||
1497 | /* Disable promiscuous filter settings */ | |
1498 | ||
1499 | bp->ind_group_prom = PI_FSTATE_K_BLOCK; | |
1500 | bp->group_prom = PI_FSTATE_K_BLOCK; | |
1501 | ||
1502 | spin_lock_init(&bp->lock); | |
1503 | ||
1504 | /* Reset and initialize adapter */ | |
1505 | ||
1506 | bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ | |
1507 | if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) | |
1508 | { | |
1509 | printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); | |
1510 | free_irq(dev->irq, dev); | |
1511 | return -EAGAIN; | |
1512 | } | |
1513 | ||
1514 | /* Set device structure info */ | |
1515 | netif_start_queue(dev); | |
807540ba | 1516 | return 0; |
1da177e4 LT |
1517 | } |
1518 | ||
6aa20a22 | 1519 | |
1da177e4 LT |
1520 | /* |
1521 | * ============= | |
1522 | * = dfx_close = | |
1523 | * ============= | |
6aa20a22 | 1524 | * |
1da177e4 LT |
1525 | * Overview: |
1526 | * Closes the device/module. | |
6aa20a22 | 1527 | * |
1da177e4 LT |
1528 | * Returns: |
1529 | * Condition code | |
6aa20a22 | 1530 | * |
1da177e4 LT |
1531 | * Arguments: |
1532 | * dev - pointer to device information | |
1533 | * | |
1534 | * Functional Description: | |
1535 | * This routine closes the adapter and brings it to a safe state. | |
1536 | * The interrupt service routine is deregistered with the OS. | |
1537 | * The adapter can be opened again with another call to dfx_open(). | |
1538 | * | |
1539 | * Return Codes: | |
1540 | * Always return 0. | |
1541 | * | |
1542 | * Assumptions: | |
1543 | * No further requests for this adapter are made after this routine is | |
1544 | * called. dfx_open() can be called to reset and reinitialize the | |
1545 | * adapter. | |
1546 | * | |
1547 | * Side Effects: | |
1548 | * Adapter should be in DMA_UNAVAILABLE state upon completion of this | |
1549 | * routine. | |
1550 | */ | |
1551 | ||
1552 | static int dfx_close(struct net_device *dev) | |
1553 | { | |
e89a2cfb | 1554 | DFX_board_t *bp = netdev_priv(dev); |
1da177e4 LT |
1555 | |
1556 | DBG_printk("In dfx_close...\n"); | |
1557 | ||
1558 | /* Disable PDQ interrupts first */ | |
1559 | ||
1560 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | |
1561 | ||
1562 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | |
1563 | ||
1564 | (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); | |
1565 | ||
1566 | /* | |
1567 | * Flush any pending transmit buffers | |
1568 | * | |
1569 | * Note: It's important that we flush the transmit buffers | |
1570 | * BEFORE we clear our copy of the Type 2 register. | |
1571 | * Otherwise, we'll have no idea how many buffers | |
1572 | * we need to free. | |
1573 | */ | |
1574 | ||
1575 | dfx_xmt_flush(bp); | |
1576 | ||
1577 | /* | |
1578 | * Clear Type 1 and Type 2 registers after adapter reset | |
1579 | * | |
1580 | * Note: Even though we're closing the adapter, it's | |
1581 | * possible that an interrupt will occur after | |
1582 | * dfx_close is called. Without some assurance to | |
1583 | * the contrary we want to make sure that we don't | |
1584 | * process receive and transmit LLC frames and update | |
1585 | * the Type 2 register with bad information. | |
1586 | */ | |
1587 | ||
1588 | bp->cmd_req_reg.lword = 0; | |
1589 | bp->cmd_rsp_reg.lword = 0; | |
1590 | bp->rcv_xmt_reg.lword = 0; | |
1591 | ||
1592 | /* Clear consumer block for the same reason given above */ | |
1593 | ||
1594 | memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); | |
1595 | ||
1596 | /* Release all dynamically allocate skb in the receive ring. */ | |
1597 | ||
1598 | dfx_rcv_flush(bp); | |
1599 | ||
1600 | /* Clear device structure flags */ | |
1601 | ||
1602 | netif_stop_queue(dev); | |
6aa20a22 | 1603 | |
1da177e4 LT |
1604 | /* Deregister (free) IRQ */ |
1605 | ||
1606 | free_irq(dev->irq, dev); | |
6aa20a22 | 1607 | |
807540ba | 1608 | return 0; |
1da177e4 LT |
1609 | } |
1610 | ||
6aa20a22 | 1611 | |
1da177e4 LT |
1612 | /* |
1613 | * ====================== | |
1614 | * = dfx_int_pr_halt_id = | |
1615 | * ====================== | |
6aa20a22 | 1616 | * |
1da177e4 LT |
1617 | * Overview: |
1618 | * Displays halt id's in string form. | |
6aa20a22 | 1619 | * |
1da177e4 LT |
1620 | * Returns: |
1621 | * None | |
6aa20a22 | 1622 | * |
1da177e4 LT |
1623 | * Arguments: |
1624 | * bp - pointer to board information | |
1625 | * | |
1626 | * Functional Description: | |
1627 | * Determine current halt id and display appropriate string. | |
1628 | * | |
1629 | * Return Codes: | |
1630 | * None | |
1631 | * | |
1632 | * Assumptions: | |
1633 | * None | |
1634 | * | |
1635 | * Side Effects: | |
1636 | * None | |
1637 | */ | |
1638 | ||
1639 | static void dfx_int_pr_halt_id(DFX_board_t *bp) | |
1640 | { | |
1641 | PI_UINT32 port_status; /* PDQ port status register value */ | |
1642 | PI_UINT32 halt_id; /* PDQ port status halt ID */ | |
1643 | ||
1644 | /* Read the latest port status */ | |
1645 | ||
1646 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | |
1647 | ||
1648 | /* Display halt state transition information */ | |
1649 | ||
1650 | halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; | |
1651 | switch (halt_id) | |
1652 | { | |
1653 | case PI_HALT_ID_K_SELFTEST_TIMEOUT: | |
1654 | printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); | |
1655 | break; | |
1656 | ||
1657 | case PI_HALT_ID_K_PARITY_ERROR: | |
1658 | printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); | |
1659 | break; | |
1660 | ||
1661 | case PI_HALT_ID_K_HOST_DIR_HALT: | |
1662 | printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); | |
1663 | break; | |
1664 | ||
1665 | case PI_HALT_ID_K_SW_FAULT: | |
1666 | printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); | |
1667 | break; | |
1668 | ||
1669 | case PI_HALT_ID_K_HW_FAULT: | |
1670 | printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); | |
1671 | break; | |
1672 | ||
1673 | case PI_HALT_ID_K_PC_TRACE: | |
1674 | printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); | |
1675 | break; | |
1676 | ||
1677 | case PI_HALT_ID_K_DMA_ERROR: | |
1678 | printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); | |
1679 | break; | |
1680 | ||
1681 | case PI_HALT_ID_K_IMAGE_CRC_ERROR: | |
1682 | printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); | |
1683 | break; | |
1684 | ||
1685 | case PI_HALT_ID_K_BUS_EXCEPTION: | |
1686 | printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); | |
1687 | break; | |
1688 | ||
1689 | default: | |
1690 | printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); | |
1691 | break; | |
1692 | } | |
1693 | } | |
1694 | ||
6aa20a22 | 1695 | |
1da177e4 LT |
1696 | /* |
1697 | * ========================== | |
1698 | * = dfx_int_type_0_process = | |
1699 | * ========================== | |
6aa20a22 | 1700 | * |
1da177e4 LT |
1701 | * Overview: |
1702 | * Processes Type 0 interrupts. | |
6aa20a22 | 1703 | * |
1da177e4 LT |
1704 | * Returns: |
1705 | * None | |
6aa20a22 | 1706 | * |
1da177e4 LT |
1707 | * Arguments: |
1708 | * bp - pointer to board information | |
1709 | * | |
1710 | * Functional Description: | |
1711 | * Processes all enabled Type 0 interrupts. If the reason for the interrupt | |
1712 | * is a serious fault on the adapter, then an error message is displayed | |
1713 | * and the adapter is reset. | |
1714 | * | |
1715 | * One tricky potential timing window is the rapid succession of "link avail" | |
1716 | * "link unavail" state change interrupts. The acknowledgement of the Type 0 | |
1717 | * interrupt must be done before reading the state from the Port Status | |
1718 | * register. This is true because a state change could occur after reading | |
1719 | * the data, but before acknowledging the interrupt. If this state change | |
1720 | * does happen, it would be lost because the driver is using the old state, | |
1721 | * and it will never know about the new state because it subsequently | |
1722 | * acknowledges the state change interrupt. | |
1723 | * | |
1724 | * INCORRECT CORRECT | |
1725 | * read type 0 int reasons read type 0 int reasons | |
1726 | * read adapter state ack type 0 interrupts | |
1727 | * ack type 0 interrupts read adapter state | |
1728 | * ... process interrupt ... ... process interrupt ... | |
1729 | * | |
1730 | * Return Codes: | |
1731 | * None | |
1732 | * | |
1733 | * Assumptions: | |
1734 | * None | |
1735 | * | |
1736 | * Side Effects: | |
1737 | * An adapter reset may occur if the adapter has any Type 0 error interrupts | |
1738 | * or if the port status indicates that the adapter is halted. The driver | |
1739 | * is responsible for reinitializing the adapter with the current CAM | |
1740 | * contents and adapter filter settings. | |
1741 | */ | |
1742 | ||
1743 | static void dfx_int_type_0_process(DFX_board_t *bp) | |
1744 | ||
1745 | { | |
1746 | PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ | |
1747 | PI_UINT32 state; /* current adap state (from port status) */ | |
1748 | ||
1749 | /* | |
1750 | * Read host interrupt Type 0 register to determine which Type 0 | |
1751 | * interrupts are pending. Immediately write it back out to clear | |
1752 | * those interrupts. | |
1753 | */ | |
1754 | ||
1755 | dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); | |
1756 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); | |
1757 | ||
1758 | /* Check for Type 0 error interrupts */ | |
1759 | ||
1760 | if (type_0_status & (PI_TYPE_0_STAT_M_NXM | | |
1761 | PI_TYPE_0_STAT_M_PM_PAR_ERR | | |
1762 | PI_TYPE_0_STAT_M_BUS_PAR_ERR)) | |
1763 | { | |
1764 | /* Check for Non-Existent Memory error */ | |
1765 | ||
1766 | if (type_0_status & PI_TYPE_0_STAT_M_NXM) | |
1767 | printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); | |
1768 | ||
1769 | /* Check for Packet Memory Parity error */ | |
1770 | ||
1771 | if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) | |
1772 | printk("%s: Packet Memory Parity Error\n", bp->dev->name); | |
1773 | ||
1774 | /* Check for Host Bus Parity error */ | |
1775 | ||
1776 | if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) | |
1777 | printk("%s: Host Bus Parity Error\n", bp->dev->name); | |
1778 | ||
1779 | /* Reset adapter and bring it back on-line */ | |
1780 | ||
1781 | bp->link_available = PI_K_FALSE; /* link is no longer available */ | |
1782 | bp->reset_type = 0; /* rerun on-board diagnostics */ | |
1783 | printk("%s: Resetting adapter...\n", bp->dev->name); | |
1784 | if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) | |
1785 | { | |
1786 | printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); | |
1787 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | |
1788 | return; | |
1789 | } | |
1790 | printk("%s: Adapter reset successful!\n", bp->dev->name); | |
1791 | return; | |
1792 | } | |
1793 | ||
1794 | /* Check for transmit flush interrupt */ | |
1795 | ||
1796 | if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) | |
1797 | { | |
1798 | /* Flush any pending xmt's and acknowledge the flush interrupt */ | |
1799 | ||
1800 | bp->link_available = PI_K_FALSE; /* link is no longer available */ | |
1801 | dfx_xmt_flush(bp); /* flush any outstanding packets */ | |
1802 | (void) dfx_hw_port_ctrl_req(bp, | |
1803 | PI_PCTRL_M_XMT_DATA_FLUSH_DONE, | |
1804 | 0, | |
1805 | 0, | |
1806 | NULL); | |
1807 | } | |
1808 | ||
1809 | /* Check for adapter state change */ | |
1810 | ||
1811 | if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) | |
6aa20a22 | 1812 | { |
1da177e4 LT |
1813 | /* Get latest adapter state */ |
1814 | ||
1815 | state = dfx_hw_adap_state_rd(bp); /* get adapter state */ | |
1816 | if (state == PI_STATE_K_HALTED) | |
1817 | { | |
1818 | /* | |
1819 | * Adapter has transitioned to HALTED state, try to reset | |
