]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/hippi/rrunner.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-zesty-kernel.git] / drivers / net / hippi / rrunner.c
CommitLineData
1da177e4
LT
1/*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3 *
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5 *
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
19 *
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
22 *
23 * PCI DMA mapping code partly based on work by Francois Romieu.
24 */
25
26
27#define DEBUG 1
28#define RX_DMA_SKBUFF 1
29#define PKT_COPY_THRESHOLD 512
30
1da177e4
LT
31#include <linux/module.h>
32#include <linux/types.h>
33#include <linux/errno.h>
34#include <linux/ioport.h>
35#include <linux/pci.h>
36#include <linux/kernel.h>
37#include <linux/netdevice.h>
38#include <linux/hippidevice.h>
39#include <linux/skbuff.h>
1da177e4
LT
40#include <linux/delay.h>
41#include <linux/mm.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43#include <net/sock.h>
44
1da177e4
LT
45#include <asm/cache.h>
46#include <asm/byteorder.h>
47#include <asm/io.h>
48#include <asm/irq.h>
7c0f6ba6 49#include <linux/uaccess.h>
1da177e4
LT
50
51#define rr_if_busy(dev) netif_queue_stopped(dev)
52#define rr_if_running(dev) netif_running(dev)
53
54#include "rrunner.h"
55
56#define RUN_AT(x) (jiffies + (x))
57
58
59MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
60MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
61MODULE_LICENSE("GPL");
62
6e945491 63static char version[] = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
1da177e4 64
748ff68f
SH
65
66static const struct net_device_ops rr_netdev_ops = {
67 .ndo_open = rr_open,
68 .ndo_stop = rr_close,
69 .ndo_do_ioctl = rr_ioctl,
70 .ndo_start_xmit = rr_start_xmit,
748ff68f
SH
71 .ndo_set_mac_address = hippi_mac_addr,
72};
73
1da177e4
LT
74/*
75 * Implementation notes:
76 *
77 * The DMA engine only allows for DMA within physical 64KB chunks of
78 * memory. The current approach of the driver (and stack) is to use
79 * linear blocks of memory for the skbuffs. However, as the data block
80 * is always the first part of the skb and skbs are 2^n aligned so we
81 * are guarantted to get the whole block within one 64KB align 64KB
82 * chunk.
83 *
84 * On the long term, relying on being able to allocate 64KB linear
85 * chunks of memory is not feasible and the skb handling code and the
86 * stack will need to know about I/O vectors or something similar.
87 */
88
1dd06ae8 89static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
90{
91 struct net_device *dev;
92 static int version_disp;
93 u8 pci_latency;
94 struct rr_private *rrpriv;
95 void *tmpptr;
96 dma_addr_t ring_dma;
97 int ret = -ENOMEM;
98
99 dev = alloc_hippi_dev(sizeof(struct rr_private));
100 if (!dev)
101 goto out3;
102
103 ret = pci_enable_device(pdev);
104 if (ret) {
105 ret = -ENODEV;
106 goto out2;
107 }
108
109 rrpriv = netdev_priv(dev);
110
1da177e4
LT
111 SET_NETDEV_DEV(dev, &pdev->dev);
112
0193fc5e
FR
113 ret = pci_request_regions(pdev, "rrunner");
114 if (ret < 0)
1da177e4 115 goto out;
1da177e4
LT
116
117 pci_set_drvdata(pdev, dev);
118
119 rrpriv->pci_dev = pdev;
120
121 spin_lock_init(&rrpriv->lock);
122
748ff68f 123 dev->netdev_ops = &rr_netdev_ops;
1da177e4 124
1da177e4
LT
125 /* display version info if adapter is found */
126 if (!version_disp) {
127 /* set display flag to TRUE so that */
128 /* we only display this string ONCE */
129 version_disp = 1;
130 printk(version);
131 }
132
133 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134 if (pci_latency <= 0x58){
135 pci_latency = 0x58;
136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137 }
138
139 pci_set_master(pdev);
140
141 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
ecffe75f
RD
142 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
143 (unsigned long long)pci_resource_start(pdev, 0),
144 pdev->irq, pci_latency);
1da177e4
LT
145
146 /*
0193fc5e 147 * Remap the MMIO regs into kernel space.
1da177e4 148 */
0193fc5e
FR
149 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
150 if (!rrpriv->regs) {
1da177e4
LT
151 printk(KERN_ERR "%s: Unable to map I/O register, "
152 "RoadRunner will be disabled.\n", dev->name);
153 ret = -EIO;
154 goto out;
155 }
156
157 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
158 rrpriv->tx_ring = tmpptr;
159 rrpriv->tx_ring_dma = ring_dma;
160
161 if (!tmpptr) {
162 ret = -ENOMEM;
163 goto out;
164 }
165
166 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
167 rrpriv->rx_ring = tmpptr;
168 rrpriv->rx_ring_dma = ring_dma;
169
170 if (!tmpptr) {
171 ret = -ENOMEM;
172 goto out;
173 }
174
175 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
178
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
182 }
183
184 /*
185 * Don't access any register before this point!
186 */
187#ifdef __BIG_ENDIAN
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
190#endif
191 /*
192 * Need to add a case for little-endian 64-bit hosts here.
193 */
194
195 rr_init(dev);
196
1da177e4
LT
197 ret = register_netdev(dev);
198 if (ret)
199 goto out;
200 return 0;
201
202 out:
fef4c86e
DO
203 if (rrpriv->evt_ring)
204 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
205 rrpriv->evt_ring_dma);
1da177e4 206 if (rrpriv->rx_ring)
6aa20a22 207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
1da177e4
LT
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
0193fc5e 213 pci_iounmap(pdev, rrpriv->regs);
79ac7c94 214 if (pdev)
1da177e4 215 pci_release_regions(pdev);
1da177e4
LT
216 out2:
217 free_netdev(dev);
218 out3:
219 return ret;
220}
221
6e945491 222static void rr_remove_one(struct pci_dev *pdev)
1da177e4
LT
223{
224 struct net_device *dev = pci_get_drvdata(pdev);
0193fc5e 225 struct rr_private *rr = netdev_priv(dev);
1da177e4 226
0193fc5e
FR
227 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228 printk(KERN_ERR "%s: trying to unload running NIC\n",
229 dev->name);
230 writel(HALT_NIC, &rr->regs->HostCtrl);
1da177e4 231 }
0193fc5e
FR
232
233 unregister_netdev(dev);
234 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
235 rr->evt_ring_dma);
236 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
237 rr->rx_ring_dma);
238 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
239 rr->tx_ring_dma);
240 pci_iounmap(pdev, rr->regs);
241 pci_release_regions(pdev);
242 pci_disable_device(pdev);
0193fc5e 243 free_netdev(dev);
1da177e4
LT
244}
245
246
247/*
248 * Commands are considered to be slow, thus there is no reason to
249 * inline this.
