]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/fec.c
net/fec: don't free an irq that failed to be requested
[mirror_ubuntu-zesty-kernel.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b
SG
20 *
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
1da177e4 47
080853af 48#include <asm/cacheflush.h>
196719ec 49
b5680e0b 50#ifndef CONFIG_ARM
1da177e4
LT
51#include <asm/coldfire.h>
52#include <asm/mcfsim.h>
196719ec 53#endif
6f501b17 54
1da177e4 55#include "fec.h"
1da177e4 56
b5680e0b 57#if defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
196719ec
SH
58#define FEC_ALIGNMENT 0xf
59#else
60#define FEC_ALIGNMENT 0x3
61#endif
62
b5680e0b
SG
63#define DRIVER_NAME "fec"
64
65/* Controller is ENET-MAC */
66#define FEC_QUIRK_ENET_MAC (1 << 0)
67/* Controller needs driver to swap frame */
68#define FEC_QUIRK_SWAP_FRAME (1 << 1)
69
70static struct platform_device_id fec_devtype[] = {
71 {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
77 }
78};
79
49da97dc
SG
80static unsigned char macaddr[ETH_ALEN];
81module_param_array(macaddr, byte, NULL, 0);
82MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 83
49da97dc 84#if defined(CONFIG_M5272)
1da177e4
LT
85/*
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
88 */
89#if defined(CONFIG_NETtel)
90#define FEC_FLASHMAC 0xf0006006
91#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
93#elif defined(CONFIG_CANCam)
94#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
95#elif defined (CONFIG_M5272C3)
96#define FEC_FLASHMAC (0xffe04000 + 4)
97#elif defined(CONFIG_MOD5272)
98#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
99#else
100#define FEC_FLASHMAC 0
101#endif
43be6366 102#endif /* CONFIG_M5272 */
ead73183 103
1da177e4
LT
104/* The number of Tx and Rx buffers. These are allocated from the page
105 * pool. The code may assume these are power of two, so it it best
106 * to keep them that size.
107 * We don't need to allocate pages for the transmitter. We just use
108 * the skbuffer directly.
109 */
110#define FEC_ENET_RX_PAGES 8
111#define FEC_ENET_RX_FRSIZE 2048
112#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
113#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
114#define FEC_ENET_TX_FRSIZE 2048
115#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
116#define TX_RING_SIZE 16 /* Must be power of two */
117#define TX_RING_MOD_MASK 15 /* for this to work */
118
562d2f8c 119#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 120#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
121#endif
122
22f6b860 123/* Interrupt events/masks. */
1da177e4
LT
124#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
125#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
126#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
127#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
128#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
129#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
130#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
131#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
132#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
133#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
134
4bee1f9a
WS
135#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
136
1da177e4
LT
137/* The FEC stores dest/src/type, data, and checksum for receive packets.
138 */
139#define PKT_MAXBUF_SIZE 1518
140#define PKT_MINBUF_SIZE 64
141#define PKT_MAXBLR_SIZE 1520
142
143
144/*
6b265293 145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
148 */
562d2f8c 149#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
b5680e0b
SG
150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
151 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
1da177e4
LT
152#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
153#else
154#define OPT_FRAME_SIZE 0
155#endif
156
157/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
164 */
165struct fec_enet_private {
166 /* Hardware registers of the FEC device */
f44d6305 167 void __iomem *hwp;
1da177e4 168
cb84d6e7
GU
169 struct net_device *netdev;
170
ead73183
SH
171 struct clk *clk;
172
1da177e4
LT
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce[TX_RING_SIZE];
175 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 176 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
177 ushort skb_cur;
178 ushort skb_dirty;
179
22f6b860 180 /* CPM dual port RAM relative addresses */
4661e75b 181 dma_addr_t bd_dma;
22f6b860 182 /* Address of Rx and Tx buffers */
2e28532f
SH
183 struct bufdesc *rx_bd_base;
184 struct bufdesc *tx_bd_base;
185 /* The next free ring entry */
186 struct bufdesc *cur_rx, *cur_tx;
22f6b860 187 /* The ring entries to be free()ed */
2e28532f
SH
188 struct bufdesc *dirty_tx;
189
1da177e4 190 uint tx_full;
3b2b74ca
SS
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
192 spinlock_t hw_lock;
1da177e4 193
e6b043d5 194 struct platform_device *pdev;
1da177e4 195
e6b043d5 196 int opened;
1da177e4 197
e6b043d5
BW
198 /* Phylib and MDIO interface */
199 struct mii_bus *mii_bus;
200 struct phy_device *phy_dev;
201 int mii_timeout;
202 uint phy_speed;
5eb32bd0 203 phy_interface_t phy_interface;
1da177e4 204 int link;
1da177e4 205 int full_duplex;
97b72e43 206 struct completion mdio_done;
1da177e4
LT
207};
208
7d12e780 209static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
210static void fec_enet_tx(struct net_device *dev);
211static void fec_enet_rx(struct net_device *dev);
212static int fec_enet_close(struct net_device *dev);
1da177e4
LT
213static void fec_restart(struct net_device *dev, int duplex);
214static void fec_stop(struct net_device *dev);
1da177e4 215
e6b043d5
BW
216/* FEC MII MMFR bits definition */
217#define FEC_MMFR_ST (1 << 30)
218#define FEC_MMFR_OP_READ (2 << 28)
219#define FEC_MMFR_OP_WRITE (1 << 28)
220#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
221#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
222#define FEC_MMFR_TA (2 << 16)
223#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 224
97b72e43 225#define FEC_MII_TIMEOUT 1000 /* us */
1da177e4 226
22f6b860
SH
227/* Transmitter timeout */
228#define TX_TIMEOUT (2 * HZ)
1da177e4 229
b5680e0b
SG
230static void *swap_buffer(void *bufaddr, int len)
231{
232 int i;
233 unsigned int *buf = bufaddr;
234
235 for (i = 0; i < (len + 3) / 4; i++, buf++)
236 *buf = cpu_to_be32(*buf);
237
238 return bufaddr;
239}
240
c7621cb3 241static netdev_tx_t
1da177e4
LT
242fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
243{
f44d6305 244 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
245 const struct platform_device_id *id_entry =
246 platform_get_device_id(fep->pdev);
2e28532f 247 struct bufdesc *bdp;
9555b31e 248 void *bufaddr;
0e702ab3 249 unsigned short status;
3b2b74ca 250 unsigned long flags;
1da177e4 251
1da177e4
LT
252 if (!fep->link) {
253 /* Link is down or autonegotiation is in progress. */
5b548140 254 return NETDEV_TX_BUSY;
1da177e4
LT
255 }
256
3b2b74ca 257 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
258 /* Fill in a Tx ring entry */
259 bdp = fep->cur_tx;
260
0e702ab3 261 status = bdp->cbd_sc;
22f6b860 262
0e702ab3 263 if (status & BD_ENET_TX_READY) {
1da177e4
LT
264 /* Ooops. All transmit buffers are full. Bail out.