1820 | * adapter to bring it back on-line. If reset fails, | |
1821 | * leave the adapter in the broken state. | |
1822 | */ | |
1823 | ||
1824 | printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); | |
1825 | dfx_int_pr_halt_id(bp); /* display halt id as string */ | |
1826 | ||
1827 | /* Reset adapter and bring it back on-line */ | |
1828 | ||
1829 | bp->link_available = PI_K_FALSE; /* link is no longer available */ | |
1830 | bp->reset_type = 0; /* rerun on-board diagnostics */ | |
1831 | printk("%s: Resetting adapter...\n", bp->dev->name); | |
1832 | if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) | |
1833 | { | |
1834 | printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); | |
1835 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | |
1836 | return; | |
1837 | } | |
1838 | printk("%s: Adapter reset successful!\n", bp->dev->name); | |
1839 | } | |
1840 | else if (state == PI_STATE_K_LINK_AVAIL) | |
1841 | { | |
1842 | bp->link_available = PI_K_TRUE; /* set link available flag */ | |
1843 | } | |
1844 | } | |
1845 | } | |
1846 | ||
6aa20a22 | 1847 | |
1da177e4 LT |
1848 | /* |
1849 | * ================== | |
1850 | * = dfx_int_common = | |
1851 | * ================== | |
6aa20a22 | 1852 | * |
1da177e4 LT |
1853 | * Overview: |
1854 | * Interrupt service routine (ISR) | |
6aa20a22 | 1855 | * |
1da177e4 LT |
1856 | * Returns: |
1857 | * None | |
6aa20a22 | 1858 | * |
1da177e4 LT |
1859 | * Arguments: |
1860 | * bp - pointer to board information | |
1861 | * | |
1862 | * Functional Description: | |
1863 | * This is the ISR which processes incoming adapter interrupts. | |
1864 | * | |
1865 | * Return Codes: | |
1866 | * None | |
1867 | * | |
1868 | * Assumptions: | |
1869 | * This routine assumes PDQ interrupts have not been disabled. | |
1870 | * When interrupts are disabled at the PDQ, the Port Status register | |
1871 | * is automatically cleared. This routine uses the Port Status | |
1872 | * register value to determine whether a Type 0 interrupt occurred, | |
1873 | * so it's important that adapter interrupts are not normally | |
1874 | * enabled/disabled at the PDQ. | |
1875 | * | |
1876 | * It's vital that this routine is NOT reentered for the | |
1877 | * same board and that the OS is not in another section of | |
1878 | * code (eg. dfx_xmt_queue_pkt) for the same board on a | |
1879 | * different thread. | |
1880 | * | |
1881 | * Side Effects: | |
1882 | * Pending interrupts are serviced. Depending on the type of | |
1883 | * interrupt, acknowledging and clearing the interrupt at the | |
1884 | * PDQ involves writing a register to clear the interrupt bit | |
1885 | * or updating completion indices. | |
1886 | */ | |
1887 | ||
1888 | static void dfx_int_common(struct net_device *dev) | |
1889 | { | |
e89a2cfb | 1890 | DFX_board_t *bp = netdev_priv(dev); |
1da177e4 LT |
1891 | PI_UINT32 port_status; /* Port Status register */ |
1892 | ||
1893 | /* Process xmt interrupts - frequent case, so always call this routine */ | |
1894 | ||
1895 | if(dfx_xmt_done(bp)) /* free consumed xmt packets */ | |
1896 | netif_wake_queue(dev); | |
1897 | ||
1898 | /* Process rcv interrupts - frequent case, so always call this routine */ | |
1899 | ||
1900 | dfx_rcv_queue_process(bp); /* service received LLC frames */ | |
1901 | ||
1902 | /* | |
1903 | * Transmit and receive producer and completion indices are updated on the | |
1904 | * adapter by writing to the Type 2 Producer register. Since the frequent | |
1905 | * case is that we'll be processing either LLC transmit or receive buffers, | |
1906 | * we'll optimize I/O writes by doing a single register write here. | |
1907 | */ | |
1908 | ||
1909 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | |
1910 | ||
1911 | /* Read PDQ Port Status register to find out which interrupts need processing */ | |
1912 | ||
1913 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | |
1914 | ||
1915 | /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ | |
1916 | ||
1917 | if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) | |
1918 | dfx_int_type_0_process(bp); /* process Type 0 interrupts */ | |
1919 | } | |
1920 | ||
6aa20a22 | 1921 | |
1da177e4 LT |
1922 | /* |
1923 | * ================= | |
1924 | * = dfx_interrupt = | |
1925 | * ================= | |
feea1db2 | 1926 | * |
1da177e4 LT |
1927 | * Overview: |
1928 | * Interrupt processing routine | |
feea1db2 | 1929 | * |
1da177e4 | 1930 | * Returns: |
feea1db2 MR |
1931 | * Whether a valid interrupt was seen. |
1932 | * | |
1da177e4 LT |
1933 | * Arguments: |
1934 | * irq - interrupt vector | |
1935 | * dev_id - pointer to device information | |
1da177e4 LT |
1936 | * |
1937 | * Functional Description: | |
1938 | * This routine calls the interrupt processing routine for this adapter. It | |
1939 | * disables and reenables adapter interrupts, as appropriate. We can support | |
1940 | * shared interrupts since the incoming dev_id pointer provides our device | |
1941 | * structure context. | |
1942 | * | |
1943 | * Return Codes: | |
feea1db2 MR |
1944 | * IRQ_HANDLED - an IRQ was handled. |
1945 | * IRQ_NONE - no IRQ was handled. | |
1da177e4 LT |
1946 | * |
1947 | * Assumptions: | |
1948 | * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC | |
1949 | * on Intel-based systems) is done by the operating system outside this | |
1950 | * routine. | |
1951 | * | |
1952 | * System interrupts are enabled through this call. | |
1953 | * | |
1954 | * Side Effects: | |
1955 | * Interrupts are disabled, then reenabled at the adapter. | |
1956 | */ | |
1957 | ||
7d12e780 | 1958 | static irqreturn_t dfx_interrupt(int irq, void *dev_id) |
feea1db2 | 1959 | { |
e89a2cfb MR |
1960 | struct net_device *dev = dev_id; |
1961 | DFX_board_t *bp = netdev_priv(dev); | |
1962 | struct device *bdev = bp->bus_dev; | |
5349d937 | 1963 | int dfx_bus_pci = dev_is_pci(bdev); |
e89a2cfb MR |
1964 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
1965 | int dfx_bus_tc = DFX_BUS_TC(bdev); | |
1da177e4 LT |
1966 | |
1967 | /* Service adapter interrupts */ | |
1968 | ||
e89a2cfb | 1969 | if (dfx_bus_pci) { |
feea1db2 | 1970 | u32 status; |
1da177e4 | 1971 | |
feea1db2 MR |
1972 | dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); |
1973 | if (!(status & PFI_STATUS_M_PDQ_INT)) | |
1974 | return IRQ_NONE; | |
1da177e4 | 1975 | |
feea1db2 MR |
1976 | spin_lock(&bp->lock); |
1977 | ||
1978 | /* Disable PDQ-PFI interrupts at PFI */ | |
1979 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, | |
1980 | PFI_MODE_M_DMA_ENB); | |
1da177e4 | 1981 | |
feea1db2 | 1982 | /* Call interrupt service routine for this adapter */ |
1da177e4 LT |
1983 | dfx_int_common(dev); |
1984 | ||
1985 | /* Clear PDQ interrupt status bit and reenable interrupts */ | |
feea1db2 MR |
1986 | dfx_port_write_long(bp, PFI_K_REG_STATUS, |
1987 | PFI_STATUS_M_PDQ_INT); | |
1da177e4 | 1988 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, |
feea1db2 MR |
1989 | (PFI_MODE_M_PDQ_INT_ENB | |
1990 | PFI_MODE_M_DMA_ENB)); | |
1da177e4 | 1991 | |
feea1db2 | 1992 | spin_unlock(&bp->lock); |
e89a2cfb MR |
1993 | } |
1994 | if (dfx_bus_eisa) { | |
1995 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | |
feea1db2 | 1996 | u8 status; |
1da177e4 | 1997 | |
e89a2cfb | 1998 | status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
feea1db2 MR |
1999 | if (!(status & PI_CONFIG_STAT_0_M_PEND)) |
2000 | return IRQ_NONE; | |
1da177e4 | 2001 | |
feea1db2 MR |
2002 | spin_lock(&bp->lock); |
2003 | ||
2004 | /* Disable interrupts at the ESIC */ | |
2005 | status &= ~PI_CONFIG_STAT_0_M_INT_ENB; | |
8a189f12 | 2006 | outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
feea1db2 MR |
2007 | |
2008 | /* Call interrupt service routine for this adapter */ | |
1da177e4 LT |
2009 | dfx_int_common(dev); |
2010 | ||
2011 | /* Reenable interrupts at the ESIC */ | |
e89a2cfb | 2012 | status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
feea1db2 | 2013 | status |= PI_CONFIG_STAT_0_M_INT_ENB; |
8a189f12 | 2014 | outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
e89a2cfb MR |
2015 | |
2016 | spin_unlock(&bp->lock); | |
2017 | } | |
2018 | if (dfx_bus_tc) { | |
2019 | u32 status; | |
2020 | ||
2021 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); | |
2022 | if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | | |
2023 | PI_PSTATUS_M_XMT_DATA_PENDING | | |
2024 | PI_PSTATUS_M_SMT_HOST_PENDING | | |
2025 | PI_PSTATUS_M_UNSOL_PENDING | | |
2026 | PI_PSTATUS_M_CMD_RSP_PENDING | | |
2027 | PI_PSTATUS_M_CMD_REQ_PENDING | | |
2028 | PI_PSTATUS_M_TYPE_0_PENDING))) | |
2029 | return IRQ_NONE; | |
2030 | ||
2031 | spin_lock(&bp->lock); | |
2032 | ||
2033 | /* Call interrupt service routine for this adapter */ | |
2034 | dfx_int_common(dev); | |
1da177e4 | 2035 | |
feea1db2 | 2036 | spin_unlock(&bp->lock); |
1da177e4 LT |
2037 | } |
2038 | ||
feea1db2 MR |
2039 | return IRQ_HANDLED; |
2040 | } | |
2041 | ||
6aa20a22 | 2042 | |
1da177e4 LT |
2043 | /* |
2044 | * ===================== | |
2045 | * = dfx_ctl_get_stats = | |
2046 | * ===================== | |
6aa20a22 | 2047 | * |
1da177e4 LT |
2048 | * Overview: |
2049 | * Get statistics for FDDI adapter | |
6aa20a22 | 2050 | * |
1da177e4 LT |
2051 | * Returns: |
2052 | * Pointer to FDDI statistics structure | |
6aa20a22 | 2053 | * |
1da177e4 LT |
2054 | * Arguments: |
2055 | * dev - pointer to device information | |
2056 | * | |
2057 | * Functional Description: | |
2058 | * Gets current MIB objects from adapter, then | |
2059 | * returns FDDI statistics structure as defined | |
2060 | * in if_fddi.h. | |
2061 | * | |
2062 | * Note: Since the FDDI statistics structure is | |
2063 | * still new and the device structure doesn't | |
2064 | * have an FDDI-specific get statistics handler, | |
2065 | * we'll return the FDDI statistics structure as | |
2066 | * a pointer to an Ethernet statistics structure. | |
2067 | * That way, at least the first part of the statistics | |
2068 | * structure can be decoded properly, and it allows | |
2069 | * "smart" applications to perform a second cast to | |
2070 | * decode the FDDI-specific statistics. | |
2071 | * | |
2072 | * We'll have to pay attention to this routine as the | |
2073 | * device structure becomes more mature and LAN media | |
2074 | * independent. | |
2075 | * | |
2076 | * Return Codes: | |
2077 | * None | |
2078 | * | |
2079 | * Assumptions: | |
2080 | * None | |
2081 | * | |
2082 | * Side Effects: | |
2083 | * None | |
2084 | */ | |
2085 | ||
2086 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) | |
2087 | { | |
e89a2cfb | 2088 | DFX_board_t *bp = netdev_priv(dev); |
1da177e4 LT |
2089 | |
2090 | /* Fill the bp->stats structure with driver-maintained counters */ | |
2091 | ||
2092 | bp->stats.gen.rx_packets = bp->rcv_total_frames; | |
2093 | bp->stats.gen.tx_packets = bp->xmt_total_frames; | |
2094 | bp->stats.gen.rx_bytes = bp->rcv_total_bytes; | |
2095 | bp->stats.gen.tx_bytes = bp->xmt_total_bytes; | |
2096 | bp->stats.gen.rx_errors = bp->rcv_crc_errors + | |
2097 | bp->rcv_frame_status_errors + | |
2098 | bp->rcv_length_errors; | |
2099 | bp->stats.gen.tx_errors = bp->xmt_length_errors; | |
2100 | bp->stats.gen.rx_dropped = bp->rcv_discards; | |
2101 | bp->stats.gen.tx_dropped = bp->xmt_discards; | |
2102 | bp->stats.gen.multicast = bp->rcv_multicast_frames; | |
2103 | bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ | |
2104 | ||
2105 | /* Get FDDI SMT MIB objects */ | |
2106 | ||
2107 | bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; | |
2108 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
807540ba | 2109 | return (struct net_device_stats *)&bp->stats; |
1da177e4 LT |
2110 | |
