]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/igb/igb_main.c
igb: correct link test not being run when link is down
[mirror_ubuntu-zesty-kernel.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
55cac248 53#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 58static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
2d064c06 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
85 /* required last entry */
86 {0, }
87};
88
89MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
90
91void igb_reset(struct igb_adapter *);
92static int igb_setup_all_tx_resources(struct igb_adapter *);
93static int igb_setup_all_rx_resources(struct igb_adapter *);
94static void igb_free_all_tx_resources(struct igb_adapter *);
95static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 96static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
97void igb_update_stats(struct igb_adapter *);
98static int igb_probe(struct pci_dev *, const struct pci_device_id *);
99static void __devexit igb_remove(struct pci_dev *pdev);
100static int igb_sw_init(struct igb_adapter *);
101static int igb_open(struct net_device *);
102static int igb_close(struct net_device *);
103static void igb_configure_tx(struct igb_adapter *);
104static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
105static void igb_clean_all_tx_rings(struct igb_adapter *);
106static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
107static void igb_clean_tx_ring(struct igb_ring *);
108static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 109static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
110static void igb_update_phy_info(unsigned long);
111static void igb_watchdog(unsigned long);
112static void igb_watchdog_task(struct work_struct *);
b1a436c3 113static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
114static struct net_device_stats *igb_get_stats(struct net_device *);
115static int igb_change_mtu(struct net_device *, int);
116static int igb_set_mac(struct net_device *, void *);
68d480c4 117static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
118static irqreturn_t igb_intr(int irq, void *);
119static irqreturn_t igb_intr_msi(int irq, void *);
120static irqreturn_t igb_msix_other(int irq, void *);
047e0030 121static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 122#ifdef CONFIG_IGB_DCA
047e0030 123static void igb_update_dca(struct igb_q_vector *);
fe4506b6 124static void igb_setup_dca(struct igb_adapter *);
421e02f0 125#endif /* CONFIG_IGB_DCA */
047e0030 126static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 127static int igb_poll(struct napi_struct *, int);
047e0030 128static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
129static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
130static void igb_tx_timeout(struct net_device *);
131static void igb_reset_task(struct work_struct *);
132static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
133static void igb_vlan_rx_add_vid(struct net_device *, u16);
134static void igb_vlan_rx_kill_vid(struct net_device *, u16);
135static void igb_restore_vlan(struct igb_adapter *);
26ad9178 136static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
137static void igb_ping_all_vfs(struct igb_adapter *);
138static void igb_msg_task(struct igb_adapter *);
4ae196df 139static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 140static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 141static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
142static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
143static int igb_ndo_set_vf_vlan(struct net_device *netdev,
144 int vf, u16 vlan, u8 qos);
145static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
146static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
147 struct ifla_vf_info *ivi);
9d5c8243 148
9d5c8243 149#ifdef CONFIG_PM
3fe7c4c9 150static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
151static int igb_resume(struct pci_dev *);
152#endif
153static void igb_shutdown(struct pci_dev *);
421e02f0 154#ifdef CONFIG_IGB_DCA
fe4506b6
JC
155static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
156static struct notifier_block dca_notifier = {
157 .notifier_call = igb_notify_dca,
158 .next = NULL,
159 .priority = 0
160};
161#endif
9d5c8243
AK
162#ifdef CONFIG_NET_POLL_CONTROLLER
163/* for netdump / net console */
164static void igb_netpoll(struct net_device *);
165#endif
37680117 166#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
167static unsigned int max_vfs = 0;
168module_param(max_vfs, uint, 0);
169MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
170 "per physical function");
171#endif /* CONFIG_PCI_IOV */
172
9d5c8243
AK
173static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
174 pci_channel_state_t);
175static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
176static void igb_io_resume(struct pci_dev *);
177
178static struct pci_error_handlers igb_err_handler = {
179 .error_detected = igb_io_error_detected,
180 .slot_reset = igb_io_slot_reset,
181 .resume = igb_io_resume,
182};
183
184
185static struct pci_driver igb_driver = {
186 .name = igb_driver_name,
187 .id_table = igb_pci_tbl,
188 .probe = igb_probe,
189 .remove = __devexit_p(igb_remove),
190#ifdef CONFIG_PM
191 /* Power Managment Hooks */
192 .suspend = igb_suspend,
193 .resume = igb_resume,
194#endif
195 .shutdown = igb_shutdown,
196 .err_handler = &igb_err_handler
197};
198
199MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
200MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
201MODULE_LICENSE("GPL");
202MODULE_VERSION(DRV_VERSION);
203
c97ec42a
TI
204struct igb_reg_info {
205 u32 ofs;
206 char *name;
207};
208
209static const struct igb_reg_info igb_reg_info_tbl[] = {
210
211 /* General Registers */
212 {E1000_CTRL, "CTRL"},
213 {E1000_STATUS, "STATUS"},
214 {E1000_CTRL_EXT, "CTRL_EXT"},
215
216 /* Interrupt Registers */
217 {E1000_ICR, "ICR"},
218
219 /* RX Registers */
220 {E1000_RCTL, "RCTL"},
221 {E1000_RDLEN(0), "RDLEN"},
222 {E1000_RDH(0), "RDH"},
223 {E1000_RDT(0), "RDT"},
224 {E1000_RXDCTL(0), "RXDCTL"},
225 {E1000_RDBAL(0), "RDBAL"},
226 {E1000_RDBAH(0), "RDBAH"},
227
228 /* TX Registers */
229 {E1000_TCTL, "TCTL"},
230 {E1000_TDBAL(0), "TDBAL"},
231 {E1000_TDBAH(0), "TDBAH"},
232 {E1000_TDLEN(0), "TDLEN"},
233 {E1000_TDH(0), "TDH"},
234 {E1000_TDT(0), "TDT"},
235 {E1000_TXDCTL(0), "TXDCTL"},
236 {E1000_TDFH, "TDFH"},
237 {E1000_TDFT, "TDFT"},
238 {E1000_TDFHS, "TDFHS"},
239 {E1000_TDFPC, "TDFPC"},
240
241 /* List Terminator */
242 {}
243};
244
245/*
246 * igb_regdump - register printout routine
247 */
248static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
249{
250 int n = 0;
251 char rname[16];
252 u32 regs[8];
253
254 switch (reginfo->ofs) {
255 case E1000_RDLEN(0):
256 for (n = 0; n < 4; n++)
257 regs[n] = rd32(E1000_RDLEN(n));
258 break;
259 case E1000_RDH(0):
260 for (n = 0; n < 4; n++)
261 regs[n] = rd32(E1000_RDH(n));
262 break;
263 case E1000_RDT(0):
264 for (n = 0; n < 4; n++)
265 regs[n] = rd32(E1000_RDT(n));
266 break;
267 case E1000_RXDCTL(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RXDCTL(n));
270 break;
271 case E1000_RDBAL(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDBAL(n));
274 break;
275 case E1000_RDBAH(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDBAH(n));
278 break;
279 case E1000_TDBAL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RDBAL(n));
282 break;
283 case E1000_TDBAH(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_TDBAH(n));
286 break;
287 case E1000_TDLEN(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_TDLEN(n));
290 break;
291 case E1000_TDH(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_TDH(n));
294 break;
295 case E1000_TDT(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDT(n));
298 break;
299 case E1000_TXDCTL(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TXDCTL(n));
302 break;
303 default:
304 printk(KERN_INFO "%-15s %08x\n",
305 reginfo->name, rd32(reginfo->ofs));
306 return;
307 }
308
309 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
310 printk(KERN_INFO "%-15s ", rname);
311 for (n = 0; n < 4; n++)
312 printk(KERN_CONT "%08x ", regs[n]);
313 printk(KERN_CONT "\n");
314}
315
316/*
317 * igb_dump - Print registers, tx-rings and rx-rings
318 */
319static void igb_dump(struct igb_adapter *adapter)
320{
321 struct net_device *netdev = adapter->netdev;
322 struct e1000_hw *hw = &adapter->hw;
323 struct igb_reg_info *reginfo;
324 int n = 0;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { u64 a; u64 b; } *u0;
328 struct igb_buffer *buffer_info;
329 struct igb_ring *rx_ring;
330 union e1000_adv_rx_desc *rx_desc;
331 u32 staterr;
332 int i = 0;
333
334 if (!netif_msg_hw(adapter))
335 return;
336
337 /* Print netdevice Info */
338 if (netdev) {
339 dev_info(&adapter->pdev->dev, "Net device Info\n");
340 printk(KERN_INFO "Device Name state "
341 "trans_start last_rx\n");
342 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
343 netdev->name,
344 netdev->state,
345 netdev->trans_start,
346 netdev->last_rx);
347 }
348
349 /* Print Registers */
350 dev_info(&adapter->pdev->dev, "Register Dump\n");
351 printk(KERN_INFO " Register Name Value\n");
352 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
353 reginfo->name; reginfo++) {
354 igb_regdump(hw, reginfo);
355 }
356
357 /* Print TX Ring Summary */
358 if (!netdev || !netif_running(netdev))
359 goto exit;
360
361 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
362 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
363 " leng ntw timestamp\n");
364 for (n = 0; n < adapter->num_tx_queues; n++) {
365 tx_ring = adapter->tx_ring[n];
366 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
367 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
368 n, tx_ring->next_to_use, tx_ring->next_to_clean,
369 (u64)buffer_info->dma,
370 buffer_info->length,
371 buffer_info->next_to_watch,
372 (u64)buffer_info->time_stamp);
373 }
374
375 /* Print TX Rings */
376 if (!netif_msg_tx_done(adapter))
377 goto rx_ring_summary;
378
379 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
380
381 /* Transmit Descriptor Formats
382 *
383 * Advanced Transmit Descriptor
384 * +--------------------------------------------------------------+
385 * 0 | Buffer Address [63:0] |
386 * +--------------------------------------------------------------+
387 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
388 * +--------------------------------------------------------------+
389 * 63 46 45 40 39 38 36 35 32 31 24 15 0
390 */
391
392 for (n = 0; n < adapter->num_tx_queues; n++) {
393 tx_ring = adapter->tx_ring[n];
394 printk(KERN_INFO "------------------------------------\n");
395 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "T [desc] [address 63:0 ] "
398 "[PlPOCIStDDM Ln] [bi->dma ] "
399 "leng ntw timestamp bi->skb\n");
400
401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
403 buffer_info = &tx_ring->buffer_info[i];
404 u0 = (struct my_u0 *)tx_desc;
405 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
406 " %04X %3X %016llX %p", i,
407 le64_to_cpu(u0->a),
408 le64_to_cpu(u0->b),
409 (u64)buffer_info->dma,
410 buffer_info->length,
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp,
413 buffer_info->skb);
414 if (i == tx_ring->next_to_use &&
415 i == tx_ring->next_to_clean)
416 printk(KERN_CONT " NTC/U\n");
417 else if (i == tx_ring->next_to_use)
418 printk(KERN_CONT " NTU\n");
419 else if (i == tx_ring->next_to_clean)
420 printk(KERN_CONT " NTC\n");
421 else
422 printk(KERN_CONT "\n");
423
424 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
425 print_hex_dump(KERN_INFO, "",
426 DUMP_PREFIX_ADDRESS,
427 16, 1, phys_to_virt(buffer_info->dma),
428 buffer_info->length, true);
429 }
430 }
431
432 /* Print RX Rings Summary */
433rx_ring_summary:
434 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
435 printk(KERN_INFO "Queue [NTU] [NTC]\n");
436 for (n = 0; n < adapter->num_rx_queues; n++) {
437 rx_ring = adapter->rx_ring[n];
438 printk(KERN_INFO " %5d %5X %5X\n", n,
439 rx_ring->next_to_use, rx_ring->next_to_clean);
440 }
441
442 /* Print RX Rings */
443 if (!netif_msg_rx_status(adapter))
444 goto exit;
445
446 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
447
448 /* Advanced Receive Descriptor (Read) Format
449 * 63 1 0
450 * +-----------------------------------------------------+
451 * 0 | Packet Buffer Address [63:1] |A0/NSE|
452 * +----------------------------------------------+------+
453 * 8 | Header Buffer Address [63:1] | DD |
454 * +-----------------------------------------------------+
455 *
456 *
457 * Advanced Receive Descriptor (Write-Back) Format
458 *
459 * 63 48 47 32 31 30 21 20 17 16 4 3 0
460 * +------------------------------------------------------+
461 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
462 * | Checksum Ident | | | | Type | Type |
463 * +------------------------------------------------------+
464 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
465 * +------------------------------------------------------+
466 * 63 48 47 32 31 20 19 0
467 */
468
469 for (n = 0; n < adapter->num_rx_queues; n++) {
470 rx_ring = adapter->rx_ring[n];
471 printk(KERN_INFO "------------------------------------\n");
472 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "R [desc] [ PktBuf A0] "
475 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
476 "<-- Adv Rx Read format\n");
477 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
478 "[vl er S cks ln] ---------------- [bi->skb] "
479 "<-- Adv Rx Write-Back format\n");
480
481 for (i = 0; i < rx_ring->count; i++) {
482 buffer_info = &rx_ring->buffer_info[i];
483 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
484 u0 = (struct my_u0 *)rx_desc;
485 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
486 if (staterr & E1000_RXD_STAT_DD) {
487 /* Descriptor Done */
488 printk(KERN_INFO "RWB[0x%03X] %016llX "
489 "%016llX ---------------- %p", i,
490 le64_to_cpu(u0->a),
491 le64_to_cpu(u0->b),
492 buffer_info->skb);
493 } else {
494 printk(KERN_INFO "R [0x%03X] %016llX "
495 "%016llX %016llX %p", i,
496 le64_to_cpu(u0->a),
497 le64_to_cpu(u0->b),
498 (u64)buffer_info->dma,
499 buffer_info->skb);
500
501 if (netif_msg_pktdata(adapter)) {
502 print_hex_dump(KERN_INFO, "",
503 DUMP_PREFIX_ADDRESS,
504 16, 1,
505 phys_to_virt(buffer_info->dma),
506 rx_ring->rx_buffer_len, true);
507 if (rx_ring->rx_buffer_len
508 < IGB_RXBUFFER_1024)
509 print_hex_dump(KERN_INFO, "",
510 DUMP_PREFIX_ADDRESS,
511 16, 1,
512 phys_to_virt(
513 buffer_info->page_dma +
514 buffer_info->page_offset),
515 PAGE_SIZE/2, true);
516 }
517 }
518
519 if (i == rx_ring->next_to_use)
520 printk(KERN_CONT " NTU\n");
521 else if (i == rx_ring->next_to_clean)
522 printk(KERN_CONT " NTC\n");
523 else
524 printk(KERN_CONT "\n");
525
526 }
527 }
528
529exit:
530 return;
531}
532
533
38c845c7
PO
534/**
535 * igb_read_clock - read raw cycle counter (to be used by time counter)
536 */
537static cycle_t igb_read_clock(const struct cyclecounter *tc)
538{
539 struct igb_adapter *adapter =
540 container_of(tc, struct igb_adapter, cycles);
541 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
542 u64 stamp = 0;
543 int shift = 0;
38c845c7 544
55cac248
AD
545 /*
546 * The timestamp latches on lowest register read. For the 82580
547 * the lowest register is SYSTIMR instead of SYSTIML. However we never
548 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
549 */
550 if (hw->mac.type == e1000_82580) {
551 stamp = rd32(E1000_SYSTIMR) >> 8;
552 shift = IGB_82580_TSYNC_SHIFT;
553 }
554
c5b9bd5e
AD
555 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
556 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
557 return stamp;
558}
559
9d5c8243 560/**
c041076a 561 * igb_get_hw_dev - return device
9d5c8243
AK
562 * used by hardware layer to print debugging information
563 **/
c041076a 564struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
565{
566 struct igb_adapter *adapter = hw->back;
c041076a 567 return adapter->netdev;
9d5c8243 568}
38c845c7 569
9d5c8243
AK
570/**
571 * igb_init_module - Driver Registration Routine
572 *
573 * igb_init_module is the first routine called when the driver is
574 * loaded. All it does is register with the PCI subsystem.
575 **/
576static int __init igb_init_module(void)
577{
578 int ret;
579 printk(KERN_INFO "%s - version %s\n",
580 igb_driver_string, igb_driver_version);
581
582 printk(KERN_INFO "%s\n", igb_copyright);
583
421e02f0 584#ifdef CONFIG_IGB_DCA
fe4506b6
JC
585 dca_register_notify(&dca_notifier);
586#endif
bbd98fe4 587 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
588 return ret;
589}
590
591module_init(igb_init_module);
592
593/**
594 * igb_exit_module - Driver Exit Cleanup Routine
595 *
596 * igb_exit_module is called just before the driver is removed
597 * from memory.
598 **/
599static void __exit igb_exit_module(void)
600{
421e02f0 601#ifdef CONFIG_IGB_DCA
fe4506b6
JC
602 dca_unregister_notify(&dca_notifier);
603#endif
9d5c8243
AK
604 pci_unregister_driver(&igb_driver);
605}
606
607module_exit(igb_exit_module);
608
26bc19ec
AD
609#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
610/**
611 * igb_cache_ring_register - Descriptor ring to register mapping
612 * @adapter: board private structure to initialize
613 *
614 * Once we know the feature-set enabled for the device, we'll cache
615 * the register offset the descriptor ring is assigned to.
616 **/
617static void igb_cache_ring_register(struct igb_adapter *adapter)
618{
ee1b9f06 619 int i = 0, j = 0;
047e0030 620 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
621
622 switch (adapter->hw.mac.type) {
623 case e1000_82576:
624 /* The queues are allocated for virtualization such that VF 0
625 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
626 * In order to avoid collision we start at the first free queue
627 * and continue consuming queues in the same sequence
628 */
ee1b9f06 629 if (adapter->vfs_allocated_count) {
a99955fc 630 for (; i < adapter->rss_queues; i++)
3025a446
AD
631 adapter->rx_ring[i]->reg_idx = rbase_offset +
632 Q_IDX_82576(i);
ee1b9f06 633 }
26bc19ec 634 case e1000_82575:
55cac248 635 case e1000_82580:
d2ba2ed8 636 case e1000_i350:
26bc19ec 637 default:
ee1b9f06 638 for (; i < adapter->num_rx_queues; i++)
3025a446 639 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 640 for (; j < adapter->num_tx_queues; j++)
3025a446 641 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
642 break;
643 }
644}
645
047e0030
AD
646static void igb_free_queues(struct igb_adapter *adapter)
647{
3025a446 648 int i;
047e0030 649
3025a446
AD
650 for (i = 0; i < adapter->num_tx_queues; i++) {
651 kfree(adapter->tx_ring[i]);
652 adapter->tx_ring[i] = NULL;
653 }
654 for (i = 0; i < adapter->num_rx_queues; i++) {
655 kfree(adapter->rx_ring[i]);
656 adapter->rx_ring[i] = NULL;
657 }
047e0030
AD
658 adapter->num_rx_queues = 0;
659 adapter->num_tx_queues = 0;
660}
661
9d5c8243
AK
662/**
663 * igb_alloc_queues - Allocate memory for all rings
664 * @adapter: board private structure to initialize
665 *
666 * We allocate one ring per queue at run-time since we don't know the
667 * number of queues at compile-time.
