]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/net/fec.c
net/fec: provide device for dma functions and matching sizes for map and unmap
[mirror_ubuntu-eoan-kernel.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b
SG
20 *
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
1da177e4 47
080853af 48#include <asm/cacheflush.h>
196719ec 49
b5680e0b 50#ifndef CONFIG_ARM
1da177e4
LT
51#include <asm/coldfire.h>
52#include <asm/mcfsim.h>
196719ec 53#endif
6f501b17 54
1da177e4 55#include "fec.h"
1da177e4 56
085e79ed 57#if defined(CONFIG_ARM)
196719ec
SH
58#define FEC_ALIGNMENT 0xf
59#else
60#define FEC_ALIGNMENT 0x3
61#endif
62
b5680e0b
SG
63#define DRIVER_NAME "fec"
64
65/* Controller is ENET-MAC */
66#define FEC_QUIRK_ENET_MAC (1 << 0)
67/* Controller needs driver to swap frame */
68#define FEC_QUIRK_SWAP_FRAME (1 << 1)
69
70static struct platform_device_id fec_devtype[] = {
71 {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
77 }
78};
79
49da97dc
SG
80static unsigned char macaddr[ETH_ALEN];
81module_param_array(macaddr, byte, NULL, 0);
82MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 83
49da97dc 84#if defined(CONFIG_M5272)
1da177e4
LT
85/*
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
88 */
89#if defined(CONFIG_NETtel)
90#define FEC_FLASHMAC 0xf0006006
91#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
93#elif defined(CONFIG_CANCam)
94#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
95#elif defined (CONFIG_M5272C3)
96#define FEC_FLASHMAC (0xffe04000 + 4)
97#elif defined(CONFIG_MOD5272)
98#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
99#else
100#define FEC_FLASHMAC 0
101#endif
43be6366 102#endif /* CONFIG_M5272 */
ead73183 103
1da177e4
LT
104/* The number of Tx and Rx buffers. These are allocated from the page
105 * pool. The code may assume these are power of two, so it it best
106 * to keep them that size.
107 * We don't need to allocate pages for the transmitter. We just use
108 * the skbuffer directly.
109 */
110#define FEC_ENET_RX_PAGES 8
111#define FEC_ENET_RX_FRSIZE 2048
112#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
113#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
114#define FEC_ENET_TX_FRSIZE 2048
115#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
116#define TX_RING_SIZE 16 /* Must be power of two */
117#define TX_RING_MOD_MASK 15 /* for this to work */
118
562d2f8c 119#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 120#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
121#endif
122
22f6b860 123/* Interrupt events/masks. */
1da177e4
LT
124#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
125#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
126#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
127#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
128#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
129#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
130#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
131#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
132#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
133#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
134
4bee1f9a
WS
135#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
136
1da177e4
LT
137/* The FEC stores dest/src/type, data, and checksum for receive packets.
138 */
139#define PKT_MAXBUF_SIZE 1518
140#define PKT_MINBUF_SIZE 64
141#define PKT_MAXBLR_SIZE 1520
142
143
144/*
6b265293 145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
148 */
562d2f8c 149#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
085e79ed 150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
1da177e4
LT
151#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
152#else
153#define OPT_FRAME_SIZE 0
154#endif
155
156/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
157 * tx_bd_base always point to the base of the buffer descriptors. The
158 * cur_rx and cur_tx point to the currently available buffer.
159 * The dirty_tx tracks the current buffer that is being sent by the
160 * controller. The cur_tx and dirty_tx are equal under both completely
161 * empty and completely full conditions. The empty/ready indicator in
162 * the buffer descriptor determines the actual condition.
163 */
164struct fec_enet_private {
165 /* Hardware registers of the FEC device */
f44d6305 166 void __iomem *hwp;
1da177e4 167
cb84d6e7
GU
168 struct net_device *netdev;
169
ead73183
SH
170 struct clk *clk;
171
1da177e4
LT
172 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
173 unsigned char *tx_bounce[TX_RING_SIZE];
174 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 175 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
176 ushort skb_cur;
177 ushort skb_dirty;
178
22f6b860 179 /* CPM dual port RAM relative addresses */
4661e75b 180 dma_addr_t bd_dma;
22f6b860 181 /* Address of Rx and Tx buffers */
2e28532f
SH
182 struct bufdesc *rx_bd_base;
183 struct bufdesc *tx_bd_base;
184 /* The next free ring entry */
db8880bc 185 struct bufdesc *cur_rx, *cur_tx;
22f6b860 186 /* The ring entries to be free()ed */
2e28532f
SH
187 struct bufdesc *dirty_tx;
188
1da177e4 189 uint tx_full;
3b2b74ca
SS
190 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
191 spinlock_t hw_lock;
1da177e4 192
db8880bc 193 struct platform_device *pdev;
1da177e4 194
e6b043d5 195 int opened;
1da177e4 196
e6b043d5 197 /* Phylib and MDIO interface */
db8880bc
UKK
198 struct mii_bus *mii_bus;
199 struct phy_device *phy_dev;
200 int mii_timeout;
201 uint phy_speed;
5eb32bd0 202 phy_interface_t phy_interface;
1da177e4 203 int link;
1da177e4 204 int full_duplex;
97b72e43 205 struct completion mdio_done;
1da177e4
LT
206};
207
e6b043d5
BW
208/* FEC MII MMFR bits definition */
209#define FEC_MMFR_ST (1 << 30)
210#define FEC_MMFR_OP_READ (2 << 28)
211#define FEC_MMFR_OP_WRITE (1 << 28)
212#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
213#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
214#define FEC_MMFR_TA (2 << 16)
215#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 216
97b72e43 217#define FEC_MII_TIMEOUT 1000 /* us */
1da177e4 218
22f6b860
SH
219/* Transmitter timeout */
220#define TX_TIMEOUT (2 * HZ)
1da177e4 221
b5680e0b
SG
222static void *swap_buffer(void *bufaddr, int len)
223{
224 int i;
225 unsigned int *buf = bufaddr;
226
227 for (i = 0; i < (len + 3) / 4; i++, buf++)
228 *buf = cpu_to_be32(*buf);
229
230 return bufaddr;
231}
232
c7621cb3 233static netdev_tx_t
c556167f 234fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1da177e4 235{
c556167f 236 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
237 const struct platform_device_id *id_entry =
238 platform_get_device_id(fep->pdev);
2e28532f 239 struct bufdesc *bdp;
9555b31e 240 void *bufaddr;
0e702ab3 241 unsigned short status;
3b2b74ca 242 unsigned long flags;
1da177e4 243
1da177e4
LT
244 if (!fep->link) {
245 /* Link is down or autonegotiation is in progress. */
5b548140 246 return NETDEV_TX_BUSY;
1da177e4
LT
247 }
248
3b2b74ca 249 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
250 /* Fill in a Tx ring entry */
251 bdp = fep->cur_tx;
252
0e702ab3 253 status = bdp->cbd_sc;
22f6b860 254
0e702ab3 255 if (status & BD_ENET_TX_READY) {
1da177e4 256 /* Ooops. All transmit buffers are full. Bail out.
c556167f 257 * This should not happen, since ndev->tbusy should be set.
