]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/igb/igb_main.c
e1000e: add registers etc. printout code just before resetting adapters
[mirror_ubuntu-zesty-kernel.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
55cac248 53#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 58static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
2d064c06 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
85 /* required last entry */
86 {0, }
87};
88
89MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
90
91void igb_reset(struct igb_adapter *);
92static int igb_setup_all_tx_resources(struct igb_adapter *);
93static int igb_setup_all_rx_resources(struct igb_adapter *);
94static void igb_free_all_tx_resources(struct igb_adapter *);
95static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 96static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
97void igb_update_stats(struct igb_adapter *);
98static int igb_probe(struct pci_dev *, const struct pci_device_id *);
99static void __devexit igb_remove(struct pci_dev *pdev);
100static int igb_sw_init(struct igb_adapter *);
101static int igb_open(struct net_device *);
102static int igb_close(struct net_device *);
103static void igb_configure_tx(struct igb_adapter *);
104static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
105static void igb_clean_all_tx_rings(struct igb_adapter *);
106static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
107static void igb_clean_tx_ring(struct igb_ring *);
108static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 109static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
110static void igb_update_phy_info(unsigned long);
111static void igb_watchdog(unsigned long);
112static void igb_watchdog_task(struct work_struct *);
b1a436c3 113static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
114static struct net_device_stats *igb_get_stats(struct net_device *);
115static int igb_change_mtu(struct net_device *, int);
116static int igb_set_mac(struct net_device *, void *);
68d480c4 117static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
118static irqreturn_t igb_intr(int irq, void *);
119static irqreturn_t igb_intr_msi(int irq, void *);
120static irqreturn_t igb_msix_other(int irq, void *);
047e0030 121static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 122#ifdef CONFIG_IGB_DCA
047e0030 123static void igb_update_dca(struct igb_q_vector *);
fe4506b6 124static void igb_setup_dca(struct igb_adapter *);
421e02f0 125#endif /* CONFIG_IGB_DCA */
047e0030 126static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 127static int igb_poll(struct napi_struct *, int);
047e0030 128static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
129static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
130static void igb_tx_timeout(struct net_device *);
131static void igb_reset_task(struct work_struct *);
132static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
133static void igb_vlan_rx_add_vid(struct net_device *, u16);
134static void igb_vlan_rx_kill_vid(struct net_device *, u16);
135static void igb_restore_vlan(struct igb_adapter *);
26ad9178 136static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
137static void igb_ping_all_vfs(struct igb_adapter *);
138static void igb_msg_task(struct igb_adapter *);
4ae196df 139static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 140static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 141static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
142static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
143static int igb_ndo_set_vf_vlan(struct net_device *netdev,
144 int vf, u16 vlan, u8 qos);
145static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
146static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
147 struct ifla_vf_info *ivi);
9d5c8243 148
9d5c8243 149#ifdef CONFIG_PM
3fe7c4c9 150static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
151static int igb_resume(struct pci_dev *);
152#endif
153static void igb_shutdown(struct pci_dev *);
421e02f0 154#ifdef CONFIG_IGB_DCA
fe4506b6
JC
155static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
156static struct notifier_block dca_notifier = {
157 .notifier_call = igb_notify_dca,
158 .next = NULL,
159 .priority = 0
160};
161#endif
9d5c8243
AK
162#ifdef CONFIG_NET_POLL_CONTROLLER
163/* for netdump / net console */
164static void igb_netpoll(struct net_device *);
165#endif
37680117 166#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
167static unsigned int max_vfs = 0;
168module_param(max_vfs, uint, 0);
169MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
170 "per physical function");
171#endif /* CONFIG_PCI_IOV */
172
9d5c8243
AK
173static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
174 pci_channel_state_t);
175static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
176static void igb_io_resume(struct pci_dev *);
177
178static struct pci_error_handlers igb_err_handler = {
179 .error_detected = igb_io_error_detected,
180 .slot_reset = igb_io_slot_reset,
181 .resume = igb_io_resume,
182};
183
184
185static struct pci_driver igb_driver = {
186 .name = igb_driver_name,
187 .id_table = igb_pci_tbl,
188 .probe = igb_probe,
189 .remove = __devexit_p(igb_remove),
190#ifdef CONFIG_PM
191 /* Power Managment Hooks */
192 .suspend = igb_suspend,
193 .resume = igb_resume,
194#endif
195 .shutdown = igb_shutdown,
196 .err_handler = &igb_err_handler
197};
198
199MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
200MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
201MODULE_LICENSE("GPL");
202MODULE_VERSION(DRV_VERSION);
203
38c845c7
PO
204/**
205 * igb_read_clock - read raw cycle counter (to be used by time counter)
206 */
207static cycle_t igb_read_clock(const struct cyclecounter *tc)
208{
209 struct igb_adapter *adapter =
210 container_of(tc, struct igb_adapter, cycles);
211 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
212 u64 stamp = 0;
213 int shift = 0;
38c845c7 214
55cac248
AD
215 /*
216 * The timestamp latches on lowest register read. For the 82580
217 * the lowest register is SYSTIMR instead of SYSTIML. However we never
218 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
219 */
220 if (hw->mac.type == e1000_82580) {
221 stamp = rd32(E1000_SYSTIMR) >> 8;
222 shift = IGB_82580_TSYNC_SHIFT;
223 }
224
c5b9bd5e
AD
225 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
226 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
227 return stamp;
228}
229
9d5c8243 230/**
c041076a 231 * igb_get_hw_dev - return device
9d5c8243
AK
232 * used by hardware layer to print debugging information
233 **/
c041076a 234struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
235{
236 struct igb_adapter *adapter = hw->back;
c041076a 237 return adapter->netdev;
9d5c8243 238}
38c845c7 239
9d5c8243
AK
240/**
241 * igb_init_module - Driver Registration Routine
242 *
243 * igb_init_module is the first routine called when the driver is
244 * loaded. All it does is register with the PCI subsystem.
245 **/
246static int __init igb_init_module(void)
247{
248 int ret;
249 printk(KERN_INFO "%s - version %s\n",
250 igb_driver_string, igb_driver_version);
251
252 printk(KERN_INFO "%s\n", igb_copyright);
253
421e02f0 254#ifdef CONFIG_IGB_DCA
fe4506b6
JC
255 dca_register_notify(&dca_notifier);
256#endif
bbd98fe4 257 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
258 return ret;
259}
260
261module_init(igb_init_module);
262
263/**
264 * igb_exit_module - Driver Exit Cleanup Routine
265 *
266 * igb_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269static void __exit igb_exit_module(void)
270{
421e02f0 271#ifdef CONFIG_IGB_DCA
fe4506b6
JC
272 dca_unregister_notify(&dca_notifier);
273#endif
9d5c8243
AK
274 pci_unregister_driver(&igb_driver);
275}
276
277module_exit(igb_exit_module);
278
26bc19ec
AD
279#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
280/**
281 * igb_cache_ring_register - Descriptor ring to register mapping
282 * @adapter: board private structure to initialize
283 *
284 * Once we know the feature-set enabled for the device, we'll cache
285 * the register offset the descriptor ring is assigned to.
286 **/
287static void igb_cache_ring_register(struct igb_adapter *adapter)
288{
ee1b9f06 289 int i = 0, j = 0;
047e0030 290 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
291
292 switch (adapter->hw.mac.type) {
293 case e1000_82576:
294 /* The queues are allocated for virtualization such that VF 0
295 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
296 * In order to avoid collision we start at the first free queue
297 * and continue consuming queues in the same sequence
298 */
ee1b9f06 299 if (adapter->vfs_allocated_count) {
a99955fc 300 for (; i < adapter->rss_queues; i++)
3025a446
AD
301 adapter->rx_ring[i]->reg_idx = rbase_offset +
302 Q_IDX_82576(i);
a99955fc 303 for (; j < adapter->rss_queues; j++)
3025a446
AD
304 adapter->tx_ring[j]->reg_idx = rbase_offset +
305 Q_IDX_82576(j);
ee1b9f06 306 }
26bc19ec 307 case e1000_82575:
55cac248 308 case e1000_82580:
d2ba2ed8 309 case e1000_i350:
26bc19ec 310 default:
ee1b9f06 311 for (; i < adapter->num_rx_queues; i++)
3025a446 312 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 313 for (; j < adapter->num_tx_queues; j++)
3025a446 314 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
315 break;
316 }
317}
318
047e0030
AD
319static void igb_free_queues(struct igb_adapter *adapter)
320{
3025a446 321 int i;
047e0030 322
3025a446
AD
323 for (i = 0; i < adapter->num_tx_queues; i++) {
324 kfree(adapter->tx_ring[i]);
325 adapter->tx_ring[i] = NULL;
326 }
327 for (i = 0; i < adapter->num_rx_queues; i++) {
328 kfree(adapter->rx_ring[i]);
329 adapter->rx_ring[i] = NULL;
330 }
047e0030
AD
331 adapter->num_rx_queues = 0;
332 adapter->num_tx_queues = 0;
333}
334
9d5c8243
AK
335/**
336 * igb_alloc_queues - Allocate memory for all rings
337 * @adapter: board private structure to initialize
338 *
339 * We allocate one ring per queue at run-time since we don't know the
340 * number of queues at compile-time.
341 **/
342static int igb_alloc_queues(struct igb_adapter *adapter)
343{
3025a446 344 struct igb_ring *ring;
9d5c8243
AK
345 int i;
346
661086df 347 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
348 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
349 if (!ring)
350 goto err;
68fd9910 351 ring->count = adapter->tx_ring_count;
661086df 352 ring->queue_index = i;
59d71989 353 ring->dev = &adapter->pdev->dev;
e694e964 354 ring->netdev = adapter->netdev;
85ad76b2
AD
355 /* For 82575, context index must be unique per ring. */
356 if (adapter->hw.mac.type == e1000_82575)
357 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 358 adapter->tx_ring[i] = ring;
661086df 359 }
85ad76b2 360
9d5c8243 361 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
362 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
363 if (!ring)
364 goto err;
68fd9910 365 ring->count = adapter->rx_ring_count;
844290e5 366 ring->queue_index = i;
59d71989 367 ring->dev = &adapter->pdev->dev;
e694e964 368 ring->netdev = adapter->netdev;
4c844851 369 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
370 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
371 /* set flag indicating ring supports SCTP checksum offload */
372 if (adapter->hw.mac.type >= e1000_82576)
373 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 374 adapter->rx_ring[i] = ring;
9d5c8243 375 }
26bc19ec
AD
376
377 igb_cache_ring_register(adapter);
9d5c8243 378
047e0030 379 return 0;
a88f10ec 380
047e0030
AD
381err:
382 igb_free_queues(adapter);
d1a8c9e1 383
047e0030 384 return -ENOMEM;
a88f10ec
AD
385}
386
9d5c8243 387#define IGB_N0_QUEUE -1
047e0030 388static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
389{
390 u32 msixbm = 0;
047e0030 391 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 392 struct e1000_hw *hw = &adapter->hw;
2d064c06 393 u32 ivar, index;
047e0030
AD
394 int rx_queue = IGB_N0_QUEUE;
395 int tx_queue = IGB_N0_QUEUE;
396
397 if (q_vector->rx_ring)
398 rx_queue = q_vector->rx_ring->reg_idx;
399 if (q_vector->tx_ring)
400 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
401
402 switch (hw->mac.type) {
403 case e1000_82575:
9d5c8243
AK
404 /* The 82575 assigns vectors using a bitmask, which matches the
405 bitmask for the EICR/EIMS/EIMC registers. To assign one
406 or more queues to a vector, we write the appropriate bits
407 into the MSIXBM register for that vector. */
047e0030 408 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 409 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 410 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 411 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
412 if (!adapter->msix_entries && msix_vector == 0)
413 msixbm |= E1000_EIMS_OTHER;
9d5c8243 414 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 415 q_vector->eims_value = msixbm;
2d064c06
AD
416 break;
417 case e1000_82576:
26bc19ec 418 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
419 Each queue has a single entry in the table to which we write
420 a vector number along with a "valid" bit. Sadly, the layout
421 of the table is somewhat counterintuitive. */
422 if (rx_queue > IGB_N0_QUEUE) {
047e0030 423 index = (rx_queue & 0x7);
2d064c06 424 ivar = array_rd32(E1000_IVAR0, index);
047e0030 425 if (rx_queue < 8) {
26bc19ec
AD
426 /* vector goes into low byte of register */
427 ivar = ivar & 0xFFFFFF00;
428 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
429 } else {
430 /* vector goes into third byte of register */
431 ivar = ivar & 0xFF00FFFF;
432 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 433 }
2d064c06
AD
434 array_wr32(E1000_IVAR0, index, ivar);
435 }
436 if (tx_queue > IGB_N0_QUEUE) {
047e0030 437 index = (tx_queue & 0x7);
2d064c06 438 ivar = array_rd32(E1000_IVAR0, index);
047e0030 439 if (tx_queue < 8) {
26bc19ec
AD
440 /* vector goes into second byte of register */
441 ivar = ivar & 0xFFFF00FF;
442 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
443 } else {
444 /* vector goes into high byte of register */
445 ivar = ivar & 0x00FFFFFF;
446 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 447 }
2d064c06
AD
448 array_wr32(E1000_IVAR0, index, ivar);
449 }
047e0030 450 q_vector->eims_value = 1 << msix_vector;
2d064c06 451 break;
55cac248 452 case e1000_82580:
d2ba2ed8 453 case e1000_i350:
55cac248
AD
454 /* 82580 uses the same table-based approach as 82576 but has fewer
455 entries as a result we carry over for queues greater than 4. */
456 if (rx_queue > IGB_N0_QUEUE) {
457 index = (rx_queue >> 1);
458 ivar = array_rd32(E1000_IVAR0, index);
459 if (rx_queue & 0x1) {
460 /* vector goes into third byte of register */
461 ivar = ivar & 0xFF00FFFF;
462 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
463 } else {
464 /* vector goes into low byte of register */
465 ivar = ivar & 0xFFFFFF00;
466 ivar |= msix_vector | E1000_IVAR_VALID;
467 }
468 array_wr32(E1000_IVAR0, index, ivar);
469 }
470 if (tx_queue > IGB_N0_QUEUE) {
471 index = (tx_queue >> 1);
472 ivar = array_rd32(E1000_IVAR0, index);
473 if (tx_queue & 0x1) {
474 /* vector goes into high byte of register */
475 ivar = ivar & 0x00FFFFFF;
476 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
477 } else {
478 /* vector goes into second byte of register */
479 ivar = ivar & 0xFFFF00FF;
480 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
481 }
482 array_wr32(E1000_IVAR0, index, ivar);
483 }
484 q_vector->eims_value = 1 << msix_vector;
485 break;
2d064c06
AD
486 default:
487 BUG();
488 break;
489 }
26b39276
AD
490
491 /* add q_vector eims value to global eims_enable_mask */
492 adapter->eims_enable_mask |= q_vector->eims_value;
493
494 /* configure q_vector to set itr on first interrupt */
495 q_vector->set_itr = 1;
9d5c8243
AK
496}
497
498/**
499 * igb_configure_msix - Configure MSI-X hardware
500 *
501 * igb_configure_msix sets up the hardware to properly
502 * generate MSI-X interrupts.
503 **/
504static void igb_configure_msix(struct igb_adapter *adapter)
505{
506 u32 tmp;
507 int i, vector = 0;
508 struct e1000_hw *hw = &adapter->hw;
509
510 adapter->eims_enable_mask = 0;
9d5c8243
AK
511
512 /* set vector for other causes, i.e. link changes */
2d064c06
AD
513 switch (hw->mac.type) {
514 case e1000_82575:
9d5c8243
AK
515 tmp = rd32(E1000_CTRL_EXT);
516 /* enable MSI-X PBA support*/
517 tmp |= E1000_CTRL_EXT_PBA_CLR;
518
519 /* Auto-Mask interrupts upon ICR read. */
520 tmp |= E1000_CTRL_EXT_EIAME;
521 tmp |= E1000_CTRL_EXT_IRCA;
522
523 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
524
525 /* enable msix_other interrupt */
526 array_wr32(E1000_MSIXBM(0), vector++,
527 E1000_EIMS_OTHER);
844290e5 528 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 529
2d064c06
AD
530 break;
531
532 case e1000_82576:
55cac248 533 case e1000_82580:
d2ba2ed8 534 case e1000_i350:
047e0030
AD
535 /* Turn on MSI-X capability first, or our settings
536 * won't stick. And it will take days to debug. */
537 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
538 E1000_GPIE_PBA | E1000_GPIE_EIAME |
539 E1000_GPIE_NSICR);
540
541 /* enable msix_other interrupt */
542 adapter->eims_other = 1 << vector;
2d064c06 543 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 544
047e0030 545 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
546 break;
547 default:
548 /* do nothing, since nothing else supports MSI-X */
549 break;
550 } /* switch (hw->mac.type) */
047e0030
AD
551
552 adapter->eims_enable_mask |= adapter->eims_other;
553
26b39276
AD
554 for (i = 0; i < adapter->num_q_vectors; i++)
555 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 556
9d5c8243
AK
557 wrfl();
558}
559
560/**
561 * igb_request_msix - Initialize MSI-X interrupts
562 *
563 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
564 * kernel.
565 **/
566static int igb_request_msix(struct igb_adapter *adapter)
567{
568 struct net_device *netdev = adapter->netdev;
047e0030 569 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
570 int i, err = 0, vector = 0;
571
047e0030 572 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 573 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
574 if (err)
575 goto out;
576 vector++;
577
578 for (i = 0; i < adapter->num_q_vectors; i++) {
579 struct igb_q_vector *q_vector = adapter->q_vector[i];
580
581 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
582
583 if (q_vector->rx_ring && q_vector->tx_ring)
584 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
585 q_vector->rx_ring->queue_index);
586 else if (q_vector->tx_ring)
587 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
588 q_vector->tx_ring->queue_index);
589 else if (q_vector->rx_ring)
590 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
591 q_vector->rx_ring->queue_index);
9d5c8243 592 else
047e0030
AD
593 sprintf(q_vector->name, "%s-unused", netdev->name);
594
9d5c8243 595 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 596 igb_msix_ring, 0, q_vector->name,
047e0030 597 q_vector);
9d5c8243
AK
598 if (err)
599 goto out;
9d5c8243
AK
600 vector++;
601 }
602
9d5c8243
AK
603 igb_configure_msix(adapter);
604 return 0;
605out:
606 return err;
607}
608
609static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
610{
611 if (adapter->msix_entries) {
612 pci_disable_msix(adapter->pdev);
613 kfree(adapter->msix_entries);
614 adapter->msix_entries = NULL;
047e0030 615 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 616 pci_disable_msi(adapter->pdev);
047e0030 617 }
9d5c8243
AK
618}
619
047e0030
AD
620/**
621 * igb_free_q_vectors - Free memory allocated for interrupt vectors
622 * @adapter: board private structure to initialize
623 *
624 * This function frees the memory allocated to the q_vectors. In addition if
625 * NAPI is enabled it will delete any references to the NAPI struct prior
626 * to freeing the q_vector.
627 **/
628static void igb_free_q_vectors(struct igb_adapter *adapter)
629{
630 int v_idx;
631
632 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
633 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
634 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
635 if (!q_vector)
636 continue;
047e0030
AD
637 netif_napi_del(&q_vector->napi);
638 kfree(q_vector);
639 }
640 adapter->num_q_vectors = 0;
641}
642
643/**
644 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
645 *
646 * This function resets the device so that it has 0 rx queues, tx queues, and
647 * MSI-X interrupts allocated.
648 */
649static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
650{
651 igb_free_queues(adapter);
652 igb_free_q_vectors(adapter);
653 igb_reset_interrupt_capability(adapter);
654}
9d5c8243
AK
655
656/**
657 * igb_set_interrupt_capability - set MSI or MSI-X if supported
658 *
659 * Attempt to configure interrupts using the best available
660 * capabilities of the hardware and kernel.
661 **/
662static void igb_set_interrupt_capability(struct igb_adapter *adapter)
663{
664 int err;
665 int numvecs, i;
666
83b7180d 667 /* Number of supported queues. */
a99955fc
AD
668 adapter->num_rx_queues = adapter->rss_queues;
669 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 670
047e0030
AD
671 /* start with one vector for every rx queue */
672 numvecs = adapter->num_rx_queues;
673
3ad2f3fb 674 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
675 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
676 numvecs += adapter->num_tx_queues;
047e0030
AD
677
678 /* store the number of vectors reserved for queues */
679 adapter->num_q_vectors = numvecs;
680
681 /* add 1 vector for link status interrupts */
682 numvecs++;
9d5c8243
AK
683 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
684 GFP_KERNEL);
685 if (!adapter->msix_entries)
686 goto msi_only;
687
688 for (i = 0; i < numvecs; i++)
689 adapter->msix_entries[i].entry = i;
690
691 err = pci_enable_msix(adapter->pdev,
692 adapter->msix_entries,
693 numvecs);
694 if (err == 0)
34a20e89 695 goto out;
9d5c8243
AK
696
697 igb_reset_interrupt_capability(adapter);
698
699 /* If we can't do MSI-X, try MSI */
700msi_only:
2a3abf6d
AD
701#ifdef CONFIG_PCI_IOV
702 /* disable SR-IOV for non MSI-X configurations */
703 if (adapter->vf_data) {
704 struct e1000_hw *hw = &adapter->hw;
705 /* disable iov and allow time for transactions to clear */
706 pci_disable_sriov(adapter->pdev);
707 msleep(500);
708
709 kfree(adapter->vf_data);
710 adapter->vf_data = NULL;
711 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
712 msleep(100);
713 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
714 }
715#endif
4fc82adf 716 adapter->vfs_allocated_count = 0;
a99955fc 717 adapter->rss_queues = 1;
4fc82adf 718 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 719 adapter->num_rx_queues = 1;
661086df 720 adapter->num_tx_queues = 1;
047e0030 721 adapter->num_q_vectors = 1;
9d5c8243 722 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 723 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 724out:
661086df 725 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 726 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
727 return;
728}
729
047e0030
AD
730/**
731 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
732 * @adapter: board private structure to initialize
733 *
734 * We allocate one q_vector per queue interrupt. If allocation fails we
735 * return -ENOMEM.
736 **/
737static int igb_alloc_q_vectors(struct igb_adapter *adapter)
738{
739 struct igb_q_vector *q_vector;
740 struct e1000_hw *hw = &adapter->hw;
741 int v_idx;
742
743 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
744 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
745 if (!q_vector)
746 goto err_out;
747 q_vector->adapter = adapter;
047e0030
AD
748 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
749 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
750 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
751 adapter->q_vector[v_idx] = q_vector;
752 }
753 return 0;
754
755err_out:
fe0592b4 756 igb_free_q_vectors(adapter);
047e0030
AD
757 return -ENOMEM;
758}
759
760static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
761 int ring_idx, int v_idx)
762{
3025a446 763 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 764
3025a446 765 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 766 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
767 q_vector->itr_val = adapter->rx_itr_setting;
768 if (q_vector->itr_val && q_vector->itr_val <= 3)
769 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
770}
771
772static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
773 int ring_idx, int v_idx)
774{
3025a446 775 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 776
3025a446 777 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 778 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
779 q_vector->itr_val = adapter->tx_itr_setting;
780 if (q_vector->itr_val && q_vector->itr_val <= 3)
781 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
782}
783
784/**
785 * igb_map_ring_to_vector - maps allocated queues to vectors
786 *
787 * This function maps the recently allocated queues to vectors.
788 **/
789static int igb_map_ring_to_vector(struct igb_adapter *adapter)
790{
791 int i;
792 int v_idx = 0;
793
794 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
795 (adapter->num_q_vectors < adapter->num_tx_queues))
796 return -ENOMEM;
797
798 if (adapter->num_q_vectors >=
799 (adapter->num_rx_queues + adapter->num_tx_queues)) {
800 for (i = 0; i < adapter->num_rx_queues; i++)
801 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
802 for (i = 0; i < adapter->num_tx_queues; i++)
803 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
804 } else {
805 for (i = 0; i < adapter->num_rx_queues; i++) {
806 if (i < adapter->num_tx_queues)
807 igb_map_tx_ring_to_vector(adapter, i, v_idx);
808 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
809 }
810 for (; i < adapter->num_tx_queues; i++)
811 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
812 }
813 return 0;
814}
815
816/**
817 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
818 *
819 * This function initializes the interrupts and allocates all of the queues.
820 **/
821static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
822{
823 struct pci_dev *pdev = adapter->pdev;
824 int err;
825
826 igb_set_interrupt_capability(adapter);
827
828 err = igb_alloc_q_vectors(adapter);
829 if (err) {
830 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
831 goto err_alloc_q_vectors;
832 }
833
834 err = igb_alloc_queues(adapter);
835 if (err) {
836 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
837 goto err_alloc_queues;
838 }
839
840 err = igb_map_ring_to_vector(adapter);
841 if (err) {
842 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
843 goto err_map_queues;
844 }
845
846
847 return 0;
848err_map_queues:
849 igb_free_queues(adapter);
850err_alloc_queues:
851 igb_free_q_vectors(adapter);
852err_alloc_q_vectors:
853 igb_reset_interrupt_capability(adapter);
854 return err;
855}
856
9d5c8243
AK
857/**
858 * igb_request_irq - initialize interrupts
859 *
860 * Attempts to configure interrupts using the best available
861 * capabilities of the hardware and kernel.