668 **/
669static int igb_alloc_queues(struct igb_adapter *adapter)
670{
3025a446 671 struct igb_ring *ring;
9d5c8243
AK
672 int i;
673
661086df 674 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
675 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
676 if (!ring)
677 goto err;
68fd9910 678 ring->count = adapter->tx_ring_count;
661086df 679 ring->queue_index = i;
59d71989 680 ring->dev = &adapter->pdev->dev;
e694e964 681 ring->netdev = adapter->netdev;
85ad76b2
AD
682 /* For 82575, context index must be unique per ring. */
683 if (adapter->hw.mac.type == e1000_82575)
684 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 685 adapter->tx_ring[i] = ring;
661086df 686 }
85ad76b2 687
9d5c8243 688 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
689 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
690 if (!ring)
691 goto err;
68fd9910 692 ring->count = adapter->rx_ring_count;
844290e5 693 ring->queue_index = i;
59d71989 694 ring->dev = &adapter->pdev->dev;
e694e964 695 ring->netdev = adapter->netdev;
4c844851 696 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
697 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
698 /* set flag indicating ring supports SCTP checksum offload */
699 if (adapter->hw.mac.type >= e1000_82576)
700 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 701 adapter->rx_ring[i] = ring;
9d5c8243 702 }
26bc19ec
AD
703
704 igb_cache_ring_register(adapter);
9d5c8243 705
047e0030 706 return 0;
a88f10ec 707
047e0030
AD
708err:
709 igb_free_queues(adapter);
d1a8c9e1 710
047e0030 711 return -ENOMEM;
a88f10ec
AD
712}
713
9d5c8243 714#define IGB_N0_QUEUE -1
047e0030 715static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
716{
717 u32 msixbm = 0;
047e0030 718 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 719 struct e1000_hw *hw = &adapter->hw;
2d064c06 720 u32 ivar, index;
047e0030
AD
721 int rx_queue = IGB_N0_QUEUE;
722 int tx_queue = IGB_N0_QUEUE;
723
724 if (q_vector->rx_ring)
725 rx_queue = q_vector->rx_ring->reg_idx;
726 if (q_vector->tx_ring)
727 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
728
729 switch (hw->mac.type) {
730 case e1000_82575:
9d5c8243
AK
731 /* The 82575 assigns vectors using a bitmask, which matches the
732 bitmask for the EICR/EIMS/EIMC registers. To assign one
733 or more queues to a vector, we write the appropriate bits
734 into the MSIXBM register for that vector. */
047e0030 735 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 736 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 737 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 738 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
739 if (!adapter->msix_entries && msix_vector == 0)
740 msixbm |= E1000_EIMS_OTHER;
9d5c8243 741 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 742 q_vector->eims_value = msixbm;
2d064c06
AD
743 break;
744 case e1000_82576:
26bc19ec 745 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
746 Each queue has a single entry in the table to which we write
747 a vector number along with a "valid" bit. Sadly, the layout
748 of the table is somewhat counterintuitive. */
749 if (rx_queue > IGB_N0_QUEUE) {
047e0030 750 index = (rx_queue & 0x7);
2d064c06 751 ivar = array_rd32(E1000_IVAR0, index);
047e0030 752 if (rx_queue < 8) {
26bc19ec
AD
753 /* vector goes into low byte of register */
754 ivar = ivar & 0xFFFFFF00;
755 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
756 } else {
757 /* vector goes into third byte of register */
758 ivar = ivar & 0xFF00FFFF;
759 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 760 }
2d064c06
AD
761 array_wr32(E1000_IVAR0, index, ivar);
762 }
763 if (tx_queue > IGB_N0_QUEUE) {
047e0030 764 index = (tx_queue & 0x7);
2d064c06 765 ivar = array_rd32(E1000_IVAR0, index);
047e0030 766 if (tx_queue < 8) {
26bc19ec
AD
767 /* vector goes into second byte of register */
768 ivar = ivar & 0xFFFF00FF;
769 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
770 } else {
771 /* vector goes into high byte of register */
772 ivar = ivar & 0x00FFFFFF;
773 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 774 }
2d064c06
AD
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
047e0030 777 q_vector->eims_value = 1 << msix_vector;
2d064c06 778 break;
55cac248 779 case e1000_82580:
d2ba2ed8 780 case e1000_i350:
55cac248
AD
781 /* 82580 uses the same table-based approach as 82576 but has fewer
782 entries as a result we carry over for queues greater than 4. */
783 if (rx_queue > IGB_N0_QUEUE) {
784 index = (rx_queue >> 1);
785 ivar = array_rd32(E1000_IVAR0, index);
786 if (rx_queue & 0x1) {
787 /* vector goes into third byte of register */
788 ivar = ivar & 0xFF00FFFF;
789 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
790 } else {
791 /* vector goes into low byte of register */
792 ivar = ivar & 0xFFFFFF00;
793 ivar |= msix_vector | E1000_IVAR_VALID;
794 }
795 array_wr32(E1000_IVAR0, index, ivar);
796 }
797 if (tx_queue > IGB_N0_QUEUE) {
798 index = (tx_queue >> 1);
799 ivar = array_rd32(E1000_IVAR0, index);
800 if (tx_queue & 0x1) {
801 /* vector goes into high byte of register */
802 ivar = ivar & 0x00FFFFFF;
803 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
804 } else {
805 /* vector goes into second byte of register */
806 ivar = ivar & 0xFFFF00FF;
807 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
808 }
809 array_wr32(E1000_IVAR0, index, ivar);
810 }
811 q_vector->eims_value = 1 << msix_vector;
812 break;
2d064c06
AD
813 default:
814 BUG();
815 break;
816 }
26b39276
AD
817
818 /* add q_vector eims value to global eims_enable_mask */
819 adapter->eims_enable_mask |= q_vector->eims_value;
820
821 /* configure q_vector to set itr on first interrupt */
822 q_vector->set_itr = 1;
9d5c8243
AK
823}
824
825/**
826 * igb_configure_msix - Configure MSI-X hardware
827 *
828 * igb_configure_msix sets up the hardware to properly
829 * generate MSI-X interrupts.
830 **/
831static void igb_configure_msix(struct igb_adapter *adapter)
832{
833 u32 tmp;
834 int i, vector = 0;
835 struct e1000_hw *hw = &adapter->hw;
836
837 adapter->eims_enable_mask = 0;
9d5c8243
AK
838
839 /* set vector for other causes, i.e. link changes */
2d064c06
AD
840 switch (hw->mac.type) {
841 case e1000_82575:
9d5c8243
AK
842 tmp = rd32(E1000_CTRL_EXT);
843 /* enable MSI-X PBA support*/
844 tmp |= E1000_CTRL_EXT_PBA_CLR;
845
846 /* Auto-Mask interrupts upon ICR read. */
847 tmp |= E1000_CTRL_EXT_EIAME;
848 tmp |= E1000_CTRL_EXT_IRCA;
849
850 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
851
852 /* enable msix_other interrupt */
853 array_wr32(E1000_MSIXBM(0), vector++,
854 E1000_EIMS_OTHER);
844290e5 855 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 856
2d064c06
AD
857 break;
858
859 case e1000_82576:
55cac248 860 case e1000_82580:
d2ba2ed8 861 case e1000_i350:
047e0030
AD
862 /* Turn on MSI-X capability first, or our settings
863 * won't stick. And it will take days to debug. */
864 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
865 E1000_GPIE_PBA | E1000_GPIE_EIAME |
866 E1000_GPIE_NSICR);
867
868 /* enable msix_other interrupt */
869 adapter->eims_other = 1 << vector;
2d064c06 870 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 871
047e0030 872 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
873 break;
874 default:
875 /* do nothing, since nothing else supports MSI-X */
876 break;
877 } /* switch (hw->mac.type) */
047e0030
AD
878
879 adapter->eims_enable_mask |= adapter->eims_other;
880
26b39276
AD
881 for (i = 0; i < adapter->num_q_vectors; i++)
882 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 883
9d5c8243
AK
884 wrfl();
885}
886
887/**
888 * igb_request_msix - Initialize MSI-X interrupts
889 *
890 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
891 * kernel.
892 **/
893static int igb_request_msix(struct igb_adapter *adapter)
894{
895 struct net_device *netdev = adapter->netdev;
047e0030 896 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
897 int i, err = 0, vector = 0;
898
047e0030 899 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 900 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
901 if (err)
902 goto out;
903 vector++;
904
905 for (i = 0; i < adapter->num_q_vectors; i++) {
906 struct igb_q_vector *q_vector = adapter->q_vector[i];
907
908 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
909
910 if (q_vector->rx_ring && q_vector->tx_ring)
911 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
912 q_vector->rx_ring->queue_index);
913 else if (q_vector->tx_ring)
914 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
915 q_vector->tx_ring->queue_index);
916 else if (q_vector->rx_ring)
917 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
918 q_vector->rx_ring->queue_index);
9d5c8243 919 else
047e0030
AD
920 sprintf(q_vector->name, "%s-unused", netdev->name);
921
9d5c8243 922 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 923 igb_msix_ring, 0, q_vector->name,
047e0030 924 q_vector);
9d5c8243
AK
925 if (err)
926 goto out;
9d5c8243
AK
927 vector++;
928 }
929
9d5c8243
AK
930 igb_configure_msix(adapter);
931 return 0;
932out:
933 return err;
934}
935
936static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
937{
938 if (adapter->msix_entries) {
939 pci_disable_msix(adapter->pdev);
940 kfree(adapter->msix_entries);
941 adapter->msix_entries = NULL;
047e0030 942 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 943 pci_disable_msi(adapter->pdev);
047e0030 944 }
9d5c8243
AK
945}
946
047e0030
AD
947/**
948 * igb_free_q_vectors - Free memory allocated for interrupt vectors
949 * @adapter: board private structure to initialize
950 *
951 * This function frees the memory allocated to the q_vectors. In addition if
952 * NAPI is enabled it will delete any references to the NAPI struct prior
953 * to freeing the q_vector.
954 **/
955static void igb_free_q_vectors(struct igb_adapter *adapter)
956{
957 int v_idx;
958
959 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
961 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
962 if (!q_vector)
963 continue;
047e0030
AD
964 netif_napi_del(&q_vector->napi);
965 kfree(q_vector);
966 }
967 adapter->num_q_vectors = 0;
968}
969
970/**
971 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
972 *
973 * This function resets the device so that it has 0 rx queues, tx queues, and
974 * MSI-X interrupts allocated.
975 */
976static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
977{
978 igb_free_queues(adapter);
979 igb_free_q_vectors(adapter);
980 igb_reset_interrupt_capability(adapter);
981}
9d5c8243
AK
982
983/**
984 * igb_set_interrupt_capability - set MSI or MSI-X if supported
985 *
986 * Attempt to configure interrupts using the best available
987 * capabilities of the hardware and kernel.
988 **/
989static void igb_set_interrupt_capability(struct igb_adapter *adapter)
990{
991 int err;
992 int numvecs, i;
993
83b7180d 994 /* Number of supported queues. */
a99955fc 995 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
996 if (adapter->vfs_allocated_count)
997 adapter->num_tx_queues = 1;
998 else
999 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1000
047e0030
AD
1001 /* start with one vector for every rx queue */
1002 numvecs = adapter->num_rx_queues;
1003
3ad2f3fb 1004 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1005 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1006 numvecs += adapter->num_tx_queues;
047e0030
AD
1007
1008 /* store the number of vectors reserved for queues */
1009 adapter->num_q_vectors = numvecs;
1010
1011 /* add 1 vector for link status interrupts */
1012 numvecs++;
9d5c8243
AK
1013 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1014 GFP_KERNEL);
1015 if (!adapter->msix_entries)
1016 goto msi_only;
1017
1018 for (i = 0; i < numvecs; i++)
1019 adapter->msix_entries[i].entry = i;
1020
1021 err = pci_enable_msix(adapter->pdev,
1022 adapter->msix_entries,
1023 numvecs);
1024 if (err == 0)
34a20e89 1025 goto out;
9d5c8243
AK
1026
1027 igb_reset_interrupt_capability(adapter);
1028
1029 /* If we can't do MSI-X, try MSI */
1030msi_only:
2a3abf6d
AD
1031#ifdef CONFIG_PCI_IOV
1032 /* disable SR-IOV for non MSI-X configurations */
1033 if (adapter->vf_data) {
1034 struct e1000_hw *hw = &adapter->hw;
1035 /* disable iov and allow time for transactions to clear */
1036 pci_disable_sriov(adapter->pdev);
1037 msleep(500);
1038
1039 kfree(adapter->vf_data);
1040 adapter->vf_data = NULL;
1041 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1042 msleep(100);
1043 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1044 }
1045#endif
4fc82adf 1046 adapter->vfs_allocated_count = 0;
a99955fc 1047 adapter->rss_queues = 1;
4fc82adf 1048 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1049 adapter->num_rx_queues = 1;
661086df 1050 adapter->num_tx_queues = 1;
047e0030 1051 adapter->num_q_vectors = 1;
9d5c8243 1052 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1053 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1054out:
661086df 1055 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 1056 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
1057}
1058
047e0030
AD
1059/**
1060 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * We allocate one q_vector per queue interrupt. If allocation fails we
1064 * return -ENOMEM.
1065 **/
1066static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1067{
1068 struct igb_q_vector *q_vector;
1069 struct e1000_hw *hw = &adapter->hw;
1070 int v_idx;
1071
1072 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1073 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1074 if (!q_vector)
1075 goto err_out;
1076 q_vector->adapter = adapter;
047e0030
AD
1077 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1078 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1079 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1080 adapter->q_vector[v_idx] = q_vector;
1081 }
1082 return 0;
1083
1084err_out:
fe0592b4 1085 igb_free_q_vectors(adapter);
047e0030
AD
1086 return -ENOMEM;
1087}
1088
1089static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1090 int ring_idx, int v_idx)
1091{
3025a446 1092 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1093
3025a446 1094 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1095 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1096 q_vector->itr_val = adapter->rx_itr_setting;
1097 if (q_vector->itr_val && q_vector->itr_val <= 3)
1098 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1099}
1100
1101static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1102 int ring_idx, int v_idx)
1103{
3025a446 1104 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1105
3025a446 1106 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1107 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1108 q_vector->itr_val = adapter->tx_itr_setting;
1109 if (q_vector->itr_val && q_vector->itr_val <= 3)
1110 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1111}
1112
1113/**
1114 * igb_map_ring_to_vector - maps allocated queues to vectors
1115 *
1116 * This function maps the recently allocated queues to vectors.
1117 **/
1118static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1119{
1120 int i;
1121 int v_idx = 0;
1122
1123 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1124 (adapter->num_q_vectors < adapter->num_tx_queues))
1125 return -ENOMEM;
1126
1127 if (adapter->num_q_vectors >=
1128 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1129 for (i = 0; i < adapter->num_rx_queues; i++)
1130 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1131 for (i = 0; i < adapter->num_tx_queues; i++)
1132 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1133 } else {
1134 for (i = 0; i < adapter->num_rx_queues; i++) {
1135 if (i < adapter->num_tx_queues)
1136 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1137 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1138 }
1139 for (; i < adapter->num_tx_queues; i++)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1141 }
1142 return 0;
1143}
1144
1145/**
1146 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1147 *
1148 * This function initializes the interrupts and allocates all of the queues.
1149 **/
1150static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1151{
1152 struct pci_dev *pdev = adapter->pdev;
1153 int err;
1154
1155 igb_set_interrupt_capability(adapter);
1156
1157 err = igb_alloc_q_vectors(adapter);
1158 if (err) {
1159 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1160 goto err_alloc_q_vectors;
1161 }
1162
1163 err = igb_alloc_queues(adapter);
1164 if (err) {
1165 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1166 goto err_alloc_queues;
1167 }
1168
1169 err = igb_map_ring_to_vector(adapter);
1170 if (err) {
1171 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1172 goto err_map_queues;
1173 }
1174
1175
1176 return 0;
1177err_map_queues:
1178 igb_free_queues(adapter);
1179err_alloc_queues:
1180 igb_free_q_vectors(adapter);
1181err_alloc_q_vectors:
1182 igb_reset_interrupt_capability(adapter);
1183 return err;
1184}
1185
9d5c8243
AK
1186/**
1187 * igb_request_irq - initialize interrupts
1188 *
1189 * Attempts to configure interrupts using the best available
1190 * capabilities of the hardware and kernel.