1da177e4 258 */
c556167f 259 printk("%s: tx queue full!.\n", ndev->name);
3b2b74ca 260 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 261 return NETDEV_TX_BUSY;
1da177e4 262 }
1da177e4 263
22f6b860 264 /* Clear all of the status flags */
0e702ab3 265 status &= ~BD_ENET_TX_STATS;
1da177e4 266
22f6b860 267 /* Set buffer length and buffer pointer */
9555b31e 268 bufaddr = skb->data;
1da177e4
LT
269 bdp->cbd_datlen = skb->len;
270
271 /*
22f6b860
SH
272 * On some FEC implementations data must be aligned on
273 * 4-byte boundaries. Use bounce buffers to copy data
274 * and get it aligned. Ugh.
1da177e4 275 */
9555b31e 276 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
277 unsigned int index;
278 index = bdp - fep->tx_bd_base;
8a73b0bc 279 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 280 bufaddr = fep->tx_bounce[index];
1da177e4
LT
281 }
282
b5680e0b
SG
283 /*
284 * Some design made an incorrect assumption on endian mode of
285 * the system that it's running on. As the result, driver has to
286 * swap every frame going to and coming from the controller.
287 */
288 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
289 swap_buffer(bufaddr, skb->len);
290
22f6b860 291 /* Save skb pointer */
1da177e4
LT
292 fep->tx_skbuff[fep->skb_cur] = skb;
293
c556167f 294 ndev->stats.tx_bytes += skb->len;
1da177e4 295 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 296
1da177e4
LT
297 /* Push the data cache so the CPM does not get stale memory
298 * data.
299 */
d1ab1f54 300 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
f0b3fbea 301 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 302
0e702ab3
GU
303 /* Send it on its way. Tell FEC it's ready, interrupt when done,
304 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 305 */
0e702ab3 306 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 307 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 308 bdp->cbd_sc = status;
1da177e4 309
1da177e4 310 /* Trigger transmission start */
f44d6305 311 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 312
22f6b860
SH
313 /* If this was the last BD in the ring, start at the beginning again. */
314 if (status & BD_ENET_TX_WRAP)
1da177e4 315 bdp = fep->tx_bd_base;
22f6b860 316 else
1da177e4 317 bdp++;
1da177e4
LT
318
319 if (bdp == fep->dirty_tx) {
320 fep->tx_full = 1;
c556167f 321 netif_stop_queue(ndev);
1da177e4
LT
322 }
323
2e28532f 324 fep->cur_tx = bdp;
1da177e4 325
3b2b74ca 326 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 327
6ed10654 328 return NETDEV_TX_OK;
1da177e4
LT
329}
330
45993653
UKK
331/* This function is called to start or restart the FEC during a link
332 * change. This only happens when switching between half and full
333 * duplex.
334 */
1da177e4 335static void
45993653 336fec_restart(struct net_device *ndev, int duplex)
1da177e4 337{
c556167f 338 struct fec_enet_private *fep = netdev_priv(ndev);
45993653
UKK
339 const struct platform_device_id *id_entry =
340 platform_get_device_id(fep->pdev);
341 int i;
342 u32 val, temp_mac[2];
1da177e4 343
45993653
UKK
344 /* Whack a reset. We should wait for this. */
345 writel(1, fep->hwp + FEC_ECNTRL);
346 udelay(10);
1da177e4 347
45993653
UKK
348 /*
349 * enet-mac reset will reset mac address registers too,
350 * so need to reconfigure it.
351 */
352 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
353 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
354 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
355 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
356 }
1da177e4 357
45993653
UKK
358 /* Clear any outstanding interrupt. */
359 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 360
45993653
UKK
361 /* Reset all multicast. */
362 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
363 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
364#ifndef CONFIG_M5272
365 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
366 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
367#endif
1da177e4 368
45993653
UKK
369 /* Set maximum receive buffer size. */
370 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 371
45993653
UKK
372 /* Set receive and transmit descriptor base. */
373 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
374 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
375 fep->hwp + FEC_X_DES_START);
376
377 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
378 fep->cur_rx = fep->rx_bd_base;
379
380 /* Reset SKB transmit buffers. */
381 fep->skb_cur = fep->skb_dirty = 0;
382 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
383 if (fep->tx_skbuff[i]) {
384 dev_kfree_skb_any(fep->tx_skbuff[i]);
385 fep->tx_skbuff[i] = NULL;
1da177e4 386 }
45993653 387 }
97b72e43 388
45993653
UKK
389 /* Enable MII mode */
390 if (duplex) {
391 /* MII enable / FD enable */
392 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
393 writel(0x04, fep->hwp + FEC_X_CNTRL);
394 } else {
395 /* MII enable / No Rcv on Xmit */
396 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
397 writel(0x0, fep->hwp + FEC_X_CNTRL);
398 }
399 fep->full_duplex = duplex;
400
401 /* Set MII speed */
402 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
403
404 /*
405 * The phy interface and speed need to get configured
406 * differently on enet-mac.
