]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/fec.c
rt2x00: Fix unbalanced mutex locking
[mirror_ubuntu-zesty-kernel.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
7dd6a2aa 11 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
17 *
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
20 *
562d2f8c
GU
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
23 *
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 25 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
26 */
27
1da177e4
LT
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/ptrace.h>
32#include <linux/errno.h>
33#include <linux/ioport.h>
34#include <linux/slab.h>
35#include <linux/interrupt.h>
36#include <linux/pci.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/spinlock.h>
43#include <linux/workqueue.h>
44#include <linux/bitops.h>
45
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48#include <asm/io.h>
49#include <asm/pgtable.h>
080853af 50#include <asm/cacheflush.h>
1da177e4 51
7dd6a2aa 52#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
562d2f8c 53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
6b265293 54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
55#include <asm/coldfire.h>
56#include <asm/mcfsim.h>
57#include "fec.h"
58#else
59#include <asm/8xx_immap.h>
60#include <asm/mpc8xx.h>
61#include "commproc.h"
62#endif
63
64#if defined(CONFIG_FEC2)
65#define FEC_MAX_PORTS 2
66#else
67#define FEC_MAX_PORTS 1
68#endif
69
c1d96156
SS
70#if defined(CONFIG_FADS) || defined(CONFIG_RPXCLASSIC) || defined(CONFIG_M5272)
71#define HAVE_mii_link_interrupt
72#endif
73
1da177e4
LT
74/*
75 * Define the fixed address of the FEC hardware.
76 */
77static unsigned int fec_hw[] = {
78#if defined(CONFIG_M5272)
79 (MCF_MBAR + 0x840),
80#elif defined(CONFIG_M527x)
81 (MCF_MBAR + 0x1000),
82 (MCF_MBAR + 0x1800),
7dd6a2aa 83#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
1da177e4 84 (MCF_MBAR + 0x1000),
562d2f8c
GU
85#elif defined(CONFIG_M520x)
86 (MCF_MBAR+0x30000),
6b265293
MW
87#elif defined(CONFIG_M532x)
88 (MCF_MBAR+0xfc030000),
1da177e4
LT
89#else
90 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
91#endif
92};
93
94static unsigned char fec_mac_default[] = {
95 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
96};
97
98/*
99 * Some hardware gets it MAC address out of local flash memory.
100 * if this is non-zero then assume it is the address to get MAC from.
101 */
102#if defined(CONFIG_NETtel)
103#define FEC_FLASHMAC 0xf0006006
104#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
105#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
106#elif defined(CONFIG_CANCam)
107#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
108#elif defined (CONFIG_M5272C3)
109#define FEC_FLASHMAC (0xffe04000 + 4)
110#elif defined(CONFIG_MOD5272)
111#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
112#else
113#define FEC_FLASHMAC 0
114#endif
115
1da177e4
LT
116/* Forward declarations of some structures to support different PHYs
117*/
118
119typedef struct {
120 uint mii_data;
121 void (*funct)(uint mii_reg, struct net_device *dev);
122} phy_cmd_t;
123
124typedef struct {
125 uint id;
126 char *name;
127
128 const phy_cmd_t *config;
129 const phy_cmd_t *startup;
130 const phy_cmd_t *ack_int;
131 const phy_cmd_t *shutdown;
132} phy_info_t;
133
134/* The number of Tx and Rx buffers. These are allocated from the page
135 * pool. The code may assume these are power of two, so it it best
136 * to keep them that size.
137 * We don't need to allocate pages for the transmitter. We just use
138 * the skbuffer directly.
139 */
140#define FEC_ENET_RX_PAGES 8
141#define FEC_ENET_RX_FRSIZE 2048
142#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
143#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
144#define FEC_ENET_TX_FRSIZE 2048
145#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
146#define TX_RING_SIZE 16 /* Must be power of two */
147#define TX_RING_MOD_MASK 15 /* for this to work */
148
562d2f8c 149#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 150#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
151#endif
152
1da177e4
LT
153/* Interrupt events/masks.
154*/
155#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
156#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
157#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
158#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
159#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
160#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
161#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
162#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
163#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
164#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
165
166/* The FEC stores dest/src/type, data, and checksum for receive packets.
167 */
168#define PKT_MAXBUF_SIZE 1518
169#define PKT_MINBUF_SIZE 64
170#define PKT_MAXBLR_SIZE 1520
171
172
173/*
6b265293 174 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
175 * size bits. Other FEC hardware does not, so we need to take that into
176 * account when setting it.
177 */
562d2f8c 178#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
6b265293 179 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
180#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
181#else
182#define OPT_FRAME_SIZE 0
183#endif
184
185/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
186 * tx_bd_base always point to the base of the buffer descriptors. The
187 * cur_rx and cur_tx point to the currently available buffer.
188 * The dirty_tx tracks the current buffer that is being sent by the
189 * controller. The cur_tx and dirty_tx are equal under both completely
190 * empty and completely full conditions. The empty/ready indicator in
191 * the buffer descriptor determines the actual condition.
192 */
193struct fec_enet_private {
194 /* Hardware registers of the FEC device */
195 volatile fec_t *hwp;
196
cb84d6e7
GU
197 struct net_device *netdev;
198
1da177e4
LT
199 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
200 unsigned char *tx_bounce[TX_RING_SIZE];
201 struct sk_buff* tx_skbuff[TX_RING_SIZE];
202 ushort skb_cur;
203 ushort skb_dirty;
204
205 /* CPM dual port RAM relative addresses.
206 */
207 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
208 cbd_t *tx_bd_base;
209 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
210 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
1da177e4 211 uint tx_full;
3b2b74ca
SS
212 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
213 spinlock_t hw_lock;
214 /* hold while accessing the mii_list_t() elements */
215 spinlock_t mii_lock;
1da177e4
LT
216
217 uint phy_id;
218 uint phy_id_done;
219 uint phy_status;
220 uint phy_speed;
7dd6a2aa 221 phy_info_t const *phy;
1da177e4
LT
222 struct work_struct phy_task;
223
224 uint sequence_done;
225 uint mii_phy_task_queued;
226
227 uint phy_addr;
228
229 int index;
230 int opened;
231 int link;
232 int old_link;
233 int full_duplex;
1da177e4
LT
234};
235
236static int fec_enet_open(struct net_device *dev);
237static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
238static void fec_enet_mii(struct net_device *dev);
7d12e780 239static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
240static void fec_enet_tx(struct net_device *dev);
241static void fec_enet_rx(struct net_device *dev);
242static int fec_enet_close(struct net_device *dev);
1da177e4
LT
243static void set_multicast_list(struct net_device *dev);
244static void fec_restart(struct net_device *dev, int duplex);
245static void fec_stop(struct net_device *dev);
246static void fec_set_mac_address(struct net_device *dev);
247
248
249/* MII processing. We keep this as simple as possible. Requests are
250 * placed on the list (if there is room). When the request is finished
251 * by the MII, an optional function may be called.
252 */
253typedef struct mii_list {
254 uint mii_regval;
255 void (*mii_func)(uint val, struct net_device *dev);
256 struct mii_list *mii_next;
257} mii_list_t;
258
259#define NMII 20
7dd6a2aa
GU
260static mii_list_t mii_cmds[NMII];
261static mii_list_t *mii_free;
262static mii_list_t *mii_head;
263static mii_list_t *mii_tail;
1da177e4 264
6aa20a22 265static int mii_queue(struct net_device *dev, int request,
1da177e4
LT
266 void (*func)(uint, struct net_device *));
267
268/* Make MII read/write commands for the FEC.
269*/
270#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
271#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
272 (VAL & 0xffff))
273#define mk_mii_end 0
274
275/* Transmitter timeout.
276*/
277#define TX_TIMEOUT (2*HZ)
278
279/* Register definitions for the PHY.
280*/
281
282#define MII_REG_CR 0 /* Control Register */
283#define MII_REG_SR 1 /* Status Register */
284#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
285#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
6aa20a22 286#define MII_REG_ANAR 4 /* A-N Advertisement Register */
1da177e4
LT
287#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
288#define MII_REG_ANER 6 /* A-N Expansion Register */
289#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
290#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
291
292/* values for phy_status */
293
294#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
295#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
296#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
297#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
6aa20a22 298#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
1da177e4 299#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
6aa20a22 300#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
1da177e4
LT
301
302#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
303#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
304#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
305#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
306#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
6aa20a22 307#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
1da177e4 308#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
6aa20a22 309#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
1da177e4
LT
310
311
312static int
313fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
314{
315 struct fec_enet_private *fep;
316 volatile fec_t *fecp;
317 volatile cbd_t *bdp;
0e702ab3 318 unsigned short status;
3b2b74ca 319 unsigned long flags;
1da177e4
LT
320
321 fep = netdev_priv(dev);
322 fecp = (volatile fec_t*)dev->base_addr;
323
324 if (!fep->link) {
325 /* Link is down or autonegotiation is in progress. */
326 return 1;
327 }
328
3b2b74ca 329 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
330 /* Fill in a Tx ring entry */
331 bdp = fep->cur_tx;
332
0e702ab3 333 status = bdp->cbd_sc;
1da177e4 334#ifndef final_version
0e702ab3 335 if (status & BD_ENET_TX_READY) {
1da177e4
LT
336 /* Ooops. All transmit buffers are full. Bail out.
337 * This should not happen, since dev->tbusy should be set.
338 */
339 printk("%s: tx queue full!.\n", dev->name);
3b2b74ca 340 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4
LT
341 return 1;
342 }
343#endif
344
345 /* Clear all of the status flags.
346 */
0e702ab3 347 status &= ~BD_ENET_TX_STATS;
1da177e4
LT
348
349 /* Set buffer length and buffer pointer.
350 */
351 bdp->cbd_bufaddr = __pa(skb->data);
352 bdp->cbd_datlen = skb->len;
353
354 /*
355 * On some FEC implementations data must be aligned on
356 * 4-byte boundaries. Use bounce buffers to copy data
357 * and get it aligned. Ugh.
358 */
359 if (bdp->cbd_bufaddr & 0x3) {
360 unsigned int index;
361 index = bdp - fep->tx_bd_base;
362 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
363 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
364 }
365
366 /* Save skb pointer.
367 */
368 fep->tx_skbuff[fep->skb_cur] = skb;
369
09f75cd7 370 dev->stats.tx_bytes += skb->len;
1da177e4 371 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 372
1da177e4
LT
373 /* Push the data cache so the CPM does not get stale memory
374 * data.
375 */
376 flush_dcache_range((unsigned long)skb->data,
377 (unsigned long)skb->data + skb->len);
378
0e702ab3
GU
379 /* Send it on its way. Tell FEC it's ready, interrupt when done,
380 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4
LT
381 */
382
0e702ab3 383 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 384 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 385 bdp->cbd_sc = status;
1da177e4
LT
386
387 dev->trans_start = jiffies;
388
389 /* Trigger transmission start */
0e702ab3 390 fecp->fec_x_des_active = 0;
1da177e4
LT
391
392 /* If this was the last BD in the ring, start at the beginning again.