1191 **/
1192static int igb_request_irq(struct igb_adapter *adapter)
1193{
1194 struct net_device *netdev = adapter->netdev;
047e0030 1195 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1196 int err = 0;
1197
1198 if (adapter->msix_entries) {
1199 err = igb_request_msix(adapter);
844290e5 1200 if (!err)
9d5c8243 1201 goto request_done;
9d5c8243 1202 /* fall back to MSI */
047e0030 1203 igb_clear_interrupt_scheme(adapter);
9d5c8243 1204 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1205 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1206 igb_free_all_tx_resources(adapter);
1207 igb_free_all_rx_resources(adapter);
047e0030 1208 adapter->num_tx_queues = 1;
9d5c8243 1209 adapter->num_rx_queues = 1;
047e0030
AD
1210 adapter->num_q_vectors = 1;
1211 err = igb_alloc_q_vectors(adapter);
1212 if (err) {
1213 dev_err(&pdev->dev,
1214 "Unable to allocate memory for vectors\n");
1215 goto request_done;
1216 }
1217 err = igb_alloc_queues(adapter);
1218 if (err) {
1219 dev_err(&pdev->dev,
1220 "Unable to allocate memory for queues\n");
1221 igb_free_q_vectors(adapter);
1222 goto request_done;
1223 }
1224 igb_setup_all_tx_resources(adapter);
1225 igb_setup_all_rx_resources(adapter);
844290e5 1226 } else {
feeb2721 1227 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1228 }
844290e5 1229
7dfc16fa 1230 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1231 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1232 netdev->name, adapter);
9d5c8243
AK
1233 if (!err)
1234 goto request_done;
047e0030 1235
9d5c8243
AK
1236 /* fall back to legacy interrupts */
1237 igb_reset_interrupt_capability(adapter);
7dfc16fa 1238 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1239 }
1240
a0607fd3 1241 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1242 netdev->name, adapter);
9d5c8243 1243
6cb5e577 1244 if (err)
9d5c8243
AK
1245 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1246 err);
9d5c8243
AK
1247
1248request_done:
1249 return err;
1250}
1251
1252static void igb_free_irq(struct igb_adapter *adapter)
1253{
9d5c8243
AK
1254 if (adapter->msix_entries) {
1255 int vector = 0, i;
1256
047e0030 1257 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1258
047e0030
AD
1259 for (i = 0; i < adapter->num_q_vectors; i++) {
1260 struct igb_q_vector *q_vector = adapter->q_vector[i];
1261 free_irq(adapter->msix_entries[vector++].vector,
1262 q_vector);
1263 }
1264 } else {
1265 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1266 }
9d5c8243
AK
1267}
1268
1269/**
1270 * igb_irq_disable - Mask off interrupt generation on the NIC
1271 * @adapter: board private structure
1272 **/
1273static void igb_irq_disable(struct igb_adapter *adapter)
1274{
1275 struct e1000_hw *hw = &adapter->hw;
1276
25568a53
AD
1277 /*
1278 * we need to be careful when disabling interrupts. The VFs are also
1279 * mapped into these registers and so clearing the bits can cause
1280 * issues on the VF drivers so we only need to clear what we set
1281 */
9d5c8243 1282 if (adapter->msix_entries) {
2dfd1212
AD
1283 u32 regval = rd32(E1000_EIAM);
1284 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1285 wr32(E1000_EIMC, adapter->eims_enable_mask);
1286 regval = rd32(E1000_EIAC);
1287 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1288 }
844290e5
PW
1289
1290 wr32(E1000_IAM, 0);
9d5c8243
AK
1291 wr32(E1000_IMC, ~0);
1292 wrfl();
1293 synchronize_irq(adapter->pdev->irq);
1294}
1295
1296/**
1297 * igb_irq_enable - Enable default interrupt generation settings
1298 * @adapter: board private structure
1299 **/
1300static void igb_irq_enable(struct igb_adapter *adapter)
1301{
1302 struct e1000_hw *hw = &adapter->hw;
1303
1304 if (adapter->msix_entries) {
25568a53 1305 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1306 u32 regval = rd32(E1000_EIAC);
1307 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1308 regval = rd32(E1000_EIAM);
1309 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1310 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1311 if (adapter->vfs_allocated_count) {
4ae196df 1312 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1313 ims |= E1000_IMS_VMMB;
1314 }
55cac248
AD
1315 if (adapter->hw.mac.type == e1000_82580)
1316 ims |= E1000_IMS_DRSTA;
1317
25568a53 1318 wr32(E1000_IMS, ims);
844290e5 1319 } else {
55cac248
AD
1320 wr32(E1000_IMS, IMS_ENABLE_MASK |
1321 E1000_IMS_DRSTA);
1322 wr32(E1000_IAM, IMS_ENABLE_MASK |
1323 E1000_IMS_DRSTA);
844290e5 1324 }
9d5c8243
AK
1325}
1326
1327static void igb_update_mng_vlan(struct igb_adapter *adapter)
1328{
51466239 1329 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1330 u16 vid = adapter->hw.mng_cookie.vlan_id;
1331 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1332
1333 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1334 /* add VID to filter table */
1335 igb_vfta_set(hw, vid, true);
1336 adapter->mng_vlan_id = vid;
1337 } else {
1338 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1339 }
1340
1341 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1342 (vid != old_vid) &&
1343 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1344 /* remove VID from filter table */
1345 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1346 }
1347}
1348
1349/**
1350 * igb_release_hw_control - release control of the h/w to f/w
1351 * @adapter: address of board private structure
1352 *
1353 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1354 * For ASF and Pass Through versions of f/w this means that the
1355 * driver is no longer loaded.
1356 *
1357 **/
1358static void igb_release_hw_control(struct igb_adapter *adapter)
1359{
1360 struct e1000_hw *hw = &adapter->hw;
1361 u32 ctrl_ext;
1362
1363 /* Let firmware take over control of h/w */
1364 ctrl_ext = rd32(E1000_CTRL_EXT);
1365 wr32(E1000_CTRL_EXT,
1366 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1367}
1368
9d5c8243
AK
1369/**
1370 * igb_get_hw_control - get control of the h/w from f/w
1371 * @adapter: address of board private structure
1372 *
1373 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1374 * For ASF and Pass Through versions of f/w this means that
1375 * the driver is loaded.
1376 *
1377 **/
1378static void igb_get_hw_control(struct igb_adapter *adapter)
1379{
1380 struct e1000_hw *hw = &adapter->hw;
1381 u32 ctrl_ext;
1382
1383 /* Let firmware know the driver has taken over */
1384 ctrl_ext = rd32(E1000_CTRL_EXT);
1385 wr32(E1000_CTRL_EXT,
1386 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1387}
1388
9d5c8243
AK
1389/**
1390 * igb_configure - configure the hardware for RX and TX
1391 * @adapter: private board structure
1392 **/
1393static void igb_configure(struct igb_adapter *adapter)
1394{
1395 struct net_device *netdev = adapter->netdev;
1396 int i;
1397
1398 igb_get_hw_control(adapter);
ff41f8dc 1399 igb_set_rx_mode(netdev);
9d5c8243
AK
1400
1401 igb_restore_vlan(adapter);
9d5c8243 1402
85b430b4 1403 igb_setup_tctl(adapter);
06cf2666 1404 igb_setup_mrqc(adapter);
9d5c8243 1405 igb_setup_rctl(adapter);
85b430b4
AD
1406
1407 igb_configure_tx(adapter);
9d5c8243 1408 igb_configure_rx(adapter);
662d7205
AD
1409
1410 igb_rx_fifo_flush_82575(&adapter->hw);
1411
c493ea45 1412 /* call igb_desc_unused which always leaves
9d5c8243
AK
1413 * at least 1 descriptor unused to make sure
1414 * next_to_use != next_to_clean */
1415 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1416 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1417 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1418 }
9d5c8243
AK
1419}
1420
88a268c1
NN
1421/**
1422 * igb_power_up_link - Power up the phy/serdes link
1423 * @adapter: address of board private structure
1424 **/
1425void igb_power_up_link(struct igb_adapter *adapter)
1426{
1427 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1428 igb_power_up_phy_copper(&adapter->hw);
1429 else
1430 igb_power_up_serdes_link_82575(&adapter->hw);
1431}
1432
1433/**
1434 * igb_power_down_link - Power down the phy/serdes link
1435 * @adapter: address of board private structure
1436 */
1437static void igb_power_down_link(struct igb_adapter *adapter)
1438{
1439 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1440 igb_power_down_phy_copper_82575(&adapter->hw);
1441 else
1442 igb_shutdown_serdes_link_82575(&adapter->hw);
1443}
9d5c8243
AK
1444
1445/**
1446 * igb_up - Open the interface and prepare it to handle traffic
1447 * @adapter: board private structure
1448 **/
9d5c8243
AK
1449int igb_up(struct igb_adapter *adapter)
1450{
1451 struct e1000_hw *hw = &adapter->hw;
1452 int i;
1453
1454 /* hardware has been reset, we need to reload some things */
1455 igb_configure(adapter);
1456
1457 clear_bit(__IGB_DOWN, &adapter->state);
1458
047e0030
AD
1459 for (i = 0; i < adapter->num_q_vectors; i++) {
1460 struct igb_q_vector *q_vector = adapter->q_vector[i];
1461 napi_enable(&q_vector->napi);
1462 }
844290e5 1463 if (adapter->msix_entries)
9d5c8243 1464 igb_configure_msix(adapter);
feeb2721
AD
1465 else
1466 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1467
1468 /* Clear any pending interrupts. */
1469 rd32(E1000_ICR);
1470 igb_irq_enable(adapter);
1471
d4960307
AD
1472 /* notify VFs that reset has been completed */
1473 if (adapter->vfs_allocated_count) {
1474 u32 reg_data = rd32(E1000_CTRL_EXT);
1475 reg_data |= E1000_CTRL_EXT_PFRSTD;
1476 wr32(E1000_CTRL_EXT, reg_data);
1477 }
1478
4cb9be7a
JB
1479 netif_tx_start_all_queues(adapter->netdev);
1480
25568a53
AD
1481 /* start the watchdog. */
1482 hw->mac.get_link_status = 1;
1483 schedule_work(&adapter->watchdog_task);
1484
9d5c8243
AK
1485 return 0;
1486}
1487
1488void igb_down(struct igb_adapter *adapter)
1489{
9d5c8243 1490 struct net_device *netdev = adapter->netdev;
330a6d6a 1491 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1492 u32 tctl, rctl;
1493 int i;
1494
1495 /* signal that we're down so the interrupt handler does not
1496 * reschedule our watchdog timer */
1497 set_bit(__IGB_DOWN, &adapter->state);
1498
1499 /* disable receives in the hardware */
1500 rctl = rd32(E1000_RCTL);
1501 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1502 /* flush and sleep below */
1503
fd2ea0a7 1504 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1505
1506 /* disable transmits in the hardware */
1507 tctl = rd32(E1000_TCTL);
1508 tctl &= ~E1000_TCTL_EN;
1509 wr32(E1000_TCTL, tctl);
1510 /* flush both disables and wait for them to finish */
1511 wrfl();
1512 msleep(10);
1513
047e0030
AD
1514 for (i = 0; i < adapter->num_q_vectors; i++) {
1515 struct igb_q_vector *q_vector = adapter->q_vector[i];
1516 napi_disable(&q_vector->napi);
1517 }
9d5c8243 1518
9d5c8243
AK
1519 igb_irq_disable(adapter);
1520
1521 del_timer_sync(&adapter->watchdog_timer);
1522 del_timer_sync(&adapter->phy_info_timer);
1523
9d5c8243 1524 netif_carrier_off(netdev);
04fe6358
AD
1525
1526 /* record the stats before reset*/
1527 igb_update_stats(adapter);
1528
9d5c8243
AK
1529 adapter->link_speed = 0;
1530 adapter->link_duplex = 0;
1531
3023682e
JK
1532 if (!pci_channel_offline(adapter->pdev))
1533 igb_reset(adapter);
9d5c8243
AK
1534 igb_clean_all_tx_rings(adapter);
1535 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1536#ifdef CONFIG_IGB_DCA
1537
1538 /* since we reset the hardware DCA settings were cleared */
1539 igb_setup_dca(adapter);
1540#endif
9d5c8243
AK
1541}
1542
1543void igb_reinit_locked(struct igb_adapter *adapter)
1544{
1545 WARN_ON(in_interrupt());
1546 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1547 msleep(1);
1548 igb_down(adapter);
1549 igb_up(adapter);
1550 clear_bit(__IGB_RESETTING, &adapter->state);
1551}
1552
1553void igb_reset(struct igb_adapter *adapter)
1554{
090b1795 1555 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1556 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1557 struct e1000_mac_info *mac = &hw->mac;
1558 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1559 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1560 u16 hwm;
1561
1562 /* Repartition Pba for greater than 9k mtu
1563 * To take effect CTRL.RST is required.
1564 */
fa4dfae0 1565 switch (mac->type) {
d2ba2ed8 1566 case e1000_i350:
55cac248
AD
1567 case e1000_82580:
1568 pba = rd32(E1000_RXPBS);
1569 pba = igb_rxpbs_adjust_82580(pba);
1570 break;
fa4dfae0 1571 case e1000_82576:
d249be54
AD
1572 pba = rd32(E1000_RXPBS);
1573 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1574 break;
1575 case e1000_82575:
1576 default:
1577 pba = E1000_PBA_34K;
1578 break;
2d064c06 1579 }
9d5c8243 1580
2d064c06
AD
1581 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1582 (mac->type < e1000_82576)) {
9d5c8243
AK
1583 /* adjust PBA for jumbo frames */
1584 wr32(E1000_PBA, pba);
1585
1586 /* To maintain wire speed transmits, the Tx FIFO should be
1587 * large enough to accommodate two full transmit packets,
1588 * rounded up to the next 1KB and expressed in KB. Likewise,
1589 * the Rx FIFO should be large enough to accommodate at least
1590 * one full receive packet and is similarly rounded up and
1591 * expressed in KB. */
1592 pba = rd32(E1000_PBA);
1593 /* upper 16 bits has Tx packet buffer allocation size in KB */
1594 tx_space = pba >> 16;
1595 /* lower 16 bits has Rx packet buffer allocation size in KB */
1596 pba &= 0xffff;
1597 /* the tx fifo also stores 16 bytes of information about the tx
1598 * but don't include ethernet FCS because hardware appends it */
1599 min_tx_space = (adapter->max_frame_size +
85e8d004 1600 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1601 ETH_FCS_LEN) * 2;
1602 min_tx_space = ALIGN(min_tx_space, 1024);
1603 min_tx_space >>= 10;
1604 /* software strips receive CRC, so leave room for it */
1605 min_rx_space = adapter->max_frame_size;
1606 min_rx_space = ALIGN(min_rx_space, 1024);
1607 min_rx_space >>= 10;
1608
1609 /* If current Tx allocation is less than the min Tx FIFO size,
1610 * and the min Tx FIFO size is less than the current Rx FIFO
1611 * allocation, take space away from current Rx allocation */
1612 if (tx_space < min_tx_space &&
1613 ((min_tx_space - tx_space) < pba)) {
1614 pba = pba - (min_tx_space - tx_space);
1615
1616 /* if short on rx space, rx wins and must trump tx
1617 * adjustment */
1618 if (pba < min_rx_space)
1619 pba = min_rx_space;
1620 }
2d064c06 1621 wr32(E1000_PBA, pba);
9d5c8243 1622 }
9d5c8243
AK
1623
1624 /* flow control settings */
1625 /* The high water mark must be low enough to fit one full frame
1626 * (or the size used for early receive) above it in the Rx FIFO.
1627 * Set it to the lower of:
1628 * - 90% of the Rx FIFO size, or
1629 * - the full Rx FIFO size minus one full frame */
1630 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1631 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1632
d405ea3e
AD
1633 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1634 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1635 fc->pause_time = 0xFFFF;
1636 fc->send_xon = 1;
0cce119a 1637 fc->current_mode = fc->requested_mode;
9d5c8243 1638
4ae196df
AD
1639 /* disable receive for all VFs and wait one second */
1640 if (adapter->vfs_allocated_count) {
1641 int i;
1642 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1643 adapter->vf_data[i].flags = 0;
4ae196df
AD
1644
1645 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1646 igb_ping_all_vfs(adapter);
4ae196df
AD
1647
1648 /* disable transmits and receives */
1649 wr32(E1000_VFRE, 0);
1650 wr32(E1000_VFTE, 0);
1651 }
1652
9d5c8243 1653 /* Allow time for pending master requests to run */
330a6d6a 1654 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1655 wr32(E1000_WUC, 0);
1656
330a6d6a 1657 if (hw->mac.ops.init_hw(hw))
090b1795 1658 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1659
55cac248
AD
1660 if (hw->mac.type == e1000_82580) {
1661 u32 reg = rd32(E1000_PCIEMISC);
1662 wr32(E1000_PCIEMISC,
1663 reg & ~E1000_PCIEMISC_LX_DECISION);
1664 }
88a268c1
NN
1665 if (!netif_running(adapter->netdev))
1666 igb_power_down_link(adapter);
1667
9d5c8243
AK
1668 igb_update_mng_vlan(adapter);
1669
1670 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1671 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1672
330a6d6a 1673 igb_get_phy_info(hw);
9d5c8243
AK
1674}
1675
2e5c6922 1676static const struct net_device_ops igb_netdev_ops = {
559e9c49 1677 .ndo_open = igb_open,
2e5c6922 1678 .ndo_stop = igb_close,
00829823 1679 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1680 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1681 .ndo_set_rx_mode = igb_set_rx_mode,
1682 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1683 .ndo_set_mac_address = igb_set_mac,
1684 .ndo_change_mtu = igb_change_mtu,
1685 .ndo_do_ioctl = igb_ioctl,
1686 .ndo_tx_timeout = igb_tx_timeout,
1687 .ndo_validate_addr = eth_validate_addr,
1688 .ndo_vlan_rx_register = igb_vlan_rx_register,
1689 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1690 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1691 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1692 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1693 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1694 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1695#ifdef CONFIG_NET_POLL_CONTROLLER
1696 .ndo_poll_controller = igb_netpoll,
1697#endif
1698};
1699
9d5c8243
AK
1700/**
1701 * igb_probe - Device Initialization Routine
1702 * @pdev: PCI device information struct
1703 * @ent: entry in igb_pci_tbl
1704 *
1705 * Returns 0 on success, negative on failure
1706 *
1707 * igb_probe initializes an adapter identified by a pci_dev structure.
1708 * The OS initialization, configuring of the adapter private structure,
1709 * and a hardware reset occur.