2111 | /* Fill the bp->stats structure with the SMT MIB object values */ | |
2112 | ||
2113 | memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); | |
2114 | bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; | |
2115 | bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; | |
2116 | bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; | |
2117 | memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); | |
2118 | bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; | |
2119 | bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; | |
2120 | bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; | |
2121 | bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; | |
2122 | bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; | |
2123 | bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; | |
2124 | bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; | |
2125 | bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; | |
2126 | bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; | |
2127 | bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; | |
2128 | bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; | |
2129 | bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; | |
2130 | bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; | |
2131 | bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; | |
2132 | bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; | |
2133 | bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; | |
2134 | bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; | |
2135 | bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; | |
2136 | bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; | |
2137 | bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; | |
2138 | bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; | |
2139 | bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; | |
2140 | bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; | |
2141 | bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; | |
2142 | memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); | |
2143 | memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); | |
2144 | memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); | |
2145 | memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); | |
2146 | bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; | |
2147 | bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; | |
2148 | bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; | |
2149 | memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); | |
2150 | bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; | |
2151 | bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; | |
2152 | bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; | |
2153 | bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; | |
2154 | bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; | |
2155 | bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; | |
2156 | bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; | |
2157 | bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; | |
2158 | bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; | |
2159 | bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; | |
2160 | bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; | |
2161 | bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; | |
2162 | bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; | |
2163 | bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; | |
2164 | bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; | |
2165 | bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; | |
2166 | memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); | |
2167 | bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; | |
2168 | bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; | |
2169 | bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; | |
2170 | bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; | |
2171 | bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; | |
2172 | bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; | |
2173 | bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; | |
2174 | bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; | |
2175 | bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; | |
2176 | bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; | |
2177 | memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); | |
2178 | memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); | |
2179 | bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; | |
2180 | bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; | |
2181 | bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; | |
2182 | bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; | |
2183 | bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; | |
2184 | bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; | |
2185 | bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; | |
2186 | bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; | |
2187 | bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; | |
2188 | bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; | |
2189 | bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; | |
2190 | bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; | |
2191 | bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; | |
2192 | bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; | |
2193 | bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; | |
2194 | bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; | |
2195 | bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; | |
2196 | bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; | |
2197 | bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; | |
2198 | bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; | |
2199 | bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; | |
2200 | bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; | |
2201 | bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; | |
2202 | bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; | |
2203 | bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; | |
2204 | bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; | |
2205 | ||
2206 | /* Get FDDI counters */ | |
2207 | ||
2208 | bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; | |
2209 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
807540ba | 2210 | return (struct net_device_stats *)&bp->stats; |
1da177e4 LT |
2211 | |
2212 | /* Fill the bp->stats structure with the FDDI counter values */ | |
2213 | ||
2214 | bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; | |
2215 | bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; | |
2216 | bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; | |
2217 | bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; | |
2218 | bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; | |
2219 | bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; | |
2220 | bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; | |
2221 | bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; | |
2222 | bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; | |
2223 | bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; | |
2224 | bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; | |
2225 | ||
807540ba | 2226 | return (struct net_device_stats *)&bp->stats; |
1da177e4 LT |
2227 | } |
2228 | ||
6aa20a22 | 2229 | |
1da177e4 LT |
2230 | /* |
2231 | * ============================== | |
2232 | * = dfx_ctl_set_multicast_list = | |
2233 | * ============================== | |
6aa20a22 | 2234 | * |
1da177e4 LT |
2235 | * Overview: |
2236 | * Enable/Disable LLC frame promiscuous mode reception | |
2237 | * on the adapter and/or update multicast address table. | |
6aa20a22 | 2238 | * |
1da177e4 LT |
2239 | * Returns: |
2240 | * None | |
6aa20a22 | 2241 | * |
1da177e4 LT |
2242 | * Arguments: |
2243 | * dev - pointer to device information | |
2244 | * | |
2245 | * Functional Description: | |
2246 | * This routine follows a fairly simple algorithm for setting the | |
2247 | * adapter filters and CAM: | |
2248 | * | |
2249 | * if IFF_PROMISC flag is set | |
2250 | * enable LLC individual/group promiscuous mode | |
2251 | * else | |
2252 | * disable LLC individual/group promiscuous mode | |
2253 | * if number of incoming multicast addresses > | |
2254 | * (CAM max size - number of unicast addresses in CAM) | |
2255 | * enable LLC group promiscuous mode | |
2256 | * set driver-maintained multicast address count to zero | |
2257 | * else | |
2258 | * disable LLC group promiscuous mode | |
2259 | * set driver-maintained multicast address count to incoming count | |
2260 | * update adapter CAM | |
2261 | * update adapter filters | |
2262 | * | |
2263 | * Return Codes: | |
2264 | * None | |
2265 | * | |
2266 | * Assumptions: | |
2267 | * Multicast addresses are presented in canonical (LSB) format. | |
2268 | * | |
2269 | * Side Effects: | |
2270 | * On-board adapter CAM and filters are updated. | |
2271 | */ | |
2272 | ||
2273 | static void dfx_ctl_set_multicast_list(struct net_device *dev) | |
e89a2cfb MR |
2274 | { |
2275 | DFX_board_t *bp = netdev_priv(dev); | |
1da177e4 | 2276 | int i; /* used as index in for loop */ |
22bedad3 | 2277 | struct netdev_hw_addr *ha; |
1da177e4 LT |
2278 | |
2279 | /* Enable LLC frame promiscuous mode, if necessary */ | |
2280 | ||
2281 | if (dev->flags & IFF_PROMISC) | |
2282 | bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ | |
2283 | ||
2284 | /* Else, update multicast address table */ | |
2285 | ||
2286 | else | |
2287 | { | |
2288 | bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ | |
2289 | /* | |
2290 | * Check whether incoming multicast address count exceeds table size | |
2291 | * | |
2292 | * Note: The adapters utilize an on-board 64 entry CAM for | |
2293 | * supporting perfect filtering of multicast packets | |
2294 | * and bridge functions when adding unicast addresses. | |
2295 | * There is no hash function available. To support | |
2296 | * additional multicast addresses, the all multicast | |
2297 | * filter (LLC group promiscuous mode) must be enabled. | |
2298 | * | |
2299 | * The firmware reserves two CAM entries for SMT-related | |
2300 | * multicast addresses, which leaves 62 entries available. | |
2301 | * The following code ensures that we're not being asked | |
2302 | * to add more than 62 addresses to the CAM. If we are, | |
2303 | * the driver will enable the all multicast filter. | |
2304 | * Should the number of multicast addresses drop below | |
2305 | * the high water mark, the filter will be disabled and | |
2306 | * perfect filtering will be used. | |
2307 | */ | |
2308 | ||
4cd24eaf | 2309 | if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) |
1da177e4 LT |
2310 | { |
2311 | bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ | |
2312 | bp->mc_count = 0; /* Don't add mc addrs to CAM */ | |
2313 | } | |
2314 | else | |
2315 | { | |
2316 | bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ | |
4cd24eaf | 2317 | bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */ |
1da177e4 LT |
2318 | } |
2319 | ||
2320 | /* Copy addresses to multicast address table, then update adapter CAM */ | |
2321 | ||
e1d44477 | 2322 | i = 0; |
22bedad3 | 2323 | netdev_for_each_mc_addr(ha, dev) |
e1d44477 | 2324 | memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], |
22bedad3 | 2325 | ha->addr, FDDI_K_ALEN); |
e1d44477 | 2326 | |
1da177e4 LT |
2327 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
2328 | { | |
2329 | DBG_printk("%s: Could not update multicast address table!\n", dev->name); | |