862 **/
863static int igb_request_irq(struct igb_adapter *adapter)
864{
865 struct net_device *netdev = adapter->netdev;
047e0030 866 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
867 int err = 0;
868
869 if (adapter->msix_entries) {
870 err = igb_request_msix(adapter);
844290e5 871 if (!err)
9d5c8243 872 goto request_done;
9d5c8243 873 /* fall back to MSI */
047e0030 874 igb_clear_interrupt_scheme(adapter);
9d5c8243 875 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 876 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
877 igb_free_all_tx_resources(adapter);
878 igb_free_all_rx_resources(adapter);
047e0030 879 adapter->num_tx_queues = 1;
9d5c8243 880 adapter->num_rx_queues = 1;
047e0030
AD
881 adapter->num_q_vectors = 1;
882 err = igb_alloc_q_vectors(adapter);
883 if (err) {
884 dev_err(&pdev->dev,
885 "Unable to allocate memory for vectors\n");
886 goto request_done;
887 }
888 err = igb_alloc_queues(adapter);
889 if (err) {
890 dev_err(&pdev->dev,
891 "Unable to allocate memory for queues\n");
892 igb_free_q_vectors(adapter);
893 goto request_done;
894 }
895 igb_setup_all_tx_resources(adapter);
896 igb_setup_all_rx_resources(adapter);
844290e5 897 } else {
feeb2721 898 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 899 }
844290e5 900
7dfc16fa 901 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 902 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 903 netdev->name, adapter);
9d5c8243
AK
904 if (!err)
905 goto request_done;
047e0030 906
9d5c8243
AK
907 /* fall back to legacy interrupts */
908 igb_reset_interrupt_capability(adapter);
7dfc16fa 909 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
910 }
911
a0607fd3 912 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 913 netdev->name, adapter);
9d5c8243 914
6cb5e577 915 if (err)
9d5c8243
AK
916 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
917 err);
9d5c8243
AK
918
919request_done:
920 return err;
921}
922
923static void igb_free_irq(struct igb_adapter *adapter)
924{
9d5c8243
AK
925 if (adapter->msix_entries) {
926 int vector = 0, i;
927
047e0030 928 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 929
047e0030
AD
930 for (i = 0; i < adapter->num_q_vectors; i++) {
931 struct igb_q_vector *q_vector = adapter->q_vector[i];
932 free_irq(adapter->msix_entries[vector++].vector,
933 q_vector);
934 }
935 } else {
936 free_irq(adapter->pdev->irq, adapter);
9d5c8243 937 }
9d5c8243
AK
938}
939
940/**
941 * igb_irq_disable - Mask off interrupt generation on the NIC
942 * @adapter: board private structure
943 **/
944static void igb_irq_disable(struct igb_adapter *adapter)
945{
946 struct e1000_hw *hw = &adapter->hw;
947
25568a53
AD
948 /*
949 * we need to be careful when disabling interrupts. The VFs are also
950 * mapped into these registers and so clearing the bits can cause
951 * issues on the VF drivers so we only need to clear what we set
952 */
9d5c8243 953 if (adapter->msix_entries) {
2dfd1212
AD
954 u32 regval = rd32(E1000_EIAM);
955 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
956 wr32(E1000_EIMC, adapter->eims_enable_mask);
957 regval = rd32(E1000_EIAC);
958 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 959 }
844290e5
PW
960
961 wr32(E1000_IAM, 0);
9d5c8243
AK
962 wr32(E1000_IMC, ~0);
963 wrfl();
964 synchronize_irq(adapter->pdev->irq);
965}
966
967/**
968 * igb_irq_enable - Enable default interrupt generation settings
969 * @adapter: board private structure
970 **/
971static void igb_irq_enable(struct igb_adapter *adapter)
972{
973 struct e1000_hw *hw = &adapter->hw;
974
975 if (adapter->msix_entries) {
25568a53 976 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
977 u32 regval = rd32(E1000_EIAC);
978 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
979 regval = rd32(E1000_EIAM);
980 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 981 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 982 if (adapter->vfs_allocated_count) {
4ae196df 983 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
984 ims |= E1000_IMS_VMMB;
985 }
55cac248
AD
986 if (adapter->hw.mac.type == e1000_82580)
987 ims |= E1000_IMS_DRSTA;
988
25568a53 989 wr32(E1000_IMS, ims);
844290e5 990 } else {
55cac248
AD
991 wr32(E1000_IMS, IMS_ENABLE_MASK |
992 E1000_IMS_DRSTA);
993 wr32(E1000_IAM, IMS_ENABLE_MASK |
994 E1000_IMS_DRSTA);
844290e5 995 }
9d5c8243
AK
996}
997
998static void igb_update_mng_vlan(struct igb_adapter *adapter)
999{
51466239 1000 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1001 u16 vid = adapter->hw.mng_cookie.vlan_id;
1002 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1003
1004 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1005 /* add VID to filter table */
1006 igb_vfta_set(hw, vid, true);
1007 adapter->mng_vlan_id = vid;
1008 } else {
1009 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1010 }
1011
1012 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1013 (vid != old_vid) &&
1014 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1015 /* remove VID from filter table */
1016 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1017 }
1018}
1019
1020/**
1021 * igb_release_hw_control - release control of the h/w to f/w
1022 * @adapter: address of board private structure
1023 *
1024 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1025 * For ASF and Pass Through versions of f/w this means that the
1026 * driver is no longer loaded.
1027 *
1028 **/
1029static void igb_release_hw_control(struct igb_adapter *adapter)
1030{
1031 struct e1000_hw *hw = &adapter->hw;
1032 u32 ctrl_ext;
1033
1034 /* Let firmware take over control of h/w */
1035 ctrl_ext = rd32(E1000_CTRL_EXT);
1036 wr32(E1000_CTRL_EXT,
1037 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1038}
1039
9d5c8243
AK
1040/**
1041 * igb_get_hw_control - get control of the h/w from f/w
1042 * @adapter: address of board private structure
1043 *
1044 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1045 * For ASF and Pass Through versions of f/w this means that
1046 * the driver is loaded.
1047 *
1048 **/
1049static void igb_get_hw_control(struct igb_adapter *adapter)
1050{
1051 struct e1000_hw *hw = &adapter->hw;
1052 u32 ctrl_ext;
1053
1054 /* Let firmware know the driver has taken over */
1055 ctrl_ext = rd32(E1000_CTRL_EXT);
1056 wr32(E1000_CTRL_EXT,
1057 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1058}
1059
9d5c8243
AK
1060/**
1061 * igb_configure - configure the hardware for RX and TX
1062 * @adapter: private board structure
1063 **/
1064static void igb_configure(struct igb_adapter *adapter)
1065{
1066 struct net_device *netdev = adapter->netdev;
1067 int i;
1068
1069 igb_get_hw_control(adapter);
ff41f8dc 1070 igb_set_rx_mode(netdev);
9d5c8243
AK
1071
1072 igb_restore_vlan(adapter);
9d5c8243 1073
85b430b4 1074 igb_setup_tctl(adapter);
06cf2666 1075 igb_setup_mrqc(adapter);
9d5c8243 1076 igb_setup_rctl(adapter);
85b430b4
AD
1077
1078 igb_configure_tx(adapter);
9d5c8243 1079 igb_configure_rx(adapter);
662d7205
AD
1080
1081 igb_rx_fifo_flush_82575(&adapter->hw);
1082
c493ea45 1083 /* call igb_desc_unused which always leaves
9d5c8243
AK
1084 * at least 1 descriptor unused to make sure
1085 * next_to_use != next_to_clean */
1086 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1087 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1088 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1089 }
9d5c8243
AK
1090}
1091
88a268c1
NN
1092/**
1093 * igb_power_up_link - Power up the phy/serdes link
1094 * @adapter: address of board private structure
1095 **/
1096void igb_power_up_link(struct igb_adapter *adapter)
1097{
1098 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1099 igb_power_up_phy_copper(&adapter->hw);
1100 else
1101 igb_power_up_serdes_link_82575(&adapter->hw);
1102}
1103
1104/**
1105 * igb_power_down_link - Power down the phy/serdes link
1106 * @adapter: address of board private structure
1107 */
1108static void igb_power_down_link(struct igb_adapter *adapter)
1109{
1110 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1111 igb_power_down_phy_copper_82575(&adapter->hw);
1112 else
1113 igb_shutdown_serdes_link_82575(&adapter->hw);
1114}
9d5c8243
AK
1115
1116/**
1117 * igb_up - Open the interface and prepare it to handle traffic
1118 * @adapter: board private structure
1119 **/
9d5c8243
AK
1120int igb_up(struct igb_adapter *adapter)
1121{
1122 struct e1000_hw *hw = &adapter->hw;
1123 int i;
1124
1125 /* hardware has been reset, we need to reload some things */
1126 igb_configure(adapter);
1127
1128 clear_bit(__IGB_DOWN, &adapter->state);
1129
047e0030
AD
1130 for (i = 0; i < adapter->num_q_vectors; i++) {
1131 struct igb_q_vector *q_vector = adapter->q_vector[i];
1132 napi_enable(&q_vector->napi);
1133 }
844290e5 1134 if (adapter->msix_entries)
9d5c8243 1135 igb_configure_msix(adapter);
feeb2721
AD
1136 else
1137 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1138
1139 /* Clear any pending interrupts. */
1140 rd32(E1000_ICR);
1141 igb_irq_enable(adapter);
1142
d4960307
AD
1143 /* notify VFs that reset has been completed */
1144 if (adapter->vfs_allocated_count) {
1145 u32 reg_data = rd32(E1000_CTRL_EXT);
1146 reg_data |= E1000_CTRL_EXT_PFRSTD;
1147 wr32(E1000_CTRL_EXT, reg_data);
1148 }
1149
4cb9be7a
JB
1150 netif_tx_start_all_queues(adapter->netdev);
1151
25568a53
AD
1152 /* start the watchdog. */
1153 hw->mac.get_link_status = 1;
1154 schedule_work(&adapter->watchdog_task);
1155
9d5c8243
AK
1156 return 0;
1157}
1158
1159void igb_down(struct igb_adapter *adapter)
1160{
9d5c8243 1161 struct net_device *netdev = adapter->netdev;
330a6d6a 1162 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1163 u32 tctl, rctl;
1164 int i;
1165
1166 /* signal that we're down so the interrupt handler does not
1167 * reschedule our watchdog timer */
1168 set_bit(__IGB_DOWN, &adapter->state);
1169
1170 /* disable receives in the hardware */
1171 rctl = rd32(E1000_RCTL);
1172 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1173 /* flush and sleep below */
1174
fd2ea0a7 1175 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1176
1177 /* disable transmits in the hardware */
1178 tctl = rd32(E1000_TCTL);
1179 tctl &= ~E1000_TCTL_EN;
1180 wr32(E1000_TCTL, tctl);
1181 /* flush both disables and wait for them to finish */
1182 wrfl();
1183 msleep(10);
1184
047e0030
AD
1185 for (i = 0; i < adapter->num_q_vectors; i++) {
1186 struct igb_q_vector *q_vector = adapter->q_vector[i];
1187 napi_disable(&q_vector->napi);
1188 }
9d5c8243 1189
9d5c8243
AK
1190 igb_irq_disable(adapter);
1191
1192 del_timer_sync(&adapter->watchdog_timer);
1193 del_timer_sync(&adapter->phy_info_timer);
1194
9d5c8243 1195 netif_carrier_off(netdev);
04fe6358
AD
1196
1197 /* record the stats before reset*/
1198 igb_update_stats(adapter);
1199
9d5c8243
AK
1200 adapter->link_speed = 0;
1201 adapter->link_duplex = 0;
1202
3023682e
JK
1203 if (!pci_channel_offline(adapter->pdev))
1204 igb_reset(adapter);
9d5c8243
AK
1205 igb_clean_all_tx_rings(adapter);
1206 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1207#ifdef CONFIG_IGB_DCA
1208
1209 /* since we reset the hardware DCA settings were cleared */
1210 igb_setup_dca(adapter);
1211#endif
9d5c8243
AK
1212}
1213
1214void igb_reinit_locked(struct igb_adapter *adapter)
1215{
1216 WARN_ON(in_interrupt());
1217 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1218 msleep(1);
1219 igb_down(adapter);
1220 igb_up(adapter);
1221 clear_bit(__IGB_RESETTING, &adapter->state);
1222}
1223
1224void igb_reset(struct igb_adapter *adapter)
1225{
090b1795 1226 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1227 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1228 struct e1000_mac_info *mac = &hw->mac;
1229 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1230 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1231 u16 hwm;
1232
1233 /* Repartition Pba for greater than 9k mtu
1234 * To take effect CTRL.RST is required.
1235 */
fa4dfae0 1236 switch (mac->type) {
d2ba2ed8 1237 case e1000_i350:
55cac248
AD
1238 case e1000_82580:
1239 pba = rd32(E1000_RXPBS);
1240 pba = igb_rxpbs_adjust_82580(pba);
1241 break;
fa4dfae0 1242 case e1000_82576:
d249be54
AD
1243 pba = rd32(E1000_RXPBS);
1244 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1245 break;
1246 case e1000_82575:
1247 default:
1248 pba = E1000_PBA_34K;
1249 break;
2d064c06 1250 }
9d5c8243 1251
2d064c06
AD
1252 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1253 (mac->type < e1000_82576)) {
9d5c8243
AK
1254 /* adjust PBA for jumbo frames */
1255 wr32(E1000_PBA, pba);
1256
1257 /* To maintain wire speed transmits, the Tx FIFO should be
1258 * large enough to accommodate two full transmit packets,
1259 * rounded up to the next 1KB and expressed in KB. Likewise,
1260 * the Rx FIFO should be large enough to accommodate at least
1261 * one full receive packet and is similarly rounded up and
1262 * expressed in KB. */
1263 pba = rd32(E1000_PBA);
1264 /* upper 16 bits has Tx packet buffer allocation size in KB */
1265 tx_space = pba >> 16;
1266 /* lower 16 bits has Rx packet buffer allocation size in KB */
1267 pba &= 0xffff;
1268 /* the tx fifo also stores 16 bytes of information about the tx
1269 * but don't include ethernet FCS because hardware appends it */
1270 min_tx_space = (adapter->max_frame_size +
85e8d004 1271 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1272 ETH_FCS_LEN) * 2;
1273 min_tx_space = ALIGN(min_tx_space, 1024);
1274 min_tx_space >>= 10;
1275 /* software strips receive CRC, so leave room for it */
1276 min_rx_space = adapter->max_frame_size;
1277 min_rx_space = ALIGN(min_rx_space, 1024);
1278 min_rx_space >>= 10;
1279
1280 /* If current Tx allocation is less than the min Tx FIFO size,
1281 * and the min Tx FIFO size is less than the current Rx FIFO
1282 * allocation, take space away from current Rx allocation */
1283 if (tx_space < min_tx_space &&
1284 ((min_tx_space - tx_space) < pba)) {
1285 pba = pba - (min_tx_space - tx_space);
1286
1287 /* if short on rx space, rx wins and must trump tx
1288 * adjustment */
1289 if (pba < min_rx_space)
1290 pba = min_rx_space;
1291 }
2d064c06 1292 wr32(E1000_PBA, pba);
9d5c8243 1293 }
9d5c8243
AK
1294
1295 /* flow control settings */
1296 /* The high water mark must be low enough to fit one full frame
1297 * (or the size used for early receive) above it in the Rx FIFO.
1298 * Set it to the lower of:
1299 * - 90% of the Rx FIFO size, or
1300 * - the full Rx FIFO size minus one full frame */
1301 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1302 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1303
d405ea3e
AD
1304 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1305 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1306 fc->pause_time = 0xFFFF;
1307 fc->send_xon = 1;
0cce119a 1308 fc->current_mode = fc->requested_mode;
9d5c8243 1309
4ae196df
AD
1310 /* disable receive for all VFs and wait one second */
1311 if (adapter->vfs_allocated_count) {
1312 int i;
1313 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1314 adapter->vf_data[i].flags = 0;
4ae196df
AD
1315
1316 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1317 igb_ping_all_vfs(adapter);
4ae196df
AD
1318
1319 /* disable transmits and receives */
1320 wr32(E1000_VFRE, 0);
1321 wr32(E1000_VFTE, 0);
1322 }
1323
9d5c8243 1324 /* Allow time for pending master requests to run */
330a6d6a 1325 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1326 wr32(E1000_WUC, 0);
1327
330a6d6a 1328 if (hw->mac.ops.init_hw(hw))
090b1795 1329 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1330
55cac248
AD
1331 if (hw->mac.type == e1000_82580) {
1332 u32 reg = rd32(E1000_PCIEMISC);
1333 wr32(E1000_PCIEMISC,
1334 reg & ~E1000_PCIEMISC_LX_DECISION);
1335 }
88a268c1
NN
1336 if (!netif_running(adapter->netdev))
1337 igb_power_down_link(adapter);
1338
9d5c8243
AK
1339 igb_update_mng_vlan(adapter);
1340
1341 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1342 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1343
330a6d6a 1344 igb_get_phy_info(hw);
9d5c8243
AK
1345}
1346
2e5c6922 1347static const struct net_device_ops igb_netdev_ops = {
559e9c49 1348 .ndo_open = igb_open,
2e5c6922 1349 .ndo_stop = igb_close,
00829823 1350 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1351 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1352 .ndo_set_rx_mode = igb_set_rx_mode,
1353 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1354 .ndo_set_mac_address = igb_set_mac,
1355 .ndo_change_mtu = igb_change_mtu,
1356 .ndo_do_ioctl = igb_ioctl,
1357 .ndo_tx_timeout = igb_tx_timeout,
1358 .ndo_validate_addr = eth_validate_addr,
1359 .ndo_vlan_rx_register = igb_vlan_rx_register,
1360 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1361 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1362 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1363 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1364 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1365 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1366#ifdef CONFIG_NET_POLL_CONTROLLER
1367 .ndo_poll_controller = igb_netpoll,
1368#endif
1369};
1370
9d5c8243
AK
1371/**
1372 * igb_probe - Device Initialization Routine
1373 * @pdev: PCI device information struct
1374 * @ent: entry in igb_pci_tbl
1375 *
1376 * Returns 0 on success, negative on failure
1377 *
1378 * igb_probe initializes an adapter identified by a pci_dev structure.
1379 * The OS initialization, configuring of the adapter private structure,
1380 * and a hardware reset occur.
1381 **/
1382static int __devinit igb_probe(struct pci_dev *pdev,
1383 const struct pci_device_id *ent)
1384{
1385 struct net_device *netdev;
1386 struct igb_adapter *adapter;
1387 struct e1000_hw *hw;
4337e993
AD
1388 u16 eeprom_data = 0;
1389 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1390 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1391 unsigned long mmio_start, mmio_len;
2d6a5e95 1392 int err, pci_using_dac;
9d5c8243
AK
1393 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1394 u32 part_num;
1395
aed5dec3 1396 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1397 if (err)
1398 return err;
1399
1400 pci_using_dac = 0;
59d71989 1401 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1402 if (!err) {
59d71989 1403 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1404 if (!err)
1405 pci_using_dac = 1;
1406 } else {
59d71989 1407 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1408 if (err) {
59d71989 1409 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1410 if (err) {
1411 dev_err(&pdev->dev, "No usable DMA "
1412 "configuration, aborting\n");
1413 goto err_dma;
1414 }
1415 }
1416 }
1417
aed5dec3
AD
1418 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1419 IORESOURCE_MEM),
1420 igb_driver_name);
9d5c8243
AK
1421 if (err)
1422 goto err_pci_reg;
1423
19d5afd4 1424 pci_enable_pcie_error_reporting(pdev);
40a914fa 1425
9d5c8243 1426 pci_set_master(pdev);
c682fc23 1427 pci_save_state(pdev);
9d5c8243
AK
1428
1429 err = -ENOMEM;
1bfaf07b
AD
1430 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1431 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1432 if (!netdev)
1433 goto err_alloc_etherdev;
1434
1435 SET_NETDEV_DEV(netdev, &pdev->dev);
1436
1437 pci_set_drvdata(pdev, netdev);
1438 adapter = netdev_priv(netdev);
1439 adapter->netdev = netdev;
1440 adapter->pdev = pdev;
1441 hw = &adapter->hw;
1442 hw->back = adapter;
1443 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1444
1445 mmio_start = pci_resource_start(pdev, 0);
1446 mmio_len = pci_resource_len(pdev, 0);
1447
1448 err = -EIO;
28b0759c
AD
1449 hw->hw_addr = ioremap(mmio_start, mmio_len);
1450 if (!hw->hw_addr)
9d5c8243
AK
1451 goto err_ioremap;
1452
2e5c6922 1453 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1454 igb_set_ethtool_ops(netdev);
9d5c8243 1455 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1456
1457 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1458
1459 netdev->mem_start = mmio_start;
1460 netdev->mem_end = mmio_start + mmio_len;
1461
9d5c8243
AK
1462 /* PCI config space info */
1463 hw->vendor_id = pdev->vendor;
1464 hw->device_id = pdev->device;
1465 hw->revision_id = pdev->revision;
1466 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1467 hw->subsystem_device_id = pdev->subsystem_device;
1468
9d5c8243
AK
1469 /* Copy the default MAC, PHY and NVM function pointers */
1470 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1471 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1472 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1473 /* Initialize skew-specific constants */
1474 err = ei->get_invariants(hw);
1475 if (err)
450c87c8 1476 goto err_sw_init;
9d5c8243 1477
450c87c8 1478 /* setup the private structure */
9d5c8243
AK
1479 err = igb_sw_init(adapter);
1480 if (err)
1481 goto err_sw_init;
1482
1483 igb_get_bus_info_pcie(hw);
1484
1485 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1486
1487 /* Copper options */
1488 if (hw->phy.media_type == e1000_media_type_copper) {
1489 hw->phy.mdix = AUTO_ALL_MODES;
1490 hw->phy.disable_polarity_correction = false;
1491 hw->phy.ms_type = e1000_ms_hw_default;
1492 }
1493
1494 if (igb_check_reset_block(hw))
1495 dev_info(&pdev->dev,
1496 "PHY reset is blocked due to SOL/IDER session.\n");
1497
1498 netdev->features = NETIF_F_SG |
7d8eb29e 1499 NETIF_F_IP_CSUM |
9d5c8243
AK
1500 NETIF_F_HW_VLAN_TX |
1501 NETIF_F_HW_VLAN_RX |
1502 NETIF_F_HW_VLAN_FILTER;
1503
7d8eb29e 1504 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1505 netdev->features |= NETIF_F_TSO;
9d5c8243 1506 netdev->features |= NETIF_F_TSO6;
5c0999b7 1507 netdev->features |= NETIF_F_GRO;
d3352520 1508
48f29ffc
JK
1509 netdev->vlan_features |= NETIF_F_TSO;
1510 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1511 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1512 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1513 netdev->vlan_features |= NETIF_F_SG;
1514
9d5c8243
AK
1515 if (pci_using_dac)
1516 netdev->features |= NETIF_F_HIGHDMA;
1517
5b043fb0 1518 if (hw->mac.type >= e1000_82576)
b9473560
JB
1519 netdev->features |= NETIF_F_SCTP_CSUM;
1520
330a6d6a 1521 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1522
1523 /* before reading the NVM, reset the controller to put the device in a
1524 * known good starting state */
1525 hw->mac.ops.reset_hw(hw);
1526
1527 /* make sure the NVM is good */
1528 if (igb_validate_nvm_checksum(hw) < 0) {
1529 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1530 err = -EIO;
1531 goto err_eeprom;
1532 }
1533
1534 /* copy the MAC address out of the NVM */
1535 if (hw->mac.ops.read_mac_addr(hw))
1536 dev_err(&pdev->dev, "NVM Read Error\n");
1537
1538 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1539 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1540
1541 if (!is_valid_ether_addr(netdev->perm_addr)) {
1542 dev_err(&pdev->dev, "Invalid MAC Address\n");
1543 err = -EIO;
1544 goto err_eeprom;
1545 }
1546
0e340485
AD
1547 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1548 (unsigned long) adapter);
1549 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1550 (unsigned long) adapter);
9d5c8243
AK
1551
1552 INIT_WORK(&adapter->reset_task, igb_reset_task);
1553 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1554
450c87c8 1555 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1556 adapter->fc_autoneg = true;
1557 hw->mac.autoneg = true;
1558 hw->phy.autoneg_advertised = 0x2f;
1559
0cce119a
AD
1560 hw->fc.requested_mode = e1000_fc_default;
1561 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1562
9d5c8243
AK
1563 igb_validate_mdi_setting(hw);
1564
9d5c8243
AK
1565 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1566 * enable the ACPI Magic Packet filter
1567 */
1568
a2cf8b6c 1569 if (hw->bus.func == 0)
312c75ae 1570 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1571 else if (hw->mac.type == e1000_82580)
1572 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1573 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1574 &eeprom_data);
a2cf8b6c
AD
1575 else if (hw->bus.func == 1)
1576 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1577
1578 if (eeprom_data & eeprom_apme_mask)
1579 adapter->eeprom_wol |= E1000_WUFC_MAG;
1580
1581 /* now that we have the eeprom settings, apply the special cases where
1582 * the eeprom may be wrong or the board simply won't support wake on
1583 * lan on a particular port */
1584 switch (pdev->device) {
1585 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1586 adapter->eeprom_wol = 0;
1587 break;
1588 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1589 case E1000_DEV_ID_82576_FIBER:
1590 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1591 /* Wake events only supported on port A for dual fiber
1592 * regardless of eeprom setting */
1593 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1594 adapter->eeprom_wol = 0;
1595 break;
c8ea5ea9 1596 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1597 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1598 /* if quad port adapter, disable WoL on all but port A */
1599 if (global_quad_port_a != 0)
1600 adapter->eeprom_wol = 0;
1601 else
1602 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1603 /* Reset for multiple quad port adapters */
1604 if (++global_quad_port_a == 4)
1605 global_quad_port_a = 0;
1606 break;
9d5c8243
AK
1607 }
1608
1609 /* initialize the wol settings based on the eeprom settings */
1610 adapter->wol = adapter->eeprom_wol;
e1b86d84 1611 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1612
1613 /* reset the hardware with the new settings */
1614 igb_reset(adapter);
1615
1616 /* let the f/w know that the h/w is now under the control of the
1617 * driver. */
1618 igb_get_hw_control(adapter);
1619
9d5c8243
AK
1620 strcpy(netdev->name, "eth%d");
1621 err = register_netdev(netdev);
1622 if (err)
1623 goto err_register;
1624
b168dfc5
JB
1625 /* carrier off reporting is important to ethtool even BEFORE open */
1626 netif_carrier_off(netdev);
1627
421e02f0 1628#ifdef CONFIG_IGB_DCA
bbd98fe4 1629 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1630 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1631 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1632 igb_setup_dca(adapter);
1633 }
fe4506b6 1634
38c845c7 1635#endif
9d5c8243
AK
1636 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1637 /* print bus type/speed/width info */
7c510e4b 1638 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1639 netdev->name,
559e9c49 1640 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 1641 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 1642 "unknown"),
59c3de89
AD
1643 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1644 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1645 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1646 "unknown"),
7c510e4b 1647 netdev->dev_addr);
9d5c8243
AK
1648
1649 igb_read_part_num(hw, &part_num);
1650 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1651 (part_num >> 8), (part_num & 0xff));
1652
1653 dev_info(&pdev->dev,
1654 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1655 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1656 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1657 adapter->num_rx_queues, adapter->num_tx_queues);
1658
9d5c8243
AK
1659 return 0;
1660
1661err_register:
1662 igb_release_hw_control(adapter);
1663err_eeprom:
1664 if (!igb_check_reset_block(hw))
f5f4cf08 1665 igb_reset_phy(hw);
9d5c8243
AK
1666
1667 if (hw->flash_address)
1668 iounmap(hw->flash_address);
9d5c8243 1669err_sw_init:
047e0030 1670 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
1671 iounmap(hw->hw_addr);
1672err_ioremap:
1673 free_netdev(netdev);
1674err_alloc_etherdev:
559e9c49
AD
1675 pci_release_selected_regions(pdev,
1676 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
1677err_pci_reg:
1678err_dma:
1679 pci_disable_device(pdev);
1680 return err;
1681}
1682
1683/**
1684 * igb_remove - Device Removal Routine
1685 * @pdev: PCI device information struct
1686 *
1687 * igb_remove is called by the PCI subsystem to alert the driver
1688 * that it should release a PCI device. The could be caused by a
1689 * Hot-Plug event, or because the driver is going to be removed from
1690 * memory.