1710 **/
1711static int __devinit igb_probe(struct pci_dev *pdev,
1712 const struct pci_device_id *ent)
1713{
1714 struct net_device *netdev;
1715 struct igb_adapter *adapter;
1716 struct e1000_hw *hw;
4337e993
AD
1717 u16 eeprom_data = 0;
1718 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1719 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1720 unsigned long mmio_start, mmio_len;
2d6a5e95 1721 int err, pci_using_dac;
9d5c8243
AK
1722 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1723 u32 part_num;
1724
aed5dec3 1725 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1726 if (err)
1727 return err;
1728
1729 pci_using_dac = 0;
59d71989 1730 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1731 if (!err) {
59d71989 1732 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1733 if (!err)
1734 pci_using_dac = 1;
1735 } else {
59d71989 1736 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1737 if (err) {
59d71989 1738 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1739 if (err) {
1740 dev_err(&pdev->dev, "No usable DMA "
1741 "configuration, aborting\n");
1742 goto err_dma;
1743 }
1744 }
1745 }
1746
aed5dec3
AD
1747 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1748 IORESOURCE_MEM),
1749 igb_driver_name);
9d5c8243
AK
1750 if (err)
1751 goto err_pci_reg;
1752
19d5afd4 1753 pci_enable_pcie_error_reporting(pdev);
40a914fa 1754
9d5c8243 1755 pci_set_master(pdev);
c682fc23 1756 pci_save_state(pdev);
9d5c8243
AK
1757
1758 err = -ENOMEM;
1bfaf07b
AD
1759 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1760 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1761 if (!netdev)
1762 goto err_alloc_etherdev;
1763
1764 SET_NETDEV_DEV(netdev, &pdev->dev);
1765
1766 pci_set_drvdata(pdev, netdev);
1767 adapter = netdev_priv(netdev);
1768 adapter->netdev = netdev;
1769 adapter->pdev = pdev;
1770 hw = &adapter->hw;
1771 hw->back = adapter;
1772 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1773
1774 mmio_start = pci_resource_start(pdev, 0);
1775 mmio_len = pci_resource_len(pdev, 0);
1776
1777 err = -EIO;
28b0759c
AD
1778 hw->hw_addr = ioremap(mmio_start, mmio_len);
1779 if (!hw->hw_addr)
9d5c8243
AK
1780 goto err_ioremap;
1781
2e5c6922 1782 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1783 igb_set_ethtool_ops(netdev);
9d5c8243 1784 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1785
1786 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1787
1788 netdev->mem_start = mmio_start;
1789 netdev->mem_end = mmio_start + mmio_len;
1790
9d5c8243
AK
1791 /* PCI config space info */
1792 hw->vendor_id = pdev->vendor;
1793 hw->device_id = pdev->device;
1794 hw->revision_id = pdev->revision;
1795 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1796 hw->subsystem_device_id = pdev->subsystem_device;
1797
9d5c8243
AK
1798 /* Copy the default MAC, PHY and NVM function pointers */
1799 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1800 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1801 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1802 /* Initialize skew-specific constants */
1803 err = ei->get_invariants(hw);
1804 if (err)
450c87c8 1805 goto err_sw_init;
9d5c8243 1806
450c87c8 1807 /* setup the private structure */
9d5c8243
AK
1808 err = igb_sw_init(adapter);
1809 if (err)
1810 goto err_sw_init;
1811
1812 igb_get_bus_info_pcie(hw);
1813
1814 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1815
1816 /* Copper options */
1817 if (hw->phy.media_type == e1000_media_type_copper) {
1818 hw->phy.mdix = AUTO_ALL_MODES;
1819 hw->phy.disable_polarity_correction = false;
1820 hw->phy.ms_type = e1000_ms_hw_default;
1821 }
1822
1823 if (igb_check_reset_block(hw))
1824 dev_info(&pdev->dev,
1825 "PHY reset is blocked due to SOL/IDER session.\n");
1826
1827 netdev->features = NETIF_F_SG |
7d8eb29e 1828 NETIF_F_IP_CSUM |
9d5c8243
AK
1829 NETIF_F_HW_VLAN_TX |
1830 NETIF_F_HW_VLAN_RX |
1831 NETIF_F_HW_VLAN_FILTER;
1832
7d8eb29e 1833 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1834 netdev->features |= NETIF_F_TSO;
9d5c8243 1835 netdev->features |= NETIF_F_TSO6;
5c0999b7 1836 netdev->features |= NETIF_F_GRO;
d3352520 1837
48f29ffc
JK
1838 netdev->vlan_features |= NETIF_F_TSO;
1839 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1840 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1841 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1842 netdev->vlan_features |= NETIF_F_SG;
1843
9d5c8243
AK
1844 if (pci_using_dac)
1845 netdev->features |= NETIF_F_HIGHDMA;
1846
5b043fb0 1847 if (hw->mac.type >= e1000_82576)
b9473560
JB
1848 netdev->features |= NETIF_F_SCTP_CSUM;
1849
330a6d6a 1850 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1851
1852 /* before reading the NVM, reset the controller to put the device in a
1853 * known good starting state */
1854 hw->mac.ops.reset_hw(hw);
1855
1856 /* make sure the NVM is good */
1857 if (igb_validate_nvm_checksum(hw) < 0) {
1858 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1859 err = -EIO;
1860 goto err_eeprom;
1861 }
1862
1863 /* copy the MAC address out of the NVM */
1864 if (hw->mac.ops.read_mac_addr(hw))
1865 dev_err(&pdev->dev, "NVM Read Error\n");
1866
1867 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1868 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1869
1870 if (!is_valid_ether_addr(netdev->perm_addr)) {
1871 dev_err(&pdev->dev, "Invalid MAC Address\n");
1872 err = -EIO;
1873 goto err_eeprom;
1874 }
1875
0e340485
AD
1876 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1877 (unsigned long) adapter);
1878 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1879 (unsigned long) adapter);
9d5c8243
AK
1880
1881 INIT_WORK(&adapter->reset_task, igb_reset_task);
1882 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1883
450c87c8 1884 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1885 adapter->fc_autoneg = true;
1886 hw->mac.autoneg = true;
1887 hw->phy.autoneg_advertised = 0x2f;
1888
0cce119a
AD
1889 hw->fc.requested_mode = e1000_fc_default;
1890 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1891
9d5c8243
AK
1892 igb_validate_mdi_setting(hw);
1893
9d5c8243
AK
1894 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1895 * enable the ACPI Magic Packet filter
1896 */
1897
a2cf8b6c 1898 if (hw->bus.func == 0)
312c75ae 1899 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1900 else if (hw->mac.type == e1000_82580)
1901 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1902 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1903 &eeprom_data);
a2cf8b6c
AD
1904 else if (hw->bus.func == 1)
1905 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1906
1907 if (eeprom_data & eeprom_apme_mask)
1908 adapter->eeprom_wol |= E1000_WUFC_MAG;
1909
1910 /* now that we have the eeprom settings, apply the special cases where
1911 * the eeprom may be wrong or the board simply won't support wake on
1912 * lan on a particular port */
1913 switch (pdev->device) {
1914 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1915 adapter->eeprom_wol = 0;
1916 break;
1917 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1918 case E1000_DEV_ID_82576_FIBER:
1919 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1920 /* Wake events only supported on port A for dual fiber
1921 * regardless of eeprom setting */
1922 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1923 adapter->eeprom_wol = 0;
1924 break;
c8ea5ea9 1925 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1926 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1927 /* if quad port adapter, disable WoL on all but port A */
1928 if (global_quad_port_a != 0)
1929 adapter->eeprom_wol = 0;
1930 else
1931 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1932 /* Reset for multiple quad port adapters */
1933 if (++global_quad_port_a == 4)
1934 global_quad_port_a = 0;
1935 break;
9d5c8243
AK
1936 }
1937
1938 /* initialize the wol settings based on the eeprom settings */
1939 adapter->wol = adapter->eeprom_wol;
e1b86d84 1940 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1941
1942 /* reset the hardware with the new settings */
1943 igb_reset(adapter);
1944
1945 /* let the f/w know that the h/w is now under the control of the
1946 * driver. */
1947 igb_get_hw_control(adapter);
1948
9d5c8243
AK
1949 strcpy(netdev->name, "eth%d");
1950 err = register_netdev(netdev);
1951 if (err)
1952 goto err_register;
1953
b168dfc5
JB
1954 /* carrier off reporting is important to ethtool even BEFORE open */
1955 netif_carrier_off(netdev);
1956
421e02f0 1957#ifdef CONFIG_IGB_DCA
bbd98fe4 1958 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1959 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1960 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1961 igb_setup_dca(adapter);
1962 }
fe4506b6 1963
38c845c7 1964#endif
9d5c8243
AK
1965 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1966 /* print bus type/speed/width info */
7c510e4b 1967 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1968 netdev->name,
559e9c49 1969 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 1970 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 1971 "unknown"),
59c3de89
AD
1972 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1973 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1974 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1975 "unknown"),
7c510e4b 1976 netdev->dev_addr);
9d5c8243
AK
1977
1978 igb_read_part_num(hw, &part_num);
1979 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1980 (part_num >> 8), (part_num & 0xff));
1981
1982 dev_info(&pdev->dev,
1983 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1984 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1985 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1986 adapter->num_rx_queues, adapter->num_tx_queues);
1987
9d5c8243
AK
1988 return 0;
1989
1990err_register:
1991 igb_release_hw_control(adapter);
1992err_eeprom:
1993 if (!igb_check_reset_block(hw))
f5f4cf08 1994 igb_reset_phy(hw);
9d5c8243
AK
1995
1996 if (hw->flash_address)
1997 iounmap(hw->flash_address);
9d5c8243 1998err_sw_init:
047e0030 1999 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2000 iounmap(hw->hw_addr);
2001err_ioremap:
2002 free_netdev(netdev);
2003err_alloc_etherdev:
559e9c49
AD
2004 pci_release_selected_regions(pdev,
2005 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2006err_pci_reg:
2007err_dma:
2008 pci_disable_device(pdev);
2009 return err;
2010}
2011
2012/**
2013 * igb_remove - Device Removal Routine
2014 * @pdev: PCI device information struct
2015 *
2016 * igb_remove is called by the PCI subsystem to alert the driver
2017 * that it should release a PCI device. The could be caused by a
2018 * Hot-Plug event, or because the driver is going to be removed from
2019 * memory.
2020 **/
2021static void __devexit igb_remove(struct pci_dev *pdev)
2022{
2023 struct net_device *netdev = pci_get_drvdata(pdev);
2024 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2025 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2026
2027 /* flush_scheduled work may reschedule our watchdog task, so
2028 * explicitly disable watchdog tasks from being rescheduled */
2029 set_bit(__IGB_DOWN, &adapter->state);
2030 del_timer_sync(&adapter->watchdog_timer);
2031 del_timer_sync(&adapter->phy_info_timer);
2032
2033 flush_scheduled_work();
2034
421e02f0 2035#ifdef CONFIG_IGB_DCA
7dfc16fa 2036 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2037 dev_info(&pdev->dev, "DCA disabled\n");
2038 dca_remove_requester(&pdev->dev);
7dfc16fa 2039 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2040 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2041 }
2042#endif
2043
9d5c8243
AK
2044 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2045 * would have already happened in close and is redundant. */
2046 igb_release_hw_control(adapter);
2047
2048 unregister_netdev(netdev);
2049
047e0030 2050 igb_clear_interrupt_scheme(adapter);
9d5c8243 2051
37680117
AD
2052#ifdef CONFIG_PCI_IOV
2053 /* reclaim resources allocated to VFs */
2054 if (adapter->vf_data) {
2055 /* disable iov and allow time for transactions to clear */
2056 pci_disable_sriov(pdev);
2057 msleep(500);
2058
2059 kfree(adapter->vf_data);
2060 adapter->vf_data = NULL;
2061 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2062 msleep(100);
2063 dev_info(&pdev->dev, "IOV Disabled\n");
2064 }
2065#endif
559e9c49 2066
28b0759c
AD
2067 iounmap(hw->hw_addr);
2068 if (hw->flash_address)
2069 iounmap(hw->flash_address);
559e9c49
AD
2070 pci_release_selected_regions(pdev,
2071 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2072
2073 free_netdev(netdev);
2074
19d5afd4 2075 pci_disable_pcie_error_reporting(pdev);
40a914fa 2076
9d5c8243
AK
2077 pci_disable_device(pdev);
2078}
2079
a6b623e0
AD
2080/**
2081 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2082 * @adapter: board private structure to initialize
2083 *
2084 * This function initializes the vf specific data storage and then attempts to
2085 * allocate the VFs. The reason for ordering it this way is because it is much
2086 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2087 * the memory for the VFs.
2088 **/
2089static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2090{
2091#ifdef CONFIG_PCI_IOV
2092 struct pci_dev *pdev = adapter->pdev;
2093
a6b623e0
AD
2094 if (adapter->vfs_allocated_count) {
2095 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2096 sizeof(struct vf_data_storage),
2097 GFP_KERNEL);
2098 /* if allocation failed then we do not support SR-IOV */
2099 if (!adapter->vf_data) {
2100 adapter->vfs_allocated_count = 0;
2101 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2102 "Data Storage\n");
2103 }
2104 }
2105
2106 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2107 kfree(adapter->vf_data);
2108 adapter->vf_data = NULL;
2109#endif /* CONFIG_PCI_IOV */
2110 adapter->vfs_allocated_count = 0;
2111#ifdef CONFIG_PCI_IOV
2112 } else {
2113 unsigned char mac_addr[ETH_ALEN];
2114 int i;
2115 dev_info(&pdev->dev, "%d vfs allocated\n",
2116 adapter->vfs_allocated_count);
2117 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2118 random_ether_addr(mac_addr);
2119 igb_set_vf_mac(adapter, i, mac_addr);
2120 }
2121 }
2122#endif /* CONFIG_PCI_IOV */
2123}
2124
115f459a
AD
2125
2126/**
2127 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2128 * @adapter: board private structure to initialize
2129 *
2130 * igb_init_hw_timer initializes the function pointer and values for the hw
2131 * timer found in hardware.
2132 **/
2133static void igb_init_hw_timer(struct igb_adapter *adapter)
2134{
2135 struct e1000_hw *hw = &adapter->hw;
2136
2137 switch (hw->mac.type) {
d2ba2ed8 2138 case e1000_i350:
55cac248
AD
2139 case e1000_82580:
2140 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2141 adapter->cycles.read = igb_read_clock;
2142 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2143 adapter->cycles.mult = 1;
2144 /*
2145 * The 82580 timesync updates the system timer every 8ns by 8ns
2146 * and the value cannot be shifted. Instead we need to shift
2147 * the registers to generate a 64bit timer value. As a result
2148 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2149 * 24 in order to generate a larger value for synchronization.
2150 */
2151 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2152 /* disable system timer temporarily by setting bit 31 */
2153 wr32(E1000_TSAUXC, 0x80000000);
2154 wrfl();
2155
2156 /* Set registers so that rollover occurs soon to test this. */
2157 wr32(E1000_SYSTIMR, 0x00000000);
2158 wr32(E1000_SYSTIML, 0x80000000);
2159 wr32(E1000_SYSTIMH, 0x000000FF);
2160 wrfl();
2161
2162 /* enable system timer by clearing bit 31 */
2163 wr32(E1000_TSAUXC, 0x0);
2164 wrfl();
2165
2166 timecounter_init(&adapter->clock,
2167 &adapter->cycles,
2168 ktime_to_ns(ktime_get_real()));
2169 /*
2170 * Synchronize our NIC clock against system wall clock. NIC
2171 * time stamp reading requires ~3us per sample, each sample
2172 * was pretty stable even under load => only require 10
2173 * samples for each offset comparison.
2174 */
2175 memset(&adapter->compare, 0, sizeof(adapter->compare));
2176 adapter->compare.source = &adapter->clock;
2177 adapter->compare.target = ktime_get_real;
2178 adapter->compare.num_samples = 10;
2179 timecompare_update(&adapter->compare, 0);
2180 break;
115f459a
AD
2181 case e1000_82576:
2182 /*
2183 * Initialize hardware timer: we keep it running just in case
2184 * that some program needs it later on.
2185 */
2186 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2187 adapter->cycles.read = igb_read_clock;
2188 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2189 adapter->cycles.mult = 1;
2190 /**
2191 * Scale the NIC clock cycle by a large factor so that
2192 * relatively small clock corrections can be added or
2193 * substracted at each clock tick. The drawbacks of a large
2194 * factor are a) that the clock register overflows more quickly
2195 * (not such a big deal) and b) that the increment per tick has
2196 * to fit into 24 bits. As a result we need to use a shift of
2197 * 19 so we can fit a value of 16 into the TIMINCA register.
2198 */
2199 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2200 wr32(E1000_TIMINCA,
2201 (1 << E1000_TIMINCA_16NS_SHIFT) |
2202 (16 << IGB_82576_TSYNC_SHIFT));
2203
2204 /* Set registers so that rollover occurs soon to test this. */
2205 wr32(E1000_SYSTIML, 0x00000000);
2206 wr32(E1000_SYSTIMH, 0xFF800000);
2207 wrfl();
2208
2209 timecounter_init(&adapter->clock,
2210 &adapter->cycles,
2211 ktime_to_ns(ktime_get_real()));
2212 /*
2213 * Synchronize our NIC clock against system wall clock. NIC
2214 * time stamp reading requires ~3us per sample, each sample
2215 * was pretty stable even under load => only require 10
2216 * samples for each offset comparison.
2217 */
2218 memset(&adapter->compare, 0, sizeof(adapter->compare));
2219 adapter->compare.source = &adapter->clock;
2220 adapter->compare.target = ktime_get_real;
2221 adapter->compare.num_samples = 10;
2222 timecompare_update(&adapter->compare, 0);
2223 break;
2224 case e1000_82575:
2225 /* 82575 does not support timesync */
2226 default:
2227 break;
2228 }
2229
2230}
2231
9d5c8243
AK
2232/**
2233 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2234 * @adapter: board private structure to initialize
2235 *
2236 * igb_sw_init initializes the Adapter private data structure.
2237 * Fields are initialized based on PCI device information and
2238 * OS network device settings (MTU size).
2239 **/
2240static int __devinit igb_sw_init(struct igb_adapter *adapter)
2241{
2242 struct e1000_hw *hw = &adapter->hw;
2243 struct net_device *netdev = adapter->netdev;
2244 struct pci_dev *pdev = adapter->pdev;
2245
2246 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2247
68fd9910
AD
2248 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2249 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2250 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2251 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2252
9d5c8243
AK
2253 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2254 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2255
a6b623e0
AD
2256#ifdef CONFIG_PCI_IOV
2257 if (hw->mac.type == e1000_82576)
c0f2276f 2258 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
a6b623e0
AD
2259
2260#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2261 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2262
2263 /*
2264 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2265 * then we should combine the queues into a queue pair in order to
2266 * conserve interrupts due to limited supply
2267 */
2268 if ((adapter->rss_queues > 4) ||
2269 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2270 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2271
a6b623e0 2272 /* This call may decrease the number of queues */
047e0030 2273 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2274 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2275 return -ENOMEM;
2276 }
2277
115f459a 2278 igb_init_hw_timer(adapter);
a6b623e0
AD
2279 igb_probe_vfs(adapter);
2280
9d5c8243
AK
2281 /* Explicitly disable IRQ since the NIC can be in any state. */
2282 igb_irq_disable(adapter);
2283
2284 set_bit(__IGB_DOWN, &adapter->state);
2285 return 0;
2286}
2287
2288/**
2289 * igb_open - Called when a network interface is made active
2290 * @netdev: network interface device structure
2291 *
2292 * Returns 0 on success, negative value on failure
2293 *
2294 * The open entry point is called when a network interface is made
2295 * active by the system (IFF_UP). At this point all resources needed
2296 * for transmit and receive operations are allocated, the interrupt
2297 * handler is registered with the OS, the watchdog timer is started,
2298 * and the stack is notified that the interface is ready.
