]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/igb/igb_main.c
igb: fix typo in igb_validate_nvm_checksum_82580
[mirror_ubuntu-zesty-kernel.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
0d1fe82d
CW
53#define MAJ 3
54#define MIN 0
55#define BUILD 6
56#define KFIX 2
57#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
58__stringify(BUILD) "-k" __stringify(KFIX)
9d5c8243
AK
59char igb_driver_name[] = "igb";
60char igb_driver_version[] = DRV_VERSION;
61static const char igb_driver_string[] =
62 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 63static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 64
9d5c8243
AK
65static const struct e1000_info *igb_info_tbl[] = {
66 [board_82575] = &e1000_82575_info,
67};
68
a3aa1884 69static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
95 /* required last entry */
96 {0, }
97};
98
99MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
100
101void igb_reset(struct igb_adapter *);
102static int igb_setup_all_tx_resources(struct igb_adapter *);
103static int igb_setup_all_rx_resources(struct igb_adapter *);
104static void igb_free_all_tx_resources(struct igb_adapter *);
105static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 106static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
107static int igb_probe(struct pci_dev *, const struct pci_device_id *);
108static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 109static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
110static int igb_sw_init(struct igb_adapter *);
111static int igb_open(struct net_device *);
112static int igb_close(struct net_device *);
113static void igb_configure_tx(struct igb_adapter *);
114static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
115static void igb_clean_all_tx_rings(struct igb_adapter *);
116static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
117static void igb_clean_tx_ring(struct igb_ring *);
118static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 119static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
120static void igb_update_phy_info(unsigned long);
121static void igb_watchdog(unsigned long);
122static void igb_watchdog_task(struct work_struct *);
b1a436c3 123static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
124static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
125 struct rtnl_link_stats64 *stats);
9d5c8243
AK
126static int igb_change_mtu(struct net_device *, int);
127static int igb_set_mac(struct net_device *, void *);
68d480c4 128static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
129static irqreturn_t igb_intr(int irq, void *);
130static irqreturn_t igb_intr_msi(int irq, void *);
131static irqreturn_t igb_msix_other(int irq, void *);
047e0030 132static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 133#ifdef CONFIG_IGB_DCA
047e0030 134static void igb_update_dca(struct igb_q_vector *);
fe4506b6 135static void igb_setup_dca(struct igb_adapter *);
421e02f0 136#endif /* CONFIG_IGB_DCA */
047e0030 137static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 138static int igb_poll(struct napi_struct *, int);
047e0030 139static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
140static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
141static void igb_tx_timeout(struct net_device *);
142static void igb_reset_task(struct work_struct *);
143static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
144static void igb_vlan_rx_add_vid(struct net_device *, u16);
145static void igb_vlan_rx_kill_vid(struct net_device *, u16);
146static void igb_restore_vlan(struct igb_adapter *);
26ad9178 147static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
148static void igb_ping_all_vfs(struct igb_adapter *);
149static void igb_msg_task(struct igb_adapter *);
4ae196df 150static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 151static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 152static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
153static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
154static int igb_ndo_set_vf_vlan(struct net_device *netdev,
155 int vf, u16 vlan, u8 qos);
156static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
157static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
158 struct ifla_vf_info *ivi);
17dc566c 159static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 160
9d5c8243 161#ifdef CONFIG_PM
3fe7c4c9 162static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
163static int igb_resume(struct pci_dev *);
164#endif
165static void igb_shutdown(struct pci_dev *);
421e02f0 166#ifdef CONFIG_IGB_DCA
fe4506b6
JC
167static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
168static struct notifier_block dca_notifier = {
169 .notifier_call = igb_notify_dca,
170 .next = NULL,
171 .priority = 0
172};
173#endif
9d5c8243
AK
174#ifdef CONFIG_NET_POLL_CONTROLLER
175/* for netdump / net console */
176static void igb_netpoll(struct net_device *);
177#endif
37680117 178#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
179static unsigned int max_vfs = 0;
180module_param(max_vfs, uint, 0);
181MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
182 "per physical function");
183#endif /* CONFIG_PCI_IOV */
184
9d5c8243
AK
185static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
186 pci_channel_state_t);
187static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
188static void igb_io_resume(struct pci_dev *);
189
190static struct pci_error_handlers igb_err_handler = {
191 .error_detected = igb_io_error_detected,
192 .slot_reset = igb_io_slot_reset,
193 .resume = igb_io_resume,
194};
195
196
197static struct pci_driver igb_driver = {
198 .name = igb_driver_name,
199 .id_table = igb_pci_tbl,
200 .probe = igb_probe,
201 .remove = __devexit_p(igb_remove),
202#ifdef CONFIG_PM
25985edc 203 /* Power Management Hooks */
9d5c8243
AK
204 .suspend = igb_suspend,
205 .resume = igb_resume,
206#endif
207 .shutdown = igb_shutdown,
208 .err_handler = &igb_err_handler
209};
210
211MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
212MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
213MODULE_LICENSE("GPL");
214MODULE_VERSION(DRV_VERSION);
215
c97ec42a
TI
216struct igb_reg_info {
217 u32 ofs;
218 char *name;
219};
220
221static const struct igb_reg_info igb_reg_info_tbl[] = {
222
223 /* General Registers */
224 {E1000_CTRL, "CTRL"},
225 {E1000_STATUS, "STATUS"},
226 {E1000_CTRL_EXT, "CTRL_EXT"},
227
228 /* Interrupt Registers */
229 {E1000_ICR, "ICR"},
230
231 /* RX Registers */
232 {E1000_RCTL, "RCTL"},
233 {E1000_RDLEN(0), "RDLEN"},
234 {E1000_RDH(0), "RDH"},
235 {E1000_RDT(0), "RDT"},
236 {E1000_RXDCTL(0), "RXDCTL"},
237 {E1000_RDBAL(0), "RDBAL"},
238 {E1000_RDBAH(0), "RDBAH"},
239
240 /* TX Registers */
241 {E1000_TCTL, "TCTL"},
242 {E1000_TDBAL(0), "TDBAL"},
243 {E1000_TDBAH(0), "TDBAH"},
244 {E1000_TDLEN(0), "TDLEN"},
245 {E1000_TDH(0), "TDH"},
246 {E1000_TDT(0), "TDT"},
247 {E1000_TXDCTL(0), "TXDCTL"},
248 {E1000_TDFH, "TDFH"},
249 {E1000_TDFT, "TDFT"},
250 {E1000_TDFHS, "TDFHS"},
251 {E1000_TDFPC, "TDFPC"},
252
253 /* List Terminator */
254 {}
255};
256
257/*
258 * igb_regdump - register printout routine
259 */
260static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
261{
262 int n = 0;
263 char rname[16];
264 u32 regs[8];
265
266 switch (reginfo->ofs) {
267 case E1000_RDLEN(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RDLEN(n));
270 break;
271 case E1000_RDH(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDH(n));
274 break;
275 case E1000_RDT(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDT(n));
278 break;
279 case E1000_RXDCTL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RXDCTL(n));
282 break;
283 case E1000_RDBAL(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_RDBAL(n));
286 break;
287 case E1000_RDBAH(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_RDBAH(n));
290 break;
291 case E1000_TDBAL(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_RDBAL(n));
294 break;
295 case E1000_TDBAH(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDBAH(n));
298 break;
299 case E1000_TDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TDLEN(n));
302 break;
303 case E1000_TDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_TDH(n));
306 break;
307 case E1000_TDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_TDT(n));
310 break;
311 case E1000_TXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_TXDCTL(n));
314 break;
315 default:
316 printk(KERN_INFO "%-15s %08x\n",
317 reginfo->name, rd32(reginfo->ofs));
318 return;
319 }
320
321 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
322 printk(KERN_INFO "%-15s ", rname);
323 for (n = 0; n < 4; n++)
324 printk(KERN_CONT "%08x ", regs[n]);
325 printk(KERN_CONT "\n");
326}
327
328/*
329 * igb_dump - Print registers, tx-rings and rx-rings
330 */
331static void igb_dump(struct igb_adapter *adapter)
332{
333 struct net_device *netdev = adapter->netdev;
334 struct e1000_hw *hw = &adapter->hw;
335 struct igb_reg_info *reginfo;
336 int n = 0;
337 struct igb_ring *tx_ring;
338 union e1000_adv_tx_desc *tx_desc;
339 struct my_u0 { u64 a; u64 b; } *u0;
340 struct igb_buffer *buffer_info;
341 struct igb_ring *rx_ring;
342 union e1000_adv_rx_desc *rx_desc;
343 u32 staterr;
344 int i = 0;
345
346 if (!netif_msg_hw(adapter))
347 return;
348
349 /* Print netdevice Info */
350 if (netdev) {
351 dev_info(&adapter->pdev->dev, "Net device Info\n");
352 printk(KERN_INFO "Device Name state "
353 "trans_start last_rx\n");
354 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
355 netdev->name,
356 netdev->state,
357 netdev->trans_start,
358 netdev->last_rx);
359 }
360
361 /* Print Registers */
362 dev_info(&adapter->pdev->dev, "Register Dump\n");
363 printk(KERN_INFO " Register Name Value\n");
364 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
365 reginfo->name; reginfo++) {
366 igb_regdump(hw, reginfo);
367 }
368
369 /* Print TX Ring Summary */
370 if (!netdev || !netif_running(netdev))
371 goto exit;
372
373 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
374 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
375 " leng ntw timestamp\n");
376 for (n = 0; n < adapter->num_tx_queues; n++) {
377 tx_ring = adapter->tx_ring[n];
378 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
379 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
380 n, tx_ring->next_to_use, tx_ring->next_to_clean,
381 (u64)buffer_info->dma,
382 buffer_info->length,
383 buffer_info->next_to_watch,
384 (u64)buffer_info->time_stamp);
385 }
386
387 /* Print TX Rings */
388 if (!netif_msg_tx_done(adapter))
389 goto rx_ring_summary;
390
391 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
392
393 /* Transmit Descriptor Formats
394 *
395 * Advanced Transmit Descriptor
396 * +--------------------------------------------------------------+
397 * 0 | Buffer Address [63:0] |
398 * +--------------------------------------------------------------+
399 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
400 * +--------------------------------------------------------------+
401 * 63 46 45 40 39 38 36 35 32 31 24 15 0
402 */
403
404 for (n = 0; n < adapter->num_tx_queues; n++) {
405 tx_ring = adapter->tx_ring[n];
406 printk(KERN_INFO "------------------------------------\n");
407 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "T [desc] [address 63:0 ] "
410 "[PlPOCIStDDM Ln] [bi->dma ] "
411 "leng ntw timestamp bi->skb\n");
412
413 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
414 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
415 buffer_info = &tx_ring->buffer_info[i];
416 u0 = (struct my_u0 *)tx_desc;
417 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
418 " %04X %3X %016llX %p", i,
419 le64_to_cpu(u0->a),
420 le64_to_cpu(u0->b),
421 (u64)buffer_info->dma,
422 buffer_info->length,
423 buffer_info->next_to_watch,
424 (u64)buffer_info->time_stamp,
425 buffer_info->skb);
426 if (i == tx_ring->next_to_use &&
427 i == tx_ring->next_to_clean)
428 printk(KERN_CONT " NTC/U\n");
429 else if (i == tx_ring->next_to_use)
430 printk(KERN_CONT " NTU\n");
431 else if (i == tx_ring->next_to_clean)
432 printk(KERN_CONT " NTC\n");
433 else
434 printk(KERN_CONT "\n");
435
436 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
437 print_hex_dump(KERN_INFO, "",
438 DUMP_PREFIX_ADDRESS,
439 16, 1, phys_to_virt(buffer_info->dma),
440 buffer_info->length, true);
441 }
442 }
443
444 /* Print RX Rings Summary */
445rx_ring_summary:
446 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
447 printk(KERN_INFO "Queue [NTU] [NTC]\n");
448 for (n = 0; n < adapter->num_rx_queues; n++) {
449 rx_ring = adapter->rx_ring[n];
450 printk(KERN_INFO " %5d %5X %5X\n", n,
451 rx_ring->next_to_use, rx_ring->next_to_clean);
452 }
453
454 /* Print RX Rings */
455 if (!netif_msg_rx_status(adapter))
456 goto exit;
457
458 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
459
460 /* Advanced Receive Descriptor (Read) Format
461 * 63 1 0
462 * +-----------------------------------------------------+
463 * 0 | Packet Buffer Address [63:1] |A0/NSE|
464 * +----------------------------------------------+------+
465 * 8 | Header Buffer Address [63:1] | DD |
466 * +-----------------------------------------------------+
467 *
468 *
469 * Advanced Receive Descriptor (Write-Back) Format
470 *
471 * 63 48 47 32 31 30 21 20 17 16 4 3 0
472 * +------------------------------------------------------+
473 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
474 * | Checksum Ident | | | | Type | Type |
475 * +------------------------------------------------------+
476 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
477 * +------------------------------------------------------+
478 * 63 48 47 32 31 20 19 0
479 */
480
481 for (n = 0; n < adapter->num_rx_queues; n++) {
482 rx_ring = adapter->rx_ring[n];
483 printk(KERN_INFO "------------------------------------\n");
484 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "R [desc] [ PktBuf A0] "
487 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
488 "<-- Adv Rx Read format\n");
489 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
490 "[vl er S cks ln] ---------------- [bi->skb] "
491 "<-- Adv Rx Write-Back format\n");
492
493 for (i = 0; i < rx_ring->count; i++) {
494 buffer_info = &rx_ring->buffer_info[i];
495 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
496 u0 = (struct my_u0 *)rx_desc;
497 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
498 if (staterr & E1000_RXD_STAT_DD) {
499 /* Descriptor Done */
500 printk(KERN_INFO "RWB[0x%03X] %016llX "
501 "%016llX ---------------- %p", i,
502 le64_to_cpu(u0->a),
503 le64_to_cpu(u0->b),
504 buffer_info->skb);
505 } else {
506 printk(KERN_INFO "R [0x%03X] %016llX "
507 "%016llX %016llX %p", i,
508 le64_to_cpu(u0->a),
509 le64_to_cpu(u0->b),
510 (u64)buffer_info->dma,
511 buffer_info->skb);
512
513 if (netif_msg_pktdata(adapter)) {
514 print_hex_dump(KERN_INFO, "",
515 DUMP_PREFIX_ADDRESS,
516 16, 1,
517 phys_to_virt(buffer_info->dma),
518 rx_ring->rx_buffer_len, true);
519 if (rx_ring->rx_buffer_len
520 < IGB_RXBUFFER_1024)
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(
525 buffer_info->page_dma +
526 buffer_info->page_offset),
527 PAGE_SIZE/2, true);
528 }
529 }
530
531 if (i == rx_ring->next_to_use)
532 printk(KERN_CONT " NTU\n");
533 else if (i == rx_ring->next_to_clean)
534 printk(KERN_CONT " NTC\n");
535 else
536 printk(KERN_CONT "\n");
537
538 }
539 }
540
541exit:
542 return;
543}
544
545
38c845c7
PO
546/**
547 * igb_read_clock - read raw cycle counter (to be used by time counter)
548 */
549static cycle_t igb_read_clock(const struct cyclecounter *tc)
550{
551 struct igb_adapter *adapter =
552 container_of(tc, struct igb_adapter, cycles);
553 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
554 u64 stamp = 0;
555 int shift = 0;
38c845c7 556
55cac248
AD
557 /*
558 * The timestamp latches on lowest register read. For the 82580
559 * the lowest register is SYSTIMR instead of SYSTIML. However we never
560 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
561 */
562 if (hw->mac.type == e1000_82580) {
563 stamp = rd32(E1000_SYSTIMR) >> 8;
564 shift = IGB_82580_TSYNC_SHIFT;
565 }
566
c5b9bd5e
AD
567 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
568 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
569 return stamp;
570}
571
9d5c8243 572/**
c041076a 573 * igb_get_hw_dev - return device
9d5c8243
AK
574 * used by hardware layer to print debugging information
575 **/
c041076a 576struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
577{
578 struct igb_adapter *adapter = hw->back;
c041076a 579 return adapter->netdev;
9d5c8243 580}
38c845c7 581
9d5c8243
AK
582/**
583 * igb_init_module - Driver Registration Routine
584 *
585 * igb_init_module is the first routine called when the driver is
586 * loaded. All it does is register with the PCI subsystem.
587 **/
588static int __init igb_init_module(void)
589{
590 int ret;
591 printk(KERN_INFO "%s - version %s\n",
592 igb_driver_string, igb_driver_version);
593
594 printk(KERN_INFO "%s\n", igb_copyright);
595
421e02f0 596#ifdef CONFIG_IGB_DCA
fe4506b6
JC
597 dca_register_notify(&dca_notifier);
598#endif
bbd98fe4 599 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
600 return ret;
601}
602
603module_init(igb_init_module);
604
605/**
606 * igb_exit_module - Driver Exit Cleanup Routine
607 *
608 * igb_exit_module is called just before the driver is removed
609 * from memory.
610 **/
611static void __exit igb_exit_module(void)
612{
421e02f0 613#ifdef CONFIG_IGB_DCA
fe4506b6
JC
614 dca_unregister_notify(&dca_notifier);
615#endif
9d5c8243
AK
616 pci_unregister_driver(&igb_driver);
617}
618
619module_exit(igb_exit_module);
620
26bc19ec
AD
621#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
622/**
623 * igb_cache_ring_register - Descriptor ring to register mapping
624 * @adapter: board private structure to initialize
625 *
626 * Once we know the feature-set enabled for the device, we'll cache
627 * the register offset the descriptor ring is assigned to.
628 **/
629static void igb_cache_ring_register(struct igb_adapter *adapter)
630{
ee1b9f06 631 int i = 0, j = 0;
047e0030 632 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
633
634 switch (adapter->hw.mac.type) {
635 case e1000_82576:
636 /* The queues are allocated for virtualization such that VF 0
637 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
638 * In order to avoid collision we start at the first free queue
639 * and continue consuming queues in the same sequence
640 */
ee1b9f06 641 if (adapter->vfs_allocated_count) {
a99955fc 642 for (; i < adapter->rss_queues; i++)
3025a446
AD
643 adapter->rx_ring[i]->reg_idx = rbase_offset +
644 Q_IDX_82576(i);
ee1b9f06 645 }
26bc19ec 646 case e1000_82575:
55cac248 647 case e1000_82580:
d2ba2ed8 648 case e1000_i350:
26bc19ec 649 default:
ee1b9f06 650 for (; i < adapter->num_rx_queues; i++)
3025a446 651 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 652 for (; j < adapter->num_tx_queues; j++)
3025a446 653 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
654 break;
655 }
656}
657
047e0030
AD
658static void igb_free_queues(struct igb_adapter *adapter)
659{
3025a446 660 int i;
047e0030 661
3025a446
AD
662 for (i = 0; i < adapter->num_tx_queues; i++) {
663 kfree(adapter->tx_ring[i]);
664 adapter->tx_ring[i] = NULL;
665 }
666 for (i = 0; i < adapter->num_rx_queues; i++) {
667 kfree(adapter->rx_ring[i]);
668 adapter->rx_ring[i] = NULL;
669 }
047e0030
AD
670 adapter->num_rx_queues = 0;
671 adapter->num_tx_queues = 0;
672}
673
9d5c8243
AK
674/**
675 * igb_alloc_queues - Allocate memory for all rings
676 * @adapter: board private structure to initialize
677 *
678 * We allocate one ring per queue at run-time since we don't know the
679 * number of queues at compile-time.
680 **/
681static int igb_alloc_queues(struct igb_adapter *adapter)
682{
3025a446 683 struct igb_ring *ring;
9d5c8243
AK
684 int i;
685
661086df 686 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
687 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
688 if (!ring)
689 goto err;
68fd9910 690 ring->count = adapter->tx_ring_count;
661086df 691 ring->queue_index = i;
59d71989 692 ring->dev = &adapter->pdev->dev;
e694e964 693 ring->netdev = adapter->netdev;
85ad76b2
AD
694 /* For 82575, context index must be unique per ring. */
695 if (adapter->hw.mac.type == e1000_82575)
696 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 697 adapter->tx_ring[i] = ring;
661086df 698 }
85ad76b2 699
9d5c8243 700 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->rx_ring_count;
844290e5 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
4c844851 708 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
709 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
710 /* set flag indicating ring supports SCTP checksum offload */
711 if (adapter->hw.mac.type >= e1000_82576)
712 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 713 adapter->rx_ring[i] = ring;
9d5c8243 714 }
26bc19ec
AD
715
716 igb_cache_ring_register(adapter);
9d5c8243 717
047e0030 718 return 0;
a88f10ec 719
047e0030
AD
720err:
721 igb_free_queues(adapter);
d1a8c9e1 722
047e0030 723 return -ENOMEM;
a88f10ec
AD
724}
725
9d5c8243 726#define IGB_N0_QUEUE -1
047e0030 727static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
728{
729 u32 msixbm = 0;
047e0030 730 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 731 struct e1000_hw *hw = &adapter->hw;
2d064c06 732 u32 ivar, index;
047e0030
AD
733 int rx_queue = IGB_N0_QUEUE;
734 int tx_queue = IGB_N0_QUEUE;
735
736 if (q_vector->rx_ring)
737 rx_queue = q_vector->rx_ring->reg_idx;
738 if (q_vector->tx_ring)
739 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
740
741 switch (hw->mac.type) {
742 case e1000_82575:
9d5c8243
AK
743 /* The 82575 assigns vectors using a bitmask, which matches the
744 bitmask for the EICR/EIMS/EIMC registers. To assign one
745 or more queues to a vector, we write the appropriate bits
746 into the MSIXBM register for that vector. */
047e0030 747 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 748 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 749 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 750 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
751 if (!adapter->msix_entries && msix_vector == 0)
752 msixbm |= E1000_EIMS_OTHER;
9d5c8243 753 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 754 q_vector->eims_value = msixbm;
2d064c06
AD
755 break;
756 case e1000_82576:
26bc19ec 757 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
758 Each queue has a single entry in the table to which we write
759 a vector number along with a "valid" bit. Sadly, the layout
760 of the table is somewhat counterintuitive. */
761 if (rx_queue > IGB_N0_QUEUE) {
047e0030 762 index = (rx_queue & 0x7);
2d064c06 763 ivar = array_rd32(E1000_IVAR0, index);
047e0030 764 if (rx_queue < 8) {
26bc19ec
AD
765 /* vector goes into low byte of register */
766 ivar = ivar & 0xFFFFFF00;
767 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
768 } else {
769 /* vector goes into third byte of register */
770 ivar = ivar & 0xFF00FFFF;
771 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 772 }
2d064c06
AD
773 array_wr32(E1000_IVAR0, index, ivar);
774 }
775 if (tx_queue > IGB_N0_QUEUE) {
047e0030 776 index = (tx_queue & 0x7);
2d064c06 777 ivar = array_rd32(E1000_IVAR0, index);
047e0030 778 if (tx_queue < 8) {
26bc19ec
AD
779 /* vector goes into second byte of register */
780 ivar = ivar & 0xFFFF00FF;
781 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
782 } else {
783 /* vector goes into high byte of register */
784 ivar = ivar & 0x00FFFFFF;
785 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 786 }
2d064c06
AD
787 array_wr32(E1000_IVAR0, index, ivar);
788 }
047e0030 789 q_vector->eims_value = 1 << msix_vector;
2d064c06 790 break;
55cac248 791 case e1000_82580:
d2ba2ed8 792 case e1000_i350:
55cac248
AD
793 /* 82580 uses the same table-based approach as 82576 but has fewer
794 entries as a result we carry over for queues greater than 4. */
795 if (rx_queue > IGB_N0_QUEUE) {
796 index = (rx_queue >> 1);
797 ivar = array_rd32(E1000_IVAR0, index);
798 if (rx_queue & 0x1) {
799 /* vector goes into third byte of register */
800 ivar = ivar & 0xFF00FFFF;
801 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
802 } else {
803 /* vector goes into low byte of register */
804 ivar = ivar & 0xFFFFFF00;
805 ivar |= msix_vector | E1000_IVAR_VALID;
806 }
807 array_wr32(E1000_IVAR0, index, ivar);
808 }
809 if (tx_queue > IGB_N0_QUEUE) {
810 index = (tx_queue >> 1);
811 ivar = array_rd32(E1000_IVAR0, index);
812 if (tx_queue & 0x1) {
813 /* vector goes into high byte of register */
814 ivar = ivar & 0x00FFFFFF;
815 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
816 } else {
817 /* vector goes into second byte of register */
818 ivar = ivar & 0xFFFF00FF;
819 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
820 }
821 array_wr32(E1000_IVAR0, index, ivar);
822 }
823 q_vector->eims_value = 1 << msix_vector;
824 break;
2d064c06
AD
825 default:
826 BUG();
827 break;
828 }
26b39276
AD
829
830 /* add q_vector eims value to global eims_enable_mask */
831 adapter->eims_enable_mask |= q_vector->eims_value;
832
833 /* configure q_vector to set itr on first interrupt */
834 q_vector->set_itr = 1;
9d5c8243
AK
835}
836
837/**
838 * igb_configure_msix - Configure MSI-X hardware
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
843static void igb_configure_msix(struct igb_adapter *adapter)
844{
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
9d5c8243
AK
850
851 /* set vector for other causes, i.e. link changes */
2d064c06
AD
852 switch (hw->mac.type) {
853 case e1000_82575:
9d5c8243
AK
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++,
866 E1000_EIMS_OTHER);
844290e5 867 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 868
2d064c06
AD
869 break;
870
871 case e1000_82576:
55cac248 872 case e1000_82580:
d2ba2ed8 873 case e1000_i350:
047e0030
AD
874 /* Turn on MSI-X capability first, or our settings
875 * won't stick. And it will take days to debug. */
876 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
877 E1000_GPIE_PBA | E1000_GPIE_EIAME |
878 E1000_GPIE_NSICR);
879
880 /* enable msix_other interrupt */
881 adapter->eims_other = 1 << vector;
2d064c06 882 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 883
047e0030 884 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
885 break;
886 default:
887 /* do nothing, since nothing else supports MSI-X */
888 break;
889 } /* switch (hw->mac.type) */
047e0030
AD
890
891 adapter->eims_enable_mask |= adapter->eims_other;
892
26b39276
AD
893 for (i = 0; i < adapter->num_q_vectors; i++)
894 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 895
9d5c8243
AK
896 wrfl();
897}
898
899/**
900 * igb_request_msix - Initialize MSI-X interrupts
901 *
902 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
903 * kernel.