2330 | } | |
2331 | else | |
2332 | { | |
2333 | DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); | |
2334 | } | |
2335 | } | |
2336 | ||
2337 | /* Update adapter filters */ | |
2338 | ||
2339 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | |
2340 | { | |
2341 | DBG_printk("%s: Could not update adapter filters!\n", dev->name); | |
2342 | } | |
2343 | else | |
2344 | { | |
2345 | DBG_printk("%s: Adapter filters updated!\n", dev->name); | |
2346 | } | |
2347 | } | |
2348 | ||
6aa20a22 | 2349 | |
1da177e4 LT |
2350 | /* |
2351 | * =========================== | |
2352 | * = dfx_ctl_set_mac_address = | |
2353 | * =========================== | |
6aa20a22 | 2354 | * |
1da177e4 LT |
2355 | * Overview: |
2356 | * Add node address override (unicast address) to adapter | |
2357 | * CAM and update dev_addr field in device table. | |
6aa20a22 | 2358 | * |
1da177e4 LT |
2359 | * Returns: |
2360 | * None | |
6aa20a22 | 2361 | * |
1da177e4 LT |
2362 | * Arguments: |
2363 | * dev - pointer to device information | |
2364 | * addr - pointer to sockaddr structure containing unicast address to add | |
2365 | * | |
2366 | * Functional Description: | |
2367 | * The adapter supports node address overrides by adding one or more | |
2368 | * unicast addresses to the adapter CAM. This is similar to adding | |
2369 | * multicast addresses. In this routine we'll update the driver and | |
2370 | * device structures with the new address, then update the adapter CAM | |
2371 | * to ensure that the adapter will copy and strip frames destined and | |
2372 | * sourced by that address. | |
2373 | * | |
2374 | * Return Codes: | |
2375 | * Always returns zero. | |
2376 | * | |
2377 | * Assumptions: | |
2378 | * The address pointed to by addr->sa_data is a valid unicast | |
2379 | * address and is presented in canonical (LSB) format. | |
2380 | * | |
2381 | * Side Effects: | |
2382 | * On-board adapter CAM is updated. On-board adapter filters | |
2383 | * may be updated. | |
2384 | */ | |
2385 | ||
2386 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) | |
2387 | { | |
1da177e4 | 2388 | struct sockaddr *p_sockaddr = (struct sockaddr *)addr; |
e89a2cfb | 2389 | DFX_board_t *bp = netdev_priv(dev); |
1da177e4 LT |
2390 | |
2391 | /* Copy unicast address to driver-maintained structs and update count */ | |
2392 | ||
2393 | memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ | |
2394 | memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ | |
2395 | bp->uc_count = 1; | |
2396 | ||
2397 | /* | |
2398 | * Verify we're not exceeding the CAM size by adding unicast address | |
2399 | * | |
2400 | * Note: It's possible that before entering this routine we've | |
2401 | * already filled the CAM with 62 multicast addresses. | |
2402 | * Since we need to place the node address override into | |
2403 | * the CAM, we have to check to see that we're not | |
2404 | * exceeding the CAM size. If we are, we have to enable | |
2405 | * the LLC group (multicast) promiscuous mode filter as | |
2406 | * in dfx_ctl_set_multicast_list. | |
2407 | */ | |
2408 | ||
2409 | if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) | |
2410 | { | |
2411 | bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ | |
2412 | bp->mc_count = 0; /* Don't add mc addrs to CAM */ | |
2413 | ||
2414 | /* Update adapter filters */ | |
2415 | ||
2416 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | |
2417 | { | |
2418 | DBG_printk("%s: Could not update adapter filters!\n", dev->name); | |
2419 | } | |
2420 | else | |
2421 | { | |
2422 | DBG_printk("%s: Adapter filters updated!\n", dev->name); | |
2423 | } | |
2424 | } | |
2425 | ||
2426 | /* Update adapter CAM with new unicast address */ | |
2427 | ||
2428 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | |
2429 | { | |
2430 | DBG_printk("%s: Could not set new MAC address!\n", dev->name); | |
2431 | } | |
2432 | else | |
2433 | { | |
2434 | DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); | |
2435 | } | |
807540ba | 2436 | return 0; /* always return zero */ |
1da177e4 LT |
2437 | } |
2438 | ||
6aa20a22 | 2439 | |
1da177e4 LT |
2440 | /* |
2441 | * ====================== | |
2442 | * = dfx_ctl_update_cam = | |
2443 | * ====================== | |
2444 | * | |
2445 | * Overview: | |
2446 | * Procedure to update adapter CAM (Content Addressable Memory) | |
2447 | * with desired unicast and multicast address entries. | |
2448 | * | |
2449 | * Returns: | |
2450 | * Condition code | |
2451 | * | |
2452 | * Arguments: | |
2453 | * bp - pointer to board information | |
2454 | * | |
2455 | * Functional Description: | |
2456 | * Updates adapter CAM with current contents of board structure | |
2457 | * unicast and multicast address tables. Since there are only 62 | |
2458 | * free entries in CAM, this routine ensures that the command | |
2459 | * request buffer is not overrun. | |
2460 | * | |
2461 | * Return Codes: | |
2462 | * DFX_K_SUCCESS - Request succeeded | |
2463 | * DFX_K_FAILURE - Request failed | |
2464 | * | |
2465 | * Assumptions: | |
2466 | * All addresses being added (unicast and multicast) are in canonical | |
2467 | * order. | |
2468 | * | |
2469 | * Side Effects: | |
2470 | * On-board adapter CAM is updated. | |
2471 | */ | |
2472 | ||
2473 | static int dfx_ctl_update_cam(DFX_board_t *bp) | |
2474 | { | |
2475 | int i; /* used as index */ | |
2476 | PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ | |
2477 | ||
2478 | /* | |
2479 | * Fill in command request information | |
2480 | * | |
2481 | * Note: Even though both the unicast and multicast address | |
2482 | * table entries are stored as contiguous 6 byte entries, | |
2483 | * the firmware address filter set command expects each | |
2484 | * entry to be two longwords (8 bytes total). We must be | |
2485 | * careful to only copy the six bytes of each unicast and | |
2486 | * multicast table entry into each command entry. This | |
2487 | * is also why we must first clear the entire command | |
2488 | * request buffer. | |
2489 | */ | |
2490 | ||
2491 | memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ | |
2492 | bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; | |
2493 | p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; | |
2494 | ||
2495 | /* Now add unicast addresses to command request buffer, if any */ | |
2496 | ||
2497 | for (i=0; i < (int)bp->uc_count; i++) | |
2498 | { | |
2499 | if (i < PI_CMD_ADDR_FILTER_K_SIZE) | |
2500 | { | |
2501 | memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); | |
2502 | p_addr++; /* point to next command entry */ | |
2503 | } | |
2504 | } | |
2505 | ||
2506 | /* Now add multicast addresses to command request buffer, if any */ | |
2507 | ||
2508 | for (i=0; i < (int)bp->mc_count; i++) | |
2509 | { | |
2510 | if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) | |
2511 | { | |
2512 | memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); | |
2513 | p_addr++; /* point to next command entry */ | |
2514 | } | |
2515 | } | |
2516 | ||
2517 | /* Issue command to update adapter CAM, then return */ | |
2518 | ||
2519 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
807540ba ED |
2520 | return DFX_K_FAILURE; |
2521 | return DFX_K_SUCCESS; | |
1da177e4 LT |
2522 | } |
2523 | ||
6aa20a22 | 2524 | |
1da177e4 LT |
2525 | /* |
2526 | * ========================== | |
2527 | * = dfx_ctl_update_filters = | |
2528 | * ========================== | |
2529 | * | |
2530 | * Overview: | |
2531 | * Procedure to update adapter filters with desired | |
2532 | * filter settings. | |
6aa20a22 | 2533 | * |
1da177e4 LT |
2534 | * Returns: |
2535 | * Condition code | |
6aa20a22 | 2536 | * |
1da177e4 LT |
2537 | * Arguments: |
2538 | * bp - pointer to board information | |
2539 | * | |
2540 | * Functional Description: | |
2541 | * Enables or disables filter using current filter settings. | |
2542 | * | |
2543 | * Return Codes: | |
2544 | * DFX_K_SUCCESS - Request succeeded. | |
2545 | * DFX_K_FAILURE - Request failed. | |
2546 | * | |
2547 | * Assumptions: | |
2548 | * We must always pass up packets destined to the broadcast | |
2549 | * address (FF-FF-FF-FF-FF-FF), so we'll always keep the | |
2550 | * broadcast filter enabled. | |
2551 | * | |
2552 | * Side Effects: | |
2553 | * On-board adapter filters are updated. | |
2554 | */ | |
2555 | ||
2556 | static int dfx_ctl_update_filters(DFX_board_t *bp) | |
2557 | { | |
2558 | int i = 0; /* used as index */ | |
2559 | ||
2560 | /* Fill in command request information */ | |
2561 | ||
2562 | bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; | |
2563 | ||
2564 | /* Initialize Broadcast filter - * ALWAYS ENABLED * */ | |
2565 | ||
2566 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; | |
2567 | bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; | |
2568 | ||
2569 | /* Initialize LLC Individual/Group Promiscuous filter */ | |
2570 | ||
2571 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; | |
2572 | bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; | |
2573 | ||
2574 | /* Initialize LLC Group Promiscuous filter */ | |
2575 | ||
2576 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; | |
2577 | bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; | |
2578 | ||
2579 | /* Terminate the item code list */ | |
2580 | ||
2581 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; | |
2582 | ||
2583 | /* Issue command to update adapter filters, then return */ | |
2584 | ||
2585 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | |
807540ba ED |
2586 | return DFX_K_FAILURE; |
2587 | return DFX_K_SUCCESS; | |
1da177e4 LT |
2588 | } |
2589 | ||
6aa20a22 | 2590 | |
1da177e4 LT |
2591 | /* |
2592 | * ====================== | |
2593 | * = dfx_hw_dma_cmd_req = | |
2594 | * ====================== | |
6aa20a22 | 2595 | * |
1da177e4 LT |
2596 | * Overview: |
2597 | * Sends PDQ DMA command to adapter firmware | |
6aa20a22 | 2598 | * |
1da177e4 LT |
2599 | * Returns: |
2600 | * Condition code | |
6aa20a22 | 2601 | * |
1da177e4 LT |
2602 | * Arguments: |
2603 | * bp - pointer to board information | |
2604 | * | |
2605 | * Functional Description: | |
2606 | * The command request and response buffers are posted to the adapter in the manner | |
2607 | * described in the PDQ Port Specification: | |
2608 | * | |
2609 | * 1. Command Response Buffer is posted to adapter. | |
2610 | * 2. Command Request Buffer is posted to adapter. | |
2611 | * 3. Command Request consumer index is polled until it indicates that request | |
2612 | * buffer has been DMA'd to adapter. | |
2613 | * 4. Command Response consumer index is polled until it indicates that response | |
2614 | * buffer has been DMA'd from adapter. | |
2615 | * | |
2616 | * This ordering ensures that a response buffer is already available for the firmware | |
2617 | * to use once it's done processing the request buffer. | |
2618 | * | |
2619 | * Return Codes: | |
2620 | * DFX_K_SUCCESS - DMA command succeeded | |
2621 | * DFX_K_OUTSTATE - Adapter is NOT in proper state | |
2622 | * DFX_K_HW_TIMEOUT - DMA command timed out | |
2623 | * | |
2624 | * Assumptions: | |
2625 | * Command request buffer has already been filled with desired DMA command. | |
2626 | * | |
2627 | * Side Effects: | |
2628 | * None | |
2629 | */ | |
2630 | ||
2631 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp) | |
2632 | { | |
2633 | int status; /* adapter status */ | |
2634 | int timeout_cnt; /* used in for loops */ | |
6aa20a22 | 2635 | |
1da177e4 | 2636 | /* Make sure the adapter is in a state that we can issue the DMA command in */ |
6aa20a22 | 2637 | |
1da177e4 LT |
2638 | status = dfx_hw_adap_state_rd(bp); |
2639 | if ((status == PI_STATE_K_RESET) || | |