250 */
251static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252{
253 struct rr_regs __iomem *regs;
254 u32 idx;
255
256 regs = rrpriv->regs;
257 /*
258 * This is temporary - it will go away in the final version.
259 * We probably also want to make this function inline.
260 */
261 if (readl(&regs->HostCtrl) & NIC_HALTED){
262 printk("issuing command for halted NIC, code 0x%x, "
263 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264 if (readl(&regs->Mode) & FATAL_ERR)
265 printk("error codes Fail1 %02x, Fail2 %02x\n",
266 readl(&regs->Fail1), readl(&regs->Fail2));
267 }
268
269 idx = rrpriv->info->cmd_ctrl.pi;
270
271 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272 wmb();
273
274 idx = (idx - 1) % CMD_RING_ENTRIES;
275 rrpriv->info->cmd_ctrl.pi = idx;
276 wmb();
277
278 if (readl(&regs->Mode) & FATAL_ERR)
279 printk("error code %02x\n", readl(&regs->Fail1));
280}
281
282
283/*
284 * Reset the board in a sensible manner. The NIC is already halted
285 * when we get here and a spin-lock is held.
286 */
287static int rr_reset(struct net_device *dev)
288{
289 struct rr_private *rrpriv;
290 struct rr_regs __iomem *regs;
1da177e4
LT
291 u32 start_pc;
292 int i;
293
294 rrpriv = netdev_priv(dev);
295 regs = rrpriv->regs;
296
297 rr_load_firmware(dev);
298
299 writel(0x01000000, &regs->TX_state);
300 writel(0xff800000, &regs->RX_state);
301 writel(0, &regs->AssistState);
302 writel(CLEAR_INTA, &regs->LocalCtrl);
303 writel(0x01, &regs->BrkPt);
304 writel(0, &regs->Timer);
305 writel(0, &regs->TimerRef);
306 writel(RESET_DMA, &regs->DmaReadState);
307 writel(RESET_DMA, &regs->DmaWriteState);
308 writel(0, &regs->DmaWriteHostHi);
309 writel(0, &regs->DmaWriteHostLo);
310 writel(0, &regs->DmaReadHostHi);
311 writel(0, &regs->DmaReadHostLo);
312 writel(0, &regs->DmaReadLen);
313 writel(0, &regs->DmaWriteLen);
314 writel(0, &regs->DmaWriteLcl);
315 writel(0, &regs->DmaWriteIPchecksum);
316 writel(0, &regs->DmaReadLcl);
317 writel(0, &regs->DmaReadIPchecksum);
318 writel(0, &regs->PciState);
319#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321#elif (BITS_PER_LONG == 64)
322 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323#else
324 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325#endif
326
327#if 0
328 /*
329 * Don't worry, this is just black magic.
330 */
331 writel(0xdf000, &regs->RxBase);
332 writel(0xdf000, &regs->RxPrd);
333 writel(0xdf000, &regs->RxCon);
334 writel(0xce000, &regs->TxBase);
335 writel(0xce000, &regs->TxPrd);
336 writel(0xce000, &regs->TxCon);
337 writel(0, &regs->RxIndPro);
338 writel(0, &regs->RxIndCon);
339 writel(0, &regs->RxIndRef);
340 writel(0, &regs->TxIndPro);
341 writel(0, &regs->TxIndCon);
342 writel(0, &regs->TxIndRef);
343 writel(0xcc000, &regs->pad10[0]);
344 writel(0, &regs->DrCmndPro);
345 writel(0, &regs->DrCmndCon);
346 writel(0, &regs->DwCmndPro);
347 writel(0, &regs->DwCmndCon);
348 writel(0, &regs->DwCmndRef);
349 writel(0, &regs->DrDataPro);
350 writel(0, &regs->DrDataCon);
351 writel(0, &regs->DrDataRef);
352 writel(0, &regs->DwDataPro);
353 writel(0, &regs->DwDataCon);
354 writel(0, &regs->DwDataRef);
355#endif
356
357 writel(0xffffffff, &regs->MbEvent);
358 writel(0, &regs->Event);
359
360 writel(0, &regs->TxPi);
361 writel(0, &regs->IpRxPi);
362
363 writel(0, &regs->EvtCon);
364 writel(0, &regs->EvtPrd);
365
366 rrpriv->info->evt_ctrl.pi = 0;
367
368 for (i = 0; i < CMD_RING_ENTRIES; i++)
369 writel(0, &regs->CmdRing[i]);
370
371/*
372 * Why 32 ? is this not cache line size dependent?
373 */
374 writel(RBURST_64|WBURST_64, &regs->PciState);
375 wmb();
376
cf962378
AV
377 start_pc = rr_read_eeprom_word(rrpriv,
378 offsetof(struct eeprom, rncd_info.FwStart));
1da177e4
LT
379
380#if (DEBUG > 1)
381 printk("%s: Executing firmware at address 0x%06x\n",
382 dev->name, start_pc);
383#endif
384
385 writel(start_pc + 0x800, &regs->Pc);
386 wmb();
387 udelay(5);
388
389 writel(start_pc, &regs->Pc);
390 wmb();
391
392 return 0;
393}
394
395
396/*
397 * Read a string from the EEPROM.
398 */
399static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400 unsigned long offset,
401 unsigned char *buf,
402 unsigned long length)
403{
404 struct rr_regs __iomem *regs = rrpriv->regs;
405 u32 misc, io, host, i;
406
407 io = readl(&regs->ExtIo);
408 writel(0, &regs->ExtIo);
409 misc = readl(&regs->LocalCtrl);
410 writel(0, &regs->LocalCtrl);
411 host = readl(&regs->HostCtrl);
412 writel(host | HALT_NIC, &regs->HostCtrl);
413 mb();
414
415 for (i = 0; i < length; i++){
416 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417 mb();
418 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419 mb();
420 }
421
422 writel(host, &regs->HostCtrl);
423 writel(misc, &regs->LocalCtrl);
424 writel(io, &regs->ExtIo);
425 mb();
426 return i;
427}
428
429
430/*
431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432 * it to our CPU byte-order.
433 */
434static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
cf962378 435 size_t offset)
1da177e4 436{
cf962378 437 __be32 word;
1da177e4 438
cf962378
AV
439 if ((rr_read_eeprom(rrpriv, offset,
440 (unsigned char *)&word, 4) == 4))
1da177e4
LT
441 return be32_to_cpu(word);
442 return 0;
443}
444
445
446/*
447 * Write a string to the EEPROM.