265 * This should not happen, since dev->tbusy should be set.
266 */
267 printk("%s: tx queue full!.\n", dev->name);
3b2b74ca 268 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 269 return NETDEV_TX_BUSY;
1da177e4 270 }
1da177e4 271
22f6b860 272 /* Clear all of the status flags */
0e702ab3 273 status &= ~BD_ENET_TX_STATS;
1da177e4 274
22f6b860 275 /* Set buffer length and buffer pointer */
9555b31e 276 bufaddr = skb->data;
1da177e4
LT
277 bdp->cbd_datlen = skb->len;
278
279 /*
22f6b860
SH
280 * On some FEC implementations data must be aligned on
281 * 4-byte boundaries. Use bounce buffers to copy data
282 * and get it aligned. Ugh.
1da177e4 283 */
9555b31e 284 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
285 unsigned int index;
286 index = bdp - fep->tx_bd_base;
8a73b0bc 287 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 288 bufaddr = fep->tx_bounce[index];
1da177e4
LT
289 }
290
b5680e0b
SG
291 /*
292 * Some design made an incorrect assumption on endian mode of
293 * the system that it's running on. As the result, driver has to
294 * swap every frame going to and coming from the controller.
295 */
296 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
297 swap_buffer(bufaddr, skb->len);
298
22f6b860 299 /* Save skb pointer */
1da177e4
LT
300 fep->tx_skbuff[fep->skb_cur] = skb;
301
09f75cd7 302 dev->stats.tx_bytes += skb->len;
1da177e4 303 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 304
1da177e4
LT
305 /* Push the data cache so the CPM does not get stale memory
306 * data.
307 */
9555b31e 308 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
f0b3fbea 309 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 310
0e702ab3
GU
311 /* Send it on its way. Tell FEC it's ready, interrupt when done,
312 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 313 */
0e702ab3 314 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 315 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 316 bdp->cbd_sc = status;
1da177e4 317
1da177e4 318 /* Trigger transmission start */
f44d6305 319 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 320
22f6b860
SH
321 /* If this was the last BD in the ring, start at the beginning again. */
322 if (status & BD_ENET_TX_WRAP)
1da177e4 323 bdp = fep->tx_bd_base;
22f6b860 324 else
1da177e4 325 bdp++;
1da177e4
LT
326
327 if (bdp == fep->dirty_tx) {
328 fep->tx_full = 1;
329 netif_stop_queue(dev);
330 }
331
2e28532f 332 fep->cur_tx = bdp;
1da177e4 333
3b2b74ca 334 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 335
6ed10654 336 return NETDEV_TX_OK;
1da177e4
LT
337}
338
339static void
340fec_timeout(struct net_device *dev)
341{
342 struct fec_enet_private *fep = netdev_priv(dev);
343
09f75cd7 344 dev->stats.tx_errors++;
1da177e4 345
7dd6a2aa 346 fec_restart(dev, fep->full_duplex);
1da177e4
LT
347 netif_wake_queue(dev);
348}
349
1da177e4 350static irqreturn_t
7d12e780 351fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
352{
353 struct net_device *dev = dev_id;
f44d6305 354 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 355 uint int_events;
3b2b74ca 356 irqreturn_t ret = IRQ_NONE;
1da177e4 357
3b2b74ca 358 do {
f44d6305
SH
359 int_events = readl(fep->hwp + FEC_IEVENT);
360 writel(int_events, fep->hwp + FEC_IEVENT);
1da177e4 361
1da177e4 362 if (int_events & FEC_ENET_RXF) {
3b2b74ca 363 ret = IRQ_HANDLED;
1da177e4
LT
364 fec_enet_rx(dev);
365 }
366
367 /* Transmit OK, or non-fatal error. Update the buffer
f44d6305
SH
368 * descriptors. FEC handles all errors, we just discover
369 * them as part of the transmit process.
370 */
1da177e4 371 if (int_events & FEC_ENET_TXF) {
3b2b74ca 372 ret = IRQ_HANDLED;
1da177e4
LT
373 fec_enet_tx(dev);
374 }
97b72e43
BS
375
376 if (int_events & FEC_ENET_MII) {
377 ret = IRQ_HANDLED;
378 complete(&fep->mdio_done);
379 }
3b2b74ca
SS
380 } while (int_events);
381
382 return ret;
1da177e4
LT
383}
384
385
386static void
387fec_enet_tx(struct net_device *dev)
388{
389 struct fec_enet_private *fep;
2e28532f 390 struct bufdesc *bdp;
0e702ab3 391 unsigned short status;
1da177e4
LT
392 struct sk_buff *skb;
393
394 fep = netdev_priv(dev);
81538e74 395 spin_lock(&fep->hw_lock);
1da177e4
LT
396 bdp = fep->dirty_tx;
397
0e702ab3 398 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
399 if (bdp == fep->cur_tx && fep->tx_full == 0)
400 break;
401
402 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
403 bdp->cbd_bufaddr = 0;
1da177e4
LT
404
405 skb = fep->tx_skbuff[fep->skb_dirty];
406 /* Check for errors. */
0e702ab3 407 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
408 BD_ENET_TX_RL | BD_ENET_TX_UN |
409 BD_ENET_TX_CSL)) {
09f75cd7 410 dev->stats.tx_errors++;
0e702ab3 411 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 412 dev->stats.tx_heartbeat_errors++;
0e702ab3 413 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 414 dev->stats.tx_window_errors++;
0e702ab3 415 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 416 dev->stats.tx_aborted_errors++;
0e702ab3 417 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 418 dev->stats.tx_fifo_errors++;
0e702ab3 419 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 420 dev->stats.tx_carrier_errors++;
1da177e4 421 } else {
09f75cd7 422 dev->stats.tx_packets++;
1da177e4
LT
423 }
424
0e702ab3 425 if (status & BD_ENET_TX_READY)
1da177e4 426 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 427
1da177e4
LT
428 /* Deferred means some collisions occurred during transmit,
429 * but we eventually sent the packet OK.