407 */
408 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
409 val = readl(fep->hwp + FEC_R_CNTRL);
410
411 /* MII or RMII */
412 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
413 val |= (1 << 8);
414 else
415 val &= ~(1 << 8);
416
417 /* 10M or 100M */
418 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
419 val &= ~(1 << 9);
420 else
421 val |= (1 << 9);
422
423 writel(val, fep->hwp + FEC_R_CNTRL);
424 } else {
425#ifdef FEC_MIIGSK_ENR
426 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
427 /* disable the gasket and wait */
428 writel(0, fep->hwp + FEC_MIIGSK_ENR);
429 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
430 udelay(1);
431
432 /*
433 * configure the gasket:
434 * RMII, 50 MHz, no loopback, no echo
435 */
436 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
437
438 /* re-enable the gasket */
439 writel(2, fep->hwp + FEC_MIIGSK_ENR);
97b72e43 440 }
45993653
UKK
441#endif
442 }
3b2b74ca 443
45993653
UKK
444 /* And last, enable the transmit and receive processing */
445 writel(2, fep->hwp + FEC_ECNTRL);
446 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
447
448 /* Enable interrupts we wish to service */
449 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
450}
451
452static void
453fec_stop(struct net_device *ndev)
454{
455 struct fec_enet_private *fep = netdev_priv(ndev);
456
457 /* We cannot expect a graceful transmit stop without link !!! */
458 if (fep->link) {
459 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
460 udelay(10);
461 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
462 printk("fec_stop : Graceful transmit stop did not complete !\n");
463 }
464
465 /* Whack a reset. We should wait for this. */
466 writel(1, fep->hwp + FEC_ECNTRL);
467 udelay(10);
468 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
469 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
470}
471
472
45993653
UKK
473static void
474fec_timeout(struct net_device *ndev)
475{
476 struct fec_enet_private *fep = netdev_priv(ndev);
477
478 ndev->stats.tx_errors++;
479
480 fec_restart(ndev, fep->full_duplex);
481 netif_wake_queue(ndev);
482}
483
1da177e4 484static void
c556167f 485fec_enet_tx(struct net_device *ndev)
1da177e4
LT
486{
487 struct fec_enet_private *fep;
2e28532f 488 struct bufdesc *bdp;
0e702ab3 489 unsigned short status;
1da177e4
LT
490 struct sk_buff *skb;
491
c556167f 492 fep = netdev_priv(ndev);
81538e74 493 spin_lock(&fep->hw_lock);
1da177e4
LT
494 bdp = fep->dirty_tx;
495
0e702ab3 496 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
497 if (bdp == fep->cur_tx && fep->tx_full == 0)
498 break;
499
d1ab1f54
UKK
500 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
501 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
f0b3fbea 502 bdp->cbd_bufaddr = 0;
1da177e4
LT
503
504 skb = fep->tx_skbuff[fep->skb_dirty];
505 /* Check for errors. */
0e702ab3 506 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
507 BD_ENET_TX_RL | BD_ENET_TX_UN |
508 BD_ENET_TX_CSL)) {
c556167f 509 ndev->stats.tx_errors++;
0e702ab3 510 if (status & BD_ENET_TX_HB) /* No heartbeat */
c556167f 511 ndev->stats.tx_heartbeat_errors++;
0e702ab3 512 if (status & BD_ENET_TX_LC) /* Late collision */
c556167f 513 ndev->stats.tx_window_errors++;
0e702ab3 514 if (status & BD_ENET_TX_RL) /* Retrans limit */
c556167f 515 ndev->stats.tx_aborted_errors++;
0e702ab3 516 if (status & BD_ENET_TX_UN) /* Underrun */
c556167f 517 ndev->stats.tx_fifo_errors++;
0e702ab3 518 if (status & BD_ENET_TX_CSL) /* Carrier lost */
c556167f 519 ndev->stats.tx_carrier_errors++;
1da177e4 520 } else {
c556167f 521 ndev->stats.tx_packets++;
1da177e4
LT
522 }
523
0e702ab3 524 if (status & BD_ENET_TX_READY)
1da177e4 525 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 526
1da177e4
LT
527 /* Deferred means some collisions occurred during transmit,
528 * but we eventually sent the packet OK.
529 */
0e702ab3 530 if (status & BD_ENET_TX_DEF)
c556167f 531 ndev->stats.collisions++;
6aa20a22 532
22f6b860 533 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
534 dev_kfree_skb_any(skb);
535 fep->tx_skbuff[fep->skb_dirty] = NULL;
536 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 537
22f6b860 538 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 539 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
540 bdp = fep->tx_bd_base;
541 else
542 bdp++;
6aa20a22 543
22f6b860 544 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
545 */
546 if (fep->tx_full) {
547 fep->tx_full = 0;
c556167f
UKK
548 if (netif_queue_stopped(ndev))
549 netif_wake_queue(ndev);
1da177e4
LT
550 }
551 }
2e28532f 552 fep->dirty_tx = bdp;
81538e74 553 spin_unlock(&fep->hw_lock);
1da177e4
LT
554}
555
556
557/* During a receive, the cur_rx points to the current incoming buffer.
558 * When we update through the ring, if the next incoming buffer has
559 * not been given to the system, we just set the empty indicator,
560 * effectively tossing the packet.
561 */
562static void
c556167f 563fec_enet_rx(struct net_device *ndev)
1da177e4 564{
c556167f 565 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
566 const struct platform_device_id *id_entry =
567 platform_get_device_id(fep->pdev);
2e28532f 568 struct bufdesc *bdp;
0e702ab3 569 unsigned short status;
1da177e4
LT
570 struct sk_buff *skb;
571 ushort pkt_len;
572 __u8 *data;
6aa20a22 573
0e702ab3
GU
574#ifdef CONFIG_M532x
575 flush_cache_all();
6aa20a22 576#endif
1da177e4 577
81538e74 578 spin_lock(&fep->hw_lock);
3b2b74ca 579
1da177e4
LT
580 /* First, grab all of the stats for the incoming packet.
581 * These get messed up if we get called due to a busy condition.
582 */
583 bdp = fep->cur_rx;
584
22f6b860 585 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 586
22f6b860
SH
587 /* Since we have allocated space to hold a complete frame,
588 * the last indicator should be set.
589 */
590 if ((status & BD_ENET_RX_LAST) == 0)
591 printk("FEC ENET: rcv is not +last\n");
1da177e4 592
22f6b860
SH
593 if (!fep->opened)
594 goto rx_processing_done;
1da177e4 595
22f6b860
SH
596 /* Check for errors. */
597 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 598 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
c556167f 599 ndev->stats.rx_errors++;
22f6b860
SH
600 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
601 /* Frame too long or too short. */
c556167f 602 ndev->stats.rx_length_errors++;
22f6b860
SH
603 }
604 if (status & BD_ENET_RX_NO) /* Frame alignment */
c556167f 605 ndev->stats.rx_frame_errors++;
22f6b860 606 if (status & BD_ENET_RX_CR) /* CRC Error */
c556167f 607 ndev->stats.rx_crc_errors++;
22f6b860 608 if (status & BD_ENET_RX_OV) /* FIFO overrun */
c556167f 609 ndev->stats.rx_fifo_errors++;
1da177e4 610 }
1da177e4 611
22f6b860
SH
612 /* Report late collisions as a frame error.
613 * On this error, the BD is closed, but we don't know what we
614 * have in the buffer. So, just drop this frame on the floor.