448 *
449 * This is only called when the firmware is not running.
450 */
451static unsigned int write_eeprom(struct rr_private *rrpriv,
452 unsigned long offset,
453 unsigned char *buf,
454 unsigned long length)
455{
456 struct rr_regs __iomem *regs = rrpriv->regs;
457 u32 misc, io, data, i, j, ready, error = 0;
458
459 io = readl(&regs->ExtIo);
460 writel(0, &regs->ExtIo);
461 misc = readl(&regs->LocalCtrl);
462 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463 mb();
464
465 for (i = 0; i < length; i++){
466 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467 mb();
468 data = buf[i] << 24;
469 /*
470 * Only try to write the data if it is not the same
471 * value already.
472 */
473 if ((readl(&regs->WinData) & 0xff000000) != data){
474 writel(data, &regs->WinData);
475 ready = 0;
476 j = 0;
477 mb();
478 while(!ready){
479 udelay(20);
480 if ((readl(&regs->WinData) & 0xff000000) ==
481 data)
482 ready = 1;
483 mb();
484 if (j++ > 5000){
485 printk("data mismatch: %08x, "
486 "WinData %08x\n", data,
487 readl(&regs->WinData));
488 ready = 1;
489 error = 1;
490 }
491 }
492 }
493 }
494
495 writel(misc, &regs->LocalCtrl);
496 writel(io, &regs->ExtIo);
497 mb();
498
499 return error;
500}
501
502
6e945491 503static int rr_init(struct net_device *dev)
1da177e4
LT
504{
505 struct rr_private *rrpriv;
506 struct rr_regs __iomem *regs;
1da177e4 507 u32 sram_size, rev;
1da177e4
LT
508
509 rrpriv = netdev_priv(dev);
510 regs = rrpriv->regs;
511
512 rev = readl(&regs->FwRev);
513 rrpriv->fw_rev = rev;
514 if (rev > 0x00020024)
515 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
516 ((rev >> 8) & 0xff), (rev & 0xff));
517 else if (rev >= 0x00020000) {
518 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
519 "later is recommended)\n", (rev >> 16),
520 ((rev >> 8) & 0xff), (rev & 0xff));
521 }else{
522 printk(" Firmware revision too old: %i.%i.%i, please "
523 "upgrade to 2.0.37 or later.\n",
524 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
525 }
526
527#if (DEBUG > 2)
528 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
529#endif
530
531 /*
532 * Read the hardware address from the eeprom. The HW address
533 * is not really necessary for HIPPI but awfully convenient.
534 * The pointer arithmetic to put it in dev_addr is ugly, but
535 * Donald Becker does it this way for the GigE version of this
536 * card and it's shorter and more portable than any
537 * other method I've seen. -VAL
538 */
539
cf962378
AV
540 *(__be16 *)(dev->dev_addr) =
541 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542 *(__be32 *)(dev->dev_addr+2) =
543 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
6aa20a22 544
e174961c 545 printk(" MAC: %pM\n", dev->dev_addr);
1da177e4 546
cf962378 547 sram_size = rr_read_eeprom_word(rrpriv, 8);
1da177e4
LT
548 printk(" SRAM size 0x%06x\n", sram_size);
549
1da177e4
LT
550 return 0;
551}
552
553
554static int rr_init1(struct net_device *dev)
555{
556 struct rr_private *rrpriv;
557 struct rr_regs __iomem *regs;
558 unsigned long myjif, flags;
559 struct cmd cmd;
560 u32 hostctrl;
561 int ecode = 0;
562 short i;
563
564 rrpriv = netdev_priv(dev);
565 regs = rrpriv->regs;
566
567 spin_lock_irqsave(&rrpriv->lock, flags);
568
569 hostctrl = readl(&regs->HostCtrl);
570 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
571 wmb();
572
573 if (hostctrl & PARITY_ERR){
574 printk("%s: Parity error halting NIC - this is serious!\n",
575 dev->name);
576 spin_unlock_irqrestore(&rrpriv->lock, flags);
577 ecode = -EFAULT;
578 goto error;
579 }
580
581 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582 set_infoaddr(regs, rrpriv->info_dma);
583
584 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586 rrpriv->info->evt_ctrl.mode = 0;
587 rrpriv->info->evt_ctrl.pi = 0;
588 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
589
590 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592 rrpriv->info->cmd_ctrl.mode = 0;
593 rrpriv->info->cmd_ctrl.pi = 15;
594
595 for (i = 0; i < CMD_RING_ENTRIES; i++) {
596 writel(0, &regs->CmdRing[i]);
597 }
598
599 for (i = 0; i < TX_RING_ENTRIES; i++) {
600 rrpriv->tx_ring[i].size = 0;
601 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602 rrpriv->tx_skbuff[i] = NULL;
603 }
604 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606 rrpriv->info->tx_ctrl.mode = 0;
607 rrpriv->info->tx_ctrl.pi = 0;
608 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
609
610 /*
611 * Set dirty_tx before we start receiving interrupts, otherwise
612 * the interrupt handler might think it is supposed to process
613 * tx ints before we are up and running, which may cause a null
614 * pointer access in the int handler.
615 */
616 rrpriv->tx_full = 0;
617 rrpriv->cur_rx = 0;
618 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
619
620 rr_reset(dev);
621
622 /* Tuning values */
623 writel(0x5000, &regs->ConRetry);
624 writel(0x100, &regs->ConRetryTmr);
625 writel(0x500000, &regs->ConTmout);
626 writel(0x60, &regs->IntrTmr);
627 writel(0x500000, &regs->TxDataMvTimeout);
628 writel(0x200000, &regs->RxDataMvTimeout);
629 writel(0x80, &regs->WriteDmaThresh);
630 writel(0x80, &regs->ReadDmaThresh);
631
632 rrpriv->fw_running = 0;
633 wmb();
634
635 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636 writel(hostctrl, &regs->HostCtrl);
637 wmb();
638
639 spin_unlock_irqrestore(&rrpriv->lock, flags);
640
641 for (i = 0; i < RX_RING_ENTRIES; i++) {
642 struct sk_buff *skb;
643 dma_addr_t addr;
644
645 rrpriv->rx_ring[i].mode = 0;
646 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647 if (!skb) {
648 printk(KERN_WARNING "%s: Unable to allocate memory "
649 "for receive ring - halting NIC\n", dev->name);
650 ecode = -ENOMEM;
651 goto error;
652 }
653 rrpriv->rx_skbuff[i] = skb;
654 addr = pci_map_single(rrpriv->pci_dev, skb->data,
655 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
656 /*
657 * Sanity test to see if we conflict with the DMA
658 * limitations of the Roadrunner.