430 */
0e702ab3 431 if (status & BD_ENET_TX_DEF)
09f75cd7 432 dev->stats.collisions++;
6aa20a22 433
22f6b860 434 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
435 dev_kfree_skb_any(skb);
436 fep->tx_skbuff[fep->skb_dirty] = NULL;
437 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 438
22f6b860 439 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 440 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
441 bdp = fep->tx_bd_base;
442 else
443 bdp++;
6aa20a22 444
22f6b860 445 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
446 */
447 if (fep->tx_full) {
448 fep->tx_full = 0;
449 if (netif_queue_stopped(dev))
450 netif_wake_queue(dev);
451 }
452 }
2e28532f 453 fep->dirty_tx = bdp;
81538e74 454 spin_unlock(&fep->hw_lock);
1da177e4
LT
455}
456
457
458/* During a receive, the cur_rx points to the current incoming buffer.
459 * When we update through the ring, if the next incoming buffer has
460 * not been given to the system, we just set the empty indicator,
461 * effectively tossing the packet.
462 */
463static void
464fec_enet_rx(struct net_device *dev)
465{
f44d6305 466 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
467 const struct platform_device_id *id_entry =
468 platform_get_device_id(fep->pdev);
2e28532f 469 struct bufdesc *bdp;
0e702ab3 470 unsigned short status;
1da177e4
LT
471 struct sk_buff *skb;
472 ushort pkt_len;
473 __u8 *data;
6aa20a22 474
0e702ab3
GU
475#ifdef CONFIG_M532x
476 flush_cache_all();
6aa20a22 477#endif
1da177e4 478
81538e74 479 spin_lock(&fep->hw_lock);
3b2b74ca 480
1da177e4
LT
481 /* First, grab all of the stats for the incoming packet.
482 * These get messed up if we get called due to a busy condition.
483 */
484 bdp = fep->cur_rx;
485
22f6b860 486 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 487
22f6b860
SH
488 /* Since we have allocated space to hold a complete frame,
489 * the last indicator should be set.
490 */
491 if ((status & BD_ENET_RX_LAST) == 0)
492 printk("FEC ENET: rcv is not +last\n");
1da177e4 493
22f6b860
SH
494 if (!fep->opened)
495 goto rx_processing_done;
1da177e4 496
22f6b860
SH
497 /* Check for errors. */
498 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 499 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
22f6b860
SH
500 dev->stats.rx_errors++;
501 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
502 /* Frame too long or too short. */
503 dev->stats.rx_length_errors++;
504 }
505 if (status & BD_ENET_RX_NO) /* Frame alignment */
506 dev->stats.rx_frame_errors++;
507 if (status & BD_ENET_RX_CR) /* CRC Error */
508 dev->stats.rx_crc_errors++;
509 if (status & BD_ENET_RX_OV) /* FIFO overrun */
510 dev->stats.rx_fifo_errors++;
1da177e4 511 }
1da177e4 512
22f6b860
SH
513 /* Report late collisions as a frame error.
514 * On this error, the BD is closed, but we don't know what we
515 * have in the buffer. So, just drop this frame on the floor.
516 */
517 if (status & BD_ENET_RX_CL) {
518 dev->stats.rx_errors++;
519 dev->stats.rx_frame_errors++;
520 goto rx_processing_done;
521 }
1da177e4 522
22f6b860
SH
523 /* Process the incoming frame. */
524 dev->stats.rx_packets++;
525 pkt_len = bdp->cbd_datlen;
526 dev->stats.rx_bytes += pkt_len;
527 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 528
f0b3fbea
SH
529 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
530 DMA_FROM_DEVICE);
ccdc4f19 531
b5680e0b
SG
532 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
533 swap_buffer(data, pkt_len);
534
22f6b860
SH
535 /* This does 16 byte alignment, exactly what we need.
536 * The packet length includes FCS, but we don't want to
537 * include that when passing upstream as it messes up
538 * bridging applications.
539 */
8549889c 540 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 541
8549889c 542 if (unlikely(!skb)) {
22f6b860
SH
543 printk("%s: Memory squeeze, dropping packet.\n",
544 dev->name);
545 dev->stats.rx_dropped++;
546 } else {
8549889c 547 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
548 skb_put(skb, pkt_len - 4); /* Make room */
549 skb_copy_to_linear_data(skb, data, pkt_len - 4);
550 skb->protocol = eth_type_trans(skb, dev);
551 netif_rx(skb);
552 }
f0b3fbea
SH
553
554 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
555 DMA_FROM_DEVICE);
22f6b860
SH
556rx_processing_done:
557 /* Clear the status flags for this buffer */
558 status &= ~BD_ENET_RX_STATS;
1da177e4 559
22f6b860
SH
560 /* Mark the buffer empty */
561 status |= BD_ENET_RX_EMPTY;
562 bdp->cbd_sc = status;
6aa20a22 563
22f6b860
SH
564 /* Update BD pointer to next entry */
565 if (status & BD_ENET_RX_WRAP)
566 bdp = fep->rx_bd_base;
567 else
568 bdp++;
569 /* Doing this here will keep the FEC running while we process
570 * incoming frames. On a heavily loaded network, we should be
571 * able to keep up at the expense of system resources.