2640 | (status == PI_STATE_K_HALTED) || | |
2641 | (status == PI_STATE_K_DMA_UNAVAIL) || | |
2642 | (status == PI_STATE_K_UPGRADE)) | |
807540ba | 2643 | return DFX_K_OUTSTATE; |
1da177e4 LT |
2644 | |
2645 | /* Put response buffer on the command response queue */ | |
2646 | ||
2647 | bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | |
2648 | ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | |
2649 | bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; | |
2650 | ||
2651 | /* Bump (and wrap) the producer index and write out to register */ | |
2652 | ||
2653 | bp->cmd_rsp_reg.index.prod += 1; | |
2654 | bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; | |
2655 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); | |
2656 | ||
2657 | /* Put request buffer on the command request queue */ | |
6aa20a22 | 2658 | |
1da177e4 LT |
2659 | bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | |
2660 | PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); | |
2661 | bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; | |
2662 | ||
2663 | /* Bump (and wrap) the producer index and write out to register */ | |
2664 | ||
2665 | bp->cmd_req_reg.index.prod += 1; | |
2666 | bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; | |
2667 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); | |
2668 | ||
2669 | /* | |
2670 | * Here we wait for the command request consumer index to be equal | |
2671 | * to the producer, indicating that the adapter has DMAed the request. | |
2672 | */ | |
2673 | ||
2674 | for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) | |
2675 | { | |
2676 | if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) | |
2677 | break; | |
2678 | udelay(100); /* wait for 100 microseconds */ | |
2679 | } | |
6aa20a22 | 2680 | if (timeout_cnt == 0) |
807540ba | 2681 | return DFX_K_HW_TIMEOUT; |
1da177e4 LT |
2682 | |
2683 | /* Bump (and wrap) the completion index and write out to register */ | |
2684 | ||
2685 | bp->cmd_req_reg.index.comp += 1; | |
2686 | bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; | |
2687 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); | |
2688 | ||
2689 | /* | |
2690 | * Here we wait for the command response consumer index to be equal | |
2691 | * to the producer, indicating that the adapter has DMAed the response. | |
2692 | */ | |
2693 | ||
2694 | for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) | |
2695 | { | |
2696 | if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) | |
2697 | break; | |
2698 | udelay(100); /* wait for 100 microseconds */ | |
2699 | } | |
6aa20a22 | 2700 | if (timeout_cnt == 0) |
807540ba | 2701 | return DFX_K_HW_TIMEOUT; |
1da177e4 LT |
2702 | |
2703 | /* Bump (and wrap) the completion index and write out to register */ | |
2704 | ||
2705 | bp->cmd_rsp_reg.index.comp += 1; | |
2706 | bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; | |
2707 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); | |
807540ba | 2708 | return DFX_K_SUCCESS; |
1da177e4 LT |
2709 | } |
2710 | ||
6aa20a22 | 2711 | |
1da177e4 LT |
2712 | /* |
2713 | * ======================== | |
2714 | * = dfx_hw_port_ctrl_req = | |
2715 | * ======================== | |
6aa20a22 | 2716 | * |
1da177e4 LT |
2717 | * Overview: |
2718 | * Sends PDQ port control command to adapter firmware | |
6aa20a22 | 2719 | * |
1da177e4 LT |
2720 | * Returns: |
2721 | * Host data register value in host_data if ptr is not NULL | |
6aa20a22 | 2722 | * |
1da177e4 LT |
2723 | * Arguments: |
2724 | * bp - pointer to board information | |
2725 | * command - port control command | |
2726 | * data_a - port data A register value | |
2727 | * data_b - port data B register value | |
2728 | * host_data - ptr to host data register value | |
2729 | * | |
2730 | * Functional Description: | |
2731 | * Send generic port control command to adapter by writing | |
2732 | * to various PDQ port registers, then polling for completion. | |
2733 | * | |
2734 | * Return Codes: | |
2735 | * DFX_K_SUCCESS - port control command succeeded | |
2736 | * DFX_K_HW_TIMEOUT - port control command timed out | |
2737 | * | |
2738 | * Assumptions: | |
2739 | * None | |
2740 | * | |
2741 | * Side Effects: | |
2742 | * None | |
2743 | */ | |
2744 | ||
2745 | static int dfx_hw_port_ctrl_req( | |
2746 | DFX_board_t *bp, | |
2747 | PI_UINT32 command, | |
2748 | PI_UINT32 data_a, | |
2749 | PI_UINT32 data_b, | |
2750 | PI_UINT32 *host_data | |
2751 | ) | |
2752 | ||
2753 | { | |
2754 | PI_UINT32 port_cmd; /* Port Control command register value */ | |
2755 | int timeout_cnt; /* used in for loops */ | |
2756 | ||
2757 | /* Set Command Error bit in command longword */ | |
6aa20a22 | 2758 | |
1da177e4 LT |
2759 | port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); |
2760 | ||
2761 | /* Issue port command to the adapter */ | |
2762 | ||
2763 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); | |
2764 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); | |
2765 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); | |
2766 | ||
2767 | /* Now wait for command to complete */ | |
2768 | ||
2769 | if (command == PI_PCTRL_M_BLAST_FLASH) | |
2770 | timeout_cnt = 600000; /* set command timeout count to 60 seconds */ | |
2771 | else | |
2772 | timeout_cnt = 20000; /* set command timeout count to 2 seconds */ | |
2773 | ||
2774 | for (; timeout_cnt > 0; timeout_cnt--) | |
2775 | { | |
2776 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); | |
2777 | if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) | |
2778 | break; | |
2779 | udelay(100); /* wait for 100 microseconds */ | |
2780 | } | |
6aa20a22 | 2781 | if (timeout_cnt == 0) |
807540ba | 2782 | return DFX_K_HW_TIMEOUT; |
1da177e4 LT |
2783 | |
2784 | /* | |
6aa20a22 JG |
2785 | * If the address of host_data is non-zero, assume caller has supplied a |
2786 | * non NULL pointer, and return the contents of the HOST_DATA register in | |
1da177e4 LT |
2787 | * it. |
2788 | */ | |
2789 | ||
2790 | if (host_data != NULL) | |
2791 | dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); | |
807540ba | 2792 | return DFX_K_SUCCESS; |
1da177e4 LT |
2793 | } |
2794 | ||
6aa20a22 | 2795 | |
1da177e4 LT |
2796 | /* |
2797 | * ===================== | |
2798 | * = dfx_hw_adap_reset = | |
2799 | * ===================== | |
6aa20a22 | 2800 | * |
1da177e4 LT |
2801 | * Overview: |
2802 | * Resets adapter | |
6aa20a22 | 2803 | * |
1da177e4 LT |
2804 | * Returns: |
2805 | * None | |
6aa20a22 | 2806 | * |
1da177e4 LT |
2807 | * Arguments: |
2808 | * bp - pointer to board information | |
2809 | * type - type of reset to perform | |
2810 | * | |
2811 | * Functional Description: | |
2812 | * Issue soft reset to adapter by writing to PDQ Port Reset | |
2813 | * register. Use incoming reset type to tell adapter what | |
2814 | * kind of reset operation to perform. | |
2815 | * | |
2816 | * Return Codes: | |
2817 | * None | |
2818 | * | |
2819 | * Assumptions: | |
2820 | * This routine merely issues a soft reset to the adapter. | |
2821 | * It is expected that after this routine returns, the caller | |
2822 | * will appropriately poll the Port Status register for the | |
2823 | * adapter to enter the proper state. | |
2824 | * | |
2825 | * Side Effects: | |
2826 | * Internal adapter registers are cleared. | |
2827 | */ | |
2828 | ||
2829 | static void dfx_hw_adap_reset( | |
2830 | DFX_board_t *bp, | |
2831 | PI_UINT32 type | |
2832 | ) | |
2833 | ||
2834 | { | |
2835 | /* Set Reset type and assert reset */ | |
2836 | ||
2837 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ | |
2838 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); | |
2839 | ||
2840 | /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ | |
2841 | ||
2842 | udelay(20); | |
2843 | ||
2844 | /* Deassert reset */ | |
2845 | ||
2846 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); | |
2847 | } | |
2848 | ||
6aa20a22 | 2849 | |
1da177e4 LT |
2850 | /* |
2851 | * ======================== | |
2852 | * = dfx_hw_adap_state_rd = | |
2853 | * ======================== | |
6aa20a22 | 2854 | * |
1da177e4 LT |
2855 | * Overview: |
2856 | * Returns current adapter state | |
6aa20a22 | 2857 | * |
1da177e4 LT |
2858 | * Returns: |
2859 | * Adapter state per PDQ Port Specification | |
6aa20a22 | 2860 | * |
1da177e4 LT |
2861 | * Arguments: |
2862 | * bp - pointer to board information | |
2863 | * | |
2864 | * Functional Description: | |
2865 | * Reads PDQ Port Status register and returns adapter state. | |
2866 | * | |
2867 | * Return Codes: | |
2868 | * None | |
2869 | * | |
2870 | * Assumptions: | |
2871 | * None | |
2872 | * | |
2873 | * Side Effects: | |
2874 | * None | |
2875 | */ | |
2876 | ||
2877 | static int dfx_hw_adap_state_rd(DFX_board_t *bp) | |
2878 | { | |
2879 | PI_UINT32 port_status; /* Port Status register value */ | |
2880 | ||
2881 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | |
807540ba | 2882 | return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; |
1da177e4 LT |
2883 | } |
2884 | ||
6aa20a22 | 2885 | |
1da177e4 LT |
2886 | /* |
2887 | * ===================== | |
2888 | * = dfx_hw_dma_uninit = | |
2889 | * ===================== | |
6aa20a22 | 2890 | * |
1da177e4 LT |
2891 | * Overview: |
2892 | * Brings adapter to DMA_UNAVAILABLE state | |
6aa20a22 | 2893 | * |
1da177e4 LT |
2894 | * Returns: |
2895 | * Condition code | |
6aa20a22 | 2896 | * |
1da177e4 LT |
2897 | * Arguments: |
2898 | * bp - pointer to board information | |
2899 | * type - type of reset to perform | |
2900 | * | |
2901 | * Functional Description: | |
2902 | * Bring adapter to DMA_UNAVAILABLE state by performing the following: | |
2903 | * 1. Set reset type bit in Port Data A Register then reset adapter. | |
2904 | * 2. Check that adapter is in DMA_UNAVAILABLE state. | |
2905 | * | |
2906 | * Return Codes: | |
2907 | * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state | |
2908 | * DFX_K_HW_TIMEOUT - adapter did not reset properly | |
2909 | * | |
2910 | * Assumptions: | |
2911 | * None | |
2912 | * | |
2913 | * Side Effects: | |
2914 | * Internal adapter registers are cleared. | |
2915 | */ | |
2916 | ||
2917 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) | |
2918 | { | |
2919 | int timeout_cnt; /* used in for loops */ | |
2920 | ||
2921 | /* Set reset type bit and reset adapter */ | |
2922 | ||
2923 | dfx_hw_adap_reset(bp, type); | |
2924 | ||
2925 | /* Now wait for adapter to enter DMA_UNAVAILABLE state */ | |
2926 | ||
2927 | for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) | |
2928 | { | |
2929 | if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) | |
2930 | break; | |
2931 | udelay(100); /* wait for 100 microseconds */ | |
2932 | } | |
6aa20a22 | 2933 | if (timeout_cnt == 0) |
807540ba ED |
2934 | return DFX_K_HW_TIMEOUT; |
2935 | return DFX_K_SUCCESS; | |
1da177e4 | 2936 | } |
6aa20a22 | 2937 | |
1da177e4 LT |
2938 | /* |
2939 | * Align an sk_buff to a boundary power of 2 | |
2940 | * | |
2941 | */ | |
1b037474 | 2942 | #ifdef DYNAMIC_BUFFERS |
1da177e4 LT |
2943 | static void my_skb_align(struct sk_buff *skb, int n) |
2944 | { | |
2945 | unsigned long x = (unsigned long)skb->data; | |
2946 | unsigned long v; | |
6aa20a22 | 2947 | |
1da177e4 | 2948 | v = ALIGN(x, n); /* Where we want to be */ |
6aa20a22 | 2949 | |
1da177e4 LT |
2950 | skb_reserve(skb, v - x); |
2951 | } | |
1b037474 | 2952 | #endif |
6aa20a22 | 2953 | |
1da177e4 LT |
2954 | /* |
2955 | * ================ | |
2956 | * = dfx_rcv_init = | |
2957 | * ================ | |
6aa20a22 | 2958 | * |
1da177e4 LT |
2959 | * Overview: |
2960 | * Produces buffers to adapter LLC Host receive descriptor block | |
6aa20a22 | 2961 | * |
1da177e4 LT |