659 */
660 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661 printk("skb alloc error\n");
662
663 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
665 }
666
667 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669 rrpriv->rx_ctrl[4].mode = 8;
670 rrpriv->rx_ctrl[4].pi = 0;
671 wmb();
672 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
673
674 udelay(1000);
675
676 /*
677 * Now start the FirmWare.
678 */
679 cmd.code = C_START_FW;
680 cmd.ring = 0;
681 cmd.index = 0;
682
683 rr_issue_cmd(rrpriv, &cmd);
684
685 /*
686 * Give the FirmWare time to chew on the `get running' command.
687 */
688 myjif = jiffies + 5 * HZ;
689 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690 cpu_relax();
691
692 netif_start_queue(dev);
693
694 return ecode;
695
696 error:
697 /*
698 * We might have gotten here because we are out of memory,
699 * make sure we release everything we allocated before failing
700 */
701 for (i = 0; i < RX_RING_ENTRIES; i++) {
702 struct sk_buff *skb = rrpriv->rx_skbuff[i];
703
704 if (skb) {
6aa20a22
JG
705 pci_unmap_single(rrpriv->pci_dev,
706 rrpriv->rx_ring[i].addr.addrlo,
1da177e4
LT
707 dev->mtu + HIPPI_HLEN,
708 PCI_DMA_FROMDEVICE);
709 rrpriv->rx_ring[i].size = 0;
710 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711 dev_kfree_skb(skb);
712 rrpriv->rx_skbuff[i] = NULL;
713 }
714 }
715 return ecode;
716}
717
718
719/*
720 * All events are considered to be slow (RX/TX ints do not generate
721 * events) and are handled here, outside the main interrupt handler,
722 * to reduce the size of the handler.
723 */
724static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
725{
726 struct rr_private *rrpriv;
727 struct rr_regs __iomem *regs;
728 u32 tmp;
729
730 rrpriv = netdev_priv(dev);
731 regs = rrpriv->regs;
732
733 while (prodidx != eidx){
734 switch (rrpriv->evt_ring[eidx].code){
735 case E_NIC_UP:
736 tmp = readl(&regs->FwRev);
737 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738 "up and running\n", dev->name,
739 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740 rrpriv->fw_running = 1;
741 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
742 wmb();
743 break;
744 case E_LINK_ON:
745 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746 break;
747 case E_LINK_OFF:
748 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749 break;
750 case E_RX_IDLE:
751 printk(KERN_WARNING "%s: RX data not moving\n",
752 dev->name);
753 goto drop;
754 case E_WATCHDOG:
755 printk(KERN_INFO "%s: The watchdog is here to see "
756 "us\n", dev->name);
757 break;
758 case E_INTERN_ERR:
759 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760 dev->name);
6aa20a22 761 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
762 &regs->HostCtrl);
763 wmb();
764 break;
765 case E_HOST_ERR:
766 printk(KERN_ERR "%s: Host software error\n",
767 dev->name);
6aa20a22 768 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
769 &regs->HostCtrl);
770 wmb();
771 break;
772 /*
773 * TX events.
774 */
775 case E_CON_REJ:
776 printk(KERN_WARNING "%s: Connection rejected\n",
777 dev->name);
09f75cd7 778 dev->stats.tx_aborted_errors++;
1da177e4
LT
779 break;
780 case E_CON_TMOUT:
781 printk(KERN_WARNING "%s: Connection timeout\n",
782 dev->name);
783 break;
784 case E_DISC_ERR:
785 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786 dev->name);
09f75cd7 787 dev->stats.tx_aborted_errors++;
1da177e4
LT
788 break;
789 case E_INT_PRTY:
790 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791 dev->name);
6aa20a22 792 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
793 &regs->HostCtrl);
794 wmb();
795 break;
796 case E_TX_IDLE:
797 printk(KERN_WARNING "%s: Transmitter idle\n",
798 dev->name);
799 break;
800 case E_TX_LINK_DROP:
801 printk(KERN_WARNING "%s: Link lost during transmit\n",
802 dev->name);
09f75cd7 803 dev->stats.tx_aborted_errors++;
6aa20a22 804 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
805 &regs->HostCtrl);
806 wmb();
807 break;
808 case E_TX_INV_RNG:
809 printk(KERN_ERR "%s: Invalid send ring block\n",
810 dev->name);
6aa20a22 811 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
812 &regs->HostCtrl);
813 wmb();
814 break;
815 case E_TX_INV_BUF:
816 printk(KERN_ERR "%s: Invalid send buffer address\n",
817 dev->name);
6aa20a22 818 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
819 &regs->HostCtrl);
820 wmb();
821 break;
822 case E_TX_INV_DSC:
823 printk(KERN_ERR "%s: Invalid descriptor address\n",
824 dev->name);
6aa20a22 825 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
826 &regs->HostCtrl);
827 wmb();
828 break;
829 /*
830 * RX events.
831 */
832 case E_RX_RNG_OUT:
833 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834 break;
835
836 case E_RX_PAR_ERR:
837 printk(KERN_WARNING "%s: Receive parity error\n",
838 dev->name);
839 goto drop;
840 case E_RX_LLRC_ERR:
841 printk(KERN_WARNING "%s: Receive LLRC error\n",
842 dev->name);
843 goto drop;
844 case E_PKT_LN_ERR:
845 printk(KERN_WARNING "%s: Receive packet length "
846 "error\n", dev->name);
847 goto drop;
848 case E_DTA_CKSM_ERR:
849 printk(KERN_WARNING "%s: Data checksum error\n",
850 dev->name);
851 goto drop;
852 case E_SHT_BST:
853 printk(KERN_WARNING "%s: Unexpected short burst "
854 "error\n", dev->name);
855 goto drop;
856 case E_STATE_ERR:
857 printk(KERN_WARNING "%s: Recv. state transition"
858 " error\n", dev->name);
859 goto drop;
860 case E_UNEXP_DATA:
861 printk(KERN_WARNING "%s: Unexpected data error\n",
862 dev->name);
863 goto drop;
864 case E_LST_LNK_ERR:
865 printk(KERN_WARNING "%s: Link lost error\n",
866 dev->name);
867 goto drop;
868 case E_FRM_ERR:
869 printk(KERN_WARNING "%s: Framming Error\n",
870 dev->name);
871 goto drop;
872 case E_FLG_SYN_ERR:
2450022a 873 printk(KERN_WARNING "%s: Flag sync. lost during "
1da177e4
LT
874 "packet\n", dev->name);
875 goto drop;
876 case E_RX_INV_BUF:
877 printk(KERN_ERR "%s: Invalid receive buffer "
878 "address\n", dev->name);
6aa20a22 879 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
880 &regs->HostCtrl);
881 wmb();
882 break;
883 case E_RX_INV_DSC:
884 printk(KERN_ERR "%s: Invalid receive descriptor "
885 "address\n", dev->name);
6aa20a22 886 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
887 &regs->HostCtrl);
888 wmb();
889 break;
890 case E_RNG_BLK:
891 printk(KERN_ERR "%s: Invalid ring block\n",
892 dev->name);
6aa20a22 893 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
894 &regs->HostCtrl);
895 wmb();
896 break;
897 drop:
898 /* Label packet to be dropped.