1691 **/
1692static void __devexit igb_remove(struct pci_dev *pdev)
1693{
1694 struct net_device *netdev = pci_get_drvdata(pdev);
1695 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1696 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1697
1698 /* flush_scheduled work may reschedule our watchdog task, so
1699 * explicitly disable watchdog tasks from being rescheduled */
1700 set_bit(__IGB_DOWN, &adapter->state);
1701 del_timer_sync(&adapter->watchdog_timer);
1702 del_timer_sync(&adapter->phy_info_timer);
1703
1704 flush_scheduled_work();
1705
421e02f0 1706#ifdef CONFIG_IGB_DCA
7dfc16fa 1707 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1708 dev_info(&pdev->dev, "DCA disabled\n");
1709 dca_remove_requester(&pdev->dev);
7dfc16fa 1710 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1711 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1712 }
1713#endif
1714
9d5c8243
AK
1715 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1716 * would have already happened in close and is redundant. */
1717 igb_release_hw_control(adapter);
1718
1719 unregister_netdev(netdev);
1720
047e0030 1721 igb_clear_interrupt_scheme(adapter);
9d5c8243 1722
37680117
AD
1723#ifdef CONFIG_PCI_IOV
1724 /* reclaim resources allocated to VFs */
1725 if (adapter->vf_data) {
1726 /* disable iov and allow time for transactions to clear */
1727 pci_disable_sriov(pdev);
1728 msleep(500);
1729
1730 kfree(adapter->vf_data);
1731 adapter->vf_data = NULL;
1732 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1733 msleep(100);
1734 dev_info(&pdev->dev, "IOV Disabled\n");
1735 }
1736#endif
559e9c49 1737
28b0759c
AD
1738 iounmap(hw->hw_addr);
1739 if (hw->flash_address)
1740 iounmap(hw->flash_address);
559e9c49
AD
1741 pci_release_selected_regions(pdev,
1742 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
1743
1744 free_netdev(netdev);
1745
19d5afd4 1746 pci_disable_pcie_error_reporting(pdev);
40a914fa 1747
9d5c8243
AK
1748 pci_disable_device(pdev);
1749}
1750
a6b623e0
AD
1751/**
1752 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1753 * @adapter: board private structure to initialize
1754 *
1755 * This function initializes the vf specific data storage and then attempts to
1756 * allocate the VFs. The reason for ordering it this way is because it is much
1757 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1758 * the memory for the VFs.
1759 **/
1760static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1761{
1762#ifdef CONFIG_PCI_IOV
1763 struct pci_dev *pdev = adapter->pdev;
1764
1765 if (adapter->vfs_allocated_count > 7)
1766 adapter->vfs_allocated_count = 7;
1767
1768 if (adapter->vfs_allocated_count) {
1769 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1770 sizeof(struct vf_data_storage),
1771 GFP_KERNEL);
1772 /* if allocation failed then we do not support SR-IOV */
1773 if (!adapter->vf_data) {
1774 adapter->vfs_allocated_count = 0;
1775 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1776 "Data Storage\n");
1777 }
1778 }
1779
1780 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1781 kfree(adapter->vf_data);
1782 adapter->vf_data = NULL;
1783#endif /* CONFIG_PCI_IOV */
1784 adapter->vfs_allocated_count = 0;
1785#ifdef CONFIG_PCI_IOV
1786 } else {
1787 unsigned char mac_addr[ETH_ALEN];
1788 int i;
1789 dev_info(&pdev->dev, "%d vfs allocated\n",
1790 adapter->vfs_allocated_count);
1791 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1792 random_ether_addr(mac_addr);
1793 igb_set_vf_mac(adapter, i, mac_addr);
1794 }
1795 }
1796#endif /* CONFIG_PCI_IOV */
1797}
1798
115f459a
AD
1799
1800/**
1801 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1802 * @adapter: board private structure to initialize
1803 *
1804 * igb_init_hw_timer initializes the function pointer and values for the hw
1805 * timer found in hardware.
1806 **/
1807static void igb_init_hw_timer(struct igb_adapter *adapter)
1808{
1809 struct e1000_hw *hw = &adapter->hw;
1810
1811 switch (hw->mac.type) {
d2ba2ed8 1812 case e1000_i350:
55cac248
AD
1813 case e1000_82580:
1814 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1815 adapter->cycles.read = igb_read_clock;
1816 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1817 adapter->cycles.mult = 1;
1818 /*
1819 * The 82580 timesync updates the system timer every 8ns by 8ns
1820 * and the value cannot be shifted. Instead we need to shift
1821 * the registers to generate a 64bit timer value. As a result
1822 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1823 * 24 in order to generate a larger value for synchronization.
1824 */
1825 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1826 /* disable system timer temporarily by setting bit 31 */
1827 wr32(E1000_TSAUXC, 0x80000000);
1828 wrfl();
1829
1830 /* Set registers so that rollover occurs soon to test this. */
1831 wr32(E1000_SYSTIMR, 0x00000000);
1832 wr32(E1000_SYSTIML, 0x80000000);
1833 wr32(E1000_SYSTIMH, 0x000000FF);
1834 wrfl();
1835
1836 /* enable system timer by clearing bit 31 */
1837 wr32(E1000_TSAUXC, 0x0);
1838 wrfl();
1839
1840 timecounter_init(&adapter->clock,
1841 &adapter->cycles,
1842 ktime_to_ns(ktime_get_real()));
1843 /*
1844 * Synchronize our NIC clock against system wall clock. NIC
1845 * time stamp reading requires ~3us per sample, each sample
1846 * was pretty stable even under load => only require 10
1847 * samples for each offset comparison.
1848 */
1849 memset(&adapter->compare, 0, sizeof(adapter->compare));
1850 adapter->compare.source = &adapter->clock;
1851 adapter->compare.target = ktime_get_real;
1852 adapter->compare.num_samples = 10;
1853 timecompare_update(&adapter->compare, 0);
1854 break;
115f459a
AD
1855 case e1000_82576:
1856 /*
1857 * Initialize hardware timer: we keep it running just in case
1858 * that some program needs it later on.
1859 */
1860 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1861 adapter->cycles.read = igb_read_clock;
1862 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1863 adapter->cycles.mult = 1;
1864 /**
1865 * Scale the NIC clock cycle by a large factor so that
1866 * relatively small clock corrections can be added or
1867 * substracted at each clock tick. The drawbacks of a large
1868 * factor are a) that the clock register overflows more quickly
1869 * (not such a big deal) and b) that the increment per tick has
1870 * to fit into 24 bits. As a result we need to use a shift of
1871 * 19 so we can fit a value of 16 into the TIMINCA register.
1872 */
1873 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1874 wr32(E1000_TIMINCA,
1875 (1 << E1000_TIMINCA_16NS_SHIFT) |
1876 (16 << IGB_82576_TSYNC_SHIFT));
1877
1878 /* Set registers so that rollover occurs soon to test this. */
1879 wr32(E1000_SYSTIML, 0x00000000);
1880 wr32(E1000_SYSTIMH, 0xFF800000);
1881 wrfl();
1882
1883 timecounter_init(&adapter->clock,
1884 &adapter->cycles,
1885 ktime_to_ns(ktime_get_real()));
1886 /*
1887 * Synchronize our NIC clock against system wall clock. NIC
1888 * time stamp reading requires ~3us per sample, each sample
1889 * was pretty stable even under load => only require 10
1890 * samples for each offset comparison.
1891 */
1892 memset(&adapter->compare, 0, sizeof(adapter->compare));
1893 adapter->compare.source = &adapter->clock;
1894 adapter->compare.target = ktime_get_real;
1895 adapter->compare.num_samples = 10;
1896 timecompare_update(&adapter->compare, 0);
1897 break;
1898 case e1000_82575:
1899 /* 82575 does not support timesync */
1900 default:
1901 break;
1902 }
1903
1904}
1905
9d5c8243
AK
1906/**
1907 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1908 * @adapter: board private structure to initialize
1909 *
1910 * igb_sw_init initializes the Adapter private data structure.
1911 * Fields are initialized based on PCI device information and
1912 * OS network device settings (MTU size).
1913 **/
1914static int __devinit igb_sw_init(struct igb_adapter *adapter)
1915{
1916 struct e1000_hw *hw = &adapter->hw;
1917 struct net_device *netdev = adapter->netdev;
1918 struct pci_dev *pdev = adapter->pdev;
1919
1920 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1921
68fd9910
AD
1922 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1923 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
1924 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1925 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1926
9d5c8243
AK
1927 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1928 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1929
a6b623e0
AD
1930#ifdef CONFIG_PCI_IOV
1931 if (hw->mac.type == e1000_82576)
1932 adapter->vfs_allocated_count = max_vfs;
1933
1934#endif /* CONFIG_PCI_IOV */
a99955fc
AD
1935 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1936
1937 /*
1938 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1939 * then we should combine the queues into a queue pair in order to
1940 * conserve interrupts due to limited supply
1941 */
1942 if ((adapter->rss_queues > 4) ||
1943 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1944 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1945
a6b623e0 1946 /* This call may decrease the number of queues */
047e0030 1947 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
1948 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1949 return -ENOMEM;
1950 }
1951
115f459a 1952 igb_init_hw_timer(adapter);
a6b623e0
AD
1953 igb_probe_vfs(adapter);
1954
9d5c8243
AK
1955 /* Explicitly disable IRQ since the NIC can be in any state. */
1956 igb_irq_disable(adapter);
1957
1958 set_bit(__IGB_DOWN, &adapter->state);
1959 return 0;
1960}
1961
1962/**
1963 * igb_open - Called when a network interface is made active
1964 * @netdev: network interface device structure
1965 *
1966 * Returns 0 on success, negative value on failure
1967 *
1968 * The open entry point is called when a network interface is made
1969 * active by the system (IFF_UP). At this point all resources needed
1970 * for transmit and receive operations are allocated, the interrupt
1971 * handler is registered with the OS, the watchdog timer is started,
1972 * and the stack is notified that the interface is ready.
1973 **/
1974static int igb_open(struct net_device *netdev)
1975{
1976 struct igb_adapter *adapter = netdev_priv(netdev);
1977 struct e1000_hw *hw = &adapter->hw;
1978 int err;
1979 int i;
1980
1981 /* disallow open during test */
1982 if (test_bit(__IGB_TESTING, &adapter->state))
1983 return -EBUSY;
1984
b168dfc5
JB
1985 netif_carrier_off(netdev);
1986
9d5c8243
AK
1987 /* allocate transmit descriptors */
1988 err = igb_setup_all_tx_resources(adapter);
1989 if (err)
1990 goto err_setup_tx;
1991
1992 /* allocate receive descriptors */
1993 err = igb_setup_all_rx_resources(adapter);
1994 if (err)
1995 goto err_setup_rx;
1996
88a268c1 1997 igb_power_up_link(adapter);
9d5c8243 1998
9d5c8243
AK
1999 /* before we allocate an interrupt, we must be ready to handle it.
2000 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2001 * as soon as we call pci_request_irq, so we have to setup our
2002 * clean_rx handler before we do so. */
2003 igb_configure(adapter);
2004
2005 err = igb_request_irq(adapter);
2006 if (err)
2007 goto err_req_irq;
2008
2009 /* From here on the code is the same as igb_up() */
2010 clear_bit(__IGB_DOWN, &adapter->state);
2011
047e0030
AD
2012 for (i = 0; i < adapter->num_q_vectors; i++) {
2013 struct igb_q_vector *q_vector = adapter->q_vector[i];
2014 napi_enable(&q_vector->napi);
2015 }
9d5c8243
AK
2016
2017 /* Clear any pending interrupts. */
2018 rd32(E1000_ICR);
844290e5
PW
2019
2020 igb_irq_enable(adapter);
2021
d4960307
AD
2022 /* notify VFs that reset has been completed */
2023 if (adapter->vfs_allocated_count) {
2024 u32 reg_data = rd32(E1000_CTRL_EXT);
2025 reg_data |= E1000_CTRL_EXT_PFRSTD;
2026 wr32(E1000_CTRL_EXT, reg_data);
2027 }
2028
d55b53ff
JK
2029 netif_tx_start_all_queues(netdev);
2030
25568a53
AD
2031 /* start the watchdog. */
2032 hw->mac.get_link_status = 1;
2033 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2034
2035 return 0;
2036
2037err_req_irq:
2038 igb_release_hw_control(adapter);
88a268c1 2039 igb_power_down_link(adapter);
9d5c8243
AK
2040 igb_free_all_rx_resources(adapter);
2041err_setup_rx:
2042 igb_free_all_tx_resources(adapter);
2043err_setup_tx:
2044 igb_reset(adapter);
2045
2046 return err;
2047}
2048
2049/**
2050 * igb_close - Disables a network interface
2051 * @netdev: network interface device structure
2052 *
2053 * Returns 0, this is not allowed to fail
2054 *
2055 * The close entry point is called when an interface is de-activated
2056 * by the OS. The hardware is still under the driver's control, but
2057 * needs to be disabled. A global MAC reset is issued to stop the
2058 * hardware, and all transmit and receive resources are freed.
2059 **/
2060static int igb_close(struct net_device *netdev)
2061{
2062 struct igb_adapter *adapter = netdev_priv(netdev);
2063
2064 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2065 igb_down(adapter);
2066
2067 igb_free_irq(adapter);
2068
2069 igb_free_all_tx_resources(adapter);
2070 igb_free_all_rx_resources(adapter);
2071
9d5c8243
AK
2072 return 0;
2073}
2074
2075/**
2076 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2077 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2078 *
2079 * Return 0 on success, negative on failure
2080 **/
80785298 2081int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2082{
59d71989 2083 struct device *dev = tx_ring->dev;
9d5c8243
AK
2084 int size;
2085
2086 size = sizeof(struct igb_buffer) * tx_ring->count;
2087 tx_ring->buffer_info = vmalloc(size);
2088 if (!tx_ring->buffer_info)
2089 goto err;
2090 memset(tx_ring->buffer_info, 0, size);
2091
2092 /* round up to nearest 4K */
85e8d004 2093 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2094 tx_ring->size = ALIGN(tx_ring->size, 4096);
2095
59d71989
AD
2096 tx_ring->desc = dma_alloc_coherent(dev,
2097 tx_ring->size,
2098 &tx_ring->dma,
2099 GFP_KERNEL);
9d5c8243
AK
2100
2101 if (!tx_ring->desc)
2102 goto err;
2103
9d5c8243
AK
2104 tx_ring->next_to_use = 0;
2105 tx_ring->next_to_clean = 0;
9d5c8243
AK
2106 return 0;
2107
2108err:
2109 vfree(tx_ring->buffer_info);
59d71989 2110 dev_err(dev,
9d5c8243
AK
2111 "Unable to allocate memory for the transmit descriptor ring\n");
2112 return -ENOMEM;
2113}
2114
2115/**
2116 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2117 * (Descriptors) for all queues
2118 * @adapter: board private structure
2119 *
2120 * Return 0 on success, negative on failure
2121 **/
2122static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2123{
439705e1 2124 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2125 int i, err = 0;
2126
2127 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2128 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2129 if (err) {
439705e1 2130 dev_err(&pdev->dev,
9d5c8243
AK
2131 "Allocation for Tx Queue %u failed\n", i);
2132 for (i--; i >= 0; i--)
3025a446 2133 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2134 break;
2135 }
2136 }
2137
a99955fc 2138 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2139 int r_idx = i % adapter->num_tx_queues;
3025a446 2140 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2141 }
9d5c8243
AK
2142 return err;
2143}
2144
2145/**
85b430b4
AD
2146 * igb_setup_tctl - configure the transmit control registers
2147 * @adapter: Board private structure
9d5c8243 2148 **/
d7ee5b3a 2149void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2150{
9d5c8243
AK
2151 struct e1000_hw *hw = &adapter->hw;
2152 u32 tctl;
9d5c8243 2153
85b430b4
AD
2154 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2155 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2156
2157 /* Program the Transmit Control Register */
9d5c8243
AK
2158 tctl = rd32(E1000_TCTL);
2159 tctl &= ~E1000_TCTL_CT;
2160 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2161 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2162
2163 igb_config_collision_dist(hw);
2164
9d5c8243
AK
2165 /* Enable transmits */
2166 tctl |= E1000_TCTL_EN;
2167
2168 wr32(E1000_TCTL, tctl);
2169}
2170
85b430b4
AD
2171/**
2172 * igb_configure_tx_ring - Configure transmit ring after Reset
2173 * @adapter: board private structure
2174 * @ring: tx ring to configure
2175 *
2176 * Configure a transmit ring after a reset.
2177 **/
d7ee5b3a
AD
2178void igb_configure_tx_ring(struct igb_adapter *adapter,
2179 struct igb_ring *ring)
85b430b4
AD
2180{
2181 struct e1000_hw *hw = &adapter->hw;
2182 u32 txdctl;
2183 u64 tdba = ring->dma;
2184 int reg_idx = ring->reg_idx;
2185
2186 /* disable the queue */
2187 txdctl = rd32(E1000_TXDCTL(reg_idx));
2188 wr32(E1000_TXDCTL(reg_idx),
2189 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2190 wrfl();
2191 mdelay(10);
2192
2193 wr32(E1000_TDLEN(reg_idx),
2194 ring->count * sizeof(union e1000_adv_tx_desc));
2195 wr32(E1000_TDBAL(reg_idx),
2196 tdba & 0x00000000ffffffffULL);
2197 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2198
fce99e34
AD
2199 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2200 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2201 writel(0, ring->head);
2202 writel(0, ring->tail);
85b430b4
AD
2203
2204 txdctl |= IGB_TX_PTHRESH;
2205 txdctl |= IGB_TX_HTHRESH << 8;
2206 txdctl |= IGB_TX_WTHRESH << 16;
2207
2208 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2209 wr32(E1000_TXDCTL(reg_idx), txdctl);
2210}
2211
2212/**
2213 * igb_configure_tx - Configure transmit Unit after Reset
2214 * @adapter: board private structure
2215 *
2216 * Configure the Tx unit of the MAC after a reset.