2962 | * Returns: |
2963 | * None | |
6aa20a22 | 2964 | * |
1da177e4 LT |
2965 | * Arguments: |
2966 | * bp - pointer to board information | |
2967 | * get_buffers - non-zero if buffers to be allocated | |
2968 | * | |
2969 | * Functional Description: | |
2970 | * This routine can be called during dfx_adap_init() or during an adapter | |
2971 | * reset. It initializes the descriptor block and produces all allocated | |
2972 | * LLC Host queue receive buffers. | |
2973 | * | |
2974 | * Return Codes: | |
2975 | * Return 0 on success or -ENOMEM if buffer allocation failed (when using | |
2976 | * dynamic buffer allocation). If the buffer allocation failed, the | |
2977 | * already allocated buffers will not be released and the caller should do | |
2978 | * this. | |
2979 | * | |
2980 | * Assumptions: | |
2981 | * The PDQ has been reset and the adapter and driver maintained Type 2 | |
2982 | * register indices are cleared. | |
2983 | * | |
2984 | * Side Effects: | |
2985 | * Receive buffers are posted to the adapter LLC queue and the adapter | |
2986 | * is notified. | |
2987 | */ | |
2988 | ||
2989 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) | |
2990 | { | |
2991 | int i, j; /* used in for loop */ | |
2992 | ||
2993 | /* | |
2994 | * Since each receive buffer is a single fragment of same length, initialize | |
2995 | * first longword in each receive descriptor for entire LLC Host descriptor | |
2996 | * block. Also initialize second longword in each receive descriptor with | |
2997 | * physical address of receive buffer. We'll always allocate receive | |
2998 | * buffers in powers of 2 so that we can easily fill the 256 entry descriptor | |
2999 | * block and produce new receive buffers by simply updating the receive | |
3000 | * producer index. | |
3001 | * | |
3002 | * Assumptions: | |
3003 | * To support all shipping versions of PDQ, the receive buffer size | |
3004 | * must be mod 128 in length and the physical address must be 128 byte | |
3005 | * aligned. In other words, bits 0-6 of the length and address must | |
3006 | * be zero for the following descriptor field entries to be correct on | |
3007 | * all PDQ-based boards. We guaranteed both requirements during | |
3008 | * driver initialization when we allocated memory for the receive buffers. | |
3009 | */ | |
3010 | ||
3011 | if (get_buffers) { | |
3012 | #ifdef DYNAMIC_BUFFERS | |
3013 | for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) | |
3014 | for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | |
3015 | { | |
b37cccf0 MR |
3016 | struct sk_buff *newskb; |
3017 | dma_addr_t dma_addr; | |
3018 | ||
3019 | newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, | |
3020 | GFP_NOIO); | |
1da177e4 LT |
3021 | if (!newskb) |
3022 | return -ENOMEM; | |
1da177e4 LT |
3023 | /* |
3024 | * align to 128 bytes for compatibility with | |
3025 | * the old EISA boards. | |
3026 | */ | |
6aa20a22 | 3027 | |
1da177e4 | 3028 | my_skb_align(newskb, 128); |
b37cccf0 MR |
3029 | dma_addr = dma_map_single(bp->bus_dev, |
3030 | newskb->data, | |
3031 | PI_RCV_DATA_K_SIZE_MAX, | |
3032 | DMA_FROM_DEVICE); | |
3033 | if (dma_mapping_error(bp->bus_dev, dma_addr)) { | |
3034 | dev_kfree_skb(newskb); | |
3035 | return -ENOMEM; | |
3036 | } | |
3037 | bp->descr_block_virt->rcv_data[i + j].long_0 = | |
3038 | (u32)(PI_RCV_DESCR_M_SOP | | |
3039 | ((PI_RCV_DATA_K_SIZE_MAX / | |
3040 | PI_ALIGN_K_RCV_DATA_BUFF) << | |
3041 | PI_RCV_DESCR_V_SEG_LEN)); | |
1da177e4 | 3042 | bp->descr_block_virt->rcv_data[i + j].long_1 = |
b37cccf0 MR |
3043 | (u32)dma_addr; |
3044 | ||
1da177e4 LT |
3045 | /* |
3046 | * p_rcv_buff_va is only used inside the | |
3047 | * kernel so we put the skb pointer here. | |
3048 | */ | |
3049 | bp->p_rcv_buff_va[i+j] = (char *) newskb; | |
3050 | } | |
3051 | #else | |
3052 | for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) | |
3053 | for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | |
3054 | { | |
3055 | bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | |
3056 | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | |
3057 | bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); | |
c2fd03a0 | 3058 | bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); |
1da177e4 LT |
3059 | } |
3060 | #endif | |
3061 | } | |
3062 | ||
3063 | /* Update receive producer and Type 2 register */ | |
3064 | ||
3065 | bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; | |
3066 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | |
3067 | return 0; | |
3068 | } | |
3069 | ||
6aa20a22 | 3070 | |
1da177e4 LT |
3071 | /* |
3072 | * ========================= | |
3073 | * = dfx_rcv_queue_process = | |
3074 | * ========================= | |
6aa20a22 | 3075 | * |
1da177e4 LT |
3076 | * Overview: |
3077 | * Process received LLC frames. | |
6aa20a22 | 3078 | * |
1da177e4 LT |
3079 | * Returns: |
3080 | * None | |
6aa20a22 | 3081 | * |
1da177e4 LT |
3082 | * Arguments: |
3083 | * bp - pointer to board information | |
3084 | * | |
3085 | * Functional Description: | |
3086 | * Received LLC frames are processed until there are no more consumed frames. | |
3087 | * Once all frames are processed, the receive buffers are returned to the | |
3088 | * adapter. Note that this algorithm fixes the length of time that can be spent | |
3089 | * in this routine, because there are a fixed number of receive buffers to | |
3090 | * process and buffers are not produced until this routine exits and returns | |
3091 | * to the ISR. | |
3092 | * | |
3093 | * Return Codes: | |
3094 | * None | |
3095 | * | |
3096 | * Assumptions: | |
3097 | * None | |
3098 | * | |
3099 | * Side Effects: | |
3100 | * None | |
3101 | */ | |
3102 | ||
3103 | static void dfx_rcv_queue_process( | |
3104 | DFX_board_t *bp | |
3105 | ) | |
3106 | ||
3107 | { | |
3108 | PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ | |
3109 | char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ | |
3110 | u32 descr, pkt_len; /* FMC descriptor field and packet length */ | |
b37cccf0 | 3111 | struct sk_buff *skb = NULL; /* pointer to a sk_buff to hold incoming packet data */ |
1da177e4 LT |
3112 | |
3113 | /* Service all consumed LLC receive frames */ | |
3114 | ||
3115 | p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); | |
3116 | while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) | |
3117 | { | |
3118 | /* Process any errors */ | |
8848761f | 3119 | dma_addr_t dma_addr; |
1da177e4 LT |
3120 | int entry; |
3121 | ||
3122 | entry = bp->rcv_xmt_reg.index.rcv_comp; | |
3123 | #ifdef DYNAMIC_BUFFERS | |
3124 | p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); | |
3125 | #else | |
c2fd03a0 | 3126 | p_buff = bp->p_rcv_buff_va[entry]; |
1da177e4 | 3127 | #endif |
8848761f MR |
3128 | dma_addr = bp->descr_block_virt->rcv_data[entry].long_1; |
3129 | dma_sync_single_for_cpu(bp->bus_dev, | |
3130 | dma_addr + RCV_BUFF_K_DESCR, | |
3131 | sizeof(u32), | |
3132 | DMA_FROM_DEVICE); | |
1da177e4 LT |
3133 | memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); |
3134 | ||
3135 | if (descr & PI_FMC_DESCR_M_RCC_FLUSH) | |
3136 | { | |
3137 | if (descr & PI_FMC_DESCR_M_RCC_CRC) | |
3138 | bp->rcv_crc_errors++; | |
3139 | else | |
3140 | bp->rcv_frame_status_errors++; | |
3141 | } | |
3142 | else | |
3143 | { | |
3144 | int rx_in_place = 0; | |
3145 | ||
3146 | /* The frame was received without errors - verify packet length */ | |
3147 | ||
3148 | pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); | |
3149 | pkt_len -= 4; /* subtract 4 byte CRC */ | |
3150 | if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) | |
3151 | bp->rcv_length_errors++; | |
3152 | else{ | |
3153 | #ifdef DYNAMIC_BUFFERS | |
b37cccf0 MR |
3154 | struct sk_buff *newskb = NULL; |
3155 | ||
1da177e4 | 3156 | if (pkt_len > SKBUFF_RX_COPYBREAK) { |
b37cccf0 | 3157 | dma_addr_t new_dma_addr; |
1da177e4 | 3158 | |
a630be70 MR |
3159 | newskb = netdev_alloc_skb(bp->dev, |
3160 | NEW_SKB_SIZE); | |
1da177e4 | 3161 | if (newskb){ |
b37cccf0 MR |
3162 | my_skb_align(newskb, 128); |
3163 | new_dma_addr = dma_map_single( | |
3164 | bp->bus_dev, | |
3165 | newskb->data, | |
3166 | PI_RCV_DATA_K_SIZE_MAX, | |
3167 | DMA_FROM_DEVICE); | |
3168 | if (dma_mapping_error( | |
3169 | bp->bus_dev, | |
3170 | new_dma_addr)) { | |
3171 | dev_kfree_skb(newskb); | |
3172 | newskb = NULL; | |
3173 | } | |
3174 | } | |
3175 | if (newskb) { | |
1da177e4 | 3176 | rx_in_place = 1; |
6aa20a22 | 3177 | |
1da177e4 | 3178 | skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; |
e89a2cfb | 3179 | dma_unmap_single(bp->bus_dev, |
8848761f | 3180 | dma_addr, |
d68ab591 | 3181 | PI_RCV_DATA_K_SIZE_MAX, |
e89a2cfb | 3182 | DMA_FROM_DEVICE); |
1da177e4 LT |
3183 | skb_reserve(skb, RCV_BUFF_K_PADDING); |
3184 | bp->p_rcv_buff_va[entry] = (char *)newskb; | |
b37cccf0 MR |
3185 | bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr; |
3186 | } | |
3187 | } | |
3188 | if (!newskb) | |
1da177e4 | 3189 | #endif |
a630be70 MR |
3190 | /* Alloc new buffer to pass up, |
3191 | * add room for PRH. */ | |
3192 | skb = netdev_alloc_skb(bp->dev, | |
3193 | pkt_len + 3); | |
1da177e4 LT |
3194 | if (skb == NULL) |
3195 | { | |
3196 | printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); | |
3197 | bp->rcv_discards++; | |
3198 | break; | |
3199 | } | |
3200 | else { | |
f46d53d0 | 3201 | if (!rx_in_place) { |
1da177e4 | 3202 | /* Receive buffer allocated, pass receive packet up */ |
8848761f MR |
3203 | dma_sync_single_for_cpu( |
3204 | bp->bus_dev, | |
3205 | dma_addr + | |
3206 | RCV_BUFF_K_PADDING, | |
3207 | pkt_len + 3, | |
3208 | DMA_FROM_DEVICE); | |
1da177e4 | 3209 | |
27d7ff46 ACM |
3210 | skb_copy_to_linear_data(skb, |
3211 | p_buff + RCV_BUFF_K_PADDING, | |
3212 | pkt_len + 3); | |
1da177e4 | 3213 | } |
6aa20a22 | 3214 | |
1da177e4 LT |
3215 | skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ |
3216 | skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ | |
1da177e4 LT |
3217 | skb->protocol = fddi_type_trans(skb, bp->dev); |
3218 | bp->rcv_total_bytes += skb->len; | |
3219 | netif_rx(skb); | |
3220 | ||
3221 | /* Update the rcv counters */ | |
1da177e4 LT |
3222 | bp->rcv_total_frames++; |
3223 | if (*(p_buff + RCV_BUFF_K_DA) & 0x01) | |
3224 | bp->rcv_multicast_frames++; | |
3225 | } | |
3226 | } | |
3227 | } | |
3228 | ||
3229 | /* | |
3230 | * Advance the producer (for recycling) and advance the completion | |
3231 | * (for servicing received frames). Note that it is okay to | |
3232 | * advance the producer without checking that it passes the | |
3233 | * completion index because they are both advanced at the same | |
3234 | * rate. | |
3235 | */ | |
3236 | ||
3237 | bp->rcv_xmt_reg.index.rcv_prod += 1; | |
3238 | bp->rcv_xmt_reg.index.rcv_comp += 1; | |
3239 | } | |
3240 | } | |
3241 | ||
6aa20a22 | 3242 | |
1da177e4 LT |
3243 | /* |
3244 | * ===================== | |
3245 | * = dfx_xmt_queue_pkt = | |
3246 | * ===================== | |
6aa20a22 | 3247 | * |
1da177e4 LT |
3248 | * Overview: |
3249 | * Queues packets for transmission | |
6aa20a22 | 3250 | * |
1da177e4 LT |
3251 | * Returns: |
3252 | * Condition code | |
6aa20a22 | 3253 | * |
1da177e4 LT |
3254 | * Arguments: |
3255 | * skb - pointer to sk_buff to queue for transmission | |
3256 | * dev - pointer to device information | |
3257 | * | |
3258 | * Functional Description: | |
3259 | * Here we assume that an incoming skb transmit request | |
3260 | * is contained in a single physically contiguous buffer | |
3261 | * in which the virtual address of the start of packet | |
3262 | * (skb->data) can be converted to a physical address | |
3263 | * by using pci_map_single(). | |
3264 | * | |