393 */
0e702ab3 394 if (status & BD_ENET_TX_WRAP) {
1da177e4
LT
395 bdp = fep->tx_bd_base;
396 } else {
397 bdp++;
398 }
399
400 if (bdp == fep->dirty_tx) {
401 fep->tx_full = 1;
402 netif_stop_queue(dev);
403 }
404
405 fep->cur_tx = (cbd_t *)bdp;
406
3b2b74ca 407 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4
LT
408
409 return 0;
410}
411
412static void
413fec_timeout(struct net_device *dev)
414{
415 struct fec_enet_private *fep = netdev_priv(dev);
416
417 printk("%s: transmit timed out.\n", dev->name);
09f75cd7 418 dev->stats.tx_errors++;
1da177e4
LT
419#ifndef final_version
420 {
421 int i;
422 cbd_t *bdp;
423
424 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
425 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
426 (unsigned long)fep->dirty_tx,
427 (unsigned long)fep->cur_rx);
428
429 bdp = fep->tx_bd_base;
430 printk(" tx: %u buffers\n", TX_RING_SIZE);
431 for (i = 0 ; i < TX_RING_SIZE; i++) {
6aa20a22 432 printk(" %08x: %04x %04x %08x\n",
1da177e4
LT
433 (uint) bdp,
434 bdp->cbd_sc,
435 bdp->cbd_datlen,
436 (int) bdp->cbd_bufaddr);
437 bdp++;
438 }
439
440 bdp = fep->rx_bd_base;
441 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
442 for (i = 0 ; i < RX_RING_SIZE; i++) {
443 printk(" %08x: %04x %04x %08x\n",
444 (uint) bdp,
445 bdp->cbd_sc,
446 bdp->cbd_datlen,
447 (int) bdp->cbd_bufaddr);
448 bdp++;
449 }
450 }
451#endif
7dd6a2aa 452 fec_restart(dev, fep->full_duplex);
1da177e4
LT
453 netif_wake_queue(dev);
454}
455
456/* The interrupt handler.
457 * This is called from the MPC core interrupt.
458 */
459static irqreturn_t
7d12e780 460fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
461{
462 struct net_device *dev = dev_id;
463 volatile fec_t *fecp;
464 uint int_events;
3b2b74ca 465 irqreturn_t ret = IRQ_NONE;
1da177e4
LT
466
467 fecp = (volatile fec_t*)dev->base_addr;
468
469 /* Get the interrupt events that caused us to be here.
470 */
3b2b74ca
SS
471 do {
472 int_events = fecp->fec_ievent;
1da177e4
LT
473 fecp->fec_ievent = int_events;
474
475 /* Handle receive event in its own function.
476 */
477 if (int_events & FEC_ENET_RXF) {
3b2b74ca 478 ret = IRQ_HANDLED;
1da177e4
LT
479 fec_enet_rx(dev);
480 }
481
482 /* Transmit OK, or non-fatal error. Update the buffer
483 descriptors. FEC handles all errors, we just discover
484 them as part of the transmit process.
485 */
486 if (int_events & FEC_ENET_TXF) {
3b2b74ca 487 ret = IRQ_HANDLED;
1da177e4
LT
488 fec_enet_tx(dev);
489 }
490
491 if (int_events & FEC_ENET_MII) {
3b2b74ca 492 ret = IRQ_HANDLED;
1da177e4
LT
493 fec_enet_mii(dev);
494 }
6aa20a22 495
3b2b74ca
SS
496 } while (int_events);
497
498 return ret;
1da177e4
LT
499}
500
501
502static void
503fec_enet_tx(struct net_device *dev)
504{
505 struct fec_enet_private *fep;
506 volatile cbd_t *bdp;
0e702ab3 507 unsigned short status;
1da177e4
LT
508 struct sk_buff *skb;
509
510 fep = netdev_priv(dev);
3b2b74ca 511 spin_lock_irq(&fep->hw_lock);
1da177e4
LT
512 bdp = fep->dirty_tx;
513
0e702ab3 514 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1da177e4
LT
515 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
516
517 skb = fep->tx_skbuff[fep->skb_dirty];
518 /* Check for errors. */
0e702ab3 519 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
520 BD_ENET_TX_RL | BD_ENET_TX_UN |
521 BD_ENET_TX_CSL)) {
09f75cd7 522 dev->stats.tx_errors++;
0e702ab3 523 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 524 dev->stats.tx_heartbeat_errors++;
0e702ab3 525 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 526 dev->stats.tx_window_errors++;
0e702ab3 527 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 528 dev->stats.tx_aborted_errors++;
0e702ab3 529 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 530 dev->stats.tx_fifo_errors++;
0e702ab3 531 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 532 dev->stats.tx_carrier_errors++;
1da177e4 533 } else {
09f75cd7 534 dev->stats.tx_packets++;
1da177e4
LT
535 }
536
537#ifndef final_version
0e702ab3 538 if (status & BD_ENET_TX_READY)
1da177e4
LT
539 printk("HEY! Enet xmit interrupt and TX_READY.\n");
540#endif
541 /* Deferred means some collisions occurred during transmit,
542 * but we eventually sent the packet OK.
543 */
0e702ab3 544 if (status & BD_ENET_TX_DEF)
09f75cd7 545 dev->stats.collisions++;
6aa20a22 546
1da177e4
LT
547 /* Free the sk buffer associated with this last transmit.
548 */
549 dev_kfree_skb_any(skb);
550 fep->tx_skbuff[fep->skb_dirty] = NULL;
551 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 552
1da177e4
LT
553 /* Update pointer to next buffer descriptor to be transmitted.
554 */
0e702ab3 555 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
556 bdp = fep->tx_bd_base;
557 else
558 bdp++;
6aa20a22 559
1da177e4
LT
560 /* Since we have freed up a buffer, the ring is no longer
561 * full.
562 */
563 if (fep->tx_full) {
564 fep->tx_full = 0;
565 if (netif_queue_stopped(dev))
566 netif_wake_queue(dev);
567 }
568 }
569 fep->dirty_tx = (cbd_t *)bdp;
3b2b74ca 570 spin_unlock_irq(&fep->hw_lock);
1da177e4
LT
571}
572
573
574/* During a receive, the cur_rx points to the current incoming buffer.
575 * When we update through the ring, if the next incoming buffer has
576 * not been given to the system, we just set the empty indicator,
577 * effectively tossing the packet.
578 */
579static void
580fec_enet_rx(struct net_device *dev)
581{
582 struct fec_enet_private *fep;
583 volatile fec_t *fecp;
584 volatile cbd_t *bdp;
0e702ab3 585 unsigned short status;
1da177e4
LT
586 struct sk_buff *skb;
587 ushort pkt_len;
588 __u8 *data;
6aa20a22 589
0e702ab3
GU
590#ifdef CONFIG_M532x
591 flush_cache_all();
6aa20a22 592#endif
1da177e4
LT
593
594 fep = netdev_priv(dev);
595 fecp = (volatile fec_t*)dev->base_addr;
596
3b2b74ca
SS
597 spin_lock_irq(&fep->hw_lock);
598
1da177e4
LT
599 /* First, grab all of the stats for the incoming packet.
600 * These get messed up if we get called due to a busy condition.
601 */
602 bdp = fep->cur_rx;
603
0e702ab3 604while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4
LT
605
606#ifndef final_version
607 /* Since we have allocated space to hold a complete frame,
608 * the last indicator should be set.
609 */
0e702ab3 610 if ((status & BD_ENET_RX_LAST) == 0)
1da177e4
LT
611 printk("FEC ENET: rcv is not +last\n");
612#endif
613
614 if (!fep->opened)
615 goto rx_processing_done;
616
617 /* Check for errors. */
0e702ab3 618 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 619 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
09f75cd7 620 dev->stats.rx_errors++;
0e702ab3 621 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1da177e4 622 /* Frame too long or too short. */
09f75cd7 623 dev->stats.rx_length_errors++;
1da177e4 624 }
0e702ab3 625 if (status & BD_ENET_RX_NO) /* Frame alignment */
09f75cd7 626 dev->stats.rx_frame_errors++;
0e702ab3 627 if (status & BD_ENET_RX_CR) /* CRC Error */
09f75cd7 628 dev->stats.rx_crc_errors++;
0e702ab3 629 if (status & BD_ENET_RX_OV) /* FIFO overrun */
09f75cd7 630 dev->stats.rx_fifo_errors++;
1da177e4
LT
631 }
632
633 /* Report late collisions as a frame error.
634 * On this error, the BD is closed, but we don't know what we
635 * have in the buffer. So, just drop this frame on the floor.
636 */
0e702ab3 637 if (status & BD_ENET_RX_CL) {
09f75cd7
JG
638 dev->stats.rx_errors++;
639 dev->stats.rx_frame_errors++;
1da177e4
LT
640 goto rx_processing_done;
641 }
642
643 /* Process the incoming frame.
644 */
09f75cd7 645 dev->stats.rx_packets++;
1da177e4 646 pkt_len = bdp->cbd_datlen;
09f75cd7 647 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
648 data = (__u8*)__va(bdp->cbd_bufaddr);
649
650 /* This does 16 byte alignment, exactly what we need.
651 * The packet length includes FCS, but we don't want to
652 * include that when passing upstream as it messes up
653 * bridging applications.
654 */
655 skb = dev_alloc_skb(pkt_len-4);
656
657 if (skb == NULL) {
658 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
09f75cd7 659 dev->stats.rx_dropped++;
1da177e4 660 } else {
1da177e4 661 skb_put(skb,pkt_len-4); /* Make room */
8c7b7faa 662 skb_copy_to_linear_data(skb, data, pkt_len-4);
1da177e4
LT
663 skb->protocol=eth_type_trans(skb,dev);
664 netif_rx(skb);
665 }
666 rx_processing_done:
667
668 /* Clear the status flags for this buffer.
669 */
0e702ab3 670 status &= ~BD_ENET_RX_STATS;
1da177e4
LT
671
672 /* Mark the buffer empty.
673 */
0e702ab3
GU
674 status |= BD_ENET_RX_EMPTY;
675 bdp->cbd_sc = status;
1da177e4
LT
676
677 /* Update BD pointer to next entry.
678 */
0e702ab3 679 if (status & BD_ENET_RX_WRAP)
1da177e4
LT
680 bdp = fep->rx_bd_base;
681 else
682 bdp++;
6aa20a22 683
1da177e4
LT
684#if 1
685 /* Doing this here will keep the FEC running while we process
686 * incoming frames. On a heavily loaded network, we should be
687 * able to keep up at the expense of system resources.