2217 **/
2218static void igb_configure_tx(struct igb_adapter *adapter)
2219{
2220 int i;
2221
2222 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2223 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2224}
2225
9d5c8243
AK
2226/**
2227 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2228 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2229 *
2230 * Returns 0 on success, negative on failure
2231 **/
80785298 2232int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2233{
59d71989 2234 struct device *dev = rx_ring->dev;
9d5c8243
AK
2235 int size, desc_len;
2236
2237 size = sizeof(struct igb_buffer) * rx_ring->count;
2238 rx_ring->buffer_info = vmalloc(size);
2239 if (!rx_ring->buffer_info)
2240 goto err;
2241 memset(rx_ring->buffer_info, 0, size);
2242
2243 desc_len = sizeof(union e1000_adv_rx_desc);
2244
2245 /* Round up to nearest 4K */
2246 rx_ring->size = rx_ring->count * desc_len;
2247 rx_ring->size = ALIGN(rx_ring->size, 4096);
2248
59d71989
AD
2249 rx_ring->desc = dma_alloc_coherent(dev,
2250 rx_ring->size,
2251 &rx_ring->dma,
2252 GFP_KERNEL);
9d5c8243
AK
2253
2254 if (!rx_ring->desc)
2255 goto err;
2256
2257 rx_ring->next_to_clean = 0;
2258 rx_ring->next_to_use = 0;
9d5c8243 2259
9d5c8243
AK
2260 return 0;
2261
2262err:
2263 vfree(rx_ring->buffer_info);
439705e1 2264 rx_ring->buffer_info = NULL;
59d71989
AD
2265 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2266 " ring\n");
9d5c8243
AK
2267 return -ENOMEM;
2268}
2269
2270/**
2271 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2272 * (Descriptors) for all queues
2273 * @adapter: board private structure
2274 *
2275 * Return 0 on success, negative on failure
2276 **/
2277static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2278{
439705e1 2279 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2280 int i, err = 0;
2281
2282 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2283 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2284 if (err) {
439705e1 2285 dev_err(&pdev->dev,
9d5c8243
AK
2286 "Allocation for Rx Queue %u failed\n", i);
2287 for (i--; i >= 0; i--)
3025a446 2288 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2289 break;
2290 }
2291 }
2292
2293 return err;
2294}
2295
06cf2666
AD
2296/**
2297 * igb_setup_mrqc - configure the multiple receive queue control registers
2298 * @adapter: Board private structure
2299 **/
2300static void igb_setup_mrqc(struct igb_adapter *adapter)
2301{
2302 struct e1000_hw *hw = &adapter->hw;
2303 u32 mrqc, rxcsum;
2304 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2305 union e1000_reta {
2306 u32 dword;
2307 u8 bytes[4];
2308 } reta;
2309 static const u8 rsshash[40] = {
2310 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2311 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2312 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2313 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2314
2315 /* Fill out hash function seeds */
2316 for (j = 0; j < 10; j++) {
2317 u32 rsskey = rsshash[(j * 4)];
2318 rsskey |= rsshash[(j * 4) + 1] << 8;
2319 rsskey |= rsshash[(j * 4) + 2] << 16;
2320 rsskey |= rsshash[(j * 4) + 3] << 24;
2321 array_wr32(E1000_RSSRK(0), j, rsskey);
2322 }
2323
a99955fc 2324 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2325
2326 if (adapter->vfs_allocated_count) {
2327 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2328 switch (hw->mac.type) {
d2ba2ed8 2329 case e1000_i350:
55cac248
AD
2330 case e1000_82580:
2331 num_rx_queues = 1;
2332 shift = 0;
2333 break;
06cf2666
AD
2334 case e1000_82576:
2335 shift = 3;
2336 num_rx_queues = 2;
2337 break;
2338 case e1000_82575:
2339 shift = 2;
2340 shift2 = 6;
2341 default:
2342 break;
2343 }
2344 } else {
2345 if (hw->mac.type == e1000_82575)
2346 shift = 6;
2347 }
2348
2349 for (j = 0; j < (32 * 4); j++) {
2350 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2351 if (shift2)
2352 reta.bytes[j & 3] |= num_rx_queues << shift2;
2353 if ((j & 3) == 3)
2354 wr32(E1000_RETA(j >> 2), reta.dword);
2355 }
2356
2357 /*
2358 * Disable raw packet checksumming so that RSS hash is placed in
2359 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2360 * offloads as they are enabled by default
2361 */
2362 rxcsum = rd32(E1000_RXCSUM);
2363 rxcsum |= E1000_RXCSUM_PCSD;
2364
2365 if (adapter->hw.mac.type >= e1000_82576)
2366 /* Enable Receive Checksum Offload for SCTP */
2367 rxcsum |= E1000_RXCSUM_CRCOFL;
2368
2369 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2370 wr32(E1000_RXCSUM, rxcsum);
2371
2372 /* If VMDq is enabled then we set the appropriate mode for that, else
2373 * we default to RSS so that an RSS hash is calculated per packet even
2374 * if we are only using one queue */
2375 if (adapter->vfs_allocated_count) {
2376 if (hw->mac.type > e1000_82575) {
2377 /* Set the default pool for the PF's first queue */
2378 u32 vtctl = rd32(E1000_VT_CTL);
2379 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2380 E1000_VT_CTL_DISABLE_DEF_POOL);
2381 vtctl |= adapter->vfs_allocated_count <<
2382 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2383 wr32(E1000_VT_CTL, vtctl);
2384 }
a99955fc 2385 if (adapter->rss_queues > 1)
06cf2666
AD
2386 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2387 else
2388 mrqc = E1000_MRQC_ENABLE_VMDQ;
2389 } else {
2390 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2391 }
2392 igb_vmm_control(adapter);
2393
2394 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2395 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2396 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2397 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2398 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2399 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2400 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2401 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2402
2403 wr32(E1000_MRQC, mrqc);
2404}
2405
9d5c8243
AK
2406/**
2407 * igb_setup_rctl - configure the receive control registers
2408 * @adapter: Board private structure
2409 **/
d7ee5b3a 2410void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2411{
2412 struct e1000_hw *hw = &adapter->hw;
2413 u32 rctl;
9d5c8243
AK
2414
2415 rctl = rd32(E1000_RCTL);
2416
2417 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2418 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2419
69d728ba 2420 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2421 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2422
87cb7e8c
AK
2423 /*
2424 * enable stripping of CRC. It's unlikely this will break BMC
2425 * redirection as it did with e1000. Newer features require
2426 * that the HW strips the CRC.
73cd78f1 2427 */
87cb7e8c 2428 rctl |= E1000_RCTL_SECRC;
9d5c8243 2429
559e9c49 2430 /* disable store bad packets and clear size bits. */
ec54d7d6 2431 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2432
6ec43fe6
AD
2433 /* enable LPE to prevent packets larger than max_frame_size */
2434 rctl |= E1000_RCTL_LPE;
9d5c8243 2435
952f72a8
AD
2436 /* disable queue 0 to prevent tail write w/o re-config */
2437 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2438
e1739522
AD
2439 /* Attention!!! For SR-IOV PF driver operations you must enable
2440 * queue drop for all VF and PF queues to prevent head of line blocking
2441 * if an un-trusted VF does not provide descriptors to hardware.
2442 */
2443 if (adapter->vfs_allocated_count) {
e1739522
AD
2444 /* set all queue drop enable bits */
2445 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2446 }
2447
9d5c8243
AK
2448 wr32(E1000_RCTL, rctl);
2449}
2450
7d5753f0
AD
2451static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2452 int vfn)
2453{
2454 struct e1000_hw *hw = &adapter->hw;
2455 u32 vmolr;
2456
2457 /* if it isn't the PF check to see if VFs are enabled and
2458 * increase the size to support vlan tags */
2459 if (vfn < adapter->vfs_allocated_count &&
2460 adapter->vf_data[vfn].vlans_enabled)
2461 size += VLAN_TAG_SIZE;
2462
2463 vmolr = rd32(E1000_VMOLR(vfn));
2464 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2465 vmolr |= size | E1000_VMOLR_LPE;
2466 wr32(E1000_VMOLR(vfn), vmolr);
2467
2468 return 0;
2469}
2470
e1739522
AD
2471/**
2472 * igb_rlpml_set - set maximum receive packet size
2473 * @adapter: board private structure
2474 *
2475 * Configure maximum receivable packet size.
2476 **/
2477static void igb_rlpml_set(struct igb_adapter *adapter)
2478{
2479 u32 max_frame_size = adapter->max_frame_size;
2480 struct e1000_hw *hw = &adapter->hw;
2481 u16 pf_id = adapter->vfs_allocated_count;
2482
2483 if (adapter->vlgrp)
2484 max_frame_size += VLAN_TAG_SIZE;
2485
2486 /* if vfs are enabled we set RLPML to the largest possible request
2487 * size and set the VMOLR RLPML to the size we need */
2488 if (pf_id) {
2489 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2490 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2491 }
2492
2493 wr32(E1000_RLPML, max_frame_size);
2494}
2495
8151d294
WM
2496static inline void igb_set_vmolr(struct igb_adapter *adapter,
2497 int vfn, bool aupe)
7d5753f0
AD
2498{
2499 struct e1000_hw *hw = &adapter->hw;
2500 u32 vmolr;
2501
2502 /*
2503 * This register exists only on 82576 and newer so if we are older then
2504 * we should exit and do nothing
2505 */
2506 if (hw->mac.type < e1000_82576)
2507 return;
2508
2509 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2510 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2511 if (aupe)
2512 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2513 else
2514 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2515
2516 /* clear all bits that might not be set */
2517 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2518
a99955fc 2519 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2520 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2521 /*
2522 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2523 * multicast packets
2524 */
2525 if (vfn <= adapter->vfs_allocated_count)
2526 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2527
2528 wr32(E1000_VMOLR(vfn), vmolr);
2529}
2530
85b430b4
AD
2531/**
2532 * igb_configure_rx_ring - Configure a receive ring after Reset
2533 * @adapter: board private structure
2534 * @ring: receive ring to be configured
2535 *
2536 * Configure the Rx unit of the MAC after a reset.
2537 **/
d7ee5b3a
AD
2538void igb_configure_rx_ring(struct igb_adapter *adapter,
2539 struct igb_ring *ring)
85b430b4
AD
2540{
2541 struct e1000_hw *hw = &adapter->hw;
2542 u64 rdba = ring->dma;
2543 int reg_idx = ring->reg_idx;
952f72a8 2544 u32 srrctl, rxdctl;
85b430b4
AD
2545
2546 /* disable the queue */
2547 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2548 wr32(E1000_RXDCTL(reg_idx),
2549 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2550
2551 /* Set DMA base address registers */
2552 wr32(E1000_RDBAL(reg_idx),
2553 rdba & 0x00000000ffffffffULL);
2554 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2555 wr32(E1000_RDLEN(reg_idx),
2556 ring->count * sizeof(union e1000_adv_rx_desc));
2557
2558 /* initialize head and tail */
fce99e34
AD
2559 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2560 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2561 writel(0, ring->head);
2562 writel(0, ring->tail);
85b430b4 2563
952f72a8 2564 /* set descriptor configuration */
4c844851
AD
2565 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2566 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2567 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2568#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2569 srrctl |= IGB_RXBUFFER_16384 >>
2570 E1000_SRRCTL_BSIZEPKT_SHIFT;
2571#else
2572 srrctl |= (PAGE_SIZE / 2) >>
2573 E1000_SRRCTL_BSIZEPKT_SHIFT;
2574#endif
2575 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2576 } else {
4c844851 2577 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2578 E1000_SRRCTL_BSIZEPKT_SHIFT;
2579 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2580 }
757b77e2
NN
2581 if (hw->mac.type == e1000_82580)
2582 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2583 /* Only set Drop Enable if we are supporting multiple queues */
2584 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2585 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2586
2587 wr32(E1000_SRRCTL(reg_idx), srrctl);
2588
7d5753f0 2589 /* set filtering for VMDQ pools */
8151d294 2590 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2591
85b430b4
AD
2592 /* enable receive descriptor fetching */
2593 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2594 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2595 rxdctl &= 0xFFF00000;
2596 rxdctl |= IGB_RX_PTHRESH;
2597 rxdctl |= IGB_RX_HTHRESH << 8;
2598 rxdctl |= IGB_RX_WTHRESH << 16;
2599 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2600}
2601
9d5c8243
AK
2602/**
2603 * igb_configure_rx - Configure receive Unit after Reset
2604 * @adapter: board private structure
2605 *
2606 * Configure the Rx unit of the MAC after a reset.
2607 **/
2608static void igb_configure_rx(struct igb_adapter *adapter)
2609{
9107584e 2610 int i;
9d5c8243 2611
68d480c4
AD
2612 /* set UTA to appropriate mode */
2613 igb_set_uta(adapter);
2614
26ad9178
AD
2615 /* set the correct pool for the PF default MAC address in entry 0 */
2616 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2617 adapter->vfs_allocated_count);
2618
06cf2666
AD
2619 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2620 * the Base and Length of the Rx Descriptor Ring */
2621 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2622 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2623}
2624
2625/**
2626 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2627 * @tx_ring: Tx descriptor ring for a specific queue
2628 *
2629 * Free all transmit software resources
2630 **/
68fd9910 2631void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2632{
3b644cf6 2633 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2634
2635 vfree(tx_ring->buffer_info);
2636 tx_ring->buffer_info = NULL;
2637
439705e1
AD
2638 /* if not set, then don't free */
2639 if (!tx_ring->desc)
2640 return;
2641
59d71989
AD
2642 dma_free_coherent(tx_ring->dev, tx_ring->size,
2643 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2644
2645 tx_ring->desc = NULL;
2646}
2647
2648/**
2649 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2650 * @adapter: board private structure
2651 *
2652 * Free all transmit software resources
2653 **/
2654static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2655{
2656 int i;
2657
2658 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2659 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2660}
2661
b1a436c3
AD
2662void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2663 struct igb_buffer *buffer_info)
9d5c8243 2664{
6366ad33
AD
2665 if (buffer_info->dma) {
2666 if (buffer_info->mapped_as_page)
59d71989 2667 dma_unmap_page(tx_ring->dev,
6366ad33
AD
2668 buffer_info->dma,
2669 buffer_info->length,
59d71989 2670 DMA_TO_DEVICE);
6366ad33 2671 else
59d71989 2672 dma_unmap_single(tx_ring->dev,
6366ad33
AD
2673 buffer_info->dma,
2674 buffer_info->length,
59d71989 2675 DMA_TO_DEVICE);
6366ad33
AD
2676 buffer_info->dma = 0;
2677 }
9d5c8243
AK
2678 if (buffer_info->skb) {
2679 dev_kfree_skb_any(buffer_info->skb);
2680 buffer_info->skb = NULL;
2681 }
2682 buffer_info->time_stamp = 0;
6366ad33
AD
2683 buffer_info->length = 0;
2684 buffer_info->next_to_watch = 0;
2685 buffer_info->mapped_as_page = false;
9d5c8243
AK
2686}
2687
2688/**
2689 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2690 * @tx_ring: ring to be cleaned
2691 **/
3b644cf6 2692static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
2693{
2694 struct igb_buffer *buffer_info;
2695 unsigned long size;
2696 unsigned int i;
2697
2698 if (!tx_ring->buffer_info)
2699 return;
2700 /* Free all the Tx ring sk_buffs */
2701
2702 for (i = 0; i < tx_ring->count; i++) {
2703 buffer_info = &tx_ring->buffer_info[i];
80785298 2704 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
2705 }
2706
2707 size = sizeof(struct igb_buffer) * tx_ring->count;
2708 memset(tx_ring->buffer_info, 0, size);
2709
2710 /* Zero out the descriptor ring */
9d5c8243
AK
2711 memset(tx_ring->desc, 0, tx_ring->size);
2712
2713 tx_ring->next_to_use = 0;
2714 tx_ring->next_to_clean = 0;
9d5c8243
AK
2715}
2716
2717/**
2718 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2719 * @adapter: board private structure
2720 **/
2721static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2722{
2723 int i;
2724
2725 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2726 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
2727}
2728
2729/**
2730 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2731 * @rx_ring: ring to clean the resources from
2732 *
2733 * Free all receive software resources
2734 **/
68fd9910 2735void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2736{
3b644cf6 2737 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2738
2739 vfree(rx_ring->buffer_info);
2740 rx_ring->buffer_info = NULL;
2741
439705e1
AD
2742 /* if not set, then don't free */
2743 if (!rx_ring->desc)
2744 return;
2745
59d71989
AD
2746 dma_free_coherent(rx_ring->dev, rx_ring->size,
2747 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
2748
2749 rx_ring->desc = NULL;
2750}
2751
2752/**
2753 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2754 * @adapter: board private structure
2755 *
2756 * Free all receive software resources
2757 **/
2758static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2759{
2760 int i;
2761
2762 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2763 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2764}
2765
2766/**
2767 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2768 * @rx_ring: ring to free buffers from
2769 **/
3b644cf6 2770static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
2771{
2772 struct igb_buffer *buffer_info;
9d5c8243
AK
2773 unsigned long size;
2774 unsigned int i;
2775
2776 if (!rx_ring->buffer_info)
2777 return;
439705e1 2778
9d5c8243
AK
2779 /* Free all the Rx ring sk_buffs */
2780 for (i = 0; i < rx_ring->count; i++) {
2781 buffer_info = &rx_ring->buffer_info[i];
2782 if (buffer_info->dma) {
59d71989 2783 dma_unmap_single(rx_ring->dev,
80785298 2784 buffer_info->dma,
4c844851 2785 rx_ring->rx_buffer_len,
59d71989 2786 DMA_FROM_DEVICE);
9d5c8243
AK
2787 buffer_info->dma = 0;
2788 }
2789
2790 if (buffer_info->skb) {
2791 dev_kfree_skb(buffer_info->skb);
2792 buffer_info->skb = NULL;
2793 }
6ec43fe6 2794 if (buffer_info->page_dma) {
59d71989 2795 dma_unmap_page(rx_ring->dev,
80785298 2796 buffer_info->page_dma,
6ec43fe6 2797 PAGE_SIZE / 2,
59d71989 2798 DMA_FROM_DEVICE);
6ec43fe6
AD
2799 buffer_info->page_dma = 0;
2800 }
9d5c8243 2801 if (buffer_info->page) {
9d5c8243
AK
2802 put_page(buffer_info->page);
2803 buffer_info->page = NULL;
bf36c1a0 2804 buffer_info->page_offset = 0;
9d5c8243
AK
2805 }
2806 }
2807
9d5c8243
AK
2808 size = sizeof(struct igb_buffer) * rx_ring->count;
2809 memset(rx_ring->buffer_info, 0, size);
2810
2811 /* Zero out the descriptor ring */
2812 memset(rx_ring->desc, 0, rx_ring->size);
2813
2814 rx_ring->next_to_clean = 0;
2815 rx_ring->next_to_use = 0;
9d5c8243
AK
2816}
2817
2818/**
2819 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2820 * @adapter: board private structure
2821 **/
2822static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2823{
2824 int i;
2825
2826 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2827 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
2828}
2829
2830/**
2831 * igb_set_mac - Change the Ethernet Address of the NIC
2832 * @netdev: network interface device structure
2833 * @p: pointer to an address structure
2834 *
2835 * Returns 0 on success, negative on failure
2836 **/
2837static int igb_set_mac(struct net_device *netdev, void *p)
2838{
2839 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2840 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2841 struct sockaddr *addr = p;
2842
2843 if (!is_valid_ether_addr(addr->sa_data))
2844 return -EADDRNOTAVAIL;
2845
2846 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2847 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2848
26ad9178
AD
2849 /* set the correct pool for the new PF MAC address in entry 0 */
2850 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2851 adapter->vfs_allocated_count);
e1739522 2852
9d5c8243
AK
2853 return 0;
2854}
2855
2856/**
68d480c4 2857 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
2858 * @netdev: network interface device structure
2859 *
68d480c4
AD
2860 * Writes multicast address list to the MTA hash table.
2861 * Returns: -ENOMEM on failure
2862 * 0 on no addresses written
2863 * X on writing X addresses to MTA
9d5c8243 2864 **/
68d480c4 2865static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
2866{
2867 struct igb_adapter *adapter = netdev_priv(netdev);
2868 struct e1000_hw *hw = &adapter->hw;
22bedad3 2869 struct netdev_hw_addr *ha;
68d480c4 2870 u8 *mta_list;
9d5c8243
AK
2871 int i;
2872
4cd24eaf 2873 if (netdev_mc_empty(netdev)) {
68d480c4
AD
2874 /* nothing to program, so clear mc list */
2875 igb_update_mc_addr_list(hw, NULL, 0);
2876 igb_restore_vf_multicasts(adapter);
2877 return 0;
2878 }
9d5c8243 2879
4cd24eaf 2880 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
2881 if (!mta_list)
2882 return -ENOMEM;
ff41f8dc 2883
68d480c4 2884 /* The shared function expects a packed array of only addresses. */
48e2f183 2885 i = 0;
22bedad3
JP
2886 netdev_for_each_mc_addr(ha, netdev)
2887 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 2888
68d480c4
AD
2889 igb_update_mc_addr_list(hw, mta_list, i);
2890 kfree(mta_list);
2891
4cd24eaf 2892 return netdev_mc_count(netdev);
68d480c4
AD
2893}
2894
2895/**
2896 * igb_write_uc_addr_list - write unicast addresses to RAR table
2897 * @netdev: network interface device structure
2898 *
2899 * Writes unicast address list to the RAR table.
2900 * Returns: -ENOMEM on failure/insufficient address space
2901 * 0 on no addresses written
2902 * X on writing X addresses to the RAR table
2903 **/
2904static int igb_write_uc_addr_list(struct net_device *netdev)
2905{
2906 struct igb_adapter *adapter = netdev_priv(netdev);
2907 struct e1000_hw *hw = &adapter->hw;
2908 unsigned int vfn = adapter->vfs_allocated_count;
2909 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2910 int count = 0;
2911
2912 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 2913 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 2914 return -ENOMEM;
9d5c8243 2915
32e7bfc4 2916 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 2917 struct netdev_hw_addr *ha;
32e7bfc4
JP
2918
2919 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
2920 if (!rar_entries)
2921 break;
26ad9178
AD
2922 igb_rar_set_qsel(adapter, ha->addr,
2923 rar_entries--,
68d480c4
AD
2924 vfn);
2925 count++;
ff41f8dc
AD
2926 }
2927 }
2928 /* write the addresses in reverse order to avoid write combining */
2929 for (; rar_entries > 0 ; rar_entries--) {
2930 wr32(E1000_RAH(rar_entries), 0);
2931 wr32(E1000_RAL(rar_entries), 0);
2932 }
2933 wrfl();
2934
68d480c4
AD
2935 return count;
2936}
2937
2938/**
2939 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2940 * @netdev: network interface device structure
2941 *
2942 * The set_rx_mode entry point is called whenever the unicast or multicast
2943 * address lists or the network interface flags are updated. This routine is
2944 * responsible for configuring the hardware for proper unicast, multicast,
2945 * promiscuous mode, and all-multi behavior.
2946 **/
2947static void igb_set_rx_mode(struct net_device *netdev)
2948{
2949 struct igb_adapter *adapter = netdev_priv(netdev);
2950 struct e1000_hw *hw = &adapter->hw;
2951 unsigned int vfn = adapter->vfs_allocated_count;
2952 u32 rctl, vmolr = 0;
2953 int count;
2954
2955 /* Check for Promiscuous and All Multicast modes */
2956 rctl = rd32(E1000_RCTL);
2957
2958 /* clear the effected bits */
2959 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2960
2961 if (netdev->flags & IFF_PROMISC) {
2962 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2963 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2964 } else {
2965 if (netdev->flags & IFF_ALLMULTI) {
2966 rctl |= E1000_RCTL_MPE;
2967 vmolr |= E1000_VMOLR_MPME;
2968 } else {
2969 /*
2970 * Write addresses to the MTA, if the attempt fails
2971 * then we should just turn on promiscous mode so
2972 * that we can at least receive multicast traffic
2973 */
2974 count = igb_write_mc_addr_list(netdev);
2975 if (count < 0) {
2976 rctl |= E1000_RCTL_MPE;
2977 vmolr |= E1000_VMOLR_MPME;
2978 } else if (count) {
2979 vmolr |= E1000_VMOLR_ROMPE;
2980 }
2981 }
2982 /*
2983 * Write addresses to available RAR registers, if there is not
2984 * sufficient space to store all the addresses then enable
2985 * unicast promiscous mode
2986 */
2987 count = igb_write_uc_addr_list(netdev);
2988 if (count < 0) {
2989 rctl |= E1000_RCTL_UPE;
2990 vmolr |= E1000_VMOLR_ROPE;
2991 }
2992 rctl |= E1000_RCTL_VFE;
28fc06f5 2993 }
68d480c4 2994 wr32(E1000_RCTL, rctl);
28fc06f5 2995
68d480c4
AD
2996 /*
2997 * In order to support SR-IOV and eventually VMDq it is necessary to set
2998 * the VMOLR to enable the appropriate modes. Without this workaround
2999 * we will have issues with VLAN tag stripping not being done for frames
3000 * that are only arriving because we are the default pool
3001 */
3002 if (hw->mac.type < e1000_82576)
28fc06f5 3003 return;
9d5c8243 3004
68d480c4
AD
3005 vmolr |= rd32(E1000_VMOLR(vfn)) &
3006 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3007 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3008 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3009}
3010
3011/* Need to wait a few seconds after link up to get diagnostic information from
3012 * the phy */
3013static void igb_update_phy_info(unsigned long data)
3014{
3015 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3016 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3017}
3018
4d6b725e
AD
3019/**
3020 * igb_has_link - check shared code for link and determine up/down
3021 * @adapter: pointer to driver private info
3022 **/
3145535a 3023bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3024{
3025 struct e1000_hw *hw = &adapter->hw;
3026 bool link_active = false;
3027 s32 ret_val = 0;
3028
3029 /* get_link_status is set on LSC (link status) interrupt or
3030 * rx sequence error interrupt. get_link_status will stay
3031 * false until the e1000_check_for_link establishes link
3032 * for copper adapters ONLY
3033 */
3034 switch (hw->phy.media_type) {
3035 case e1000_media_type_copper:
3036 if (hw->mac.get_link_status) {
3037 ret_val = hw->mac.ops.check_for_link(hw);
3038 link_active = !hw->mac.get_link_status;
3039 } else {
3040 link_active = true;
3041 }
3042 break;
4d6b725e
AD
3043 case e1000_media_type_internal_serdes:
3044 ret_val = hw->mac.ops.check_for_link(hw);
3045 link_active = hw->mac.serdes_has_link;
3046 break;
3047 default:
3048 case e1000_media_type_unknown:
3049 break;
3050 }
3051
3052 return link_active;
3053}
3054
9d5c8243
AK
3055/**
3056 * igb_watchdog - Timer Call-back
3057 * @data: pointer to adapter cast into an unsigned long
3058 **/
3059static void igb_watchdog(unsigned long data)
3060{
3061 struct igb_adapter *adapter = (struct igb_adapter *)data;
3062 /* Do the rest outside of interrupt context */
3063 schedule_work(&adapter->watchdog_task);
3064}
3065
3066static void igb_watchdog_task(struct work_struct *work)
3067{
3068 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3069 struct igb_adapter,
3070 watchdog_task);
9d5c8243 3071 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3072 struct net_device *netdev = adapter->netdev;
9d5c8243 3073 u32 link;
7a6ea550 3074 int i;
9d5c8243 3075
4d6b725e 3076 link = igb_has_link(adapter);
9d5c8243
AK
3077 if (link) {
3078 if (!netif_carrier_ok(netdev)) {
3079 u32 ctrl;
330a6d6a
AD
3080 hw->mac.ops.get_speed_and_duplex(hw,
3081 &adapter->link_speed,
3082 &adapter->link_duplex);
9d5c8243
AK
3083
3084 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3085 /* Links status message must follow this format */
3086 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3087 "Flow Control: %s\n",
559e9c49
AD
3088 netdev->name,
3089 adapter->link_speed,
3090 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3091 "Full Duplex" : "Half Duplex",
559e9c49
AD
3092 ((ctrl & E1000_CTRL_TFCE) &&
3093 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3094 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3095 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3096
d07f3e37 3097 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3098 adapter->tx_timeout_factor = 1;
3099 switch (adapter->link_speed) {
3100 case SPEED_10:
9d5c8243
AK
3101 adapter->tx_timeout_factor = 14;
3102 break;
3103 case SPEED_100:
9d5c8243
AK
3104 /* maybe add some timeout factor ? */
3105 break;
3106 }
3107
3108 netif_carrier_on(netdev);
9d5c8243 3109
4ae196df
AD
3110 igb_ping_all_vfs(adapter);
3111
4b1a9877 3112 /* link state has changed, schedule phy info update */
9d5c8243
AK
3113 if (!test_bit(__IGB_DOWN, &adapter->state))
3114 mod_timer(&adapter->phy_info_timer,
3115 round_jiffies(jiffies + 2 * HZ));
3116 }
3117 } else {
3118 if (netif_carrier_ok(netdev)) {
3119 adapter->link_speed = 0;
3120 adapter->link_duplex = 0;
527d47c1
AD
3121 /* Links status message must follow this format */
3122 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3123 netdev->name);
9d5c8243 3124 netif_carrier_off(netdev);
4b1a9877 3125
4ae196df
AD
3126 igb_ping_all_vfs(adapter);
3127
4b1a9877 3128 /* link state has changed, schedule phy info update */
9d5c8243
AK
3129 if (!test_bit(__IGB_DOWN, &adapter->state))
3130 mod_timer(&adapter->phy_info_timer,
3131 round_jiffies(jiffies + 2 * HZ));
3132 }
3133 }
3134
9d5c8243 3135 igb_update_stats(adapter);
9d5c8243 3136
dbabb065 3137 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3138 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3139 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3140 /* We've lost link, so the controller stops DMA,
3141 * but we've got queued Tx work that's never going
3142 * to get done, so reset controller to flush Tx.