904 **/
905static int igb_request_msix(struct igb_adapter *adapter)
906{
907 struct net_device *netdev = adapter->netdev;
047e0030 908 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
909 int i, err = 0, vector = 0;
910
047e0030 911 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 912 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
913 if (err)
914 goto out;
915 vector++;
916
917 for (i = 0; i < adapter->num_q_vectors; i++) {
918 struct igb_q_vector *q_vector = adapter->q_vector[i];
919
920 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
921
922 if (q_vector->rx_ring && q_vector->tx_ring)
923 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
924 q_vector->rx_ring->queue_index);
925 else if (q_vector->tx_ring)
926 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
927 q_vector->tx_ring->queue_index);
928 else if (q_vector->rx_ring)
929 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
930 q_vector->rx_ring->queue_index);
9d5c8243 931 else
047e0030
AD
932 sprintf(q_vector->name, "%s-unused", netdev->name);
933
9d5c8243 934 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 935 igb_msix_ring, 0, q_vector->name,
047e0030 936 q_vector);
9d5c8243
AK
937 if (err)
938 goto out;
9d5c8243
AK
939 vector++;
940 }
941
9d5c8243
AK
942 igb_configure_msix(adapter);
943 return 0;
944out:
945 return err;
946}
947
948static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
949{
950 if (adapter->msix_entries) {
951 pci_disable_msix(adapter->pdev);
952 kfree(adapter->msix_entries);
953 adapter->msix_entries = NULL;
047e0030 954 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 955 pci_disable_msi(adapter->pdev);
047e0030 956 }
9d5c8243
AK
957}
958
047e0030
AD
959/**
960 * igb_free_q_vectors - Free memory allocated for interrupt vectors
961 * @adapter: board private structure to initialize
962 *
963 * This function frees the memory allocated to the q_vectors. In addition if
964 * NAPI is enabled it will delete any references to the NAPI struct prior
965 * to freeing the q_vector.
966 **/
967static void igb_free_q_vectors(struct igb_adapter *adapter)
968{
969 int v_idx;
970
971 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
972 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
973 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
974 if (!q_vector)
975 continue;
047e0030
AD
976 netif_napi_del(&q_vector->napi);
977 kfree(q_vector);
978 }
979 adapter->num_q_vectors = 0;
980}
981
982/**
983 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
984 *
985 * This function resets the device so that it has 0 rx queues, tx queues, and
986 * MSI-X interrupts allocated.
987 */
988static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
989{
990 igb_free_queues(adapter);
991 igb_free_q_vectors(adapter);
992 igb_reset_interrupt_capability(adapter);
993}
9d5c8243
AK
994
995/**
996 * igb_set_interrupt_capability - set MSI or MSI-X if supported
997 *
998 * Attempt to configure interrupts using the best available
999 * capabilities of the hardware and kernel.
1000 **/
21adef3e 1001static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1002{
1003 int err;
1004 int numvecs, i;
1005
83b7180d 1006 /* Number of supported queues. */
a99955fc 1007 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1008 if (adapter->vfs_allocated_count)
1009 adapter->num_tx_queues = 1;
1010 else
1011 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1012
047e0030
AD
1013 /* start with one vector for every rx queue */
1014 numvecs = adapter->num_rx_queues;
1015
3ad2f3fb 1016 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1017 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1018 numvecs += adapter->num_tx_queues;
047e0030
AD
1019
1020 /* store the number of vectors reserved for queues */
1021 adapter->num_q_vectors = numvecs;
1022
1023 /* add 1 vector for link status interrupts */
1024 numvecs++;
9d5c8243
AK
1025 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (!adapter->msix_entries)
1028 goto msi_only;
1029
1030 for (i = 0; i < numvecs; i++)
1031 adapter->msix_entries[i].entry = i;
1032
1033 err = pci_enable_msix(adapter->pdev,
1034 adapter->msix_entries,
1035 numvecs);
1036 if (err == 0)
34a20e89 1037 goto out;
9d5c8243
AK
1038
1039 igb_reset_interrupt_capability(adapter);
1040
1041 /* If we can't do MSI-X, try MSI */
1042msi_only:
2a3abf6d
AD
1043#ifdef CONFIG_PCI_IOV
1044 /* disable SR-IOV for non MSI-X configurations */
1045 if (adapter->vf_data) {
1046 struct e1000_hw *hw = &adapter->hw;
1047 /* disable iov and allow time for transactions to clear */
1048 pci_disable_sriov(adapter->pdev);
1049 msleep(500);
1050
1051 kfree(adapter->vf_data);
1052 adapter->vf_data = NULL;
1053 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1054 msleep(100);
1055 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1056 }
1057#endif
4fc82adf 1058 adapter->vfs_allocated_count = 0;
a99955fc 1059 adapter->rss_queues = 1;
4fc82adf 1060 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1061 adapter->num_rx_queues = 1;
661086df 1062 adapter->num_tx_queues = 1;
047e0030 1063 adapter->num_q_vectors = 1;
9d5c8243 1064 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1065 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1066out:
21adef3e
BH
1067 /* Notify the stack of the (possibly) reduced queue counts. */
1068 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1069 return netif_set_real_num_rx_queues(adapter->netdev,
1070 adapter->num_rx_queues);
9d5c8243
AK
1071}
1072
047e0030
AD
1073/**
1074 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1075 * @adapter: board private structure to initialize
1076 *
1077 * We allocate one q_vector per queue interrupt. If allocation fails we
1078 * return -ENOMEM.
1079 **/
1080static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1081{
1082 struct igb_q_vector *q_vector;
1083 struct e1000_hw *hw = &adapter->hw;
1084 int v_idx;
1085
1086 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1087 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1088 if (!q_vector)
1089 goto err_out;
1090 q_vector->adapter = adapter;
047e0030
AD
1091 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1092 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1093 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1094 adapter->q_vector[v_idx] = q_vector;
1095 }
1096 return 0;
1097
1098err_out:
fe0592b4 1099 igb_free_q_vectors(adapter);
047e0030
AD
1100 return -ENOMEM;
1101}
1102
1103static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1104 int ring_idx, int v_idx)
1105{
3025a446 1106 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1107
3025a446 1108 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1109 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1110 q_vector->itr_val = adapter->rx_itr_setting;
1111 if (q_vector->itr_val && q_vector->itr_val <= 3)
1112 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1113}
1114
1115static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1116 int ring_idx, int v_idx)
1117{
3025a446 1118 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1119
3025a446 1120 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1121 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1122 q_vector->itr_val = adapter->tx_itr_setting;
1123 if (q_vector->itr_val && q_vector->itr_val <= 3)
1124 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1125}
1126
1127/**
1128 * igb_map_ring_to_vector - maps allocated queues to vectors
1129 *
1130 * This function maps the recently allocated queues to vectors.
1131 **/
1132static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1133{
1134 int i;
1135 int v_idx = 0;
1136
1137 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1138 (adapter->num_q_vectors < adapter->num_tx_queues))
1139 return -ENOMEM;
1140
1141 if (adapter->num_q_vectors >=
1142 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1143 for (i = 0; i < adapter->num_rx_queues; i++)
1144 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1145 for (i = 0; i < adapter->num_tx_queues; i++)
1146 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1147 } else {
1148 for (i = 0; i < adapter->num_rx_queues; i++) {
1149 if (i < adapter->num_tx_queues)
1150 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1151 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1152 }
1153 for (; i < adapter->num_tx_queues; i++)
1154 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1161 *
1162 * This function initializes the interrupts and allocates all of the queues.
1163 **/
1164static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1165{
1166 struct pci_dev *pdev = adapter->pdev;
1167 int err;
1168
21adef3e
BH
1169 err = igb_set_interrupt_capability(adapter);
1170 if (err)
1171 return err;
047e0030
AD
1172
1173 err = igb_alloc_q_vectors(adapter);
1174 if (err) {
1175 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1176 goto err_alloc_q_vectors;
1177 }
1178
1179 err = igb_alloc_queues(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1182 goto err_alloc_queues;
1183 }
1184
1185 err = igb_map_ring_to_vector(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1188 goto err_map_queues;
1189 }
1190
1191
1192 return 0;
1193err_map_queues:
1194 igb_free_queues(adapter);
1195err_alloc_queues:
1196 igb_free_q_vectors(adapter);
1197err_alloc_q_vectors:
1198 igb_reset_interrupt_capability(adapter);
1199 return err;
1200}
1201
9d5c8243
AK
1202/**
1203 * igb_request_irq - initialize interrupts
1204 *
1205 * Attempts to configure interrupts using the best available
1206 * capabilities of the hardware and kernel.
1207 **/
1208static int igb_request_irq(struct igb_adapter *adapter)
1209{
1210 struct net_device *netdev = adapter->netdev;
047e0030 1211 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1212 int err = 0;
1213
1214 if (adapter->msix_entries) {
1215 err = igb_request_msix(adapter);
844290e5 1216 if (!err)
9d5c8243 1217 goto request_done;
9d5c8243 1218 /* fall back to MSI */
047e0030 1219 igb_clear_interrupt_scheme(adapter);
9d5c8243 1220 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1221 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1222 igb_free_all_tx_resources(adapter);
1223 igb_free_all_rx_resources(adapter);
047e0030 1224 adapter->num_tx_queues = 1;
9d5c8243 1225 adapter->num_rx_queues = 1;
047e0030
AD
1226 adapter->num_q_vectors = 1;
1227 err = igb_alloc_q_vectors(adapter);
1228 if (err) {
1229 dev_err(&pdev->dev,
1230 "Unable to allocate memory for vectors\n");
1231 goto request_done;
1232 }
1233 err = igb_alloc_queues(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for queues\n");
1237 igb_free_q_vectors(adapter);
1238 goto request_done;
1239 }
1240 igb_setup_all_tx_resources(adapter);
1241 igb_setup_all_rx_resources(adapter);
844290e5 1242 } else {
feeb2721 1243 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1244 }
844290e5 1245
7dfc16fa 1246 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1247 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1248 netdev->name, adapter);
9d5c8243
AK
1249 if (!err)
1250 goto request_done;
047e0030 1251
9d5c8243
AK
1252 /* fall back to legacy interrupts */
1253 igb_reset_interrupt_capability(adapter);
7dfc16fa 1254 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1255 }
1256
a0607fd3 1257 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1258 netdev->name, adapter);
9d5c8243 1259
6cb5e577 1260 if (err)
9d5c8243
AK
1261 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1262 err);
9d5c8243
AK
1263
1264request_done:
1265 return err;
1266}
1267
1268static void igb_free_irq(struct igb_adapter *adapter)
1269{
9d5c8243
AK
1270 if (adapter->msix_entries) {
1271 int vector = 0, i;
1272
047e0030 1273 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1274
047e0030
AD
1275 for (i = 0; i < adapter->num_q_vectors; i++) {
1276 struct igb_q_vector *q_vector = adapter->q_vector[i];
1277 free_irq(adapter->msix_entries[vector++].vector,
1278 q_vector);
1279 }
1280 } else {
1281 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1282 }
9d5c8243
AK
1283}
1284
1285/**
1286 * igb_irq_disable - Mask off interrupt generation on the NIC
1287 * @adapter: board private structure
1288 **/
1289static void igb_irq_disable(struct igb_adapter *adapter)
1290{
1291 struct e1000_hw *hw = &adapter->hw;
1292
25568a53
AD
1293 /*
1294 * we need to be careful when disabling interrupts. The VFs are also
1295 * mapped into these registers and so clearing the bits can cause
1296 * issues on the VF drivers so we only need to clear what we set
1297 */
9d5c8243 1298 if (adapter->msix_entries) {
2dfd1212
AD
1299 u32 regval = rd32(E1000_EIAM);
1300 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1301 wr32(E1000_EIMC, adapter->eims_enable_mask);
1302 regval = rd32(E1000_EIAC);
1303 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1304 }
844290e5
PW
1305
1306 wr32(E1000_IAM, 0);
9d5c8243
AK
1307 wr32(E1000_IMC, ~0);
1308 wrfl();
81a61859
ET
1309 if (adapter->msix_entries) {
1310 int i;
1311 for (i = 0; i < adapter->num_q_vectors; i++)
1312 synchronize_irq(adapter->msix_entries[i].vector);
1313 } else {
1314 synchronize_irq(adapter->pdev->irq);
1315 }
9d5c8243
AK
1316}
1317
1318/**
1319 * igb_irq_enable - Enable default interrupt generation settings
1320 * @adapter: board private structure
1321 **/
1322static void igb_irq_enable(struct igb_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325
1326 if (adapter->msix_entries) {
25568a53 1327 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1328 u32 regval = rd32(E1000_EIAC);
1329 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1330 regval = rd32(E1000_EIAM);
1331 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1332 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1333 if (adapter->vfs_allocated_count) {
4ae196df 1334 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1335 ims |= E1000_IMS_VMMB;
1336 }
55cac248
AD
1337 if (adapter->hw.mac.type == e1000_82580)
1338 ims |= E1000_IMS_DRSTA;
1339
25568a53 1340 wr32(E1000_IMS, ims);
844290e5 1341 } else {
55cac248
AD
1342 wr32(E1000_IMS, IMS_ENABLE_MASK |
1343 E1000_IMS_DRSTA);
1344 wr32(E1000_IAM, IMS_ENABLE_MASK |
1345 E1000_IMS_DRSTA);
844290e5 1346 }
9d5c8243
AK
1347}
1348
1349static void igb_update_mng_vlan(struct igb_adapter *adapter)
1350{
51466239 1351 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1352 u16 vid = adapter->hw.mng_cookie.vlan_id;
1353 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1354
1355 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1356 /* add VID to filter table */
1357 igb_vfta_set(hw, vid, true);
1358 adapter->mng_vlan_id = vid;
1359 } else {
1360 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1361 }
1362
1363 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1364 (vid != old_vid) &&
1365 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1366 /* remove VID from filter table */
1367 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1368 }
1369}
1370
1371/**
1372 * igb_release_hw_control - release control of the h/w to f/w
1373 * @adapter: address of board private structure
1374 *
1375 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1376 * For ASF and Pass Through versions of f/w this means that the
1377 * driver is no longer loaded.
1378 *
1379 **/
1380static void igb_release_hw_control(struct igb_adapter *adapter)
1381{
1382 struct e1000_hw *hw = &adapter->hw;
1383 u32 ctrl_ext;
1384
1385 /* Let firmware take over control of h/w */
1386 ctrl_ext = rd32(E1000_CTRL_EXT);
1387 wr32(E1000_CTRL_EXT,
1388 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1389}
1390
9d5c8243
AK
1391/**
1392 * igb_get_hw_control - get control of the h/w from f/w
1393 * @adapter: address of board private structure
1394 *
1395 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1396 * For ASF and Pass Through versions of f/w this means that
1397 * the driver is loaded.
1398 *
1399 **/
1400static void igb_get_hw_control(struct igb_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403 u32 ctrl_ext;
1404
1405 /* Let firmware know the driver has taken over */
1406 ctrl_ext = rd32(E1000_CTRL_EXT);
1407 wr32(E1000_CTRL_EXT,
1408 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1409}
1410
9d5c8243
AK
1411/**
1412 * igb_configure - configure the hardware for RX and TX
1413 * @adapter: private board structure
1414 **/
1415static void igb_configure(struct igb_adapter *adapter)
1416{
1417 struct net_device *netdev = adapter->netdev;
1418 int i;
1419
1420 igb_get_hw_control(adapter);
ff41f8dc 1421 igb_set_rx_mode(netdev);
9d5c8243
AK
1422
1423 igb_restore_vlan(adapter);
9d5c8243 1424
85b430b4 1425 igb_setup_tctl(adapter);
06cf2666 1426 igb_setup_mrqc(adapter);
9d5c8243 1427 igb_setup_rctl(adapter);
85b430b4
AD
1428
1429 igb_configure_tx(adapter);
9d5c8243 1430 igb_configure_rx(adapter);
662d7205
AD
1431
1432 igb_rx_fifo_flush_82575(&adapter->hw);
1433
c493ea45 1434 /* call igb_desc_unused which always leaves
9d5c8243
AK
1435 * at least 1 descriptor unused to make sure
1436 * next_to_use != next_to_clean */
1437 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1438 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1439 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1440 }
9d5c8243
AK
1441}
1442
88a268c1
NN
1443/**
1444 * igb_power_up_link - Power up the phy/serdes link
1445 * @adapter: address of board private structure
1446 **/
1447void igb_power_up_link(struct igb_adapter *adapter)
1448{
1449 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1450 igb_power_up_phy_copper(&adapter->hw);
1451 else
1452 igb_power_up_serdes_link_82575(&adapter->hw);
1453}
1454
1455/**
1456 * igb_power_down_link - Power down the phy/serdes link
1457 * @adapter: address of board private structure
1458 */
1459static void igb_power_down_link(struct igb_adapter *adapter)
1460{
1461 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462 igb_power_down_phy_copper_82575(&adapter->hw);
1463 else
1464 igb_shutdown_serdes_link_82575(&adapter->hw);
1465}
9d5c8243
AK
1466
1467/**
1468 * igb_up - Open the interface and prepare it to handle traffic
1469 * @adapter: board private structure
1470 **/
9d5c8243
AK
1471int igb_up(struct igb_adapter *adapter)
1472{
1473 struct e1000_hw *hw = &adapter->hw;
1474 int i;
1475
1476 /* hardware has been reset, we need to reload some things */
1477 igb_configure(adapter);
1478
1479 clear_bit(__IGB_DOWN, &adapter->state);
1480
047e0030
AD
1481 for (i = 0; i < adapter->num_q_vectors; i++) {
1482 struct igb_q_vector *q_vector = adapter->q_vector[i];
1483 napi_enable(&q_vector->napi);
1484 }
844290e5 1485 if (adapter->msix_entries)
9d5c8243 1486 igb_configure_msix(adapter);
feeb2721
AD
1487 else
1488 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1489
1490 /* Clear any pending interrupts. */
1491 rd32(E1000_ICR);
1492 igb_irq_enable(adapter);
1493
d4960307
AD
1494 /* notify VFs that reset has been completed */
1495 if (adapter->vfs_allocated_count) {
1496 u32 reg_data = rd32(E1000_CTRL_EXT);
1497 reg_data |= E1000_CTRL_EXT_PFRSTD;
1498 wr32(E1000_CTRL_EXT, reg_data);
1499 }
1500
4cb9be7a
JB
1501 netif_tx_start_all_queues(adapter->netdev);
1502
25568a53
AD
1503 /* start the watchdog. */
1504 hw->mac.get_link_status = 1;
1505 schedule_work(&adapter->watchdog_task);
1506
9d5c8243
AK
1507 return 0;
1508}
1509
1510void igb_down(struct igb_adapter *adapter)
1511{
9d5c8243 1512 struct net_device *netdev = adapter->netdev;
330a6d6a 1513 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1514 u32 tctl, rctl;
1515 int i;
1516
1517 /* signal that we're down so the interrupt handler does not
1518 * reschedule our watchdog timer */
1519 set_bit(__IGB_DOWN, &adapter->state);
1520
1521 /* disable receives in the hardware */
1522 rctl = rd32(E1000_RCTL);
1523 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1524 /* flush and sleep below */
1525
fd2ea0a7 1526 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1527
1528 /* disable transmits in the hardware */
1529 tctl = rd32(E1000_TCTL);
1530 tctl &= ~E1000_TCTL_EN;
1531 wr32(E1000_TCTL, tctl);
1532 /* flush both disables and wait for them to finish */
1533 wrfl();
1534 msleep(10);
1535
047e0030
AD
1536 for (i = 0; i < adapter->num_q_vectors; i++) {
1537 struct igb_q_vector *q_vector = adapter->q_vector[i];
1538 napi_disable(&q_vector->napi);
1539 }
9d5c8243 1540
9d5c8243
AK
1541 igb_irq_disable(adapter);
1542
1543 del_timer_sync(&adapter->watchdog_timer);
1544 del_timer_sync(&adapter->phy_info_timer);
1545
9d5c8243 1546 netif_carrier_off(netdev);
04fe6358
AD
1547
1548 /* record the stats before reset*/
12dcd86b
ED
1549 spin_lock(&adapter->stats64_lock);
1550 igb_update_stats(adapter, &adapter->stats64);
1551 spin_unlock(&adapter->stats64_lock);
04fe6358 1552
9d5c8243
AK
1553 adapter->link_speed = 0;
1554 adapter->link_duplex = 0;
1555
3023682e
JK
1556 if (!pci_channel_offline(adapter->pdev))
1557 igb_reset(adapter);
9d5c8243
AK
1558 igb_clean_all_tx_rings(adapter);
1559 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1560#ifdef CONFIG_IGB_DCA
1561
1562 /* since we reset the hardware DCA settings were cleared */
1563 igb_setup_dca(adapter);
1564#endif
9d5c8243
AK
1565}
1566
1567void igb_reinit_locked(struct igb_adapter *adapter)
1568{
1569 WARN_ON(in_interrupt());
1570 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1571 msleep(1);
1572 igb_down(adapter);
1573 igb_up(adapter);
1574 clear_bit(__IGB_RESETTING, &adapter->state);
1575}
1576
1577void igb_reset(struct igb_adapter *adapter)
1578{
090b1795 1579 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1580 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1581 struct e1000_mac_info *mac = &hw->mac;
1582 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1583 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1584 u16 hwm;
1585
1586 /* Repartition Pba for greater than 9k mtu
1587 * To take effect CTRL.RST is required.
1588 */
fa4dfae0 1589 switch (mac->type) {
d2ba2ed8 1590 case e1000_i350:
55cac248
AD
1591 case e1000_82580:
1592 pba = rd32(E1000_RXPBS);
1593 pba = igb_rxpbs_adjust_82580(pba);
1594 break;
fa4dfae0 1595 case e1000_82576:
d249be54
AD
1596 pba = rd32(E1000_RXPBS);
1597 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1598 break;
1599 case e1000_82575:
1600 default:
1601 pba = E1000_PBA_34K;
1602 break;
2d064c06 1603 }
9d5c8243 1604
2d064c06
AD
1605 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1606 (mac->type < e1000_82576)) {
9d5c8243
AK
1607 /* adjust PBA for jumbo frames */
1608 wr32(E1000_PBA, pba);
1609
1610 /* To maintain wire speed transmits, the Tx FIFO should be
1611 * large enough to accommodate two full transmit packets,
1612 * rounded up to the next 1KB and expressed in KB. Likewise,
1613 * the Rx FIFO should be large enough to accommodate at least
1614 * one full receive packet and is similarly rounded up and
1615 * expressed in KB. */
1616 pba = rd32(E1000_PBA);
1617 /* upper 16 bits has Tx packet buffer allocation size in KB */
1618 tx_space = pba >> 16;
1619 /* lower 16 bits has Rx packet buffer allocation size in KB */
1620 pba &= 0xffff;
1621 /* the tx fifo also stores 16 bytes of information about the tx
1622 * but don't include ethernet FCS because hardware appends it */
1623 min_tx_space = (adapter->max_frame_size +
85e8d004 1624 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1625 ETH_FCS_LEN) * 2;
1626 min_tx_space = ALIGN(min_tx_space, 1024);
1627 min_tx_space >>= 10;
1628 /* software strips receive CRC, so leave room for it */
1629 min_rx_space = adapter->max_frame_size;
1630 min_rx_space = ALIGN(min_rx_space, 1024);
1631 min_rx_space >>= 10;
1632
1633 /* If current Tx allocation is less than the min Tx FIFO size,
1634 * and the min Tx FIFO size is less than the current Rx FIFO
1635 * allocation, take space away from current Rx allocation */
1636 if (tx_space < min_tx_space &&
1637 ((min_tx_space - tx_space) < pba)) {
1638 pba = pba - (min_tx_space - tx_space);
1639
1640 /* if short on rx space, rx wins and must trump tx
1641 * adjustment */
1642 if (pba < min_rx_space)
1643 pba = min_rx_space;
1644 }
2d064c06 1645 wr32(E1000_PBA, pba);
9d5c8243 1646 }
9d5c8243
AK
1647
1648 /* flow control settings */
1649 /* The high water mark must be low enough to fit one full frame
1650 * (or the size used for early receive) above it in the Rx FIFO.
1651 * Set it to the lower of:
1652 * - 90% of the Rx FIFO size, or
1653 * - the full Rx FIFO size minus one full frame */
1654 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1655 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1656
d405ea3e
AD
1657 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1658 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1659 fc->pause_time = 0xFFFF;
1660 fc->send_xon = 1;
0cce119a 1661 fc->current_mode = fc->requested_mode;
9d5c8243 1662
4ae196df
AD
1663 /* disable receive for all VFs and wait one second */
1664 if (adapter->vfs_allocated_count) {
1665 int i;
1666 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1667 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1668
1669 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1670 igb_ping_all_vfs(adapter);
4ae196df
AD
1671
1672 /* disable transmits and receives */
1673 wr32(E1000_VFRE, 0);
1674 wr32(E1000_VFTE, 0);
1675 }
1676
9d5c8243 1677 /* Allow time for pending master requests to run */
330a6d6a 1678 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1679 wr32(E1000_WUC, 0);
1680
330a6d6a 1681 if (hw->mac.ops.init_hw(hw))
090b1795 1682 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1683 if (hw->mac.type > e1000_82580) {
1684 if (adapter->flags & IGB_FLAG_DMAC) {
1685 u32 reg;
1686
1687 /*
1688 * DMA Coalescing high water mark needs to be higher
1689 * than * the * Rx threshold. The Rx threshold is
1690 * currently * pba - 6, so we * should use a high water
1691 * mark of pba * - 4. */
1692 hwm = (pba - 4) << 10;
1693
1694 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1695 & E1000_DMACR_DMACTHR_MASK);
1696
1697 /* transition to L0x or L1 if available..*/
1698 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1699
1700 /* watchdog timer= +-1000 usec in 32usec intervals */
1701 reg |= (1000 >> 5);
1702 wr32(E1000_DMACR, reg);
1703
1704 /* no lower threshold to disable coalescing(smart fifb)
1705 * -UTRESH=0*/
1706 wr32(E1000_DMCRTRH, 0);
1707
1708 /* set hwm to PBA - 2 * max frame size */
1709 wr32(E1000_FCRTC, hwm);
1710
1711 /*
1712 * This sets the time to wait before requesting tran-
1713 * sition to * low power state to number of usecs needed
1714 * to receive 1 512 * byte frame at gigabit line rate
1715 */
1716 reg = rd32(E1000_DMCTLX);
1717 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1718
1719 /* Delay 255 usec before entering Lx state. */
1720 reg |= 0xFF;
1721 wr32(E1000_DMCTLX, reg);
1722
1723 /* free space in Tx packet buffer to wake from DMAC */
1724 wr32(E1000_DMCTXTH,
1725 (IGB_MIN_TXPBSIZE -
1726 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1727 >> 6);
1728
1729 /* make low power state decision controlled by DMAC */
1730 reg = rd32(E1000_PCIEMISC);
1731 reg |= E1000_PCIEMISC_LX_DECISION;
1732 wr32(E1000_PCIEMISC, reg);
1733 } /* end if IGB_FLAG_DMAC set */
1734 }
55cac248
AD
1735 if (hw->mac.type == e1000_82580) {
1736 u32 reg = rd32(E1000_PCIEMISC);
1737 wr32(E1000_PCIEMISC,
1738 reg & ~E1000_PCIEMISC_LX_DECISION);
1739 }
88a268c1
NN
1740 if (!netif_running(adapter->netdev))
1741 igb_power_down_link(adapter);
1742
9d5c8243
AK
1743 igb_update_mng_vlan(adapter);
1744
1745 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1746 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1747
330a6d6a 1748 igb_get_phy_info(hw);
9d5c8243
AK
1749}
1750
2e5c6922 1751static const struct net_device_ops igb_netdev_ops = {
559e9c49 1752 .ndo_open = igb_open,
2e5c6922 1753 .ndo_stop = igb_close,
00829823 1754 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1755 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc
AD
1756 .ndo_set_rx_mode = igb_set_rx_mode,
1757 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1758 .ndo_set_mac_address = igb_set_mac,
1759 .ndo_change_mtu = igb_change_mtu,
1760 .ndo_do_ioctl = igb_ioctl,
1761 .ndo_tx_timeout = igb_tx_timeout,
1762 .ndo_validate_addr = eth_validate_addr,
1763 .ndo_vlan_rx_register = igb_vlan_rx_register,
1764 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1765 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1766 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1767 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1768 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1769 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1770#ifdef CONFIG_NET_POLL_CONTROLLER
1771 .ndo_poll_controller = igb_netpoll,
1772#endif
1773};
1774
9d5c8243
AK
1775/**
1776 * igb_probe - Device Initialization Routine
1777 * @pdev: PCI device information struct
1778 * @ent: entry in igb_pci_tbl
1779 *
1780 * Returns 0 on success, negative on failure
1781 *
1782 * igb_probe initializes an adapter identified by a pci_dev structure.