3265 | * Since the adapter architecture requires a three byte | |
3266 | * packet request header to prepend the start of packet, | |
3267 | * we'll write the three byte field immediately prior to | |
3268 | * the FC byte. This assumption is valid because we've | |
3269 | * ensured that dev->hard_header_len includes three pad | |
3270 | * bytes. By posting a single fragment to the adapter, | |
3271 | * we'll reduce the number of descriptor fetches and | |
3272 | * bus traffic needed to send the request. | |
3273 | * | |
3274 | * Also, we can't free the skb until after it's been DMA'd | |
3275 | * out by the adapter, so we'll queue it in the driver and | |
3276 | * return it in dfx_xmt_done. | |
3277 | * | |
3278 | * Return Codes: | |
3279 | * 0 - driver queued packet, link is unavailable, or skbuff was bad | |
3280 | * 1 - caller should requeue the sk_buff for later transmission | |
3281 | * | |
3282 | * Assumptions: | |
3283 | * First and foremost, we assume the incoming skb pointer | |
3284 | * is NOT NULL and is pointing to a valid sk_buff structure. | |
3285 | * | |
3286 | * The outgoing packet is complete, starting with the | |
3287 | * frame control byte including the last byte of data, | |
3288 | * but NOT including the 4 byte CRC. We'll let the | |
3289 | * adapter hardware generate and append the CRC. | |
3290 | * | |
3291 | * The entire packet is stored in one physically | |
3292 | * contiguous buffer which is not cached and whose | |
3293 | * 32-bit physical address can be determined. | |
3294 | * | |
3295 | * It's vital that this routine is NOT reentered for the | |
3296 | * same board and that the OS is not in another section of | |
3297 | * code (eg. dfx_int_common) for the same board on a | |
3298 | * different thread. | |
3299 | * | |
3300 | * Side Effects: | |
3301 | * None | |
3302 | */ | |
3303 | ||
61357325 SH |
3304 | static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, |
3305 | struct net_device *dev) | |
1da177e4 | 3306 | { |
e89a2cfb | 3307 | DFX_board_t *bp = netdev_priv(dev); |
1da177e4 LT |
3308 | u8 prod; /* local transmit producer index */ |
3309 | PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ | |
3310 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ | |
b37cccf0 | 3311 | dma_addr_t dma_addr; |
1da177e4 LT |
3312 | unsigned long flags; |
3313 | ||
3314 | netif_stop_queue(dev); | |
6aa20a22 | 3315 | |
1da177e4 LT |
3316 | /* |
3317 | * Verify that incoming transmit request is OK | |
3318 | * | |
3319 | * Note: The packet size check is consistent with other | |
3320 | * Linux device drivers, although the correct packet | |
3321 | * size should be verified before calling the | |
3322 | * transmit routine. | |
3323 | */ | |
3324 | ||
3325 | if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) | |
3326 | { | |
6aa20a22 | 3327 | printk("%s: Invalid packet length - %u bytes\n", |
1da177e4 LT |
3328 | dev->name, skb->len); |
3329 | bp->xmt_length_errors++; /* bump error counter */ | |
3330 | netif_wake_queue(dev); | |
3331 | dev_kfree_skb(skb); | |
ec634fe3 | 3332 | return NETDEV_TX_OK; /* return "success" */ |
1da177e4 LT |
3333 | } |
3334 | /* | |
3335 | * See if adapter link is available, if not, free buffer | |
3336 | * | |
3337 | * Note: If the link isn't available, free buffer and return 0 | |
3338 | * rather than tell the upper layer to requeue the packet. | |
3339 | * The methodology here is that by the time the link | |
3340 | * becomes available, the packet to be sent will be | |
3341 | * fairly stale. By simply dropping the packet, the | |
3342 | * higher layer protocols will eventually time out | |
3343 | * waiting for response packets which it won't receive. | |
3344 | */ | |
3345 | ||
3346 | if (bp->link_available == PI_K_FALSE) | |
3347 | { | |
3348 | if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ | |
3349 | bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ | |
3350 | else | |
3351 | { | |
3352 | bp->xmt_discards++; /* bump error counter */ | |
3353 | dev_kfree_skb(skb); /* free sk_buff now */ | |
3354 | netif_wake_queue(dev); | |
ec634fe3 | 3355 | return NETDEV_TX_OK; /* return "success" */ |
1da177e4 LT |
3356 | } |
3357 | } | |
3358 | ||
b37cccf0 MR |
3359 | /* Write the three PRH bytes immediately before the FC byte */ |
3360 | ||
3361 | skb_push(skb, 3); | |
3362 | skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ | |
3363 | skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ | |
3364 | skb->data[2] = DFX_PRH2_BYTE; /* specification */ | |
3365 | ||
3366 | dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len, | |
3367 | DMA_TO_DEVICE); | |
3368 | if (dma_mapping_error(bp->bus_dev, dma_addr)) { | |
3369 | skb_pull(skb, 3); | |
3370 | return NETDEV_TX_BUSY; | |
3371 | } | |
3372 | ||
1da177e4 | 3373 | spin_lock_irqsave(&bp->lock, flags); |
6aa20a22 | 3374 | |
1da177e4 LT |
3375 | /* Get the current producer and the next free xmt data descriptor */ |
3376 | ||
3377 | prod = bp->rcv_xmt_reg.index.xmt_prod; | |
3378 | p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); | |
3379 | ||
3380 | /* | |
3381 | * Get pointer to auxiliary queue entry to contain information | |
3382 | * for this packet. | |
3383 | * | |
3384 | * Note: The current xmt producer index will become the | |
3385 | * current xmt completion index when we complete this | |
3386 | * packet later on. So, we'll get the pointer to the | |
3387 | * next auxiliary queue entry now before we bump the | |
3388 | * producer index. | |
3389 | */ | |
3390 | ||
3391 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ | |
3392 | ||
1da177e4 LT |
3393 | /* |
3394 | * Write the descriptor with buffer info and bump producer | |
3395 | * | |
3396 | * Note: Since we need to start DMA from the packet request | |
3397 | * header, we'll add 3 bytes to the DMA buffer length, | |
3398 | * and we'll determine the physical address of the | |
3399 | * buffer from the PRH, not skb->data. | |
3400 | * | |
3401 | * Assumptions: | |
3402 | * 1. Packet starts with the frame control (FC) byte | |
3403 | * at skb->data. | |
3404 | * 2. The 4-byte CRC is not appended to the buffer or | |
3405 | * included in the length. | |
3406 | * 3. Packet length (skb->len) is from FC to end of | |
3407 | * data, inclusive. | |
3408 | * 4. The packet length does not exceed the maximum | |
3409 | * FDDI LLC frame length of 4491 bytes. | |
3410 | * 5. The entire packet is contained in a physically | |
3411 | * contiguous, non-cached, locked memory space | |
3412 | * comprised of a single buffer pointed to by | |
3413 | * skb->data. | |
3414 | * 6. The physical address of the start of packet | |
3415 | * can be determined from the virtual address | |
3416 | * by using pci_map_single() and is only 32-bits | |
3417 | * wide. | |
3418 | */ | |
3419 | ||
3420 | p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); | |
b37cccf0 | 3421 | p_xmt_descr->long_1 = (u32)dma_addr; |
1da177e4 LT |
3422 | |
3423 | /* | |
3424 | * Verify that descriptor is actually available | |
3425 | * | |
3426 | * Note: If descriptor isn't available, return 1 which tells | |
3427 | * the upper layer to requeue the packet for later | |
3428 | * transmission. | |
3429 | * | |
3430 | * We need to ensure that the producer never reaches the | |
3431 | * completion, except to indicate that the queue is empty. | |
3432 | */ | |
3433 | ||
3434 | if (prod == bp->rcv_xmt_reg.index.xmt_comp) | |
3435 | { | |
3436 | skb_pull(skb,3); | |
3437 | spin_unlock_irqrestore(&bp->lock, flags); | |
5b548140 | 3438 | return NETDEV_TX_BUSY; /* requeue packet for later */ |
1da177e4 LT |
3439 | } |
3440 | ||
3441 | /* | |
3442 | * Save info for this packet for xmt done indication routine | |
3443 | * | |
3444 | * Normally, we'd save the producer index in the p_xmt_drv_descr | |
3445 | * structure so that we'd have it handy when we complete this | |
3446 | * packet later (in dfx_xmt_done). However, since the current | |
3447 | * transmit architecture guarantees a single fragment for the | |
3448 | * entire packet, we can simply bump the completion index by | |
3449 | * one (1) for each completed packet. | |
3450 | * | |
3451 | * Note: If this assumption changes and we're presented with | |
3452 | * an inconsistent number of transmit fragments for packet | |
3453 | * data, we'll need to modify this code to save the current | |
3454 | * transmit producer index. | |
3455 | */ | |
3456 | ||
3457 | p_xmt_drv_descr->p_skb = skb; | |
3458 | ||
3459 | /* Update Type 2 register */ | |
3460 | ||
3461 | bp->rcv_xmt_reg.index.xmt_prod = prod; | |
3462 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | |
3463 | spin_unlock_irqrestore(&bp->lock, flags); | |
3464 | netif_wake_queue(dev); | |
ec634fe3 | 3465 | return NETDEV_TX_OK; /* packet queued to adapter */ |
1da177e4 LT |
3466 | } |
3467 | ||
6aa20a22 | 3468 | |
1da177e4 LT |
3469 | /* |
3470 | * ================ | |
3471 | * = dfx_xmt_done = | |
3472 | * ================ | |
6aa20a22 | 3473 | * |
1da177e4 LT |
3474 | * Overview: |
3475 | * Processes all frames that have been transmitted. | |
6aa20a22 | 3476 | * |
1da177e4 LT |
3477 | * Returns: |
3478 | * None | |
6aa20a22 | 3479 | * |
1da177e4 LT |
3480 | * Arguments: |
3481 | * bp - pointer to board information | |
3482 | * | |
3483 | * Functional Description: | |
3484 | * For all consumed transmit descriptors that have not | |
3485 | * yet been completed, we'll free the skb we were holding | |
3486 | * onto using dev_kfree_skb and bump the appropriate | |
3487 | * counters. | |
3488 | * | |
3489 | * Return Codes: | |
3490 | * None | |
3491 | * | |
3492 | * Assumptions: | |
3493 | * The Type 2 register is not updated in this routine. It is | |
3494 | * assumed that it will be updated in the ISR when dfx_xmt_done | |
3495 | * returns. | |
3496 | * | |
3497 | * Side Effects: | |
3498 | * None | |
3499 | */ | |
3500 | ||
3501 | static int dfx_xmt_done(DFX_board_t *bp) | |
3502 | { | |
3503 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ | |
3504 | PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ | |
3505 | u8 comp; /* local transmit completion index */ | |
3506 | int freed = 0; /* buffers freed */ | |
3507 | ||
3508 | /* Service all consumed transmit frames */ | |
3509 | ||
3510 | p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); | |
3511 | while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) | |
3512 | { | |
3513 | /* Get pointer to the transmit driver descriptor block information */ | |
3514 | ||
3515 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); | |
3516 | ||
3517 | /* Increment transmit counters */ | |
3518 | ||
3519 | bp->xmt_total_frames++; | |
3520 | bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; | |
3521 | ||
3522 | /* Return skb to operating system */ | |
3523 | comp = bp->rcv_xmt_reg.index.xmt_comp; | |
e89a2cfb | 3524 | dma_unmap_single(bp->bus_dev, |
1da177e4 LT |
3525 | bp->descr_block_virt->xmt_data[comp].long_1, |
3526 | p_xmt_drv_descr->p_skb->len, | |
e89a2cfb | 3527 | DMA_TO_DEVICE); |
3703a395 | 3528 | dev_consume_skb_irq(p_xmt_drv_descr->p_skb); |
1da177e4 LT |
3529 | |
3530 | /* | |
3531 | * Move to start of next packet by updating completion index | |
3532 | * | |
3533 | * Here we assume that a transmit packet request is always | |
3534 | * serviced by posting one fragment. We can therefore | |
3535 | * simplify the completion code by incrementing the | |
3536 | * completion index by one. This code will need to be | |
3537 | * modified if this assumption changes. See comments | |
3538 | * in dfx_xmt_queue_pkt for more details. | |
3539 | */ | |
3540 | ||
3541 | bp->rcv_xmt_reg.index.xmt_comp += 1; | |
3542 | freed++; | |
3543 | } | |
3544 | return freed; | |
3545 | } | |
3546 | ||