3143 * (Do the reset outside of interrupt context). */
dbabb065
AD
3144 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3145 adapter->tx_timeout_count++;
3146 schedule_work(&adapter->reset_task);
3147 /* return immediately since reset is imminent */
3148 return;
3149 }
9d5c8243 3150 }
9d5c8243 3151
dbabb065
AD
3152 /* Force detection of hung controller every watchdog period */
3153 tx_ring->detect_tx_hung = true;
3154 }
f7ba205e 3155
9d5c8243 3156 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3157 if (adapter->msix_entries) {
047e0030
AD
3158 u32 eics = 0;
3159 for (i = 0; i < adapter->num_q_vectors; i++) {
3160 struct igb_q_vector *q_vector = adapter->q_vector[i];
3161 eics |= q_vector->eims_value;
3162 }
7a6ea550
AD
3163 wr32(E1000_EICS, eics);
3164 } else {
3165 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3166 }
9d5c8243 3167
9d5c8243
AK
3168 /* Reset the timer */
3169 if (!test_bit(__IGB_DOWN, &adapter->state))
3170 mod_timer(&adapter->watchdog_timer,
3171 round_jiffies(jiffies + 2 * HZ));
3172}
3173
3174enum latency_range {
3175 lowest_latency = 0,
3176 low_latency = 1,
3177 bulk_latency = 2,
3178 latency_invalid = 255
3179};
3180
6eb5a7f1
AD
3181/**
3182 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3183 *
3184 * Stores a new ITR value based on strictly on packet size. This
3185 * algorithm is less sophisticated than that used in igb_update_itr,
3186 * due to the difficulty of synchronizing statistics across multiple
3187 * receive rings. The divisors and thresholds used by this fuction
3188 * were determined based on theoretical maximum wire speed and testing
3189 * data, in order to minimize response time while increasing bulk
3190 * throughput.
3191 * This functionality is controlled by the InterruptThrottleRate module
3192 * parameter (see igb_param.c)
3193 * NOTE: This function is called only when operating in a multiqueue
3194 * receive environment.
047e0030 3195 * @q_vector: pointer to q_vector
6eb5a7f1 3196 **/
047e0030 3197static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3198{
047e0030 3199 int new_val = q_vector->itr_val;
6eb5a7f1 3200 int avg_wire_size = 0;
047e0030 3201 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3202
6eb5a7f1
AD
3203 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3204 * ints/sec - ITR timer value of 120 ticks.
3205 */
3206 if (adapter->link_speed != SPEED_1000) {
047e0030 3207 new_val = 976;
6eb5a7f1 3208 goto set_itr_val;
9d5c8243 3209 }
047e0030
AD
3210
3211 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3212 struct igb_ring *ring = q_vector->rx_ring;
3213 avg_wire_size = ring->total_bytes / ring->total_packets;
3214 }
3215
3216 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3217 struct igb_ring *ring = q_vector->tx_ring;
3218 avg_wire_size = max_t(u32, avg_wire_size,
3219 (ring->total_bytes /
3220 ring->total_packets));
3221 }
3222
3223 /* if avg_wire_size isn't set no work was done */
3224 if (!avg_wire_size)
3225 goto clear_counts;
9d5c8243 3226
6eb5a7f1
AD
3227 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3228 avg_wire_size += 24;
3229
3230 /* Don't starve jumbo frames */
3231 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3232
6eb5a7f1
AD
3233 /* Give a little boost to mid-size frames */
3234 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3235 new_val = avg_wire_size / 3;
3236 else
3237 new_val = avg_wire_size / 2;
9d5c8243 3238
abe1c363
NN
3239 /* when in itr mode 3 do not exceed 20K ints/sec */
3240 if (adapter->rx_itr_setting == 3 && new_val < 196)
3241 new_val = 196;
3242
6eb5a7f1 3243set_itr_val:
047e0030
AD
3244 if (new_val != q_vector->itr_val) {
3245 q_vector->itr_val = new_val;
3246 q_vector->set_itr = 1;
9d5c8243 3247 }
6eb5a7f1 3248clear_counts:
047e0030
AD
3249 if (q_vector->rx_ring) {
3250 q_vector->rx_ring->total_bytes = 0;
3251 q_vector->rx_ring->total_packets = 0;
3252 }
3253 if (q_vector->tx_ring) {
3254 q_vector->tx_ring->total_bytes = 0;
3255 q_vector->tx_ring->total_packets = 0;
3256 }
9d5c8243
AK
3257}
3258
3259/**
3260 * igb_update_itr - update the dynamic ITR value based on statistics
3261 * Stores a new ITR value based on packets and byte
3262 * counts during the last interrupt. The advantage of per interrupt
3263 * computation is faster updates and more accurate ITR for the current
3264 * traffic pattern. Constants in this function were computed
3265 * based on theoretical maximum wire speed and thresholds were set based
3266 * on testing data as well as attempting to minimize response time
3267 * while increasing bulk throughput.
3268 * this functionality is controlled by the InterruptThrottleRate module
3269 * parameter (see igb_param.c)
3270 * NOTE: These calculations are only valid when operating in a single-
3271 * queue environment.
3272 * @adapter: pointer to adapter
047e0030 3273 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3274 * @packets: the number of packets during this measurement interval
3275 * @bytes: the number of bytes during this measurement interval
3276 **/
3277static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3278 int packets, int bytes)
3279{
3280 unsigned int retval = itr_setting;
3281
3282 if (packets == 0)
3283 goto update_itr_done;
3284
3285 switch (itr_setting) {
3286 case lowest_latency:
3287 /* handle TSO and jumbo frames */
3288 if (bytes/packets > 8000)
3289 retval = bulk_latency;
3290 else if ((packets < 5) && (bytes > 512))
3291 retval = low_latency;
3292 break;
3293 case low_latency: /* 50 usec aka 20000 ints/s */
3294 if (bytes > 10000) {
3295 /* this if handles the TSO accounting */
3296 if (bytes/packets > 8000) {
3297 retval = bulk_latency;
3298 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3299 retval = bulk_latency;
3300 } else if ((packets > 35)) {
3301 retval = lowest_latency;
3302 }
3303 } else if (bytes/packets > 2000) {
3304 retval = bulk_latency;
3305 } else if (packets <= 2 && bytes < 512) {
3306 retval = lowest_latency;
3307 }
3308 break;
3309 case bulk_latency: /* 250 usec aka 4000 ints/s */
3310 if (bytes > 25000) {
3311 if (packets > 35)
3312 retval = low_latency;
1e5c3d21 3313 } else if (bytes < 1500) {
9d5c8243
AK
3314 retval = low_latency;
3315 }
3316 break;
3317 }
3318
3319update_itr_done:
3320 return retval;
3321}
3322
6eb5a7f1 3323static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3324{
047e0030 3325 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3326 u16 current_itr;
047e0030 3327 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3328
3329 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3330 if (adapter->link_speed != SPEED_1000) {
3331 current_itr = 0;
3332 new_itr = 4000;
3333 goto set_itr_now;
3334 }
3335
3336 adapter->rx_itr = igb_update_itr(adapter,
3337 adapter->rx_itr,
3025a446
AD
3338 q_vector->rx_ring->total_packets,
3339 q_vector->rx_ring->total_bytes);
9d5c8243 3340
047e0030
AD
3341 adapter->tx_itr = igb_update_itr(adapter,
3342 adapter->tx_itr,
3025a446
AD
3343 q_vector->tx_ring->total_packets,
3344 q_vector->tx_ring->total_bytes);
047e0030 3345 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3346
6eb5a7f1 3347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3348 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3349 current_itr = low_latency;
3350
9d5c8243
AK
3351 switch (current_itr) {
3352 /* counts and packets in update_itr are dependent on these numbers */
3353 case lowest_latency:
78b1f607 3354 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3355 break;
3356 case low_latency:
78b1f607 3357 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3358 break;
3359 case bulk_latency:
78b1f607 3360 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3361 break;
3362 default:
3363 break;
3364 }
3365
3366set_itr_now:
3025a446
AD
3367 q_vector->rx_ring->total_bytes = 0;
3368 q_vector->rx_ring->total_packets = 0;
3369 q_vector->tx_ring->total_bytes = 0;
3370 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3371
047e0030 3372 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3373 /* this attempts to bias the interrupt rate towards Bulk
3374 * by adding intermediate steps when interrupt rate is
3375 * increasing */
047e0030
AD
3376 new_itr = new_itr > q_vector->itr_val ?
3377 max((new_itr * q_vector->itr_val) /
3378 (new_itr + (q_vector->itr_val >> 2)),
3379 new_itr) :
9d5c8243
AK
3380 new_itr;
3381 /* Don't write the value here; it resets the adapter's
3382 * internal timer, and causes us to delay far longer than
3383 * we should between interrupts. Instead, we write the ITR
3384 * value at the beginning of the next interrupt so the timing
3385 * ends up being correct.
3386 */
047e0030
AD
3387 q_vector->itr_val = new_itr;
3388 q_vector->set_itr = 1;
9d5c8243
AK
3389 }
3390
3391 return;
3392}
3393
9d5c8243
AK
3394#define IGB_TX_FLAGS_CSUM 0x00000001
3395#define IGB_TX_FLAGS_VLAN 0x00000002
3396#define IGB_TX_FLAGS_TSO 0x00000004
3397#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3398#define IGB_TX_FLAGS_TSTAMP 0x00000010
3399#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3400#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3401
85ad76b2 3402static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3403 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3404{
3405 struct e1000_adv_tx_context_desc *context_desc;
3406 unsigned int i;
3407 int err;
3408 struct igb_buffer *buffer_info;
3409 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3410 u32 mss_l4len_idx;
3411 u8 l4len;
9d5c8243
AK
3412
3413 if (skb_header_cloned(skb)) {
3414 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3415 if (err)
3416 return err;
3417 }
3418
3419 l4len = tcp_hdrlen(skb);
3420 *hdr_len += l4len;
3421
3422 if (skb->protocol == htons(ETH_P_IP)) {
3423 struct iphdr *iph = ip_hdr(skb);
3424 iph->tot_len = 0;
3425 iph->check = 0;
3426 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3427 iph->daddr, 0,
3428 IPPROTO_TCP,
3429 0);
8e1e8a47 3430 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3431 ipv6_hdr(skb)->payload_len = 0;
3432 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3433 &ipv6_hdr(skb)->daddr,
3434 0, IPPROTO_TCP, 0);
3435 }
3436
3437 i = tx_ring->next_to_use;
3438
3439 buffer_info = &tx_ring->buffer_info[i];
3440 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3441 /* VLAN MACLEN IPLEN */
3442 if (tx_flags & IGB_TX_FLAGS_VLAN)
3443 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3444 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3445 *hdr_len += skb_network_offset(skb);
3446 info |= skb_network_header_len(skb);
3447 *hdr_len += skb_network_header_len(skb);
3448 context_desc->vlan_macip_lens = cpu_to_le32(info);
3449
3450 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3451 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3452
3453 if (skb->protocol == htons(ETH_P_IP))
3454 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3455 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3456
3457 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3458
3459 /* MSS L4LEN IDX */
3460 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3461 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3462
73cd78f1 3463 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3464 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3465 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3466
3467 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3468 context_desc->seqnum_seed = 0;
3469
3470 buffer_info->time_stamp = jiffies;
0e014cb1 3471 buffer_info->next_to_watch = i;
9d5c8243
AK
3472 buffer_info->dma = 0;
3473 i++;
3474 if (i == tx_ring->count)
3475 i = 0;
3476
3477 tx_ring->next_to_use = i;
3478
3479 return true;
3480}
3481
85ad76b2
AD
3482static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3483 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3484{
3485 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3486 struct device *dev = tx_ring->dev;
9d5c8243
AK
3487 struct igb_buffer *buffer_info;
3488 u32 info = 0, tu_cmd = 0;
80785298 3489 unsigned int i;
9d5c8243
AK
3490
3491 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3492 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3493 i = tx_ring->next_to_use;
3494 buffer_info = &tx_ring->buffer_info[i];
3495 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3496
3497 if (tx_flags & IGB_TX_FLAGS_VLAN)
3498 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3499
9d5c8243
AK
3500 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3501 if (skb->ip_summed == CHECKSUM_PARTIAL)
3502 info |= skb_network_header_len(skb);
3503
3504 context_desc->vlan_macip_lens = cpu_to_le32(info);
3505
3506 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3507
3508 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3509 __be16 protocol;
3510
3511 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3512 const struct vlan_ethhdr *vhdr =
3513 (const struct vlan_ethhdr*)skb->data;
3514
3515 protocol = vhdr->h_vlan_encapsulated_proto;
3516 } else {
3517 protocol = skb->protocol;
3518 }
3519
3520 switch (protocol) {
09640e63 3521 case cpu_to_be16(ETH_P_IP):
9d5c8243 3522 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3523 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3524 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3525 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3526 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3527 break;
09640e63 3528 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3529 /* XXX what about other V6 headers?? */
3530 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3531 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3532 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3533 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3534 break;
3535 default:
3536 if (unlikely(net_ratelimit()))
59d71989 3537 dev_warn(dev,
44b0cda3
MW
3538 "partial checksum but proto=%x!\n",
3539 skb->protocol);
3540 break;
3541 }
9d5c8243
AK
3542 }
3543
3544 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3545 context_desc->seqnum_seed = 0;
85ad76b2 3546 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3547 context_desc->mss_l4len_idx =
85ad76b2 3548 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3549
3550 buffer_info->time_stamp = jiffies;
0e014cb1 3551 buffer_info->next_to_watch = i;
9d5c8243
AK
3552 buffer_info->dma = 0;
3553
3554 i++;
3555 if (i == tx_ring->count)
3556 i = 0;
3557 tx_ring->next_to_use = i;
3558
3559 return true;
3560 }
9d5c8243
AK
3561 return false;
3562}
3563
3564#define IGB_MAX_TXD_PWR 16
3565#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3566
80785298 3567static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3568 unsigned int first)
9d5c8243
AK
3569{
3570 struct igb_buffer *buffer_info;
59d71989 3571 struct device *dev = tx_ring->dev;
9d5c8243
AK
3572 unsigned int len = skb_headlen(skb);
3573 unsigned int count = 0, i;
3574 unsigned int f;
3575
3576 i = tx_ring->next_to_use;
3577
3578 buffer_info = &tx_ring->buffer_info[i];
3579 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3580 buffer_info->length = len;
3581 /* set time_stamp *before* dma to help avoid a possible race */
3582 buffer_info->time_stamp = jiffies;
0e014cb1 3583 buffer_info->next_to_watch = i;
59d71989
AD
3584 buffer_info->dma = dma_map_single(dev, skb->data, len,
3585 DMA_TO_DEVICE);
3586 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 3587 goto dma_error;
9d5c8243
AK
3588
3589 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3590 struct skb_frag_struct *frag;
3591
8581145f 3592 count++;
65689fef
AD
3593 i++;
3594 if (i == tx_ring->count)
3595 i = 0;
3596
9d5c8243
AK
3597 frag = &skb_shinfo(skb)->frags[f];
3598 len = frag->size;
3599
3600 buffer_info = &tx_ring->buffer_info[i];
3601 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3602 buffer_info->length = len;
3603 buffer_info->time_stamp = jiffies;
0e014cb1 3604 buffer_info->next_to_watch = i;
6366ad33 3605 buffer_info->mapped_as_page = true;
59d71989 3606 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
3607 frag->page,
3608 frag->page_offset,
3609 len,
59d71989
AD
3610 DMA_TO_DEVICE);
3611 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
3612 goto dma_error;
3613
9d5c8243
AK
3614 }
3615
9d5c8243 3616 tx_ring->buffer_info[i].skb = skb;
40e90c26 3617 tx_ring->buffer_info[i].gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
0e014cb1 3618 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3619
cdfd01fc 3620 return ++count;
6366ad33
AD
3621
3622dma_error:
59d71989 3623 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
3624
3625 /* clear timestamp and dma mappings for failed buffer_info mapping */
3626 buffer_info->dma = 0;
3627 buffer_info->time_stamp = 0;
3628 buffer_info->length = 0;
3629 buffer_info->next_to_watch = 0;
3630 buffer_info->mapped_as_page = false;
6366ad33
AD
3631
3632 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
3633 while (count--) {
3634 if (i == 0)
3635 i = tx_ring->count;
6366ad33 3636 i--;
6366ad33
AD
3637 buffer_info = &tx_ring->buffer_info[i];
3638 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3639 }
3640
3641 return 0;
9d5c8243
AK
3642}
3643
85ad76b2 3644static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 3645 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
3646 u8 hdr_len)
3647{
cdfd01fc 3648 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3649 struct igb_buffer *buffer_info;
3650 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3651 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3652
3653 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3654 E1000_ADVTXD_DCMD_DEXT);
3655
3656 if (tx_flags & IGB_TX_FLAGS_VLAN)
3657 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3658
33af6bcc
PO
3659 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3660 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3661
9d5c8243
AK
3662 if (tx_flags & IGB_TX_FLAGS_TSO) {
3663 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3664
3665 /* insert tcp checksum */
3666 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3667
3668 /* insert ip checksum */
3669 if (tx_flags & IGB_TX_FLAGS_IPV4)
3670 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3671
3672 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3673 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3674 }
3675
85ad76b2
AD
3676 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3677 (tx_flags & (IGB_TX_FLAGS_CSUM |
3678 IGB_TX_FLAGS_TSO |
7dfc16fa 3679 IGB_TX_FLAGS_VLAN)))
85ad76b2 3680 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
3681
3682 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3683
cdfd01fc 3684 do {
9d5c8243
AK
3685 buffer_info = &tx_ring->buffer_info[i];
3686 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3687 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3688 tx_desc->read.cmd_type_len =
3689 cpu_to_le32(cmd_type_len | buffer_info->length);
3690 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 3691 count--;
9d5c8243
AK
3692 i++;
3693 if (i == tx_ring->count)
3694 i = 0;
cdfd01fc 3695 } while (count > 0);
9d5c8243 3696
85ad76b2 3697 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
3698 /* Force memory writes to complete before letting h/w
3699 * know there are new descriptors to fetch. (Only
3700 * applicable for weak-ordered memory model archs,
3701 * such as IA-64). */
3702 wmb();
3703
3704 tx_ring->next_to_use = i;
fce99e34 3705 writel(i, tx_ring->tail);
9d5c8243
AK
3706 /* we need this if more than one processor can write to our tail
3707 * at a time, it syncronizes IO on IA64/Altix systems */
3708 mmiowb();
3709}
3710
e694e964 3711static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3712{
e694e964
AD
3713 struct net_device *netdev = tx_ring->netdev;
3714
661086df 3715 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3716
9d5c8243
AK
3717 /* Herbert's original patch had:
3718 * smp_mb__after_netif_stop_queue();
3719 * but since that doesn't exist yet, just open code it. */
3720 smp_mb();
3721
3722 /* We need to check again in a case another CPU has just
3723 * made room available. */
c493ea45 3724 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3725 return -EBUSY;
3726
3727 /* A reprieve! */
661086df 3728 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 3729 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
3730 return 0;
3731}
3732
717ba089 3733static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3734{
c493ea45 3735 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 3736 return 0;
e694e964 3737 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
3738}
3739
b1a436c3
AD
3740netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3741 struct igb_ring *tx_ring)
9d5c8243 3742{
e694e964 3743 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
cdfd01fc 3744 int tso = 0, count;
91d4ee33
NN
3745 u32 tx_flags = 0;
3746 u16 first;
3747 u8 hdr_len = 0;
c5b9bd5e 3748 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 3749
9d5c8243
AK
3750 /* need: 1 descriptor per page,
3751 * + 2 desc gap to keep tail from touching head,
3752 * + 1 desc for skb->data,
3753 * + 1 desc for context descriptor,
3754 * otherwise try next time */
e694e964 3755 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 3756 /* this is a hard error */
9d5c8243
AK
3757 return NETDEV_TX_BUSY;
3758 }
33af6bcc 3759
33af6bcc
PO
3760 if (unlikely(shtx->hardware)) {
3761 shtx->in_progress = 1;
3762 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3763 }
9d5c8243 3764
cdfd01fc 3765 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
3766 tx_flags |= IGB_TX_FLAGS_VLAN;
3767 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3768 }
3769
661086df
PWJ
3770 if (skb->protocol == htons(ETH_P_IP))
3771 tx_flags |= IGB_TX_FLAGS_IPV4;
3772
0e014cb1 3773 first = tx_ring->next_to_use;
85ad76b2
AD
3774 if (skb_is_gso(skb)) {
3775 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 3776
85ad76b2
AD
3777 if (tso < 0) {
3778 dev_kfree_skb_any(skb);
3779 return NETDEV_TX_OK;
3780 }
9d5c8243
AK
3781 }
3782
3783 if (tso)
3784 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 3785 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
3786 (skb->ip_summed == CHECKSUM_PARTIAL))
3787 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3788
65689fef 3789 /*
cdfd01fc 3790 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
3791 * has occured and we need to rewind the descriptor queue
3792 */
80785298 3793 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 3794 if (!count) {
65689fef
AD
3795 dev_kfree_skb_any(skb);
3796 tx_ring->buffer_info[first].time_stamp = 0;
3797 tx_ring->next_to_use = first;
85ad76b2 3798 return NETDEV_TX_OK;
65689fef 3799 }
9d5c8243 3800
85ad76b2
AD
3801 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3802
3803 /* Make sure there is space in the ring for the next send. */
e694e964 3804 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 3805
9d5c8243
AK
3806 return NETDEV_TX_OK;
3807}
3808
3b29a56d
SH
3809static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3810 struct net_device *netdev)
9d5c8243
AK
3811{
3812 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 3813 struct igb_ring *tx_ring;
661086df 3814 int r_idx = 0;
b1a436c3
AD
3815
3816 if (test_bit(__IGB_DOWN, &adapter->state)) {
3817 dev_kfree_skb_any(skb);
3818 return NETDEV_TX_OK;
3819 }
3820
3821 if (skb->len <= 0) {
3822 dev_kfree_skb_any(skb);
3823 return NETDEV_TX_OK;
3824 }
3825
1bfaf07b 3826 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3827 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3828
3829 /* This goes back to the question of how to logically map a tx queue
3830 * to a flow. Right now, performance is impacted slightly negatively
3831 * if using multiple tx queues. If the stack breaks away from a
3832 * single qdisc implementation, we can look at this again. */
e694e964 3833 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
3834}
3835
3836/**
3837 * igb_tx_timeout - Respond to a Tx Hang
3838 * @netdev: network interface device structure
3839 **/
3840static void igb_tx_timeout(struct net_device *netdev)
3841{
3842 struct igb_adapter *adapter = netdev_priv(netdev);
3843 struct e1000_hw *hw = &adapter->hw;
3844
3845 /* Do the reset outside of interrupt context */
3846 adapter->tx_timeout_count++;
f7ba205e 3847
55cac248
AD
3848 if (hw->mac.type == e1000_82580)
3849 hw->dev_spec._82575.global_device_reset = true;
3850
9d5c8243 3851 schedule_work(&adapter->reset_task);
265de409
AD
3852 wr32(E1000_EICS,
3853 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3854}
3855
3856static void igb_reset_task(struct work_struct *work)
3857{
3858 struct igb_adapter *adapter;
3859 adapter = container_of(work, struct igb_adapter, reset_task);
3860
3861 igb_reinit_locked(adapter);
3862}
3863
3864/**
3865 * igb_get_stats - Get System Network Statistics
3866 * @netdev: network interface device structure
3867 *
3868 * Returns the address of the device statistics structure.