572 */
573 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
574 }
2e28532f 575 fep->cur_rx = bdp;
1da177e4 576
81538e74 577 spin_unlock(&fep->hw_lock);
1da177e4
LT
578}
579
e6b043d5 580/* ------------------------------------------------------------------------- */
e6b043d5 581static void __inline__ fec_get_mac(struct net_device *dev)
1da177e4 582{
e6b043d5 583 struct fec_enet_private *fep = netdev_priv(dev);
49da97dc 584 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 585 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 586
49da97dc
SG
587 /*
588 * try to get mac address in following order:
589 *
590 * 1) module parameter via kernel command line in form
591 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
592 */
593 iap = macaddr;
594
595 /*
596 * 2) from flash or fuse (via platform data)
597 */
598 if (!is_valid_ether_addr(iap)) {
599#ifdef CONFIG_M5272
600 if (FEC_FLASHMAC)
601 iap = (unsigned char *)FEC_FLASHMAC;
602#else
603 if (pdata)
604 memcpy(iap, pdata->mac, ETH_ALEN);
605#endif
606 }
607
608 /*
609 * 3) FEC mac registers set by bootloader
610 */
611 if (!is_valid_ether_addr(iap)) {
612 *((unsigned long *) &tmpaddr[0]) =
613 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
614 *((unsigned short *) &tmpaddr[4]) =
615 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 616 iap = &tmpaddr[0];
1da177e4
LT
617 }
618
e6b043d5 619 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4 620
49da97dc
SG
621 /* Adjust MAC if using macaddr */
622 if (iap == macaddr)
623 dev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
1da177e4
LT
624}
625
e6b043d5 626/* ------------------------------------------------------------------------- */
1da177e4 627
e6b043d5
BW
628/*
629 * Phy section
630 */
631static void fec_enet_adjust_link(struct net_device *dev)
1da177e4
LT
632{
633 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5
BW
634 struct phy_device *phy_dev = fep->phy_dev;
635 unsigned long flags;
1da177e4 636
e6b043d5 637 int status_change = 0;
1da177e4 638
e6b043d5 639 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 640
e6b043d5
BW
641 /* Prevent a state halted on mii error */
642 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
643 phy_dev->state = PHY_RESUMING;
644 goto spin_unlock;
645 }
1da177e4 646
e6b043d5
BW
647 /* Duplex link change */
648 if (phy_dev->link) {
649 if (fep->full_duplex != phy_dev->duplex) {
650 fec_restart(dev, phy_dev->duplex);
651 status_change = 1;
652 }
653 }
1da177e4 654
e6b043d5
BW
655 /* Link on or off change */
656 if (phy_dev->link != fep->link) {
657 fep->link = phy_dev->link;
658 if (phy_dev->link)
659 fec_restart(dev, phy_dev->duplex);
1da177e4 660 else
e6b043d5
BW
661 fec_stop(dev);
662 status_change = 1;
1da177e4 663 }
6aa20a22 664
e6b043d5
BW
665spin_unlock:
666 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 667
e6b043d5
BW
668 if (status_change)
669 phy_print_status(phy_dev);
670}
1da177e4 671
e6b043d5 672static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 673{
e6b043d5 674 struct fec_enet_private *fep = bus->priv;
97b72e43 675 unsigned long time_left;
1da177e4 676
e6b043d5 677 fep->mii_timeout = 0;
97b72e43 678 init_completion(&fep->mdio_done);
e6b043d5
BW
679
680 /* start a read op */
681 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
682 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
683 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
684
685 /* wait for end of transfer */
97b72e43
BS
686 time_left = wait_for_completion_timeout(&fep->mdio_done,
687 usecs_to_jiffies(FEC_MII_TIMEOUT));
688 if (time_left == 0) {
689 fep->mii_timeout = 1;
690 printk(KERN_ERR "FEC: MDIO read timeout\n");
691 return -ETIMEDOUT;
1da177e4 692 }
1da177e4 693
e6b043d5
BW
694 /* return value */
695 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 696}
6aa20a22 697
e6b043d5
BW
698static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
699 u16 value)
1da177e4 700{
e6b043d5 701 struct fec_enet_private *fep = bus->priv;
97b72e43 702 unsigned long time_left;
1da177e4 703
e6b043d5 704 fep->mii_timeout = 0;
97b72e43 705 init_completion(&fep->mdio_done);
1da177e4 706
862f0982
SG
707 /* start a write op */
708 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
709 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
710 FEC_MMFR_TA | FEC_MMFR_DATA(value),
711 fep->hwp + FEC_MII_DATA);
712
713 /* wait for end of transfer */
97b72e43
BS
714 time_left = wait_for_completion_timeout(&fep->mdio_done,
715 usecs_to_jiffies(FEC_MII_TIMEOUT));
716 if (time_left == 0) {
717 fep->mii_timeout = 1;
718 printk(KERN_ERR "FEC: MDIO write timeout\n");
719 return -ETIMEDOUT;
e6b043d5 720 }
1da177e4 721
e6b043d5
BW
722 return 0;
723}
1da177e4 724
e6b043d5 725static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 726{
e6b043d5 727 return 0;
1da177e4
LT
728}
729
e6b043d5 730static int fec_enet_mii_probe(struct net_device *dev)
562d2f8c 731{
4cf1653a 732 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 733 struct phy_device *phy_dev = NULL;
6fcc040f
GU
734 char mdio_bus_id[MII_BUS_ID_SIZE];
735 char phy_name[MII_BUS_ID_SIZE + 3];
736 int phy_id;
b5680e0b 737 int dev_id = fep->pdev->id;
562d2f8c 738
418bd0d4
BW
739 fep->phy_dev = NULL;
740
6fcc040f
GU
741 /* check for attached phy */
742 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
743 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
744 continue;
745 if (fep->mii_bus->phy_map[phy_id] == NULL)
746 continue;
747 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
748 continue;
b5680e0b
SG
749 if (dev_id--)
750 continue;
6fcc040f
GU
751 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
752 break;
e6b043d5 753 }
1da177e4 754
6fcc040f
GU
755 if (phy_id >= PHY_MAX_ADDR) {
756 printk(KERN_INFO "%s: no PHY, assuming direct connection "
757 "to switch\n", dev->name);
758 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
759 phy_id = 0;
760 }
761
762 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
763 phy_dev = phy_connect(dev, phy_name, &fec_enet_adjust_link, 0,
764 PHY_INTERFACE_MODE_MII);
765 if (IS_ERR(phy_dev)) {
766 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
767 return PTR_ERR(phy_dev);
e6b043d5 768 }
1da177e4 769
e6b043d5
BW
770 /* mask with MAC supported features */
771 phy_dev->supported &= PHY_BASIC_FEATURES;
772 phy_dev->advertising = phy_dev->supported;
1da177e4 773
e6b043d5
BW
774 fep->phy_dev = phy_dev;
775 fep->link = 0;
776 fep->full_duplex = 0;
1da177e4 777
418bd0d4
BW
778 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
779 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
780 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
781 fep->phy_dev->irq);
782
e6b043d5 783 return 0;
1da177e4
LT
784}
785
e6b043d5 786static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 787{
b5680e0b 788 static struct mii_bus *fec0_mii_bus;
e6b043d5 789 struct net_device *dev = platform_get_drvdata(pdev);
562d2f8c 790 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
791 const struct platform_device_id *id_entry =
792 platform_get_device_id(fep->pdev);
e6b043d5 793 int err = -ENXIO, i;
6b265293 794
b5680e0b
SG
795 /*
796 * The dual fec interfaces are not equivalent with enet-mac.
797 * Here are the differences:
798 *
799 * - fec0 supports MII & RMII modes while fec1 only supports RMII
800 * - fec0 acts as the 1588 time master while fec1 is slave
801 * - external phys can only be configured by fec0
802 *
803 * That is to say fec1 can not work independently. It only works
804 * when fec0 is working. The reason behind this design is that the
805 * second interface is added primarily for Switch mode.