2299 **/
2300static int igb_open(struct net_device *netdev)
2301{
2302 struct igb_adapter *adapter = netdev_priv(netdev);
2303 struct e1000_hw *hw = &adapter->hw;
2304 int err;
2305 int i;
2306
2307 /* disallow open during test */
2308 if (test_bit(__IGB_TESTING, &adapter->state))
2309 return -EBUSY;
2310
b168dfc5
JB
2311 netif_carrier_off(netdev);
2312
9d5c8243
AK
2313 /* allocate transmit descriptors */
2314 err = igb_setup_all_tx_resources(adapter);
2315 if (err)
2316 goto err_setup_tx;
2317
2318 /* allocate receive descriptors */
2319 err = igb_setup_all_rx_resources(adapter);
2320 if (err)
2321 goto err_setup_rx;
2322
88a268c1 2323 igb_power_up_link(adapter);
9d5c8243 2324
9d5c8243
AK
2325 /* before we allocate an interrupt, we must be ready to handle it.
2326 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2327 * as soon as we call pci_request_irq, so we have to setup our
2328 * clean_rx handler before we do so. */
2329 igb_configure(adapter);
2330
2331 err = igb_request_irq(adapter);
2332 if (err)
2333 goto err_req_irq;
2334
2335 /* From here on the code is the same as igb_up() */
2336 clear_bit(__IGB_DOWN, &adapter->state);
2337
047e0030
AD
2338 for (i = 0; i < adapter->num_q_vectors; i++) {
2339 struct igb_q_vector *q_vector = adapter->q_vector[i];
2340 napi_enable(&q_vector->napi);
2341 }
9d5c8243
AK
2342
2343 /* Clear any pending interrupts. */
2344 rd32(E1000_ICR);
844290e5
PW
2345
2346 igb_irq_enable(adapter);
2347
d4960307
AD
2348 /* notify VFs that reset has been completed */
2349 if (adapter->vfs_allocated_count) {
2350 u32 reg_data = rd32(E1000_CTRL_EXT);
2351 reg_data |= E1000_CTRL_EXT_PFRSTD;
2352 wr32(E1000_CTRL_EXT, reg_data);
2353 }
2354
d55b53ff
JK
2355 netif_tx_start_all_queues(netdev);
2356
25568a53
AD
2357 /* start the watchdog. */
2358 hw->mac.get_link_status = 1;
2359 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2360
2361 return 0;
2362
2363err_req_irq:
2364 igb_release_hw_control(adapter);
88a268c1 2365 igb_power_down_link(adapter);
9d5c8243
AK
2366 igb_free_all_rx_resources(adapter);
2367err_setup_rx:
2368 igb_free_all_tx_resources(adapter);
2369err_setup_tx:
2370 igb_reset(adapter);
2371
2372 return err;
2373}
2374
2375/**
2376 * igb_close - Disables a network interface
2377 * @netdev: network interface device structure
2378 *
2379 * Returns 0, this is not allowed to fail
2380 *
2381 * The close entry point is called when an interface is de-activated
2382 * by the OS. The hardware is still under the driver's control, but
2383 * needs to be disabled. A global MAC reset is issued to stop the
2384 * hardware, and all transmit and receive resources are freed.
2385 **/
2386static int igb_close(struct net_device *netdev)
2387{
2388 struct igb_adapter *adapter = netdev_priv(netdev);
2389
2390 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2391 igb_down(adapter);
2392
2393 igb_free_irq(adapter);
2394
2395 igb_free_all_tx_resources(adapter);
2396 igb_free_all_rx_resources(adapter);
2397
9d5c8243
AK
2398 return 0;
2399}
2400
2401/**
2402 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2403 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2404 *
2405 * Return 0 on success, negative on failure
2406 **/
80785298 2407int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2408{
59d71989 2409 struct device *dev = tx_ring->dev;
9d5c8243
AK
2410 int size;
2411
2412 size = sizeof(struct igb_buffer) * tx_ring->count;
2413 tx_ring->buffer_info = vmalloc(size);
2414 if (!tx_ring->buffer_info)
2415 goto err;
2416 memset(tx_ring->buffer_info, 0, size);
2417
2418 /* round up to nearest 4K */
85e8d004 2419 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2420 tx_ring->size = ALIGN(tx_ring->size, 4096);
2421
59d71989
AD
2422 tx_ring->desc = dma_alloc_coherent(dev,
2423 tx_ring->size,
2424 &tx_ring->dma,
2425 GFP_KERNEL);
9d5c8243
AK
2426
2427 if (!tx_ring->desc)
2428 goto err;
2429
9d5c8243
AK
2430 tx_ring->next_to_use = 0;
2431 tx_ring->next_to_clean = 0;
9d5c8243
AK
2432 return 0;
2433
2434err:
2435 vfree(tx_ring->buffer_info);
59d71989 2436 dev_err(dev,
9d5c8243
AK
2437 "Unable to allocate memory for the transmit descriptor ring\n");
2438 return -ENOMEM;
2439}
2440
2441/**
2442 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2443 * (Descriptors) for all queues
2444 * @adapter: board private structure
2445 *
2446 * Return 0 on success, negative on failure
2447 **/
2448static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2449{
439705e1 2450 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2451 int i, err = 0;
2452
2453 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2454 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2455 if (err) {
439705e1 2456 dev_err(&pdev->dev,
9d5c8243
AK
2457 "Allocation for Tx Queue %u failed\n", i);
2458 for (i--; i >= 0; i--)
3025a446 2459 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2460 break;
2461 }
2462 }
2463
a99955fc 2464 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2465 int r_idx = i % adapter->num_tx_queues;
3025a446 2466 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2467 }
9d5c8243
AK
2468 return err;
2469}
2470
2471/**
85b430b4
AD
2472 * igb_setup_tctl - configure the transmit control registers
2473 * @adapter: Board private structure
9d5c8243 2474 **/
d7ee5b3a 2475void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2476{
9d5c8243
AK
2477 struct e1000_hw *hw = &adapter->hw;
2478 u32 tctl;
9d5c8243 2479
85b430b4
AD
2480 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2481 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2482
2483 /* Program the Transmit Control Register */
9d5c8243
AK
2484 tctl = rd32(E1000_TCTL);
2485 tctl &= ~E1000_TCTL_CT;
2486 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2487 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2488
2489 igb_config_collision_dist(hw);
2490
9d5c8243
AK
2491 /* Enable transmits */
2492 tctl |= E1000_TCTL_EN;
2493
2494 wr32(E1000_TCTL, tctl);
2495}
2496
85b430b4
AD
2497/**
2498 * igb_configure_tx_ring - Configure transmit ring after Reset
2499 * @adapter: board private structure
2500 * @ring: tx ring to configure
2501 *
2502 * Configure a transmit ring after a reset.
2503 **/
d7ee5b3a
AD
2504void igb_configure_tx_ring(struct igb_adapter *adapter,
2505 struct igb_ring *ring)
85b430b4
AD
2506{
2507 struct e1000_hw *hw = &adapter->hw;
2508 u32 txdctl;
2509 u64 tdba = ring->dma;
2510 int reg_idx = ring->reg_idx;
2511
2512 /* disable the queue */
2513 txdctl = rd32(E1000_TXDCTL(reg_idx));
2514 wr32(E1000_TXDCTL(reg_idx),
2515 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2516 wrfl();
2517 mdelay(10);
2518
2519 wr32(E1000_TDLEN(reg_idx),
2520 ring->count * sizeof(union e1000_adv_tx_desc));
2521 wr32(E1000_TDBAL(reg_idx),
2522 tdba & 0x00000000ffffffffULL);
2523 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2524
fce99e34
AD
2525 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2526 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2527 writel(0, ring->head);
2528 writel(0, ring->tail);
85b430b4
AD
2529
2530 txdctl |= IGB_TX_PTHRESH;
2531 txdctl |= IGB_TX_HTHRESH << 8;
2532 txdctl |= IGB_TX_WTHRESH << 16;
2533
2534 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2535 wr32(E1000_TXDCTL(reg_idx), txdctl);
2536}
2537
2538/**
2539 * igb_configure_tx - Configure transmit Unit after Reset
2540 * @adapter: board private structure
2541 *
2542 * Configure the Tx unit of the MAC after a reset.
2543 **/
2544static void igb_configure_tx(struct igb_adapter *adapter)
2545{
2546 int i;
2547
2548 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2549 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2550}
2551
9d5c8243
AK
2552/**
2553 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2554 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2555 *
2556 * Returns 0 on success, negative on failure
2557 **/
80785298 2558int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2559{
59d71989 2560 struct device *dev = rx_ring->dev;
9d5c8243
AK
2561 int size, desc_len;
2562
2563 size = sizeof(struct igb_buffer) * rx_ring->count;
2564 rx_ring->buffer_info = vmalloc(size);
2565 if (!rx_ring->buffer_info)
2566 goto err;
2567 memset(rx_ring->buffer_info, 0, size);
2568
2569 desc_len = sizeof(union e1000_adv_rx_desc);
2570
2571 /* Round up to nearest 4K */
2572 rx_ring->size = rx_ring->count * desc_len;
2573 rx_ring->size = ALIGN(rx_ring->size, 4096);
2574
59d71989
AD
2575 rx_ring->desc = dma_alloc_coherent(dev,
2576 rx_ring->size,
2577 &rx_ring->dma,
2578 GFP_KERNEL);
9d5c8243
AK
2579
2580 if (!rx_ring->desc)
2581 goto err;
2582
2583 rx_ring->next_to_clean = 0;
2584 rx_ring->next_to_use = 0;
9d5c8243 2585
9d5c8243
AK
2586 return 0;
2587
2588err:
2589 vfree(rx_ring->buffer_info);
439705e1 2590 rx_ring->buffer_info = NULL;
59d71989
AD
2591 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2592 " ring\n");
9d5c8243
AK
2593 return -ENOMEM;
2594}
2595
2596/**
2597 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2598 * (Descriptors) for all queues
2599 * @adapter: board private structure
2600 *
2601 * Return 0 on success, negative on failure
2602 **/
2603static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2604{
439705e1 2605 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2606 int i, err = 0;
2607
2608 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2609 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2610 if (err) {
439705e1 2611 dev_err(&pdev->dev,
9d5c8243
AK
2612 "Allocation for Rx Queue %u failed\n", i);
2613 for (i--; i >= 0; i--)
3025a446 2614 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2615 break;
2616 }
2617 }
2618
2619 return err;
2620}
2621
06cf2666
AD
2622/**
2623 * igb_setup_mrqc - configure the multiple receive queue control registers
2624 * @adapter: Board private structure
2625 **/
2626static void igb_setup_mrqc(struct igb_adapter *adapter)
2627{
2628 struct e1000_hw *hw = &adapter->hw;
2629 u32 mrqc, rxcsum;
2630 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2631 union e1000_reta {
2632 u32 dword;
2633 u8 bytes[4];
2634 } reta;
2635 static const u8 rsshash[40] = {
2636 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2637 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2638 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2639 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2640
2641 /* Fill out hash function seeds */
2642 for (j = 0; j < 10; j++) {
2643 u32 rsskey = rsshash[(j * 4)];
2644 rsskey |= rsshash[(j * 4) + 1] << 8;
2645 rsskey |= rsshash[(j * 4) + 2] << 16;
2646 rsskey |= rsshash[(j * 4) + 3] << 24;
2647 array_wr32(E1000_RSSRK(0), j, rsskey);
2648 }
2649
a99955fc 2650 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2651
2652 if (adapter->vfs_allocated_count) {
2653 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2654 switch (hw->mac.type) {
d2ba2ed8 2655 case e1000_i350:
55cac248
AD
2656 case e1000_82580:
2657 num_rx_queues = 1;
2658 shift = 0;
2659 break;
06cf2666
AD
2660 case e1000_82576:
2661 shift = 3;
2662 num_rx_queues = 2;
2663 break;
2664 case e1000_82575:
2665 shift = 2;
2666 shift2 = 6;
2667 default:
2668 break;
2669 }
2670 } else {
2671 if (hw->mac.type == e1000_82575)
2672 shift = 6;
2673 }
2674
2675 for (j = 0; j < (32 * 4); j++) {
2676 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2677 if (shift2)
2678 reta.bytes[j & 3] |= num_rx_queues << shift2;
2679 if ((j & 3) == 3)
2680 wr32(E1000_RETA(j >> 2), reta.dword);
2681 }
2682
2683 /*
2684 * Disable raw packet checksumming so that RSS hash is placed in
2685 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2686 * offloads as they are enabled by default
2687 */
2688 rxcsum = rd32(E1000_RXCSUM);
2689 rxcsum |= E1000_RXCSUM_PCSD;
2690
2691 if (adapter->hw.mac.type >= e1000_82576)
2692 /* Enable Receive Checksum Offload for SCTP */
2693 rxcsum |= E1000_RXCSUM_CRCOFL;
2694
2695 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2696 wr32(E1000_RXCSUM, rxcsum);
2697
2698 /* If VMDq is enabled then we set the appropriate mode for that, else
2699 * we default to RSS so that an RSS hash is calculated per packet even
2700 * if we are only using one queue */
2701 if (adapter->vfs_allocated_count) {
2702 if (hw->mac.type > e1000_82575) {
2703 /* Set the default pool for the PF's first queue */
2704 u32 vtctl = rd32(E1000_VT_CTL);
2705 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2706 E1000_VT_CTL_DISABLE_DEF_POOL);
2707 vtctl |= adapter->vfs_allocated_count <<
2708 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2709 wr32(E1000_VT_CTL, vtctl);
2710 }
a99955fc 2711 if (adapter->rss_queues > 1)
06cf2666
AD
2712 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2713 else
2714 mrqc = E1000_MRQC_ENABLE_VMDQ;
2715 } else {
2716 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2717 }
2718 igb_vmm_control(adapter);
2719
2720 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2721 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2722 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2723 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2724 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2725 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2726 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2727 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2728
2729 wr32(E1000_MRQC, mrqc);
2730}
2731
9d5c8243
AK
2732/**
2733 * igb_setup_rctl - configure the receive control registers
2734 * @adapter: Board private structure
2735 **/
d7ee5b3a 2736void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2737{
2738 struct e1000_hw *hw = &adapter->hw;
2739 u32 rctl;
9d5c8243
AK
2740
2741 rctl = rd32(E1000_RCTL);
2742
2743 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2744 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2745
69d728ba 2746 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2747 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2748
87cb7e8c
AK
2749 /*
2750 * enable stripping of CRC. It's unlikely this will break BMC
2751 * redirection as it did with e1000. Newer features require
2752 * that the HW strips the CRC.
73cd78f1 2753 */
87cb7e8c 2754 rctl |= E1000_RCTL_SECRC;
9d5c8243 2755
559e9c49 2756 /* disable store bad packets and clear size bits. */
ec54d7d6 2757 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2758
6ec43fe6
AD
2759 /* enable LPE to prevent packets larger than max_frame_size */
2760 rctl |= E1000_RCTL_LPE;
9d5c8243 2761
952f72a8
AD
2762 /* disable queue 0 to prevent tail write w/o re-config */
2763 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2764
e1739522
AD
2765 /* Attention!!! For SR-IOV PF driver operations you must enable
2766 * queue drop for all VF and PF queues to prevent head of line blocking
2767 * if an un-trusted VF does not provide descriptors to hardware.
2768 */
2769 if (adapter->vfs_allocated_count) {
e1739522
AD
2770 /* set all queue drop enable bits */
2771 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2772 }
2773
9d5c8243
AK
2774 wr32(E1000_RCTL, rctl);
2775}
2776
7d5753f0
AD
2777static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2778 int vfn)
2779{
2780 struct e1000_hw *hw = &adapter->hw;
2781 u32 vmolr;
2782
2783 /* if it isn't the PF check to see if VFs are enabled and
2784 * increase the size to support vlan tags */
2785 if (vfn < adapter->vfs_allocated_count &&
2786 adapter->vf_data[vfn].vlans_enabled)
2787 size += VLAN_TAG_SIZE;
2788
2789 vmolr = rd32(E1000_VMOLR(vfn));
2790 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2791 vmolr |= size | E1000_VMOLR_LPE;
2792 wr32(E1000_VMOLR(vfn), vmolr);
2793
2794 return 0;
2795}
2796
e1739522
AD
2797/**
2798 * igb_rlpml_set - set maximum receive packet size
2799 * @adapter: board private structure
2800 *
2801 * Configure maximum receivable packet size.
2802 **/
2803static void igb_rlpml_set(struct igb_adapter *adapter)
2804{
2805 u32 max_frame_size = adapter->max_frame_size;
2806 struct e1000_hw *hw = &adapter->hw;
2807 u16 pf_id = adapter->vfs_allocated_count;
2808
2809 if (adapter->vlgrp)
2810 max_frame_size += VLAN_TAG_SIZE;
2811
2812 /* if vfs are enabled we set RLPML to the largest possible request
2813 * size and set the VMOLR RLPML to the size we need */
2814 if (pf_id) {
2815 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2816 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2817 }
2818
2819 wr32(E1000_RLPML, max_frame_size);
2820}
2821
8151d294
WM
2822static inline void igb_set_vmolr(struct igb_adapter *adapter,
2823 int vfn, bool aupe)
7d5753f0
AD
2824{
2825 struct e1000_hw *hw = &adapter->hw;
2826 u32 vmolr;
2827
2828 /*
2829 * This register exists only on 82576 and newer so if we are older then
2830 * we should exit and do nothing
2831 */
2832 if (hw->mac.type < e1000_82576)
2833 return;
2834
2835 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2836 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2837 if (aupe)
2838 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2839 else
2840 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2841
2842 /* clear all bits that might not be set */
2843 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2844
a99955fc 2845 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2846 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2847 /*
2848 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2849 * multicast packets
2850 */
2851 if (vfn <= adapter->vfs_allocated_count)
2852 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2853
2854 wr32(E1000_VMOLR(vfn), vmolr);
2855}
2856
85b430b4
AD
2857/**
2858 * igb_configure_rx_ring - Configure a receive ring after Reset
2859 * @adapter: board private structure
2860 * @ring: receive ring to be configured
2861 *
2862 * Configure the Rx unit of the MAC after a reset.