615 */
616 if (status & BD_ENET_RX_CL) {
c556167f
UKK
617 ndev->stats.rx_errors++;
618 ndev->stats.rx_frame_errors++;
22f6b860
SH
619 goto rx_processing_done;
620 }
1da177e4 621
22f6b860 622 /* Process the incoming frame. */
c556167f 623 ndev->stats.rx_packets++;
22f6b860 624 pkt_len = bdp->cbd_datlen;
c556167f 625 ndev->stats.rx_bytes += pkt_len;
22f6b860 626 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 627
d1ab1f54
UKK
628 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
629 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
ccdc4f19 630
b5680e0b
SG
631 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
632 swap_buffer(data, pkt_len);
633
22f6b860
SH
634 /* This does 16 byte alignment, exactly what we need.
635 * The packet length includes FCS, but we don't want to
636 * include that when passing upstream as it messes up
637 * bridging applications.
638 */
8549889c 639 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 640
8549889c 641 if (unlikely(!skb)) {
22f6b860 642 printk("%s: Memory squeeze, dropping packet.\n",
c556167f
UKK
643 ndev->name);
644 ndev->stats.rx_dropped++;
22f6b860 645 } else {
8549889c 646 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
647 skb_put(skb, pkt_len - 4); /* Make room */
648 skb_copy_to_linear_data(skb, data, pkt_len - 4);
c556167f 649 skb->protocol = eth_type_trans(skb, ndev);
22f6b860
SH
650 netif_rx(skb);
651 }
f0b3fbea 652
d1ab1f54
UKK
653 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
654 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
22f6b860
SH
655rx_processing_done:
656 /* Clear the status flags for this buffer */
657 status &= ~BD_ENET_RX_STATS;
1da177e4 658
22f6b860
SH
659 /* Mark the buffer empty */
660 status |= BD_ENET_RX_EMPTY;
661 bdp->cbd_sc = status;
6aa20a22 662
22f6b860
SH
663 /* Update BD pointer to next entry */
664 if (status & BD_ENET_RX_WRAP)
665 bdp = fep->rx_bd_base;
666 else
667 bdp++;
668 /* Doing this here will keep the FEC running while we process
669 * incoming frames. On a heavily loaded network, we should be
670 * able to keep up at the expense of system resources.
671 */
672 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
673 }
2e28532f 674 fep->cur_rx = bdp;
1da177e4 675
81538e74 676 spin_unlock(&fep->hw_lock);
1da177e4
LT
677}
678
45993653
UKK
679static irqreturn_t
680fec_enet_interrupt(int irq, void *dev_id)
681{
682 struct net_device *ndev = dev_id;
683 struct fec_enet_private *fep = netdev_priv(ndev);
684 uint int_events;
685 irqreturn_t ret = IRQ_NONE;
686
687 do {
688 int_events = readl(fep->hwp + FEC_IEVENT);
689 writel(int_events, fep->hwp + FEC_IEVENT);
690
691 if (int_events & FEC_ENET_RXF) {
692 ret = IRQ_HANDLED;
693 fec_enet_rx(ndev);
694 }
695
696 /* Transmit OK, or non-fatal error. Update the buffer
697 * descriptors. FEC handles all errors, we just discover
698 * them as part of the transmit process.
699 */
700 if (int_events & FEC_ENET_TXF) {
701 ret = IRQ_HANDLED;
702 fec_enet_tx(ndev);
703 }
704
705 if (int_events & FEC_ENET_MII) {
706 ret = IRQ_HANDLED;
707 complete(&fep->mdio_done);
708 }
709 } while (int_events);
710
711 return ret;
712}
713
714
715
e6b043d5 716/* ------------------------------------------------------------------------- */
c556167f 717static void __inline__ fec_get_mac(struct net_device *ndev)
1da177e4 718{
c556167f 719 struct fec_enet_private *fep = netdev_priv(ndev);
49da97dc 720 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 721 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 722
49da97dc
SG
723 /*
724 * try to get mac address in following order:
725 *
726 * 1) module parameter via kernel command line in form
727 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
728 */
729 iap = macaddr;
730
731 /*
732 * 2) from flash or fuse (via platform data)
733 */
734 if (!is_valid_ether_addr(iap)) {
735#ifdef CONFIG_M5272
736 if (FEC_FLASHMAC)
737 iap = (unsigned char *)FEC_FLASHMAC;
738#else
739 if (pdata)
740 memcpy(iap, pdata->mac, ETH_ALEN);
741#endif
742 }
743
744 /*
745 * 3) FEC mac registers set by bootloader
746 */
747 if (!is_valid_ether_addr(iap)) {
748 *((unsigned long *) &tmpaddr[0]) =
749 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
750 *((unsigned short *) &tmpaddr[4]) =
751 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 752 iap = &tmpaddr[0];
1da177e4
LT
753 }
754
c556167f 755 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1da177e4 756
49da97dc
SG
757 /* Adjust MAC if using macaddr */
758 if (iap == macaddr)
c556167f 759 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
1da177e4
LT
760}
761
e6b043d5 762/* ------------------------------------------------------------------------- */
1da177e4 763
e6b043d5
BW
764/*
765 * Phy section
766 */
c556167f 767static void fec_enet_adjust_link(struct net_device *ndev)
1da177e4 768{
c556167f 769 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5
BW
770 struct phy_device *phy_dev = fep->phy_dev;
771 unsigned long flags;
1da177e4 772
e6b043d5 773 int status_change = 0;
1da177e4 774
e6b043d5 775 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 776
e6b043d5
BW
777 /* Prevent a state halted on mii error */
778 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
779 phy_dev->state = PHY_RESUMING;
780 goto spin_unlock;
781 }
1da177e4 782
e6b043d5
BW
783 /* Duplex link change */
784 if (phy_dev->link) {
785 if (fep->full_duplex != phy_dev->duplex) {
c556167f 786 fec_restart(ndev, phy_dev->duplex);