1783 * The OS initialization, configuring of the adapter private structure,
1784 * and a hardware reset occur.
1785 **/
1786static int __devinit igb_probe(struct pci_dev *pdev,
1787 const struct pci_device_id *ent)
1788{
1789 struct net_device *netdev;
1790 struct igb_adapter *adapter;
1791 struct e1000_hw *hw;
4337e993 1792 u16 eeprom_data = 0;
9835fd73 1793 s32 ret_val;
4337e993 1794 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1795 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1796 unsigned long mmio_start, mmio_len;
2d6a5e95 1797 int err, pci_using_dac;
9d5c8243 1798 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1799 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1800
bded64a7
AG
1801 /* Catch broken hardware that put the wrong VF device ID in
1802 * the PCIe SR-IOV capability.
1803 */
1804 if (pdev->is_virtfn) {
1805 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1806 pci_name(pdev), pdev->vendor, pdev->device);
1807 return -EINVAL;
1808 }
1809
aed5dec3 1810 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1811 if (err)
1812 return err;
1813
1814 pci_using_dac = 0;
59d71989 1815 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1816 if (!err) {
59d71989 1817 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1818 if (!err)
1819 pci_using_dac = 1;
1820 } else {
59d71989 1821 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1822 if (err) {
59d71989 1823 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1824 if (err) {
1825 dev_err(&pdev->dev, "No usable DMA "
1826 "configuration, aborting\n");
1827 goto err_dma;
1828 }
1829 }
1830 }
1831
aed5dec3
AD
1832 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1833 IORESOURCE_MEM),
1834 igb_driver_name);
9d5c8243
AK
1835 if (err)
1836 goto err_pci_reg;
1837
19d5afd4 1838 pci_enable_pcie_error_reporting(pdev);
40a914fa 1839
9d5c8243 1840 pci_set_master(pdev);
c682fc23 1841 pci_save_state(pdev);
9d5c8243
AK
1842
1843 err = -ENOMEM;
1bfaf07b
AD
1844 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1845 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1846 if (!netdev)
1847 goto err_alloc_etherdev;
1848
1849 SET_NETDEV_DEV(netdev, &pdev->dev);
1850
1851 pci_set_drvdata(pdev, netdev);
1852 adapter = netdev_priv(netdev);
1853 adapter->netdev = netdev;
1854 adapter->pdev = pdev;
1855 hw = &adapter->hw;
1856 hw->back = adapter;
1857 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1858
1859 mmio_start = pci_resource_start(pdev, 0);
1860 mmio_len = pci_resource_len(pdev, 0);
1861
1862 err = -EIO;
28b0759c
AD
1863 hw->hw_addr = ioremap(mmio_start, mmio_len);
1864 if (!hw->hw_addr)
9d5c8243
AK
1865 goto err_ioremap;
1866
2e5c6922 1867 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1868 igb_set_ethtool_ops(netdev);
9d5c8243 1869 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1870
1871 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1872
1873 netdev->mem_start = mmio_start;
1874 netdev->mem_end = mmio_start + mmio_len;
1875
9d5c8243
AK
1876 /* PCI config space info */
1877 hw->vendor_id = pdev->vendor;
1878 hw->device_id = pdev->device;
1879 hw->revision_id = pdev->revision;
1880 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1881 hw->subsystem_device_id = pdev->subsystem_device;
1882
9d5c8243
AK
1883 /* Copy the default MAC, PHY and NVM function pointers */
1884 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1885 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1886 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1887 /* Initialize skew-specific constants */
1888 err = ei->get_invariants(hw);
1889 if (err)
450c87c8 1890 goto err_sw_init;
9d5c8243 1891
450c87c8 1892 /* setup the private structure */
9d5c8243
AK
1893 err = igb_sw_init(adapter);
1894 if (err)
1895 goto err_sw_init;
1896
1897 igb_get_bus_info_pcie(hw);
1898
1899 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1900
1901 /* Copper options */
1902 if (hw->phy.media_type == e1000_media_type_copper) {
1903 hw->phy.mdix = AUTO_ALL_MODES;
1904 hw->phy.disable_polarity_correction = false;
1905 hw->phy.ms_type = e1000_ms_hw_default;
1906 }
1907
1908 if (igb_check_reset_block(hw))
1909 dev_info(&pdev->dev,
1910 "PHY reset is blocked due to SOL/IDER session.\n");
1911
1912 netdev->features = NETIF_F_SG |
7d8eb29e 1913 NETIF_F_IP_CSUM |
9d5c8243
AK
1914 NETIF_F_HW_VLAN_TX |
1915 NETIF_F_HW_VLAN_RX |
1916 NETIF_F_HW_VLAN_FILTER;
1917
7d8eb29e 1918 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1919 netdev->features |= NETIF_F_TSO;
9d5c8243 1920 netdev->features |= NETIF_F_TSO6;
5c0999b7 1921 netdev->features |= NETIF_F_GRO;
d3352520 1922
48f29ffc
JK
1923 netdev->vlan_features |= NETIF_F_TSO;
1924 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1925 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1926 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1927 netdev->vlan_features |= NETIF_F_SG;
1928
7b872a55 1929 if (pci_using_dac) {
9d5c8243 1930 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1931 netdev->vlan_features |= NETIF_F_HIGHDMA;
1932 }
9d5c8243 1933
5b043fb0 1934 if (hw->mac.type >= e1000_82576)
b9473560
JB
1935 netdev->features |= NETIF_F_SCTP_CSUM;
1936
330a6d6a 1937 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1938
1939 /* before reading the NVM, reset the controller to put the device in a
1940 * known good starting state */
1941 hw->mac.ops.reset_hw(hw);
1942
1943 /* make sure the NVM is good */
4322e561 1944 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1945 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1946 err = -EIO;
1947 goto err_eeprom;
1948 }
1949
1950 /* copy the MAC address out of the NVM */
1951 if (hw->mac.ops.read_mac_addr(hw))
1952 dev_err(&pdev->dev, "NVM Read Error\n");
1953
1954 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1955 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1956
1957 if (!is_valid_ether_addr(netdev->perm_addr)) {
1958 dev_err(&pdev->dev, "Invalid MAC Address\n");
1959 err = -EIO;
1960 goto err_eeprom;
1961 }
1962
c061b18d 1963 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1964 (unsigned long) adapter);
c061b18d 1965 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1966 (unsigned long) adapter);
9d5c8243
AK
1967
1968 INIT_WORK(&adapter->reset_task, igb_reset_task);
1969 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1970
450c87c8 1971 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1972 adapter->fc_autoneg = true;
1973 hw->mac.autoneg = true;
1974 hw->phy.autoneg_advertised = 0x2f;
1975
0cce119a
AD
1976 hw->fc.requested_mode = e1000_fc_default;
1977 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1978
9d5c8243
AK
1979 igb_validate_mdi_setting(hw);
1980
9d5c8243
AK
1981 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1982 * enable the ACPI Magic Packet filter
1983 */
1984
a2cf8b6c 1985 if (hw->bus.func == 0)
312c75ae 1986 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1987 else if (hw->mac.type == e1000_82580)
1988 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1989 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1990 &eeprom_data);
a2cf8b6c
AD
1991 else if (hw->bus.func == 1)
1992 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1993
1994 if (eeprom_data & eeprom_apme_mask)
1995 adapter->eeprom_wol |= E1000_WUFC_MAG;
1996
1997 /* now that we have the eeprom settings, apply the special cases where
1998 * the eeprom may be wrong or the board simply won't support wake on
1999 * lan on a particular port */
2000 switch (pdev->device) {
2001 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2002 adapter->eeprom_wol = 0;
2003 break;
2004 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2005 case E1000_DEV_ID_82576_FIBER:
2006 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2007 /* Wake events only supported on port A for dual fiber
2008 * regardless of eeprom setting */
2009 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2010 adapter->eeprom_wol = 0;
2011 break;
c8ea5ea9 2012 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2013 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2014 /* if quad port adapter, disable WoL on all but port A */
2015 if (global_quad_port_a != 0)
2016 adapter->eeprom_wol = 0;
2017 else
2018 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2019 /* Reset for multiple quad port adapters */
2020 if (++global_quad_port_a == 4)
2021 global_quad_port_a = 0;
2022 break;
9d5c8243
AK
2023 }
2024
2025 /* initialize the wol settings based on the eeprom settings */
2026 adapter->wol = adapter->eeprom_wol;
e1b86d84 2027 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2028
2029 /* reset the hardware with the new settings */
2030 igb_reset(adapter);
2031
2032 /* let the f/w know that the h/w is now under the control of the
2033 * driver. */
2034 igb_get_hw_control(adapter);
2035
9d5c8243
AK
2036 strcpy(netdev->name, "eth%d");
2037 err = register_netdev(netdev);
2038 if (err)
2039 goto err_register;
2040
b168dfc5
JB
2041 /* carrier off reporting is important to ethtool even BEFORE open */
2042 netif_carrier_off(netdev);
2043
421e02f0 2044#ifdef CONFIG_IGB_DCA
bbd98fe4 2045 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2046 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2047 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2048 igb_setup_dca(adapter);
2049 }
fe4506b6 2050
38c845c7 2051#endif
673b8b70
AB
2052 /* do hw tstamp init after resetting */
2053 igb_init_hw_timer(adapter);
2054
9d5c8243
AK
2055 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2056 /* print bus type/speed/width info */
7c510e4b 2057 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2058 netdev->name,
559e9c49 2059 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2060 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2061 "unknown"),
59c3de89
AD
2062 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2063 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2064 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2065 "unknown"),
7c510e4b 2066 netdev->dev_addr);
9d5c8243 2067
9835fd73
CW
2068 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2069 if (ret_val)
2070 strcpy(part_str, "Unknown");
2071 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2072 dev_info(&pdev->dev,
2073 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2074 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2075 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2076 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2077 switch (hw->mac.type) {
2078 case e1000_i350:
2079 igb_set_eee_i350(hw);
2080 break;
2081 default:
2082 break;
2083 }
9d5c8243
AK
2084 return 0;
2085
2086err_register:
2087 igb_release_hw_control(adapter);
2088err_eeprom:
2089 if (!igb_check_reset_block(hw))
f5f4cf08 2090 igb_reset_phy(hw);
9d5c8243
AK
2091
2092 if (hw->flash_address)
2093 iounmap(hw->flash_address);
9d5c8243 2094err_sw_init:
047e0030 2095 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2096 iounmap(hw->hw_addr);
2097err_ioremap:
2098 free_netdev(netdev);
2099err_alloc_etherdev:
559e9c49
AD
2100 pci_release_selected_regions(pdev,
2101 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2102err_pci_reg:
2103err_dma:
2104 pci_disable_device(pdev);
2105 return err;
2106}
2107
2108/**
2109 * igb_remove - Device Removal Routine
2110 * @pdev: PCI device information struct
2111 *
2112 * igb_remove is called by the PCI subsystem to alert the driver
2113 * that it should release a PCI device. The could be caused by a
2114 * Hot-Plug event, or because the driver is going to be removed from
2115 * memory.
2116 **/
2117static void __devexit igb_remove(struct pci_dev *pdev)
2118{
2119 struct net_device *netdev = pci_get_drvdata(pdev);
2120 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2121 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2122
760141a5
TH
2123 /*
2124 * The watchdog timer may be rescheduled, so explicitly
2125 * disable watchdog from being rescheduled.
2126 */
9d5c8243
AK
2127 set_bit(__IGB_DOWN, &adapter->state);
2128 del_timer_sync(&adapter->watchdog_timer);
2129 del_timer_sync(&adapter->phy_info_timer);
2130
760141a5
TH
2131 cancel_work_sync(&adapter->reset_task);
2132 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2133
421e02f0 2134#ifdef CONFIG_IGB_DCA
7dfc16fa 2135 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2136 dev_info(&pdev->dev, "DCA disabled\n");
2137 dca_remove_requester(&pdev->dev);
7dfc16fa 2138 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2139 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2140 }
2141#endif
2142
9d5c8243
AK
2143 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2144 * would have already happened in close and is redundant. */
2145 igb_release_hw_control(adapter);
2146
2147 unregister_netdev(netdev);
2148
047e0030 2149 igb_clear_interrupt_scheme(adapter);
9d5c8243 2150
37680117
AD
2151#ifdef CONFIG_PCI_IOV
2152 /* reclaim resources allocated to VFs */
2153 if (adapter->vf_data) {
2154 /* disable iov and allow time for transactions to clear */
2155 pci_disable_sriov(pdev);
2156 msleep(500);
2157
2158 kfree(adapter->vf_data);
2159 adapter->vf_data = NULL;
2160 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2161 msleep(100);
2162 dev_info(&pdev->dev, "IOV Disabled\n");
2163 }
2164#endif
559e9c49 2165
28b0759c
AD
2166 iounmap(hw->hw_addr);
2167 if (hw->flash_address)
2168 iounmap(hw->flash_address);
559e9c49
AD
2169 pci_release_selected_regions(pdev,
2170 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2171
2172 free_netdev(netdev);
2173
19d5afd4 2174 pci_disable_pcie_error_reporting(pdev);
40a914fa 2175
9d5c8243
AK
2176 pci_disable_device(pdev);
2177}
2178
a6b623e0
AD
2179/**
2180 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2181 * @adapter: board private structure to initialize
2182 *
2183 * This function initializes the vf specific data storage and then attempts to
2184 * allocate the VFs. The reason for ordering it this way is because it is much
2185 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2186 * the memory for the VFs.
2187 **/
2188static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2189{
2190#ifdef CONFIG_PCI_IOV
2191 struct pci_dev *pdev = adapter->pdev;
2192
a6b623e0
AD
2193 if (adapter->vfs_allocated_count) {
2194 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2195 sizeof(struct vf_data_storage),
2196 GFP_KERNEL);
2197 /* if allocation failed then we do not support SR-IOV */
2198 if (!adapter->vf_data) {
2199 adapter->vfs_allocated_count = 0;
2200 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2201 "Data Storage\n");
2202 }
2203 }
2204
2205 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2206 kfree(adapter->vf_data);
2207 adapter->vf_data = NULL;
2208#endif /* CONFIG_PCI_IOV */
2209 adapter->vfs_allocated_count = 0;
2210#ifdef CONFIG_PCI_IOV
2211 } else {
2212 unsigned char mac_addr[ETH_ALEN];
2213 int i;
2214 dev_info(&pdev->dev, "%d vfs allocated\n",
2215 adapter->vfs_allocated_count);
2216 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2217 random_ether_addr(mac_addr);
2218 igb_set_vf_mac(adapter, i, mac_addr);
2219 }
831ec0b4
CW
2220 /* DMA Coalescing is not supported in IOV mode. */
2221 if (adapter->flags & IGB_FLAG_DMAC)
2222 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2223 }
2224#endif /* CONFIG_PCI_IOV */
2225}
2226
115f459a
AD
2227
2228/**
2229 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2230 * @adapter: board private structure to initialize
2231 *
2232 * igb_init_hw_timer initializes the function pointer and values for the hw
2233 * timer found in hardware.
2234 **/
2235static void igb_init_hw_timer(struct igb_adapter *adapter)
2236{
2237 struct e1000_hw *hw = &adapter->hw;
2238
2239 switch (hw->mac.type) {
d2ba2ed8 2240 case e1000_i350:
55cac248
AD
2241 case e1000_82580:
2242 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2243 adapter->cycles.read = igb_read_clock;
2244 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2245 adapter->cycles.mult = 1;
2246 /*
2247 * The 82580 timesync updates the system timer every 8ns by 8ns
2248 * and the value cannot be shifted. Instead we need to shift
2249 * the registers to generate a 64bit timer value. As a result
2250 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2251 * 24 in order to generate a larger value for synchronization.
2252 */
2253 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2254 /* disable system timer temporarily by setting bit 31 */
2255 wr32(E1000_TSAUXC, 0x80000000);
2256 wrfl();
2257
2258 /* Set registers so that rollover occurs soon to test this. */
2259 wr32(E1000_SYSTIMR, 0x00000000);
2260 wr32(E1000_SYSTIML, 0x80000000);
2261 wr32(E1000_SYSTIMH, 0x000000FF);
2262 wrfl();
2263
2264 /* enable system timer by clearing bit 31 */
2265 wr32(E1000_TSAUXC, 0x0);
2266 wrfl();
2267
2268 timecounter_init(&adapter->clock,
2269 &adapter->cycles,
2270 ktime_to_ns(ktime_get_real()));
2271 /*
2272 * Synchronize our NIC clock against system wall clock. NIC
2273 * time stamp reading requires ~3us per sample, each sample
2274 * was pretty stable even under load => only require 10
2275 * samples for each offset comparison.
2276 */
2277 memset(&adapter->compare, 0, sizeof(adapter->compare));
2278 adapter->compare.source = &adapter->clock;
2279 adapter->compare.target = ktime_get_real;
2280 adapter->compare.num_samples = 10;
2281 timecompare_update(&adapter->compare, 0);
2282 break;
115f459a
AD
2283 case e1000_82576:
2284 /*
2285 * Initialize hardware timer: we keep it running just in case
2286 * that some program needs it later on.
2287 */
2288 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2289 adapter->cycles.read = igb_read_clock;
2290 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2291 adapter->cycles.mult = 1;
2292 /**
2293 * Scale the NIC clock cycle by a large factor so that
2294 * relatively small clock corrections can be added or
25985edc 2295 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2296 * factor are a) that the clock register overflows more quickly
2297 * (not such a big deal) and b) that the increment per tick has
2298 * to fit into 24 bits. As a result we need to use a shift of
2299 * 19 so we can fit a value of 16 into the TIMINCA register.
2300 */
2301 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2302 wr32(E1000_TIMINCA,
2303 (1 << E1000_TIMINCA_16NS_SHIFT) |
2304 (16 << IGB_82576_TSYNC_SHIFT));
2305
2306 /* Set registers so that rollover occurs soon to test this. */
2307 wr32(E1000_SYSTIML, 0x00000000);
2308 wr32(E1000_SYSTIMH, 0xFF800000);
2309 wrfl();
2310
2311 timecounter_init(&adapter->clock,
2312 &adapter->cycles,
2313 ktime_to_ns(ktime_get_real()));
2314 /*
2315 * Synchronize our NIC clock against system wall clock. NIC
2316 * time stamp reading requires ~3us per sample, each sample
2317 * was pretty stable even under load => only require 10
2318 * samples for each offset comparison.
2319 */
2320 memset(&adapter->compare, 0, sizeof(adapter->compare));
2321 adapter->compare.source = &adapter->clock;
2322 adapter->compare.target = ktime_get_real;
2323 adapter->compare.num_samples = 10;
2324 timecompare_update(&adapter->compare, 0);
2325 break;
2326 case e1000_82575:
2327 /* 82575 does not support timesync */
2328 default:
2329 break;
2330 }
2331
2332}
2333
9d5c8243
AK
2334/**
2335 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2336 * @adapter: board private structure to initialize
2337 *
2338 * igb_sw_init initializes the Adapter private data structure.
2339 * Fields are initialized based on PCI device information and
2340 * OS network device settings (MTU size).
2341 **/
2342static int __devinit igb_sw_init(struct igb_adapter *adapter)
2343{
2344 struct e1000_hw *hw = &adapter->hw;
2345 struct net_device *netdev = adapter->netdev;
2346 struct pci_dev *pdev = adapter->pdev;
2347
2348 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2349
68fd9910
AD
2350 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2351 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2352 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2353 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2354
9d5c8243
AK
2355 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2356 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2357
12dcd86b 2358 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2359#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2360 switch (hw->mac.type) {
2361 case e1000_82576:
2362 case e1000_i350:
9b082d73
SA
2363 if (max_vfs > 7) {
2364 dev_warn(&pdev->dev,
2365 "Maximum of 7 VFs per PF, using max\n");
2366 adapter->vfs_allocated_count = 7;
2367 } else
2368 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2369 break;
2370 default:
2371 break;
2372 }
a6b623e0 2373#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2374 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2375
2376 /*
2377 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2378 * then we should combine the queues into a queue pair in order to
2379 * conserve interrupts due to limited supply
2380 */
2381 if ((adapter->rss_queues > 4) ||
2382 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2383 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2384
a6b623e0 2385 /* This call may decrease the number of queues */
047e0030 2386 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2387 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2388 return -ENOMEM;
2389 }
2390
a6b623e0
AD
2391 igb_probe_vfs(adapter);
2392
9d5c8243
AK
2393 /* Explicitly disable IRQ since the NIC can be in any state. */
2394 igb_irq_disable(adapter);
2395
831ec0b4
CW
2396 if (hw->mac.type == e1000_i350)
2397 adapter->flags &= ~IGB_FLAG_DMAC;
2398
9d5c8243
AK
2399 set_bit(__IGB_DOWN, &adapter->state);
2400 return 0;
2401}
2402
2403/**
2404 * igb_open - Called when a network interface is made active
2405 * @netdev: network interface device structure
2406 *
2407 * Returns 0 on success, negative value on failure
2408 *
2409 * The open entry point is called when a network interface is made
2410 * active by the system (IFF_UP). At this point all resources needed
2411 * for transmit and receive operations are allocated, the interrupt
2412 * handler is registered with the OS, the watchdog timer is started,
2413 * and the stack is notified that the interface is ready.
2414 **/
2415static int igb_open(struct net_device *netdev)
2416{
2417 struct igb_adapter *adapter = netdev_priv(netdev);
2418 struct e1000_hw *hw = &adapter->hw;
2419 int err;
2420 int i;
2421
2422 /* disallow open during test */
2423 if (test_bit(__IGB_TESTING, &adapter->state))
2424 return -EBUSY;
2425
b168dfc5
JB
2426 netif_carrier_off(netdev);
2427
9d5c8243
AK
2428 /* allocate transmit descriptors */
2429 err = igb_setup_all_tx_resources(adapter);
2430 if (err)
2431 goto err_setup_tx;
2432
2433 /* allocate receive descriptors */
2434 err = igb_setup_all_rx_resources(adapter);
2435 if (err)
2436 goto err_setup_rx;
2437
88a268c1 2438 igb_power_up_link(adapter);
9d5c8243 2439
9d5c8243
AK
2440 /* before we allocate an interrupt, we must be ready to handle it.
2441 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2442 * as soon as we call pci_request_irq, so we have to setup our
2443 * clean_rx handler before we do so. */
2444 igb_configure(adapter);
2445
2446 err = igb_request_irq(adapter);
2447 if (err)
2448 goto err_req_irq;
2449
2450 /* From here on the code is the same as igb_up() */
2451 clear_bit(__IGB_DOWN, &adapter->state);
2452
047e0030
AD
2453 for (i = 0; i < adapter->num_q_vectors; i++) {
2454 struct igb_q_vector *q_vector = adapter->q_vector[i];
2455 napi_enable(&q_vector->napi);
2456 }
9d5c8243
AK
2457
2458 /* Clear any pending interrupts. */
2459 rd32(E1000_ICR);
844290e5
PW
2460
2461 igb_irq_enable(adapter);
2462
d4960307
AD
2463 /* notify VFs that reset has been completed */
2464 if (adapter->vfs_allocated_count) {
2465 u32 reg_data = rd32(E1000_CTRL_EXT);
2466 reg_data |= E1000_CTRL_EXT_PFRSTD;
2467 wr32(E1000_CTRL_EXT, reg_data);
2468 }
2469
d55b53ff
JK
2470 netif_tx_start_all_queues(netdev);
2471
25568a53
AD
2472 /* start the watchdog. */
2473 hw->mac.get_link_status = 1;
2474 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2475
2476 return 0;
2477
2478err_req_irq:
2479 igb_release_hw_control(adapter);
88a268c1 2480 igb_power_down_link(adapter);
9d5c8243
AK
2481 igb_free_all_rx_resources(adapter);
2482err_setup_rx:
2483 igb_free_all_tx_resources(adapter);
2484err_setup_tx:
2485 igb_reset(adapter);
2486
2487 return err;
2488}
2489
2490/**
2491 * igb_close - Disables a network interface
2492 * @netdev: network interface device structure
2493 *
2494 * Returns 0, this is not allowed to fail
2495 *
2496 * The close entry point is called when an interface is de-activated
2497 * by the OS. The hardware is still under the driver's control, but
2498 * needs to be disabled. A global MAC reset is issued to stop the
2499 * hardware, and all transmit and receive resources are freed.
2500 **/
2501static int igb_close(struct net_device *netdev)
2502{
2503 struct igb_adapter *adapter = netdev_priv(netdev);
2504
2505 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2506 igb_down(adapter);
2507
2508 igb_free_irq(adapter);
2509
2510 igb_free_all_tx_resources(adapter);
2511 igb_free_all_rx_resources(adapter);
2512
9d5c8243
AK
2513 return 0;
2514}
2515
2516/**
2517 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2518 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2519 *
2520 * Return 0 on success, negative on failure
2521 **/
80785298 2522int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2523{
59d71989 2524 struct device *dev = tx_ring->dev;
9d5c8243
AK
2525 int size;
2526
2527 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2528 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2529 if (!tx_ring->buffer_info)
2530 goto err;
9d5c8243
AK
2531
2532 /* round up to nearest 4K */
85e8d004 2533 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2534 tx_ring->size = ALIGN(tx_ring->size, 4096);
2535
59d71989
AD
2536 tx_ring->desc = dma_alloc_coherent(dev,
2537 tx_ring->size,
2538 &tx_ring->dma,
2539 GFP_KERNEL);
9d5c8243
AK
2540
2541 if (!tx_ring->desc)
2542 goto err;
2543
9d5c8243
AK
2544 tx_ring->next_to_use = 0;
2545 tx_ring->next_to_clean = 0;
9d5c8243
AK
2546 return 0;
2547
2548err:
2549 vfree(tx_ring->buffer_info);
59d71989 2550 dev_err(dev,
9d5c8243
AK
2551 "Unable to allocate memory for the transmit descriptor ring\n");
2552 return -ENOMEM;
2553}
2554
2555/**
2556 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2557 * (Descriptors) for all queues
2558 * @adapter: board private structure
2559 *
2560 * Return 0 on success, negative on failure
2561 **/
2562static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2563{
439705e1 2564 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2565 int i, err = 0;
2566
2567 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2568 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2569 if (err) {
439705e1 2570 dev_err(&pdev->dev,
9d5c8243
AK
2571 "Allocation for Tx Queue %u failed\n", i);
2572 for (i--; i >= 0; i--)
3025a446 2573 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2574 break;
2575 }
2576 }
2577
a99955fc 2578 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2579 int r_idx = i % adapter->num_tx_queues;
3025a446 2580 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2581 }
9d5c8243
AK
2582 return err;
2583}
2584
2585/**
85b430b4
AD
2586 * igb_setup_tctl - configure the transmit control registers
2587 * @adapter: Board private structure
9d5c8243 2588 **/
d7ee5b3a 2589void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2590{
9d5c8243
AK
2591 struct e1000_hw *hw = &adapter->hw;
2592 u32 tctl;
9d5c8243 2593
85b430b4
AD
2594 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2595 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2596
2597 /* Program the Transmit Control Register */
9d5c8243
AK
2598 tctl = rd32(E1000_TCTL);
2599 tctl &= ~E1000_TCTL_CT;
2600 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2601 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2602
2603 igb_config_collision_dist(hw);
2604
9d5c8243
AK
2605 /* Enable transmits */
2606 tctl |= E1000_TCTL_EN;
2607
2608 wr32(E1000_TCTL, tctl);
2609}
2610
85b430b4
AD
2611/**
2612 * igb_configure_tx_ring - Configure transmit ring after Reset
2613 * @adapter: board private structure
2614 * @ring: tx ring to configure
2615 *
2616 * Configure a transmit ring after a reset.