688 */
0e702ab3 689 fecp->fec_r_des_active = 0;
1da177e4 690#endif
0e702ab3 691 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
1da177e4
LT
692 fep->cur_rx = (cbd_t *)bdp;
693
694#if 0
695 /* Doing this here will allow us to process all frames in the
696 * ring before the FEC is allowed to put more there. On a heavily
697 * loaded network, some frames may be lost. Unfortunately, this
698 * increases the interrupt overhead since we can potentially work
699 * our way back to the interrupt return only to come right back
700 * here.
701 */
0e702ab3 702 fecp->fec_r_des_active = 0;
1da177e4 703#endif
3b2b74ca
SS
704
705 spin_unlock_irq(&fep->hw_lock);
1da177e4
LT
706}
707
708
0e702ab3 709/* called from interrupt context */
1da177e4
LT
710static void
711fec_enet_mii(struct net_device *dev)
712{
713 struct fec_enet_private *fep;
714 volatile fec_t *ep;
715 mii_list_t *mip;
716 uint mii_reg;
717
718 fep = netdev_priv(dev);
3b2b74ca
SS
719 spin_lock_irq(&fep->mii_lock);
720
1da177e4
LT
721 ep = fep->hwp;
722 mii_reg = ep->fec_mii_data;
0e702ab3 723
1da177e4
LT
724 if ((mip = mii_head) == NULL) {
725 printk("MII and no head!\n");
0e702ab3 726 goto unlock;
1da177e4
LT
727 }
728
729 if (mip->mii_func != NULL)
730 (*(mip->mii_func))(mii_reg, dev);
731
732 mii_head = mip->mii_next;
733 mip->mii_next = mii_free;
734 mii_free = mip;
735
736 if ((mip = mii_head) != NULL)
737 ep->fec_mii_data = mip->mii_regval;
0e702ab3
GU
738
739unlock:
3b2b74ca 740 spin_unlock_irq(&fep->mii_lock);
1da177e4
LT
741}
742
743static int
744mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
745{
746 struct fec_enet_private *fep;
747 unsigned long flags;
748 mii_list_t *mip;
749 int retval;
750
751 /* Add PHY address to register command.
752 */
753 fep = netdev_priv(dev);
3b2b74ca 754 spin_lock_irqsave(&fep->mii_lock, flags);
1da177e4 755
3b2b74ca 756 regval |= fep->phy_addr << 23;
1da177e4
LT
757 retval = 0;
758
1da177e4
LT
759 if ((mip = mii_free) != NULL) {
760 mii_free = mip->mii_next;
761 mip->mii_regval = regval;
762 mip->mii_func = func;
763 mip->mii_next = NULL;
764 if (mii_head) {
765 mii_tail->mii_next = mip;
766 mii_tail = mip;
f909b1ef 767 } else {
1da177e4
LT
768 mii_head = mii_tail = mip;
769 fep->hwp->fec_mii_data = regval;
770 }
f909b1ef 771 } else {
1da177e4
LT
772 retval = 1;
773 }
774
3b2b74ca
SS
775 spin_unlock_irqrestore(&fep->mii_lock, flags);
776 return retval;
1da177e4
LT
777}
778
779static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
780{
1da177e4
LT
781 if(!c)
782 return;
783
be6cb66d
PDM
784 for (; c->mii_data != mk_mii_end; c++)
785 mii_queue(dev, c->mii_data, c->funct);
1da177e4
LT
786}
787
788static void mii_parse_sr(uint mii_reg, struct net_device *dev)
789{
790 struct fec_enet_private *fep = netdev_priv(dev);
791 volatile uint *s = &(fep->phy_status);
7dd6a2aa 792 uint status;
1da177e4 793
7dd6a2aa 794 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
1da177e4
LT
795
796 if (mii_reg & 0x0004)
7dd6a2aa 797 status |= PHY_STAT_LINK;
1da177e4 798 if (mii_reg & 0x0010)
7dd6a2aa 799 status |= PHY_STAT_FAULT;
1da177e4 800 if (mii_reg & 0x0020)
7dd6a2aa 801 status |= PHY_STAT_ANC;
7dd6a2aa 802 *s = status;
1da177e4
LT
803}
804
805static void mii_parse_cr(uint mii_reg, struct net_device *dev)
806{
807 struct fec_enet_private *fep = netdev_priv(dev);
808 volatile uint *s = &(fep->phy_status);
7dd6a2aa 809 uint status;
1da177e4 810
7dd6a2aa 811 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
1da177e4
LT
812
813 if (mii_reg & 0x1000)
7dd6a2aa 814 status |= PHY_CONF_ANE;
1da177e4 815 if (mii_reg & 0x4000)
7dd6a2aa
GU
816 status |= PHY_CONF_LOOP;
817 *s = status;
1da177e4
LT
818}
819
820static void mii_parse_anar(uint mii_reg, struct net_device *dev)
821{
822 struct fec_enet_private *fep = netdev_priv(dev);
823 volatile uint *s = &(fep->phy_status);
7dd6a2aa 824 uint status;
1da177e4 825
7dd6a2aa 826 status = *s & ~(PHY_CONF_SPMASK);
1da177e4
LT
827
828 if (mii_reg & 0x0020)
7dd6a2aa 829 status |= PHY_CONF_10HDX;
1da177e4 830 if (mii_reg & 0x0040)
7dd6a2aa 831 status |= PHY_CONF_10FDX;
1da177e4 832 if (mii_reg & 0x0080)
7dd6a2aa 833 status |= PHY_CONF_100HDX;
1da177e4 834 if (mii_reg & 0x00100)
7dd6a2aa
GU
835 status |= PHY_CONF_100FDX;
836 *s = status;
1da177e4
LT
837}
838
839/* ------------------------------------------------------------------------- */
840/* The Level one LXT970 is used by many boards */
841
842#define MII_LXT970_MIRROR 16 /* Mirror register */
843#define MII_LXT970_IER 17 /* Interrupt Enable Register */
844#define MII_LXT970_ISR 18 /* Interrupt Status Register */
845#define MII_LXT970_CONFIG 19 /* Configuration Register */
846#define MII_LXT970_CSR 20 /* Chip Status Register */
847
848static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
849{
850 struct fec_enet_private *fep = netdev_priv(dev);
851 volatile uint *s = &(fep->phy_status);
7dd6a2aa 852 uint status;
1da177e4 853
7dd6a2aa 854 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
855 if (mii_reg & 0x0800) {
856 if (mii_reg & 0x1000)
7dd6a2aa 857 status |= PHY_STAT_100FDX;
1da177e4 858 else
7dd6a2aa 859 status |= PHY_STAT_100HDX;
1da177e4
LT
860 } else {
861 if (mii_reg & 0x1000)
7dd6a2aa 862 status |= PHY_STAT_10FDX;
1da177e4 863 else
7dd6a2aa 864 status |= PHY_STAT_10HDX;
1da177e4 865 }
7dd6a2aa 866 *s = status;
1da177e4
LT
867}
868
7dd6a2aa 869static phy_cmd_t const phy_cmd_lxt970_config[] = {
1da177e4
LT
870 { mk_mii_read(MII_REG_CR), mii_parse_cr },
871 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
872 { mk_mii_end, }
7dd6a2aa
GU
873 };
874static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
1da177e4
LT
875 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
876 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
877 { mk_mii_end, }
7dd6a2aa
GU
878 };
879static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
1da177e4
LT
880 /* read SR and ISR to acknowledge */
881 { mk_mii_read(MII_REG_SR), mii_parse_sr },
882 { mk_mii_read(MII_LXT970_ISR), NULL },
883
884 /* find out the current status */
885 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
886 { mk_mii_end, }
7dd6a2aa
GU
887 };
888static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
1da177e4
LT
889 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
890 { mk_mii_end, }
7dd6a2aa
GU
891 };
892static phy_info_t const phy_info_lxt970 = {
6aa20a22 893 .id = 0x07810000,
7dd6a2aa
GU
894 .name = "LXT970",
895 .config = phy_cmd_lxt970_config,
896 .startup = phy_cmd_lxt970_startup,
897 .ack_int = phy_cmd_lxt970_ack_int,
898 .shutdown = phy_cmd_lxt970_shutdown
1da177e4 899};
6aa20a22 900
1da177e4
LT
901/* ------------------------------------------------------------------------- */
902/* The Level one LXT971 is used on some of my custom boards */
903
904/* register definitions for the 971 */
905
906#define MII_LXT971_PCR 16 /* Port Control Register */
907#define MII_LXT971_SR2 17 /* Status Register 2 */
908#define MII_LXT971_IER 18 /* Interrupt Enable Register */
909#define MII_LXT971_ISR 19 /* Interrupt Status Register */
910#define MII_LXT971_LCR 20 /* LED Control Register */
911#define MII_LXT971_TCR 30 /* Transmit Control Register */
912
6aa20a22 913/*
1da177e4
LT
914 * I had some nice ideas of running the MDIO faster...
915 * The 971 should support 8MHz and I tried it, but things acted really
916 * weird, so 2.5 MHz ought to be enough for anyone...
917 */
918
919static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
920{
921 struct fec_enet_private *fep = netdev_priv(dev);
922 volatile uint *s = &(fep->phy_status);
7dd6a2aa 923 uint status;
1da177e4 924
7dd6a2aa 925 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1da177e4
LT
926
927 if (mii_reg & 0x0400) {
928 fep->link = 1;
7dd6a2aa 929 status |= PHY_STAT_LINK;
1da177e4
LT
930 } else {
931 fep->link = 0;
932 }
933 if (mii_reg & 0x0080)
7dd6a2aa 934 status |= PHY_STAT_ANC;
1da177e4
LT
935 if (mii_reg & 0x4000) {
936 if (mii_reg & 0x0200)
7dd6a2aa 937 status |= PHY_STAT_100FDX;
1da177e4 938 else
7dd6a2aa 939 status |= PHY_STAT_100HDX;
1da177e4
LT
940 } else {
941 if (mii_reg & 0x0200)
7dd6a2aa 942 status |= PHY_STAT_10FDX;
1da177e4 943 else
7dd6a2aa 944 status |= PHY_STAT_10HDX;
1da177e4
LT
945 }
946 if (mii_reg & 0x0008)
7dd6a2aa 947 status |= PHY_STAT_FAULT;
1da177e4 948
7dd6a2aa
GU
949 *s = status;
950}
6aa20a22 951
7dd6a2aa 952static phy_cmd_t const phy_cmd_lxt971_config[] = {
6aa20a22 953 /* limit to 10MBit because my prototype board
1da177e4
LT
954 * doesn't work with 100. */
955 { mk_mii_read(MII_REG_CR), mii_parse_cr },
956 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
957 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
958 { mk_mii_end, }
7dd6a2aa
GU
959 };
960static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
1da177e4
LT
961 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
962 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
963 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
964 /* Somehow does the 971 tell me that the link is down
965 * the first read after power-up.