2863 **/
d7ee5b3a
AD
2864void igb_configure_rx_ring(struct igb_adapter *adapter,
2865 struct igb_ring *ring)
85b430b4
AD
2866{
2867 struct e1000_hw *hw = &adapter->hw;
2868 u64 rdba = ring->dma;
2869 int reg_idx = ring->reg_idx;
952f72a8 2870 u32 srrctl, rxdctl;
85b430b4
AD
2871
2872 /* disable the queue */
2873 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2874 wr32(E1000_RXDCTL(reg_idx),
2875 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2876
2877 /* Set DMA base address registers */
2878 wr32(E1000_RDBAL(reg_idx),
2879 rdba & 0x00000000ffffffffULL);
2880 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2881 wr32(E1000_RDLEN(reg_idx),
2882 ring->count * sizeof(union e1000_adv_rx_desc));
2883
2884 /* initialize head and tail */
fce99e34
AD
2885 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2886 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2887 writel(0, ring->head);
2888 writel(0, ring->tail);
85b430b4 2889
952f72a8 2890 /* set descriptor configuration */
4c844851
AD
2891 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2892 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2893 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2894#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2895 srrctl |= IGB_RXBUFFER_16384 >>
2896 E1000_SRRCTL_BSIZEPKT_SHIFT;
2897#else
2898 srrctl |= (PAGE_SIZE / 2) >>
2899 E1000_SRRCTL_BSIZEPKT_SHIFT;
2900#endif
2901 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2902 } else {
4c844851 2903 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2904 E1000_SRRCTL_BSIZEPKT_SHIFT;
2905 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2906 }
757b77e2
NN
2907 if (hw->mac.type == e1000_82580)
2908 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2909 /* Only set Drop Enable if we are supporting multiple queues */
2910 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2911 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2912
2913 wr32(E1000_SRRCTL(reg_idx), srrctl);
2914
7d5753f0 2915 /* set filtering for VMDQ pools */
8151d294 2916 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2917
85b430b4
AD
2918 /* enable receive descriptor fetching */
2919 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2920 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2921 rxdctl &= 0xFFF00000;
2922 rxdctl |= IGB_RX_PTHRESH;
2923 rxdctl |= IGB_RX_HTHRESH << 8;
2924 rxdctl |= IGB_RX_WTHRESH << 16;
2925 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2926}
2927
9d5c8243
AK
2928/**
2929 * igb_configure_rx - Configure receive Unit after Reset
2930 * @adapter: board private structure
2931 *
2932 * Configure the Rx unit of the MAC after a reset.
2933 **/
2934static void igb_configure_rx(struct igb_adapter *adapter)
2935{
9107584e 2936 int i;
9d5c8243 2937
68d480c4
AD
2938 /* set UTA to appropriate mode */
2939 igb_set_uta(adapter);
2940
26ad9178
AD
2941 /* set the correct pool for the PF default MAC address in entry 0 */
2942 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2943 adapter->vfs_allocated_count);
2944
06cf2666
AD
2945 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2946 * the Base and Length of the Rx Descriptor Ring */
2947 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2948 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2949}
2950
2951/**
2952 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2953 * @tx_ring: Tx descriptor ring for a specific queue
2954 *
2955 * Free all transmit software resources
2956 **/
68fd9910 2957void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2958{
3b644cf6 2959 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2960
2961 vfree(tx_ring->buffer_info);
2962 tx_ring->buffer_info = NULL;
2963
439705e1
AD
2964 /* if not set, then don't free */
2965 if (!tx_ring->desc)
2966 return;
2967
59d71989
AD
2968 dma_free_coherent(tx_ring->dev, tx_ring->size,
2969 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2970
2971 tx_ring->desc = NULL;
2972}
2973
2974/**
2975 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2976 * @adapter: board private structure
2977 *
2978 * Free all transmit software resources
2979 **/
2980static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2981{
2982 int i;
2983
2984 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2985 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2986}
2987
b1a436c3
AD
2988void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2989 struct igb_buffer *buffer_info)
9d5c8243 2990{
6366ad33
AD
2991 if (buffer_info->dma) {
2992 if (buffer_info->mapped_as_page)
59d71989 2993 dma_unmap_page(tx_ring->dev,
6366ad33
AD
2994 buffer_info->dma,
2995 buffer_info->length,
59d71989 2996 DMA_TO_DEVICE);
6366ad33 2997 else
59d71989 2998 dma_unmap_single(tx_ring->dev,
6366ad33
AD
2999 buffer_info->dma,
3000 buffer_info->length,
59d71989 3001 DMA_TO_DEVICE);
6366ad33
AD
3002 buffer_info->dma = 0;
3003 }
9d5c8243
AK
3004 if (buffer_info->skb) {
3005 dev_kfree_skb_any(buffer_info->skb);
3006 buffer_info->skb = NULL;
3007 }
3008 buffer_info->time_stamp = 0;
6366ad33
AD
3009 buffer_info->length = 0;
3010 buffer_info->next_to_watch = 0;
3011 buffer_info->mapped_as_page = false;
9d5c8243
AK
3012}
3013
3014/**
3015 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3016 * @tx_ring: ring to be cleaned
3017 **/
3b644cf6 3018static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3019{
3020 struct igb_buffer *buffer_info;
3021 unsigned long size;
3022 unsigned int i;
3023
3024 if (!tx_ring->buffer_info)
3025 return;
3026 /* Free all the Tx ring sk_buffs */
3027
3028 for (i = 0; i < tx_ring->count; i++) {
3029 buffer_info = &tx_ring->buffer_info[i];
80785298 3030 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3031 }
3032
3033 size = sizeof(struct igb_buffer) * tx_ring->count;
3034 memset(tx_ring->buffer_info, 0, size);
3035
3036 /* Zero out the descriptor ring */
9d5c8243
AK
3037 memset(tx_ring->desc, 0, tx_ring->size);
3038
3039 tx_ring->next_to_use = 0;
3040 tx_ring->next_to_clean = 0;
9d5c8243
AK
3041}
3042
3043/**
3044 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3045 * @adapter: board private structure
3046 **/
3047static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3048{
3049 int i;
3050
3051 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3052 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3053}
3054
3055/**
3056 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3057 * @rx_ring: ring to clean the resources from
3058 *
3059 * Free all receive software resources
3060 **/
68fd9910 3061void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3062{
3b644cf6 3063 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3064
3065 vfree(rx_ring->buffer_info);
3066 rx_ring->buffer_info = NULL;
3067
439705e1
AD
3068 /* if not set, then don't free */
3069 if (!rx_ring->desc)
3070 return;
3071
59d71989
AD
3072 dma_free_coherent(rx_ring->dev, rx_ring->size,
3073 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3074
3075 rx_ring->desc = NULL;
3076}
3077
3078/**
3079 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3080 * @adapter: board private structure
3081 *
3082 * Free all receive software resources
3083 **/
3084static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3085{
3086 int i;
3087
3088 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3089 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3090}
3091
3092/**
3093 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3094 * @rx_ring: ring to free buffers from
3095 **/
3b644cf6 3096static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3097{
3098 struct igb_buffer *buffer_info;
9d5c8243
AK
3099 unsigned long size;
3100 unsigned int i;
3101
3102 if (!rx_ring->buffer_info)
3103 return;
439705e1 3104
9d5c8243
AK
3105 /* Free all the Rx ring sk_buffs */
3106 for (i = 0; i < rx_ring->count; i++) {
3107 buffer_info = &rx_ring->buffer_info[i];
3108 if (buffer_info->dma) {
59d71989 3109 dma_unmap_single(rx_ring->dev,
80785298 3110 buffer_info->dma,
4c844851 3111 rx_ring->rx_buffer_len,
59d71989 3112 DMA_FROM_DEVICE);
9d5c8243
AK
3113 buffer_info->dma = 0;
3114 }
3115
3116 if (buffer_info->skb) {
3117 dev_kfree_skb(buffer_info->skb);
3118 buffer_info->skb = NULL;
3119 }
6ec43fe6 3120 if (buffer_info->page_dma) {
59d71989 3121 dma_unmap_page(rx_ring->dev,
80785298 3122 buffer_info->page_dma,
6ec43fe6 3123 PAGE_SIZE / 2,
59d71989 3124 DMA_FROM_DEVICE);
6ec43fe6
AD
3125 buffer_info->page_dma = 0;
3126 }
9d5c8243 3127 if (buffer_info->page) {
9d5c8243
AK
3128 put_page(buffer_info->page);
3129 buffer_info->page = NULL;
bf36c1a0 3130 buffer_info->page_offset = 0;
9d5c8243
AK
3131 }
3132 }
3133
9d5c8243
AK
3134 size = sizeof(struct igb_buffer) * rx_ring->count;
3135 memset(rx_ring->buffer_info, 0, size);
3136
3137 /* Zero out the descriptor ring */
3138 memset(rx_ring->desc, 0, rx_ring->size);
3139
3140 rx_ring->next_to_clean = 0;
3141 rx_ring->next_to_use = 0;
9d5c8243
AK
3142}
3143
3144/**
3145 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3146 * @adapter: board private structure
3147 **/
3148static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3149{
3150 int i;
3151
3152 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3153 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3154}
3155
3156/**
3157 * igb_set_mac - Change the Ethernet Address of the NIC
3158 * @netdev: network interface device structure
3159 * @p: pointer to an address structure
3160 *
3161 * Returns 0 on success, negative on failure
3162 **/
3163static int igb_set_mac(struct net_device *netdev, void *p)
3164{
3165 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3166 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3167 struct sockaddr *addr = p;
3168
3169 if (!is_valid_ether_addr(addr->sa_data))
3170 return -EADDRNOTAVAIL;
3171
3172 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3173 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3174
26ad9178
AD
3175 /* set the correct pool for the new PF MAC address in entry 0 */
3176 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3177 adapter->vfs_allocated_count);
e1739522 3178
9d5c8243
AK
3179 return 0;
3180}
3181
3182/**
68d480c4 3183 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3184 * @netdev: network interface device structure
3185 *
68d480c4
AD
3186 * Writes multicast address list to the MTA hash table.
3187 * Returns: -ENOMEM on failure
3188 * 0 on no addresses written
3189 * X on writing X addresses to MTA
9d5c8243 3190 **/
68d480c4 3191static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3192{
3193 struct igb_adapter *adapter = netdev_priv(netdev);
3194 struct e1000_hw *hw = &adapter->hw;
22bedad3 3195 struct netdev_hw_addr *ha;
68d480c4 3196 u8 *mta_list;
9d5c8243
AK
3197 int i;
3198
4cd24eaf 3199 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3200 /* nothing to program, so clear mc list */
3201 igb_update_mc_addr_list(hw, NULL, 0);
3202 igb_restore_vf_multicasts(adapter);
3203 return 0;
3204 }
9d5c8243 3205
4cd24eaf 3206 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3207 if (!mta_list)
3208 return -ENOMEM;
ff41f8dc 3209
68d480c4 3210 /* The shared function expects a packed array of only addresses. */
48e2f183 3211 i = 0;
22bedad3
JP
3212 netdev_for_each_mc_addr(ha, netdev)
3213 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3214
68d480c4
AD
3215 igb_update_mc_addr_list(hw, mta_list, i);
3216 kfree(mta_list);
3217
4cd24eaf 3218 return netdev_mc_count(netdev);
68d480c4
AD
3219}
3220
3221/**
3222 * igb_write_uc_addr_list - write unicast addresses to RAR table
3223 * @netdev: network interface device structure
3224 *
3225 * Writes unicast address list to the RAR table.
3226 * Returns: -ENOMEM on failure/insufficient address space
3227 * 0 on no addresses written
3228 * X on writing X addresses to the RAR table
3229 **/
3230static int igb_write_uc_addr_list(struct net_device *netdev)
3231{
3232 struct igb_adapter *adapter = netdev_priv(netdev);
3233 struct e1000_hw *hw = &adapter->hw;
3234 unsigned int vfn = adapter->vfs_allocated_count;
3235 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3236 int count = 0;
3237
3238 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3239 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3240 return -ENOMEM;
9d5c8243 3241
32e7bfc4 3242 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3243 struct netdev_hw_addr *ha;
32e7bfc4
JP
3244
3245 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3246 if (!rar_entries)
3247 break;
26ad9178
AD
3248 igb_rar_set_qsel(adapter, ha->addr,
3249 rar_entries--,
68d480c4
AD
3250 vfn);
3251 count++;
ff41f8dc
AD
3252 }
3253 }
3254 /* write the addresses in reverse order to avoid write combining */
3255 for (; rar_entries > 0 ; rar_entries--) {
3256 wr32(E1000_RAH(rar_entries), 0);
3257 wr32(E1000_RAL(rar_entries), 0);
3258 }
3259 wrfl();
3260
68d480c4
AD
3261 return count;
3262}
3263
3264/**
3265 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3266 * @netdev: network interface device structure
3267 *
3268 * The set_rx_mode entry point is called whenever the unicast or multicast
3269 * address lists or the network interface flags are updated. This routine is
3270 * responsible for configuring the hardware for proper unicast, multicast,
3271 * promiscuous mode, and all-multi behavior.
3272 **/
3273static void igb_set_rx_mode(struct net_device *netdev)
3274{
3275 struct igb_adapter *adapter = netdev_priv(netdev);
3276 struct e1000_hw *hw = &adapter->hw;
3277 unsigned int vfn = adapter->vfs_allocated_count;
3278 u32 rctl, vmolr = 0;
3279 int count;
3280
3281 /* Check for Promiscuous and All Multicast modes */
3282 rctl = rd32(E1000_RCTL);
3283
3284 /* clear the effected bits */
3285 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3286
3287 if (netdev->flags & IFF_PROMISC) {
3288 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3289 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3290 } else {
3291 if (netdev->flags & IFF_ALLMULTI) {
3292 rctl |= E1000_RCTL_MPE;
3293 vmolr |= E1000_VMOLR_MPME;
3294 } else {
3295 /*
3296 * Write addresses to the MTA, if the attempt fails
3297 * then we should just turn on promiscous mode so
3298 * that we can at least receive multicast traffic
3299 */
3300 count = igb_write_mc_addr_list(netdev);
3301 if (count < 0) {
3302 rctl |= E1000_RCTL_MPE;
3303 vmolr |= E1000_VMOLR_MPME;
3304 } else if (count) {
3305 vmolr |= E1000_VMOLR_ROMPE;
3306 }
3307 }
3308 /*
3309 * Write addresses to available RAR registers, if there is not
3310 * sufficient space to store all the addresses then enable
3311 * unicast promiscous mode
3312 */
3313 count = igb_write_uc_addr_list(netdev);
3314 if (count < 0) {
3315 rctl |= E1000_RCTL_UPE;
3316 vmolr |= E1000_VMOLR_ROPE;
3317 }
3318 rctl |= E1000_RCTL_VFE;
28fc06f5 3319 }
68d480c4 3320 wr32(E1000_RCTL, rctl);
28fc06f5 3321
68d480c4
AD
3322 /*
3323 * In order to support SR-IOV and eventually VMDq it is necessary to set
3324 * the VMOLR to enable the appropriate modes. Without this workaround
3325 * we will have issues with VLAN tag stripping not being done for frames
3326 * that are only arriving because we are the default pool
3327 */
3328 if (hw->mac.type < e1000_82576)
28fc06f5 3329 return;
9d5c8243 3330
68d480c4
AD
3331 vmolr |= rd32(E1000_VMOLR(vfn)) &
3332 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3333 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3334 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3335}
3336
3337/* Need to wait a few seconds after link up to get diagnostic information from
3338 * the phy */
3339static void igb_update_phy_info(unsigned long data)
3340{
3341 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3342 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3343}
3344
4d6b725e
AD
3345/**
3346 * igb_has_link - check shared code for link and determine up/down
3347 * @adapter: pointer to driver private info
3348 **/
3145535a 3349bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3350{
3351 struct e1000_hw *hw = &adapter->hw;
3352 bool link_active = false;
3353 s32 ret_val = 0;
3354
3355 /* get_link_status is set on LSC (link status) interrupt or
3356 * rx sequence error interrupt. get_link_status will stay
3357 * false until the e1000_check_for_link establishes link
3358 * for copper adapters ONLY
3359 */
3360 switch (hw->phy.media_type) {
3361 case e1000_media_type_copper:
3362 if (hw->mac.get_link_status) {
3363 ret_val = hw->mac.ops.check_for_link(hw);
3364 link_active = !hw->mac.get_link_status;
3365 } else {
3366 link_active = true;
3367 }
3368 break;
4d6b725e
AD
3369 case e1000_media_type_internal_serdes:
3370 ret_val = hw->mac.ops.check_for_link(hw);
3371 link_active = hw->mac.serdes_has_link;
3372 break;
3373 default:
3374 case e1000_media_type_unknown:
3375 break;
3376 }
3377
3378 return link_active;
3379}
3380
9d5c8243
AK
3381/**
3382 * igb_watchdog - Timer Call-back
3383 * @data: pointer to adapter cast into an unsigned long
3384 **/
3385static void igb_watchdog(unsigned long data)
3386{
3387 struct igb_adapter *adapter = (struct igb_adapter *)data;
3388 /* Do the rest outside of interrupt context */
3389 schedule_work(&adapter->watchdog_task);
3390}
3391
3392static void igb_watchdog_task(struct work_struct *work)
3393{
3394 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3395 struct igb_adapter,
3396 watchdog_task);
9d5c8243 3397 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3398 struct net_device *netdev = adapter->netdev;
9d5c8243 3399 u32 link;
7a6ea550 3400 int i;
9d5c8243 3401
4d6b725e 3402 link = igb_has_link(adapter);
9d5c8243
AK
3403 if (link) {
3404 if (!netif_carrier_ok(netdev)) {
3405 u32 ctrl;
330a6d6a
AD
3406 hw->mac.ops.get_speed_and_duplex(hw,
3407 &adapter->link_speed,
3408 &adapter->link_duplex);
9d5c8243
AK
3409
3410 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3411 /* Links status message must follow this format */
3412 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3413 "Flow Control: %s\n",
559e9c49
AD
3414 netdev->name,
3415 adapter->link_speed,
3416 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3417 "Full Duplex" : "Half Duplex",
559e9c49
AD
3418 ((ctrl & E1000_CTRL_TFCE) &&
3419 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3420 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3421 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3422
d07f3e37 3423 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3424 adapter->tx_timeout_factor = 1;
3425 switch (adapter->link_speed) {
3426 case SPEED_10:
9d5c8243
AK
3427 adapter->tx_timeout_factor = 14;
3428 break;
3429 case SPEED_100:
9d5c8243
AK
3430 /* maybe add some timeout factor ? */
3431 break;
3432 }
3433
3434 netif_carrier_on(netdev);
9d5c8243 3435
4ae196df
AD
3436 igb_ping_all_vfs(adapter);
3437
4b1a9877 3438 /* link state has changed, schedule phy info update */
9d5c8243
AK
3439 if (!test_bit(__IGB_DOWN, &adapter->state))
3440 mod_timer(&adapter->phy_info_timer,
3441 round_jiffies(jiffies + 2 * HZ));
3442 }
3443 } else {
3444 if (netif_carrier_ok(netdev)) {
3445 adapter->link_speed = 0;
3446 adapter->link_duplex = 0;
527d47c1
AD
3447 /* Links status message must follow this format */
3448 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3449 netdev->name);
9d5c8243 3450 netif_carrier_off(netdev);
4b1a9877 3451
4ae196df
AD
3452 igb_ping_all_vfs(adapter);
3453
4b1a9877 3454 /* link state has changed, schedule phy info update */
9d5c8243
AK
3455 if (!test_bit(__IGB_DOWN, &adapter->state))
3456 mod_timer(&adapter->phy_info_timer,
3457 round_jiffies(jiffies + 2 * HZ));
3458 }
3459 }
3460
9d5c8243 3461 igb_update_stats(adapter);
9d5c8243 3462
dbabb065 3463 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3464 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3465 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3466 /* We've lost link, so the controller stops DMA,
3467 * but we've got queued Tx work that's never going
3468 * to get done, so reset controller to flush Tx.