899 * Actual dropping occurs in rx
900 * handling.
901 *
902 * The index of packet we get to drop is
903 * the index of the packet following
904 * the bad packet. -kbf
905 */
906 {
907 u16 index = rrpriv->evt_ring[eidx].index;
908 index = (index + (RX_RING_ENTRIES - 1)) %
909 RX_RING_ENTRIES;
910 rrpriv->rx_ring[index].mode |=
911 (PACKET_BAD | PACKET_END);
912 }
913 break;
914 default:
915 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916 dev->name, rrpriv->evt_ring[eidx].code);
917 }
918 eidx = (eidx + 1) % EVT_RING_ENTRIES;
919 }
920
921 rrpriv->info->evt_ctrl.pi = eidx;
922 wmb();
923 return eidx;
924}
925
926
927static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
928{
929 struct rr_private *rrpriv = netdev_priv(dev);
930 struct rr_regs __iomem *regs = rrpriv->regs;
931
932 do {
933 struct rx_desc *desc;
934 u32 pkt_len;
935
936 desc = &(rrpriv->rx_ring[index]);
937 pkt_len = desc->size;
938#if (DEBUG > 2)
939 printk("index %i, rxlimit %i\n", index, rxlimit);
940 printk("len %x, mode %x\n", pkt_len, desc->mode);
941#endif
942 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
09f75cd7 943 dev->stats.rx_dropped++;
1da177e4
LT
944 goto defer;
945 }
946
947 if (pkt_len > 0){
948 struct sk_buff *skb, *rx_skb;
949
950 rx_skb = rrpriv->rx_skbuff[index];
951
952 if (pkt_len < PKT_COPY_THRESHOLD) {
953 skb = alloc_skb(pkt_len, GFP_ATOMIC);
954 if (skb == NULL){
955 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
09f75cd7 956 dev->stats.rx_dropped++;
1da177e4
LT
957 goto defer;
958 } else {
959 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
960 desc->addr.addrlo,
961 pkt_len,
962 PCI_DMA_FROMDEVICE);
963
964 memcpy(skb_put(skb, pkt_len),
965 rx_skb->data, pkt_len);
966
967 pci_dma_sync_single_for_device(rrpriv->pci_dev,
968 desc->addr.addrlo,
969 pkt_len,
970 PCI_DMA_FROMDEVICE);
971 }
972 }else{
973 struct sk_buff *newskb;
974
975 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976 GFP_ATOMIC);
977 if (newskb){
978 dma_addr_t addr;
979
6aa20a22
JG
980 pci_unmap_single(rrpriv->pci_dev,
981 desc->addr.addrlo, dev->mtu +
1da177e4
LT
982 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
983 skb = rx_skb;
984 skb_put(skb, pkt_len);
985 rrpriv->rx_skbuff[index] = newskb;
6aa20a22
JG
986 addr = pci_map_single(rrpriv->pci_dev,
987 newskb->data,
988 dev->mtu + HIPPI_HLEN,
1da177e4
LT
989 PCI_DMA_FROMDEVICE);
990 set_rraddr(&desc->addr, addr);
991 } else {
992 printk("%s: Out of memory, deferring "
993 "packet\n", dev->name);
09f75cd7 994 dev->stats.rx_dropped++;
1da177e4
LT
995 goto defer;
996 }
997 }
1da177e4
LT
998 skb->protocol = hippi_type_trans(skb, dev);
999
1000 netif_rx(skb); /* send it up */
1001
09f75cd7
JG
1002 dev->stats.rx_packets++;
1003 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
1004 }
1005 defer:
1006 desc->mode = 0;
1007 desc->size = dev->mtu + HIPPI_HLEN;
1008
1009 if ((index & 7) == 7)
1010 writel(index, &regs->IpRxPi);
1011
1012 index = (index + 1) % RX_RING_ENTRIES;
1013 } while(index != rxlimit);
1014
1015 rrpriv->cur_rx = index;
1016 wmb();
1017}
1018
1019
7d12e780 1020static irqreturn_t rr_interrupt(int irq, void *dev_id)
1da177e4
LT
1021{
1022 struct rr_private *rrpriv;
1023 struct rr_regs __iomem *regs;
1024 struct net_device *dev = (struct net_device *)dev_id;
1025 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1026
1027 rrpriv = netdev_priv(dev);
1028 regs = rrpriv->regs;
1029
1030 if (!(readl(&regs->HostCtrl) & RR_INT))
1031 return IRQ_NONE;
1032
1033 spin_lock(&rrpriv->lock);
1034
1035 prodidx = readl(&regs->EvtPrd);
1036 txcsmr = (prodidx >> 8) & 0xff;
1037 rxlimit = (prodidx >> 16) & 0xff;
1038 prodidx &= 0xff;
1039
1040#if (DEBUG > 2)
1041 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1042 prodidx, rrpriv->info->evt_ctrl.pi);
1043#endif
1044 /*
1045 * Order here is important. We must handle events
1046 * before doing anything else in order to catch
1047 * such things as LLRC errors, etc -kbf
1048 */
1049
1050 eidx = rrpriv->info->evt_ctrl.pi;
1051 if (prodidx != eidx)
1052 eidx = rr_handle_event(dev, prodidx, eidx);
1053
1054 rxindex = rrpriv->cur_rx;
1055 if (rxindex != rxlimit)
1056 rx_int(dev, rxlimit, rxindex);
1057
1058 txcon = rrpriv->dirty_tx;
1059 if (txcsmr != txcon) {
1060 do {
1061 /* Due to occational firmware TX producer/consumer out
1062 * of sync. error need to check entry in ring -kbf
1063 */
1064 if(rrpriv->tx_skbuff[txcon]){
1065 struct tx_desc *desc;
1066 struct sk_buff *skb;
1067
1068 desc = &(rrpriv->tx_ring[txcon]);
1069 skb = rrpriv->tx_skbuff[txcon];
1070
09f75cd7
JG
1071 dev->stats.tx_packets++;
1072 dev->stats.tx_bytes += skb->len;
1da177e4
LT
1073
1074 pci_unmap_single(rrpriv->pci_dev,
1075 desc->addr.addrlo, skb->len,
1076 PCI_DMA_TODEVICE);
1077 dev_kfree_skb_irq(skb);
1078
1079 rrpriv->tx_skbuff[txcon] = NULL;
1080 desc->size = 0;
1081 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1082 desc->mode = 0;
1083 }
1084 txcon = (txcon + 1) % TX_RING_ENTRIES;
1085 } while (txcsmr != txcon);
1086 wmb();
1087
1088 rrpriv->dirty_tx = txcon;
1089 if (rrpriv->tx_full && rr_if_busy(dev) &&
1090 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1091 != rrpriv->dirty_tx)){
1092 rrpriv->tx_full = 0;
1093 netif_wake_queue(dev);
1094 }
1095 }
1096
1097 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1098 writel(eidx, &regs->EvtCon);
1099 wmb();
1100
1101 spin_unlock(&rrpriv->lock);
1102 return IRQ_HANDLED;
1103}
1104
1105static inline void rr_raz_tx(struct rr_private *rrpriv,
1106 struct net_device *dev)
1107{
1108 int i;
1109
1110 for (i = 0; i < TX_RING_ENTRIES; i++) {
1111 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1112
1113 if (skb) {
1114 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1115
1116 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1117 skb->len, PCI_DMA_TODEVICE);
1118 desc->size = 0;
1119 set_rraddr(&desc->addr, 0);
1120 dev_kfree_skb(skb);
1121 rrpriv->tx_skbuff[i] = NULL;
1122 }
1123 }
1124}
1125
1126