e6b043d5
BW
787 status_change = 1;
788 }
789 }
1da177e4 790
e6b043d5
BW
791 /* Link on or off change */
792 if (phy_dev->link != fep->link) {
793 fep->link = phy_dev->link;
794 if (phy_dev->link)
c556167f 795 fec_restart(ndev, phy_dev->duplex);
1da177e4 796 else
c556167f 797 fec_stop(ndev);
e6b043d5 798 status_change = 1;
1da177e4 799 }
6aa20a22 800
e6b043d5
BW
801spin_unlock:
802 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 803
e6b043d5
BW
804 if (status_change)
805 phy_print_status(phy_dev);
806}
1da177e4 807
e6b043d5 808static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 809{
e6b043d5 810 struct fec_enet_private *fep = bus->priv;
97b72e43 811 unsigned long time_left;
1da177e4 812
e6b043d5 813 fep->mii_timeout = 0;
97b72e43 814 init_completion(&fep->mdio_done);
e6b043d5
BW
815
816 /* start a read op */
817 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
818 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
819 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
820
821 /* wait for end of transfer */
97b72e43
BS
822 time_left = wait_for_completion_timeout(&fep->mdio_done,
823 usecs_to_jiffies(FEC_MII_TIMEOUT));
824 if (time_left == 0) {
825 fep->mii_timeout = 1;
826 printk(KERN_ERR "FEC: MDIO read timeout\n");
827 return -ETIMEDOUT;
1da177e4 828 }
1da177e4 829
e6b043d5
BW
830 /* return value */
831 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 832}
6aa20a22 833
e6b043d5
BW
834static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
835 u16 value)
1da177e4 836{
e6b043d5 837 struct fec_enet_private *fep = bus->priv;
97b72e43 838 unsigned long time_left;
1da177e4 839
e6b043d5 840 fep->mii_timeout = 0;
97b72e43 841 init_completion(&fep->mdio_done);
1da177e4 842
862f0982
SG
843 /* start a write op */
844 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
845 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
846 FEC_MMFR_TA | FEC_MMFR_DATA(value),
847 fep->hwp + FEC_MII_DATA);
848
849 /* wait for end of transfer */
97b72e43
BS
850 time_left = wait_for_completion_timeout(&fep->mdio_done,
851 usecs_to_jiffies(FEC_MII_TIMEOUT));
852 if (time_left == 0) {
853 fep->mii_timeout = 1;
854 printk(KERN_ERR "FEC: MDIO write timeout\n");
855 return -ETIMEDOUT;
e6b043d5 856 }
1da177e4 857
e6b043d5
BW
858 return 0;
859}
1da177e4 860
e6b043d5 861static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 862{
e6b043d5 863 return 0;
1da177e4
LT
864}
865
c556167f 866static int fec_enet_mii_probe(struct net_device *ndev)
562d2f8c 867{
c556167f 868 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 869 struct phy_device *phy_dev = NULL;
6fcc040f
GU
870 char mdio_bus_id[MII_BUS_ID_SIZE];
871 char phy_name[MII_BUS_ID_SIZE + 3];
872 int phy_id;
b5680e0b 873 int dev_id = fep->pdev->id;
562d2f8c 874
418bd0d4
BW
875 fep->phy_dev = NULL;
876
6fcc040f
GU
877 /* check for attached phy */
878 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
879 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
880 continue;
881 if (fep->mii_bus->phy_map[phy_id] == NULL)
882 continue;
883 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
884 continue;
b5680e0b
SG
885 if (dev_id--)
886 continue;
6fcc040f
GU
887 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
888 break;
e6b043d5 889 }
1da177e4 890
6fcc040f
GU
891 if (phy_id >= PHY_MAX_ADDR) {
892 printk(KERN_INFO "%s: no PHY, assuming direct connection "
c556167f 893 "to switch\n", ndev->name);
6fcc040f
GU
894 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
895 phy_id = 0;
896 }
897
898 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
c556167f 899 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
6fcc040f
GU
900 PHY_INTERFACE_MODE_MII);
901 if (IS_ERR(phy_dev)) {
c556167f 902 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
6fcc040f 903 return PTR_ERR(phy_dev);
e6b043d5 904 }
1da177e4 905
e6b043d5
BW
906 /* mask with MAC supported features */
907 phy_dev->supported &= PHY_BASIC_FEATURES;
908 phy_dev->advertising = phy_dev->supported;
1da177e4 909
e6b043d5
BW
910 fep->phy_dev = phy_dev;
911 fep->link = 0;
912 fep->full_duplex = 0;
1da177e4 913
418bd0d4 914 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
c556167f 915 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
418bd0d4
BW
916 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
917 fep->phy_dev->irq);
918
e6b043d5 919 return 0;
1da177e4
LT
920}
921
e6b043d5 922static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 923{
b5680e0b 924 static struct mii_bus *fec0_mii_bus;
c556167f
UKK
925 struct net_device *ndev = platform_get_drvdata(pdev);
926 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
927 const struct platform_device_id *id_entry =
928 platform_get_device_id(fep->pdev);
e6b043d5 929 int err = -ENXIO, i;
6b265293 930
b5680e0b
SG
931 /*
932 * The dual fec interfaces are not equivalent with enet-mac.
933 * Here are the differences:
934 *
935 * - fec0 supports MII & RMII modes while fec1 only supports RMII
936 * - fec0 acts as the 1588 time master while fec1 is slave
937 * - external phys can only be configured by fec0
938 *
939 * That is to say fec1 can not work independently. It only works
940 * when fec0 is working. The reason behind this design is that the
941 * second interface is added primarily for Switch mode.
942 *
943 * Because of the last point above, both phys are attached on fec0
944 * mdio interface in board design, and need to be configured by
945 * fec0 mii_bus.