2617 **/
d7ee5b3a
AD
2618void igb_configure_tx_ring(struct igb_adapter *adapter,
2619 struct igb_ring *ring)
85b430b4
AD
2620{
2621 struct e1000_hw *hw = &adapter->hw;
2622 u32 txdctl;
2623 u64 tdba = ring->dma;
2624 int reg_idx = ring->reg_idx;
2625
2626 /* disable the queue */
2627 txdctl = rd32(E1000_TXDCTL(reg_idx));
2628 wr32(E1000_TXDCTL(reg_idx),
2629 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2630 wrfl();
2631 mdelay(10);
2632
2633 wr32(E1000_TDLEN(reg_idx),
2634 ring->count * sizeof(union e1000_adv_tx_desc));
2635 wr32(E1000_TDBAL(reg_idx),
2636 tdba & 0x00000000ffffffffULL);
2637 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2638
fce99e34
AD
2639 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2640 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2641 writel(0, ring->head);
2642 writel(0, ring->tail);
85b430b4
AD
2643
2644 txdctl |= IGB_TX_PTHRESH;
2645 txdctl |= IGB_TX_HTHRESH << 8;
2646 txdctl |= IGB_TX_WTHRESH << 16;
2647
2648 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2649 wr32(E1000_TXDCTL(reg_idx), txdctl);
2650}
2651
2652/**
2653 * igb_configure_tx - Configure transmit Unit after Reset
2654 * @adapter: board private structure
2655 *
2656 * Configure the Tx unit of the MAC after a reset.
2657 **/
2658static void igb_configure_tx(struct igb_adapter *adapter)
2659{
2660 int i;
2661
2662 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2663 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2664}
2665
9d5c8243
AK
2666/**
2667 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2668 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2669 *
2670 * Returns 0 on success, negative on failure
2671 **/
80785298 2672int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2673{
59d71989 2674 struct device *dev = rx_ring->dev;
9d5c8243
AK
2675 int size, desc_len;
2676
2677 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2678 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2679 if (!rx_ring->buffer_info)
2680 goto err;
9d5c8243
AK
2681
2682 desc_len = sizeof(union e1000_adv_rx_desc);
2683
2684 /* Round up to nearest 4K */
2685 rx_ring->size = rx_ring->count * desc_len;
2686 rx_ring->size = ALIGN(rx_ring->size, 4096);
2687
59d71989
AD
2688 rx_ring->desc = dma_alloc_coherent(dev,
2689 rx_ring->size,
2690 &rx_ring->dma,
2691 GFP_KERNEL);
9d5c8243
AK
2692
2693 if (!rx_ring->desc)
2694 goto err;
2695
2696 rx_ring->next_to_clean = 0;
2697 rx_ring->next_to_use = 0;
9d5c8243 2698
9d5c8243
AK
2699 return 0;
2700
2701err:
2702 vfree(rx_ring->buffer_info);
439705e1 2703 rx_ring->buffer_info = NULL;
59d71989
AD
2704 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2705 " ring\n");
9d5c8243
AK
2706 return -ENOMEM;
2707}
2708
2709/**
2710 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2711 * (Descriptors) for all queues
2712 * @adapter: board private structure
2713 *
2714 * Return 0 on success, negative on failure
2715 **/
2716static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2717{
439705e1 2718 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2719 int i, err = 0;
2720
2721 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2722 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2723 if (err) {
439705e1 2724 dev_err(&pdev->dev,
9d5c8243
AK
2725 "Allocation for Rx Queue %u failed\n", i);
2726 for (i--; i >= 0; i--)
3025a446 2727 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2728 break;
2729 }
2730 }
2731
2732 return err;
2733}
2734
06cf2666
AD
2735/**
2736 * igb_setup_mrqc - configure the multiple receive queue control registers
2737 * @adapter: Board private structure
2738 **/
2739static void igb_setup_mrqc(struct igb_adapter *adapter)
2740{
2741 struct e1000_hw *hw = &adapter->hw;
2742 u32 mrqc, rxcsum;
2743 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2744 union e1000_reta {
2745 u32 dword;
2746 u8 bytes[4];
2747 } reta;
2748 static const u8 rsshash[40] = {
2749 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2750 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2751 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2752 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2753
2754 /* Fill out hash function seeds */
2755 for (j = 0; j < 10; j++) {
2756 u32 rsskey = rsshash[(j * 4)];
2757 rsskey |= rsshash[(j * 4) + 1] << 8;
2758 rsskey |= rsshash[(j * 4) + 2] << 16;
2759 rsskey |= rsshash[(j * 4) + 3] << 24;
2760 array_wr32(E1000_RSSRK(0), j, rsskey);
2761 }
2762
a99955fc 2763 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2764
2765 if (adapter->vfs_allocated_count) {
2766 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2767 switch (hw->mac.type) {
d2ba2ed8 2768 case e1000_i350:
55cac248
AD
2769 case e1000_82580:
2770 num_rx_queues = 1;
2771 shift = 0;
2772 break;
06cf2666
AD
2773 case e1000_82576:
2774 shift = 3;
2775 num_rx_queues = 2;
2776 break;
2777 case e1000_82575:
2778 shift = 2;
2779 shift2 = 6;
2780 default:
2781 break;
2782 }
2783 } else {
2784 if (hw->mac.type == e1000_82575)
2785 shift = 6;
2786 }
2787
2788 for (j = 0; j < (32 * 4); j++) {
2789 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2790 if (shift2)
2791 reta.bytes[j & 3] |= num_rx_queues << shift2;
2792 if ((j & 3) == 3)
2793 wr32(E1000_RETA(j >> 2), reta.dword);
2794 }
2795
2796 /*
2797 * Disable raw packet checksumming so that RSS hash is placed in
2798 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2799 * offloads as they are enabled by default
2800 */
2801 rxcsum = rd32(E1000_RXCSUM);
2802 rxcsum |= E1000_RXCSUM_PCSD;
2803
2804 if (adapter->hw.mac.type >= e1000_82576)
2805 /* Enable Receive Checksum Offload for SCTP */
2806 rxcsum |= E1000_RXCSUM_CRCOFL;
2807
2808 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2809 wr32(E1000_RXCSUM, rxcsum);
2810
2811 /* If VMDq is enabled then we set the appropriate mode for that, else
2812 * we default to RSS so that an RSS hash is calculated per packet even
2813 * if we are only using one queue */
2814 if (adapter->vfs_allocated_count) {
2815 if (hw->mac.type > e1000_82575) {
2816 /* Set the default pool for the PF's first queue */
2817 u32 vtctl = rd32(E1000_VT_CTL);
2818 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2819 E1000_VT_CTL_DISABLE_DEF_POOL);
2820 vtctl |= adapter->vfs_allocated_count <<
2821 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2822 wr32(E1000_VT_CTL, vtctl);
2823 }
a99955fc 2824 if (adapter->rss_queues > 1)
06cf2666
AD
2825 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2826 else
2827 mrqc = E1000_MRQC_ENABLE_VMDQ;
2828 } else {
2829 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2830 }
2831 igb_vmm_control(adapter);
2832
4478a9cd
AD
2833 /*
2834 * Generate RSS hash based on TCP port numbers and/or
2835 * IPv4/v6 src and dst addresses since UDP cannot be
2836 * hashed reliably due to IP fragmentation
2837 */
2838 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2839 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2840 E1000_MRQC_RSS_FIELD_IPV6 |
2841 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2842 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2843
2844 wr32(E1000_MRQC, mrqc);
2845}
2846
9d5c8243
AK
2847/**
2848 * igb_setup_rctl - configure the receive control registers
2849 * @adapter: Board private structure
2850 **/
d7ee5b3a 2851void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2852{
2853 struct e1000_hw *hw = &adapter->hw;
2854 u32 rctl;
9d5c8243
AK
2855
2856 rctl = rd32(E1000_RCTL);
2857
2858 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2859 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2860
69d728ba 2861 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2862 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2863
87cb7e8c
AK
2864 /*
2865 * enable stripping of CRC. It's unlikely this will break BMC
2866 * redirection as it did with e1000. Newer features require
2867 * that the HW strips the CRC.
73cd78f1 2868 */
87cb7e8c 2869 rctl |= E1000_RCTL_SECRC;
9d5c8243 2870
559e9c49 2871 /* disable store bad packets and clear size bits. */
ec54d7d6 2872 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2873
6ec43fe6
AD
2874 /* enable LPE to prevent packets larger than max_frame_size */
2875 rctl |= E1000_RCTL_LPE;
9d5c8243 2876
952f72a8
AD
2877 /* disable queue 0 to prevent tail write w/o re-config */
2878 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2879
e1739522
AD
2880 /* Attention!!! For SR-IOV PF driver operations you must enable
2881 * queue drop for all VF and PF queues to prevent head of line blocking
2882 * if an un-trusted VF does not provide descriptors to hardware.
2883 */
2884 if (adapter->vfs_allocated_count) {
e1739522
AD
2885 /* set all queue drop enable bits */
2886 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2887 }
2888
9d5c8243
AK
2889 wr32(E1000_RCTL, rctl);
2890}
2891
7d5753f0
AD
2892static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2893 int vfn)
2894{
2895 struct e1000_hw *hw = &adapter->hw;
2896 u32 vmolr;
2897
2898 /* if it isn't the PF check to see if VFs are enabled and
2899 * increase the size to support vlan tags */
2900 if (vfn < adapter->vfs_allocated_count &&
2901 adapter->vf_data[vfn].vlans_enabled)
2902 size += VLAN_TAG_SIZE;
2903
2904 vmolr = rd32(E1000_VMOLR(vfn));
2905 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2906 vmolr |= size | E1000_VMOLR_LPE;
2907 wr32(E1000_VMOLR(vfn), vmolr);
2908
2909 return 0;
2910}
2911
e1739522
AD
2912/**
2913 * igb_rlpml_set - set maximum receive packet size
2914 * @adapter: board private structure
2915 *
2916 * Configure maximum receivable packet size.
2917 **/
2918static void igb_rlpml_set(struct igb_adapter *adapter)
2919{
2920 u32 max_frame_size = adapter->max_frame_size;
2921 struct e1000_hw *hw = &adapter->hw;
2922 u16 pf_id = adapter->vfs_allocated_count;
2923
2924 if (adapter->vlgrp)
2925 max_frame_size += VLAN_TAG_SIZE;
2926
2927 /* if vfs are enabled we set RLPML to the largest possible request
2928 * size and set the VMOLR RLPML to the size we need */
2929 if (pf_id) {
2930 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2931 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2932 }
2933
2934 wr32(E1000_RLPML, max_frame_size);
2935}
2936
8151d294
WM
2937static inline void igb_set_vmolr(struct igb_adapter *adapter,
2938 int vfn, bool aupe)
7d5753f0
AD
2939{
2940 struct e1000_hw *hw = &adapter->hw;
2941 u32 vmolr;
2942
2943 /*
2944 * This register exists only on 82576 and newer so if we are older then
2945 * we should exit and do nothing
2946 */
2947 if (hw->mac.type < e1000_82576)
2948 return;
2949
2950 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2951 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2952 if (aupe)
2953 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2954 else
2955 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2956
2957 /* clear all bits that might not be set */
2958 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2959
a99955fc 2960 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2961 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2962 /*
2963 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2964 * multicast packets
2965 */
2966 if (vfn <= adapter->vfs_allocated_count)
2967 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2968
2969 wr32(E1000_VMOLR(vfn), vmolr);
2970}
2971
85b430b4
AD
2972/**
2973 * igb_configure_rx_ring - Configure a receive ring after Reset
2974 * @adapter: board private structure
2975 * @ring: receive ring to be configured
2976 *
2977 * Configure the Rx unit of the MAC after a reset.
2978 **/
d7ee5b3a
AD
2979void igb_configure_rx_ring(struct igb_adapter *adapter,
2980 struct igb_ring *ring)
85b430b4
AD
2981{
2982 struct e1000_hw *hw = &adapter->hw;
2983 u64 rdba = ring->dma;
2984 int reg_idx = ring->reg_idx;
952f72a8 2985 u32 srrctl, rxdctl;
85b430b4
AD
2986
2987 /* disable the queue */
2988 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2989 wr32(E1000_RXDCTL(reg_idx),
2990 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2991
2992 /* Set DMA base address registers */
2993 wr32(E1000_RDBAL(reg_idx),
2994 rdba & 0x00000000ffffffffULL);
2995 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2996 wr32(E1000_RDLEN(reg_idx),
2997 ring->count * sizeof(union e1000_adv_rx_desc));
2998
2999 /* initialize head and tail */
fce99e34
AD
3000 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3001 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3002 writel(0, ring->head);
3003 writel(0, ring->tail);
85b430b4 3004
952f72a8 3005 /* set descriptor configuration */
4c844851
AD
3006 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3007 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
3008 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3009#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3010 srrctl |= IGB_RXBUFFER_16384 >>
3011 E1000_SRRCTL_BSIZEPKT_SHIFT;
3012#else
3013 srrctl |= (PAGE_SIZE / 2) >>
3014 E1000_SRRCTL_BSIZEPKT_SHIFT;
3015#endif
3016 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3017 } else {
4c844851 3018 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
3019 E1000_SRRCTL_BSIZEPKT_SHIFT;
3020 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3021 }
757b77e2
NN
3022 if (hw->mac.type == e1000_82580)
3023 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3024 /* Only set Drop Enable if we are supporting multiple queues */
3025 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3026 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3027
3028 wr32(E1000_SRRCTL(reg_idx), srrctl);
3029
7d5753f0 3030 /* set filtering for VMDQ pools */
8151d294 3031 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3032
85b430b4
AD
3033 /* enable receive descriptor fetching */
3034 rxdctl = rd32(E1000_RXDCTL(reg_idx));
3035 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3036 rxdctl &= 0xFFF00000;
3037 rxdctl |= IGB_RX_PTHRESH;
3038 rxdctl |= IGB_RX_HTHRESH << 8;
3039 rxdctl |= IGB_RX_WTHRESH << 16;
3040 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3041}
3042
9d5c8243
AK
3043/**
3044 * igb_configure_rx - Configure receive Unit after Reset
3045 * @adapter: board private structure
3046 *
3047 * Configure the Rx unit of the MAC after a reset.
3048 **/
3049static void igb_configure_rx(struct igb_adapter *adapter)
3050{
9107584e 3051 int i;
9d5c8243 3052
68d480c4
AD
3053 /* set UTA to appropriate mode */
3054 igb_set_uta(adapter);
3055
26ad9178
AD
3056 /* set the correct pool for the PF default MAC address in entry 0 */
3057 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3058 adapter->vfs_allocated_count);
3059
06cf2666
AD
3060 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3061 * the Base and Length of the Rx Descriptor Ring */
3062 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3063 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3064}
3065
3066/**
3067 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3068 * @tx_ring: Tx descriptor ring for a specific queue
3069 *
3070 * Free all transmit software resources
3071 **/
68fd9910 3072void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3073{
3b644cf6 3074 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
3075
3076 vfree(tx_ring->buffer_info);
3077 tx_ring->buffer_info = NULL;
3078
439705e1
AD
3079 /* if not set, then don't free */
3080 if (!tx_ring->desc)
3081 return;
3082
59d71989
AD
3083 dma_free_coherent(tx_ring->dev, tx_ring->size,
3084 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3085
3086 tx_ring->desc = NULL;
3087}
3088
3089/**
3090 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3091 * @adapter: board private structure
3092 *
3093 * Free all transmit software resources
3094 **/
3095static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3096{
3097 int i;
3098
3099 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3100 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3101}
3102
b1a436c3
AD
3103void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3104 struct igb_buffer *buffer_info)
9d5c8243 3105{
6366ad33
AD
3106 if (buffer_info->dma) {
3107 if (buffer_info->mapped_as_page)
59d71989 3108 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3109 buffer_info->dma,
3110 buffer_info->length,
59d71989 3111 DMA_TO_DEVICE);
6366ad33 3112 else
59d71989 3113 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3114 buffer_info->dma,
3115 buffer_info->length,
59d71989 3116 DMA_TO_DEVICE);
6366ad33
AD
3117 buffer_info->dma = 0;
3118 }
9d5c8243
AK
3119 if (buffer_info->skb) {
3120 dev_kfree_skb_any(buffer_info->skb);
3121 buffer_info->skb = NULL;
3122 }
3123 buffer_info->time_stamp = 0;
6366ad33
AD
3124 buffer_info->length = 0;
3125 buffer_info->next_to_watch = 0;
3126 buffer_info->mapped_as_page = false;
9d5c8243
AK
3127}
3128
3129/**
3130 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3131 * @tx_ring: ring to be cleaned
3132 **/
3b644cf6 3133static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3134{
3135 struct igb_buffer *buffer_info;
3136 unsigned long size;
3137 unsigned int i;
3138
3139 if (!tx_ring->buffer_info)
3140 return;
3141 /* Free all the Tx ring sk_buffs */
3142
3143 for (i = 0; i < tx_ring->count; i++) {
3144 buffer_info = &tx_ring->buffer_info[i];
80785298 3145 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3146 }
3147
3148 size = sizeof(struct igb_buffer) * tx_ring->count;
3149 memset(tx_ring->buffer_info, 0, size);
3150
3151 /* Zero out the descriptor ring */
9d5c8243
AK
3152 memset(tx_ring->desc, 0, tx_ring->size);
3153
3154 tx_ring->next_to_use = 0;
3155 tx_ring->next_to_clean = 0;
9d5c8243
AK
3156}
3157
3158/**
3159 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3160 * @adapter: board private structure
3161 **/
3162static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3163{
3164 int i;
3165
3166 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3167 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3168}
3169
3170/**
3171 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3172 * @rx_ring: ring to clean the resources from
3173 *
3174 * Free all receive software resources
3175 **/
68fd9910 3176void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3177{
3b644cf6 3178 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3179
3180 vfree(rx_ring->buffer_info);
3181 rx_ring->buffer_info = NULL;
3182
439705e1
AD
3183 /* if not set, then don't free */
3184 if (!rx_ring->desc)
3185 return;
3186
59d71989
AD
3187 dma_free_coherent(rx_ring->dev, rx_ring->size,
3188 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3189
3190 rx_ring->desc = NULL;
3191}
3192
3193/**
3194 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3195 * @adapter: board private structure
3196 *
3197 * Free all receive software resources
3198 **/
3199static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3200{
3201 int i;
3202
3203 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3204 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3205}
3206
3207/**
3208 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3209 * @rx_ring: ring to free buffers from
3210 **/
3b644cf6 3211static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3212{
3213 struct igb_buffer *buffer_info;
9d5c8243
AK
3214 unsigned long size;
3215 unsigned int i;
3216
3217 if (!rx_ring->buffer_info)
3218 return;
439705e1 3219
9d5c8243
AK
3220 /* Free all the Rx ring sk_buffs */
3221 for (i = 0; i < rx_ring->count; i++) {
3222 buffer_info = &rx_ring->buffer_info[i];
3223 if (buffer_info->dma) {
59d71989 3224 dma_unmap_single(rx_ring->dev,
80785298 3225 buffer_info->dma,
4c844851 3226 rx_ring->rx_buffer_len,
59d71989 3227 DMA_FROM_DEVICE);
9d5c8243
AK
3228 buffer_info->dma = 0;
3229 }
3230
3231 if (buffer_info->skb) {
3232 dev_kfree_skb(buffer_info->skb);
3233 buffer_info->skb = NULL;
3234 }
6ec43fe6 3235 if (buffer_info->page_dma) {
59d71989 3236 dma_unmap_page(rx_ring->dev,
80785298 3237 buffer_info->page_dma,
6ec43fe6 3238 PAGE_SIZE / 2,
59d71989 3239 DMA_FROM_DEVICE);
6ec43fe6
AD
3240 buffer_info->page_dma = 0;
3241 }
9d5c8243 3242 if (buffer_info->page) {
9d5c8243
AK
3243 put_page(buffer_info->page);
3244 buffer_info->page = NULL;
bf36c1a0 3245 buffer_info->page_offset = 0;
9d5c8243
AK
3246 }
3247 }
3248
9d5c8243
AK
3249 size = sizeof(struct igb_buffer) * rx_ring->count;
3250 memset(rx_ring->buffer_info, 0, size);
3251
3252 /* Zero out the descriptor ring */
3253 memset(rx_ring->desc, 0, rx_ring->size);
3254
3255 rx_ring->next_to_clean = 0;
3256 rx_ring->next_to_use = 0;
9d5c8243
AK
3257}
3258
3259/**
3260 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3261 * @adapter: board private structure
3262 **/
3263static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3264{
3265 int i;
3266
3267 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3268 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3269}
3270
3271/**
3272 * igb_set_mac - Change the Ethernet Address of the NIC
3273 * @netdev: network interface device structure
3274 * @p: pointer to an address structure
3275 *
3276 * Returns 0 on success, negative on failure
3277 **/
3278static int igb_set_mac(struct net_device *netdev, void *p)
3279{
3280 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3281 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3282 struct sockaddr *addr = p;
3283
3284 if (!is_valid_ether_addr(addr->sa_data))
3285 return -EADDRNOTAVAIL;
3286
3287 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3288 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3289
26ad9178
AD
3290 /* set the correct pool for the new PF MAC address in entry 0 */
3291 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3292 adapter->vfs_allocated_count);
e1739522 3293
9d5c8243
AK
3294 return 0;
3295}
3296
3297/**
68d480c4 3298 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3299 * @netdev: network interface device structure
3300 *
68d480c4
AD
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 * 0 on no addresses written
3304 * X on writing X addresses to MTA
9d5c8243 3305 **/
68d480c4 3306static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3307{
3308 struct igb_adapter *adapter = netdev_priv(netdev);
3309 struct e1000_hw *hw = &adapter->hw;
22bedad3 3310 struct netdev_hw_addr *ha;
68d480c4 3311 u8 *mta_list;
9d5c8243
AK
3312 int i;
3313
4cd24eaf 3314 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3315 /* nothing to program, so clear mc list */
3316 igb_update_mc_addr_list(hw, NULL, 0);
3317 igb_restore_vf_multicasts(adapter);
3318 return 0;
3319 }
9d5c8243 3320
4cd24eaf 3321 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3322 if (!mta_list)
3323 return -ENOMEM;
ff41f8dc 3324
68d480c4 3325 /* The shared function expects a packed array of only addresses. */
48e2f183 3326 i = 0;
22bedad3
JP
3327 netdev_for_each_mc_addr(ha, netdev)
3328 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3329
68d480c4
AD
3330 igb_update_mc_addr_list(hw, mta_list, i);
3331 kfree(mta_list);
3332
4cd24eaf 3333 return netdev_mc_count(netdev);
68d480c4
AD
3334}
3335
3336/**
3337 * igb_write_uc_addr_list - write unicast addresses to RAR table
3338 * @netdev: network interface device structure
3339 *
3340 * Writes unicast address list to the RAR table.
3341 * Returns: -ENOMEM on failure/insufficient address space
3342 * 0 on no addresses written
3343 * X on writing X addresses to the RAR table
3344 **/
3345static int igb_write_uc_addr_list(struct net_device *netdev)
3346{
3347 struct igb_adapter *adapter = netdev_priv(netdev);
3348 struct e1000_hw *hw = &adapter->hw;
3349 unsigned int vfn = adapter->vfs_allocated_count;
3350 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3351 int count = 0;
3352
3353 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3354 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3355 return -ENOMEM;
9d5c8243 3356
32e7bfc4 3357 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3358 struct netdev_hw_addr *ha;
32e7bfc4
JP
3359
3360 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3361 if (!rar_entries)
3362 break;
26ad9178
AD
3363 igb_rar_set_qsel(adapter, ha->addr,
3364 rar_entries--,
68d480c4
AD
3365 vfn);
3366 count++;
ff41f8dc
AD
3367 }
3368 }
3369 /* write the addresses in reverse order to avoid write combining */
3370 for (; rar_entries > 0 ; rar_entries--) {
3371 wr32(E1000_RAH(rar_entries), 0);
3372 wr32(E1000_RAL(rar_entries), 0);
3373 }
3374 wrfl();
3375
68d480c4
AD
3376 return count;
3377}
3378
3379/**
3380 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3381 * @netdev: network interface device structure
3382 *
3383 * The set_rx_mode entry point is called whenever the unicast or multicast
3384 * address lists or the network interface flags are updated. This routine is
3385 * responsible for configuring the hardware for proper unicast, multicast,
3386 * promiscuous mode, and all-multi behavior.