1127static inline void rr_raz_rx(struct rr_private *rrpriv,
1128 struct net_device *dev)
1129{
1130 int i;
1131
1132 for (i = 0; i < RX_RING_ENTRIES; i++) {
1133 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1134
1135 if (skb) {
1136 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1137
1138 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1139 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1140 desc->size = 0;
1141 set_rraddr(&desc->addr, 0);
1142 dev_kfree_skb(skb);
1143 rrpriv->rx_skbuff[i] = NULL;
1144 }
1145 }
1146}
1147
1148static void rr_timer(unsigned long data)
1149{
1150 struct net_device *dev = (struct net_device *)data;
1151 struct rr_private *rrpriv = netdev_priv(dev);
1152 struct rr_regs __iomem *regs = rrpriv->regs;
1153 unsigned long flags;
1154
1155 if (readl(&regs->HostCtrl) & NIC_HALTED){
1156 printk("%s: Restarting nic\n", dev->name);
1157 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1158 memset(rrpriv->info, 0, sizeof(struct rr_info));
1159 wmb();
1160
1161 rr_raz_tx(rrpriv, dev);
1162 rr_raz_rx(rrpriv, dev);
1163
1164 if (rr_init1(dev)) {
1165 spin_lock_irqsave(&rrpriv->lock, flags);
6aa20a22 1166 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
1167 &regs->HostCtrl);
1168 spin_unlock_irqrestore(&rrpriv->lock, flags);
1169 }
1170 }
1171 rrpriv->timer.expires = RUN_AT(5*HZ);
1172 add_timer(&rrpriv->timer);
1173}
1174
1175
1176static int rr_open(struct net_device *dev)
1177{
1178 struct rr_private *rrpriv = netdev_priv(dev);
1179 struct pci_dev *pdev = rrpriv->pci_dev;
1180 struct rr_regs __iomem *regs;
1181 int ecode = 0;
1182 unsigned long flags;
1183 dma_addr_t dma_addr;
1184
1185 regs = rrpriv->regs;
1186
1187 if (rrpriv->fw_rev < 0x00020000) {
1188 printk(KERN_WARNING "%s: trying to configure device with "
1189 "obsolete firmware\n", dev->name);
1190 ecode = -EBUSY;
1191 goto error;
1192 }
1193
1194 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1195 256 * sizeof(struct ring_ctrl),
1196 &dma_addr);
1197 if (!rrpriv->rx_ctrl) {
1198 ecode = -ENOMEM;
1199 goto error;
1200 }
1201 rrpriv->rx_ctrl_dma = dma_addr;
1202 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1203
1204 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1205 &dma_addr);
1206 if (!rrpriv->info) {
1207 ecode = -ENOMEM;
1208 goto error;
1209 }
1210 rrpriv->info_dma = dma_addr;
1211 memset(rrpriv->info, 0, sizeof(struct rr_info));
1212 wmb();
1213
1214 spin_lock_irqsave(&rrpriv->lock, flags);
1215 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1216 readl(&regs->HostCtrl);
1217 spin_unlock_irqrestore(&rrpriv->lock, flags);
1218
0193fc5e 1219 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1da177e4 1220 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
0193fc5e 1221 dev->name, pdev->irq);
1da177e4
LT
1222 ecode = -EAGAIN;
1223 goto error;
1224 }
1225
1226 if ((ecode = rr_init1(dev)))
1227 goto error;
1228
1229 /* Set the timer to switch to check for link beat and perhaps switch
1230 to an alternate media type. */
1231 init_timer(&rrpriv->timer);
1232 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1233 rrpriv->timer.data = (unsigned long)dev;
c061b18d 1234 rrpriv->timer.function = rr_timer; /* timer handler */
1da177e4
LT
1235 add_timer(&rrpriv->timer);
1236
1237 netif_start_queue(dev);
1238
1239 return ecode;
1240
1241 error:
1242 spin_lock_irqsave(&rrpriv->lock, flags);
1243 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244 spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246 if (rrpriv->info) {
1247 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1248 rrpriv->info_dma);
1249 rrpriv->info = NULL;
1250 }
1251 if (rrpriv->rx_ctrl) {
1252 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1253 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254 rrpriv->rx_ctrl = NULL;
1255 }
1256
1257 netif_stop_queue(dev);
6aa20a22 1258
1da177e4
LT
1259 return ecode;
1260}
1261
1262
1263static void rr_dump(struct net_device *dev)
1264{
1265 struct rr_private *rrpriv;
1266 struct rr_regs __iomem *regs;
1267 u32 index, cons;
1268 short i;
1269 int len;
1270
1271 rrpriv = netdev_priv(dev);
1272 regs = rrpriv->regs;
1273
1274 printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277 readl(&regs->RxPrd), readl(&regs->TxPrd),
1278 readl(&regs->EvtPrd), readl(&regs->TxPi),
1279 rrpriv->info->tx_ctrl.pi);
1280
1281 printk("Error code 0x%x\n", readl(&regs->Fail1));
1282
2585e7e5 1283 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1da177e4
LT
1284 cons = rrpriv->dirty_tx;
1285 printk("TX ring index %i, TX consumer %i\n",
1286 index, cons);
1287
1288 if (rrpriv->tx_skbuff[index]){
1289 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291 for (i = 0; i < len; i++){
1292 if (!(i & 7))
1293 printk("\n");
1294 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295 }
1296 printk("\n");
1297 }
1298
1299 if (rrpriv->tx_skbuff[cons]){
1300 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1303 rrpriv->tx_ring[cons].mode,
1304 rrpriv->tx_ring[cons].size,
1305 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1307 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308 for (i = 0; i < len; i++){
1309 if (!(i & 7))
1310 printk("\n");
1311 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312 }
1313 printk("\n");
1314 }
1315
1316 printk("dumping TX ring info:\n");
1317 for (i = 0; i < TX_RING_ENTRIES; i++)
1318 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319 rrpriv->tx_ring[i].mode,
1320 rrpriv->tx_ring[i].size,
1321 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323}
1324
1325
1326static int rr_close(struct net_device *dev)
1327{
0193fc5e
FR
1328 struct rr_private *rrpriv = netdev_priv(dev);
1329 struct rr_regs __iomem *regs = rrpriv->regs;
1330 struct pci_dev *pdev = rrpriv->pci_dev;
1da177e4
LT
1331 unsigned long flags;
1332 u32 tmp;
1333 short i;
1334
1335 netif_stop_queue(dev);
1336
1da177e4
LT
1337
1338 /*
1339 * Lock to make sure we are not cleaning up while another CPU
1340 * is handling interrupts.