966 * read here to get a valid value in ack_int */
6aa20a22 967 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 968 { mk_mii_end, }
7dd6a2aa
GU
969 };
970static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
971 /* acknowledge the int before reading status ! */
972 { mk_mii_read(MII_LXT971_ISR), NULL },
1da177e4
LT
973 /* find out the current status */
974 { mk_mii_read(MII_REG_SR), mii_parse_sr },
975 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1da177e4 976 { mk_mii_end, }
7dd6a2aa
GU
977 };
978static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
1da177e4
LT
979 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
980 { mk_mii_end, }
7dd6a2aa
GU
981 };
982static phy_info_t const phy_info_lxt971 = {
6aa20a22 983 .id = 0x0001378e,
7dd6a2aa
GU
984 .name = "LXT971",
985 .config = phy_cmd_lxt971_config,
986 .startup = phy_cmd_lxt971_startup,
987 .ack_int = phy_cmd_lxt971_ack_int,
988 .shutdown = phy_cmd_lxt971_shutdown
1da177e4
LT
989};
990
991/* ------------------------------------------------------------------------- */
992/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
993
994/* register definitions */
995
996#define MII_QS6612_MCR 17 /* Mode Control Register */
997#define MII_QS6612_FTR 27 /* Factory Test Register */
998#define MII_QS6612_MCO 28 /* Misc. Control Register */
999#define MII_QS6612_ISR 29 /* Interrupt Source Register */
1000#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1001#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1002
1003static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1004{
1005 struct fec_enet_private *fep = netdev_priv(dev);
1006 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1007 uint status;
1da177e4 1008
7dd6a2aa 1009 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
1010
1011 switch((mii_reg >> 2) & 7) {
7dd6a2aa
GU
1012 case 1: status |= PHY_STAT_10HDX; break;
1013 case 2: status |= PHY_STAT_100HDX; break;
1014 case 5: status |= PHY_STAT_10FDX; break;
1015 case 6: status |= PHY_STAT_100FDX; break;
1da177e4
LT
1016}
1017
7dd6a2aa
GU
1018 *s = status;
1019}
1020
1021static phy_cmd_t const phy_cmd_qs6612_config[] = {
6aa20a22 1022 /* The PHY powers up isolated on the RPX,
1da177e4
LT
1023 * so send a command to allow operation.
1024 */
1025 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1026
1027 /* parse cr and anar to get some info */
1028 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1029 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1030 { mk_mii_end, }
7dd6a2aa
GU
1031 };
1032static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1da177e4
LT
1033 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1034 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1035 { mk_mii_end, }
7dd6a2aa
GU
1036 };
1037static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1da177e4
LT
1038 /* we need to read ISR, SR and ANER to acknowledge */
1039 { mk_mii_read(MII_QS6612_ISR), NULL },
1040 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1041 { mk_mii_read(MII_REG_ANER), NULL },
1042
1043 /* read pcr to get info */
1044 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1045 { mk_mii_end, }
7dd6a2aa
GU
1046 };
1047static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1da177e4
LT
1048 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1049 { mk_mii_end, }
7dd6a2aa
GU
1050 };
1051static phy_info_t const phy_info_qs6612 = {
6aa20a22 1052 .id = 0x00181440,
7dd6a2aa
GU
1053 .name = "QS6612",
1054 .config = phy_cmd_qs6612_config,
1055 .startup = phy_cmd_qs6612_startup,
1056 .ack_int = phy_cmd_qs6612_ack_int,
1057 .shutdown = phy_cmd_qs6612_shutdown
1da177e4
LT
1058};
1059
1060/* ------------------------------------------------------------------------- */
1061/* AMD AM79C874 phy */
1062
1063/* register definitions for the 874 */
1064
1065#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1066#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1067#define MII_AM79C874_DR 18 /* Diagnostic Register */
1068#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1069#define MII_AM79C874_MCR 21 /* ModeControl Register */
1070#define MII_AM79C874_DC 23 /* Disconnect Counter */
1071#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1072
1073static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1074{
1075 struct fec_enet_private *fep = netdev_priv(dev);
1076 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1077 uint status;
1da177e4 1078
7dd6a2aa 1079 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1da177e4
LT
1080
1081 if (mii_reg & 0x0080)
7dd6a2aa 1082 status |= PHY_STAT_ANC;
1da177e4 1083 if (mii_reg & 0x0400)
7dd6a2aa 1084 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1da177e4 1085 else
7dd6a2aa
GU
1086 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1087
1088 *s = status;
1da177e4
LT
1089}
1090
7dd6a2aa 1091static phy_cmd_t const phy_cmd_am79c874_config[] = {
1da177e4
LT
1092 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1093 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1094 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1095 { mk_mii_end, }
7dd6a2aa
GU
1096 };
1097static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1da177e4
LT
1098 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1099 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1100 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1101 { mk_mii_end, }
7dd6a2aa
GU
1102 };
1103static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1da177e4
LT
1104 /* find out the current status */
1105 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1106 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1107 /* we only need to read ISR to acknowledge */
1108 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1109 { mk_mii_end, }
7dd6a2aa
GU
1110 };
1111static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1da177e4
LT
1112 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1113 { mk_mii_end, }
7dd6a2aa
GU
1114 };
1115static phy_info_t const phy_info_am79c874 = {
1116 .id = 0x00022561,
1117 .name = "AM79C874",
1118 .config = phy_cmd_am79c874_config,
1119 .startup = phy_cmd_am79c874_startup,
1120 .ack_int = phy_cmd_am79c874_ack_int,
1121 .shutdown = phy_cmd_am79c874_shutdown
1da177e4
LT
1122};
1123
7dd6a2aa 1124
1da177e4
LT
1125/* ------------------------------------------------------------------------- */
1126/* Kendin KS8721BL phy */
1127
1128/* register definitions for the 8721 */
1129
1130#define MII_KS8721BL_RXERCR 21
1131#define MII_KS8721BL_ICSR 22
1132#define MII_KS8721BL_PHYCR 31
1133
7dd6a2aa 1134static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1da177e4
LT
1135 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1136 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1137 { mk_mii_end, }
7dd6a2aa
GU
1138 };
1139static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1da177e4
LT
1140 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1141 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1142 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1143 { mk_mii_end, }
7dd6a2aa
GU
1144 };
1145static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1da177e4
LT
1146 /* find out the current status */
1147 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1148 /* we only need to read ISR to acknowledge */
1149 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1150 { mk_mii_end, }
7dd6a2aa
GU
1151 };
1152static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1da177e4
LT
1153 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1154 { mk_mii_end, }
7dd6a2aa
GU
1155 };
1156static phy_info_t const phy_info_ks8721bl = {
6aa20a22 1157 .id = 0x00022161,
7dd6a2aa
GU
1158 .name = "KS8721BL",
1159 .config = phy_cmd_ks8721bl_config,
1160 .startup = phy_cmd_ks8721bl_startup,
1161 .ack_int = phy_cmd_ks8721bl_ack_int,
1162 .shutdown = phy_cmd_ks8721bl_shutdown
1da177e4
LT
1163};
1164
562d2f8c
GU
1165/* ------------------------------------------------------------------------- */
1166/* register definitions for the DP83848 */
1167
1168#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1169
1170static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1171{
1172 struct fec_enet_private *fep = dev->priv;
1173 volatile uint *s = &(fep->phy_status);
1174
1175 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1176
1177 /* Link up */
1178 if (mii_reg & 0x0001) {
1179 fep->link = 1;
1180 *s |= PHY_STAT_LINK;
1181 } else
1182 fep->link = 0;
1183 /* Status of link */
1184 if (mii_reg & 0x0010) /* Autonegotioation complete */
1185 *s |= PHY_STAT_ANC;
1186 if (mii_reg & 0x0002) { /* 10MBps? */
1187 if (mii_reg & 0x0004) /* Full Duplex? */
1188 *s |= PHY_STAT_10FDX;
1189 else
1190 *s |= PHY_STAT_10HDX;
1191 } else { /* 100 Mbps? */
1192 if (mii_reg & 0x0004) /* Full Duplex? */
1193 *s |= PHY_STAT_100FDX;
1194 else
1195 *s |= PHY_STAT_100HDX;
1196 }
1197 if (mii_reg & 0x0008)
1198 *s |= PHY_STAT_FAULT;
1199}
1200
1201static phy_info_t phy_info_dp83848= {
1202 0x020005c9,
1203 "DP83848",
1204
1205 (const phy_cmd_t []) { /* config */
1206 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1207 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1208 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1209 { mk_mii_end, }
1210 },
1211 (const phy_cmd_t []) { /* startup - enable interrupts */
1212 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1213 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1214 { mk_mii_end, }
1215 },
1216 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1217 { mk_mii_end, }
1218 },
1219 (const phy_cmd_t []) { /* shutdown */
1220 { mk_mii_end, }
1221 },
1222};
1223
1da177e4
LT
1224/* ------------------------------------------------------------------------- */
1225
7dd6a2aa 1226static phy_info_t const * const phy_info[] = {
1da177e4
LT
1227 &phy_info_lxt970,
1228 &phy_info_lxt971,
1229 &phy_info_qs6612,
1230 &phy_info_am79c874,
1231 &phy_info_ks8721bl,
562d2f8c 1232 &phy_info_dp83848,
1da177e4
LT
1233 NULL
1234};
1235
1236/* ------------------------------------------------------------------------- */
c1d96156 1237#ifdef HAVE_mii_link_interrupt
1da177e4
LT
1238#ifdef CONFIG_RPXCLASSIC
1239static void
1240mii_link_interrupt(void *dev_id);
1241#else
1242static irqreturn_t
7d12e780 1243mii_link_interrupt(int irq, void * dev_id);
1da177e4 1244#endif
6b265293 1245#endif
1da177e4
LT
1246
1247#if defined(CONFIG_M5272)
1da177e4
LT
1248/*
1249 * Code specific to Coldfire 5272 setup.