946 */
947 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
948 /* fec1 uses fec0 mii_bus */
949 fep->mii_bus = fec0_mii_bus;
950 return 0;
951 }
952
e6b043d5 953 fep->mii_timeout = 0;
1da177e4 954
e6b043d5
BW
955 /*
956 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
957 */
958 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
959 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 960
e6b043d5
BW
961 fep->mii_bus = mdiobus_alloc();
962 if (fep->mii_bus == NULL) {
963 err = -ENOMEM;
964 goto err_out;
1da177e4
LT
965 }
966
e6b043d5
BW
967 fep->mii_bus->name = "fec_enet_mii_bus";
968 fep->mii_bus->read = fec_enet_mdio_read;
969 fep->mii_bus->write = fec_enet_mdio_write;
970 fep->mii_bus->reset = fec_enet_mdio_reset;
6fcc040f 971 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
e6b043d5
BW
972 fep->mii_bus->priv = fep;
973 fep->mii_bus->parent = &pdev->dev;
974
975 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
976 if (!fep->mii_bus->irq) {
977 err = -ENOMEM;
978 goto err_out_free_mdiobus;
1da177e4
LT
979 }
980
e6b043d5
BW
981 for (i = 0; i < PHY_MAX_ADDR; i++)
982 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 983
c556167f 984 platform_set_drvdata(ndev, fep->mii_bus);
1da177e4 985
e6b043d5
BW
986 if (mdiobus_register(fep->mii_bus))
987 goto err_out_free_mdio_irq;
1da177e4 988
b5680e0b
SG
989 /* save fec0 mii_bus */
990 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
991 fec0_mii_bus = fep->mii_bus;
992
e6b043d5 993 return 0;
1da177e4 994
e6b043d5
BW
995err_out_free_mdio_irq:
996 kfree(fep->mii_bus->irq);
997err_out_free_mdiobus:
998 mdiobus_free(fep->mii_bus);
999err_out:
1000 return err;
1da177e4
LT
1001}
1002
e6b043d5 1003static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 1004{
e6b043d5
BW
1005 if (fep->phy_dev)
1006 phy_disconnect(fep->phy_dev);
1007 mdiobus_unregister(fep->mii_bus);
1008 kfree(fep->mii_bus->irq);
1009 mdiobus_free(fep->mii_bus);
1da177e4
LT
1010}
1011
c556167f 1012static int fec_enet_get_settings(struct net_device *ndev,
e6b043d5 1013 struct ethtool_cmd *cmd)
1da177e4 1014{
c556167f 1015 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1016 struct phy_device *phydev = fep->phy_dev;
1da177e4 1017
e6b043d5
BW
1018 if (!phydev)
1019 return -ENODEV;
1da177e4 1020
e6b043d5 1021 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
1022}
1023
c556167f 1024static int fec_enet_set_settings(struct net_device *ndev,
e6b043d5 1025 struct ethtool_cmd *cmd)
1da177e4 1026{
c556167f 1027 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1028 struct phy_device *phydev = fep->phy_dev;
1da177e4 1029
e6b043d5
BW
1030 if (!phydev)
1031 return -ENODEV;
1da177e4 1032
e6b043d5 1033 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
1034}
1035
c556167f 1036static void fec_enet_get_drvinfo(struct net_device *ndev,
e6b043d5 1037 struct ethtool_drvinfo *info)
1da177e4 1038{
c556167f 1039 struct fec_enet_private *fep = netdev_priv(ndev);
6aa20a22 1040
e6b043d5
BW
1041 strcpy(info->driver, fep->pdev->dev.driver->name);
1042 strcpy(info->version, "Revision: 1.0");
c556167f 1043 strcpy(info->bus_info, dev_name(&ndev->dev));
1da177e4
LT
1044}
1045
e6b043d5
BW
1046static struct ethtool_ops fec_enet_ethtool_ops = {
1047 .get_settings = fec_enet_get_settings,
1048 .set_settings = fec_enet_set_settings,
1049 .get_drvinfo = fec_enet_get_drvinfo,
1050 .get_link = ethtool_op_get_link,
1051};
1da177e4 1052
c556167f 1053static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1da177e4 1054{
c556167f 1055 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1056 struct phy_device *phydev = fep->phy_dev;
1da177e4 1057
c556167f 1058 if (!netif_running(ndev))
e6b043d5 1059 return -EINVAL;
1da177e4 1060
e6b043d5
BW
1061 if (!phydev)
1062 return -ENODEV;
1063
28b04113 1064 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
1065}
1066
c556167f 1067static void fec_enet_free_buffers(struct net_device *ndev)
f0b3fbea 1068{
c556167f 1069 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1070 int i;
1071 struct sk_buff *skb;
1072 struct bufdesc *bdp;
1073
1074 bdp = fep->rx_bd_base;
1075 for (i = 0; i < RX_RING_SIZE; i++) {
1076 skb = fep->rx_skbuff[i];
1077
1078 if (bdp->cbd_bufaddr)
d1ab1f54 1079 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
f0b3fbea
SH
1080 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1081 if (skb)
1082 dev_kfree_skb(skb);
1083 bdp++;
1084 }
1085
1086 bdp = fep->tx_bd_base;
1087 for (i = 0; i < TX_RING_SIZE; i++)
1088 kfree(fep->tx_bounce[i]);
1089}
1090
c556167f 1091static int fec_enet_alloc_buffers(struct net_device *ndev)
f0b3fbea 1092{
c556167f 1093 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1094 int i;
1095 struct sk_buff *skb;
1096 struct bufdesc *bdp;
1097
1098 bdp = fep->rx_bd_base;
1099 for (i = 0; i < RX_RING_SIZE; i++) {
1100 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1101 if (!skb) {
c556167f 1102 fec_enet_free_buffers(ndev);
f0b3fbea
SH
1103 return -ENOMEM;
1104 }
1105 fep->rx_skbuff[i] = skb;
1106
d1ab1f54 1107 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
f0b3fbea
SH
1108 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1109 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1110 bdp++;
1111 }
1112
1113 /* Set the last buffer to wrap. */
1114 bdp--;
1115 bdp->cbd_sc |= BD_SC_WRAP;
1116
1117 bdp = fep->tx_bd_base;
1118 for (i = 0; i < TX_RING_SIZE; i++) {
1119 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1120
1121 bdp->cbd_sc = 0;
1122 bdp->cbd_bufaddr = 0;
1123 bdp++;
1124 }
1125
1126 /* Set the last buffer to wrap. */
1127 bdp--;
1128 bdp->cbd_sc |= BD_SC_WRAP;
1129
1130 return 0;
1131}
1132
1da177e4 1133static int
c556167f 1134fec_enet_open(struct net_device *ndev)
1da177e4 1135{
c556167f 1136 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1137 int ret;
1da177e4
LT
1138
1139 /* I should reset the ring buffers here, but I don't yet know
1140 * a simple way to do that.
1141 */
1da177e4 1142
c556167f 1143 ret = fec_enet_alloc_buffers(ndev);
f0b3fbea
SH
1144 if (ret)
1145 return ret;
1146
418bd0d4 1147 /* Probe and connect to PHY when open the interface */
c556167f 1148 ret = fec_enet_mii_probe(ndev);
418bd0d4 1149 if (ret) {
c556167f 1150 fec_enet_free_buffers(ndev);
418bd0d4
BW
1151 return ret;
1152 }
e6b043d5 1153 phy_start(fep->phy_dev);
c556167f 1154 netif_start_queue(ndev);
1da177e4 1155 fep->opened = 1;
22f6b860 1156 return 0;
1da177e4
LT
1157}
1158
1159static int
c556167f 1160fec_enet_close(struct net_device *ndev)
1da177e4 1161{
c556167f 1162 struct fec_enet_private *fep = netdev_priv(ndev);
1da177e4 1163
22f6b860 1164 /* Don't know what to do yet. */
1da177e4 1165 fep->opened = 0;
c556167f
UKK
1166 netif_stop_queue(ndev);
1167 fec_stop(ndev);
1da177e4 1168
e497ba82
UKK
1169 if (fep->phy_dev) {
1170 phy_stop(fep->phy_dev);
418bd0d4 1171 phy_disconnect(fep->phy_dev);
e497ba82 1172 }
418bd0d4 1173
db8880bc 1174 fec_enet_free_buffers(ndev);
f0b3fbea 1175
1da177e4
LT
1176 return 0;
1177}
1178
1da177e4
LT
1179/* Set or clear the multicast filter for this adaptor.