806 *
807 * Because of the last point above, both phys are attached on fec0
808 * mdio interface in board design, and need to be configured by
809 * fec0 mii_bus.
810 */
811 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
812 /* fec1 uses fec0 mii_bus */
813 fep->mii_bus = fec0_mii_bus;
814 return 0;
815 }
816
e6b043d5 817 fep->mii_timeout = 0;
1da177e4 818
e6b043d5
BW
819 /*
820 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
821 */
822 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
823 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 824
e6b043d5
BW
825 fep->mii_bus = mdiobus_alloc();
826 if (fep->mii_bus == NULL) {
827 err = -ENOMEM;
828 goto err_out;
1da177e4
LT
829 }
830
e6b043d5
BW
831 fep->mii_bus->name = "fec_enet_mii_bus";
832 fep->mii_bus->read = fec_enet_mdio_read;
833 fep->mii_bus->write = fec_enet_mdio_write;
834 fep->mii_bus->reset = fec_enet_mdio_reset;
6fcc040f 835 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
e6b043d5
BW
836 fep->mii_bus->priv = fep;
837 fep->mii_bus->parent = &pdev->dev;
838
839 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
840 if (!fep->mii_bus->irq) {
841 err = -ENOMEM;
842 goto err_out_free_mdiobus;
1da177e4
LT
843 }
844
e6b043d5
BW
845 for (i = 0; i < PHY_MAX_ADDR; i++)
846 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 847
e6b043d5 848 platform_set_drvdata(dev, fep->mii_bus);
1da177e4 849
e6b043d5
BW
850 if (mdiobus_register(fep->mii_bus))
851 goto err_out_free_mdio_irq;
1da177e4 852
b5680e0b
SG
853 /* save fec0 mii_bus */
854 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
855 fec0_mii_bus = fep->mii_bus;
856
e6b043d5 857 return 0;
1da177e4 858
e6b043d5
BW
859err_out_free_mdio_irq:
860 kfree(fep->mii_bus->irq);
861err_out_free_mdiobus:
862 mdiobus_free(fep->mii_bus);
863err_out:
864 return err;
1da177e4
LT
865}
866
e6b043d5 867static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 868{
e6b043d5
BW
869 if (fep->phy_dev)
870 phy_disconnect(fep->phy_dev);
871 mdiobus_unregister(fep->mii_bus);
872 kfree(fep->mii_bus->irq);
873 mdiobus_free(fep->mii_bus);
1da177e4
LT
874}
875
e6b043d5
BW
876static int fec_enet_get_settings(struct net_device *dev,
877 struct ethtool_cmd *cmd)
1da177e4
LT
878{
879 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 880 struct phy_device *phydev = fep->phy_dev;
1da177e4 881
e6b043d5
BW
882 if (!phydev)
883 return -ENODEV;
1da177e4 884
e6b043d5 885 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
886}
887
e6b043d5
BW
888static int fec_enet_set_settings(struct net_device *dev,
889 struct ethtool_cmd *cmd)
1da177e4
LT
890{
891 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 892 struct phy_device *phydev = fep->phy_dev;
1da177e4 893
e6b043d5
BW
894 if (!phydev)
895 return -ENODEV;
1da177e4 896
e6b043d5 897 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
898}
899
e6b043d5
BW
900static void fec_enet_get_drvinfo(struct net_device *dev,
901 struct ethtool_drvinfo *info)
1da177e4 902{
e6b043d5 903 struct fec_enet_private *fep = netdev_priv(dev);
6aa20a22 904
e6b043d5
BW
905 strcpy(info->driver, fep->pdev->dev.driver->name);
906 strcpy(info->version, "Revision: 1.0");
907 strcpy(info->bus_info, dev_name(&dev->dev));
1da177e4
LT
908}
909
e6b043d5
BW
910static struct ethtool_ops fec_enet_ethtool_ops = {
911 .get_settings = fec_enet_get_settings,
912 .set_settings = fec_enet_set_settings,
913 .get_drvinfo = fec_enet_get_drvinfo,
914 .get_link = ethtool_op_get_link,
915};
1da177e4 916
e6b043d5 917static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4 918{
1da177e4 919 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 920 struct phy_device *phydev = fep->phy_dev;
1da177e4 921
e6b043d5
BW
922 if (!netif_running(dev))
923 return -EINVAL;
1da177e4 924
e6b043d5
BW
925 if (!phydev)
926 return -ENODEV;
927
28b04113 928 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
929}
930
f0b3fbea
SH
931static void fec_enet_free_buffers(struct net_device *dev)
932{
933 struct fec_enet_private *fep = netdev_priv(dev);
934 int i;
935 struct sk_buff *skb;
936 struct bufdesc *bdp;
937
938 bdp = fep->rx_bd_base;
939 for (i = 0; i < RX_RING_SIZE; i++) {
940 skb = fep->rx_skbuff[i];
941
942 if (bdp->cbd_bufaddr)
943 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
944 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
945 if (skb)
946 dev_kfree_skb(skb);
947 bdp++;
948 }
949
950 bdp = fep->tx_bd_base;
951 for (i = 0; i < TX_RING_SIZE; i++)
952 kfree(fep->tx_bounce[i]);
953}
954
955static int fec_enet_alloc_buffers(struct net_device *dev)
956{
957 struct fec_enet_private *fep = netdev_priv(dev);
958 int i;
959 struct sk_buff *skb;
960 struct bufdesc *bdp;
961
962 bdp = fep->rx_bd_base;
963 for (i = 0; i < RX_RING_SIZE; i++) {
964 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
965 if (!skb) {
966 fec_enet_free_buffers(dev);
967 return -ENOMEM;
968 }
969 fep->rx_skbuff[i] = skb;
970
971 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
972 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
973 bdp->cbd_sc = BD_ENET_RX_EMPTY;
974 bdp++;
975 }
976
977 /* Set the last buffer to wrap. */
978 bdp--;
979 bdp->cbd_sc |= BD_SC_WRAP;
980
981 bdp = fep->tx_bd_base;
982 for (i = 0; i < TX_RING_SIZE; i++) {
983 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
984
985 bdp->cbd_sc = 0;
986 bdp->cbd_bufaddr = 0;
987 bdp++;
988 }
989
990 /* Set the last buffer to wrap. */
991 bdp--;
992 bdp->cbd_sc |= BD_SC_WRAP;
993
994 return 0;
995}
996
1da177e4
LT
997static int
998fec_enet_open(struct net_device *dev)
999{
1000 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 1001 int ret;
1da177e4
LT
1002
1003 /* I should reset the ring buffers here, but I don't yet know
1004 * a simple way to do that.