1250 */
1251static void __inline__ fec_request_intrs(struct net_device *dev)
1252{
1253 volatile unsigned long *icrp;
7dd6a2aa
GU
1254 static const struct idesc {
1255 char *name;
1256 unsigned short irq;
7d12e780 1257 irq_handler_t handler;
7dd6a2aa
GU
1258 } *idp, id[] = {
1259 { "fec(RX)", 86, fec_enet_interrupt },
1260 { "fec(TX)", 87, fec_enet_interrupt },
1261 { "fec(OTHER)", 88, fec_enet_interrupt },
1262 { "fec(MII)", 66, mii_link_interrupt },
1263 { NULL },
1264 };
1da177e4
LT
1265
1266 /* Setup interrupt handlers. */
7dd6a2aa 1267 for (idp = id; idp->name; idp++) {
0a504779 1268 if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
7dd6a2aa
GU
1269 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1270 }
1da177e4
LT
1271
1272 /* Unmask interrupt at ColdFire 5272 SIM */
1273 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1274 *icrp = 0x00000ddd;
1275 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1276 *icrp = 0x0d000000;
1da177e4
LT
1277}
1278
1279static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1280{
1281 volatile fec_t *fecp;
1282
1283 fecp = fep->hwp;
1284 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1285 fecp->fec_x_cntrl = 0x00;
1286
1287 /*
1288 * Set MII speed to 2.5 MHz
1289 * See 5272 manual section 11.5.8: MSCR
1290 */
1291 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1292 fecp->fec_mii_speed = fep->phy_speed;
1293
1294 fec_restart(dev, 0);
1295}
1296
1297static void __inline__ fec_get_mac(struct net_device *dev)
1298{
1299 struct fec_enet_private *fep = netdev_priv(dev);
1300 volatile fec_t *fecp;
7dd6a2aa 1301 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1302
1303 fecp = fep->hwp;
1304
7dd6a2aa 1305 if (FEC_FLASHMAC) {
1da177e4
LT
1306 /*
1307 * Get MAC address from FLASH.
1308 * If it is all 1's or 0's, use the default.
1309 */
7dd6a2aa 1310 iap = (unsigned char *)FEC_FLASHMAC;
1da177e4
LT
1311 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1312 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1313 iap = fec_mac_default;
1314 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1315 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1316 iap = fec_mac_default;
1317 } else {
1318 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1319 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1320 iap = &tmpaddr[0];
1321 }
1322
7dd6a2aa 1323 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1324
1325 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1326 if (iap == fec_mac_default)
1327 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1328}
1329
1330static void __inline__ fec_enable_phy_intr(void)
1331{
1332}
1333
1334static void __inline__ fec_disable_phy_intr(void)
1335{
1336 volatile unsigned long *icrp;
1337 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1338 *icrp = 0x08000000;
1da177e4
LT
1339}
1340
1341static void __inline__ fec_phy_ack_intr(void)
1342{
1343 volatile unsigned long *icrp;
1344 /* Acknowledge the interrupt */
1345 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
f861d62e 1346 *icrp = 0x0d000000;
1da177e4
LT
1347}
1348
1349static void __inline__ fec_localhw_setup(void)
1350{
1351}
1352
1353/*
1354 * Do not need to make region uncached on 5272.
1355 */
1356static void __inline__ fec_uncache(unsigned long addr)
1357{
1358}
1359
1360/* ------------------------------------------------------------------------- */
1361
7dd6a2aa 1362#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1da177e4
LT
1363
1364/*
7dd6a2aa
GU
1365 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1366 * the 5270/5271/5274/5275 and 5280/5282 setups.
1da177e4
LT
1367 */
1368static void __inline__ fec_request_intrs(struct net_device *dev)
1369{
1370 struct fec_enet_private *fep;
1371 int b;
7dd6a2aa
GU
1372 static const struct idesc {
1373 char *name;
1374 unsigned short irq;
1375 } *idp, id[] = {
1376 { "fec(TXF)", 23 },
7dd6a2aa 1377 { "fec(RXF)", 27 },
7dd6a2aa 1378 { "fec(MII)", 29 },
7dd6a2aa
GU
1379 { NULL },
1380 };
1da177e4
LT
1381
1382 fep = netdev_priv(dev);
1383 b = (fep->index) ? 128 : 64;
1384
1385 /* Setup interrupt handlers. */
7dd6a2aa 1386 for (idp = id; idp->name; idp++) {
0a504779 1387 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
7dd6a2aa
GU
1388 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1389 }
1da177e4
LT
1390
1391 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1392 {
1393 volatile unsigned char *icrp;
1394 volatile unsigned long *imrp;
83901fc1 1395 int i, ilip;
1da177e4
LT
1396
1397 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1398 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1399 MCFINTC_ICR0);
83901fc1
WC
1400 for (i = 23, ilip = 0x28; (i < 36); i++)
1401 icrp[i] = ilip--;
1da177e4
LT
1402
1403 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1404 MCFINTC_IMRH);
1405 *imrp &= ~0x0000000f;
1406 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1407 MCFINTC_IMRL);
1408 *imrp &= ~0xff800001;
1409 }
1410
1411#if defined(CONFIG_M528x)
1412 /* Set up gpio outputs for MII lines */
1413 {
7dd6a2aa
GU
1414 volatile u16 *gpio_paspar;
1415 volatile u8 *gpio_pehlpar;
6aa20a22 1416
7dd6a2aa
GU
1417 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1418 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1419 *gpio_paspar |= 0x0f00;
1420 *gpio_pehlpar = 0xc0;
1da177e4
LT
1421 }
1422#endif
b8a94b3d
MC
1423
1424#if defined(CONFIG_M527x)
1425 /* Set up gpio outputs for MII lines */
1426 {
1427 volatile u8 *gpio_par_fec;
1428 volatile u16 *gpio_par_feci2c;
1429
1430 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1431 /* Set up gpio outputs for FEC0 MII lines */
1432 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1433
1434 *gpio_par_feci2c |= 0x0f00;
1435 *gpio_par_fec |= 0xc0;
1436
1437#if defined(CONFIG_FEC2)
1438 /* Set up gpio outputs for FEC1 MII lines */
1439 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1440
1441 *gpio_par_feci2c |= 0x00a0;
1442 *gpio_par_fec |= 0xc0;
1443#endif /* CONFIG_FEC2 */
1444 }
1445#endif /* CONFIG_M527x */
1da177e4
LT
1446}
1447
1448static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1449{
1450 volatile fec_t *fecp;
1451
1452 fecp = fep->hwp;
1453 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1454 fecp->fec_x_cntrl = 0x00;
1455
1456 /*
1457 * Set MII speed to 2.5 MHz
1458 * See 5282 manual section 17.5.4.7: MSCR
1459 */
1460 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1461 fecp->fec_mii_speed = fep->phy_speed;
1462
1463 fec_restart(dev, 0);
1464}
1465
1466static void __inline__ fec_get_mac(struct net_device *dev)
1467{
1468 struct fec_enet_private *fep = netdev_priv(dev);
1469 volatile fec_t *fecp;
7dd6a2aa 1470 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1471
1472 fecp = fep->hwp;
1473
7dd6a2aa 1474 if (FEC_FLASHMAC) {
1da177e4
LT
1475 /*
1476 * Get MAC address from FLASH.
1477 * If it is all 1's or 0's, use the default.
1478 */
7dd6a2aa 1479 iap = FEC_FLASHMAC;
1da177e4
LT
1480 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1481 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1482 iap = fec_mac_default;
1483 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1484 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1485 iap = fec_mac_default;
1486 } else {
1487 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1488 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1489 iap = &tmpaddr[0];
1490 }
1491
7dd6a2aa 1492 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1493
1494 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1495 if (iap == fec_mac_default)
1496 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1497}
1498
1499static void __inline__ fec_enable_phy_intr(void)
1500{
1501}
1502
1503static void __inline__ fec_disable_phy_intr(void)
1504{
1505}
1506
1507static void __inline__ fec_phy_ack_intr(void)
1508{
1509}
1510
1511static void __inline__ fec_localhw_setup(void)
1512{
1513}
1514
1515/*
1516 * Do not need to make region uncached on 5272.
1517 */
1518static void __inline__ fec_uncache(unsigned long addr)
1519{
1520}
1521
1522/* ------------------------------------------------------------------------- */
1523
562d2f8c
GU
1524#elif defined(CONFIG_M520x)
1525
1526/*
1527 * Code specific to Coldfire 520x
1528 */
1529static void __inline__ fec_request_intrs(struct net_device *dev)
1530{
1531 struct fec_enet_private *fep;
1532 int b;
1533 static const struct idesc {
1534 char *name;
1535 unsigned short irq;
1536 } *idp, id[] = {
1537 { "fec(TXF)", 23 },
562d2f8c 1538 { "fec(RXF)", 27 },
562d2f8c 1539 { "fec(MII)", 29 },
562d2f8c
GU
1540 { NULL },
1541 };
1542
1543 fep = netdev_priv(dev);
1544 b = 64 + 13;
1545
1546 /* Setup interrupt handlers. */
1547 for (idp = id; idp->name; idp++) {
0a504779 1548 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
562d2f8c
GU
1549 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1550 }
1551
1552 /* Unmask interrupts at ColdFire interrupt controller */
1553 {
1554 volatile unsigned char *icrp;
1555 volatile unsigned long *imrp;
1556
1557 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1558 MCFINTC_ICR0);
1559 for (b = 36; (b < 49); b++)
1560 icrp[b] = 0x04;
1561 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1562 MCFINTC_IMRH);
1563 *imrp &= ~0x0001FFF0;
1564 }
1565 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1566 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1567}
1568
1569static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1570{
1571 volatile fec_t *fecp;
1572
1573 fecp = fep->hwp;
1574 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1575 fecp->fec_x_cntrl = 0x00;
1576
1577 /*
1578 * Set MII speed to 2.5 MHz
1579 * See 5282 manual section 17.5.4.7: MSCR
1580 */
1581 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1582 fecp->fec_mii_speed = fep->phy_speed;
1583
1584 fec_restart(dev, 0);
1585}
1586
1587static void __inline__ fec_get_mac(struct net_device *dev)
1588{
1589 struct fec_enet_private *fep = netdev_priv(dev);
1590 volatile fec_t *fecp;
1591 unsigned char *iap, tmpaddr[ETH_ALEN];
1592
1593 fecp = fep->hwp;
1594
1595 if (FEC_FLASHMAC) {
1596 /*
1597 * Get MAC address from FLASH.
1598 * If it is all 1's or 0's, use the default.