1341 */
1342 spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344 tmp = readl(&regs->HostCtrl);
1345 if (tmp & NIC_HALTED){
1346 printk("%s: NIC already halted\n", dev->name);
1347 rr_dump(dev);
1348 }else{
1349 tmp |= HALT_NIC | RR_CLEAR_INT;
1350 writel(tmp, &regs->HostCtrl);
1351 readl(&regs->HostCtrl);
1352 }
1353
1354 rrpriv->fw_running = 0;
1355
1356 del_timer_sync(&rrpriv->timer);
1357
1358 writel(0, &regs->TxPi);
1359 writel(0, &regs->IpRxPi);
1360
1361 writel(0, &regs->EvtCon);
1362 writel(0, &regs->EvtPrd);
1363
1364 for (i = 0; i < CMD_RING_ENTRIES; i++)
1365 writel(0, &regs->CmdRing[i]);
1366
1367 rrpriv->info->tx_ctrl.entries = 0;
1368 rrpriv->info->cmd_ctrl.pi = 0;
1369 rrpriv->info->evt_ctrl.pi = 0;
1370 rrpriv->rx_ctrl[4].entries = 0;
1371
1372 rr_raz_tx(rrpriv, dev);
1373 rr_raz_rx(rrpriv, dev);
1374
0193fc5e 1375 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1da177e4
LT
1376 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1377 rrpriv->rx_ctrl = NULL;
1378
0193fc5e
FR
1379 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1380 rrpriv->info_dma);
1da177e4
LT
1381 rrpriv->info = NULL;
1382
0193fc5e 1383 free_irq(pdev->irq, dev);
1da177e4
LT
1384 spin_unlock_irqrestore(&rrpriv->lock, flags);
1385
1386 return 0;
1387}
1388
1389
61357325
SH
1390static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1391 struct net_device *dev)
1da177e4
LT
1392{
1393 struct rr_private *rrpriv = netdev_priv(dev);
1394 struct rr_regs __iomem *regs = rrpriv->regs;
6f1cf165 1395 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1da177e4
LT
1396 struct ring_ctrl *txctrl;
1397 unsigned long flags;
1398 u32 index, len = skb->len;
1399 u32 *ifield;
1400 struct sk_buff *new_skb;
1401
1402 if (readl(&regs->Mode) & FATAL_ERR)
1403 printk("error codes Fail1 %02x, Fail2 %02x\n",
1404 readl(&regs->Fail1), readl(&regs->Fail2));
1405
1406 /*
1407 * We probably need to deal with tbusy here to prevent overruns.
1408 */
1409
1410 if (skb_headroom(skb) < 8){
1411 printk("incoming skb too small - reallocating\n");
1412 if (!(new_skb = dev_alloc_skb(len + 8))) {
1413 dev_kfree_skb(skb);
1414 netif_wake_queue(dev);
3790c8cd 1415 return NETDEV_TX_OK;
1da177e4
LT
1416 }
1417 skb_reserve(new_skb, 8);
1418 skb_put(new_skb, len);
d626f62b 1419 skb_copy_from_linear_data(skb, new_skb->data, len);
1da177e4
LT
1420 dev_kfree_skb(skb);
1421 skb = new_skb;
1422 }
1423
1424 ifield = (u32 *)skb_push(skb, 8);
1425
1426 ifield[0] = 0;
6f1cf165 1427 ifield[1] = hcb->ifield;
1da177e4
LT
1428
1429 /*
1430 * We don't need the lock before we are actually going to start
1431 * fiddling with the control blocks.
1432 */
1433 spin_lock_irqsave(&rrpriv->lock, flags);
1434
1435 txctrl = &rrpriv->info->tx_ctrl;
1436
1437 index = txctrl->pi;
1438
1439 rrpriv->tx_skbuff[index] = skb;
1440 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1441 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1442 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1443 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1444 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1445 wmb();
1446 writel(txctrl->pi, &regs->TxPi);
1447
1448 if (txctrl->pi == rrpriv->dirty_tx){
1449 rrpriv->tx_full = 1;
1450 netif_stop_queue(dev);
1451 }
1452
1453 spin_unlock_irqrestore(&rrpriv->lock, flags);
1454
6ed10654 1455 return NETDEV_TX_OK;
1da177e4
LT
1456}
1457
1458
1da177e4
LT
1459/*
1460 * Read the firmware out of the EEPROM and put it into the SRAM
1461 * (or from user space - later)
1462 *
1463 * This operation requires the NIC to be halted and is performed with
1464 * interrupts disabled and with the spinlock hold.