1005 */
1da177e4 1006
f0b3fbea
SH
1007 ret = fec_enet_alloc_buffers(dev);
1008 if (ret)
1009 return ret;
1010
418bd0d4
BW
1011 /* Probe and connect to PHY when open the interface */
1012 ret = fec_enet_mii_probe(dev);
1013 if (ret) {
1014 fec_enet_free_buffers(dev);
1015 return ret;
1016 }
e6b043d5 1017 phy_start(fep->phy_dev);
1da177e4
LT
1018 netif_start_queue(dev);
1019 fep->opened = 1;
22f6b860 1020 return 0;
1da177e4
LT
1021}
1022
1023static int
1024fec_enet_close(struct net_device *dev)
1025{
1026 struct fec_enet_private *fep = netdev_priv(dev);
1027
22f6b860 1028 /* Don't know what to do yet. */
1da177e4
LT
1029 fep->opened = 0;
1030 netif_stop_queue(dev);
1031 fec_stop(dev);
1032
418bd0d4
BW
1033 if (fep->phy_dev)
1034 phy_disconnect(fep->phy_dev);
1035
f0b3fbea
SH
1036 fec_enet_free_buffers(dev);
1037
1da177e4
LT
1038 return 0;
1039}
1040
1da177e4
LT
1041/* Set or clear the multicast filter for this adaptor.
1042 * Skeleton taken from sunlance driver.
1043 * The CPM Ethernet implementation allows Multicast as well as individual
1044 * MAC address filtering. Some of the drivers check to make sure it is
1045 * a group multicast address, and discard those that are not. I guess I
1046 * will do the same for now, but just remove the test if you want
1047 * individual filtering as well (do the upper net layers want or support
1048 * this kind of feature?).
1049 */
1050
1051#define HASH_BITS 6 /* #bits in hash */
1052#define CRC32_POLY 0xEDB88320
1053
1054static void set_multicast_list(struct net_device *dev)
1055{
f44d6305 1056 struct fec_enet_private *fep = netdev_priv(dev);
22bedad3 1057 struct netdev_hw_addr *ha;
48e2f183 1058 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1059 unsigned char hash;
1060
22f6b860 1061 if (dev->flags & IFF_PROMISC) {
f44d6305
SH
1062 tmp = readl(fep->hwp + FEC_R_CNTRL);
1063 tmp |= 0x8;
1064 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1065 return;
1066 }
1da177e4 1067
4e831836
SH
1068 tmp = readl(fep->hwp + FEC_R_CNTRL);
1069 tmp &= ~0x8;
1070 writel(tmp, fep->hwp + FEC_R_CNTRL);
1071
1072 if (dev->flags & IFF_ALLMULTI) {
1073 /* Catch all multicast addresses, so set the
1074 * filter to all 1's
1075 */
1076 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1077 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1078
1079 return;
1080 }
1081
1082 /* Clear filter and add the addresses in hash register
1083 */
1084 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1085 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1086
22bedad3 1087 netdev_for_each_mc_addr(ha, dev) {
4e831836 1088 /* Only support group multicast for now */
22bedad3 1089 if (!(ha->addr[0] & 1))
4e831836
SH
1090 continue;
1091
1092 /* calculate crc32 value of mac address */
1093 crc = 0xffffffff;
1094
22bedad3
JP
1095 for (i = 0; i < dev->addr_len; i++) {
1096 data = ha->addr[i];
4e831836
SH
1097 for (bit = 0; bit < 8; bit++, data >>= 1) {
1098 crc = (crc >> 1) ^
1099 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1100 }
1101 }
4e831836
SH
1102
1103 /* only upper 6 bits (HASH_BITS) are used
1104 * which point to specific bit in he hash registers
1105 */
1106 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1107
1108 if (hash > 31) {
1109 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1110 tmp |= 1 << (hash - 32);
1111 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1112 } else {
1113 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1114 tmp |= 1 << hash;
1115 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1116 }
1da177e4
LT
1117 }
1118}
1119
22f6b860 1120/* Set a MAC change in hardware. */
009fda83
SH
1121static int
1122fec_set_mac_address(struct net_device *dev, void *p)
1da177e4 1123{
f44d6305 1124 struct fec_enet_private *fep = netdev_priv(dev);
009fda83
SH
1125 struct sockaddr *addr = p;
1126
1127 if (!is_valid_ether_addr(addr->sa_data))
1128 return -EADDRNOTAVAIL;
1129
1130 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1da177e4 1131
f44d6305
SH
1132 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1133 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1134 fep->hwp + FEC_ADDR_LOW);
1135 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
7cff0943 1136 fep->hwp + FEC_ADDR_HIGH);
009fda83 1137 return 0;
1da177e4
LT
1138}
1139
009fda83
SH
1140static const struct net_device_ops fec_netdev_ops = {
1141 .ndo_open = fec_enet_open,
1142 .ndo_stop = fec_enet_close,
1143 .ndo_start_xmit = fec_enet_start_xmit,
1144 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1145 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1146 .ndo_validate_addr = eth_validate_addr,
1147 .ndo_tx_timeout = fec_timeout,
1148 .ndo_set_mac_address = fec_set_mac_address,
e6b043d5 1149 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1150};
1151
1da177e4
LT
1152 /*
1153 * XXX: We need to clean up on failure exits here.