1599 */
1600 iap = FEC_FLASHMAC;
1601 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1602 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1603 iap = fec_mac_default;
1604 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1605 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1606 iap = fec_mac_default;
1607 } else {
1608 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1609 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1610 iap = &tmpaddr[0];
1611 }
1612
1613 memcpy(dev->dev_addr, iap, ETH_ALEN);
1614
1615 /* Adjust MAC if using default MAC address */
1616 if (iap == fec_mac_default)
1617 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1618}
1619
1620static void __inline__ fec_enable_phy_intr(void)
1621{
1622}
1623
1624static void __inline__ fec_disable_phy_intr(void)
1625{
1626}
1627
1628static void __inline__ fec_phy_ack_intr(void)
1629{
1630}
1631
1632static void __inline__ fec_localhw_setup(void)
1633{
1634}
1635
1636static void __inline__ fec_uncache(unsigned long addr)
1637{
1638}
1639
1640/* ------------------------------------------------------------------------- */
1641
6b265293
MW
1642#elif defined(CONFIG_M532x)
1643/*
1644 * Code specific for M532x
1645 */
1646static void __inline__ fec_request_intrs(struct net_device *dev)
1647{
1648 struct fec_enet_private *fep;
1649 int b;
1650 static const struct idesc {
1651 char *name;
1652 unsigned short irq;
1653 } *idp, id[] = {
1654 { "fec(TXF)", 36 },
6b265293 1655 { "fec(RXF)", 40 },
6b265293 1656 { "fec(MII)", 42 },
6b265293
MW
1657 { NULL },
1658 };
1659
1660 fep = netdev_priv(dev);
1661 b = (fep->index) ? 128 : 64;
1662
1663 /* Setup interrupt handlers. */
1664 for (idp = id; idp->name; idp++) {
0a504779 1665 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
6aa20a22 1666 printk("FEC: Could not allocate %s IRQ(%d)!\n",
6b265293
MW
1667 idp->name, b+idp->irq);
1668 }
1669
1670 /* Unmask interrupts */
1671 MCF_INTC0_ICR36 = 0x2;
1672 MCF_INTC0_ICR37 = 0x2;
1673 MCF_INTC0_ICR38 = 0x2;
1674 MCF_INTC0_ICR39 = 0x2;
1675 MCF_INTC0_ICR40 = 0x2;
1676 MCF_INTC0_ICR41 = 0x2;
1677 MCF_INTC0_ICR42 = 0x2;
1678 MCF_INTC0_ICR43 = 0x2;
1679 MCF_INTC0_ICR44 = 0x2;
1680 MCF_INTC0_ICR45 = 0x2;
1681 MCF_INTC0_ICR46 = 0x2;
1682 MCF_INTC0_ICR47 = 0x2;
1683 MCF_INTC0_ICR48 = 0x2;
1684
1685 MCF_INTC0_IMRH &= ~(
1686 MCF_INTC_IMRH_INT_MASK36 |
1687 MCF_INTC_IMRH_INT_MASK37 |
1688 MCF_INTC_IMRH_INT_MASK38 |
1689 MCF_INTC_IMRH_INT_MASK39 |
1690 MCF_INTC_IMRH_INT_MASK40 |
1691 MCF_INTC_IMRH_INT_MASK41 |
1692 MCF_INTC_IMRH_INT_MASK42 |
1693 MCF_INTC_IMRH_INT_MASK43 |
1694 MCF_INTC_IMRH_INT_MASK44 |
1695 MCF_INTC_IMRH_INT_MASK45 |
1696 MCF_INTC_IMRH_INT_MASK46 |
1697 MCF_INTC_IMRH_INT_MASK47 |
1698 MCF_INTC_IMRH_INT_MASK48 );
1699
1700 /* Set up gpio outputs for MII lines */
1701 MCF_GPIO_PAR_FECI2C |= (0 |
1702 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1703 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1704 MCF_GPIO_PAR_FEC = (0 |
1705 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1706 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1707}
1708
1709static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1710{
1711 volatile fec_t *fecp;
1712
1713 fecp = fep->hwp;
1714 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1715 fecp->fec_x_cntrl = 0x00;
1716
1717 /*
1718 * Set MII speed to 2.5 MHz
1719 */
1720 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1721 fecp->fec_mii_speed = fep->phy_speed;
1722
1723 fec_restart(dev, 0);
1724}
1725
1726static void __inline__ fec_get_mac(struct net_device *dev)
1727{
1728 struct fec_enet_private *fep = netdev_priv(dev);
1729 volatile fec_t *fecp;
1730 unsigned char *iap, tmpaddr[ETH_ALEN];
1731
1732 fecp = fep->hwp;
1733
1734 if (FEC_FLASHMAC) {
1735 /*
1736 * Get MAC address from FLASH.
1737 * If it is all 1's or 0's, use the default.
1738 */
1739 iap = FEC_FLASHMAC;
1740 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1741 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1742 iap = fec_mac_default;
1743 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1744 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1745 iap = fec_mac_default;
1746 } else {
1747 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1748 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1749 iap = &tmpaddr[0];
1750 }
1751
1752 memcpy(dev->dev_addr, iap, ETH_ALEN);
1753
1754 /* Adjust MAC if using default MAC address */
1755 if (iap == fec_mac_default)
1756 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1757}
1758
1759static void __inline__ fec_enable_phy_intr(void)
1760{
1761}
1762
1763static void __inline__ fec_disable_phy_intr(void)
1764{
1765}
1766
1767static void __inline__ fec_phy_ack_intr(void)
1768{
1769}
1770
1771static void __inline__ fec_localhw_setup(void)
1772{
1773}
1774
1775/*
1776 * Do not need to make region uncached on 532x.
1777 */
1778static void __inline__ fec_uncache(unsigned long addr)
1779{
1780}
1781
1782/* ------------------------------------------------------------------------- */
1783
1784
1da177e4
LT
1785#else
1786
1787/*
7dd6a2aa 1788 * Code specific to the MPC860T setup.
1da177e4
LT
1789 */
1790static void __inline__ fec_request_intrs(struct net_device *dev)
1791{
1792 volatile immap_t *immap;
1793
1794 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1795
1796 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1797 panic("Could not allocate FEC IRQ!");
1798
1799#ifdef CONFIG_RPXCLASSIC
1800 /* Make Port C, bit 15 an input that causes interrupts.
1801 */
1802 immap->im_ioport.iop_pcpar &= ~0x0001;
1803 immap->im_ioport.iop_pcdir &= ~0x0001;
1804 immap->im_ioport.iop_pcso &= ~0x0001;
1805 immap->im_ioport.iop_pcint |= 0x0001;
1806 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1807
1808 /* Make LEDS reflect Link status.
1809 */
1810 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1811#endif
1812#ifdef CONFIG_FADS
1813 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1814 panic("Could not allocate MII IRQ!");
1815#endif
1816}
1817
1818static void __inline__ fec_get_mac(struct net_device *dev)
1819{
1da177e4 1820 bd_t *bd;
1da177e4 1821
1da177e4 1822 bd = (bd_t *)__res;
7dd6a2aa 1823 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1da177e4
LT
1824
1825#ifdef CONFIG_RPXCLASSIC
1826 /* The Embedded Planet boards have only one MAC address in
1827 * the EEPROM, but can have two Ethernet ports. For the
1828 * FEC port, we create another address by setting one of
1829 * the address bits above something that would have (up to
1830 * now) been allocated.
1831 */
7dd6a2aa 1832 dev->dev_adrd[3] |= 0x80;
1da177e4 1833#endif
1da177e4
LT
1834}
1835
1836static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1837{
1838 extern uint _get_IMMR(void);
1839 volatile immap_t *immap;
1840 volatile fec_t *fecp;
1841
1842 fecp = fep->hwp;
1843 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1844
1845 /* Configure all of port D for MII.
1846 */
1847 immap->im_ioport.iop_pdpar = 0x1fff;
1848
1849 /* Bits moved from Rev. D onward.
1850 */
1851 if ((_get_IMMR() & 0xffff) < 0x0501)
1852 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1853 else
1854 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
6aa20a22 1855
1da177e4
LT
1856 /* Set MII speed to 2.5 MHz
1857 */
6aa20a22 1858 fecp->fec_mii_speed = fep->phy_speed =
1da177e4
LT
1859 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1860}
1861
1862static void __inline__ fec_enable_phy_intr(void)
1863{
1864 volatile fec_t *fecp;
1865
1866 fecp = fep->hwp;
1867
6aa20a22 1868 /* Enable MII command finished interrupt
1da177e4
LT
1869 */
1870 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1871}
1872
1873static void __inline__ fec_disable_phy_intr(void)
1874{
1875}
1876
1877static void __inline__ fec_phy_ack_intr(void)
1878{
1879}
1880
1881static void __inline__ fec_localhw_setup(void)
1882{
1883 volatile fec_t *fecp;
1884
1885 fecp = fep->hwp;
1886 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1887 /* Enable big endian and don't care about SDMA FC.
1888 */
1889 fecp->fec_fun_code = 0x78000000;
1890}
1891
1892static void __inline__ fec_uncache(unsigned long addr)
1893{
1894 pte_t *pte;
1895 pte = va_to_pte(mem_addr);
1896 pte_val(*pte) |= _PAGE_NO_CACHE;
1897 flush_tlb_page(init_mm.mmap, mem_addr);
1898}
1899
1900#endif
1901
1902/* ------------------------------------------------------------------------- */
1903
1904static void mii_display_status(struct net_device *dev)
1905{
1906 struct fec_enet_private *fep = netdev_priv(dev);
1907 volatile uint *s = &(fep->phy_status);
1908
1909 if (!fep->link && !fep->old_link) {
1910 /* Link is still down - don't print anything */
1911 return;
1912 }
1913
1914 printk("%s: status: ", dev->name);
1915
1916 if (!fep->link) {
1917 printk("link down");
1918 } else {
1919 printk("link up");
1920
1921 switch(*s & PHY_STAT_SPMASK) {
1922 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1923 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1924 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1925 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1926 default:
1927 printk(", Unknown speed/duplex");
1928 }
1929
1930 if (*s & PHY_STAT_ANC)
1931 printk(", auto-negotiation complete");
1932 }
1933
1934 if (*s & PHY_STAT_FAULT)
1935 printk(", remote fault");
1936
1937 printk(".\n");
1938}
1939
cb84d6e7 1940static void mii_display_config(struct work_struct *work)
1da177e4 1941{
cb84d6e7
GU
1942 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1943 struct net_device *dev = fep->netdev;
7dd6a2aa 1944 uint status = fep->phy_status;
1da177e4
LT
1945
1946 /*
1947 ** When we get here, phy_task is already removed from
1948 ** the workqueue. It is thus safe to allow to reuse it.
1949 */
1950 fep->mii_phy_task_queued = 0;
1951 printk("%s: config: auto-negotiation ", dev->name);
1952
7dd6a2aa 1953 if (status & PHY_CONF_ANE)
1da177e4
LT
1954 printk("on");
1955 else
1956 printk("off");
1957
7dd6a2aa 1958 if (status & PHY_CONF_100FDX)
1da177e4 1959 printk(", 100FDX");
7dd6a2aa 1960 if (status & PHY_CONF_100HDX)
1da177e4 1961 printk(", 100HDX");
7dd6a2aa 1962 if (status & PHY_CONF_10FDX)
1da177e4 1963 printk(", 10FDX");
7dd6a2aa 1964 if (status & PHY_CONF_10HDX)
1da177e4 1965 printk(", 10HDX");
7dd6a2aa 1966 if (!(status & PHY_CONF_SPMASK))
1da177e4
LT
1967 printk(", No speed/duplex selected?");
1968
7dd6a2aa 1969 if (status & PHY_CONF_LOOP)
1da177e4 1970 printk(", loopback enabled");
6aa20a22 1971
1da177e4
LT
1972 printk(".\n");
1973
1974 fep->sequence_done = 1;
1975}
1976
cb84d6e7 1977static void mii_relink(struct work_struct *work)
1da177e4 1978{
cb84d6e7
GU
1979 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1980 struct net_device *dev = fep->netdev;
1da177e4
LT
1981 int duplex;
1982
1983 /*
1984 ** When we get here, phy_task is already removed from
1985 ** the workqueue. It is thus safe to allow to reuse it.