3869 * The statistics are actually updated from the timer callback.
3870 **/
73cd78f1 3871static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 3872{
9d5c8243 3873 /* only return the current stats */
8d24e933 3874 return &netdev->stats;
9d5c8243
AK
3875}
3876
3877/**
3878 * igb_change_mtu - Change the Maximum Transfer Unit
3879 * @netdev: network interface device structure
3880 * @new_mtu: new value for maximum frame size
3881 *
3882 * Returns 0 on success, negative on failure
3883 **/
3884static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3885{
3886 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 3887 struct pci_dev *pdev = adapter->pdev;
9d5c8243 3888 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 3889 u32 rx_buffer_len, i;
9d5c8243 3890
c809d227 3891 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 3892 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
3893 return -EINVAL;
3894 }
3895
9d5c8243 3896 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 3897 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
3898 return -EINVAL;
3899 }
3900
3901 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3902 msleep(1);
73cd78f1 3903
9d5c8243
AK
3904 /* igb_down has a dependency on max_frame_size */
3905 adapter->max_frame_size = max_frame;
559e9c49 3906
9d5c8243
AK
3907 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3908 * means we reserve 2 more, this pushes us to allocate from the next
3909 * larger slab size.
3910 * i.e. RXBUFFER_2048 --> size-4096 slab
3911 */
3912
757b77e2
NN
3913 if (adapter->hw.mac.type == e1000_82580)
3914 max_frame += IGB_TS_HDR_LEN;
3915
7d95b717 3916 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 3917 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 3918 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 3919 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 3920 else
4c844851
AD
3921 rx_buffer_len = IGB_RXBUFFER_128;
3922
757b77e2
NN
3923 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
3924 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
3925 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
3926
3927 if ((adapter->hw.mac.type == e1000_82580) &&
3928 (rx_buffer_len == IGB_RXBUFFER_128))
3929 rx_buffer_len += IGB_RXBUFFER_64;
3930
4c844851
AD
3931 if (netif_running(netdev))
3932 igb_down(adapter);
9d5c8243 3933
090b1795 3934 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
3935 netdev->mtu, new_mtu);
3936 netdev->mtu = new_mtu;
3937
4c844851 3938 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3939 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 3940
9d5c8243
AK
3941 if (netif_running(netdev))
3942 igb_up(adapter);
3943 else
3944 igb_reset(adapter);
3945
3946 clear_bit(__IGB_RESETTING, &adapter->state);
3947
3948 return 0;
3949}
3950
3951/**
3952 * igb_update_stats - Update the board statistics counters
3953 * @adapter: board private structure
3954 **/
3955
3956void igb_update_stats(struct igb_adapter *adapter)
3957{
128e45eb 3958 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
9d5c8243
AK
3959 struct e1000_hw *hw = &adapter->hw;
3960 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 3961 u32 reg, mpc;
9d5c8243 3962 u16 phy_tmp;
3f9c0164
AD
3963 int i;
3964 u64 bytes, packets;
9d5c8243
AK
3965
3966#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3967
3968 /*
3969 * Prevent stats update while adapter is being reset, or if the pci
3970 * connection is down.
3971 */
3972 if (adapter->link_speed == 0)
3973 return;
3974 if (pci_channel_offline(pdev))
3975 return;
3976
3f9c0164
AD
3977 bytes = 0;
3978 packets = 0;
3979 for (i = 0; i < adapter->num_rx_queues; i++) {
3980 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446
AD
3981 struct igb_ring *ring = adapter->rx_ring[i];
3982 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 3983 net_stats->rx_fifo_errors += rqdpc_tmp;
3025a446
AD
3984 bytes += ring->rx_stats.bytes;
3985 packets += ring->rx_stats.packets;
3f9c0164
AD
3986 }
3987
128e45eb
AD
3988 net_stats->rx_bytes = bytes;
3989 net_stats->rx_packets = packets;
3f9c0164
AD
3990
3991 bytes = 0;
3992 packets = 0;
3993 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
3994 struct igb_ring *ring = adapter->tx_ring[i];
3995 bytes += ring->tx_stats.bytes;
3996 packets += ring->tx_stats.packets;
3f9c0164 3997 }
128e45eb
AD
3998 net_stats->tx_bytes = bytes;
3999 net_stats->tx_packets = packets;
3f9c0164
AD
4000
4001 /* read stats registers */
9d5c8243
AK
4002 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4003 adapter->stats.gprc += rd32(E1000_GPRC);
4004 adapter->stats.gorc += rd32(E1000_GORCL);
4005 rd32(E1000_GORCH); /* clear GORCL */
4006 adapter->stats.bprc += rd32(E1000_BPRC);
4007 adapter->stats.mprc += rd32(E1000_MPRC);
4008 adapter->stats.roc += rd32(E1000_ROC);
4009
4010 adapter->stats.prc64 += rd32(E1000_PRC64);
4011 adapter->stats.prc127 += rd32(E1000_PRC127);
4012 adapter->stats.prc255 += rd32(E1000_PRC255);
4013 adapter->stats.prc511 += rd32(E1000_PRC511);
4014 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4015 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4016 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4017 adapter->stats.sec += rd32(E1000_SEC);
4018
fa3d9a6d
MW
4019 mpc = rd32(E1000_MPC);
4020 adapter->stats.mpc += mpc;
4021 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4022 adapter->stats.scc += rd32(E1000_SCC);
4023 adapter->stats.ecol += rd32(E1000_ECOL);
4024 adapter->stats.mcc += rd32(E1000_MCC);
4025 adapter->stats.latecol += rd32(E1000_LATECOL);
4026 adapter->stats.dc += rd32(E1000_DC);
4027 adapter->stats.rlec += rd32(E1000_RLEC);
4028 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4029 adapter->stats.xontxc += rd32(E1000_XONTXC);
4030 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4031 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4032 adapter->stats.fcruc += rd32(E1000_FCRUC);
4033 adapter->stats.gptc += rd32(E1000_GPTC);
4034 adapter->stats.gotc += rd32(E1000_GOTCL);
4035 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4036 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4037 adapter->stats.ruc += rd32(E1000_RUC);
4038 adapter->stats.rfc += rd32(E1000_RFC);
4039 adapter->stats.rjc += rd32(E1000_RJC);
4040 adapter->stats.tor += rd32(E1000_TORH);
4041 adapter->stats.tot += rd32(E1000_TOTH);
4042 adapter->stats.tpr += rd32(E1000_TPR);
4043
4044 adapter->stats.ptc64 += rd32(E1000_PTC64);
4045 adapter->stats.ptc127 += rd32(E1000_PTC127);
4046 adapter->stats.ptc255 += rd32(E1000_PTC255);
4047 adapter->stats.ptc511 += rd32(E1000_PTC511);
4048 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4049 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4050
4051 adapter->stats.mptc += rd32(E1000_MPTC);
4052 adapter->stats.bptc += rd32(E1000_BPTC);
4053
2d0b0f69
NN
4054 adapter->stats.tpt += rd32(E1000_TPT);
4055 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4056
4057 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4058 /* read internal phy specific stats */
4059 reg = rd32(E1000_CTRL_EXT);
4060 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4061 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4062 adapter->stats.tncrs += rd32(E1000_TNCRS);
4063 }
4064
9d5c8243
AK
4065 adapter->stats.tsctc += rd32(E1000_TSCTC);
4066 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4067
4068 adapter->stats.iac += rd32(E1000_IAC);
4069 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4070 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4071 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4072 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4073 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4074 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4075 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4076 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4077
4078 /* Fill out the OS statistics structure */
128e45eb
AD
4079 net_stats->multicast = adapter->stats.mprc;
4080 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4081
4082 /* Rx Errors */
4083
4084 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4085 * our own version based on RUC and ROC */
128e45eb 4086 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4087 adapter->stats.crcerrs + adapter->stats.algnerrc +
4088 adapter->stats.ruc + adapter->stats.roc +
4089 adapter->stats.cexterr;
128e45eb
AD
4090 net_stats->rx_length_errors = adapter->stats.ruc +
4091 adapter->stats.roc;
4092 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4093 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4094 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4095
4096 /* Tx Errors */
128e45eb
AD
4097 net_stats->tx_errors = adapter->stats.ecol +
4098 adapter->stats.latecol;
4099 net_stats->tx_aborted_errors = adapter->stats.ecol;
4100 net_stats->tx_window_errors = adapter->stats.latecol;
4101 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4102
4103 /* Tx Dropped needs to be maintained elsewhere */
4104
4105 /* Phy Stats */
4106 if (hw->phy.media_type == e1000_media_type_copper) {
4107 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4108 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4109 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4110 adapter->phy_stats.idle_errors += phy_tmp;
4111 }
4112 }
4113
4114 /* Management Stats */
4115 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4116 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4117 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4118}
4119
9d5c8243
AK
4120static irqreturn_t igb_msix_other(int irq, void *data)
4121{
047e0030 4122 struct igb_adapter *adapter = data;
9d5c8243 4123 struct e1000_hw *hw = &adapter->hw;
844290e5 4124 u32 icr = rd32(E1000_ICR);
844290e5 4125 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4126
7f081d40
AD
4127 if (icr & E1000_ICR_DRSTA)
4128 schedule_work(&adapter->reset_task);
4129
047e0030 4130 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4131 /* HW is reporting DMA is out of sync */
4132 adapter->stats.doosync++;
4133 }
eebbbdba 4134
4ae196df
AD
4135 /* Check for a mailbox event */
4136 if (icr & E1000_ICR_VMMB)
4137 igb_msg_task(adapter);
4138
4139 if (icr & E1000_ICR_LSC) {
4140 hw->mac.get_link_status = 1;
4141 /* guard against interrupt when we're going down */
4142 if (!test_bit(__IGB_DOWN, &adapter->state))
4143 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4144 }
4145
25568a53
AD
4146 if (adapter->vfs_allocated_count)
4147 wr32(E1000_IMS, E1000_IMS_LSC |
4148 E1000_IMS_VMMB |
4149 E1000_IMS_DOUTSYNC);
4150 else
4151 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4152 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4153
4154 return IRQ_HANDLED;
4155}
4156
047e0030 4157static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4158{
26b39276 4159 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4160 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4161
047e0030
AD
4162 if (!q_vector->set_itr)
4163 return;
73cd78f1 4164
047e0030
AD
4165 if (!itr_val)
4166 itr_val = 0x4;
661086df 4167
26b39276
AD
4168 if (adapter->hw.mac.type == e1000_82575)
4169 itr_val |= itr_val << 16;
661086df 4170 else
047e0030 4171 itr_val |= 0x8000000;
661086df 4172
047e0030
AD
4173 writel(itr_val, q_vector->itr_register);
4174 q_vector->set_itr = 0;
6eb5a7f1
AD
4175}
4176
047e0030 4177static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4178{
047e0030 4179 struct igb_q_vector *q_vector = data;
9d5c8243 4180
047e0030
AD
4181 /* Write the ITR value calculated from the previous interrupt. */
4182 igb_write_itr(q_vector);
9d5c8243 4183
047e0030 4184 napi_schedule(&q_vector->napi);
844290e5 4185
047e0030 4186 return IRQ_HANDLED;
fe4506b6
JC
4187}
4188
421e02f0 4189#ifdef CONFIG_IGB_DCA
047e0030 4190static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4191{
047e0030 4192 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4193 struct e1000_hw *hw = &adapter->hw;
4194 int cpu = get_cpu();
fe4506b6 4195
047e0030
AD
4196 if (q_vector->cpu == cpu)
4197 goto out_no_update;
4198
4199 if (q_vector->tx_ring) {
4200 int q = q_vector->tx_ring->reg_idx;
4201 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4202 if (hw->mac.type == e1000_82575) {
4203 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4204 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4205 } else {
047e0030
AD
4206 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4207 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4208 E1000_DCA_TXCTRL_CPUID_SHIFT;
4209 }
4210 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4211 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4212 }
4213 if (q_vector->rx_ring) {
4214 int q = q_vector->rx_ring->reg_idx;
4215 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4216 if (hw->mac.type == e1000_82575) {
2d064c06 4217 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4218 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4219 } else {
4220 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4221 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4222 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4223 }
fe4506b6
JC
4224 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4225 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4226 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4227 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4228 }
047e0030
AD
4229 q_vector->cpu = cpu;
4230out_no_update:
fe4506b6
JC
4231 put_cpu();
4232}
4233
4234static void igb_setup_dca(struct igb_adapter *adapter)
4235{
7e0e99ef 4236 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4237 int i;
4238
7dfc16fa 4239 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4240 return;
4241
7e0e99ef
AD
4242 /* Always use CB2 mode, difference is masked in the CB driver. */
4243 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4244
047e0030 4245 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4246 adapter->q_vector[i]->cpu = -1;
4247 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4248 }
4249}
4250
4251static int __igb_notify_dca(struct device *dev, void *data)
4252{
4253 struct net_device *netdev = dev_get_drvdata(dev);
4254 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4255 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4256 struct e1000_hw *hw = &adapter->hw;
4257 unsigned long event = *(unsigned long *)data;
4258
4259 switch (event) {
4260 case DCA_PROVIDER_ADD:
4261 /* if already enabled, don't do it again */
7dfc16fa 4262 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4263 break;
fe4506b6 4264 if (dca_add_requester(dev) == 0) {
bbd98fe4 4265 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4266 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4267 igb_setup_dca(adapter);
4268 break;
4269 }
4270 /* Fall Through since DCA is disabled. */
4271 case DCA_PROVIDER_REMOVE:
7dfc16fa 4272 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4273 /* without this a class_device is left
047e0030 4274 * hanging around in the sysfs model */
fe4506b6 4275 dca_remove_requester(dev);
090b1795 4276 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4277 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4278 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4279 }
4280 break;
4281 }
bbd98fe4 4282
fe4506b6 4283 return 0;
9d5c8243
AK
4284}
4285
fe4506b6
JC
4286static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4287 void *p)
4288{
4289 int ret_val;
4290
4291 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4292 __igb_notify_dca);
4293
4294 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4295}
421e02f0 4296#endif /* CONFIG_IGB_DCA */
9d5c8243 4297
4ae196df
AD
4298static void igb_ping_all_vfs(struct igb_adapter *adapter)
4299{
4300 struct e1000_hw *hw = &adapter->hw;
4301 u32 ping;
4302 int i;
4303
4304 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4305 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4306 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4307 ping |= E1000_VT_MSGTYPE_CTS;
4308 igb_write_mbx(hw, &ping, 1, i);
4309 }
4310}
4311
7d5753f0
AD
4312static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4313{
4314 struct e1000_hw *hw = &adapter->hw;
4315 u32 vmolr = rd32(E1000_VMOLR(vf));
4316 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4317
4318 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4319 IGB_VF_FLAG_MULTI_PROMISC);
4320 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4321
4322 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4323 vmolr |= E1000_VMOLR_MPME;
4324 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4325 } else {
4326 /*
4327 * if we have hashes and we are clearing a multicast promisc
4328 * flag we need to write the hashes to the MTA as this step
4329 * was previously skipped
4330 */
4331 if (vf_data->num_vf_mc_hashes > 30) {
4332 vmolr |= E1000_VMOLR_MPME;
4333 } else if (vf_data->num_vf_mc_hashes) {
4334 int j;
4335 vmolr |= E1000_VMOLR_ROMPE;
4336 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4337 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4338 }
4339 }
4340
4341 wr32(E1000_VMOLR(vf), vmolr);
4342
4343 /* there are flags left unprocessed, likely not supported */
4344 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4345 return -EINVAL;
4346
4347 return 0;
4348
4349}
4350
4ae196df
AD
4351static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4352 u32 *msgbuf, u32 vf)
4353{
4354 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4355 u16 *hash_list = (u16 *)&msgbuf[1];
4356 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4357 int i;
4358
7d5753f0 4359 /* salt away the number of multicast addresses assigned
4ae196df
AD
4360 * to this VF for later use to restore when the PF multi cast
4361 * list changes
4362 */
4363 vf_data->num_vf_mc_hashes = n;
4364
7d5753f0
AD
4365 /* only up to 30 hash values supported */
4366 if (n > 30)
4367 n = 30;
4368
4369 /* store the hashes for later use */
4ae196df 4370 for (i = 0; i < n; i++)
a419aef8 4371 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4372
4373 /* Flush and reset the mta with the new values */
ff41f8dc 4374 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4375
4376 return 0;
4377}
4378
4379static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4380{
4381 struct e1000_hw *hw = &adapter->hw;
4382 struct vf_data_storage *vf_data;
4383 int i, j;
4384
4385 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4386 u32 vmolr = rd32(E1000_VMOLR(i));
4387 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4388
4ae196df 4389 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4390
4391 if ((vf_data->num_vf_mc_hashes > 30) ||
4392 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4393 vmolr |= E1000_VMOLR_MPME;
4394 } else if (vf_data->num_vf_mc_hashes) {
4395 vmolr |= E1000_VMOLR_ROMPE;
4396 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4397 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4398 }
4399 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4400 }
4401}
4402
4403static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4404{
4405 struct e1000_hw *hw = &adapter->hw;
4406 u32 pool_mask, reg, vid;
4407 int i;
4408
4409 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4410
4411 /* Find the vlan filter for this id */
4412 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4413 reg = rd32(E1000_VLVF(i));
4414
4415 /* remove the vf from the pool */
4416 reg &= ~pool_mask;
4417
4418 /* if pool is empty then remove entry from vfta */
4419 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4420 (reg & E1000_VLVF_VLANID_ENABLE)) {
4421 reg = 0;
4422 vid = reg & E1000_VLVF_VLANID_MASK;
4423 igb_vfta_set(hw, vid, false);
4424 }
4425
4426 wr32(E1000_VLVF(i), reg);
4427 }
ae641bdc
AD
4428
4429 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4430}
4431
4432static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4433{
4434 struct e1000_hw *hw = &adapter->hw;
4435 u32 reg, i;
4436
51466239
AD
4437 /* The vlvf table only exists on 82576 hardware and newer */
4438 if (hw->mac.type < e1000_82576)
4439 return -1;
4440
4441 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4442 if (!adapter->vfs_allocated_count)
4443 return -1;
4444
4445 /* Find the vlan filter for this id */
4446 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4447 reg = rd32(E1000_VLVF(i));
4448 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4449 vid == (reg & E1000_VLVF_VLANID_MASK))
4450 break;
4451 }
4452
4453 if (add) {
4454 if (i == E1000_VLVF_ARRAY_SIZE) {
4455 /* Did not find a matching VLAN ID entry that was
4456 * enabled. Search for a free filter entry, i.e.
4457 * one without the enable bit set
4458 */
4459 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4460 reg = rd32(E1000_VLVF(i));
4461 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4462 break;
4463 }
4464 }
4465 if (i < E1000_VLVF_ARRAY_SIZE) {
4466 /* Found an enabled/available entry */
4467 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4468
4469 /* if !enabled we need to set this up in vfta */
4470 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4471 /* add VID to filter table */
4472 igb_vfta_set(hw, vid, true);
4ae196df
AD
4473 reg |= E1000_VLVF_VLANID_ENABLE;
4474 }
cad6d05f
AD
4475 reg &= ~E1000_VLVF_VLANID_MASK;
4476 reg |= vid;
4ae196df 4477 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4478
4479 /* do not modify RLPML for PF devices */
4480 if (vf >= adapter->vfs_allocated_count)
4481 return 0;
4482
4483 if (!adapter->vf_data[vf].vlans_enabled) {
4484 u32 size;
4485 reg = rd32(E1000_VMOLR(vf));
4486 size = reg & E1000_VMOLR_RLPML_MASK;
4487 size += 4;
4488 reg &= ~E1000_VMOLR_RLPML_MASK;
4489 reg |= size;
4490 wr32(E1000_VMOLR(vf), reg);
4491 }
ae641bdc 4492
51466239 4493 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4494 return 0;
4495 }
4496 } else {
4497 if (i < E1000_VLVF_ARRAY_SIZE) {
4498 /* remove vf from the pool */
4499 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4500 /* if pool is empty then remove entry from vfta */
4501 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4502 reg = 0;
4503 igb_vfta_set(hw, vid, false);
4504 }
4505 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4506
4507 /* do not modify RLPML for PF devices */
4508 if (vf >= adapter->vfs_allocated_count)
4509 return 0;
4510
4511 adapter->vf_data[vf].vlans_enabled--;
4512 if (!adapter->vf_data[vf].vlans_enabled) {
4513 u32 size;
4514 reg = rd32(E1000_VMOLR(vf));
4515 size = reg & E1000_VMOLR_RLPML_MASK;
4516 size -= 4;
4517 reg &= ~E1000_VMOLR_RLPML_MASK;
4518 reg |= size;
4519 wr32(E1000_VMOLR(vf), reg);
4520 }
4ae196df
AD
4521 }
4522 }
8151d294
WM
4523 return 0;
4524}
4525
4526static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4527{
4528 struct e1000_hw *hw = &adapter->hw;
4529
4530 if (vid)
4531 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4532 else
4533 wr32(E1000_VMVIR(vf), 0);
4534}
4535
4536static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4537 int vf, u16 vlan, u8 qos)
4538{
4539 int err = 0;
4540 struct igb_adapter *adapter = netdev_priv(netdev);
4541
4542 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4543 return -EINVAL;
4544 if (vlan || qos) {
4545 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4546 if (err)
4547 goto out;
4548 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4549 igb_set_vmolr(adapter, vf, !vlan);
4550 adapter->vf_data[vf].pf_vlan = vlan;
4551 adapter->vf_data[vf].pf_qos = qos;
4552 dev_info(&adapter->pdev->dev,
4553 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4554 if (test_bit(__IGB_DOWN, &adapter->state)) {
4555 dev_warn(&adapter->pdev->dev,
4556 "The VF VLAN has been set,"
4557 " but the PF device is not up.\n");
4558 dev_warn(&adapter->pdev->dev,
4559 "Bring the PF device up before"
4560 " attempting to use the VF device.\n");
4561 }
4562 } else {
4563 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4564 false, vf);
4565 igb_set_vmvir(adapter, vlan, vf);
4566 igb_set_vmolr(adapter, vf, true);
4567 adapter->vf_data[vf].pf_vlan = 0;
4568 adapter->vf_data[vf].pf_qos = 0;
4569 }
4570out:
4571 return err;
4ae196df
AD
4572}
4573
4574static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4575{
4576 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4577 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4578
4579 return igb_vlvf_set(adapter, vid, add, vf);
4580}
4581
f2ca0dbe 4582static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4583{
8151d294
WM
4584 /* clear flags */
4585 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
f2ca0dbe 4586 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4587
4588 /* reset offloads to defaults */
8151d294 4589 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
4590
4591 /* reset vlans for device */
4592 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
4593 if (adapter->vf_data[vf].pf_vlan)
4594 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4595 adapter->vf_data[vf].pf_vlan,
4596 adapter->vf_data[vf].pf_qos);
4597 else
4598 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
4599
4600 /* reset multicast table array for vf */
4601 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4602
4603 /* Flush and reset the mta with the new values */
ff41f8dc 4604 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4605}
4606
f2ca0dbe
AD
4607static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4608{
4609 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4610
4611 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
4612 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4613 random_ether_addr(vf_mac);
f2ca0dbe
AD
4614
4615 /* process remaining reset events */
4616 igb_vf_reset(adapter, vf);
4617}
4618
4619static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4620{
4621 struct e1000_hw *hw = &adapter->hw;
4622 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4623 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4624 u32 reg, msgbuf[3];
4625 u8 *addr = (u8 *)(&msgbuf[1]);
4626
4627 /* process all the same items cleared in a function level reset */
f2ca0dbe 4628 igb_vf_reset(adapter, vf);
4ae196df
AD
4629
4630 /* set vf mac address */
26ad9178 4631 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4632
4633 /* enable transmit and receive for vf */
4634 reg = rd32(E1000_VFTE);
4635 wr32(E1000_VFTE, reg | (1 << vf));
4636 reg = rd32(E1000_VFRE);
4637 wr32(E1000_VFRE, reg | (1 << vf));
4638
f2ca0dbe 4639 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4640
4641 /* reply to reset with ack and vf mac address */
4642 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4643 memcpy(addr, vf_mac, 6);
4644 igb_write_mbx(hw, msgbuf, 3, vf);
4645}
4646
4647static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4648{
f2ca0dbe
AD
4649 unsigned char *addr = (char *)&msg[1];
4650 int err = -1;
4ae196df 4651
f2ca0dbe
AD
4652 if (is_valid_ether_addr(addr))
4653 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4654
f2ca0dbe 4655 return err;
4ae196df
AD
4656}
4657
4658static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4659{
4660 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4661 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4662 u32 msg = E1000_VT_MSGTYPE_NACK;
4663
4664 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4665 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4666 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4667 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4668 vf_data->last_nack = jiffies;
4ae196df
AD
4669 }
4670}
4671
f2ca0dbe 4672static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 4673{
f2ca0dbe
AD
4674 struct pci_dev *pdev = adapter->pdev;
4675 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 4676 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4677 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4678 s32 retval;
4679
f2ca0dbe 4680 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 4681
fef45f4c
AD
4682 if (retval) {
4683 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 4684 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
4685 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4686 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4687 return;
4688 goto out;
4689 }
4ae196df
AD
4690
4691 /* this is a message we already processed, do nothing */
4692 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 4693 return;
4ae196df
AD
4694
4695 /*
4696 * until the vf completes a reset it should not be
4697 * allowed to start any configuration.