1180 * Skeleton taken from sunlance driver.
1181 * The CPM Ethernet implementation allows Multicast as well as individual
1182 * MAC address filtering. Some of the drivers check to make sure it is
1183 * a group multicast address, and discard those that are not. I guess I
1184 * will do the same for now, but just remove the test if you want
1185 * individual filtering as well (do the upper net layers want or support
1186 * this kind of feature?).
1187 */
1188
1189#define HASH_BITS 6 /* #bits in hash */
1190#define CRC32_POLY 0xEDB88320
1191
c556167f 1192static void set_multicast_list(struct net_device *ndev)
1da177e4 1193{
c556167f 1194 struct fec_enet_private *fep = netdev_priv(ndev);
22bedad3 1195 struct netdev_hw_addr *ha;
48e2f183 1196 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1197 unsigned char hash;
1198
c556167f 1199 if (ndev->flags & IFF_PROMISC) {
f44d6305
SH
1200 tmp = readl(fep->hwp + FEC_R_CNTRL);
1201 tmp |= 0x8;
1202 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1203 return;
1204 }
1da177e4 1205
4e831836
SH
1206 tmp = readl(fep->hwp + FEC_R_CNTRL);
1207 tmp &= ~0x8;
1208 writel(tmp, fep->hwp + FEC_R_CNTRL);
1209
c556167f 1210 if (ndev->flags & IFF_ALLMULTI) {
4e831836
SH
1211 /* Catch all multicast addresses, so set the
1212 * filter to all 1's
1213 */
1214 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1215 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1216
1217 return;
1218 }
1219
1220 /* Clear filter and add the addresses in hash register
1221 */
1222 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1223 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1224
c556167f 1225 netdev_for_each_mc_addr(ha, ndev) {
4e831836 1226 /* Only support group multicast for now */
22bedad3 1227 if (!(ha->addr[0] & 1))
4e831836
SH
1228 continue;
1229
1230 /* calculate crc32 value of mac address */
1231 crc = 0xffffffff;
1232
c556167f 1233 for (i = 0; i < ndev->addr_len; i++) {
22bedad3 1234 data = ha->addr[i];
4e831836
SH
1235 for (bit = 0; bit < 8; bit++, data >>= 1) {
1236 crc = (crc >> 1) ^
1237 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1238 }
1239 }
4e831836
SH
1240
1241 /* only upper 6 bits (HASH_BITS) are used
1242 * which point to specific bit in he hash registers
1243 */
1244 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1245
1246 if (hash > 31) {
1247 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1248 tmp |= 1 << (hash - 32);
1249 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1250 } else {
1251 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1252 tmp |= 1 << hash;
1253 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1254 }
1da177e4
LT
1255 }
1256}
1257
22f6b860 1258/* Set a MAC change in hardware. */
009fda83 1259static int
c556167f 1260fec_set_mac_address(struct net_device *ndev, void *p)
1da177e4 1261{
c556167f 1262 struct fec_enet_private *fep = netdev_priv(ndev);
009fda83
SH
1263 struct sockaddr *addr = p;
1264
1265 if (!is_valid_ether_addr(addr->sa_data))
1266 return -EADDRNOTAVAIL;
1267
c556167f 1268 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1da177e4 1269
c556167f
UKK
1270 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1271 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
f44d6305 1272 fep->hwp + FEC_ADDR_LOW);
c556167f 1273 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
7cff0943 1274 fep->hwp + FEC_ADDR_HIGH);
009fda83 1275 return 0;
1da177e4
LT
1276}
1277
009fda83
SH
1278static const struct net_device_ops fec_netdev_ops = {
1279 .ndo_open = fec_enet_open,
1280 .ndo_stop = fec_enet_close,
1281 .ndo_start_xmit = fec_enet_start_xmit,
1282 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1283 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1284 .ndo_validate_addr = eth_validate_addr,
1285 .ndo_tx_timeout = fec_timeout,
1286 .ndo_set_mac_address = fec_set_mac_address,
db8880bc 1287 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1288};
1289
1da177e4
LT
1290 /*
1291 * XXX: We need to clean up on failure exits here.
ead73183 1292 *
1da177e4 1293 */
c556167f 1294static int fec_enet_init(struct net_device *ndev)
1da177e4 1295{
c556167f 1296 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1297 struct bufdesc *cbd_base;
633e7533 1298 struct bufdesc *bdp;
f0b3fbea 1299 int i;
1da177e4 1300
8d4dd5cf
SH
1301 /* Allocate memory for buffer descriptors. */
1302 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1303 GFP_KERNEL);
1304 if (!cbd_base) {
562d2f8c
GU
1305 printk("FEC: allocate descriptor memory failed?\n");
1306 return -ENOMEM;
1307 }
1308
3b2b74ca 1309 spin_lock_init(&fep->hw_lock);
3b2b74ca 1310
c556167f 1311 fep->netdev = ndev;
1da177e4 1312
49da97dc 1313 /* Get the Ethernet address */
c556167f 1314 fec_get_mac(ndev);
1da177e4 1315
8d4dd5cf 1316 /* Set receive and transmit descriptor base. */
1da177e4
LT
1317 fep->rx_bd_base = cbd_base;
1318 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1319
22f6b860 1320 /* The FEC Ethernet specific entries in the device structure */
c556167f
UKK
1321 ndev->watchdog_timeo = TX_TIMEOUT;
1322 ndev->netdev_ops = &fec_netdev_ops;
1323 ndev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1324
1325 /* Initialize the receive buffer descriptors. */
1326 bdp = fep->rx_bd_base;
1327 for (i = 0; i < RX_RING_SIZE; i++) {
1328
1329 /* Initialize the BD for every fragment in the page. */
1330 bdp->cbd_sc = 0;
1331 bdp++;
1332 }
1333
1334 /* Set the last buffer to wrap */
1335 bdp--;
1336 bdp->cbd_sc |= BD_SC_WRAP;
1337
1338 /* ...and the same for transmit */
1339 bdp = fep->tx_bd_base;
1340 for (i = 0; i < TX_RING_SIZE; i++) {