3387 **/
3388static void igb_set_rx_mode(struct net_device *netdev)
3389{
3390 struct igb_adapter *adapter = netdev_priv(netdev);
3391 struct e1000_hw *hw = &adapter->hw;
3392 unsigned int vfn = adapter->vfs_allocated_count;
3393 u32 rctl, vmolr = 0;
3394 int count;
3395
3396 /* Check for Promiscuous and All Multicast modes */
3397 rctl = rd32(E1000_RCTL);
3398
3399 /* clear the effected bits */
3400 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3401
3402 if (netdev->flags & IFF_PROMISC) {
3403 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3404 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3405 } else {
3406 if (netdev->flags & IFF_ALLMULTI) {
3407 rctl |= E1000_RCTL_MPE;
3408 vmolr |= E1000_VMOLR_MPME;
3409 } else {
3410 /*
3411 * Write addresses to the MTA, if the attempt fails
25985edc 3412 * then we should just turn on promiscuous mode so
68d480c4
AD
3413 * that we can at least receive multicast traffic
3414 */
3415 count = igb_write_mc_addr_list(netdev);
3416 if (count < 0) {
3417 rctl |= E1000_RCTL_MPE;
3418 vmolr |= E1000_VMOLR_MPME;
3419 } else if (count) {
3420 vmolr |= E1000_VMOLR_ROMPE;
3421 }
3422 }
3423 /*
3424 * Write addresses to available RAR registers, if there is not
3425 * sufficient space to store all the addresses then enable
25985edc 3426 * unicast promiscuous mode
68d480c4
AD
3427 */
3428 count = igb_write_uc_addr_list(netdev);
3429 if (count < 0) {
3430 rctl |= E1000_RCTL_UPE;
3431 vmolr |= E1000_VMOLR_ROPE;
3432 }
3433 rctl |= E1000_RCTL_VFE;
28fc06f5 3434 }
68d480c4 3435 wr32(E1000_RCTL, rctl);
28fc06f5 3436
68d480c4
AD
3437 /*
3438 * In order to support SR-IOV and eventually VMDq it is necessary to set
3439 * the VMOLR to enable the appropriate modes. Without this workaround
3440 * we will have issues with VLAN tag stripping not being done for frames
3441 * that are only arriving because we are the default pool
3442 */
3443 if (hw->mac.type < e1000_82576)
28fc06f5 3444 return;
9d5c8243 3445
68d480c4
AD
3446 vmolr |= rd32(E1000_VMOLR(vfn)) &
3447 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3448 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3449 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3450}
3451
13800469
GR
3452static void igb_check_wvbr(struct igb_adapter *adapter)
3453{
3454 struct e1000_hw *hw = &adapter->hw;
3455 u32 wvbr = 0;
3456
3457 switch (hw->mac.type) {
3458 case e1000_82576:
3459 case e1000_i350:
3460 if (!(wvbr = rd32(E1000_WVBR)))
3461 return;
3462 break;
3463 default:
3464 break;
3465 }
3466
3467 adapter->wvbr |= wvbr;
3468}
3469
3470#define IGB_STAGGERED_QUEUE_OFFSET 8
3471
3472static void igb_spoof_check(struct igb_adapter *adapter)
3473{
3474 int j;
3475
3476 if (!adapter->wvbr)
3477 return;
3478
3479 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3480 if (adapter->wvbr & (1 << j) ||
3481 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3482 dev_warn(&adapter->pdev->dev,
3483 "Spoof event(s) detected on VF %d\n", j);
3484 adapter->wvbr &=
3485 ~((1 << j) |
3486 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3487 }
3488 }
3489}
3490
9d5c8243
AK
3491/* Need to wait a few seconds after link up to get diagnostic information from
3492 * the phy */
3493static void igb_update_phy_info(unsigned long data)
3494{
3495 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3496 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3497}
3498
4d6b725e
AD
3499/**
3500 * igb_has_link - check shared code for link and determine up/down
3501 * @adapter: pointer to driver private info
3502 **/
3145535a 3503bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3504{
3505 struct e1000_hw *hw = &adapter->hw;
3506 bool link_active = false;
3507 s32 ret_val = 0;
3508
3509 /* get_link_status is set on LSC (link status) interrupt or
3510 * rx sequence error interrupt. get_link_status will stay
3511 * false until the e1000_check_for_link establishes link
3512 * for copper adapters ONLY
3513 */
3514 switch (hw->phy.media_type) {
3515 case e1000_media_type_copper:
3516 if (hw->mac.get_link_status) {
3517 ret_val = hw->mac.ops.check_for_link(hw);
3518 link_active = !hw->mac.get_link_status;
3519 } else {
3520 link_active = true;
3521 }
3522 break;
4d6b725e
AD
3523 case e1000_media_type_internal_serdes:
3524 ret_val = hw->mac.ops.check_for_link(hw);
3525 link_active = hw->mac.serdes_has_link;
3526 break;
3527 default:
3528 case e1000_media_type_unknown:
3529 break;
3530 }
3531
3532 return link_active;
3533}
3534
9d5c8243
AK
3535/**
3536 * igb_watchdog - Timer Call-back
3537 * @data: pointer to adapter cast into an unsigned long
3538 **/
3539static void igb_watchdog(unsigned long data)
3540{
3541 struct igb_adapter *adapter = (struct igb_adapter *)data;
3542 /* Do the rest outside of interrupt context */
3543 schedule_work(&adapter->watchdog_task);
3544}
3545
3546static void igb_watchdog_task(struct work_struct *work)
3547{
3548 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3549 struct igb_adapter,
3550 watchdog_task);
9d5c8243 3551 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3552 struct net_device *netdev = adapter->netdev;
7ef5ed1c 3553 u32 link, ctrl_ext, thstat;
7a6ea550 3554 int i;
9d5c8243 3555
4d6b725e 3556 link = igb_has_link(adapter);
9d5c8243
AK
3557 if (link) {
3558 if (!netif_carrier_ok(netdev)) {
3559 u32 ctrl;
330a6d6a
AD
3560 hw->mac.ops.get_speed_and_duplex(hw,
3561 &adapter->link_speed,
3562 &adapter->link_duplex);
9d5c8243
AK
3563
3564 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3565 /* Links status message must follow this format */
3566 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3567 "Flow Control: %s\n",
559e9c49
AD
3568 netdev->name,
3569 adapter->link_speed,
3570 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3571 "Full Duplex" : "Half Duplex",
559e9c49
AD
3572 ((ctrl & E1000_CTRL_TFCE) &&
3573 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3574 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3575 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3576
7ef5ed1c
CW
3577 /* check for thermal sensor event on i350,
3578 * copper only */
3579 if (hw->mac.type == e1000_i350) {
3580 thstat = rd32(E1000_THSTAT);
3581 ctrl_ext = rd32(E1000_CTRL_EXT);
3582 if ((hw->phy.media_type ==
3583 e1000_media_type_copper) && !(ctrl_ext &
3584 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3585 if (thstat &
3586 E1000_THSTAT_LINK_THROTTLE) {
3587 printk(KERN_INFO "igb: %s The "
3588 "network adapter link "
3589 "speed was downshifted "
3590 "because it "
3591 "overheated.\n",
3592 netdev->name);
3593 }
3594 }
3595 }
d07f3e37 3596 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3597 adapter->tx_timeout_factor = 1;
3598 switch (adapter->link_speed) {
3599 case SPEED_10:
9d5c8243
AK
3600 adapter->tx_timeout_factor = 14;
3601 break;
3602 case SPEED_100:
9d5c8243
AK
3603 /* maybe add some timeout factor ? */
3604 break;
3605 }
3606
3607 netif_carrier_on(netdev);
9d5c8243 3608
4ae196df 3609 igb_ping_all_vfs(adapter);
17dc566c 3610 igb_check_vf_rate_limit(adapter);
4ae196df 3611
4b1a9877 3612 /* link state has changed, schedule phy info update */
9d5c8243
AK
3613 if (!test_bit(__IGB_DOWN, &adapter->state))
3614 mod_timer(&adapter->phy_info_timer,
3615 round_jiffies(jiffies + 2 * HZ));
3616 }
3617 } else {
3618 if (netif_carrier_ok(netdev)) {
3619 adapter->link_speed = 0;
3620 adapter->link_duplex = 0;
7ef5ed1c
CW
3621 /* check for thermal sensor event on i350
3622 * copper only*/
3623 if (hw->mac.type == e1000_i350) {
3624 thstat = rd32(E1000_THSTAT);
3625 ctrl_ext = rd32(E1000_CTRL_EXT);
3626 if ((hw->phy.media_type ==
3627 e1000_media_type_copper) && !(ctrl_ext &
3628 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3629 if (thstat & E1000_THSTAT_PWR_DOWN) {
3630 printk(KERN_ERR "igb: %s The "
3631 "network adapter was stopped "
3632 "because it overheated.\n",
3633 netdev->name);
3634 }
3635 }
3636 }
527d47c1
AD
3637 /* Links status message must follow this format */
3638 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3639 netdev->name);
9d5c8243 3640 netif_carrier_off(netdev);
4b1a9877 3641
4ae196df
AD
3642 igb_ping_all_vfs(adapter);
3643
4b1a9877 3644 /* link state has changed, schedule phy info update */
9d5c8243
AK
3645 if (!test_bit(__IGB_DOWN, &adapter->state))
3646 mod_timer(&adapter->phy_info_timer,
3647 round_jiffies(jiffies + 2 * HZ));
3648 }
3649 }
3650
12dcd86b
ED
3651 spin_lock(&adapter->stats64_lock);
3652 igb_update_stats(adapter, &adapter->stats64);
3653 spin_unlock(&adapter->stats64_lock);
9d5c8243 3654
dbabb065 3655 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3656 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3657 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3658 /* We've lost link, so the controller stops DMA,
3659 * but we've got queued Tx work that's never going
3660 * to get done, so reset controller to flush Tx.
3661 * (Do the reset outside of interrupt context). */
dbabb065
AD
3662 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3663 adapter->tx_timeout_count++;
3664 schedule_work(&adapter->reset_task);
3665 /* return immediately since reset is imminent */
3666 return;
3667 }
9d5c8243 3668 }
9d5c8243 3669
dbabb065
AD
3670 /* Force detection of hung controller every watchdog period */
3671 tx_ring->detect_tx_hung = true;
3672 }
f7ba205e 3673
9d5c8243 3674 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3675 if (adapter->msix_entries) {
047e0030
AD
3676 u32 eics = 0;
3677 for (i = 0; i < adapter->num_q_vectors; i++) {
3678 struct igb_q_vector *q_vector = adapter->q_vector[i];
3679 eics |= q_vector->eims_value;
3680 }
7a6ea550
AD
3681 wr32(E1000_EICS, eics);
3682 } else {
3683 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3684 }
9d5c8243 3685
13800469
GR
3686 igb_spoof_check(adapter);
3687
9d5c8243
AK
3688 /* Reset the timer */
3689 if (!test_bit(__IGB_DOWN, &adapter->state))
3690 mod_timer(&adapter->watchdog_timer,
3691 round_jiffies(jiffies + 2 * HZ));
3692}
3693
3694enum latency_range {
3695 lowest_latency = 0,
3696 low_latency = 1,
3697 bulk_latency = 2,
3698 latency_invalid = 255
3699};
3700
6eb5a7f1
AD
3701/**
3702 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3703 *
3704 * Stores a new ITR value based on strictly on packet size. This
3705 * algorithm is less sophisticated than that used in igb_update_itr,
3706 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3707 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3708 * were determined based on theoretical maximum wire speed and testing
3709 * data, in order to minimize response time while increasing bulk
3710 * throughput.
3711 * This functionality is controlled by the InterruptThrottleRate module
3712 * parameter (see igb_param.c)
3713 * NOTE: This function is called only when operating in a multiqueue
3714 * receive environment.
047e0030 3715 * @q_vector: pointer to q_vector
6eb5a7f1 3716 **/
047e0030 3717static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3718{
047e0030 3719 int new_val = q_vector->itr_val;
6eb5a7f1 3720 int avg_wire_size = 0;
047e0030 3721 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3722 struct igb_ring *ring;
3723 unsigned int packets;
9d5c8243 3724
6eb5a7f1
AD
3725 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3726 * ints/sec - ITR timer value of 120 ticks.
3727 */
3728 if (adapter->link_speed != SPEED_1000) {
047e0030 3729 new_val = 976;
6eb5a7f1 3730 goto set_itr_val;
9d5c8243 3731 }
047e0030 3732
12dcd86b
ED
3733 ring = q_vector->rx_ring;
3734 if (ring) {
3735 packets = ACCESS_ONCE(ring->total_packets);
3736
3737 if (packets)
3738 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3739 }
3740
12dcd86b
ED
3741 ring = q_vector->tx_ring;
3742 if (ring) {
3743 packets = ACCESS_ONCE(ring->total_packets);
3744
3745 if (packets)
3746 avg_wire_size = max_t(u32, avg_wire_size,
3747 ring->total_bytes / packets);
047e0030
AD
3748 }
3749
3750 /* if avg_wire_size isn't set no work was done */
3751 if (!avg_wire_size)
3752 goto clear_counts;
9d5c8243 3753
6eb5a7f1
AD
3754 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3755 avg_wire_size += 24;
3756
3757 /* Don't starve jumbo frames */
3758 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3759
6eb5a7f1
AD
3760 /* Give a little boost to mid-size frames */
3761 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3762 new_val = avg_wire_size / 3;
3763 else
3764 new_val = avg_wire_size / 2;
9d5c8243 3765
abe1c363
NN
3766 /* when in itr mode 3 do not exceed 20K ints/sec */
3767 if (adapter->rx_itr_setting == 3 && new_val < 196)
3768 new_val = 196;
3769
6eb5a7f1 3770set_itr_val:
047e0030
AD
3771 if (new_val != q_vector->itr_val) {
3772 q_vector->itr_val = new_val;
3773 q_vector->set_itr = 1;
9d5c8243 3774 }
6eb5a7f1 3775clear_counts:
047e0030
AD
3776 if (q_vector->rx_ring) {
3777 q_vector->rx_ring->total_bytes = 0;
3778 q_vector->rx_ring->total_packets = 0;
3779 }
3780 if (q_vector->tx_ring) {
3781 q_vector->tx_ring->total_bytes = 0;
3782 q_vector->tx_ring->total_packets = 0;
3783 }
9d5c8243
AK
3784}
3785
3786/**
3787 * igb_update_itr - update the dynamic ITR value based on statistics
3788 * Stores a new ITR value based on packets and byte
3789 * counts during the last interrupt. The advantage of per interrupt
3790 * computation is faster updates and more accurate ITR for the current
3791 * traffic pattern. Constants in this function were computed
3792 * based on theoretical maximum wire speed and thresholds were set based
3793 * on testing data as well as attempting to minimize response time
3794 * while increasing bulk throughput.
3795 * this functionality is controlled by the InterruptThrottleRate module
3796 * parameter (see igb_param.c)
3797 * NOTE: These calculations are only valid when operating in a single-
3798 * queue environment.
3799 * @adapter: pointer to adapter
047e0030 3800 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3801 * @packets: the number of packets during this measurement interval
3802 * @bytes: the number of bytes during this measurement interval
3803 **/
3804static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3805 int packets, int bytes)
3806{
3807 unsigned int retval = itr_setting;
3808
3809 if (packets == 0)
3810 goto update_itr_done;
3811
3812 switch (itr_setting) {
3813 case lowest_latency:
3814 /* handle TSO and jumbo frames */
3815 if (bytes/packets > 8000)
3816 retval = bulk_latency;
3817 else if ((packets < 5) && (bytes > 512))
3818 retval = low_latency;
3819 break;
3820 case low_latency: /* 50 usec aka 20000 ints/s */
3821 if (bytes > 10000) {
3822 /* this if handles the TSO accounting */
3823 if (bytes/packets > 8000) {
3824 retval = bulk_latency;
3825 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3826 retval = bulk_latency;
3827 } else if ((packets > 35)) {
3828 retval = lowest_latency;
3829 }
3830 } else if (bytes/packets > 2000) {
3831 retval = bulk_latency;
3832 } else if (packets <= 2 && bytes < 512) {
3833 retval = lowest_latency;
3834 }
3835 break;
3836 case bulk_latency: /* 250 usec aka 4000 ints/s */
3837 if (bytes > 25000) {
3838 if (packets > 35)
3839 retval = low_latency;
1e5c3d21 3840 } else if (bytes < 1500) {
9d5c8243
AK
3841 retval = low_latency;
3842 }
3843 break;
3844 }
3845
3846update_itr_done:
3847 return retval;
3848}
3849
6eb5a7f1 3850static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3851{
047e0030 3852 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3853 u16 current_itr;
047e0030 3854 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3855
3856 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3857 if (adapter->link_speed != SPEED_1000) {
3858 current_itr = 0;
3859 new_itr = 4000;
3860 goto set_itr_now;
3861 }
3862
3863 adapter->rx_itr = igb_update_itr(adapter,
3864 adapter->rx_itr,
3025a446
AD
3865 q_vector->rx_ring->total_packets,
3866 q_vector->rx_ring->total_bytes);
9d5c8243 3867
047e0030
AD
3868 adapter->tx_itr = igb_update_itr(adapter,
3869 adapter->tx_itr,
3025a446
AD
3870 q_vector->tx_ring->total_packets,
3871 q_vector->tx_ring->total_bytes);
047e0030 3872 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3873
6eb5a7f1 3874 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3875 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3876 current_itr = low_latency;
3877
9d5c8243
AK
3878 switch (current_itr) {
3879 /* counts and packets in update_itr are dependent on these numbers */
3880 case lowest_latency:
78b1f607 3881 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3882 break;
3883 case low_latency:
78b1f607 3884 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3885 break;
3886 case bulk_latency:
78b1f607 3887 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3888 break;
3889 default:
3890 break;
3891 }
3892
3893set_itr_now:
3025a446
AD
3894 q_vector->rx_ring->total_bytes = 0;
3895 q_vector->rx_ring->total_packets = 0;
3896 q_vector->tx_ring->total_bytes = 0;
3897 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3898
047e0030 3899 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3900 /* this attempts to bias the interrupt rate towards Bulk
3901 * by adding intermediate steps when interrupt rate is
3902 * increasing */
047e0030
AD
3903 new_itr = new_itr > q_vector->itr_val ?
3904 max((new_itr * q_vector->itr_val) /
3905 (new_itr + (q_vector->itr_val >> 2)),
3906 new_itr) :
9d5c8243
AK
3907 new_itr;
3908 /* Don't write the value here; it resets the adapter's
3909 * internal timer, and causes us to delay far longer than
3910 * we should between interrupts. Instead, we write the ITR
3911 * value at the beginning of the next interrupt so the timing
3912 * ends up being correct.
3913 */
047e0030
AD
3914 q_vector->itr_val = new_itr;
3915 q_vector->set_itr = 1;
9d5c8243 3916 }
9d5c8243
AK
3917}
3918
9d5c8243
AK
3919#define IGB_TX_FLAGS_CSUM 0x00000001
3920#define IGB_TX_FLAGS_VLAN 0x00000002
3921#define IGB_TX_FLAGS_TSO 0x00000004
3922#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3923#define IGB_TX_FLAGS_TSTAMP 0x00000010
3924#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3925#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3926
85ad76b2 3927static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3928 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3929{
3930 struct e1000_adv_tx_context_desc *context_desc;
3931 unsigned int i;
3932 int err;
3933 struct igb_buffer *buffer_info;
3934 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3935 u32 mss_l4len_idx;
3936 u8 l4len;
9d5c8243
AK
3937
3938 if (skb_header_cloned(skb)) {
3939 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3940 if (err)
3941 return err;
3942 }
3943
3944 l4len = tcp_hdrlen(skb);
3945 *hdr_len += l4len;
3946
3947 if (skb->protocol == htons(ETH_P_IP)) {
3948 struct iphdr *iph = ip_hdr(skb);
3949 iph->tot_len = 0;
3950 iph->check = 0;
3951 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3952 iph->daddr, 0,
3953 IPPROTO_TCP,
3954 0);
8e1e8a47 3955 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3956 ipv6_hdr(skb)->payload_len = 0;
3957 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3958 &ipv6_hdr(skb)->daddr,
3959 0, IPPROTO_TCP, 0);
3960 }
3961
3962 i = tx_ring->next_to_use;
3963
3964 buffer_info = &tx_ring->buffer_info[i];
3965 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3966 /* VLAN MACLEN IPLEN */
3967 if (tx_flags & IGB_TX_FLAGS_VLAN)
3968 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3969 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3970 *hdr_len += skb_network_offset(skb);
3971 info |= skb_network_header_len(skb);
3972 *hdr_len += skb_network_header_len(skb);
3973 context_desc->vlan_macip_lens = cpu_to_le32(info);
3974
3975 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3976 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3977
3978 if (skb->protocol == htons(ETH_P_IP))
3979 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3980 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3981
3982 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3983
3984 /* MSS L4LEN IDX */
3985 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3986 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3987
73cd78f1 3988 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3989 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3990 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3991
3992 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3993 context_desc->seqnum_seed = 0;
3994
3995 buffer_info->time_stamp = jiffies;
0e014cb1 3996 buffer_info->next_to_watch = i;
9d5c8243
AK
3997 buffer_info->dma = 0;
3998 i++;
3999 if (i == tx_ring->count)
4000 i = 0;
4001
4002 tx_ring->next_to_use = i;
4003
4004 return true;
4005}
4006
85ad76b2
AD
4007static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4008 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
4009{
4010 struct e1000_adv_tx_context_desc *context_desc;
59d71989 4011 struct device *dev = tx_ring->dev;
9d5c8243
AK
4012 struct igb_buffer *buffer_info;
4013 u32 info = 0, tu_cmd = 0;
80785298 4014 unsigned int i;
9d5c8243
AK
4015
4016 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4017 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4018 i = tx_ring->next_to_use;
4019 buffer_info = &tx_ring->buffer_info[i];
4020 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4021
4022 if (tx_flags & IGB_TX_FLAGS_VLAN)
4023 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 4024
9d5c8243
AK
4025 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4026 if (skb->ip_summed == CHECKSUM_PARTIAL)
4027 info |= skb_network_header_len(skb);
4028
4029 context_desc->vlan_macip_lens = cpu_to_le32(info);
4030
4031 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4032
4033 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
4034 __be16 protocol;
4035
4036 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4037 const struct vlan_ethhdr *vhdr =
4038 (const struct vlan_ethhdr*)skb->data;
4039
4040 protocol = vhdr->h_vlan_encapsulated_proto;
4041 } else {
4042 protocol = skb->protocol;
4043 }
4044
4045 switch (protocol) {
09640e63 4046 case cpu_to_be16(ETH_P_IP):
9d5c8243 4047 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
4048 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4049 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4050 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4051 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 4052 break;
09640e63 4053 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
4054 /* XXX what about other V6 headers?? */
4055 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4056 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4057 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4058 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
4059 break;
4060 default:
4061 if (unlikely(net_ratelimit()))
59d71989 4062 dev_warn(dev,
44b0cda3
MW
4063 "partial checksum but proto=%x!\n",
4064 skb->protocol);
4065 break;
4066 }
9d5c8243
AK
4067 }
4068
4069 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4070 context_desc->seqnum_seed = 0;
85ad76b2 4071 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 4072 context_desc->mss_l4len_idx =
85ad76b2 4073 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
4074
4075 buffer_info->time_stamp = jiffies;
0e014cb1 4076 buffer_info->next_to_watch = i;
9d5c8243
AK
4077 buffer_info->dma = 0;
4078
4079 i++;
4080 if (i == tx_ring->count)
4081 i = 0;
4082 tx_ring->next_to_use = i;
4083
4084 return true;
4085 }
9d5c8243
AK
4086 return false;
4087}
4088
4089#define IGB_MAX_TXD_PWR 16
4090#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4091
80785298 4092static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 4093 unsigned int first)
9d5c8243
AK
4094{
4095 struct igb_buffer *buffer_info;
59d71989 4096 struct device *dev = tx_ring->dev;
2873957d 4097 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
4098 unsigned int count = 0, i;
4099 unsigned int f;
2873957d 4100 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
4101
4102 i = tx_ring->next_to_use;
4103
4104 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
4105 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4106 buffer_info->length = hlen;
9d5c8243
AK
4107 /* set time_stamp *before* dma to help avoid a possible race */
4108 buffer_info->time_stamp = jiffies;
0e014cb1 4109 buffer_info->next_to_watch = i;
2873957d 4110 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4111 DMA_TO_DEVICE);
4112 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4113 goto dma_error;
9d5c8243
AK
4114
4115 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4116 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4117 unsigned int len = frag->size;
9d5c8243 4118
8581145f 4119 count++;
65689fef
AD
4120 i++;
4121 if (i == tx_ring->count)
4122 i = 0;
4123
9d5c8243
AK
4124 buffer_info = &tx_ring->buffer_info[i];
4125 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4126 buffer_info->length = len;
4127 buffer_info->time_stamp = jiffies;
0e014cb1 4128 buffer_info->next_to_watch = i;
6366ad33 4129 buffer_info->mapped_as_page = true;
59d71989 4130 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
4131 frag->page,
4132 frag->page_offset,
4133 len,
59d71989
AD
4134 DMA_TO_DEVICE);
4135 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4136 goto dma_error;
4137
9d5c8243
AK
4138 }
4139
9d5c8243 4140 tx_ring->buffer_info[i].skb = skb;
2244d07b 4141 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4142 /* multiply data chunks by size of headers */
4143 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4144 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4145 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4146
cdfd01fc 4147 return ++count;
6366ad33
AD
4148
4149dma_error:
59d71989 4150 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4151
4152 /* clear timestamp and dma mappings for failed buffer_info mapping */
4153 buffer_info->dma = 0;
4154 buffer_info->time_stamp = 0;
4155 buffer_info->length = 0;
4156 buffer_info->next_to_watch = 0;
4157 buffer_info->mapped_as_page = false;
6366ad33
AD
4158
4159 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4160 while (count--) {
4161 if (i == 0)
4162 i = tx_ring->count;
6366ad33 4163 i--;
6366ad33
AD
4164 buffer_info = &tx_ring->buffer_info[i];
4165 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4166 }
4167
4168 return 0;
9d5c8243
AK
4169}
4170
85ad76b2 4171static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4172 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4173 u8 hdr_len)
4174{
cdfd01fc 4175 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4176 struct igb_buffer *buffer_info;
4177 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4178 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4179
4180 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4181 E1000_ADVTXD_DCMD_DEXT);
4182
4183 if (tx_flags & IGB_TX_FLAGS_VLAN)
4184 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4185
33af6bcc
PO
4186 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4187 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4188
9d5c8243
AK
4189 if (tx_flags & IGB_TX_FLAGS_TSO) {
4190 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4191
4192 /* insert tcp checksum */
4193 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4194
4195 /* insert ip checksum */
4196 if (tx_flags & IGB_TX_FLAGS_IPV4)
4197 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4198
4199 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4200 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4201 }
4202
85ad76b2
AD
4203 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4204 (tx_flags & (IGB_TX_FLAGS_CSUM |
4205 IGB_TX_FLAGS_TSO |
7dfc16fa 4206 IGB_TX_FLAGS_VLAN)))
85ad76b2 4207 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4208
4209 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4210
cdfd01fc 4211 do {
9d5c8243
AK
4212 buffer_info = &tx_ring->buffer_info[i];
4213 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4214 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4215 tx_desc->read.cmd_type_len =
4216 cpu_to_le32(cmd_type_len | buffer_info->length);
4217 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4218 count--;
9d5c8243
AK
4219 i++;
4220 if (i == tx_ring->count)
4221 i = 0;
cdfd01fc 4222 } while (count > 0);
9d5c8243 4223
85ad76b2 4224 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4225 /* Force memory writes to complete before letting h/w
4226 * know there are new descriptors to fetch. (Only
4227 * applicable for weak-ordered memory model archs,
4228 * such as IA-64). */
4229 wmb();
4230
4231 tx_ring->next_to_use = i;
fce99e34 4232 writel(i, tx_ring->tail);
9d5c8243
AK
4233 /* we need this if more than one processor can write to our tail
4234 * at a time, it syncronizes IO on IA64/Altix systems */
4235 mmiowb();
4236}
4237
e694e964 4238static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4239{
e694e964
AD
4240 struct net_device *netdev = tx_ring->netdev;
4241
661086df 4242 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4243
9d5c8243
AK
4244 /* Herbert's original patch had:
4245 * smp_mb__after_netif_stop_queue();
4246 * but since that doesn't exist yet, just open code it. */
4247 smp_mb();
4248
4249 /* We need to check again in a case another CPU has just
4250 * made room available. */
c493ea45 4251 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4252 return -EBUSY;
4253
4254 /* A reprieve! */
661086df 4255 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4256
4257 u64_stats_update_begin(&tx_ring->tx_syncp2);
4258 tx_ring->tx_stats.restart_queue2++;
4259 u64_stats_update_end(&tx_ring->tx_syncp2);
4260
9d5c8243
AK
4261 return 0;
4262}
4263
717ba089 4264static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4265{
c493ea45 4266 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4267 return 0;
e694e964 4268 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4269}
4270
b1a436c3
AD
4271netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4272 struct igb_ring *tx_ring)
9d5c8243 4273{
cdfd01fc 4274 int tso = 0, count;
91d4ee33
NN
4275 u32 tx_flags = 0;
4276 u16 first;
4277 u8 hdr_len = 0;
9d5c8243 4278
9d5c8243
AK
4279 /* need: 1 descriptor per page,
4280 * + 2 desc gap to keep tail from touching head,
4281 * + 1 desc for skb->data,
4282 * + 1 desc for context descriptor,
4283 * otherwise try next time */
e694e964 4284 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4285 /* this is a hard error */
9d5c8243
AK
4286 return NETDEV_TX_BUSY;
4287 }
33af6bcc 4288
2244d07b
OH
4289 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4290 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4291 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4292 }
9d5c8243 4293
eab6d18d 4294 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4295 tx_flags |= IGB_TX_FLAGS_VLAN;
4296 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4297 }
4298
661086df
PWJ
4299 if (skb->protocol == htons(ETH_P_IP))
4300 tx_flags |= IGB_TX_FLAGS_IPV4;
4301
0e014cb1 4302 first = tx_ring->next_to_use;
85ad76b2
AD
4303 if (skb_is_gso(skb)) {
4304 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4305
85ad76b2
AD
4306 if (tso < 0) {
4307 dev_kfree_skb_any(skb);
4308 return NETDEV_TX_OK;
4309 }
9d5c8243
AK
4310 }
4311
4312 if (tso)
4313 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4314 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4315 (skb->ip_summed == CHECKSUM_PARTIAL))
4316 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4317
65689fef 4318 /*
cdfd01fc 4319 * count reflects descriptors mapped, if 0 or less then mapping error
25985edc 4320 * has occurred and we need to rewind the descriptor queue
65689fef 4321 */
80785298 4322 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4323 if (!count) {
65689fef
AD
4324 dev_kfree_skb_any(skb);
4325 tx_ring->buffer_info[first].time_stamp = 0;
4326 tx_ring->next_to_use = first;
85ad76b2 4327 return NETDEV_TX_OK;
65689fef 4328 }
9d5c8243 4329
85ad76b2
AD
4330 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4331
4332 /* Make sure there is space in the ring for the next send. */
e694e964 4333 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4334
9d5c8243
AK
4335 return NETDEV_TX_OK;
4336}
4337
3b29a56d
SH
4338static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4339 struct net_device *netdev)
9d5c8243
AK
4340{
4341 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4342 struct igb_ring *tx_ring;
661086df 4343 int r_idx = 0;
b1a436c3
AD
4344
4345 if (test_bit(__IGB_DOWN, &adapter->state)) {
4346 dev_kfree_skb_any(skb);
4347 return NETDEV_TX_OK;
4348 }
4349
4350 if (skb->len <= 0) {
4351 dev_kfree_skb_any(skb);
4352 return NETDEV_TX_OK;
4353 }
4354
1bfaf07b 4355 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4356 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4357
4358 /* This goes back to the question of how to logically map a tx queue
4359 * to a flow. Right now, performance is impacted slightly negatively
4360 * if using multiple tx queues. If the stack breaks away from a
4361 * single qdisc implementation, we can look at this again. */
e694e964 4362 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4363}
4364
4365/**
4366 * igb_tx_timeout - Respond to a Tx Hang
4367 * @netdev: network interface device structure
4368 **/
4369static void igb_tx_timeout(struct net_device *netdev)
4370{
4371 struct igb_adapter *adapter = netdev_priv(netdev);
4372 struct e1000_hw *hw = &adapter->hw;
4373
4374 /* Do the reset outside of interrupt context */
4375 adapter->tx_timeout_count++;
f7ba205e 4376
55cac248
AD
4377 if (hw->mac.type == e1000_82580)
4378 hw->dev_spec._82575.global_device_reset = true;
4379
9d5c8243 4380 schedule_work(&adapter->reset_task);
265de409
AD
4381 wr32(E1000_EICS,
4382 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4383}
4384
4385static void igb_reset_task(struct work_struct *work)
4386{
4387 struct igb_adapter *adapter;
4388 adapter = container_of(work, struct igb_adapter, reset_task);
4389
c97ec42a
TI
4390 igb_dump(adapter);
4391 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4392 igb_reinit_locked(adapter);
4393}
4394
4395/**
12dcd86b 4396 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4397 * @netdev: network interface device structure
12dcd86b 4398 * @stats: rtnl_link_stats64 pointer
9d5c8243 4399 *
9d5c8243 4400 **/
12dcd86b
ED
4401static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4402 struct rtnl_link_stats64 *stats)
9d5c8243 4403{
12dcd86b
ED
4404 struct igb_adapter *adapter = netdev_priv(netdev);
4405
4406 spin_lock(&adapter->stats64_lock);
4407 igb_update_stats(adapter, &adapter->stats64);
4408 memcpy(stats, &adapter->stats64, sizeof(*stats));
4409 spin_unlock(&adapter->stats64_lock);
4410
4411 return stats;
9d5c8243
AK
4412}
4413
4414/**
4415 * igb_change_mtu - Change the Maximum Transfer Unit
4416 * @netdev: network interface device structure
4417 * @new_mtu: new value for maximum frame size
4418 *
4419 * Returns 0 on success, negative on failure
4420 **/
4421static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4422{
4423 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4424 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4425 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4426 u32 rx_buffer_len, i;
9d5c8243 4427
c809d227 4428 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4429 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4430 return -EINVAL;
4431 }
4432
9d5c8243 4433 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4434 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4435 return -EINVAL;
4436 }
4437
4438 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4439 msleep(1);
73cd78f1 4440
9d5c8243
AK
4441 /* igb_down has a dependency on max_frame_size */
4442 adapter->max_frame_size = max_frame;
559e9c49 4443
9d5c8243
AK
4444 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4445 * means we reserve 2 more, this pushes us to allocate from the next
4446 * larger slab size.