4698 */
4699
4700 if (msgbuf[0] == E1000_VF_RESET) {
4701 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 4702 return;
4ae196df
AD
4703 }
4704
f2ca0dbe 4705 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
4706 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4707 return;
4708 retval = -1;
4709 goto out;
4ae196df
AD
4710 }
4711
4712 switch ((msgbuf[0] & 0xFFFF)) {
4713 case E1000_VF_SET_MAC_ADDR:
4714 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4715 break;
7d5753f0
AD
4716 case E1000_VF_SET_PROMISC:
4717 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4718 break;
4ae196df
AD
4719 case E1000_VF_SET_MULTICAST:
4720 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4721 break;
4722 case E1000_VF_SET_LPE:
4723 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4724 break;
4725 case E1000_VF_SET_VLAN:
8151d294
WM
4726 if (adapter->vf_data[vf].pf_vlan)
4727 retval = -1;
4728 else
4729 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
4730 break;
4731 default:
090b1795 4732 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
4733 retval = -1;
4734 break;
4735 }
4736
fef45f4c
AD
4737 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4738out:
4ae196df
AD
4739 /* notify the VF of the results of what it sent us */
4740 if (retval)
4741 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4742 else
4743 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4744
4ae196df 4745 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 4746}
4ae196df 4747
f2ca0dbe
AD
4748static void igb_msg_task(struct igb_adapter *adapter)
4749{
4750 struct e1000_hw *hw = &adapter->hw;
4751 u32 vf;
4752
4753 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4754 /* process any reset requests */
4755 if (!igb_check_for_rst(hw, vf))
4756 igb_vf_reset_event(adapter, vf);
4757
4758 /* process any messages pending */
4759 if (!igb_check_for_msg(hw, vf))
4760 igb_rcv_msg_from_vf(adapter, vf);
4761
4762 /* process any acks */
4763 if (!igb_check_for_ack(hw, vf))
4764 igb_rcv_ack_from_vf(adapter, vf);
4765 }
4ae196df
AD
4766}
4767
68d480c4
AD
4768/**
4769 * igb_set_uta - Set unicast filter table address
4770 * @adapter: board private structure
4771 *
4772 * The unicast table address is a register array of 32-bit registers.
4773 * The table is meant to be used in a way similar to how the MTA is used
4774 * however due to certain limitations in the hardware it is necessary to
4775 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4776 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4777 **/
4778static void igb_set_uta(struct igb_adapter *adapter)
4779{
4780 struct e1000_hw *hw = &adapter->hw;
4781 int i;
4782
4783 /* The UTA table only exists on 82576 hardware and newer */
4784 if (hw->mac.type < e1000_82576)
4785 return;
4786
4787 /* we only need to do this if VMDq is enabled */
4788 if (!adapter->vfs_allocated_count)
4789 return;
4790
4791 for (i = 0; i < hw->mac.uta_reg_count; i++)
4792 array_wr32(E1000_UTA, i, ~0);
4793}
4794
9d5c8243
AK
4795/**
4796 * igb_intr_msi - Interrupt Handler
4797 * @irq: interrupt number
4798 * @data: pointer to a network interface device structure
4799 **/
4800static irqreturn_t igb_intr_msi(int irq, void *data)
4801{
047e0030
AD
4802 struct igb_adapter *adapter = data;
4803 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4804 struct e1000_hw *hw = &adapter->hw;
4805 /* read ICR disables interrupts using IAM */
4806 u32 icr = rd32(E1000_ICR);
4807
047e0030 4808 igb_write_itr(q_vector);
9d5c8243 4809
7f081d40
AD
4810 if (icr & E1000_ICR_DRSTA)
4811 schedule_work(&adapter->reset_task);
4812
047e0030 4813 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4814 /* HW is reporting DMA is out of sync */
4815 adapter->stats.doosync++;
4816 }
4817
9d5c8243
AK
4818 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4819 hw->mac.get_link_status = 1;
4820 if (!test_bit(__IGB_DOWN, &adapter->state))
4821 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4822 }
4823
047e0030 4824 napi_schedule(&q_vector->napi);
9d5c8243
AK
4825
4826 return IRQ_HANDLED;
4827}
4828
4829/**
4a3c6433 4830 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4831 * @irq: interrupt number
4832 * @data: pointer to a network interface device structure
4833 **/
4834static irqreturn_t igb_intr(int irq, void *data)
4835{
047e0030
AD
4836 struct igb_adapter *adapter = data;
4837 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4838 struct e1000_hw *hw = &adapter->hw;
4839 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4840 * need for the IMC write */
4841 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4842 if (!icr)
4843 return IRQ_NONE; /* Not our interrupt */
4844
047e0030 4845 igb_write_itr(q_vector);
9d5c8243
AK
4846
4847 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4848 * not set, then the adapter didn't send an interrupt */
4849 if (!(icr & E1000_ICR_INT_ASSERTED))
4850 return IRQ_NONE;
4851
7f081d40
AD
4852 if (icr & E1000_ICR_DRSTA)
4853 schedule_work(&adapter->reset_task);
4854
047e0030 4855 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4856 /* HW is reporting DMA is out of sync */
4857 adapter->stats.doosync++;
4858 }
4859
9d5c8243
AK
4860 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4861 hw->mac.get_link_status = 1;
4862 /* guard against interrupt when we're going down */
4863 if (!test_bit(__IGB_DOWN, &adapter->state))
4864 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4865 }
4866
047e0030 4867 napi_schedule(&q_vector->napi);
9d5c8243
AK
4868
4869 return IRQ_HANDLED;
4870}
4871
047e0030 4872static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 4873{
047e0030 4874 struct igb_adapter *adapter = q_vector->adapter;
46544258 4875 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4876
4fc82adf
AD
4877 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4878 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 4879 if (!adapter->msix_entries)
6eb5a7f1 4880 igb_set_itr(adapter);
46544258 4881 else
047e0030 4882 igb_update_ring_itr(q_vector);
9d5c8243
AK
4883 }
4884
46544258
AD
4885 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4886 if (adapter->msix_entries)
047e0030 4887 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
4888 else
4889 igb_irq_enable(adapter);
4890 }
9d5c8243
AK
4891}
4892
46544258
AD
4893/**
4894 * igb_poll - NAPI Rx polling callback
4895 * @napi: napi polling structure
4896 * @budget: count of how many packets we should handle
4897 **/
4898static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 4899{
047e0030
AD
4900 struct igb_q_vector *q_vector = container_of(napi,
4901 struct igb_q_vector,
4902 napi);
4903 int tx_clean_complete = 1, work_done = 0;
9d5c8243 4904
421e02f0 4905#ifdef CONFIG_IGB_DCA
047e0030
AD
4906 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4907 igb_update_dca(q_vector);
fe4506b6 4908#endif
047e0030
AD
4909 if (q_vector->tx_ring)
4910 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 4911
047e0030
AD
4912 if (q_vector->rx_ring)
4913 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4914
4915 if (!tx_clean_complete)
4916 work_done = budget;
46544258 4917
9d5c8243 4918 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4919 if (work_done < budget) {
288379f0 4920 napi_complete(napi);
047e0030 4921 igb_ring_irq_enable(q_vector);
9d5c8243
AK
4922 }
4923
46544258 4924 return work_done;
9d5c8243 4925}
6d8126f9 4926
33af6bcc 4927/**
c5b9bd5e 4928 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 4929 * @adapter: board private structure
c5b9bd5e
AD
4930 * @shhwtstamps: timestamp structure to update
4931 * @regval: unsigned 64bit system time value.
4932 *
4933 * We need to convert the system time value stored in the RX/TXSTMP registers
4934 * into a hwtstamp which can be used by the upper level timestamping functions
4935 */
4936static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4937 struct skb_shared_hwtstamps *shhwtstamps,
4938 u64 regval)
4939{
4940 u64 ns;
4941
55cac248
AD
4942 /*
4943 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4944 * 24 to match clock shift we setup earlier.
4945 */
4946 if (adapter->hw.mac.type == e1000_82580)
4947 regval <<= IGB_82580_TSYNC_SHIFT;
4948
c5b9bd5e
AD
4949 ns = timecounter_cyc2time(&adapter->clock, regval);
4950 timecompare_update(&adapter->compare, ns);
4951 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4952 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4953 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4954}
4955
4956/**
4957 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4958 * @q_vector: pointer to q_vector containing needed info
33af6bcc
PO
4959 * @skb: packet that was just sent
4960 *
4961 * If we were asked to do hardware stamping and such a time stamp is
4962 * available, then it must have been for this skb here because we only
4963 * allow only one such packet into the queue.
4964 */
c5b9bd5e 4965static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
33af6bcc 4966{
c5b9bd5e 4967 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc
PO
4968 union skb_shared_tx *shtx = skb_tx(skb);
4969 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
4970 struct skb_shared_hwtstamps shhwtstamps;
4971 u64 regval;
33af6bcc 4972
c5b9bd5e
AD
4973 /* if skb does not support hw timestamp or TX stamp not valid exit */
4974 if (likely(!shtx->hardware) ||
4975 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4976 return;
4977
4978 regval = rd32(E1000_TXSTMPL);
4979 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4980
4981 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4982 skb_tstamp_tx(skb, &shhwtstamps);
33af6bcc
PO
4983}
4984
9d5c8243
AK
4985/**
4986 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 4987 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
4988 * returns true if ring is completely cleaned
4989 **/
047e0030 4990static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 4991{
047e0030
AD
4992 struct igb_adapter *adapter = q_vector->adapter;
4993 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 4994 struct net_device *netdev = tx_ring->netdev;
0e014cb1 4995 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4996 struct igb_buffer *buffer_info;
4997 struct sk_buff *skb;
0e014cb1 4998 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4999 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5000 unsigned int i, eop, count = 0;
5001 bool cleaned = false;
9d5c8243 5002
9d5c8243 5003 i = tx_ring->next_to_clean;
0e014cb1
AD
5004 eop = tx_ring->buffer_info[i].next_to_watch;
5005 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5006
5007 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5008 (count < tx_ring->count)) {
5009 for (cleaned = false; !cleaned; count++) {
5010 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5011 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5012 cleaned = (i == eop);
9d5c8243
AK
5013 skb = buffer_info->skb;
5014
5015 if (skb) {
5016 unsigned int segs, bytecount;
5017 /* gso_segs is currently only valid for tcp */
40e90c26 5018 segs = buffer_info->gso_segs;
9d5c8243
AK
5019 /* multiply data chunks by size of headers */
5020 bytecount = ((segs - 1) * skb_headlen(skb)) +
5021 skb->len;
5022 total_packets += segs;
5023 total_bytes += bytecount;
33af6bcc 5024
c5b9bd5e 5025 igb_tx_hwtstamp(q_vector, skb);
9d5c8243
AK
5026 }
5027
80785298 5028 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5029 tx_desc->wb.status = 0;
9d5c8243
AK
5030
5031 i++;
5032 if (i == tx_ring->count)
5033 i = 0;
9d5c8243 5034 }
0e014cb1
AD
5035 eop = tx_ring->buffer_info[i].next_to_watch;
5036 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5037 }
5038
9d5c8243
AK
5039 tx_ring->next_to_clean = i;
5040
fc7d345d 5041 if (unlikely(count &&
9d5c8243 5042 netif_carrier_ok(netdev) &&
c493ea45 5043 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5044 /* Make sure that anybody stopping the queue after this
5045 * sees the new next_to_clean.
5046 */
5047 smp_mb();
661086df
PWJ
5048 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5049 !(test_bit(__IGB_DOWN, &adapter->state))) {
5050 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 5051 tx_ring->tx_stats.restart_queue++;
661086df 5052 }
9d5c8243
AK
5053 }
5054
5055 if (tx_ring->detect_tx_hung) {
5056 /* Detect a transmit hang in hardware, this serializes the
5057 * check with the clearing of time_stamp and movement of i */
5058 tx_ring->detect_tx_hung = false;
5059 if (tx_ring->buffer_info[i].time_stamp &&
5060 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5061 (adapter->tx_timeout_factor * HZ)) &&
5062 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5063
9d5c8243 5064 /* detected Tx unit hang */
59d71989 5065 dev_err(tx_ring->dev,
9d5c8243 5066 "Detected Tx Unit Hang\n"
2d064c06 5067 " Tx Queue <%d>\n"
9d5c8243
AK
5068 " TDH <%x>\n"
5069 " TDT <%x>\n"
5070 " next_to_use <%x>\n"
5071 " next_to_clean <%x>\n"
9d5c8243
AK
5072 "buffer_info[next_to_clean]\n"
5073 " time_stamp <%lx>\n"
0e014cb1 5074 " next_to_watch <%x>\n"
9d5c8243
AK
5075 " jiffies <%lx>\n"
5076 " desc.status <%x>\n",
2d064c06 5077 tx_ring->queue_index,
fce99e34
AD
5078 readl(tx_ring->head),
5079 readl(tx_ring->tail),
9d5c8243
AK
5080 tx_ring->next_to_use,
5081 tx_ring->next_to_clean,
f7ba205e 5082 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5083 eop,
9d5c8243 5084 jiffies,
0e014cb1 5085 eop_desc->wb.status);
661086df 5086 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5087 }
5088 }
5089 tx_ring->total_bytes += total_bytes;
5090 tx_ring->total_packets += total_packets;
e21ed353
AD
5091 tx_ring->tx_stats.bytes += total_bytes;
5092 tx_ring->tx_stats.packets += total_packets;
0e014cb1 5093 return (count < tx_ring->count);
9d5c8243
AK
5094}
5095
9d5c8243
AK
5096/**
5097 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5098 * @q_vector: structure containing interrupt and ring information
5099 * @skb: packet to send up
5100 * @vlan_tag: vlan tag for packet
9d5c8243 5101 **/
047e0030
AD
5102static void igb_receive_skb(struct igb_q_vector *q_vector,
5103 struct sk_buff *skb,
5104 u16 vlan_tag)
5105{
5106 struct igb_adapter *adapter = q_vector->adapter;
5107
31b24b95 5108 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5109 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5110 vlan_tag, skb);
182ff8df 5111 else
047e0030 5112 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5113}
5114
04a5fcaa 5115static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5116 u32 status_err, struct sk_buff *skb)
5117{
5118 skb->ip_summed = CHECKSUM_NONE;
5119
5120 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5121 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5122 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5123 return;
85ad76b2 5124
9d5c8243
AK
5125 /* TCP/UDP checksum error bit is set */
5126 if (status_err &
5127 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5128 /*
5129 * work around errata with sctp packets where the TCPE aka
5130 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5131 * packets, (aka let the stack check the crc32c)
5132 */
85ad76b2
AD
5133 if ((skb->len == 60) &&
5134 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 5135 ring->rx_stats.csum_err++;
85ad76b2 5136
9d5c8243 5137 /* let the stack verify checksum errors */
9d5c8243
AK
5138 return;
5139 }
5140 /* It must be a TCP or UDP packet with a valid checksum */
5141 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5142 skb->ip_summed = CHECKSUM_UNNECESSARY;
5143
59d71989 5144 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5145}
5146
757b77e2 5147static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5148 struct sk_buff *skb)
5149{
5150 struct igb_adapter *adapter = q_vector->adapter;
5151 struct e1000_hw *hw = &adapter->hw;
5152 u64 regval;
5153
5154 /*
5155 * If this bit is set, then the RX registers contain the time stamp. No
5156 * other packet will be time stamped until we read these registers, so
5157 * read the registers to make them available again. Because only one
5158 * packet can be time stamped at a time, we know that the register
5159 * values must belong to this one here and therefore we don't need to
5160 * compare any of the additional attributes stored for it.
5161 *
5162 * If nothing went wrong, then it should have a skb_shared_tx that we
5163 * can turn into a skb_shared_hwtstamps.
5164 */
757b77e2
NN
5165 if (staterr & E1000_RXDADV_STAT_TSIP) {
5166 u32 *stamp = (u32 *)skb->data;
5167 regval = le32_to_cpu(*(stamp + 2));
5168 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5169 skb_pull(skb, IGB_TS_HDR_LEN);
5170 } else {
5171 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5172 return;
c5b9bd5e 5173
757b77e2
NN
5174 regval = rd32(E1000_RXSTMPL);
5175 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5176 }
c5b9bd5e
AD
5177
5178 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5179}
4c844851 5180static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5181 union e1000_adv_rx_desc *rx_desc)
5182{
5183 /* HW will not DMA in data larger than the given buffer, even if it
5184 * parses the (NFS, of course) header to be larger. In that case, it
5185 * fills the header buffer and spills the rest into the page.
5186 */
5187 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5188 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5189 if (hlen > rx_ring->rx_buffer_len)
5190 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5191 return hlen;
5192}
5193
047e0030
AD
5194static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5195 int *work_done, int budget)
9d5c8243 5196{
047e0030 5197 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5198 struct net_device *netdev = rx_ring->netdev;
59d71989 5199 struct device *dev = rx_ring->dev;
9d5c8243
AK
5200 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5201 struct igb_buffer *buffer_info , *next_buffer;
5202 struct sk_buff *skb;
9d5c8243
AK
5203 bool cleaned = false;
5204 int cleaned_count = 0;
d1eff350 5205 int current_node = numa_node_id();
9d5c8243 5206 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5207 unsigned int i;
2d94d8ab
AD
5208 u32 staterr;
5209 u16 length;
047e0030 5210 u16 vlan_tag;
9d5c8243
AK
5211
5212 i = rx_ring->next_to_clean;
69d3ca53 5213 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5214 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5215 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5216
5217 while (staterr & E1000_RXD_STAT_DD) {
5218 if (*work_done >= budget)
5219 break;
5220 (*work_done)++;
9d5c8243 5221
69d3ca53
AD
5222 skb = buffer_info->skb;
5223 prefetch(skb->data - NET_IP_ALIGN);
5224 buffer_info->skb = NULL;
5225
5226 i++;
5227 if (i == rx_ring->count)
5228 i = 0;
42d0781a 5229
69d3ca53
AD
5230 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5231 prefetch(next_rxd);
5232 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5233
5234 length = le16_to_cpu(rx_desc->wb.upper.length);
5235 cleaned = true;
5236 cleaned_count++;
5237
2d94d8ab 5238 if (buffer_info->dma) {
59d71989 5239 dma_unmap_single(dev, buffer_info->dma,
4c844851 5240 rx_ring->rx_buffer_len,
59d71989 5241 DMA_FROM_DEVICE);
91615f76 5242 buffer_info->dma = 0;
4c844851 5243 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5244 skb_put(skb, length);
5245 goto send_up;
5246 }
4c844851 5247 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5248 }
5249
5250 if (length) {
59d71989
AD
5251 dma_unmap_page(dev, buffer_info->page_dma,
5252 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5253 buffer_info->page_dma = 0;
bf36c1a0 5254
aa913403 5255 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5256 buffer_info->page,
5257 buffer_info->page_offset,
5258 length);
5259
d1eff350
AD
5260 if ((page_count(buffer_info->page) != 1) ||
5261 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5262 buffer_info->page = NULL;
5263 else
5264 get_page(buffer_info->page);
9d5c8243
AK
5265
5266 skb->len += length;
5267 skb->data_len += length;
bf36c1a0 5268 skb->truesize += length;
9d5c8243 5269 }
9d5c8243 5270
bf36c1a0 5271 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5272 buffer_info->skb = next_buffer->skb;
5273 buffer_info->dma = next_buffer->dma;
5274 next_buffer->skb = skb;
5275 next_buffer->dma = 0;
bf36c1a0
AD
5276 goto next_desc;
5277 }
69d3ca53 5278send_up:
9d5c8243
AK
5279 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5280 dev_kfree_skb_irq(skb);
5281 goto next_desc;
5282 }
9d5c8243 5283
757b77e2
NN
5284 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5285 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5286 total_bytes += skb->len;
5287 total_packets++;
5288
85ad76b2 5289 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5290
5291 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5292 skb_record_rx_queue(skb, rx_ring->queue_index);
5293
5294 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5295 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5296
047e0030 5297 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5298
9d5c8243
AK
5299next_desc:
5300 rx_desc->wb.upper.status_error = 0;
5301
5302 /* return some buffers to hardware, one at a time is too slow */
5303 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5304 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5305 cleaned_count = 0;
5306 }
5307
5308 /* use prefetched values */
5309 rx_desc = next_rxd;
5310 buffer_info = next_buffer;
9d5c8243
AK
5311 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5312 }
bf36c1a0 5313
9d5c8243 5314 rx_ring->next_to_clean = i;
c493ea45 5315 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5316
5317 if (cleaned_count)
3b644cf6 5318 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5319
5320 rx_ring->total_packets += total_packets;
5321 rx_ring->total_bytes += total_bytes;
5322 rx_ring->rx_stats.packets += total_packets;
5323 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5324 return cleaned;
5325}
5326
9d5c8243
AK
5327/**
5328 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5329 * @adapter: address of board private structure
5330 **/
d7ee5b3a 5331void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5332{
e694e964 5333 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5334 union e1000_adv_rx_desc *rx_desc;
5335 struct igb_buffer *buffer_info;
5336 struct sk_buff *skb;
5337 unsigned int i;
db761762 5338 int bufsz;
9d5c8243
AK
5339
5340 i = rx_ring->next_to_use;
5341 buffer_info = &rx_ring->buffer_info[i];
5342
4c844851 5343 bufsz = rx_ring->rx_buffer_len;
db761762 5344
9d5c8243
AK
5345 while (cleaned_count--) {
5346 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5347
6ec43fe6 5348 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5349 if (!buffer_info->page) {
42d0781a 5350 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5351 if (!buffer_info->page) {
04a5fcaa 5352 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5353 goto no_buffers;
5354 }
5355 buffer_info->page_offset = 0;
5356 } else {
5357 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5358 }
5359 buffer_info->page_dma =
59d71989 5360 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5361 buffer_info->page_offset,
5362 PAGE_SIZE / 2,
59d71989
AD
5363 DMA_FROM_DEVICE);
5364 if (dma_mapping_error(rx_ring->dev,
5365 buffer_info->page_dma)) {
42d0781a
AD
5366 buffer_info->page_dma = 0;
5367 rx_ring->rx_stats.alloc_failed++;
5368 goto no_buffers;
5369 }
9d5c8243
AK
5370 }
5371
42d0781a
AD
5372 skb = buffer_info->skb;
5373 if (!skb) {
89d71a66 5374 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5375 if (!skb) {
04a5fcaa 5376 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5377 goto no_buffers;
5378 }
5379
9d5c8243 5380 buffer_info->skb = skb;
42d0781a
AD
5381 }
5382 if (!buffer_info->dma) {
59d71989 5383 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5384 skb->data,
9d5c8243 5385 bufsz,
59d71989
AD
5386 DMA_FROM_DEVICE);
5387 if (dma_mapping_error(rx_ring->dev,
5388 buffer_info->dma)) {
42d0781a
AD
5389 buffer_info->dma = 0;
5390 rx_ring->rx_stats.alloc_failed++;
5391 goto no_buffers;
5392 }
9d5c8243
AK
5393 }
5394 /* Refresh the desc even if buffer_addrs didn't change because
5395 * each write-back erases this info. */
6ec43fe6 5396 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5397 rx_desc->read.pkt_addr =
5398 cpu_to_le64(buffer_info->page_dma);
5399 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5400 } else {
42d0781a 5401 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5402 rx_desc->read.hdr_addr = 0;
5403 }
5404
5405 i++;
5406 if (i == rx_ring->count)
5407 i = 0;
5408 buffer_info = &rx_ring->buffer_info[i];
5409 }
5410
5411no_buffers:
5412 if (rx_ring->next_to_use != i) {
5413 rx_ring->next_to_use = i;
5414 if (i == 0)
5415 i = (rx_ring->count - 1);
5416 else
5417 i--;
5418
5419 /* Force memory writes to complete before letting h/w
5420 * know there are new descriptors to fetch. (Only
5421 * applicable for weak-ordered memory model archs,
5422 * such as IA-64). */
5423 wmb();
fce99e34 5424 writel(i, rx_ring->tail);
9d5c8243
AK
5425 }
5426}
5427
5428/**
5429 * igb_mii_ioctl -
5430 * @netdev:
5431 * @ifreq:
5432 * @cmd:
5433 **/
5434static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5435{
5436 struct igb_adapter *adapter = netdev_priv(netdev);
5437 struct mii_ioctl_data *data = if_mii(ifr);
5438
5439 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5440 return -EOPNOTSUPP;
5441
5442 switch (cmd) {
5443 case SIOCGMIIPHY:
5444 data->phy_id = adapter->hw.phy.addr;
5445 break;
5446 case SIOCGMIIREG:
f5f4cf08
AD
5447 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5448 &data->val_out))
9d5c8243
AK
5449 return -EIO;
5450 break;
5451 case SIOCSMIIREG:
5452 default:
5453 return -EOPNOTSUPP;
5454 }
5455 return 0;
5456}
5457
c6cb090b
PO
5458/**
5459 * igb_hwtstamp_ioctl - control hardware time stamping
5460 * @netdev:
5461 * @ifreq:
5462 * @cmd:
5463 *
33af6bcc
PO
5464 * Outgoing time stamping can be enabled and disabled. Play nice and
5465 * disable it when requested, although it shouldn't case any overhead
5466 * when no packet needs it. At most one packet in the queue may be
5467 * marked for time stamping, otherwise it would be impossible to tell
5468 * for sure to which packet the hardware time stamp belongs.