1986 */
1987 fep->mii_phy_task_queued = 0;
1988 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1989 mii_display_status(dev);
1990 fep->old_link = fep->link;
1991
1992 if (fep->link) {
1993 duplex = 0;
6aa20a22 1994 if (fep->phy_status
1da177e4
LT
1995 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1996 duplex = 1;
1997 fec_restart(dev, duplex);
f909b1ef 1998 } else
1da177e4
LT
1999 fec_stop(dev);
2000
2001#if 0
2002 enable_irq(fep->mii_irq);
2003#endif
2004
2005}
2006
2007/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2008static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2009{
2010 struct fec_enet_private *fep = netdev_priv(dev);
2011
2012 /*
2013 ** We cannot queue phy_task twice in the workqueue. It
2014 ** would cause an endless loop in the workqueue.
2015 ** Fortunately, if the last mii_relink entry has not yet been
2016 ** executed now, it will do the job for the current interrupt,
2017 ** which is just what we want.
2018 */
2019 if (fep->mii_phy_task_queued)
2020 return;
2021
2022 fep->mii_phy_task_queued = 1;
cb84d6e7 2023 INIT_WORK(&fep->phy_task, mii_relink);
1da177e4
LT
2024 schedule_work(&fep->phy_task);
2025}
2026
7dd6a2aa 2027/* mii_queue_config is called in interrupt context from fec_enet_mii */
1da177e4
LT
2028static void mii_queue_config(uint mii_reg, struct net_device *dev)
2029{
2030 struct fec_enet_private *fep = netdev_priv(dev);
2031
2032 if (fep->mii_phy_task_queued)
2033 return;
2034
2035 fep->mii_phy_task_queued = 1;
cb84d6e7 2036 INIT_WORK(&fep->phy_task, mii_display_config);
1da177e4
LT
2037 schedule_work(&fep->phy_task);
2038}
2039
7dd6a2aa
GU
2040phy_cmd_t const phy_cmd_relink[] = {
2041 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2042 { mk_mii_end, }
2043 };
2044phy_cmd_t const phy_cmd_config[] = {
2045 { mk_mii_read(MII_REG_CR), mii_queue_config },
2046 { mk_mii_end, }
2047 };
1da177e4
LT
2048
2049/* Read remainder of PHY ID.
2050*/
2051static void
2052mii_discover_phy3(uint mii_reg, struct net_device *dev)
2053{
2054 struct fec_enet_private *fep;
2055 int i;
2056
2057 fep = netdev_priv(dev);
2058 fep->phy_id |= (mii_reg & 0xffff);
2059 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2060
2061 for(i = 0; phy_info[i]; i++) {
2062 if(phy_info[i]->id == (fep->phy_id >> 4))
2063 break;
2064 }
2065
2066 if (phy_info[i])
2067 printk(" -- %s\n", phy_info[i]->name);
2068 else
2069 printk(" -- unknown PHY!\n");
6aa20a22 2070
1da177e4
LT
2071 fep->phy = phy_info[i];
2072 fep->phy_id_done = 1;
2073}
2074
2075/* Scan all of the MII PHY addresses looking for someone to respond
2076 * with a valid ID. This usually happens quickly.
2077 */
2078static void
2079mii_discover_phy(uint mii_reg, struct net_device *dev)
2080{
2081 struct fec_enet_private *fep;
2082 volatile fec_t *fecp;
2083 uint phytype;
2084
2085 fep = netdev_priv(dev);
2086 fecp = fep->hwp;
2087
2088 if (fep->phy_addr < 32) {
2089 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
6aa20a22 2090
1da177e4
LT
2091 /* Got first part of ID, now get remainder.
2092 */
2093 fep->phy_id = phytype << 16;
2094 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2095 mii_discover_phy3);
f909b1ef 2096 } else {
1da177e4
LT
2097 fep->phy_addr++;
2098 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2099 mii_discover_phy);
2100 }
2101 } else {
2102 printk("FEC: No PHY device found.\n");
2103 /* Disable external MII interface */
2104 fecp->fec_mii_speed = fep->phy_speed = 0;
2105 fec_disable_phy_intr();
2106 }
2107}
2108
2109/* This interrupt occurs when the PHY detects a link change.
2110*/
c1d96156 2111#ifdef HAVE_mii_link_interrupt
1da177e4
LT
2112#ifdef CONFIG_RPXCLASSIC
2113static void
2114mii_link_interrupt(void *dev_id)
2115#else
2116static irqreturn_t
7d12e780 2117mii_link_interrupt(int irq, void * dev_id)
1da177e4
LT
2118#endif
2119{
2120 struct net_device *dev = dev_id;
2121 struct fec_enet_private *fep = netdev_priv(dev);
2122
2123 fec_phy_ack_intr();
2124
2125#if 0
2126 disable_irq(fep->mii_irq); /* disable now, enable later */
2127#endif
2128
2129 mii_do_cmd(dev, fep->phy->ack_int);
2130 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2131
2132 return IRQ_HANDLED;
2133}
c1d96156 2134#endif
1da177e4
LT
2135
2136static int
2137fec_enet_open(struct net_device *dev)
2138{
2139 struct fec_enet_private *fep = netdev_priv(dev);
2140
2141 /* I should reset the ring buffers here, but I don't yet know
2142 * a simple way to do that.
2143 */
2144 fec_set_mac_address(dev);
2145
2146 fep->sequence_done = 0;
2147 fep->link = 0;
2148
2149 if (fep->phy) {
2150 mii_do_cmd(dev, fep->phy->ack_int);
2151 mii_do_cmd(dev, fep->phy->config);
2152 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2153
6b265293
MW
2154 /* Poll until the PHY tells us its configuration
2155 * (not link state).
2156 * Request is initiated by mii_do_cmd above, but answer
2157 * comes by interrupt.
2158 * This should take about 25 usec per register at 2.5 MHz,
2159 * and we read approximately 5 registers.
1da177e4
LT
2160 */
2161 while(!fep->sequence_done)
2162 schedule();
2163
2164 mii_do_cmd(dev, fep->phy->startup);
2165
2166 /* Set the initial link state to true. A lot of hardware
2167 * based on this device does not implement a PHY interrupt,
2168 * so we are never notified of link change.
2169 */
2170 fep->link = 1;
2171 } else {
2172 fep->link = 1; /* lets just try it and see */
2173 /* no phy, go full duplex, it's most likely a hub chip */
2174 fec_restart(dev, 1);
2175 }
2176
2177 netif_start_queue(dev);
2178 fep->opened = 1;
2179 return 0; /* Success */
2180}
2181
2182static int
2183fec_enet_close(struct net_device *dev)
2184{
2185 struct fec_enet_private *fep = netdev_priv(dev);
2186
2187 /* Don't know what to do yet.
2188 */
2189 fep->opened = 0;
2190 netif_stop_queue(dev);
2191 fec_stop(dev);
2192
2193 return 0;
2194}
2195
1da177e4
LT
2196/* Set or clear the multicast filter for this adaptor.
2197 * Skeleton taken from sunlance driver.
2198 * The CPM Ethernet implementation allows Multicast as well as individual
2199 * MAC address filtering. Some of the drivers check to make sure it is
2200 * a group multicast address, and discard those that are not. I guess I
2201 * will do the same for now, but just remove the test if you want
2202 * individual filtering as well (do the upper net layers want or support
2203 * this kind of feature?).
2204 */
2205
2206#define HASH_BITS 6 /* #bits in hash */
2207#define CRC32_POLY 0xEDB88320
2208
2209static void set_multicast_list(struct net_device *dev)
2210{
2211 struct fec_enet_private *fep;
2212 volatile fec_t *ep;
2213 struct dev_mc_list *dmi;
2214 unsigned int i, j, bit, data, crc;
2215 unsigned char hash;
2216
2217 fep = netdev_priv(dev);
2218 ep = fep->hwp;
2219
2220 if (dev->flags&IFF_PROMISC) {
1da177e4
LT
2221 ep->fec_r_cntrl |= 0x0008;
2222 } else {
2223
2224 ep->fec_r_cntrl &= ~0x0008;
2225
2226 if (dev->flags & IFF_ALLMULTI) {
2227 /* Catch all multicast addresses, so set the
2228 * filter to all 1's.
2229 */
cc462f7d
GU
2230 ep->fec_grp_hash_table_high = 0xffffffff;
2231 ep->fec_grp_hash_table_low = 0xffffffff;
1da177e4
LT
2232 } else {
2233 /* Clear filter and add the addresses in hash register.
2234 */
cc462f7d
GU
2235 ep->fec_grp_hash_table_high = 0;
2236 ep->fec_grp_hash_table_low = 0;
6aa20a22 2237
1da177e4
LT
2238 dmi = dev->mc_list;
2239
2240 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2241 {
2242 /* Only support group multicast for now.
2243 */
2244 if (!(dmi->dmi_addr[0] & 1))
2245 continue;
6aa20a22 2246
1da177e4
LT
2247 /* calculate crc32 value of mac address
2248 */
2249 crc = 0xffffffff;
2250
2251 for (i = 0; i < dmi->dmi_addrlen; i++)
2252 {
2253 data = dmi->dmi_addr[i];
2254 for (bit = 0; bit < 8; bit++, data >>= 1)
2255 {
2256 crc = (crc >> 1) ^
2257 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2258 }
2259 }
2260
2261 /* only upper 6 bits (HASH_BITS) are used
2262 which point to specific bit in he hash registers
2263 */
2264 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
6aa20a22 2265
1da177e4 2266 if (hash > 31)
cc462f7d 2267 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
1da177e4 2268 else
cc462f7d 2269 ep->fec_grp_hash_table_low |= 1 << hash;
1da177e4
LT
2270 }
2271 }
2272 }
2273}
2274
2275/* Set a MAC change in hardware.
2276 */
2277static void
2278fec_set_mac_address(struct net_device *dev)
2279{
1da177e4
LT
2280 volatile fec_t *fecp;
2281
7dd6a2aa 2282 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1da177e4
LT
2283
2284 /* Set station address. */
7dd6a2aa
GU
2285 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2286 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2287 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2288 (dev->dev_addr[4] << 24);
1da177e4
LT
2289
2290}
2291
2292/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2293 */
2294 /*
2295 * XXX: We need to clean up on failure exits here.
2296 */
2297int __init fec_enet_init(struct net_device *dev)
2298{
2299 struct fec_enet_private *fep = netdev_priv(dev);
2300 unsigned long mem_addr;
2301 volatile cbd_t *bdp;
2302 cbd_t *cbd_base;
2303 volatile fec_t *fecp;
2304 int i, j;
2305 static int index = 0;
2306
2307 /* Only allow us to be probed once. */
2308 if (index >= FEC_MAX_PORTS)
2309 return -ENXIO;
2310
562d2f8c
GU
2311 /* Allocate memory for buffer descriptors.