4447 * i.e. RXBUFFER_2048 --> size-4096 slab
4448 */
4449
757b77e2
NN
4450 if (adapter->hw.mac.type == e1000_82580)
4451 max_frame += IGB_TS_HDR_LEN;
4452
7d95b717 4453 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4454 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4455 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4456 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4457 else
4c844851
AD
4458 rx_buffer_len = IGB_RXBUFFER_128;
4459
757b77e2
NN
4460 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4461 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4462 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4463
4464 if ((adapter->hw.mac.type == e1000_82580) &&
4465 (rx_buffer_len == IGB_RXBUFFER_128))
4466 rx_buffer_len += IGB_RXBUFFER_64;
4467
4c844851
AD
4468 if (netif_running(netdev))
4469 igb_down(adapter);
9d5c8243 4470
090b1795 4471 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4472 netdev->mtu, new_mtu);
4473 netdev->mtu = new_mtu;
4474
4c844851 4475 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4476 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4477
9d5c8243
AK
4478 if (netif_running(netdev))
4479 igb_up(adapter);
4480 else
4481 igb_reset(adapter);
4482
4483 clear_bit(__IGB_RESETTING, &adapter->state);
4484
4485 return 0;
4486}
4487
4488/**
4489 * igb_update_stats - Update the board statistics counters
4490 * @adapter: board private structure
4491 **/
4492
12dcd86b
ED
4493void igb_update_stats(struct igb_adapter *adapter,
4494 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4495{
4496 struct e1000_hw *hw = &adapter->hw;
4497 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4498 u32 reg, mpc;
9d5c8243 4499 u16 phy_tmp;
3f9c0164
AD
4500 int i;
4501 u64 bytes, packets;
12dcd86b
ED
4502 unsigned int start;
4503 u64 _bytes, _packets;
9d5c8243
AK
4504
4505#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4506
4507 /*
4508 * Prevent stats update while adapter is being reset, or if the pci
4509 * connection is down.
4510 */
4511 if (adapter->link_speed == 0)
4512 return;
4513 if (pci_channel_offline(pdev))
4514 return;
4515
3f9c0164
AD
4516 bytes = 0;
4517 packets = 0;
4518 for (i = 0; i < adapter->num_rx_queues; i++) {
4519 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4520 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4521
3025a446 4522 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4523 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4524
4525 do {
4526 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4527 _bytes = ring->rx_stats.bytes;
4528 _packets = ring->rx_stats.packets;
4529 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4530 bytes += _bytes;
4531 packets += _packets;
3f9c0164
AD
4532 }
4533
128e45eb
AD
4534 net_stats->rx_bytes = bytes;
4535 net_stats->rx_packets = packets;
3f9c0164
AD
4536
4537 bytes = 0;
4538 packets = 0;
4539 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4540 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4541 do {
4542 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4543 _bytes = ring->tx_stats.bytes;
4544 _packets = ring->tx_stats.packets;
4545 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4546 bytes += _bytes;
4547 packets += _packets;
3f9c0164 4548 }
128e45eb
AD
4549 net_stats->tx_bytes = bytes;
4550 net_stats->tx_packets = packets;
3f9c0164
AD
4551
4552 /* read stats registers */
9d5c8243
AK
4553 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4554 adapter->stats.gprc += rd32(E1000_GPRC);
4555 adapter->stats.gorc += rd32(E1000_GORCL);
4556 rd32(E1000_GORCH); /* clear GORCL */
4557 adapter->stats.bprc += rd32(E1000_BPRC);
4558 adapter->stats.mprc += rd32(E1000_MPRC);
4559 adapter->stats.roc += rd32(E1000_ROC);
4560
4561 adapter->stats.prc64 += rd32(E1000_PRC64);
4562 adapter->stats.prc127 += rd32(E1000_PRC127);
4563 adapter->stats.prc255 += rd32(E1000_PRC255);
4564 adapter->stats.prc511 += rd32(E1000_PRC511);
4565 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4566 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4567 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4568 adapter->stats.sec += rd32(E1000_SEC);
4569
fa3d9a6d
MW
4570 mpc = rd32(E1000_MPC);
4571 adapter->stats.mpc += mpc;
4572 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4573 adapter->stats.scc += rd32(E1000_SCC);
4574 adapter->stats.ecol += rd32(E1000_ECOL);
4575 adapter->stats.mcc += rd32(E1000_MCC);
4576 adapter->stats.latecol += rd32(E1000_LATECOL);
4577 adapter->stats.dc += rd32(E1000_DC);
4578 adapter->stats.rlec += rd32(E1000_RLEC);
4579 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4580 adapter->stats.xontxc += rd32(E1000_XONTXC);
4581 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4582 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4583 adapter->stats.fcruc += rd32(E1000_FCRUC);
4584 adapter->stats.gptc += rd32(E1000_GPTC);
4585 adapter->stats.gotc += rd32(E1000_GOTCL);
4586 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4587 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4588 adapter->stats.ruc += rd32(E1000_RUC);
4589 adapter->stats.rfc += rd32(E1000_RFC);
4590 adapter->stats.rjc += rd32(E1000_RJC);
4591 adapter->stats.tor += rd32(E1000_TORH);
4592 adapter->stats.tot += rd32(E1000_TOTH);
4593 adapter->stats.tpr += rd32(E1000_TPR);
4594
4595 adapter->stats.ptc64 += rd32(E1000_PTC64);
4596 adapter->stats.ptc127 += rd32(E1000_PTC127);
4597 adapter->stats.ptc255 += rd32(E1000_PTC255);
4598 adapter->stats.ptc511 += rd32(E1000_PTC511);
4599 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4600 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4601
4602 adapter->stats.mptc += rd32(E1000_MPTC);
4603 adapter->stats.bptc += rd32(E1000_BPTC);
4604
2d0b0f69
NN
4605 adapter->stats.tpt += rd32(E1000_TPT);
4606 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4607
4608 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4609 /* read internal phy specific stats */
4610 reg = rd32(E1000_CTRL_EXT);
4611 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4612 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4613 adapter->stats.tncrs += rd32(E1000_TNCRS);
4614 }
4615
9d5c8243
AK
4616 adapter->stats.tsctc += rd32(E1000_TSCTC);
4617 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4618
4619 adapter->stats.iac += rd32(E1000_IAC);
4620 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4621 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4622 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4623 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4624 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4625 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4626 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4627 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4628
4629 /* Fill out the OS statistics structure */
128e45eb
AD
4630 net_stats->multicast = adapter->stats.mprc;
4631 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4632
4633 /* Rx Errors */
4634
4635 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4636 * our own version based on RUC and ROC */
128e45eb 4637 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4638 adapter->stats.crcerrs + adapter->stats.algnerrc +
4639 adapter->stats.ruc + adapter->stats.roc +
4640 adapter->stats.cexterr;
128e45eb
AD
4641 net_stats->rx_length_errors = adapter->stats.ruc +
4642 adapter->stats.roc;
4643 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4644 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4645 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4646
4647 /* Tx Errors */
128e45eb
AD
4648 net_stats->tx_errors = adapter->stats.ecol +
4649 adapter->stats.latecol;
4650 net_stats->tx_aborted_errors = adapter->stats.ecol;
4651 net_stats->tx_window_errors = adapter->stats.latecol;
4652 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4653
4654 /* Tx Dropped needs to be maintained elsewhere */
4655
4656 /* Phy Stats */
4657 if (hw->phy.media_type == e1000_media_type_copper) {
4658 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4659 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4660 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4661 adapter->phy_stats.idle_errors += phy_tmp;
4662 }
4663 }
4664
4665 /* Management Stats */
4666 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4667 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4668 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4669
4670 /* OS2BMC Stats */
4671 reg = rd32(E1000_MANC);
4672 if (reg & E1000_MANC_EN_BMC2OS) {
4673 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4674 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4675 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4676 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4677 }
9d5c8243
AK
4678}
4679
9d5c8243
AK
4680static irqreturn_t igb_msix_other(int irq, void *data)
4681{
047e0030 4682 struct igb_adapter *adapter = data;
9d5c8243 4683 struct e1000_hw *hw = &adapter->hw;
844290e5 4684 u32 icr = rd32(E1000_ICR);
844290e5 4685 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4686
7f081d40
AD
4687 if (icr & E1000_ICR_DRSTA)
4688 schedule_work(&adapter->reset_task);
4689
047e0030 4690 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4691 /* HW is reporting DMA is out of sync */
4692 adapter->stats.doosync++;
13800469
GR
4693 /* The DMA Out of Sync is also indication of a spoof event
4694 * in IOV mode. Check the Wrong VM Behavior register to
4695 * see if it is really a spoof event. */
4696 igb_check_wvbr(adapter);
dda0e083 4697 }
eebbbdba 4698
4ae196df
AD
4699 /* Check for a mailbox event */
4700 if (icr & E1000_ICR_VMMB)
4701 igb_msg_task(adapter);
4702
4703 if (icr & E1000_ICR_LSC) {
4704 hw->mac.get_link_status = 1;
4705 /* guard against interrupt when we're going down */
4706 if (!test_bit(__IGB_DOWN, &adapter->state))
4707 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4708 }
4709
25568a53
AD
4710 if (adapter->vfs_allocated_count)
4711 wr32(E1000_IMS, E1000_IMS_LSC |
4712 E1000_IMS_VMMB |
4713 E1000_IMS_DOUTSYNC);
4714 else
4715 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4716 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4717
4718 return IRQ_HANDLED;
4719}
4720
047e0030 4721static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4722{
26b39276 4723 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4724 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4725
047e0030
AD
4726 if (!q_vector->set_itr)
4727 return;
73cd78f1 4728
047e0030
AD
4729 if (!itr_val)
4730 itr_val = 0x4;
661086df 4731
26b39276
AD
4732 if (adapter->hw.mac.type == e1000_82575)
4733 itr_val |= itr_val << 16;
661086df 4734 else
047e0030 4735 itr_val |= 0x8000000;
661086df 4736
047e0030
AD
4737 writel(itr_val, q_vector->itr_register);
4738 q_vector->set_itr = 0;
6eb5a7f1
AD
4739}
4740
047e0030 4741static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4742{
047e0030 4743 struct igb_q_vector *q_vector = data;
9d5c8243 4744
047e0030
AD
4745 /* Write the ITR value calculated from the previous interrupt. */
4746 igb_write_itr(q_vector);
9d5c8243 4747
047e0030 4748 napi_schedule(&q_vector->napi);
844290e5 4749
047e0030 4750 return IRQ_HANDLED;
fe4506b6
JC
4751}
4752
421e02f0 4753#ifdef CONFIG_IGB_DCA
047e0030 4754static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4755{
047e0030 4756 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4757 struct e1000_hw *hw = &adapter->hw;
4758 int cpu = get_cpu();
fe4506b6 4759
047e0030
AD
4760 if (q_vector->cpu == cpu)
4761 goto out_no_update;
4762
4763 if (q_vector->tx_ring) {
4764 int q = q_vector->tx_ring->reg_idx;
4765 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4766 if (hw->mac.type == e1000_82575) {
4767 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4768 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4769 } else {
047e0030
AD
4770 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4771 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4772 E1000_DCA_TXCTRL_CPUID_SHIFT;
4773 }
4774 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4775 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4776 }
4777 if (q_vector->rx_ring) {
4778 int q = q_vector->rx_ring->reg_idx;
4779 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4780 if (hw->mac.type == e1000_82575) {
2d064c06 4781 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4782 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4783 } else {
4784 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4785 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4786 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4787 }
fe4506b6
JC
4788 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4789 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4790 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4791 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4792 }
047e0030
AD
4793 q_vector->cpu = cpu;
4794out_no_update:
fe4506b6
JC
4795 put_cpu();
4796}
4797
4798static void igb_setup_dca(struct igb_adapter *adapter)
4799{
7e0e99ef 4800 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4801 int i;
4802
7dfc16fa 4803 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4804 return;
4805
7e0e99ef
AD
4806 /* Always use CB2 mode, difference is masked in the CB driver. */
4807 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4808
047e0030 4809 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4810 adapter->q_vector[i]->cpu = -1;
4811 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4812 }
4813}
4814
4815static int __igb_notify_dca(struct device *dev, void *data)
4816{
4817 struct net_device *netdev = dev_get_drvdata(dev);
4818 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4819 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4820 struct e1000_hw *hw = &adapter->hw;
4821 unsigned long event = *(unsigned long *)data;
4822
4823 switch (event) {
4824 case DCA_PROVIDER_ADD:
4825 /* if already enabled, don't do it again */
7dfc16fa 4826 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4827 break;
fe4506b6 4828 if (dca_add_requester(dev) == 0) {
bbd98fe4 4829 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4830 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4831 igb_setup_dca(adapter);
4832 break;
4833 }
4834 /* Fall Through since DCA is disabled. */
4835 case DCA_PROVIDER_REMOVE:
7dfc16fa 4836 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4837 /* without this a class_device is left
047e0030 4838 * hanging around in the sysfs model */
fe4506b6 4839 dca_remove_requester(dev);
090b1795 4840 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4841 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4842 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4843 }
4844 break;
4845 }
bbd98fe4 4846
fe4506b6 4847 return 0;
9d5c8243
AK
4848}
4849
fe4506b6
JC
4850static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4851 void *p)
4852{
4853 int ret_val;
4854
4855 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4856 __igb_notify_dca);
4857
4858 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4859}
421e02f0 4860#endif /* CONFIG_IGB_DCA */
9d5c8243 4861
4ae196df
AD
4862static void igb_ping_all_vfs(struct igb_adapter *adapter)
4863{
4864 struct e1000_hw *hw = &adapter->hw;
4865 u32 ping;
4866 int i;
4867
4868 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4869 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4870 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4871 ping |= E1000_VT_MSGTYPE_CTS;
4872 igb_write_mbx(hw, &ping, 1, i);
4873 }
4874}
4875
7d5753f0
AD
4876static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4877{
4878 struct e1000_hw *hw = &adapter->hw;
4879 u32 vmolr = rd32(E1000_VMOLR(vf));
4880 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4881
d85b9004 4882 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4883 IGB_VF_FLAG_MULTI_PROMISC);
4884 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4885
4886 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4887 vmolr |= E1000_VMOLR_MPME;
d85b9004 4888 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4889 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4890 } else {
4891 /*
4892 * if we have hashes and we are clearing a multicast promisc
4893 * flag we need to write the hashes to the MTA as this step
4894 * was previously skipped
4895 */
4896 if (vf_data->num_vf_mc_hashes > 30) {
4897 vmolr |= E1000_VMOLR_MPME;
4898 } else if (vf_data->num_vf_mc_hashes) {
4899 int j;
4900 vmolr |= E1000_VMOLR_ROMPE;
4901 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4902 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4903 }
4904 }
4905
4906 wr32(E1000_VMOLR(vf), vmolr);
4907
4908 /* there are flags left unprocessed, likely not supported */
4909 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4910 return -EINVAL;
4911
4912 return 0;
4913
4914}
4915
4ae196df
AD
4916static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4917 u32 *msgbuf, u32 vf)
4918{
4919 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4920 u16 *hash_list = (u16 *)&msgbuf[1];
4921 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4922 int i;
4923
7d5753f0 4924 /* salt away the number of multicast addresses assigned
4ae196df
AD
4925 * to this VF for later use to restore when the PF multi cast
4926 * list changes
4927 */
4928 vf_data->num_vf_mc_hashes = n;
4929
7d5753f0
AD
4930 /* only up to 30 hash values supported */
4931 if (n > 30)
4932 n = 30;
4933
4934 /* store the hashes for later use */
4ae196df 4935 for (i = 0; i < n; i++)
a419aef8 4936 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4937
4938 /* Flush and reset the mta with the new values */
ff41f8dc 4939 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4940
4941 return 0;
4942}
4943
4944static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4945{
4946 struct e1000_hw *hw = &adapter->hw;
4947 struct vf_data_storage *vf_data;
4948 int i, j;
4949
4950 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4951 u32 vmolr = rd32(E1000_VMOLR(i));
4952 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4953
4ae196df 4954 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4955
4956 if ((vf_data->num_vf_mc_hashes > 30) ||
4957 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4958 vmolr |= E1000_VMOLR_MPME;
4959 } else if (vf_data->num_vf_mc_hashes) {
4960 vmolr |= E1000_VMOLR_ROMPE;
4961 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4962 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4963 }
4964 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4965 }
4966}
4967
4968static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4969{
4970 struct e1000_hw *hw = &adapter->hw;
4971 u32 pool_mask, reg, vid;
4972 int i;
4973
4974 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4975
4976 /* Find the vlan filter for this id */
4977 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4978 reg = rd32(E1000_VLVF(i));
4979
4980 /* remove the vf from the pool */
4981 reg &= ~pool_mask;
4982
4983 /* if pool is empty then remove entry from vfta */
4984 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4985 (reg & E1000_VLVF_VLANID_ENABLE)) {
4986 reg = 0;
4987 vid = reg & E1000_VLVF_VLANID_MASK;
4988 igb_vfta_set(hw, vid, false);
4989 }
4990
4991 wr32(E1000_VLVF(i), reg);
4992 }
ae641bdc
AD
4993
4994 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4995}
4996
4997static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4998{
4999 struct e1000_hw *hw = &adapter->hw;
5000 u32 reg, i;
5001
51466239
AD
5002 /* The vlvf table only exists on 82576 hardware and newer */
5003 if (hw->mac.type < e1000_82576)
5004 return -1;
5005
5006 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5007 if (!adapter->vfs_allocated_count)
5008 return -1;
5009
5010 /* Find the vlan filter for this id */
5011 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5012 reg = rd32(E1000_VLVF(i));
5013 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5014 vid == (reg & E1000_VLVF_VLANID_MASK))
5015 break;
5016 }
5017
5018 if (add) {
5019 if (i == E1000_VLVF_ARRAY_SIZE) {
5020 /* Did not find a matching VLAN ID entry that was
5021 * enabled. Search for a free filter entry, i.e.