1465 */
1466static int rr_load_firmware(struct net_device *dev)
1467{
1468 struct rr_private *rrpriv;
1469 struct rr_regs __iomem *regs;
cf962378 1470 size_t eptr, segptr;
1da177e4
LT
1471 int i, j;
1472 u32 localctrl, sptr, len, tmp;
1473 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1da177e4
LT
1474
1475 rrpriv = netdev_priv(dev);
1476 regs = rrpriv->regs;
1477
1478 if (dev->flags & IFF_UP)
1479 return -EBUSY;
1480
1481 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
6aa20a22 1482 printk("%s: Trying to load firmware to a running NIC.\n",
1da177e4
LT
1483 dev->name);
1484 return -EBUSY;
1485 }
1486
1487 localctrl = readl(&regs->LocalCtrl);
1488 writel(0, &regs->LocalCtrl);
1489
1490 writel(0, &regs->EvtPrd);
1491 writel(0, &regs->RxPrd);
1492 writel(0, &regs->TxPrd);
1493
1494 /*
1495 * First wipe the entire SRAM, otherwise we might run into all
1496 * kinds of trouble ... sigh, this took almost all afternoon
1497 * to track down ;-(
1498 */
1499 io = readl(&regs->ExtIo);
1500 writel(0, &regs->ExtIo);
cf962378 1501 sram_size = rr_read_eeprom_word(rrpriv, 8);
1da177e4
LT
1502
1503 for (i = 200; i < sram_size / 4; i++){
1504 writel(i * 4, &regs->WinBase);
1505 mb();
1506 writel(0, &regs->WinData);
1507 mb();
1508 }
1509 writel(io, &regs->ExtIo);
1510 mb();
1511
cf962378
AV
1512 eptr = rr_read_eeprom_word(rrpriv,
1513 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1da177e4
LT
1514 eptr = ((eptr & 0x1fffff) >> 3);
1515
cf962378 1516 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1da177e4 1517 p2len = (p2len << 2);
cf962378 1518 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1da177e4
LT
1519 p2size = ((p2size & 0x1fffff) >> 3);
1520
1521 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1522 printk("%s: eptr is invalid\n", dev->name);
1523 goto out;
1524 }
1525
cf962378
AV
1526 revision = rr_read_eeprom_word(rrpriv,
1527 offsetof(struct eeprom, manf.HeaderFmt));
1da177e4
LT
1528
1529 if (revision != 1){
1530 printk("%s: invalid firmware format (%i)\n",
1531 dev->name, revision);
1532 goto out;
1533 }
1534
cf962378 1535 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1da177e4
LT
1536 eptr +=4;
1537#if (DEBUG > 1)
1538 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1539#endif
1540
1541 for (i = 0; i < nr_seg; i++){
cf962378 1542 sptr = rr_read_eeprom_word(rrpriv, eptr);
1da177e4 1543 eptr += 4;
cf962378 1544 len = rr_read_eeprom_word(rrpriv, eptr);
1da177e4 1545 eptr += 4;
cf962378 1546 segptr = rr_read_eeprom_word(rrpriv, eptr);
1da177e4
LT
1547 segptr = ((segptr & 0x1fffff) >> 3);
1548 eptr += 4;
1549#if (DEBUG > 1)
1550 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1551 dev->name, i, sptr, len, segptr);
1552#endif
1553 for (j = 0; j < len; j++){
cf962378 1554 tmp = rr_read_eeprom_word(rrpriv, segptr);
1da177e4
LT
1555 writel(sptr, &regs->WinBase);
1556 mb();
1557 writel(tmp, &regs->WinData);
1558 mb();
1559 segptr += 4;
1560 sptr += 4;
1561 }
1562 }
1563
1564out:
1565 writel(localctrl, &regs->LocalCtrl);
1566 mb();
1567 return 0;
1568}
1569
1570
1571static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1572{
1573 struct rr_private *rrpriv;
1574 unsigned char *image, *oldimage;
1575 unsigned long flags;
1576 unsigned int i;
1577 int error = -EOPNOTSUPP;
1578
1579 rrpriv = netdev_priv(dev);
1580
1581 switch(cmd){
1582 case SIOCRRGFW:
1583 if (!capable(CAP_SYS_RAWIO)){
1584 return -EPERM;
1585 }
1586
1587 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
e404decb 1588 if (!image)
1da177e4 1589 return -ENOMEM;
1da177e4
LT
1590
1591 if (rrpriv->fw_running){
1592 printk("%s: Firmware already running\n", dev->name);
1593 error = -EPERM;
1594 goto gf_out;
1595 }
1596
1597 spin_lock_irqsave(&rrpriv->lock, flags);
1598 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1599 spin_unlock_irqrestore(&rrpriv->lock, flags);
1600 if (i != EEPROM_BYTES){
1601 printk(KERN_ERR "%s: Error reading EEPROM\n",
1602 dev->name);
1603 error = -EFAULT;
1604 goto gf_out;
1605 }
1606 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1607 if (error)
1608 error = -EFAULT;
1609 gf_out:
1610 kfree(image);
1611 return error;
6aa20a22 1612
1da177e4
LT
1613 case SIOCRRPFW:
1614 if (!capable(CAP_SYS_RAWIO)){
1615 return -EPERM;
1616 }
1617
1618 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1619 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1620 if (!image || !oldimage) {
1da177e4
LT
1621 error = -ENOMEM;
1622 goto wf_out;
1623 }
1624
1625 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1626 if (error) {
1627 error = -EFAULT;
1628 goto wf_out;
1629 }
1630
1631 if (rrpriv->fw_running){
1632 printk("%s: Firmware already running\n", dev->name);
1633 error = -EPERM;
1634 goto wf_out;
1635 }
1636
1637 printk("%s: Updating EEPROM firmware\n", dev->name);
1638
1639 spin_lock_irqsave(&rrpriv->lock, flags);
1640 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1641 if (error)
1642 printk(KERN_ERR "%s: Error writing EEPROM\n",
1643 dev->name);
1644
1645 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1646 spin_unlock_irqrestore(&rrpriv->lock, flags);
1647
1648 if (i != EEPROM_BYTES)
1649 printk(KERN_ERR "%s: Error reading back EEPROM "
1650 "image\n", dev->name);
1651
1652 error = memcmp(image, oldimage, EEPROM_BYTES);
1653 if (error){
1654 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1655 dev->name);
1656 error = -EFAULT;
1657 }
1658 wf_out:
b4558ea9
JJ
1659 kfree(oldimage);
1660 kfree(image);
1da177e4 1661 return error;
6aa20a22 1662
1da177e4
LT
1663 case SIOCRRID:
1664 return put_user(0x52523032, (int __user *)rq->ifr_data);
1665 default:
1666 return error;
1667 }
1668}
1669
9baa3c34 1670static const struct pci_device_id rr_pci_tbl[] = {
1da177e4
LT
1671 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1672 PCI_ANY_ID, PCI_ANY_ID, },
1673 { 0,}
1674};
1675MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1676
1677static struct pci_driver rr_driver = {
1678 .name = "rrunner",
1679 .id_table = rr_pci_tbl,
1680 .probe = rr_init_one,
6e945491 1681 .remove = rr_remove_one,
1da177e4
LT
1682};
1683
ff715055 1684module_pci_driver(rr_driver);