5469 *
5470 * Incoming time stamping has to be configured via the hardware
5471 * filters. Not all combinations are supported, in particular event
5472 * type has to be specified. Matching the kind of event packet is
5473 * not supported, with the exception of "all V2 events regardless of
5474 * level 2 or 4".
5475 *
c6cb090b
PO
5476 **/
5477static int igb_hwtstamp_ioctl(struct net_device *netdev,
5478 struct ifreq *ifr, int cmd)
5479{
33af6bcc
PO
5480 struct igb_adapter *adapter = netdev_priv(netdev);
5481 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5482 struct hwtstamp_config config;
c5b9bd5e
AD
5483 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5484 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5485 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5486 bool is_l4 = false;
5487 bool is_l2 = false;
33af6bcc 5488 u32 regval;
c6cb090b
PO
5489
5490 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5491 return -EFAULT;
5492
5493 /* reserved for future extensions */
5494 if (config.flags)
5495 return -EINVAL;
5496
33af6bcc
PO
5497 switch (config.tx_type) {
5498 case HWTSTAMP_TX_OFF:
c5b9bd5e 5499 tsync_tx_ctl = 0;
33af6bcc 5500 case HWTSTAMP_TX_ON:
33af6bcc
PO
5501 break;
5502 default:
5503 return -ERANGE;
5504 }
5505
5506 switch (config.rx_filter) {
5507 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5508 tsync_rx_ctl = 0;
33af6bcc
PO
5509 break;
5510 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5511 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5512 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5513 case HWTSTAMP_FILTER_ALL:
5514 /*
5515 * register TSYNCRXCFG must be set, therefore it is not
5516 * possible to time stamp both Sync and Delay_Req messages
5517 * => fall back to time stamping all packets
5518 */
c5b9bd5e 5519 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5520 config.rx_filter = HWTSTAMP_FILTER_ALL;
5521 break;
5522 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5523 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5524 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5525 is_l4 = true;
33af6bcc
PO
5526 break;
5527 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5528 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5529 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5530 is_l4 = true;
33af6bcc
PO
5531 break;
5532 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5533 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5534 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5535 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5536 is_l2 = true;
5537 is_l4 = true;
33af6bcc
PO
5538 config.rx_filter = HWTSTAMP_FILTER_SOME;
5539 break;
5540 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5541 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5542 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5543 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5544 is_l2 = true;
5545 is_l4 = true;
33af6bcc
PO
5546 config.rx_filter = HWTSTAMP_FILTER_SOME;
5547 break;
5548 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5549 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5551 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5552 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5553 is_l2 = true;
33af6bcc
PO
5554 break;
5555 default:
5556 return -ERANGE;
5557 }
5558
c5b9bd5e
AD
5559 if (hw->mac.type == e1000_82575) {
5560 if (tsync_rx_ctl | tsync_tx_ctl)
5561 return -EINVAL;
5562 return 0;
5563 }
5564
757b77e2
NN
5565 /*
5566 * Per-packet timestamping only works if all packets are
5567 * timestamped, so enable timestamping in all packets as
5568 * long as one rx filter was configured.
5569 */
5570 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5571 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5572 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5573 }
5574
33af6bcc
PO
5575 /* enable/disable TX */
5576 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5577 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5578 regval |= tsync_tx_ctl;
33af6bcc
PO
5579 wr32(E1000_TSYNCTXCTL, regval);
5580
c5b9bd5e 5581 /* enable/disable RX */
33af6bcc 5582 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5583 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5584 regval |= tsync_rx_ctl;
33af6bcc 5585 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5586
c5b9bd5e
AD
5587 /* define which PTP packets are time stamped */
5588 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5589
c5b9bd5e
AD
5590 /* define ethertype filter for timestamped packets */
5591 if (is_l2)
5592 wr32(E1000_ETQF(3),
5593 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5594 E1000_ETQF_1588 | /* enable timestamping */
5595 ETH_P_1588)); /* 1588 eth protocol type */
5596 else
5597 wr32(E1000_ETQF(3), 0);
5598
5599#define PTP_PORT 319
5600 /* L4 Queue Filter[3]: filter by destination port and protocol */
5601 if (is_l4) {
5602 u32 ftqf = (IPPROTO_UDP /* UDP */
5603 | E1000_FTQF_VF_BP /* VF not compared */
5604 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5605 | E1000_FTQF_MASK); /* mask all inputs */
5606 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5607
5608 wr32(E1000_IMIR(3), htons(PTP_PORT));
5609 wr32(E1000_IMIREXT(3),
5610 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5611 if (hw->mac.type == e1000_82576) {
5612 /* enable source port check */
5613 wr32(E1000_SPQF(3), htons(PTP_PORT));
5614 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5615 }
5616 wr32(E1000_FTQF(3), ftqf);
5617 } else {
5618 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5619 }
33af6bcc
PO
5620 wrfl();
5621
5622 adapter->hwtstamp_config = config;
5623
5624 /* clear TX/RX time stamp registers, just to be sure */
5625 regval = rd32(E1000_TXSTMPH);
5626 regval = rd32(E1000_RXSTMPH);
c6cb090b 5627
33af6bcc
PO
5628 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5629 -EFAULT : 0;
c6cb090b
PO
5630}
5631
9d5c8243
AK
5632/**
5633 * igb_ioctl -
5634 * @netdev:
5635 * @ifreq:
5636 * @cmd:
5637 **/
5638static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5639{
5640 switch (cmd) {
5641 case SIOCGMIIPHY:
5642 case SIOCGMIIREG:
5643 case SIOCSMIIREG:
5644 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5645 case SIOCSHWTSTAMP:
5646 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5647 default:
5648 return -EOPNOTSUPP;
5649 }
5650}
5651
009bc06e
AD
5652s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5653{
5654 struct igb_adapter *adapter = hw->back;
5655 u16 cap_offset;
5656
5657 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5658 if (!cap_offset)
5659 return -E1000_ERR_CONFIG;
5660
5661 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5662
5663 return 0;
5664}
5665
5666s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5667{
5668 struct igb_adapter *adapter = hw->back;
5669 u16 cap_offset;
5670
5671 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5672 if (!cap_offset)
5673 return -E1000_ERR_CONFIG;
5674
5675 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5676
5677 return 0;
5678}
5679
9d5c8243
AK
5680static void igb_vlan_rx_register(struct net_device *netdev,
5681 struct vlan_group *grp)
5682{
5683 struct igb_adapter *adapter = netdev_priv(netdev);
5684 struct e1000_hw *hw = &adapter->hw;
5685 u32 ctrl, rctl;
5686
5687 igb_irq_disable(adapter);
5688 adapter->vlgrp = grp;
5689
5690 if (grp) {
5691 /* enable VLAN tag insert/strip */
5692 ctrl = rd32(E1000_CTRL);
5693 ctrl |= E1000_CTRL_VME;
5694 wr32(E1000_CTRL, ctrl);
5695
51466239 5696 /* Disable CFI check */
9d5c8243 5697 rctl = rd32(E1000_RCTL);
9d5c8243
AK
5698 rctl &= ~E1000_RCTL_CFIEN;
5699 wr32(E1000_RCTL, rctl);
9d5c8243
AK
5700 } else {
5701 /* disable VLAN tag insert/strip */
5702 ctrl = rd32(E1000_CTRL);
5703 ctrl &= ~E1000_CTRL_VME;
5704 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
5705 }
5706
e1739522
AD
5707 igb_rlpml_set(adapter);
5708
9d5c8243
AK
5709 if (!test_bit(__IGB_DOWN, &adapter->state))
5710 igb_irq_enable(adapter);
5711}
5712
5713static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5714{
5715 struct igb_adapter *adapter = netdev_priv(netdev);
5716 struct e1000_hw *hw = &adapter->hw;
4ae196df 5717 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5718
51466239
AD
5719 /* attempt to add filter to vlvf array */
5720 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 5721
51466239
AD
5722 /* add the filter since PF can receive vlans w/o entry in vlvf */
5723 igb_vfta_set(hw, vid, true);
9d5c8243
AK
5724}
5725
5726static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5727{
5728 struct igb_adapter *adapter = netdev_priv(netdev);
5729 struct e1000_hw *hw = &adapter->hw;
4ae196df 5730 int pf_id = adapter->vfs_allocated_count;
51466239 5731 s32 err;
9d5c8243
AK
5732
5733 igb_irq_disable(adapter);
5734 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5735
5736 if (!test_bit(__IGB_DOWN, &adapter->state))
5737 igb_irq_enable(adapter);
5738
51466239
AD
5739 /* remove vlan from VLVF table array */
5740 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 5741
51466239
AD
5742 /* if vid was not present in VLVF just remove it from table */
5743 if (err)
4ae196df 5744 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5745}
5746
5747static void igb_restore_vlan(struct igb_adapter *adapter)
5748{
5749 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5750
5751 if (adapter->vlgrp) {
5752 u16 vid;
5753 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5754 if (!vlan_group_get_device(adapter->vlgrp, vid))
5755 continue;
5756 igb_vlan_rx_add_vid(adapter->netdev, vid);
5757 }
5758 }
5759}
5760
5761int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5762{
090b1795 5763 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
5764 struct e1000_mac_info *mac = &adapter->hw.mac;
5765
5766 mac->autoneg = 0;
5767
9d5c8243
AK
5768 switch (spddplx) {
5769 case SPEED_10 + DUPLEX_HALF:
5770 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5771 break;
5772 case SPEED_10 + DUPLEX_FULL:
5773 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5774 break;
5775 case SPEED_100 + DUPLEX_HALF:
5776 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5777 break;
5778 case SPEED_100 + DUPLEX_FULL:
5779 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5780 break;
5781 case SPEED_1000 + DUPLEX_FULL:
5782 mac->autoneg = 1;
5783 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5784 break;
5785 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5786 default:
090b1795 5787 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
5788 return -EINVAL;
5789 }
5790 return 0;
5791}
5792
3fe7c4c9 5793static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5794{
5795 struct net_device *netdev = pci_get_drvdata(pdev);
5796 struct igb_adapter *adapter = netdev_priv(netdev);
5797 struct e1000_hw *hw = &adapter->hw;
2d064c06 5798 u32 ctrl, rctl, status;
9d5c8243
AK
5799 u32 wufc = adapter->wol;
5800#ifdef CONFIG_PM
5801 int retval = 0;
5802#endif
5803
5804 netif_device_detach(netdev);
5805
a88f10ec
AD
5806 if (netif_running(netdev))
5807 igb_close(netdev);
5808
047e0030 5809 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
5810
5811#ifdef CONFIG_PM
5812 retval = pci_save_state(pdev);
5813 if (retval)
5814 return retval;
5815#endif
5816
5817 status = rd32(E1000_STATUS);
5818 if (status & E1000_STATUS_LU)
5819 wufc &= ~E1000_WUFC_LNKC;
5820
5821 if (wufc) {
5822 igb_setup_rctl(adapter);
ff41f8dc 5823 igb_set_rx_mode(netdev);
9d5c8243
AK
5824
5825 /* turn on all-multi mode if wake on multicast is enabled */
5826 if (wufc & E1000_WUFC_MC) {
5827 rctl = rd32(E1000_RCTL);
5828 rctl |= E1000_RCTL_MPE;
5829 wr32(E1000_RCTL, rctl);
5830 }
5831
5832 ctrl = rd32(E1000_CTRL);
5833 /* advertise wake from D3Cold */
5834 #define E1000_CTRL_ADVD3WUC 0x00100000
5835 /* phy power management enable */
5836 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5837 ctrl |= E1000_CTRL_ADVD3WUC;
5838 wr32(E1000_CTRL, ctrl);
5839
9d5c8243 5840 /* Allow time for pending master requests to run */
330a6d6a 5841 igb_disable_pcie_master(hw);
9d5c8243
AK
5842
5843 wr32(E1000_WUC, E1000_WUC_PME_EN);
5844 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5845 } else {
5846 wr32(E1000_WUC, 0);
5847 wr32(E1000_WUFC, 0);
9d5c8243
AK
5848 }
5849
3fe7c4c9
RW
5850 *enable_wake = wufc || adapter->en_mng_pt;
5851 if (!*enable_wake)
88a268c1
NN
5852 igb_power_down_link(adapter);
5853 else
5854 igb_power_up_link(adapter);
9d5c8243
AK
5855
5856 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5857 * would have already happened in close and is redundant. */
5858 igb_release_hw_control(adapter);
5859
5860 pci_disable_device(pdev);
5861
9d5c8243
AK
5862 return 0;
5863}
5864
5865#ifdef CONFIG_PM
3fe7c4c9
RW
5866static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5867{
5868 int retval;
5869 bool wake;
5870
5871 retval = __igb_shutdown(pdev, &wake);
5872 if (retval)
5873 return retval;
5874
5875 if (wake) {
5876 pci_prepare_to_sleep(pdev);
5877 } else {
5878 pci_wake_from_d3(pdev, false);
5879 pci_set_power_state(pdev, PCI_D3hot);
5880 }
5881
5882 return 0;
5883}
5884
9d5c8243
AK
5885static int igb_resume(struct pci_dev *pdev)
5886{
5887 struct net_device *netdev = pci_get_drvdata(pdev);
5888 struct igb_adapter *adapter = netdev_priv(netdev);
5889 struct e1000_hw *hw = &adapter->hw;
5890 u32 err;
5891
5892 pci_set_power_state(pdev, PCI_D0);
5893 pci_restore_state(pdev);
b94f2d77 5894 pci_save_state(pdev);
42bfd33a 5895
aed5dec3 5896 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5897 if (err) {
5898 dev_err(&pdev->dev,
5899 "igb: Cannot enable PCI device from suspend\n");
5900 return err;
5901 }
5902 pci_set_master(pdev);
5903
5904 pci_enable_wake(pdev, PCI_D3hot, 0);
5905 pci_enable_wake(pdev, PCI_D3cold, 0);
5906
047e0030 5907 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
5908 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5909 return -ENOMEM;
9d5c8243
AK
5910 }
5911
9d5c8243 5912 igb_reset(adapter);
a8564f03
AD
5913
5914 /* let the f/w know that the h/w is now under the control of the
5915 * driver. */
5916 igb_get_hw_control(adapter);
5917
9d5c8243
AK
5918 wr32(E1000_WUS, ~0);
5919
a88f10ec
AD
5920 if (netif_running(netdev)) {
5921 err = igb_open(netdev);
5922 if (err)
5923 return err;
5924 }
9d5c8243
AK
5925
5926 netif_device_attach(netdev);
5927
9d5c8243
AK
5928 return 0;
5929}
5930#endif
5931
5932static void igb_shutdown(struct pci_dev *pdev)
5933{
3fe7c4c9
RW
5934 bool wake;
5935
5936 __igb_shutdown(pdev, &wake);
5937
5938 if (system_state == SYSTEM_POWER_OFF) {
5939 pci_wake_from_d3(pdev, wake);
5940 pci_set_power_state(pdev, PCI_D3hot);
5941 }
9d5c8243
AK
5942}
5943
5944#ifdef CONFIG_NET_POLL_CONTROLLER
5945/*
5946 * Polling 'interrupt' - used by things like netconsole to send skbs
5947 * without having to re-enable interrupts. It's not called while
5948 * the interrupt routine is executing.
5949 */
5950static void igb_netpoll(struct net_device *netdev)
5951{
5952 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5953 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5954 int i;
9d5c8243 5955
eebbbdba 5956 if (!adapter->msix_entries) {
047e0030 5957 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 5958 igb_irq_disable(adapter);
047e0030 5959 napi_schedule(&q_vector->napi);
eebbbdba
AD
5960 return;
5961 }
9d5c8243 5962
047e0030
AD
5963 for (i = 0; i < adapter->num_q_vectors; i++) {
5964 struct igb_q_vector *q_vector = adapter->q_vector[i];
5965 wr32(E1000_EIMC, q_vector->eims_value);
5966 napi_schedule(&q_vector->napi);
eebbbdba 5967 }
9d5c8243
AK
5968}
5969#endif /* CONFIG_NET_POLL_CONTROLLER */
5970
5971/**
5972 * igb_io_error_detected - called when PCI error is detected
5973 * @pdev: Pointer to PCI device
5974 * @state: The current pci connection state
5975 *
5976 * This function is called after a PCI bus error affecting
5977 * this device has been detected.
5978 */
5979static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5980 pci_channel_state_t state)
5981{
5982 struct net_device *netdev = pci_get_drvdata(pdev);
5983 struct igb_adapter *adapter = netdev_priv(netdev);
5984
5985 netif_device_detach(netdev);
5986
59ed6eec
AD
5987 if (state == pci_channel_io_perm_failure)
5988 return PCI_ERS_RESULT_DISCONNECT;
5989
9d5c8243
AK
5990 if (netif_running(netdev))
5991 igb_down(adapter);
5992 pci_disable_device(pdev);
5993
5994 /* Request a slot slot reset. */
5995 return PCI_ERS_RESULT_NEED_RESET;
5996}
5997
5998/**
5999 * igb_io_slot_reset - called after the pci bus has been reset.
6000 * @pdev: Pointer to PCI device
6001 *
6002 * Restart the card from scratch, as if from a cold-boot. Implementation
6003 * resembles the first-half of the igb_resume routine.
6004 */
6005static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6006{
6007 struct net_device *netdev = pci_get_drvdata(pdev);
6008 struct igb_adapter *adapter = netdev_priv(netdev);
6009 struct e1000_hw *hw = &adapter->hw;
40a914fa 6010 pci_ers_result_t result;
42bfd33a 6011 int err;
9d5c8243 6012
aed5dec3 6013 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6014 dev_err(&pdev->dev,
6015 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6016 result = PCI_ERS_RESULT_DISCONNECT;
6017 } else {
6018 pci_set_master(pdev);
6019 pci_restore_state(pdev);
b94f2d77 6020 pci_save_state(pdev);
9d5c8243 6021
40a914fa
AD
6022 pci_enable_wake(pdev, PCI_D3hot, 0);
6023 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6024
40a914fa
AD
6025 igb_reset(adapter);
6026 wr32(E1000_WUS, ~0);
6027 result = PCI_ERS_RESULT_RECOVERED;
6028 }
9d5c8243 6029
ea943d41
JK
6030 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6031 if (err) {
6032 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6033 "failed 0x%0x\n", err);
6034 /* non-fatal, continue */
6035 }
40a914fa
AD
6036
6037 return result;
9d5c8243
AK
6038}
6039
6040/**
6041 * igb_io_resume - called when traffic can start flowing again.
6042 * @pdev: Pointer to PCI device
6043 *
6044 * This callback is called when the error recovery driver tells us that
6045 * its OK to resume normal operation. Implementation resembles the
6046 * second-half of the igb_resume routine.
6047 */
6048static void igb_io_resume(struct pci_dev *pdev)
6049{
6050 struct net_device *netdev = pci_get_drvdata(pdev);
6051 struct igb_adapter *adapter = netdev_priv(netdev);
6052
9d5c8243
AK
6053 if (netif_running(netdev)) {
6054 if (igb_up(adapter)) {
6055 dev_err(&pdev->dev, "igb_up failed after reset\n");
6056 return;
6057 }
6058 }
6059
6060 netif_device_attach(netdev);
6061
6062 /* let the f/w know that the h/w is now under the control of the
6063 * driver. */
6064 igb_get_hw_control(adapter);
9d5c8243
AK
6065}
6066
26ad9178
AD
6067static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6068 u8 qsel)
6069{
6070 u32 rar_low, rar_high;
6071 struct e1000_hw *hw = &adapter->hw;
6072
6073 /* HW expects these in little endian so we reverse the byte order
6074 * from network order (big endian) to little endian
6075 */
6076 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6077 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6078 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6079
6080 /* Indicate to hardware the Address is Valid. */
6081 rar_high |= E1000_RAH_AV;
6082
6083 if (hw->mac.type == e1000_82575)
6084 rar_high |= E1000_RAH_POOL_1 * qsel;
6085 else
6086 rar_high |= E1000_RAH_POOL_1 << qsel;
6087
6088 wr32(E1000_RAL(index), rar_low);
6089 wrfl();
6090 wr32(E1000_RAH(index), rar_high);
6091 wrfl();
6092}
6093
4ae196df
AD
6094static int igb_set_vf_mac(struct igb_adapter *adapter,
6095 int vf, unsigned char *mac_addr)
6096{
6097 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6098 /* VF MAC addresses start at end of receive addresses and moves
6099 * torwards the first, as a result a collision should not be possible */
6100 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6101
37680117 6102 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6103
26ad9178 6104 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6105
6106 return 0;
6107}
6108
8151d294
WM
6109static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6110{
6111 struct igb_adapter *adapter = netdev_priv(netdev);
6112 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6113 return -EINVAL;
6114 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6115 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6116 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6117 " change effective.");
6118 if (test_bit(__IGB_DOWN, &adapter->state)) {
6119 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6120 " but the PF device is not up.\n");
6121 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6122 " attempting to use the VF device.\n");
6123 }
6124 return igb_set_vf_mac(adapter, vf, mac);
6125}
6126
6127static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6128{
6129 return -EOPNOTSUPP;
6130}
6131
6132static int igb_ndo_get_vf_config(struct net_device *netdev,
6133 int vf, struct ifla_vf_info *ivi)
6134{
6135 struct igb_adapter *adapter = netdev_priv(netdev);
6136 if (vf >= adapter->vfs_allocated_count)
6137 return -EINVAL;
6138 ivi->vf = vf;
6139 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6140 ivi->tx_rate = 0;
6141 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6142 ivi->qos = adapter->vf_data[vf].pf_qos;
6143 return 0;
6144}
6145
4ae196df
AD
6146static void igb_vmm_control(struct igb_adapter *adapter)
6147{
6148 struct e1000_hw *hw = &adapter->hw;
10d8e907 6149 u32 reg;
4ae196df 6150
52a1dd4d
AD
6151 switch (hw->mac.type) {
6152 case e1000_82575:
6153 default:
6154 /* replication is not supported for 82575 */
4ae196df 6155 return;
52a1dd4d
AD
6156 case e1000_82576:
6157 /* notify HW that the MAC is adding vlan tags */
6158 reg = rd32(E1000_DTXCTL);
6159 reg |= E1000_DTXCTL_VLAN_ADDED;
6160 wr32(E1000_DTXCTL, reg);
6161 case e1000_82580:
6162 /* enable replication vlan tag stripping */
6163 reg = rd32(E1000_RPLOLR);
6164 reg |= E1000_RPLOLR_STRVLAN;
6165 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6166 case e1000_i350:
6167 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6168 break;
6169 }
10d8e907 6170
d4960307
AD
6171 if (adapter->vfs_allocated_count) {
6172 igb_vmdq_set_loopback_pf(hw, true);
6173 igb_vmdq_set_replication_pf(hw, true);
6174 } else {
6175 igb_vmdq_set_loopback_pf(hw, false);
6176 igb_vmdq_set_replication_pf(hw, false);
6177 }
4ae196df
AD
6178}
6179
9d5c8243 6180/* igb_main.c */