5022 * one without the enable bit set
5023 */
5024 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5025 reg = rd32(E1000_VLVF(i));
5026 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5027 break;
5028 }
5029 }
5030 if (i < E1000_VLVF_ARRAY_SIZE) {
5031 /* Found an enabled/available entry */
5032 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5033
5034 /* if !enabled we need to set this up in vfta */
5035 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5036 /* add VID to filter table */
5037 igb_vfta_set(hw, vid, true);
4ae196df
AD
5038 reg |= E1000_VLVF_VLANID_ENABLE;
5039 }
cad6d05f
AD
5040 reg &= ~E1000_VLVF_VLANID_MASK;
5041 reg |= vid;
4ae196df 5042 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5043
5044 /* do not modify RLPML for PF devices */
5045 if (vf >= adapter->vfs_allocated_count)
5046 return 0;
5047
5048 if (!adapter->vf_data[vf].vlans_enabled) {
5049 u32 size;
5050 reg = rd32(E1000_VMOLR(vf));
5051 size = reg & E1000_VMOLR_RLPML_MASK;
5052 size += 4;
5053 reg &= ~E1000_VMOLR_RLPML_MASK;
5054 reg |= size;
5055 wr32(E1000_VMOLR(vf), reg);
5056 }
ae641bdc 5057
51466239 5058 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5059 return 0;
5060 }
5061 } else {
5062 if (i < E1000_VLVF_ARRAY_SIZE) {
5063 /* remove vf from the pool */
5064 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5065 /* if pool is empty then remove entry from vfta */
5066 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5067 reg = 0;
5068 igb_vfta_set(hw, vid, false);
5069 }
5070 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5071
5072 /* do not modify RLPML for PF devices */
5073 if (vf >= adapter->vfs_allocated_count)
5074 return 0;
5075
5076 adapter->vf_data[vf].vlans_enabled--;
5077 if (!adapter->vf_data[vf].vlans_enabled) {
5078 u32 size;
5079 reg = rd32(E1000_VMOLR(vf));
5080 size = reg & E1000_VMOLR_RLPML_MASK;
5081 size -= 4;
5082 reg &= ~E1000_VMOLR_RLPML_MASK;
5083 reg |= size;
5084 wr32(E1000_VMOLR(vf), reg);
5085 }
4ae196df
AD
5086 }
5087 }
8151d294
WM
5088 return 0;
5089}
5090
5091static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5092{
5093 struct e1000_hw *hw = &adapter->hw;
5094
5095 if (vid)
5096 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5097 else
5098 wr32(E1000_VMVIR(vf), 0);
5099}
5100
5101static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5102 int vf, u16 vlan, u8 qos)
5103{
5104 int err = 0;
5105 struct igb_adapter *adapter = netdev_priv(netdev);
5106
5107 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5108 return -EINVAL;
5109 if (vlan || qos) {
5110 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5111 if (err)
5112 goto out;
5113 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5114 igb_set_vmolr(adapter, vf, !vlan);
5115 adapter->vf_data[vf].pf_vlan = vlan;
5116 adapter->vf_data[vf].pf_qos = qos;
5117 dev_info(&adapter->pdev->dev,
5118 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5119 if (test_bit(__IGB_DOWN, &adapter->state)) {
5120 dev_warn(&adapter->pdev->dev,
5121 "The VF VLAN has been set,"
5122 " but the PF device is not up.\n");
5123 dev_warn(&adapter->pdev->dev,
5124 "Bring the PF device up before"
5125 " attempting to use the VF device.\n");
5126 }
5127 } else {
5128 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5129 false, vf);
5130 igb_set_vmvir(adapter, vlan, vf);
5131 igb_set_vmolr(adapter, vf, true);
5132 adapter->vf_data[vf].pf_vlan = 0;
5133 adapter->vf_data[vf].pf_qos = 0;
5134 }
5135out:
5136 return err;
4ae196df
AD
5137}
5138
5139static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5140{
5141 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5142 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5143
5144 return igb_vlvf_set(adapter, vid, add, vf);
5145}
5146
f2ca0dbe 5147static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5148{
8fa7e0f7
GR
5149 /* clear flags - except flag that indicates PF has set the MAC */
5150 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5151 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5152
5153 /* reset offloads to defaults */
8151d294 5154 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5155
5156 /* reset vlans for device */
5157 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5158 if (adapter->vf_data[vf].pf_vlan)
5159 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5160 adapter->vf_data[vf].pf_vlan,
5161 adapter->vf_data[vf].pf_qos);
5162 else
5163 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5164
5165 /* reset multicast table array for vf */
5166 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5167
5168 /* Flush and reset the mta with the new values */
ff41f8dc 5169 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5170}
5171
f2ca0dbe
AD
5172static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5173{
5174 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5175
5176 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5177 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5178 random_ether_addr(vf_mac);
f2ca0dbe
AD
5179
5180 /* process remaining reset events */
5181 igb_vf_reset(adapter, vf);
5182}
5183
5184static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5185{
5186 struct e1000_hw *hw = &adapter->hw;
5187 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5188 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5189 u32 reg, msgbuf[3];
5190 u8 *addr = (u8 *)(&msgbuf[1]);
5191
5192 /* process all the same items cleared in a function level reset */
f2ca0dbe 5193 igb_vf_reset(adapter, vf);
4ae196df
AD
5194
5195 /* set vf mac address */
26ad9178 5196 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5197
5198 /* enable transmit and receive for vf */
5199 reg = rd32(E1000_VFTE);
5200 wr32(E1000_VFTE, reg | (1 << vf));
5201 reg = rd32(E1000_VFRE);
5202 wr32(E1000_VFRE, reg | (1 << vf));
5203
8fa7e0f7 5204 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5205
5206 /* reply to reset with ack and vf mac address */
5207 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5208 memcpy(addr, vf_mac, 6);
5209 igb_write_mbx(hw, msgbuf, 3, vf);
5210}
5211
5212static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5213{
de42edde
GR
5214 /*
5215 * The VF MAC Address is stored in a packed array of bytes
5216 * starting at the second 32 bit word of the msg array
5217 */
f2ca0dbe
AD
5218 unsigned char *addr = (char *)&msg[1];
5219 int err = -1;
4ae196df 5220
f2ca0dbe
AD
5221 if (is_valid_ether_addr(addr))
5222 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5223
f2ca0dbe 5224 return err;
4ae196df
AD
5225}
5226
5227static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5228{
5229 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5230 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5231 u32 msg = E1000_VT_MSGTYPE_NACK;
5232
5233 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5234 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5235 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5236 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5237 vf_data->last_nack = jiffies;
4ae196df
AD
5238 }
5239}
5240
f2ca0dbe 5241static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5242{
f2ca0dbe
AD
5243 struct pci_dev *pdev = adapter->pdev;
5244 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5245 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5246 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5247 s32 retval;
5248
f2ca0dbe 5249 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5250
fef45f4c
AD
5251 if (retval) {
5252 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5253 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5254 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5255 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5256 return;
5257 goto out;
5258 }
4ae196df
AD
5259
5260 /* this is a message we already processed, do nothing */
5261 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5262 return;
4ae196df
AD
5263
5264 /*
5265 * until the vf completes a reset it should not be
5266 * allowed to start any configuration.
5267 */
5268
5269 if (msgbuf[0] == E1000_VF_RESET) {
5270 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5271 return;
4ae196df
AD
5272 }
5273
f2ca0dbe 5274 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5275 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5276 return;
5277 retval = -1;
5278 goto out;
4ae196df
AD
5279 }
5280
5281 switch ((msgbuf[0] & 0xFFFF)) {
5282 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5283 retval = -EINVAL;
5284 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5285 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5286 else
5287 dev_warn(&pdev->dev,
5288 "VF %d attempted to override administratively "
5289 "set MAC address\nReload the VF driver to "
5290 "resume operations\n", vf);
4ae196df 5291 break;
7d5753f0
AD
5292 case E1000_VF_SET_PROMISC:
5293 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5294 break;
4ae196df
AD
5295 case E1000_VF_SET_MULTICAST:
5296 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5297 break;
5298 case E1000_VF_SET_LPE:
5299 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5300 break;
5301 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5302 retval = -1;
5303 if (vf_data->pf_vlan)
5304 dev_warn(&pdev->dev,
5305 "VF %d attempted to override administratively "
5306 "set VLAN tag\nReload the VF driver to "
5307 "resume operations\n", vf);
8151d294
WM
5308 else
5309 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5310 break;
5311 default:
090b1795 5312 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5313 retval = -1;
5314 break;
5315 }
5316
fef45f4c
AD
5317 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5318out:
4ae196df
AD
5319 /* notify the VF of the results of what it sent us */
5320 if (retval)
5321 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5322 else
5323 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5324
4ae196df 5325 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5326}
4ae196df 5327
f2ca0dbe
AD
5328static void igb_msg_task(struct igb_adapter *adapter)
5329{
5330 struct e1000_hw *hw = &adapter->hw;
5331 u32 vf;
5332
5333 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5334 /* process any reset requests */
5335 if (!igb_check_for_rst(hw, vf))
5336 igb_vf_reset_event(adapter, vf);
5337
5338 /* process any messages pending */
5339 if (!igb_check_for_msg(hw, vf))
5340 igb_rcv_msg_from_vf(adapter, vf);
5341
5342 /* process any acks */
5343 if (!igb_check_for_ack(hw, vf))
5344 igb_rcv_ack_from_vf(adapter, vf);
5345 }
4ae196df
AD
5346}
5347
68d480c4
AD
5348/**
5349 * igb_set_uta - Set unicast filter table address
5350 * @adapter: board private structure
5351 *
5352 * The unicast table address is a register array of 32-bit registers.
5353 * The table is meant to be used in a way similar to how the MTA is used
5354 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5355 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5356 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5357 **/
5358static void igb_set_uta(struct igb_adapter *adapter)
5359{
5360 struct e1000_hw *hw = &adapter->hw;
5361 int i;
5362
5363 /* The UTA table only exists on 82576 hardware and newer */
5364 if (hw->mac.type < e1000_82576)
5365 return;
5366
5367 /* we only need to do this if VMDq is enabled */
5368 if (!adapter->vfs_allocated_count)
5369 return;
5370
5371 for (i = 0; i < hw->mac.uta_reg_count; i++)
5372 array_wr32(E1000_UTA, i, ~0);
5373}
5374
9d5c8243
AK
5375/**
5376 * igb_intr_msi - Interrupt Handler
5377 * @irq: interrupt number
5378 * @data: pointer to a network interface device structure
5379 **/
5380static irqreturn_t igb_intr_msi(int irq, void *data)
5381{
047e0030
AD
5382 struct igb_adapter *adapter = data;
5383 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5384 struct e1000_hw *hw = &adapter->hw;
5385 /* read ICR disables interrupts using IAM */
5386 u32 icr = rd32(E1000_ICR);
5387
047e0030 5388 igb_write_itr(q_vector);
9d5c8243 5389
7f081d40
AD
5390 if (icr & E1000_ICR_DRSTA)
5391 schedule_work(&adapter->reset_task);
5392
047e0030 5393 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5394 /* HW is reporting DMA is out of sync */
5395 adapter->stats.doosync++;
5396 }
5397
9d5c8243
AK
5398 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5399 hw->mac.get_link_status = 1;
5400 if (!test_bit(__IGB_DOWN, &adapter->state))
5401 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5402 }
5403
047e0030 5404 napi_schedule(&q_vector->napi);
9d5c8243
AK
5405
5406 return IRQ_HANDLED;
5407}
5408
5409/**
4a3c6433 5410 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5411 * @irq: interrupt number
5412 * @data: pointer to a network interface device structure
5413 **/
5414static irqreturn_t igb_intr(int irq, void *data)
5415{
047e0030
AD
5416 struct igb_adapter *adapter = data;
5417 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5418 struct e1000_hw *hw = &adapter->hw;
5419 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5420 * need for the IMC write */
5421 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5422 if (!icr)
5423 return IRQ_NONE; /* Not our interrupt */
5424
047e0030 5425 igb_write_itr(q_vector);
9d5c8243
AK
5426
5427 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5428 * not set, then the adapter didn't send an interrupt */
5429 if (!(icr & E1000_ICR_INT_ASSERTED))
5430 return IRQ_NONE;
5431
7f081d40
AD
5432 if (icr & E1000_ICR_DRSTA)
5433 schedule_work(&adapter->reset_task);
5434
047e0030 5435 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5436 /* HW is reporting DMA is out of sync */
5437 adapter->stats.doosync++;
5438 }
5439
9d5c8243
AK
5440 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5441 hw->mac.get_link_status = 1;
5442 /* guard against interrupt when we're going down */
5443 if (!test_bit(__IGB_DOWN, &adapter->state))
5444 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5445 }
5446
047e0030 5447 napi_schedule(&q_vector->napi);
9d5c8243
AK
5448
5449 return IRQ_HANDLED;
5450}
5451
047e0030 5452static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5453{
047e0030 5454 struct igb_adapter *adapter = q_vector->adapter;
46544258 5455 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5456
4fc82adf
AD
5457 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5458 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5459 if (!adapter->msix_entries)
6eb5a7f1 5460 igb_set_itr(adapter);
46544258 5461 else
047e0030 5462 igb_update_ring_itr(q_vector);
9d5c8243
AK
5463 }
5464
46544258
AD
5465 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5466 if (adapter->msix_entries)
047e0030 5467 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5468 else
5469 igb_irq_enable(adapter);
5470 }
9d5c8243
AK
5471}
5472
46544258
AD
5473/**
5474 * igb_poll - NAPI Rx polling callback
5475 * @napi: napi polling structure
5476 * @budget: count of how many packets we should handle
5477 **/
5478static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5479{
047e0030
AD
5480 struct igb_q_vector *q_vector = container_of(napi,
5481 struct igb_q_vector,
5482 napi);
5483 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5484
421e02f0 5485#ifdef CONFIG_IGB_DCA
047e0030
AD
5486 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5487 igb_update_dca(q_vector);
fe4506b6 5488#endif
047e0030
AD
5489 if (q_vector->tx_ring)
5490 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5491
047e0030
AD
5492 if (q_vector->rx_ring)
5493 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5494
5495 if (!tx_clean_complete)
5496 work_done = budget;
46544258 5497
9d5c8243 5498 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5499 if (work_done < budget) {
288379f0 5500 napi_complete(napi);
047e0030 5501 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5502 }
5503
46544258 5504 return work_done;
9d5c8243 5505}
6d8126f9 5506
33af6bcc 5507/**
c5b9bd5e 5508 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5509 * @adapter: board private structure
c5b9bd5e
AD
5510 * @shhwtstamps: timestamp structure to update
5511 * @regval: unsigned 64bit system time value.
5512 *
5513 * We need to convert the system time value stored in the RX/TXSTMP registers
5514 * into a hwtstamp which can be used by the upper level timestamping functions
5515 */
5516static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5517 struct skb_shared_hwtstamps *shhwtstamps,
5518 u64 regval)
5519{
5520 u64 ns;
5521
55cac248
AD
5522 /*
5523 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5524 * 24 to match clock shift we setup earlier.
5525 */
5526 if (adapter->hw.mac.type == e1000_82580)
5527 regval <<= IGB_82580_TSYNC_SHIFT;
5528
c5b9bd5e
AD
5529 ns = timecounter_cyc2time(&adapter->clock, regval);
5530 timecompare_update(&adapter->compare, ns);
5531 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5532 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5533 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5534}
5535
5536/**
5537 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5538 * @q_vector: pointer to q_vector containing needed info
2873957d 5539 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5540 *
5541 * If we were asked to do hardware stamping and such a time stamp is
5542 * available, then it must have been for this skb here because we only
5543 * allow only one such packet into the queue.
5544 */
2873957d 5545static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5546{
c5b9bd5e 5547 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5548 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5549 struct skb_shared_hwtstamps shhwtstamps;
5550 u64 regval;
33af6bcc 5551
c5b9bd5e 5552 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5553 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5554 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5555 return;
5556
5557 regval = rd32(E1000_TXSTMPL);
5558 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5559
5560 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5561 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5562}
5563
9d5c8243
AK
5564/**
5565 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5566 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5567 * returns true if ring is completely cleaned
5568 **/
047e0030 5569static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5570{
047e0030
AD
5571 struct igb_adapter *adapter = q_vector->adapter;
5572 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5573 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5574 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5575 struct igb_buffer *buffer_info;
0e014cb1 5576 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5577 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5578 unsigned int i, eop, count = 0;
5579 bool cleaned = false;
9d5c8243 5580
9d5c8243 5581 i = tx_ring->next_to_clean;
0e014cb1
AD
5582 eop = tx_ring->buffer_info[i].next_to_watch;
5583 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5584
5585 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5586 (count < tx_ring->count)) {
2d0bb1c1 5587 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5588 for (cleaned = false; !cleaned; count++) {
5589 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5590 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5591 cleaned = (i == eop);
9d5c8243 5592
2873957d
NN
5593 if (buffer_info->skb) {
5594 total_bytes += buffer_info->bytecount;
9d5c8243 5595 /* gso_segs is currently only valid for tcp */
2873957d
NN
5596 total_packets += buffer_info->gso_segs;
5597 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5598 }
5599
80785298 5600 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5601 tx_desc->wb.status = 0;
9d5c8243
AK
5602
5603 i++;
5604 if (i == tx_ring->count)
5605 i = 0;
9d5c8243 5606 }
0e014cb1
AD
5607 eop = tx_ring->buffer_info[i].next_to_watch;
5608 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5609 }
5610
9d5c8243
AK
5611 tx_ring->next_to_clean = i;
5612
fc7d345d 5613 if (unlikely(count &&
9d5c8243 5614 netif_carrier_ok(netdev) &&
c493ea45 5615 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5616 /* Make sure that anybody stopping the queue after this
5617 * sees the new next_to_clean.
5618 */
5619 smp_mb();
661086df
PWJ
5620 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5621 !(test_bit(__IGB_DOWN, &adapter->state))) {
5622 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5623
5624 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5625 tx_ring->tx_stats.restart_queue++;
12dcd86b 5626 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5627 }
9d5c8243
AK
5628 }
5629
5630 if (tx_ring->detect_tx_hung) {
5631 /* Detect a transmit hang in hardware, this serializes the
5632 * check with the clearing of time_stamp and movement of i */
5633 tx_ring->detect_tx_hung = false;
5634 if (tx_ring->buffer_info[i].time_stamp &&
5635 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5636 (adapter->tx_timeout_factor * HZ)) &&
5637 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5638
9d5c8243 5639 /* detected Tx unit hang */
59d71989 5640 dev_err(tx_ring->dev,
9d5c8243 5641 "Detected Tx Unit Hang\n"
2d064c06 5642 " Tx Queue <%d>\n"
9d5c8243
AK
5643 " TDH <%x>\n"
5644 " TDT <%x>\n"
5645 " next_to_use <%x>\n"
5646 " next_to_clean <%x>\n"
9d5c8243
AK
5647 "buffer_info[next_to_clean]\n"
5648 " time_stamp <%lx>\n"
0e014cb1 5649 " next_to_watch <%x>\n"
9d5c8243
AK
5650 " jiffies <%lx>\n"
5651 " desc.status <%x>\n",
2d064c06 5652 tx_ring->queue_index,
fce99e34
AD
5653 readl(tx_ring->head),
5654 readl(tx_ring->tail),
9d5c8243
AK
5655 tx_ring->next_to_use,
5656 tx_ring->next_to_clean,
f7ba205e 5657 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5658 eop,
9d5c8243 5659 jiffies,
0e014cb1 5660 eop_desc->wb.status);
661086df 5661 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5662 }
5663 }
5664 tx_ring->total_bytes += total_bytes;
5665 tx_ring->total_packets += total_packets;
12dcd86b 5666 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5667 tx_ring->tx_stats.bytes += total_bytes;
5668 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5669 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5670 return count < tx_ring->count;
9d5c8243
AK
5671}
5672
9d5c8243
AK
5673/**
5674 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5675 * @q_vector: structure containing interrupt and ring information
5676 * @skb: packet to send up
5677 * @vlan_tag: vlan tag for packet
9d5c8243 5678 **/
047e0030
AD
5679static void igb_receive_skb(struct igb_q_vector *q_vector,
5680 struct sk_buff *skb,
5681 u16 vlan_tag)
5682{
5683 struct igb_adapter *adapter = q_vector->adapter;
5684
31b24b95 5685 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5686 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5687 vlan_tag, skb);
182ff8df 5688 else
047e0030 5689 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5690}
5691
04a5fcaa 5692static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5693 u32 status_err, struct sk_buff *skb)
5694{
bc8acf2c 5695 skb_checksum_none_assert(skb);
9d5c8243
AK
5696
5697 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5698 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5699 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5700 return;
85ad76b2 5701
9d5c8243
AK
5702 /* TCP/UDP checksum error bit is set */
5703 if (status_err &
5704 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5705 /*
5706 * work around errata with sctp packets where the TCPE aka
5707 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5708 * packets, (aka let the stack check the crc32c)
5709 */
85ad76b2 5710 if ((skb->len == 60) &&
12dcd86b
ED
5711 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5712 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5713 ring->rx_stats.csum_err++;
12dcd86b
ED
5714 u64_stats_update_end(&ring->rx_syncp);
5715 }
9d5c8243 5716 /* let the stack verify checksum errors */
9d5c8243
AK
5717 return;
5718 }
5719 /* It must be a TCP or UDP packet with a valid checksum */
5720 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5721 skb->ip_summed = CHECKSUM_UNNECESSARY;
5722
59d71989 5723 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5724}
5725
757b77e2 5726static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5727 struct sk_buff *skb)
5728{
5729 struct igb_adapter *adapter = q_vector->adapter;
5730 struct e1000_hw *hw = &adapter->hw;
5731 u64 regval;
5732
5733 /*
5734 * If this bit is set, then the RX registers contain the time stamp. No
5735 * other packet will be time stamped until we read these registers, so
5736 * read the registers to make them available again. Because only one
5737 * packet can be time stamped at a time, we know that the register
5738 * values must belong to this one here and therefore we don't need to
5739 * compare any of the additional attributes stored for it.
5740 *
2244d07b 5741 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5742 * can turn into a skb_shared_hwtstamps.
5743 */
757b77e2
NN
5744 if (staterr & E1000_RXDADV_STAT_TSIP) {
5745 u32 *stamp = (u32 *)skb->data;
5746 regval = le32_to_cpu(*(stamp + 2));
5747 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5748 skb_pull(skb, IGB_TS_HDR_LEN);
5749 } else {
5750 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5751 return;
c5b9bd5e 5752
757b77e2
NN
5753 regval = rd32(E1000_RXSTMPL);
5754 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5755 }
c5b9bd5e
AD
5756
5757 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5758}
4c844851 5759static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5760 union e1000_adv_rx_desc *rx_desc)
5761{
5762 /* HW will not DMA in data larger than the given buffer, even if it
5763 * parses the (NFS, of course) header to be larger. In that case, it
5764 * fills the header buffer and spills the rest into the page.
5765 */
5766 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5767 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5768 if (hlen > rx_ring->rx_buffer_len)
5769 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5770 return hlen;
5771}
5772
047e0030
AD
5773static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5774 int *work_done, int budget)
9d5c8243 5775{
047e0030 5776 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5777 struct net_device *netdev = rx_ring->netdev;
59d71989 5778 struct device *dev = rx_ring->dev;
9d5c8243
AK
5779 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5780 struct igb_buffer *buffer_info , *next_buffer;
5781 struct sk_buff *skb;
9d5c8243
AK
5782 bool cleaned = false;
5783 int cleaned_count = 0;
d1eff350 5784 int current_node = numa_node_id();
9d5c8243 5785 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5786 unsigned int i;
2d94d8ab
AD
5787 u32 staterr;
5788 u16 length;
047e0030 5789 u16 vlan_tag;
9d5c8243
AK
5790
5791 i = rx_ring->next_to_clean;
69d3ca53 5792 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5793 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5794 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5795
5796 while (staterr & E1000_RXD_STAT_DD) {
5797 if (*work_done >= budget)
5798 break;
5799 (*work_done)++;
2d0bb1c1 5800 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5801
69d3ca53
AD
5802 skb = buffer_info->skb;
5803 prefetch(skb->data - NET_IP_ALIGN);
5804 buffer_info->skb = NULL;
5805
5806 i++;
5807 if (i == rx_ring->count)
5808 i = 0;
42d0781a 5809
69d3ca53
AD
5810 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5811 prefetch(next_rxd);
5812 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5813
5814 length = le16_to_cpu(rx_desc->wb.upper.length);
5815 cleaned = true;
5816 cleaned_count++;
5817
2d94d8ab 5818 if (buffer_info->dma) {
59d71989 5819 dma_unmap_single(dev, buffer_info->dma,
4c844851 5820 rx_ring->rx_buffer_len,
59d71989 5821 DMA_FROM_DEVICE);
91615f76 5822 buffer_info->dma = 0;
4c844851 5823 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5824 skb_put(skb, length);
5825 goto send_up;
5826 }
4c844851 5827 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5828 }
5829
5830 if (length) {
59d71989
AD
5831 dma_unmap_page(dev, buffer_info->page_dma,
5832 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5833 buffer_info->page_dma = 0;
bf36c1a0 5834
aa913403 5835 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5836 buffer_info->page,
5837 buffer_info->page_offset,
5838 length);
5839
d1eff350
AD
5840 if ((page_count(buffer_info->page) != 1) ||
5841 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5842 buffer_info->page = NULL;
5843 else
5844 get_page(buffer_info->page);
9d5c8243
AK
5845
5846 skb->len += length;
5847 skb->data_len += length;
bf36c1a0 5848 skb->truesize += length;
9d5c8243 5849 }
9d5c8243 5850
bf36c1a0 5851 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5852 buffer_info->skb = next_buffer->skb;
5853 buffer_info->dma = next_buffer->dma;
5854 next_buffer->skb = skb;
5855 next_buffer->dma = 0;
bf36c1a0
AD
5856 goto next_desc;
5857 }
69d3ca53 5858send_up:
9d5c8243
AK
5859 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5860 dev_kfree_skb_irq(skb);
5861 goto next_desc;
5862 }
9d5c8243 5863
757b77e2
NN
5864 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5865 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5866 total_bytes += skb->len;
5867 total_packets++;
5868
85ad76b2 5869 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5870
5871 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5872 skb_record_rx_queue(skb, rx_ring->queue_index);
5873
5874 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5875 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5876
047e0030 5877 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5878
9d5c8243
AK
5879next_desc:
5880 rx_desc->wb.upper.status_error = 0;
5881
5882 /* return some buffers to hardware, one at a time is too slow */
5883 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5884 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5885 cleaned_count = 0;
5886 }
5887
5888 /* use prefetched values */
5889 rx_desc = next_rxd;
5890 buffer_info = next_buffer;
9d5c8243
AK
5891 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5892 }
bf36c1a0 5893
9d5c8243 5894 rx_ring->next_to_clean = i;
c493ea45 5895 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5896
5897 if (cleaned_count)
3b644cf6 5898 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5899
5900 rx_ring->total_packets += total_packets;
5901 rx_ring->total_bytes += total_bytes;
12dcd86b 5902 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5903 rx_ring->rx_stats.packets += total_packets;
5904 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5905 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5906 return cleaned;
5907}
5908
9d5c8243
AK
5909/**
5910 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5911 * @adapter: address of board private structure
5912 **/
d7ee5b3a 5913void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5914{
e694e964 5915 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5916 union e1000_adv_rx_desc *rx_desc;
5917 struct igb_buffer *buffer_info;
5918 struct sk_buff *skb;
5919 unsigned int i;
db761762 5920 int bufsz;
9d5c8243
AK
5921
5922 i = rx_ring->next_to_use;
5923 buffer_info = &rx_ring->buffer_info[i];
5924
4c844851 5925 bufsz = rx_ring->rx_buffer_len;
db761762 5926
9d5c8243
AK
5927 while (cleaned_count--) {
5928 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5929
6ec43fe6 5930 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5931 if (!buffer_info->page) {
42d0781a 5932 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5933 if (unlikely(!buffer_info->page)) {
5934 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5935 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5936 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5937 goto no_buffers;
5938 }
5939 buffer_info->page_offset = 0;
5940 } else {
5941 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5942 }
5943 buffer_info->page_dma =
59d71989 5944 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5945 buffer_info->page_offset,
5946 PAGE_SIZE / 2,
59d71989
AD
5947 DMA_FROM_DEVICE);
5948 if (dma_mapping_error(rx_ring->dev,
5949 buffer_info->page_dma)) {
42d0781a 5950 buffer_info->page_dma = 0;
12dcd86b 5951 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5952 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5953 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5954 goto no_buffers;
5955 }
9d5c8243
AK
5956 }
5957
42d0781a
AD
5958 skb = buffer_info->skb;
5959 if (!skb) {
89d71a66 5960 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5961 if (unlikely(!skb)) {
5962 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5963 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5964 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5965 goto no_buffers;
5966 }
5967
9d5c8243 5968 buffer_info->skb = skb;
42d0781a
AD
5969 }
5970 if (!buffer_info->dma) {
59d71989 5971 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5972 skb->data,
9d5c8243 5973 bufsz,
59d71989
AD
5974 DMA_FROM_DEVICE);
5975 if (dma_mapping_error(rx_ring->dev,
5976 buffer_info->dma)) {
42d0781a 5977 buffer_info->dma = 0;
12dcd86b 5978 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5979 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5980 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5981 goto no_buffers;
5982 }
9d5c8243
AK
5983 }
5984 /* Refresh the desc even if buffer_addrs didn't change because
5985 * each write-back erases this info. */
6ec43fe6 5986 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5987 rx_desc->read.pkt_addr =
5988 cpu_to_le64(buffer_info->page_dma);
5989 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5990 } else {
42d0781a 5991 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5992 rx_desc->read.hdr_addr = 0;
5993 }
5994
5995 i++;
5996 if (i == rx_ring->count)
5997 i = 0;
5998 buffer_info = &rx_ring->buffer_info[i];
5999 }
6000
6001no_buffers:
6002 if (rx_ring->next_to_use != i) {
6003 rx_ring->next_to_use = i;
6004 if (i == 0)
6005 i = (rx_ring->count - 1);
6006 else
6007 i--;
6008
6009 /* Force memory writes to complete before letting h/w
6010 * know there are new descriptors to fetch. (Only
6011 * applicable for weak-ordered memory model archs,
6012 * such as IA-64). */
6013 wmb();
fce99e34 6014 writel(i, rx_ring->tail);
9d5c8243
AK
6015 }
6016}
6017
6018/**
6019 * igb_mii_ioctl -
6020 * @netdev:
6021 * @ifreq:
6022 * @cmd:
6023 **/
6024static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6025{
6026 struct igb_adapter *adapter = netdev_priv(netdev);
6027 struct mii_ioctl_data *data = if_mii(ifr);
6028
6029 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6030 return -EOPNOTSUPP;
6031
6032 switch (cmd) {
6033 case SIOCGMIIPHY:
6034 data->phy_id = adapter->hw.phy.addr;
6035 break;
6036 case SIOCGMIIREG:
f5f4cf08
AD
6037 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6038 &data->val_out))
9d5c8243
AK
6039 return -EIO;
6040 break;
6041 case SIOCSMIIREG:
6042 default:
6043 return -EOPNOTSUPP;
6044 }
6045 return 0;
6046}
6047
c6cb090b
PO
6048/**
6049 * igb_hwtstamp_ioctl - control hardware time stamping
6050 * @netdev:
6051 * @ifreq:
6052 * @cmd:
6053 *
33af6bcc
PO
6054 * Outgoing time stamping can be enabled and disabled. Play nice and
6055 * disable it when requested, although it shouldn't case any overhead
6056 * when no packet needs it. At most one packet in the queue may be
6057 * marked for time stamping, otherwise it would be impossible to tell
6058 * for sure to which packet the hardware time stamp belongs.