ead73183 1154 *
1da177e4 1155 */
8649a230 1156static int fec_enet_init(struct net_device *dev)
1da177e4
LT
1157{
1158 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 1159 struct bufdesc *cbd_base;
633e7533 1160 struct bufdesc *bdp;
f0b3fbea 1161 int i;
1da177e4 1162
8d4dd5cf
SH
1163 /* Allocate memory for buffer descriptors. */
1164 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1165 GFP_KERNEL);
1166 if (!cbd_base) {
562d2f8c
GU
1167 printk("FEC: allocate descriptor memory failed?\n");
1168 return -ENOMEM;
1169 }
1170
3b2b74ca 1171 spin_lock_init(&fep->hw_lock);
3b2b74ca 1172
f44d6305 1173 fep->hwp = (void __iomem *)dev->base_addr;
cb84d6e7 1174 fep->netdev = dev;
1da177e4 1175
49da97dc 1176 /* Get the Ethernet address */
1da177e4
LT
1177 fec_get_mac(dev);
1178
8d4dd5cf 1179 /* Set receive and transmit descriptor base. */
1da177e4
LT
1180 fep->rx_bd_base = cbd_base;
1181 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1182
22f6b860 1183 /* The FEC Ethernet specific entries in the device structure */
1da177e4 1184 dev->watchdog_timeo = TX_TIMEOUT;
009fda83 1185 dev->netdev_ops = &fec_netdev_ops;
e6b043d5 1186 dev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1187
1188 /* Initialize the receive buffer descriptors. */
1189 bdp = fep->rx_bd_base;
1190 for (i = 0; i < RX_RING_SIZE; i++) {
1191
1192 /* Initialize the BD for every fragment in the page. */
1193 bdp->cbd_sc = 0;
1194 bdp++;
1195 }
1196
1197 /* Set the last buffer to wrap */
1198 bdp--;
1199 bdp->cbd_sc |= BD_SC_WRAP;
1200
1201 /* ...and the same for transmit */
1202 bdp = fep->tx_bd_base;
1203 for (i = 0; i < TX_RING_SIZE; i++) {
1204
1205 /* Initialize the BD for every fragment in the page. */
1206 bdp->cbd_sc = 0;
1207 bdp->cbd_bufaddr = 0;
1208 bdp++;
1209 }
1210
1211 /* Set the last buffer to wrap */
1212 bdp--;
1213 bdp->cbd_sc |= BD_SC_WRAP;
1214
ead73183 1215 fec_restart(dev, 0);
1da177e4 1216
1da177e4
LT
1217 return 0;
1218}
1219
1220/* This function is called to start or restart the FEC during a link
1221 * change. This only happens when switching between half and full
1222 * duplex.
1223 */
1224static void
1225fec_restart(struct net_device *dev, int duplex)
1226{
f44d6305 1227 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
1228 const struct platform_device_id *id_entry =
1229 platform_get_device_id(fep->pdev);
1da177e4 1230 int i;
b5680e0b 1231 u32 val, temp_mac[2];
1da177e4 1232
f44d6305
SH
1233 /* Whack a reset. We should wait for this. */
1234 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4
LT
1235 udelay(10);
1236
b5680e0b
SG
1237 /*
1238 * enet-mac reset will reset mac address registers too,
1239 * so need to reconfigure it.
1240 */
1241 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1242 memcpy(&temp_mac, dev->dev_addr, ETH_ALEN);
1243 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
1244 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
1245 }
1246
f44d6305
SH
1247 /* Clear any outstanding interrupt. */
1248 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 1249
f44d6305
SH
1250 /* Reset all multicast. */
1251 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1252 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
4f1ceb4b
SH
1253#ifndef CONFIG_M5272
1254 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1255 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1256#endif
1da177e4 1257
f44d6305
SH
1258 /* Set maximum receive buffer size. */
1259 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 1260
f44d6305
SH
1261 /* Set receive and transmit descriptor base. */
1262 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
2e28532f 1263 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
f44d6305 1264 fep->hwp + FEC_X_DES_START);
1da177e4
LT
1265
1266 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1267 fep->cur_rx = fep->rx_bd_base;
1268
f44d6305 1269 /* Reset SKB transmit buffers. */
1da177e4 1270 fep->skb_cur = fep->skb_dirty = 0;
22f6b860
SH
1271 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1272 if (fep->tx_skbuff[i]) {
1da177e4
LT
1273 dev_kfree_skb_any(fep->tx_skbuff[i]);
1274 fep->tx_skbuff[i] = NULL;
1275 }
1276 }
1277
22f6b860 1278 /* Enable MII mode */
1da177e4 1279 if (duplex) {
f44d6305
SH
1280 /* MII enable / FD enable */
1281 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1282 writel(0x04, fep->hwp + FEC_X_CNTRL);
f909b1ef 1283 } else {
f44d6305
SH
1284 /* MII enable / No Rcv on Xmit */
1285 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1286 writel(0x0, fep->hwp + FEC_X_CNTRL);
1da177e4
LT
1287 }
1288 fep->full_duplex = duplex;
1289
22f6b860 1290 /* Set MII speed */
f44d6305 1291 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 1292
b5680e0b
SG
1293 /*
1294 * The phy interface and speed need to get configured
1295 * differently on enet-mac.
1296 */
1297 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1298 val = readl(fep->hwp + FEC_R_CNTRL);
5eb32bd0 1299
b5680e0b
SG
1300 /* MII or RMII */
1301 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1302 val |= (1 << 8);
1303 else
1304 val &= ~(1 << 8);
5eb32bd0 1305
b5680e0b
SG
1306 /* 10M or 100M */
1307 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
1308 val &= ~(1 << 9);
1309 else
1310 val |= (1 << 9);
1311
1312 writel(val, fep->hwp + FEC_R_CNTRL);
1313 } else {
1314#ifdef FEC_MIIGSK_ENR
1315 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1316 /* disable the gasket and wait */
1317 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1318 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1319 udelay(1);
1320
1321 /*
1322 * configure the gasket:
1323 * RMII, 50 MHz, no loopback, no echo
1324 */
1325 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1326
1327 /* re-enable the gasket */
1328 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1329 }
5eb32bd0 1330#endif
b5680e0b 1331 }
5eb32bd0 1332
22f6b860 1333 /* And last, enable the transmit and receive processing */
f44d6305
SH
1334 writel(2, fep->hwp + FEC_ECNTRL);
1335 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
6b265293 1336
22f6b860 1337 /* Enable interrupts we wish to service */
4bee1f9a 1338 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