3469 * (Do the reset outside of interrupt context). */
dbabb065
AD
3470 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3471 adapter->tx_timeout_count++;
3472 schedule_work(&adapter->reset_task);
3473 /* return immediately since reset is imminent */
3474 return;
3475 }
9d5c8243 3476 }
9d5c8243 3477
dbabb065
AD
3478 /* Force detection of hung controller every watchdog period */
3479 tx_ring->detect_tx_hung = true;
3480 }
f7ba205e 3481
9d5c8243 3482 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3483 if (adapter->msix_entries) {
047e0030
AD
3484 u32 eics = 0;
3485 for (i = 0; i < adapter->num_q_vectors; i++) {
3486 struct igb_q_vector *q_vector = adapter->q_vector[i];
3487 eics |= q_vector->eims_value;
3488 }
7a6ea550
AD
3489 wr32(E1000_EICS, eics);
3490 } else {
3491 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3492 }
9d5c8243 3493
9d5c8243
AK
3494 /* Reset the timer */
3495 if (!test_bit(__IGB_DOWN, &adapter->state))
3496 mod_timer(&adapter->watchdog_timer,
3497 round_jiffies(jiffies + 2 * HZ));
3498}
3499
3500enum latency_range {
3501 lowest_latency = 0,
3502 low_latency = 1,
3503 bulk_latency = 2,
3504 latency_invalid = 255
3505};
3506
6eb5a7f1
AD
3507/**
3508 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3509 *
3510 * Stores a new ITR value based on strictly on packet size. This
3511 * algorithm is less sophisticated than that used in igb_update_itr,
3512 * due to the difficulty of synchronizing statistics across multiple
3513 * receive rings. The divisors and thresholds used by this fuction
3514 * were determined based on theoretical maximum wire speed and testing
3515 * data, in order to minimize response time while increasing bulk
3516 * throughput.
3517 * This functionality is controlled by the InterruptThrottleRate module
3518 * parameter (see igb_param.c)
3519 * NOTE: This function is called only when operating in a multiqueue
3520 * receive environment.
047e0030 3521 * @q_vector: pointer to q_vector
6eb5a7f1 3522 **/
047e0030 3523static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3524{
047e0030 3525 int new_val = q_vector->itr_val;
6eb5a7f1 3526 int avg_wire_size = 0;
047e0030 3527 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3528
6eb5a7f1
AD
3529 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3530 * ints/sec - ITR timer value of 120 ticks.
3531 */
3532 if (adapter->link_speed != SPEED_1000) {
047e0030 3533 new_val = 976;
6eb5a7f1 3534 goto set_itr_val;
9d5c8243 3535 }
047e0030
AD
3536
3537 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3538 struct igb_ring *ring = q_vector->rx_ring;
3539 avg_wire_size = ring->total_bytes / ring->total_packets;
3540 }
3541
3542 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3543 struct igb_ring *ring = q_vector->tx_ring;
3544 avg_wire_size = max_t(u32, avg_wire_size,
3545 (ring->total_bytes /
3546 ring->total_packets));
3547 }
3548
3549 /* if avg_wire_size isn't set no work was done */
3550 if (!avg_wire_size)
3551 goto clear_counts;
9d5c8243 3552
6eb5a7f1
AD
3553 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3554 avg_wire_size += 24;
3555
3556 /* Don't starve jumbo frames */
3557 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3558
6eb5a7f1
AD
3559 /* Give a little boost to mid-size frames */
3560 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3561 new_val = avg_wire_size / 3;
3562 else
3563 new_val = avg_wire_size / 2;
9d5c8243 3564
abe1c363
NN
3565 /* when in itr mode 3 do not exceed 20K ints/sec */
3566 if (adapter->rx_itr_setting == 3 && new_val < 196)
3567 new_val = 196;
3568
6eb5a7f1 3569set_itr_val:
047e0030
AD
3570 if (new_val != q_vector->itr_val) {
3571 q_vector->itr_val = new_val;
3572 q_vector->set_itr = 1;
9d5c8243 3573 }
6eb5a7f1 3574clear_counts:
047e0030
AD
3575 if (q_vector->rx_ring) {
3576 q_vector->rx_ring->total_bytes = 0;
3577 q_vector->rx_ring->total_packets = 0;
3578 }
3579 if (q_vector->tx_ring) {
3580 q_vector->tx_ring->total_bytes = 0;
3581 q_vector->tx_ring->total_packets = 0;
3582 }
9d5c8243
AK
3583}
3584
3585/**
3586 * igb_update_itr - update the dynamic ITR value based on statistics
3587 * Stores a new ITR value based on packets and byte
3588 * counts during the last interrupt. The advantage of per interrupt
3589 * computation is faster updates and more accurate ITR for the current
3590 * traffic pattern. Constants in this function were computed
3591 * based on theoretical maximum wire speed and thresholds were set based
3592 * on testing data as well as attempting to minimize response time
3593 * while increasing bulk throughput.
3594 * this functionality is controlled by the InterruptThrottleRate module
3595 * parameter (see igb_param.c)
3596 * NOTE: These calculations are only valid when operating in a single-
3597 * queue environment.
3598 * @adapter: pointer to adapter
047e0030 3599 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3600 * @packets: the number of packets during this measurement interval
3601 * @bytes: the number of bytes during this measurement interval
3602 **/
3603static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3604 int packets, int bytes)
3605{
3606 unsigned int retval = itr_setting;
3607
3608 if (packets == 0)
3609 goto update_itr_done;
3610
3611 switch (itr_setting) {
3612 case lowest_latency:
3613 /* handle TSO and jumbo frames */
3614 if (bytes/packets > 8000)
3615 retval = bulk_latency;
3616 else if ((packets < 5) && (bytes > 512))
3617 retval = low_latency;
3618 break;
3619 case low_latency: /* 50 usec aka 20000 ints/s */
3620 if (bytes > 10000) {
3621 /* this if handles the TSO accounting */
3622 if (bytes/packets > 8000) {
3623 retval = bulk_latency;
3624 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3625 retval = bulk_latency;
3626 } else if ((packets > 35)) {
3627 retval = lowest_latency;
3628 }
3629 } else if (bytes/packets > 2000) {
3630 retval = bulk_latency;
3631 } else if (packets <= 2 && bytes < 512) {
3632 retval = lowest_latency;
3633 }
3634 break;
3635 case bulk_latency: /* 250 usec aka 4000 ints/s */
3636 if (bytes > 25000) {
3637 if (packets > 35)
3638 retval = low_latency;
1e5c3d21 3639 } else if (bytes < 1500) {
9d5c8243
AK
3640 retval = low_latency;
3641 }
3642 break;
3643 }
3644
3645update_itr_done:
3646 return retval;
3647}
3648
6eb5a7f1 3649static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3650{
047e0030 3651 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3652 u16 current_itr;
047e0030 3653 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3654
3655 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3656 if (adapter->link_speed != SPEED_1000) {
3657 current_itr = 0;
3658 new_itr = 4000;
3659 goto set_itr_now;
3660 }
3661
3662 adapter->rx_itr = igb_update_itr(adapter,
3663 adapter->rx_itr,
3025a446
AD
3664 q_vector->rx_ring->total_packets,
3665 q_vector->rx_ring->total_bytes);
9d5c8243 3666
047e0030
AD
3667 adapter->tx_itr = igb_update_itr(adapter,
3668 adapter->tx_itr,
3025a446
AD
3669 q_vector->tx_ring->total_packets,
3670 q_vector->tx_ring->total_bytes);
047e0030 3671 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3672
6eb5a7f1 3673 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3674 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3675 current_itr = low_latency;
3676
9d5c8243
AK
3677 switch (current_itr) {
3678 /* counts and packets in update_itr are dependent on these numbers */
3679 case lowest_latency:
78b1f607 3680 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3681 break;
3682 case low_latency:
78b1f607 3683 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3684 break;
3685 case bulk_latency:
78b1f607 3686 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3687 break;
3688 default:
3689 break;
3690 }
3691
3692set_itr_now:
3025a446
AD
3693 q_vector->rx_ring->total_bytes = 0;
3694 q_vector->rx_ring->total_packets = 0;
3695 q_vector->tx_ring->total_bytes = 0;
3696 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3697
047e0030 3698 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3699 /* this attempts to bias the interrupt rate towards Bulk
3700 * by adding intermediate steps when interrupt rate is
3701 * increasing */
047e0030
AD
3702 new_itr = new_itr > q_vector->itr_val ?
3703 max((new_itr * q_vector->itr_val) /
3704 (new_itr + (q_vector->itr_val >> 2)),
3705 new_itr) :
9d5c8243
AK
3706 new_itr;
3707 /* Don't write the value here; it resets the adapter's
3708 * internal timer, and causes us to delay far longer than
3709 * we should between interrupts. Instead, we write the ITR
3710 * value at the beginning of the next interrupt so the timing
3711 * ends up being correct.
3712 */
047e0030
AD
3713 q_vector->itr_val = new_itr;
3714 q_vector->set_itr = 1;
9d5c8243 3715 }
9d5c8243
AK
3716}
3717
9d5c8243
AK
3718#define IGB_TX_FLAGS_CSUM 0x00000001
3719#define IGB_TX_FLAGS_VLAN 0x00000002
3720#define IGB_TX_FLAGS_TSO 0x00000004
3721#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3722#define IGB_TX_FLAGS_TSTAMP 0x00000010
3723#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3724#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3725
85ad76b2 3726static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3727 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3728{
3729 struct e1000_adv_tx_context_desc *context_desc;
3730 unsigned int i;
3731 int err;
3732 struct igb_buffer *buffer_info;
3733 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3734 u32 mss_l4len_idx;
3735 u8 l4len;
9d5c8243
AK
3736
3737 if (skb_header_cloned(skb)) {
3738 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3739 if (err)
3740 return err;
3741 }
3742
3743 l4len = tcp_hdrlen(skb);
3744 *hdr_len += l4len;
3745
3746 if (skb->protocol == htons(ETH_P_IP)) {
3747 struct iphdr *iph = ip_hdr(skb);
3748 iph->tot_len = 0;
3749 iph->check = 0;
3750 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3751 iph->daddr, 0,
3752 IPPROTO_TCP,
3753 0);
8e1e8a47 3754 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3755 ipv6_hdr(skb)->payload_len = 0;
3756 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3757 &ipv6_hdr(skb)->daddr,
3758 0, IPPROTO_TCP, 0);
3759 }
3760
3761 i = tx_ring->next_to_use;
3762
3763 buffer_info = &tx_ring->buffer_info[i];
3764 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3765 /* VLAN MACLEN IPLEN */
3766 if (tx_flags & IGB_TX_FLAGS_VLAN)
3767 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3768 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3769 *hdr_len += skb_network_offset(skb);
3770 info |= skb_network_header_len(skb);
3771 *hdr_len += skb_network_header_len(skb);
3772 context_desc->vlan_macip_lens = cpu_to_le32(info);
3773
3774 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3775 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3776
3777 if (skb->protocol == htons(ETH_P_IP))
3778 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3779 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3780
3781 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3782
3783 /* MSS L4LEN IDX */
3784 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3785 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3786
73cd78f1 3787 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3788 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3789 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3790
3791 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3792 context_desc->seqnum_seed = 0;
3793
3794 buffer_info->time_stamp = jiffies;
0e014cb1 3795 buffer_info->next_to_watch = i;
9d5c8243
AK
3796 buffer_info->dma = 0;
3797 i++;
3798 if (i == tx_ring->count)
3799 i = 0;
3800
3801 tx_ring->next_to_use = i;
3802
3803 return true;
3804}
3805
85ad76b2
AD
3806static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3807 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3808{
3809 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3810 struct device *dev = tx_ring->dev;
9d5c8243
AK
3811 struct igb_buffer *buffer_info;
3812 u32 info = 0, tu_cmd = 0;
80785298 3813 unsigned int i;
9d5c8243
AK
3814
3815 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3816 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3817 i = tx_ring->next_to_use;
3818 buffer_info = &tx_ring->buffer_info[i];
3819 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3820
3821 if (tx_flags & IGB_TX_FLAGS_VLAN)
3822 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3823
9d5c8243
AK
3824 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3825 if (skb->ip_summed == CHECKSUM_PARTIAL)
3826 info |= skb_network_header_len(skb);
3827
3828 context_desc->vlan_macip_lens = cpu_to_le32(info);
3829
3830 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3831
3832 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3833 __be16 protocol;
3834
3835 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3836 const struct vlan_ethhdr *vhdr =
3837 (const struct vlan_ethhdr*)skb->data;
3838
3839 protocol = vhdr->h_vlan_encapsulated_proto;
3840 } else {
3841 protocol = skb->protocol;
3842 }
3843
3844 switch (protocol) {
09640e63 3845 case cpu_to_be16(ETH_P_IP):
9d5c8243 3846 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3847 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3848 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3849 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3850 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3851 break;
09640e63 3852 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3853 /* XXX what about other V6 headers?? */
3854 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3855 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3856 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3857 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3858 break;
3859 default:
3860 if (unlikely(net_ratelimit()))
59d71989 3861 dev_warn(dev,
44b0cda3
MW
3862 "partial checksum but proto=%x!\n",
3863 skb->protocol);
3864 break;
3865 }
9d5c8243
AK
3866 }
3867
3868 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3869 context_desc->seqnum_seed = 0;
85ad76b2 3870 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3871 context_desc->mss_l4len_idx =
85ad76b2 3872 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3873
3874 buffer_info->time_stamp = jiffies;
0e014cb1 3875 buffer_info->next_to_watch = i;
9d5c8243
AK
3876 buffer_info->dma = 0;
3877
3878 i++;
3879 if (i == tx_ring->count)
3880 i = 0;
3881 tx_ring->next_to_use = i;
3882
3883 return true;
3884 }
9d5c8243
AK
3885 return false;
3886}
3887
3888#define IGB_MAX_TXD_PWR 16
3889#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3890
80785298 3891static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3892 unsigned int first)
9d5c8243
AK
3893{
3894 struct igb_buffer *buffer_info;
59d71989 3895 struct device *dev = tx_ring->dev;
2873957d 3896 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
3897 unsigned int count = 0, i;
3898 unsigned int f;
2873957d 3899 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
3900
3901 i = tx_ring->next_to_use;
3902
3903 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
3904 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3905 buffer_info->length = hlen;
9d5c8243
AK
3906 /* set time_stamp *before* dma to help avoid a possible race */
3907 buffer_info->time_stamp = jiffies;
0e014cb1 3908 buffer_info->next_to_watch = i;
2873957d 3909 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
3910 DMA_TO_DEVICE);
3911 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 3912 goto dma_error;
9d5c8243
AK
3913
3914 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
3915 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3916 unsigned int len = frag->size;
9d5c8243 3917
8581145f 3918 count++;
65689fef
AD
3919 i++;
3920 if (i == tx_ring->count)
3921 i = 0;
3922
9d5c8243
AK
3923 buffer_info = &tx_ring->buffer_info[i];
3924 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3925 buffer_info->length = len;
3926 buffer_info->time_stamp = jiffies;
0e014cb1 3927 buffer_info->next_to_watch = i;
6366ad33 3928 buffer_info->mapped_as_page = true;
59d71989 3929 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
3930 frag->page,
3931 frag->page_offset,
3932 len,
59d71989
AD
3933 DMA_TO_DEVICE);
3934 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
3935 goto dma_error;
3936
9d5c8243
AK
3937 }
3938
9d5c8243 3939 tx_ring->buffer_info[i].skb = skb;
2873957d
NN
3940 tx_ring->buffer_info[i].shtx = skb_shinfo(skb)->tx_flags;
3941 /* multiply data chunks by size of headers */
3942 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3943 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 3944 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3945
cdfd01fc 3946 return ++count;
6366ad33
AD
3947
3948dma_error:
59d71989 3949 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
3950
3951 /* clear timestamp and dma mappings for failed buffer_info mapping */
3952 buffer_info->dma = 0;
3953 buffer_info->time_stamp = 0;
3954 buffer_info->length = 0;
3955 buffer_info->next_to_watch = 0;
3956 buffer_info->mapped_as_page = false;
6366ad33
AD
3957
3958 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
3959 while (count--) {
3960 if (i == 0)
3961 i = tx_ring->count;
6366ad33 3962 i--;
6366ad33
AD
3963 buffer_info = &tx_ring->buffer_info[i];
3964 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3965 }
3966
3967 return 0;
9d5c8243
AK
3968}
3969
85ad76b2 3970static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 3971 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
3972 u8 hdr_len)
3973{
cdfd01fc 3974 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3975 struct igb_buffer *buffer_info;
3976 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3977 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3978
3979 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3980 E1000_ADVTXD_DCMD_DEXT);
3981
3982 if (tx_flags & IGB_TX_FLAGS_VLAN)
3983 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3984
33af6bcc
PO
3985 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3986 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3987
9d5c8243
AK
3988 if (tx_flags & IGB_TX_FLAGS_TSO) {
3989 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3990
3991 /* insert tcp checksum */
3992 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3993
3994 /* insert ip checksum */
3995 if (tx_flags & IGB_TX_FLAGS_IPV4)
3996 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3997
3998 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3999 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4000 }
4001
85ad76b2
AD
4002 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4003 (tx_flags & (IGB_TX_FLAGS_CSUM |
4004 IGB_TX_FLAGS_TSO |
7dfc16fa 4005 IGB_TX_FLAGS_VLAN)))
85ad76b2 4006 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4007
4008 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4009
cdfd01fc 4010 do {
9d5c8243
AK
4011 buffer_info = &tx_ring->buffer_info[i];
4012 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4013 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4014 tx_desc->read.cmd_type_len =
4015 cpu_to_le32(cmd_type_len | buffer_info->length);
4016 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4017 count--;
9d5c8243
AK
4018 i++;
4019 if (i == tx_ring->count)
4020 i = 0;
cdfd01fc 4021 } while (count > 0);
9d5c8243 4022
85ad76b2 4023 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4024 /* Force memory writes to complete before letting h/w
4025 * know there are new descriptors to fetch. (Only
4026 * applicable for weak-ordered memory model archs,
4027 * such as IA-64). */
4028 wmb();
4029
4030 tx_ring->next_to_use = i;
fce99e34 4031 writel(i, tx_ring->tail);
9d5c8243
AK