2312 */
2313 mem_addr = __get_free_page(GFP_KERNEL);
2314 if (mem_addr == 0) {
2315 printk("FEC: allocate descriptor memory failed?\n");
2316 return -ENOMEM;
2317 }
2318
3b2b74ca
SS
2319 spin_lock_init(&fep->hw_lock);
2320 spin_lock_init(&fep->mii_lock);
2321
1da177e4
LT
2322 /* Create an Ethernet device instance.
2323 */
2324 fecp = (volatile fec_t *) fec_hw[index];
2325
2326 fep->index = index;
2327 fep->hwp = fecp;
cb84d6e7 2328 fep->netdev = dev;
1da177e4
LT
2329
2330 /* Whack a reset. We should wait for this.
2331 */
2332 fecp->fec_ecntrl = 1;
2333 udelay(10);
2334
1da177e4
LT
2335 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2336 * this needs some work to get unique addresses.
2337 *
2338 * This is our default MAC address unless the user changes
2339 * it via eth_mac_addr (our dev->set_mac_addr handler).
2340 */
2341 fec_get_mac(dev);
2342
1da177e4
LT
2343 cbd_base = (cbd_t *)mem_addr;
2344 /* XXX: missing check for allocation failure */
2345
2346 fec_uncache(mem_addr);
2347
2348 /* Set receive and transmit descriptor base.
2349 */
2350 fep->rx_bd_base = cbd_base;
2351 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2352
2353 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2354 fep->cur_rx = fep->rx_bd_base;
2355
2356 fep->skb_cur = fep->skb_dirty = 0;
2357
2358 /* Initialize the receive buffer descriptors.
2359 */
2360 bdp = fep->rx_bd_base;
2361 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2362
2363 /* Allocate a page.
2364 */
2365 mem_addr = __get_free_page(GFP_KERNEL);
2366 /* XXX: missing check for allocation failure */
2367
2368 fec_uncache(mem_addr);
2369
2370 /* Initialize the BD for every fragment in the page.
2371 */
2372 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2373 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2374 bdp->cbd_bufaddr = __pa(mem_addr);
2375 mem_addr += FEC_ENET_RX_FRSIZE;
2376 bdp++;
2377 }
2378 }
2379
2380 /* Set the last buffer to wrap.
2381 */
2382 bdp--;
2383 bdp->cbd_sc |= BD_SC_WRAP;
2384
2385 /* ...and the same for transmmit.
2386 */
2387 bdp = fep->tx_bd_base;
2388 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2389 if (j >= FEC_ENET_TX_FRPPG) {
2390 mem_addr = __get_free_page(GFP_KERNEL);
2391 j = 1;
2392 } else {
2393 mem_addr += FEC_ENET_TX_FRSIZE;
2394 j++;
2395 }
2396 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2397
2398 /* Initialize the BD for every fragment in the page.
2399 */
2400 bdp->cbd_sc = 0;
2401 bdp->cbd_bufaddr = 0;
2402 bdp++;
2403 }
2404
2405 /* Set the last buffer to wrap.
2406 */
2407 bdp--;
2408 bdp->cbd_sc |= BD_SC_WRAP;
2409
2410 /* Set receive and transmit descriptor base.
2411 */
2412 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2413 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2414
2415 /* Install our interrupt handlers. This varies depending on
2416 * the architecture.
2417 */
2418 fec_request_intrs(dev);
2419
cc462f7d
GU
2420 fecp->fec_grp_hash_table_high = 0;
2421 fecp->fec_grp_hash_table_low = 0;
562d2f8c
GU
2422 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2423 fecp->fec_ecntrl = 2;
6b265293 2424 fecp->fec_r_des_active = 0;
cc462f7d
GU
2425#ifndef CONFIG_M5272
2426 fecp->fec_hash_table_high = 0;
2427 fecp->fec_hash_table_low = 0;
2428#endif
562d2f8c 2429
1da177e4
LT
2430 dev->base_addr = (unsigned long)fecp;
2431
2432 /* The FEC Ethernet specific entries in the device structure. */
2433 dev->open = fec_enet_open;
2434 dev->hard_start_xmit = fec_enet_start_xmit;
2435 dev->tx_timeout = fec_timeout;
2436 dev->watchdog_timeo = TX_TIMEOUT;
2437 dev->stop = fec_enet_close;
1da177e4
LT
2438 dev->set_multicast_list = set_multicast_list;
2439
2440 for (i=0; i<NMII-1; i++)
2441 mii_cmds[i].mii_next = &mii_cmds[i+1];
2442 mii_free = mii_cmds;
2443
2444 /* setup MII interface */
2445 fec_set_mii(dev, fep);
2446
6b265293
MW
2447 /* Clear and enable interrupts */
2448 fecp->fec_ievent = 0xffc00000;
398ec922 2449 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
6b265293 2450
1da177e4
LT
2451 /* Queue up command to detect the PHY and initialize the
2452 * remainder of the interface.
2453 */
2454 fep->phy_id_done = 0;
2455 fep->phy_addr = 0;
2456 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2457
2458 index++;
2459 return 0;
2460}
2461
2462/* This function is called to start or restart the FEC during a link
2463 * change. This only happens when switching between half and full
2464 * duplex.
2465 */
2466static void
2467fec_restart(struct net_device *dev, int duplex)
2468{
2469 struct fec_enet_private *fep;
2470 volatile cbd_t *bdp;
2471 volatile fec_t *fecp;
2472 int i;
2473
2474 fep = netdev_priv(dev);
2475 fecp = fep->hwp;
2476
2477 /* Whack a reset. We should wait for this.
2478 */
2479 fecp->fec_ecntrl = 1;
2480 udelay(10);
2481
1da177e4
LT
2482 /* Clear any outstanding interrupt.
2483 */
7dd6a2aa 2484 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
2485 fec_enable_phy_intr();
2486
2487 /* Set station address.
2488 */
7dd6a2aa 2489 fec_set_mac_address(dev);
1da177e4
LT
2490
2491 /* Reset all multicast.
2492 */
cc462f7d
GU
2493 fecp->fec_grp_hash_table_high = 0;
2494 fecp->fec_grp_hash_table_low = 0;
1da177e4
LT
2495
2496 /* Set maximum receive buffer size.
2497 */
2498 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2499
2500 fec_localhw_setup();
2501
2502 /* Set receive and transmit descriptor base.
2503 */
2504 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2505 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2506
2507 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2508 fep->cur_rx = fep->rx_bd_base;
2509
2510 /* Reset SKB transmit buffers.
2511 */
2512 fep->skb_cur = fep->skb_dirty = 0;
2513 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2514 if (fep->tx_skbuff[i] != NULL) {
2515 dev_kfree_skb_any(fep->tx_skbuff[i]);
2516 fep->tx_skbuff[i] = NULL;
2517 }
2518 }
2519
2520 /* Initialize the receive buffer descriptors.
2521 */
2522 bdp = fep->rx_bd_base;
2523 for (i=0; i<RX_RING_SIZE; i++) {
2524
2525 /* Initialize the BD for every fragment in the page.
2526 */
2527 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2528 bdp++;
2529 }
2530
2531 /* Set the last buffer to wrap.
2532 */
2533 bdp--;
2534 bdp->cbd_sc |= BD_SC_WRAP;
2535
2536 /* ...and the same for transmmit.
2537 */
2538 bdp = fep->tx_bd_base;
2539 for (i=0; i<TX_RING_SIZE; i++) {
2540
2541 /* Initialize the BD for every fragment in the page.
2542 */
2543 bdp->cbd_sc = 0;
2544 bdp->cbd_bufaddr = 0;
2545 bdp++;
2546 }
2547
2548 /* Set the last buffer to wrap.
2549 */
2550 bdp--;
2551 bdp->cbd_sc |= BD_SC_WRAP;
2552
2553 /* Enable MII mode.
2554 */
2555 if (duplex) {
2556 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2557 fecp->fec_x_cntrl = 0x04; /* FD enable */
f909b1ef 2558 } else {
1da177e4
LT
2559 /* MII enable|No Rcv on Xmit */
2560 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2561 fecp->fec_x_cntrl = 0x00;
2562 }
2563 fep->full_duplex = duplex;
2564
2565 /* Set MII speed.
2566 */
2567 fecp->fec_mii_speed = fep->phy_speed;
2568
2569 /* And last, enable the transmit and receive processing.
2570 */
2571 fecp->fec_ecntrl = 2;
6b265293
MW
2572 fecp->fec_r_des_active = 0;
2573
2574 /* Enable interrupts we wish to service.
2575 */
398ec922 2576 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
1da177e4
LT
2577}
2578
2579static void
2580fec_stop(struct net_device *dev)
2581{
2582 volatile fec_t *fecp;
2583 struct fec_enet_private *fep;
2584
2585 fep = netdev_priv(dev);
2586 fecp = fep->hwp;
2587
677177c5
PDM
2588 /*
2589 ** We cannot expect a graceful transmit stop without link !!!
2590 */
2591 if (fep->link)
2592 {
2593 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2594 udelay(10);
2595 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2596 printk("fec_stop : Graceful transmit stop did not complete !\n");
2597 }
1da177e4
LT
2598
2599 /* Whack a reset. We should wait for this.
2600 */
2601 fecp->fec_ecntrl = 1;
2602 udelay(10);
2603
2604 /* Clear outstanding MII command interrupts.
2605 */
2606 fecp->fec_ievent = FEC_ENET_MII;
2607 fec_enable_phy_intr();
2608
2609 fecp->fec_imask = FEC_ENET_MII;
2610 fecp->fec_mii_speed = fep->phy_speed;
2611}
2612
2613static int __init fec_enet_module_init(void)
2614{
2615 struct net_device *dev;
c1d96156 2616 int i, err;
0795af57 2617 DECLARE_MAC_BUF(mac);
7dd6a2aa
GU
2618
2619 printk("FEC ENET Version 0.2\n");
1da177e4
LT
2620
2621 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2622 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2623 if (!dev)
2624 return -ENOMEM;
2625 err = fec_enet_init(dev);
2626 if (err) {
2627 free_netdev(dev);
2628 continue;
2629 }
2630 if (register_netdev(dev) != 0) {
2631 /* XXX: missing cleanup here */
2632 free_netdev(dev);
2633 return -EIO;
2634 }
7dd6a2aa 2635
0795af57
JP
2636 printk("%s: ethernet %s\n",
2637 dev->name, print_mac(mac, dev->dev_addr));
1da177e4
LT
2638 }
2639 return 0;
2640}
2641
2642module_init(fec_enet_module_init);
2643
2644MODULE_LICENSE("GPL");