1339}
1340
1341static void
1342fec_stop(struct net_device *dev)
1343{
f44d6305 1344 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 1345
22f6b860 1346 /* We cannot expect a graceful transmit stop without link !!! */
f44d6305
SH
1347 if (fep->link) {
1348 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
677177c5 1349 udelay(10);
f44d6305 1350 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
677177c5 1351 printk("fec_stop : Graceful transmit stop did not complete !\n");
f44d6305 1352 }
1da177e4 1353
f44d6305
SH
1354 /* Whack a reset. We should wait for this. */
1355 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4 1356 udelay(10);
f44d6305 1357 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
4bee1f9a 1358 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
1359}
1360
ead73183
SH
1361static int __devinit
1362fec_probe(struct platform_device *pdev)
1363{
1364 struct fec_enet_private *fep;
5eb32bd0 1365 struct fec_platform_data *pdata;
ead73183
SH
1366 struct net_device *ndev;
1367 int i, irq, ret = 0;
1368 struct resource *r;
1369
1370 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1371 if (!r)
1372 return -ENXIO;
1373
1374 r = request_mem_region(r->start, resource_size(r), pdev->name);
1375 if (!r)
1376 return -EBUSY;
1377
1378 /* Init network device */
1379 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1380 if (!ndev) {
1381 ret = -ENOMEM;
1382 goto failed_alloc_etherdev;
1383 }
ead73183
SH
1384
1385 SET_NETDEV_DEV(ndev, &pdev->dev);
1386
1387 /* setup board info structure */
1388 fep = netdev_priv(ndev);
1389 memset(fep, 0, sizeof(*fep));
1390
1391 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
e6b043d5 1392 fep->pdev = pdev;
ead73183
SH
1393
1394 if (!ndev->base_addr) {
1395 ret = -ENOMEM;
1396 goto failed_ioremap;
1397 }
1398
1399 platform_set_drvdata(pdev, ndev);
1400
5eb32bd0
BS
1401 pdata = pdev->dev.platform_data;
1402 if (pdata)
1403 fep->phy_interface = pdata->phy;
1404
ead73183
SH
1405 /* This device has up to three irqs on some platforms */
1406 for (i = 0; i < 3; i++) {
1407 irq = platform_get_irq(pdev, i);
1408 if (i && irq < 0)
1409 break;
1410 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1411 if (ret) {
b2b09ad6 1412 while (--i >= 0) {
ead73183
SH
1413 irq = platform_get_irq(pdev, i);
1414 free_irq(irq, ndev);
ead73183
SH
1415 }
1416 goto failed_irq;
1417 }
1418 }
1419
1420 fep->clk = clk_get(&pdev->dev, "fec_clk");
1421 if (IS_ERR(fep->clk)) {
1422 ret = PTR_ERR(fep->clk);
1423 goto failed_clk;
1424 }
1425 clk_enable(fep->clk);
1426
8649a230 1427 ret = fec_enet_init(ndev);
ead73183
SH
1428 if (ret)
1429 goto failed_init;
1430
e6b043d5
BW
1431 ret = fec_enet_mii_init(pdev);
1432 if (ret)
1433 goto failed_mii_init;
1434
03c698c9
OS
1435 /* Carrier starts down, phylib will bring it up */
1436 netif_carrier_off(ndev);
1437
ead73183
SH
1438 ret = register_netdev(ndev);
1439 if (ret)
1440 goto failed_register;
1441
1442 return 0;
1443
1444failed_register:
e6b043d5
BW
1445 fec_enet_mii_remove(fep);
1446failed_mii_init:
ead73183
SH
1447failed_init:
1448 clk_disable(fep->clk);
1449 clk_put(fep->clk);
1450failed_clk:
1451 for (i = 0; i < 3; i++) {
1452 irq = platform_get_irq(pdev, i);
1453 if (irq > 0)
1454 free_irq(irq, ndev);
1455 }
1456failed_irq:
1457 iounmap((void __iomem *)ndev->base_addr);
1458failed_ioremap:
1459 free_netdev(ndev);
28e2188e
UKK
1460failed_alloc_etherdev:
1461 release_mem_region(r->start, resource_size(r));
ead73183
SH
1462
1463 return ret;
1464}
1465
1466static int __devexit
1467fec_drv_remove(struct platform_device *pdev)
1468{
1469 struct net_device *ndev = platform_get_drvdata(pdev);
1470 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1471 struct resource *r;
ead73183
SH
1472
1473 platform_set_drvdata(pdev, NULL);
1474
1475 fec_stop(ndev);
e6b043d5 1476 fec_enet_mii_remove(fep);
ead73183
SH
1477 clk_disable(fep->clk);
1478 clk_put(fep->clk);
1479 iounmap((void __iomem *)ndev->base_addr);
1480 unregister_netdev(ndev);
1481 free_netdev(ndev);
28e2188e
UKK
1482
1483 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1484 BUG_ON(!r);
1485 release_mem_region(r->start, resource_size(r));
1486
ead73183
SH
1487 return 0;
1488}
1489
59d4289b 1490#ifdef CONFIG_PM
ead73183 1491static int
87cad5c3 1492fec_suspend(struct device *dev)
ead73183 1493{
87cad5c3 1494 struct net_device *ndev = dev_get_drvdata(dev);
ead73183
SH
1495 struct fec_enet_private *fep;
1496
1497 if (ndev) {
1498 fep = netdev_priv(ndev);
bcc67771
SG
1499 if (netif_running(ndev)) {
1500 fec_stop(ndev);
1501 netif_device_detach(ndev);
1502 }
e3fe8558 1503 clk_disable(fep->clk);
ead73183
SH
1504 }
1505 return 0;
1506}
1507
1508static int
87cad5c3 1509fec_resume(struct device *dev)
ead73183 1510{
87cad5c3 1511 struct net_device *ndev = dev_get_drvdata(dev);
e3fe8558 1512 struct fec_enet_private *fep;
ead73183
SH
1513
1514 if (ndev) {
e3fe8558
EB
1515 fep = netdev_priv(ndev);
1516 clk_enable(fep->clk);
bcc67771
SG
1517 if (netif_running(ndev)) {
1518 fec_restart(ndev, fep->full_duplex);
1519 netif_device_attach(ndev);
1520 }
ead73183
SH
1521 }
1522 return 0;
1523}
1524
59d4289b
DK
1525static const struct dev_pm_ops fec_pm_ops = {
1526 .suspend = fec_suspend,
1527 .resume = fec_resume,
1528 .freeze = fec_suspend,
1529 .thaw = fec_resume,
1530 .poweroff = fec_suspend,
1531 .restore = fec_resume,
1532};
87cad5c3 1533#endif
59d4289b 1534
ead73183
SH
1535static struct platform_driver fec_driver = {
1536 .driver = {
b5680e0b 1537 .name = DRIVER_NAME,
87cad5c3
EB
1538 .owner = THIS_MODULE,
1539#ifdef CONFIG_PM
1540 .pm = &fec_pm_ops,
1541#endif
ead73183 1542 },
b5680e0b 1543 .id_table = fec_devtype,
87cad5c3
EB
1544 .probe = fec_probe,
1545 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1546};
1547
1548static int __init
1549fec_enet_module_init(void)
1550{
1551 printk(KERN_INFO "FEC Ethernet Driver\n");
1552
1553 return platform_driver_register(&fec_driver);
1554}
1555
1556static void __exit
1557fec_enet_cleanup(void)
1558{
1559 platform_driver_unregister(&fec_driver);
1560}
1561
1562module_exit(fec_enet_cleanup);
1da177e4
LT
1563module_init(fec_enet_module_init);
1564
1565MODULE_LICENSE("GPL");