6aa20a22 | 3547 | |
1da177e4 LT |
3548 | /* |
3549 | * ================= | |
3550 | * = dfx_rcv_flush = | |
3551 | * ================= | |
6aa20a22 | 3552 | * |
1da177e4 LT |
3553 | * Overview: |
3554 | * Remove all skb's in the receive ring. | |
6aa20a22 | 3555 | * |
1da177e4 LT |
3556 | * Returns: |
3557 | * None | |
6aa20a22 | 3558 | * |
1da177e4 LT |
3559 | * Arguments: |
3560 | * bp - pointer to board information | |
3561 | * | |
3562 | * Functional Description: | |
3563 | * Free's all the dynamically allocated skb's that are | |
3564 | * currently attached to the device receive ring. This | |
3565 | * function is typically only used when the device is | |
3566 | * initialized or reinitialized. | |
3567 | * | |
3568 | * Return Codes: | |
3569 | * None | |
3570 | * | |
3571 | * Side Effects: | |
3572 | * None | |
3573 | */ | |
3574 | #ifdef DYNAMIC_BUFFERS | |
3575 | static void dfx_rcv_flush( DFX_board_t *bp ) | |
3576 | { | |
3577 | int i, j; | |
3578 | ||
3579 | for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) | |
3580 | for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | |
3581 | { | |
3582 | struct sk_buff *skb; | |
3583 | skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; | |
6329fe5c MR |
3584 | if (skb) { |
3585 | dma_unmap_single(bp->bus_dev, | |
3586 | bp->descr_block_virt->rcv_data[i+j].long_1, | |
3587 | PI_RCV_DATA_K_SIZE_MAX, | |
3588 | DMA_FROM_DEVICE); | |
1da177e4 | 3589 | dev_kfree_skb(skb); |
6329fe5c | 3590 | } |
1da177e4 LT |
3591 | bp->p_rcv_buff_va[i+j] = NULL; |
3592 | } | |
3593 | ||
3594 | } | |
1da177e4 LT |
3595 | #endif /* DYNAMIC_BUFFERS */ |
3596 | ||
3597 | /* | |
3598 | * ================= | |
3599 | * = dfx_xmt_flush = | |
3600 | * ================= | |
6aa20a22 | 3601 | * |
1da177e4 LT |
3602 | * Overview: |
3603 | * Processes all frames whether they've been transmitted | |
3604 | * or not. | |
6aa20a22 | 3605 | * |
1da177e4 LT |
3606 | * Returns: |
3607 | * None | |
6aa20a22 | 3608 | * |
1da177e4 LT |
3609 | * Arguments: |
3610 | * bp - pointer to board information | |
3611 | * | |
3612 | * Functional Description: | |
3613 | * For all produced transmit descriptors that have not | |
3614 | * yet been completed, we'll free the skb we were holding | |
3615 | * onto using dev_kfree_skb and bump the appropriate | |
3616 | * counters. Of course, it's possible that some of | |
3617 | * these transmit requests actually did go out, but we | |
3618 | * won't make that distinction here. Finally, we'll | |
3619 | * update the consumer index to match the producer. | |
3620 | * | |
3621 | * Return Codes: | |
3622 | * None | |
3623 | * | |
3624 | * Assumptions: | |
3625 | * This routine does NOT update the Type 2 register. It | |
3626 | * is assumed that this routine is being called during a | |
3627 | * transmit flush interrupt, or a shutdown or close routine. | |
3628 | * | |
3629 | * Side Effects: | |
3630 | * None | |
3631 | */ | |
3632 | ||
3633 | static void dfx_xmt_flush( DFX_board_t *bp ) | |
3634 | { | |
3635 | u32 prod_cons; /* rcv/xmt consumer block longword */ | |
3636 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ | |
3637 | u8 comp; /* local transmit completion index */ | |
3638 | ||
3639 | /* Flush all outstanding transmit frames */ | |
3640 | ||
3641 | while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) | |
3642 | { | |
3643 | /* Get pointer to the transmit driver descriptor block information */ | |
3644 | ||
3645 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); | |
3646 | ||
3647 | /* Return skb to operating system */ | |
3648 | comp = bp->rcv_xmt_reg.index.xmt_comp; | |
e89a2cfb | 3649 | dma_unmap_single(bp->bus_dev, |
1da177e4 LT |
3650 | bp->descr_block_virt->xmt_data[comp].long_1, |
3651 | p_xmt_drv_descr->p_skb->len, | |
e89a2cfb | 3652 | DMA_TO_DEVICE); |
1da177e4 LT |
3653 | dev_kfree_skb(p_xmt_drv_descr->p_skb); |
3654 | ||
3655 | /* Increment transmit error counter */ | |
3656 | ||
3657 | bp->xmt_discards++; | |
3658 | ||
3659 | /* | |
3660 | * Move to start of next packet by updating completion index | |
3661 | * | |
3662 | * Here we assume that a transmit packet request is always | |
3663 | * serviced by posting one fragment. We can therefore | |
3664 | * simplify the completion code by incrementing the | |
3665 | * completion index by one. This code will need to be | |
3666 | * modified if this assumption changes. See comments | |
3667 | * in dfx_xmt_queue_pkt for more details. | |
3668 | */ | |
3669 | ||
3670 | bp->rcv_xmt_reg.index.xmt_comp += 1; | |
3671 | } | |
3672 | ||
3673 | /* Update the transmit consumer index in the consumer block */ | |
3674 | ||
3675 | prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); | |
3676 | prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); | |
3677 | bp->cons_block_virt->xmt_rcv_data = prod_cons; | |
3678 | } | |
3679 | ||
e89a2cfb MR |
3680 | /* |
3681 | * ================== | |
3682 | * = dfx_unregister = | |
3683 | * ================== | |
3684 | * | |
3685 | * Overview: | |
3686 | * Shuts down an FDDI controller | |
3687 | * | |
3688 | * Returns: | |
3689 | * Condition code | |
3690 | * | |
3691 | * Arguments: | |
3692 | * bdev - pointer to device information | |
3693 | * | |
3694 | * Functional Description: | |
3695 | * | |
3696 | * Return Codes: | |
3697 | * None | |
3698 | * | |
3699 | * Assumptions: | |
3700 | * It compiles so it should work :-( (PCI cards do :-) | |
3701 | * | |
3702 | * Side Effects: | |
3703 | * Device structures for FDDI adapters (fddi0, fddi1, etc) are | |
3704 | * freed. | |
3705 | */ | |
c354dfc3 | 3706 | static void dfx_unregister(struct device *bdev) |
1da177e4 | 3707 | { |
e89a2cfb MR |
3708 | struct net_device *dev = dev_get_drvdata(bdev); |
3709 | DFX_board_t *bp = netdev_priv(dev); | |
5349d937 | 3710 | int dfx_bus_pci = dev_is_pci(bdev); |
e89a2cfb MR |
3711 | int dfx_bus_tc = DFX_BUS_TC(bdev); |
3712 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | |
62f2aaab SM |
3713 | resource_size_t bar_start[3] = {0}; /* pointers to ports */ |
3714 | resource_size_t bar_len[3] = {0}; /* resource lengths */ | |
1da177e4 LT |
3715 | int alloc_size; /* total buffer size used */ |
3716 | ||
3717 | unregister_netdev(dev); | |
1da177e4 LT |
3718 | |
3719 | alloc_size = sizeof(PI_DESCR_BLOCK) + | |
3720 | PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + | |
3721 | #ifndef DYNAMIC_BUFFERS | |
3722 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | |
3723 | #endif | |
3724 | sizeof(PI_CONSUMER_BLOCK) + | |
3725 | (PI_ALIGN_K_DESC_BLK - 1); | |
3726 | if (bp->kmalloced) | |
e89a2cfb MR |
3727 | dma_free_coherent(bdev, alloc_size, |
3728 | bp->kmalloced, bp->kmalloced_dma); | |
3729 | ||
3730 | dfx_bus_uninit(dev); | |
3731 | ||
4d0438e5 MR |
3732 | dfx_get_bars(bdev, bar_start, bar_len); |
3733 | if (bar_start[2] != 0) | |
3734 | release_region(bar_start[2], bar_len[2]); | |
3735 | if (bar_start[1] != 0) | |
3736 | release_region(bar_start[1], bar_len[1]); | |
e89a2cfb MR |
3737 | if (dfx_use_mmio) { |
3738 | iounmap(bp->base.mem); | |
4d0438e5 | 3739 | release_mem_region(bar_start[0], bar_len[0]); |
e89a2cfb | 3740 | } else |
4d0438e5 | 3741 | release_region(bar_start[0], bar_len[0]); |
e89a2cfb MR |
3742 | |
3743 | if (dfx_bus_pci) | |
3744 | pci_disable_device(to_pci_dev(bdev)); | |
3745 | ||
1da177e4 LT |
3746 | free_netdev(dev); |
3747 | } | |
3748 | ||
1da177e4 | 3749 | |
c354dfc3 BP |
3750 | static int __maybe_unused dfx_dev_register(struct device *); |
3751 | static int __maybe_unused dfx_dev_unregister(struct device *); | |
1da177e4 | 3752 | |
e89a2cfb | 3753 | #ifdef CONFIG_PCI |
1dd06ae8 | 3754 | static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *); |
c354dfc3 | 3755 | static void dfx_pci_unregister(struct pci_dev *); |
e89a2cfb | 3756 | |
9baa3c34 | 3757 | static const struct pci_device_id dfx_pci_table[] = { |
e89a2cfb MR |
3758 | { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, |
3759 | { } | |
1da177e4 | 3760 | }; |
e89a2cfb | 3761 | MODULE_DEVICE_TABLE(pci, dfx_pci_table); |
1da177e4 | 3762 | |
e89a2cfb | 3763 | static struct pci_driver dfx_pci_driver = { |
1da177e4 | 3764 | .name = "defxx", |
e89a2cfb MR |
3765 | .id_table = dfx_pci_table, |
3766 | .probe = dfx_pci_register, | |
c354dfc3 | 3767 | .remove = dfx_pci_unregister, |
1da177e4 LT |
3768 | }; |
3769 | ||
c354dfc3 | 3770 | static int dfx_pci_register(struct pci_dev *pdev, |
1dd06ae8 | 3771 | const struct pci_device_id *ent) |
e89a2cfb MR |
3772 | { |
3773 | return dfx_register(&pdev->dev); | |
3774 | } | |
1da177e4 | 3775 | |
c354dfc3 | 3776 | static void dfx_pci_unregister(struct pci_dev *pdev) |
1da177e4 | 3777 | { |
e89a2cfb MR |
3778 | dfx_unregister(&pdev->dev); |
3779 | } | |
3780 | #endif /* CONFIG_PCI */ | |
3781 | ||
3782 | #ifdef CONFIG_EISA | |
46d9ceaa | 3783 | static const struct eisa_device_id dfx_eisa_table[] = { |
e89a2cfb MR |
3784 | { "DEC3001", DEFEA_PROD_ID_1 }, |
3785 | { "DEC3002", DEFEA_PROD_ID_2 }, | |
3786 | { "DEC3003", DEFEA_PROD_ID_3 }, | |
3787 | { "DEC3004", DEFEA_PROD_ID_4 }, | |
3788 | { } | |
3789 | }; | |
3790 | MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); | |
3791 | ||
3792 | static struct eisa_driver dfx_eisa_driver = { | |
3793 | .id_table = dfx_eisa_table, | |
3794 | .driver = { | |
3795 | .name = "defxx", | |
3796 | .bus = &eisa_bus_type, | |
3797 | .probe = dfx_dev_register, | |
c354dfc3 | 3798 | .remove = dfx_dev_unregister, |
e89a2cfb MR |
3799 | }, |
3800 | }; | |
3801 | #endif /* CONFIG_EISA */ | |
3802 | ||
3803 | #ifdef CONFIG_TC | |
3804 | static struct tc_device_id const dfx_tc_table[] = { | |
3805 | { "DEC ", "PMAF-FA " }, | |
3806 | { "DEC ", "PMAF-FD " }, | |
3807 | { "DEC ", "PMAF-FS " }, | |
3808 | { "DEC ", "PMAF-FU " }, | |
3809 | { } | |
3810 | }; | |
3811 | MODULE_DEVICE_TABLE(tc, dfx_tc_table); | |
3812 | ||
3813 | static struct tc_driver dfx_tc_driver = { | |
3814 | .id_table = dfx_tc_table, | |
3815 | .driver = { | |
3816 | .name = "defxx", | |
3817 | .bus = &tc_bus_type, | |
3818 | .probe = dfx_dev_register, | |
c354dfc3 | 3819 | .remove = dfx_dev_unregister, |
e89a2cfb MR |
3820 | }, |
3821 | }; | |
3822 | #endif /* CONFIG_TC */ | |
1da177e4 | 3823 | |
c354dfc3 | 3824 | static int __maybe_unused dfx_dev_register(struct device *dev) |
e89a2cfb MR |
3825 | { |
3826 | int status; | |
1da177e4 | 3827 | |
e89a2cfb MR |
3828 | status = dfx_register(dev); |
3829 | if (!status) | |
3830 | get_device(dev); | |
3831 | return status; | |
1da177e4 LT |
3832 | } |
3833 | ||
c354dfc3 | 3834 | static int __maybe_unused dfx_dev_unregister(struct device *dev) |
1da177e4 | 3835 | { |
e89a2cfb MR |
3836 | put_device(dev); |
3837 | dfx_unregister(dev); | |
3838 | return 0; | |
3839 | } | |
6aa20a22 | 3840 | |
1da177e4 | 3841 | |
c354dfc3 | 3842 | static int dfx_init(void) |
e89a2cfb MR |
3843 | { |
3844 | int status; | |
3845 | ||
3846 | status = pci_register_driver(&dfx_pci_driver); | |
3847 | if (!status) | |
3848 | status = eisa_driver_register(&dfx_eisa_driver); | |
3849 | if (!status) | |
3850 | status = tc_register_driver(&dfx_tc_driver); | |
3851 | return status; | |
1da177e4 LT |
3852 | } |
3853 | ||
c354dfc3 | 3854 | static void dfx_cleanup(void) |
1da177e4 | 3855 | { |
e89a2cfb MR |
3856 | tc_unregister_driver(&dfx_tc_driver); |
3857 | eisa_driver_unregister(&dfx_eisa_driver); | |
3858 | pci_unregister_driver(&dfx_pci_driver); | |
6aa20a22 | 3859 | } |
1da177e4 LT |
3860 | |
3861 | module_init(dfx_init); | |
3862 | module_exit(dfx_cleanup); | |
3863 | MODULE_AUTHOR("Lawrence V. Stefani"); | |
e89a2cfb | 3864 | MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " |
1da177e4 LT |
3865 | DRV_VERSION " " DRV_RELDATE); |
3866 | MODULE_LICENSE("GPL"); |