1341
1342 /* Initialize the BD for every fragment in the page. */
1343 bdp->cbd_sc = 0;
1344 bdp->cbd_bufaddr = 0;
1345 bdp++;
1346 }
1347
1348 /* Set the last buffer to wrap */
1349 bdp--;
1350 bdp->cbd_sc |= BD_SC_WRAP;
1351
c556167f 1352 fec_restart(ndev, 0);
1da177e4 1353
1da177e4
LT
1354 return 0;
1355}
1356
ead73183
SH
1357static int __devinit
1358fec_probe(struct platform_device *pdev)
1359{
1360 struct fec_enet_private *fep;
5eb32bd0 1361 struct fec_platform_data *pdata;
ead73183
SH
1362 struct net_device *ndev;
1363 int i, irq, ret = 0;
1364 struct resource *r;
1365
1366 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1367 if (!r)
1368 return -ENXIO;
1369
1370 r = request_mem_region(r->start, resource_size(r), pdev->name);
1371 if (!r)
1372 return -EBUSY;
1373
1374 /* Init network device */
1375 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1376 if (!ndev) {
1377 ret = -ENOMEM;
1378 goto failed_alloc_etherdev;
1379 }
ead73183
SH
1380
1381 SET_NETDEV_DEV(ndev, &pdev->dev);
1382
1383 /* setup board info structure */
1384 fep = netdev_priv(ndev);
ead73183 1385
24e531b4 1386 fep->hwp = ioremap(r->start, resource_size(r));
e6b043d5 1387 fep->pdev = pdev;
ead73183 1388
24e531b4 1389 if (!fep->hwp) {
ead73183
SH
1390 ret = -ENOMEM;
1391 goto failed_ioremap;
1392 }
1393
1394 platform_set_drvdata(pdev, ndev);
1395
5eb32bd0
BS
1396 pdata = pdev->dev.platform_data;
1397 if (pdata)
1398 fep->phy_interface = pdata->phy;
1399
ead73183
SH
1400 /* This device has up to three irqs on some platforms */
1401 for (i = 0; i < 3; i++) {
1402 irq = platform_get_irq(pdev, i);
1403 if (i && irq < 0)
1404 break;
1405 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1406 if (ret) {
b2b09ad6 1407 while (--i >= 0) {
ead73183
SH
1408 irq = platform_get_irq(pdev, i);
1409 free_irq(irq, ndev);
ead73183
SH
1410 }
1411 goto failed_irq;
1412 }
1413 }
1414
1415 fep->clk = clk_get(&pdev->dev, "fec_clk");
1416 if (IS_ERR(fep->clk)) {
1417 ret = PTR_ERR(fep->clk);
1418 goto failed_clk;
1419 }
1420 clk_enable(fep->clk);
1421
8649a230 1422 ret = fec_enet_init(ndev);
ead73183
SH
1423 if (ret)
1424 goto failed_init;
1425
e6b043d5
BW
1426 ret = fec_enet_mii_init(pdev);
1427 if (ret)
1428 goto failed_mii_init;
1429
03c698c9
OS
1430 /* Carrier starts down, phylib will bring it up */
1431 netif_carrier_off(ndev);
1432
ead73183
SH
1433 ret = register_netdev(ndev);
1434 if (ret)
1435 goto failed_register;
1436
1437 return 0;
1438
1439failed_register:
e6b043d5
BW
1440 fec_enet_mii_remove(fep);
1441failed_mii_init:
ead73183
SH
1442failed_init:
1443 clk_disable(fep->clk);
1444 clk_put(fep->clk);
1445failed_clk:
1446 for (i = 0; i < 3; i++) {
1447 irq = platform_get_irq(pdev, i);
1448 if (irq > 0)
1449 free_irq(irq, ndev);
1450 }
1451failed_irq:
24e531b4 1452 iounmap(fep->hwp);
ead73183
SH
1453failed_ioremap:
1454 free_netdev(ndev);
28e2188e
UKK
1455failed_alloc_etherdev:
1456 release_mem_region(r->start, resource_size(r));
ead73183
SH
1457
1458 return ret;
1459}
1460
1461static int __devexit
1462fec_drv_remove(struct platform_device *pdev)
1463{
1464 struct net_device *ndev = platform_get_drvdata(pdev);
1465 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1466 struct resource *r;
ead73183
SH
1467
1468 platform_set_drvdata(pdev, NULL);
1469
1470 fec_stop(ndev);
e6b043d5 1471 fec_enet_mii_remove(fep);
ead73183
SH
1472 clk_disable(fep->clk);
1473 clk_put(fep->clk);
24e531b4 1474 iounmap(fep->hwp);
ead73183
SH
1475 unregister_netdev(ndev);
1476 free_netdev(ndev);
28e2188e
UKK
1477
1478 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1479 BUG_ON(!r);
1480 release_mem_region(r->start, resource_size(r));
1481
ead73183
SH
1482 return 0;
1483}
1484
59d4289b 1485#ifdef CONFIG_PM
ead73183 1486static int
87cad5c3 1487fec_suspend(struct device *dev)
ead73183 1488{
87cad5c3 1489 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1490 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1491
04e5216d
UKK
1492 if (netif_running(ndev)) {
1493 fec_stop(ndev);
1494 netif_device_detach(ndev);
ead73183 1495 }
04e5216d
UKK
1496 clk_disable(fep->clk);
1497
ead73183
SH
1498 return 0;
1499}
1500
1501static int
87cad5c3 1502fec_resume(struct device *dev)
ead73183 1503{
87cad5c3 1504 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1505 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1506
04e5216d
UKK
1507 clk_enable(fep->clk);
1508 if (netif_running(ndev)) {
1509 fec_restart(ndev, fep->full_duplex);
1510 netif_device_attach(ndev);
ead73183 1511 }
04e5216d 1512
ead73183
SH
1513 return 0;
1514}
1515
59d4289b
DK
1516static const struct dev_pm_ops fec_pm_ops = {
1517 .suspend = fec_suspend,
1518 .resume = fec_resume,
1519 .freeze = fec_suspend,
1520 .thaw = fec_resume,
1521 .poweroff = fec_suspend,
1522 .restore = fec_resume,
1523};
87cad5c3 1524#endif
59d4289b 1525
ead73183
SH
1526static struct platform_driver fec_driver = {
1527 .driver = {
b5680e0b 1528 .name = DRIVER_NAME,
87cad5c3
EB
1529 .owner = THIS_MODULE,
1530#ifdef CONFIG_PM
1531 .pm = &fec_pm_ops,
1532#endif
ead73183 1533 },
b5680e0b 1534 .id_table = fec_devtype,
87cad5c3
EB
1535 .probe = fec_probe,
1536 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1537};
1538
1539static int __init
1540fec_enet_module_init(void)
1541{
1542 printk(KERN_INFO "FEC Ethernet Driver\n");
1543
1544 return platform_driver_register(&fec_driver);
1545}
1546
1547static void __exit
1548fec_enet_cleanup(void)
1549{
1550 platform_driver_unregister(&fec_driver);
1551}
1552
1553module_exit(fec_enet_cleanup);
1da177e4
LT
1554module_init(fec_enet_module_init);
1555
1556MODULE_LICENSE("GPL");