6059 *
6060 * Incoming time stamping has to be configured via the hardware
6061 * filters. Not all combinations are supported, in particular event
6062 * type has to be specified. Matching the kind of event packet is
6063 * not supported, with the exception of "all V2 events regardless of
6064 * level 2 or 4".
6065 *
c6cb090b
PO
6066 **/
6067static int igb_hwtstamp_ioctl(struct net_device *netdev,
6068 struct ifreq *ifr, int cmd)
6069{
33af6bcc
PO
6070 struct igb_adapter *adapter = netdev_priv(netdev);
6071 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6072 struct hwtstamp_config config;
c5b9bd5e
AD
6073 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6074 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6075 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6076 bool is_l4 = false;
6077 bool is_l2 = false;
33af6bcc 6078 u32 regval;
c6cb090b
PO
6079
6080 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6081 return -EFAULT;
6082
6083 /* reserved for future extensions */
6084 if (config.flags)
6085 return -EINVAL;
6086
33af6bcc
PO
6087 switch (config.tx_type) {
6088 case HWTSTAMP_TX_OFF:
c5b9bd5e 6089 tsync_tx_ctl = 0;
33af6bcc 6090 case HWTSTAMP_TX_ON:
33af6bcc
PO
6091 break;
6092 default:
6093 return -ERANGE;
6094 }
6095
6096 switch (config.rx_filter) {
6097 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6098 tsync_rx_ctl = 0;
33af6bcc
PO
6099 break;
6100 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6101 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6102 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6103 case HWTSTAMP_FILTER_ALL:
6104 /*
6105 * register TSYNCRXCFG must be set, therefore it is not
6106 * possible to time stamp both Sync and Delay_Req messages
6107 * => fall back to time stamping all packets
6108 */
c5b9bd5e 6109 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6110 config.rx_filter = HWTSTAMP_FILTER_ALL;
6111 break;
6112 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6113 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6114 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6115 is_l4 = true;
33af6bcc
PO
6116 break;
6117 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6118 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6119 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6120 is_l4 = true;
33af6bcc
PO
6121 break;
6122 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6123 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6124 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6125 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6126 is_l2 = true;
6127 is_l4 = true;
33af6bcc
PO
6128 config.rx_filter = HWTSTAMP_FILTER_SOME;
6129 break;
6130 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6131 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6132 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6133 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6134 is_l2 = true;
6135 is_l4 = true;
33af6bcc
PO
6136 config.rx_filter = HWTSTAMP_FILTER_SOME;
6137 break;
6138 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6139 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6140 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6141 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6142 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6143 is_l2 = true;
33af6bcc
PO
6144 break;
6145 default:
6146 return -ERANGE;
6147 }
6148
c5b9bd5e
AD
6149 if (hw->mac.type == e1000_82575) {
6150 if (tsync_rx_ctl | tsync_tx_ctl)
6151 return -EINVAL;
6152 return 0;
6153 }
6154
757b77e2
NN
6155 /*
6156 * Per-packet timestamping only works if all packets are
6157 * timestamped, so enable timestamping in all packets as
6158 * long as one rx filter was configured.
6159 */
6160 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6161 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6162 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6163 }
6164
33af6bcc
PO
6165 /* enable/disable TX */
6166 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6167 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6168 regval |= tsync_tx_ctl;
33af6bcc
PO
6169 wr32(E1000_TSYNCTXCTL, regval);
6170
c5b9bd5e 6171 /* enable/disable RX */
33af6bcc 6172 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6173 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6174 regval |= tsync_rx_ctl;
33af6bcc 6175 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6176
c5b9bd5e
AD
6177 /* define which PTP packets are time stamped */
6178 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6179
c5b9bd5e
AD
6180 /* define ethertype filter for timestamped packets */
6181 if (is_l2)
6182 wr32(E1000_ETQF(3),
6183 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6184 E1000_ETQF_1588 | /* enable timestamping */
6185 ETH_P_1588)); /* 1588 eth protocol type */
6186 else
6187 wr32(E1000_ETQF(3), 0);
6188
6189#define PTP_PORT 319
6190 /* L4 Queue Filter[3]: filter by destination port and protocol */
6191 if (is_l4) {
6192 u32 ftqf = (IPPROTO_UDP /* UDP */
6193 | E1000_FTQF_VF_BP /* VF not compared */
6194 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6195 | E1000_FTQF_MASK); /* mask all inputs */
6196 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6197
6198 wr32(E1000_IMIR(3), htons(PTP_PORT));
6199 wr32(E1000_IMIREXT(3),
6200 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6201 if (hw->mac.type == e1000_82576) {
6202 /* enable source port check */
6203 wr32(E1000_SPQF(3), htons(PTP_PORT));
6204 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6205 }
6206 wr32(E1000_FTQF(3), ftqf);
6207 } else {
6208 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6209 }
33af6bcc
PO
6210 wrfl();
6211
6212 adapter->hwtstamp_config = config;
6213
6214 /* clear TX/RX time stamp registers, just to be sure */
6215 regval = rd32(E1000_TXSTMPH);
6216 regval = rd32(E1000_RXSTMPH);
c6cb090b 6217
33af6bcc
PO
6218 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6219 -EFAULT : 0;
c6cb090b
PO
6220}
6221
9d5c8243
AK
6222/**
6223 * igb_ioctl -
6224 * @netdev:
6225 * @ifreq:
6226 * @cmd:
6227 **/
6228static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6229{
6230 switch (cmd) {
6231 case SIOCGMIIPHY:
6232 case SIOCGMIIREG:
6233 case SIOCSMIIREG:
6234 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6235 case SIOCSHWTSTAMP:
6236 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6237 default:
6238 return -EOPNOTSUPP;
6239 }
6240}
6241
009bc06e
AD
6242s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6243{
6244 struct igb_adapter *adapter = hw->back;
6245 u16 cap_offset;
6246
6247 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6248 if (!cap_offset)
6249 return -E1000_ERR_CONFIG;
6250
6251 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6252
6253 return 0;
6254}
6255
6256s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6257{
6258 struct igb_adapter *adapter = hw->back;
6259 u16 cap_offset;
6260
6261 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6262 if (!cap_offset)
6263 return -E1000_ERR_CONFIG;
6264
6265 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6266
6267 return 0;
6268}
6269
9d5c8243
AK
6270static void igb_vlan_rx_register(struct net_device *netdev,
6271 struct vlan_group *grp)
6272{
6273 struct igb_adapter *adapter = netdev_priv(netdev);
6274 struct e1000_hw *hw = &adapter->hw;
6275 u32 ctrl, rctl;
6276
6277 igb_irq_disable(adapter);
6278 adapter->vlgrp = grp;
6279
6280 if (grp) {
6281 /* enable VLAN tag insert/strip */
6282 ctrl = rd32(E1000_CTRL);
6283 ctrl |= E1000_CTRL_VME;
6284 wr32(E1000_CTRL, ctrl);
6285
51466239 6286 /* Disable CFI check */
9d5c8243 6287 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6288 rctl &= ~E1000_RCTL_CFIEN;
6289 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6290 } else {
6291 /* disable VLAN tag insert/strip */
6292 ctrl = rd32(E1000_CTRL);
6293 ctrl &= ~E1000_CTRL_VME;
6294 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6295 }
6296
e1739522
AD
6297 igb_rlpml_set(adapter);
6298
9d5c8243
AK
6299 if (!test_bit(__IGB_DOWN, &adapter->state))
6300 igb_irq_enable(adapter);
6301}
6302
6303static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6304{
6305 struct igb_adapter *adapter = netdev_priv(netdev);
6306 struct e1000_hw *hw = &adapter->hw;
4ae196df 6307 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6308
51466239
AD
6309 /* attempt to add filter to vlvf array */
6310 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6311
51466239
AD
6312 /* add the filter since PF can receive vlans w/o entry in vlvf */
6313 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6314}
6315
6316static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6317{
6318 struct igb_adapter *adapter = netdev_priv(netdev);
6319 struct e1000_hw *hw = &adapter->hw;
4ae196df 6320 int pf_id = adapter->vfs_allocated_count;
51466239 6321 s32 err;
9d5c8243
AK
6322
6323 igb_irq_disable(adapter);
6324 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6325
6326 if (!test_bit(__IGB_DOWN, &adapter->state))
6327 igb_irq_enable(adapter);
6328
51466239
AD
6329 /* remove vlan from VLVF table array */
6330 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6331
51466239
AD
6332 /* if vid was not present in VLVF just remove it from table */
6333 if (err)
4ae196df 6334 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6335}
6336
6337static void igb_restore_vlan(struct igb_adapter *adapter)
6338{
6339 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6340
6341 if (adapter->vlgrp) {
6342 u16 vid;
b738127d 6343 for (vid = 0; vid < VLAN_N_VID; vid++) {
9d5c8243
AK
6344 if (!vlan_group_get_device(adapter->vlgrp, vid))
6345 continue;
6346 igb_vlan_rx_add_vid(adapter->netdev, vid);
6347 }
6348 }
6349}
6350
6351int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6352{
090b1795 6353 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6354 struct e1000_mac_info *mac = &adapter->hw.mac;
6355
6356 mac->autoneg = 0;
6357
cd2638a8
CW
6358 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6359 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6360 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
6361 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6362 return -EINVAL;
6363 }
6364
9d5c8243
AK
6365 switch (spddplx) {
6366 case SPEED_10 + DUPLEX_HALF:
6367 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6368 break;
6369 case SPEED_10 + DUPLEX_FULL:
6370 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6371 break;
6372 case SPEED_100 + DUPLEX_HALF:
6373 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6374 break;
6375 case SPEED_100 + DUPLEX_FULL:
6376 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6377 break;
6378 case SPEED_1000 + DUPLEX_FULL:
6379 mac->autoneg = 1;
6380 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6381 break;
6382 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6383 default:
090b1795 6384 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6385 return -EINVAL;
6386 }
6387 return 0;
6388}
6389
3fe7c4c9 6390static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6391{
6392 struct net_device *netdev = pci_get_drvdata(pdev);
6393 struct igb_adapter *adapter = netdev_priv(netdev);
6394 struct e1000_hw *hw = &adapter->hw;
2d064c06 6395 u32 ctrl, rctl, status;
9d5c8243
AK
6396 u32 wufc = adapter->wol;
6397#ifdef CONFIG_PM
6398 int retval = 0;
6399#endif
6400
6401 netif_device_detach(netdev);
6402
a88f10ec
AD
6403 if (netif_running(netdev))
6404 igb_close(netdev);
6405
047e0030 6406 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6407
6408#ifdef CONFIG_PM
6409 retval = pci_save_state(pdev);
6410 if (retval)
6411 return retval;
6412#endif
6413
6414 status = rd32(E1000_STATUS);
6415 if (status & E1000_STATUS_LU)
6416 wufc &= ~E1000_WUFC_LNKC;
6417
6418 if (wufc) {
6419 igb_setup_rctl(adapter);
ff41f8dc 6420 igb_set_rx_mode(netdev);
9d5c8243
AK
6421
6422 /* turn on all-multi mode if wake on multicast is enabled */
6423 if (wufc & E1000_WUFC_MC) {
6424 rctl = rd32(E1000_RCTL);
6425 rctl |= E1000_RCTL_MPE;
6426 wr32(E1000_RCTL, rctl);
6427 }
6428
6429 ctrl = rd32(E1000_CTRL);
6430 /* advertise wake from D3Cold */
6431 #define E1000_CTRL_ADVD3WUC 0x00100000
6432 /* phy power management enable */
6433 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6434 ctrl |= E1000_CTRL_ADVD3WUC;
6435 wr32(E1000_CTRL, ctrl);
6436
9d5c8243 6437 /* Allow time for pending master requests to run */
330a6d6a 6438 igb_disable_pcie_master(hw);
9d5c8243
AK
6439
6440 wr32(E1000_WUC, E1000_WUC_PME_EN);
6441 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6442 } else {
6443 wr32(E1000_WUC, 0);
6444 wr32(E1000_WUFC, 0);
9d5c8243
AK
6445 }
6446
3fe7c4c9
RW
6447 *enable_wake = wufc || adapter->en_mng_pt;
6448 if (!*enable_wake)
88a268c1
NN
6449 igb_power_down_link(adapter);
6450 else
6451 igb_power_up_link(adapter);
9d5c8243
AK
6452
6453 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6454 * would have already happened in close and is redundant. */
6455 igb_release_hw_control(adapter);
6456
6457 pci_disable_device(pdev);
6458
9d5c8243
AK
6459 return 0;
6460}
6461
6462#ifdef CONFIG_PM
3fe7c4c9
RW
6463static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6464{
6465 int retval;
6466 bool wake;
6467
6468 retval = __igb_shutdown(pdev, &wake);
6469 if (retval)
6470 return retval;
6471
6472 if (wake) {
6473 pci_prepare_to_sleep(pdev);
6474 } else {
6475 pci_wake_from_d3(pdev, false);
6476 pci_set_power_state(pdev, PCI_D3hot);
6477 }
6478
6479 return 0;
6480}
6481
9d5c8243
AK
6482static int igb_resume(struct pci_dev *pdev)
6483{
6484 struct net_device *netdev = pci_get_drvdata(pdev);
6485 struct igb_adapter *adapter = netdev_priv(netdev);
6486 struct e1000_hw *hw = &adapter->hw;
6487 u32 err;
6488
6489 pci_set_power_state(pdev, PCI_D0);
6490 pci_restore_state(pdev);
b94f2d77 6491 pci_save_state(pdev);
42bfd33a 6492
aed5dec3 6493 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6494 if (err) {
6495 dev_err(&pdev->dev,
6496 "igb: Cannot enable PCI device from suspend\n");
6497 return err;
6498 }
6499 pci_set_master(pdev);
6500
6501 pci_enable_wake(pdev, PCI_D3hot, 0);
6502 pci_enable_wake(pdev, PCI_D3cold, 0);
6503
047e0030 6504 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6505 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6506 return -ENOMEM;
9d5c8243
AK
6507 }
6508
9d5c8243 6509 igb_reset(adapter);
a8564f03
AD
6510
6511 /* let the f/w know that the h/w is now under the control of the
6512 * driver. */
6513 igb_get_hw_control(adapter);
6514
9d5c8243
AK
6515 wr32(E1000_WUS, ~0);
6516
a88f10ec
AD
6517 if (netif_running(netdev)) {
6518 err = igb_open(netdev);
6519 if (err)
6520 return err;
6521 }
9d5c8243
AK
6522
6523 netif_device_attach(netdev);
6524
9d5c8243
AK
6525 return 0;
6526}
6527#endif
6528
6529static void igb_shutdown(struct pci_dev *pdev)
6530{
3fe7c4c9
RW
6531 bool wake;
6532
6533 __igb_shutdown(pdev, &wake);
6534
6535 if (system_state == SYSTEM_POWER_OFF) {
6536 pci_wake_from_d3(pdev, wake);
6537 pci_set_power_state(pdev, PCI_D3hot);
6538 }
9d5c8243
AK
6539}
6540
6541#ifdef CONFIG_NET_POLL_CONTROLLER
6542/*
6543 * Polling 'interrupt' - used by things like netconsole to send skbs
6544 * without having to re-enable interrupts. It's not called while
6545 * the interrupt routine is executing.
6546 */
6547static void igb_netpoll(struct net_device *netdev)
6548{
6549 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6550 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6551 int i;
9d5c8243 6552
eebbbdba 6553 if (!adapter->msix_entries) {
047e0030 6554 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6555 igb_irq_disable(adapter);
047e0030 6556 napi_schedule(&q_vector->napi);
eebbbdba
AD
6557 return;
6558 }
9d5c8243 6559
047e0030
AD
6560 for (i = 0; i < adapter->num_q_vectors; i++) {
6561 struct igb_q_vector *q_vector = adapter->q_vector[i];
6562 wr32(E1000_EIMC, q_vector->eims_value);
6563 napi_schedule(&q_vector->napi);
eebbbdba 6564 }
9d5c8243
AK
6565}
6566#endif /* CONFIG_NET_POLL_CONTROLLER */
6567
6568/**
6569 * igb_io_error_detected - called when PCI error is detected
6570 * @pdev: Pointer to PCI device
6571 * @state: The current pci connection state
6572 *
6573 * This function is called after a PCI bus error affecting
6574 * this device has been detected.
6575 */
6576static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6577 pci_channel_state_t state)
6578{
6579 struct net_device *netdev = pci_get_drvdata(pdev);
6580 struct igb_adapter *adapter = netdev_priv(netdev);
6581
6582 netif_device_detach(netdev);
6583
59ed6eec
AD
6584 if (state == pci_channel_io_perm_failure)
6585 return PCI_ERS_RESULT_DISCONNECT;
6586
9d5c8243
AK
6587 if (netif_running(netdev))
6588 igb_down(adapter);
6589 pci_disable_device(pdev);
6590
6591 /* Request a slot slot reset. */
6592 return PCI_ERS_RESULT_NEED_RESET;
6593}
6594
6595/**
6596 * igb_io_slot_reset - called after the pci bus has been reset.
6597 * @pdev: Pointer to PCI device
6598 *
6599 * Restart the card from scratch, as if from a cold-boot. Implementation
6600 * resembles the first-half of the igb_resume routine.
6601 */
6602static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6603{
6604 struct net_device *netdev = pci_get_drvdata(pdev);
6605 struct igb_adapter *adapter = netdev_priv(netdev);
6606 struct e1000_hw *hw = &adapter->hw;
40a914fa 6607 pci_ers_result_t result;
42bfd33a 6608 int err;
9d5c8243 6609
aed5dec3 6610 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6611 dev_err(&pdev->dev,
6612 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6613 result = PCI_ERS_RESULT_DISCONNECT;
6614 } else {
6615 pci_set_master(pdev);
6616 pci_restore_state(pdev);
b94f2d77 6617 pci_save_state(pdev);
9d5c8243 6618
40a914fa
AD
6619 pci_enable_wake(pdev, PCI_D3hot, 0);
6620 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6621
40a914fa
AD
6622 igb_reset(adapter);
6623 wr32(E1000_WUS, ~0);
6624 result = PCI_ERS_RESULT_RECOVERED;
6625 }
9d5c8243 6626
ea943d41
JK
6627 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6628 if (err) {
6629 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6630 "failed 0x%0x\n", err);
6631 /* non-fatal, continue */
6632 }
40a914fa
AD
6633
6634 return result;
9d5c8243
AK
6635}
6636
6637/**
6638 * igb_io_resume - called when traffic can start flowing again.
6639 * @pdev: Pointer to PCI device
6640 *
6641 * This callback is called when the error recovery driver tells us that
6642 * its OK to resume normal operation. Implementation resembles the
6643 * second-half of the igb_resume routine.
6644 */
6645static void igb_io_resume(struct pci_dev *pdev)
6646{
6647 struct net_device *netdev = pci_get_drvdata(pdev);
6648 struct igb_adapter *adapter = netdev_priv(netdev);
6649
9d5c8243
AK
6650 if (netif_running(netdev)) {
6651 if (igb_up(adapter)) {
6652 dev_err(&pdev->dev, "igb_up failed after reset\n");
6653 return;
6654 }
6655 }
6656
6657 netif_device_attach(netdev);
6658
6659 /* let the f/w know that the h/w is now under the control of the
6660 * driver. */
6661 igb_get_hw_control(adapter);
9d5c8243
AK
6662}
6663
26ad9178
AD
6664static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6665 u8 qsel)
6666{
6667 u32 rar_low, rar_high;
6668 struct e1000_hw *hw = &adapter->hw;
6669
6670 /* HW expects these in little endian so we reverse the byte order
6671 * from network order (big endian) to little endian
6672 */
6673 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6674 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6675 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6676
6677 /* Indicate to hardware the Address is Valid. */
6678 rar_high |= E1000_RAH_AV;
6679
6680 if (hw->mac.type == e1000_82575)
6681 rar_high |= E1000_RAH_POOL_1 * qsel;
6682 else
6683 rar_high |= E1000_RAH_POOL_1 << qsel;
6684
6685 wr32(E1000_RAL(index), rar_low);
6686 wrfl();
6687 wr32(E1000_RAH(index), rar_high);
6688 wrfl();
6689}
6690
4ae196df
AD
6691static int igb_set_vf_mac(struct igb_adapter *adapter,
6692 int vf, unsigned char *mac_addr)
6693{
6694 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6695 /* VF MAC addresses start at end of receive addresses and moves
6696 * torwards the first, as a result a collision should not be possible */
6697 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6698
37680117 6699 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6700
26ad9178 6701 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6702
6703 return 0;
6704}
6705
8151d294
WM
6706static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6707{
6708 struct igb_adapter *adapter = netdev_priv(netdev);
6709 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6710 return -EINVAL;
6711 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6712 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6713 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6714 " change effective.");
6715 if (test_bit(__IGB_DOWN, &adapter->state)) {
6716 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6717 " but the PF device is not up.\n");
6718 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6719 " attempting to use the VF device.\n");
6720 }
6721 return igb_set_vf_mac(adapter, vf, mac);
6722}
6723
17dc566c
LL
6724static int igb_link_mbps(int internal_link_speed)
6725{
6726 switch (internal_link_speed) {
6727 case SPEED_100:
6728 return 100;
6729 case SPEED_1000:
6730 return 1000;
6731 default:
6732 return 0;
6733 }
6734}
6735
6736static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6737 int link_speed)
6738{
6739 int rf_dec, rf_int;
6740 u32 bcnrc_val;
6741
6742 if (tx_rate != 0) {
6743 /* Calculate the rate factor values to set */
6744 rf_int = link_speed / tx_rate;
6745 rf_dec = (link_speed - (rf_int * tx_rate));
6746 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6747
6748 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6749 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6750 E1000_RTTBCNRC_RF_INT_MASK);
6751 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6752 } else {
6753 bcnrc_val = 0;
6754 }
6755
6756 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6757 wr32(E1000_RTTBCNRC, bcnrc_val);
6758}
6759
6760static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6761{
6762 int actual_link_speed, i;
6763 bool reset_rate = false;
6764
6765 /* VF TX rate limit was not set or not supported */
6766 if ((adapter->vf_rate_link_speed == 0) ||
6767 (adapter->hw.mac.type != e1000_82576))
6768 return;
6769
6770 actual_link_speed = igb_link_mbps(adapter->link_speed);
6771 if (actual_link_speed != adapter->vf_rate_link_speed) {
6772 reset_rate = true;
6773 adapter->vf_rate_link_speed = 0;
6774 dev_info(&adapter->pdev->dev,
6775 "Link speed has been changed. VF Transmit "
6776 "rate is disabled\n");
6777 }
6778
6779 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6780 if (reset_rate)
6781 adapter->vf_data[i].tx_rate = 0;
6782
6783 igb_set_vf_rate_limit(&adapter->hw, i,
6784 adapter->vf_data[i].tx_rate,
6785 actual_link_speed);
6786 }
6787}
6788
8151d294
WM
6789static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6790{
17dc566c
LL
6791 struct igb_adapter *adapter = netdev_priv(netdev);
6792 struct e1000_hw *hw = &adapter->hw;
6793 int actual_link_speed;
6794
6795 if (hw->mac.type != e1000_82576)
6796 return -EOPNOTSUPP;
6797
6798 actual_link_speed = igb_link_mbps(adapter->link_speed);
6799 if ((vf >= adapter->vfs_allocated_count) ||
6800 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6801 (tx_rate < 0) || (tx_rate > actual_link_speed))
6802 return -EINVAL;
6803
6804 adapter->vf_rate_link_speed = actual_link_speed;
6805 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6806 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6807
6808 return 0;
8151d294
WM
6809}
6810
6811static int igb_ndo_get_vf_config(struct net_device *netdev,
6812 int vf, struct ifla_vf_info *ivi)
6813{
6814 struct igb_adapter *adapter = netdev_priv(netdev);
6815 if (vf >= adapter->vfs_allocated_count)
6816 return -EINVAL;
6817 ivi->vf = vf;
6818 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6819 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6820 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6821 ivi->qos = adapter->vf_data[vf].pf_qos;
6822 return 0;
6823}
6824
4ae196df
AD
6825static void igb_vmm_control(struct igb_adapter *adapter)
6826{
6827 struct e1000_hw *hw = &adapter->hw;
10d8e907 6828 u32 reg;
4ae196df 6829
52a1dd4d
AD
6830 switch (hw->mac.type) {
6831 case e1000_82575:
6832 default:
6833 /* replication is not supported for 82575 */
4ae196df 6834 return;
52a1dd4d
AD
6835 case e1000_82576:
6836 /* notify HW that the MAC is adding vlan tags */
6837 reg = rd32(E1000_DTXCTL);
6838 reg |= E1000_DTXCTL_VLAN_ADDED;
6839 wr32(E1000_DTXCTL, reg);
6840 case e1000_82580:
6841 /* enable replication vlan tag stripping */
6842 reg = rd32(E1000_RPLOLR);
6843 reg |= E1000_RPLOLR_STRVLAN;
6844 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6845 case e1000_i350:
6846 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6847 break;
6848 }
10d8e907 6849
d4960307
AD
6850 if (adapter->vfs_allocated_count) {
6851 igb_vmdq_set_loopback_pf(hw, true);
6852 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6853 igb_vmdq_set_anti_spoofing_pf(hw, true,
6854 adapter->vfs_allocated_count);
d4960307
AD
6855 } else {
6856 igb_vmdq_set_loopback_pf(hw, false);
6857 igb_vmdq_set_replication_pf(hw, false);
6858 }
4ae196df
AD
6859}
6860
9d5c8243 6861/* igb_main.c */