4032 /* we need this if more than one processor can write to our tail
4033 * at a time, it syncronizes IO on IA64/Altix systems */
4034 mmiowb();
4035}
4036
e694e964 4037static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4038{
e694e964
AD
4039 struct net_device *netdev = tx_ring->netdev;
4040
661086df 4041 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4042
9d5c8243
AK
4043 /* Herbert's original patch had:
4044 * smp_mb__after_netif_stop_queue();
4045 * but since that doesn't exist yet, just open code it. */
4046 smp_mb();
4047
4048 /* We need to check again in a case another CPU has just
4049 * made room available. */
c493ea45 4050 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4051 return -EBUSY;
4052
4053 /* A reprieve! */
661086df 4054 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 4055 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
4056 return 0;
4057}
4058
717ba089 4059static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4060{
c493ea45 4061 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4062 return 0;
e694e964 4063 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4064}
4065
b1a436c3
AD
4066netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4067 struct igb_ring *tx_ring)
9d5c8243 4068{
e694e964 4069 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
cdfd01fc 4070 int tso = 0, count;
91d4ee33
NN
4071 u32 tx_flags = 0;
4072 u16 first;
4073 u8 hdr_len = 0;
c5b9bd5e 4074 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 4075
9d5c8243
AK
4076 /* need: 1 descriptor per page,
4077 * + 2 desc gap to keep tail from touching head,
4078 * + 1 desc for skb->data,
4079 * + 1 desc for context descriptor,
4080 * otherwise try next time */
e694e964 4081 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4082 /* this is a hard error */
9d5c8243
AK
4083 return NETDEV_TX_BUSY;
4084 }
33af6bcc 4085
33af6bcc
PO
4086 if (unlikely(shtx->hardware)) {
4087 shtx->in_progress = 1;
4088 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4089 }
9d5c8243 4090
cdfd01fc 4091 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
4092 tx_flags |= IGB_TX_FLAGS_VLAN;
4093 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4094 }
4095
661086df
PWJ
4096 if (skb->protocol == htons(ETH_P_IP))
4097 tx_flags |= IGB_TX_FLAGS_IPV4;
4098
0e014cb1 4099 first = tx_ring->next_to_use;
85ad76b2
AD
4100 if (skb_is_gso(skb)) {
4101 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4102
85ad76b2
AD
4103 if (tso < 0) {
4104 dev_kfree_skb_any(skb);
4105 return NETDEV_TX_OK;
4106 }
9d5c8243
AK
4107 }
4108
4109 if (tso)
4110 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4111 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4112 (skb->ip_summed == CHECKSUM_PARTIAL))
4113 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4114
65689fef 4115 /*
cdfd01fc 4116 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
4117 * has occured and we need to rewind the descriptor queue
4118 */
80785298 4119 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4120 if (!count) {
65689fef
AD
4121 dev_kfree_skb_any(skb);
4122 tx_ring->buffer_info[first].time_stamp = 0;
4123 tx_ring->next_to_use = first;
85ad76b2 4124 return NETDEV_TX_OK;
65689fef 4125 }
9d5c8243 4126
85ad76b2
AD
4127 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4128
4129 /* Make sure there is space in the ring for the next send. */
e694e964 4130 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4131
9d5c8243
AK
4132 return NETDEV_TX_OK;
4133}
4134
3b29a56d
SH
4135static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4136 struct net_device *netdev)
9d5c8243
AK
4137{
4138 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4139 struct igb_ring *tx_ring;
661086df 4140 int r_idx = 0;
b1a436c3
AD
4141
4142 if (test_bit(__IGB_DOWN, &adapter->state)) {
4143 dev_kfree_skb_any(skb);
4144 return NETDEV_TX_OK;
4145 }
4146
4147 if (skb->len <= 0) {
4148 dev_kfree_skb_any(skb);
4149 return NETDEV_TX_OK;
4150 }
4151
1bfaf07b 4152 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4153 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4154
4155 /* This goes back to the question of how to logically map a tx queue
4156 * to a flow. Right now, performance is impacted slightly negatively
4157 * if using multiple tx queues. If the stack breaks away from a
4158 * single qdisc implementation, we can look at this again. */
e694e964 4159 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4160}
4161
4162/**
4163 * igb_tx_timeout - Respond to a Tx Hang
4164 * @netdev: network interface device structure
4165 **/
4166static void igb_tx_timeout(struct net_device *netdev)
4167{
4168 struct igb_adapter *adapter = netdev_priv(netdev);
4169 struct e1000_hw *hw = &adapter->hw;
4170
4171 /* Do the reset outside of interrupt context */
4172 adapter->tx_timeout_count++;
f7ba205e 4173
55cac248
AD
4174 if (hw->mac.type == e1000_82580)
4175 hw->dev_spec._82575.global_device_reset = true;
4176
9d5c8243 4177 schedule_work(&adapter->reset_task);
265de409
AD
4178 wr32(E1000_EICS,
4179 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4180}
4181
4182static void igb_reset_task(struct work_struct *work)
4183{
4184 struct igb_adapter *adapter;
4185 adapter = container_of(work, struct igb_adapter, reset_task);
4186
c97ec42a
TI
4187 igb_dump(adapter);
4188 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4189 igb_reinit_locked(adapter);
4190}
4191
4192/**
4193 * igb_get_stats - Get System Network Statistics
4194 * @netdev: network interface device structure
4195 *
4196 * Returns the address of the device statistics structure.
4197 * The statistics are actually updated from the timer callback.
4198 **/
73cd78f1 4199static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 4200{
9d5c8243 4201 /* only return the current stats */
8d24e933 4202 return &netdev->stats;
9d5c8243
AK
4203}
4204
4205/**
4206 * igb_change_mtu - Change the Maximum Transfer Unit
4207 * @netdev: network interface device structure
4208 * @new_mtu: new value for maximum frame size
4209 *
4210 * Returns 0 on success, negative on failure
4211 **/
4212static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4213{
4214 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4215 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4216 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4217 u32 rx_buffer_len, i;
9d5c8243 4218
c809d227 4219 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4220 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4221 return -EINVAL;
4222 }
4223
9d5c8243 4224 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4225 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4226 return -EINVAL;
4227 }
4228
4229 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4230 msleep(1);
73cd78f1 4231
9d5c8243
AK
4232 /* igb_down has a dependency on max_frame_size */
4233 adapter->max_frame_size = max_frame;
559e9c49 4234
9d5c8243
AK
4235 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4236 * means we reserve 2 more, this pushes us to allocate from the next
4237 * larger slab size.
4238 * i.e. RXBUFFER_2048 --> size-4096 slab
4239 */
4240
757b77e2
NN
4241 if (adapter->hw.mac.type == e1000_82580)
4242 max_frame += IGB_TS_HDR_LEN;
4243
7d95b717 4244 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4245 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4246 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4247 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4248 else
4c844851
AD
4249 rx_buffer_len = IGB_RXBUFFER_128;
4250
757b77e2
NN
4251 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4252 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4253 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4254
4255 if ((adapter->hw.mac.type == e1000_82580) &&
4256 (rx_buffer_len == IGB_RXBUFFER_128))
4257 rx_buffer_len += IGB_RXBUFFER_64;
4258
4c844851
AD
4259 if (netif_running(netdev))
4260 igb_down(adapter);
9d5c8243 4261
090b1795 4262 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4263 netdev->mtu, new_mtu);
4264 netdev->mtu = new_mtu;
4265
4c844851 4266 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4267 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4268
9d5c8243
AK
4269 if (netif_running(netdev))
4270 igb_up(adapter);
4271 else
4272 igb_reset(adapter);
4273
4274 clear_bit(__IGB_RESETTING, &adapter->state);
4275
4276 return 0;
4277}
4278
4279/**
4280 * igb_update_stats - Update the board statistics counters
4281 * @adapter: board private structure
4282 **/
4283
4284void igb_update_stats(struct igb_adapter *adapter)
4285{
128e45eb 4286 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
9d5c8243
AK
4287 struct e1000_hw *hw = &adapter->hw;
4288 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4289 u32 reg, mpc;
9d5c8243 4290 u16 phy_tmp;
3f9c0164
AD
4291 int i;
4292 u64 bytes, packets;
9d5c8243
AK
4293
4294#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4295
4296 /*
4297 * Prevent stats update while adapter is being reset, or if the pci
4298 * connection is down.
4299 */
4300 if (adapter->link_speed == 0)
4301 return;
4302 if (pci_channel_offline(pdev))
4303 return;
4304
3f9c0164
AD
4305 bytes = 0;
4306 packets = 0;
4307 for (i = 0; i < adapter->num_rx_queues; i++) {
4308 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446
AD
4309 struct igb_ring *ring = adapter->rx_ring[i];
4310 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4311 net_stats->rx_fifo_errors += rqdpc_tmp;
3025a446
AD
4312 bytes += ring->rx_stats.bytes;
4313 packets += ring->rx_stats.packets;
3f9c0164
AD
4314 }
4315
128e45eb
AD
4316 net_stats->rx_bytes = bytes;
4317 net_stats->rx_packets = packets;
3f9c0164
AD
4318
4319 bytes = 0;
4320 packets = 0;
4321 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
4322 struct igb_ring *ring = adapter->tx_ring[i];
4323 bytes += ring->tx_stats.bytes;
4324 packets += ring->tx_stats.packets;
3f9c0164 4325 }
128e45eb
AD
4326 net_stats->tx_bytes = bytes;
4327 net_stats->tx_packets = packets;
3f9c0164
AD
4328
4329 /* read stats registers */
9d5c8243
AK
4330 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4331 adapter->stats.gprc += rd32(E1000_GPRC);
4332 adapter->stats.gorc += rd32(E1000_GORCL);
4333 rd32(E1000_GORCH); /* clear GORCL */
4334 adapter->stats.bprc += rd32(E1000_BPRC);
4335 adapter->stats.mprc += rd32(E1000_MPRC);
4336 adapter->stats.roc += rd32(E1000_ROC);
4337
4338 adapter->stats.prc64 += rd32(E1000_PRC64);
4339 adapter->stats.prc127 += rd32(E1000_PRC127);
4340 adapter->stats.prc255 += rd32(E1000_PRC255);
4341 adapter->stats.prc511 += rd32(E1000_PRC511);
4342 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4343 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4344 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4345 adapter->stats.sec += rd32(E1000_SEC);
4346
fa3d9a6d
MW
4347 mpc = rd32(E1000_MPC);
4348 adapter->stats.mpc += mpc;
4349 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4350 adapter->stats.scc += rd32(E1000_SCC);
4351 adapter->stats.ecol += rd32(E1000_ECOL);
4352 adapter->stats.mcc += rd32(E1000_MCC);
4353 adapter->stats.latecol += rd32(E1000_LATECOL);
4354 adapter->stats.dc += rd32(E1000_DC);
4355 adapter->stats.rlec += rd32(E1000_RLEC);
4356 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4357 adapter->stats.xontxc += rd32(E1000_XONTXC);
4358 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4359 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4360 adapter->stats.fcruc += rd32(E1000_FCRUC);
4361 adapter->stats.gptc += rd32(E1000_GPTC);
4362 adapter->stats.gotc += rd32(E1000_GOTCL);
4363 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4364 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4365 adapter->stats.ruc += rd32(E1000_RUC);
4366 adapter->stats.rfc += rd32(E1000_RFC);
4367 adapter->stats.rjc += rd32(E1000_RJC);
4368 adapter->stats.tor += rd32(E1000_TORH);
4369 adapter->stats.tot += rd32(E1000_TOTH);
4370 adapter->stats.tpr += rd32(E1000_TPR);
4371
4372 adapter->stats.ptc64 += rd32(E1000_PTC64);
4373 adapter->stats.ptc127 += rd32(E1000_PTC127);
4374 adapter->stats.ptc255 += rd32(E1000_PTC255);
4375 adapter->stats.ptc511 += rd32(E1000_PTC511);
4376 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4377 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4378
4379 adapter->stats.mptc += rd32(E1000_MPTC);
4380 adapter->stats.bptc += rd32(E1000_BPTC);
4381
2d0b0f69
NN
4382 adapter->stats.tpt += rd32(E1000_TPT);
4383 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4384
4385 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4386 /* read internal phy specific stats */
4387 reg = rd32(E1000_CTRL_EXT);
4388 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4389 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4390 adapter->stats.tncrs += rd32(E1000_TNCRS);
4391 }
4392
9d5c8243
AK
4393 adapter->stats.tsctc += rd32(E1000_TSCTC);
4394 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4395
4396 adapter->stats.iac += rd32(E1000_IAC);
4397 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4398 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4399 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4400 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4401 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4402 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4403 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4404 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4405
4406 /* Fill out the OS statistics structure */
128e45eb
AD
4407 net_stats->multicast = adapter->stats.mprc;
4408 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4409
4410 /* Rx Errors */
4411
4412 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4413 * our own version based on RUC and ROC */
128e45eb 4414 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4415 adapter->stats.crcerrs + adapter->stats.algnerrc +
4416 adapter->stats.ruc + adapter->stats.roc +
4417 adapter->stats.cexterr;
128e45eb
AD
4418 net_stats->rx_length_errors = adapter->stats.ruc +
4419 adapter->stats.roc;
4420 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4421 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4422 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4423
4424 /* Tx Errors */
128e45eb
AD
4425 net_stats->tx_errors = adapter->stats.ecol +
4426 adapter->stats.latecol;
4427 net_stats->tx_aborted_errors = adapter->stats.ecol;
4428 net_stats->tx_window_errors = adapter->stats.latecol;
4429 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4430
4431 /* Tx Dropped needs to be maintained elsewhere */
4432
4433 /* Phy Stats */
4434 if (hw->phy.media_type == e1000_media_type_copper) {
4435 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4436 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4437 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4438 adapter->phy_stats.idle_errors += phy_tmp;
4439 }
4440 }
4441
4442 /* Management Stats */
4443 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4444 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4445 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4446}
4447
9d5c8243
AK
4448static irqreturn_t igb_msix_other(int irq, void *data)
4449{
047e0030 4450 struct igb_adapter *adapter = data;
9d5c8243 4451 struct e1000_hw *hw = &adapter->hw;
844290e5 4452 u32 icr = rd32(E1000_ICR);
844290e5 4453 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4454
7f081d40
AD
4455 if (icr & E1000_ICR_DRSTA)
4456 schedule_work(&adapter->reset_task);
4457
047e0030 4458 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4459 /* HW is reporting DMA is out of sync */
4460 adapter->stats.doosync++;
4461 }
eebbbdba 4462
4ae196df
AD
4463 /* Check for a mailbox event */
4464 if (icr & E1000_ICR_VMMB)
4465 igb_msg_task(adapter);
4466
4467 if (icr & E1000_ICR_LSC) {
4468 hw->mac.get_link_status = 1;
4469 /* guard against interrupt when we're going down */
4470 if (!test_bit(__IGB_DOWN, &adapter->state))
4471 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4472 }
4473
25568a53
AD
4474 if (adapter->vfs_allocated_count)
4475 wr32(E1000_IMS, E1000_IMS_LSC |
4476 E1000_IMS_VMMB |
4477 E1000_IMS_DOUTSYNC);
4478 else
4479 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4480 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4481
4482 return IRQ_HANDLED;
4483}
4484
047e0030 4485static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4486{
26b39276 4487 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4488 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4489
047e0030
AD
4490 if (!q_vector->set_itr)
4491 return;
73cd78f1 4492
047e0030
AD
4493 if (!itr_val)
4494 itr_val = 0x4;
661086df 4495
26b39276
AD
4496 if (adapter->hw.mac.type == e1000_82575)
4497 itr_val |= itr_val << 16;
661086df 4498 else
047e0030 4499 itr_val |= 0x8000000;
661086df 4500
047e0030
AD
4501 writel(itr_val, q_vector->itr_register);
4502 q_vector->set_itr = 0;
6eb5a7f1
AD
4503}
4504
047e0030 4505static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4506{
047e0030 4507 struct igb_q_vector *q_vector = data;
9d5c8243 4508
047e0030
AD
4509 /* Write the ITR value calculated from the previous interrupt. */
4510 igb_write_itr(q_vector);
9d5c8243 4511
047e0030 4512 napi_schedule(&q_vector->napi);
844290e5 4513
047e0030 4514 return IRQ_HANDLED;
fe4506b6
JC
4515}
4516
421e02f0 4517#ifdef CONFIG_IGB_DCA
047e0030 4518static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4519{
047e0030 4520 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4521 struct e1000_hw *hw = &adapter->hw;
4522 int cpu = get_cpu();
fe4506b6 4523
047e0030
AD
4524 if (q_vector->cpu == cpu)
4525 goto out_no_update;
4526
4527 if (q_vector->tx_ring) {
4528 int q = q_vector->tx_ring->reg_idx;
4529 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4530 if (hw->mac.type == e1000_82575) {
4531 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4532 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4533 } else {
047e0030
AD
4534 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4535 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4536 E1000_DCA_TXCTRL_CPUID_SHIFT;
4537 }
4538 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4539 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4540 }
4541 if (q_vector->rx_ring) {
4542 int q = q_vector->rx_ring->reg_idx;
4543 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4544 if (hw->mac.type == e1000_82575) {
2d064c06 4545 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4546 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4547 } else {
4548 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4549 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4550 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4551 }
fe4506b6
JC
4552 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4553 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4554 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4555 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4556 }
047e0030
AD
4557 q_vector->cpu = cpu;
4558out_no_update:
fe4506b6
JC
4559 put_cpu();
4560}
4561
4562static void igb_setup_dca(struct igb_adapter *adapter)
4563{
7e0e99ef 4564 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4565 int i;
4566
7dfc16fa 4567 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4568 return;
4569
7e0e99ef
AD
4570 /* Always use CB2 mode, difference is masked in the CB driver. */
4571 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4572
047e0030 4573 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4574 adapter->q_vector[i]->cpu = -1;
4575 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4576 }
4577}
4578
4579static int __igb_notify_dca(struct device *dev, void *data)
4580{
4581 struct net_device *netdev = dev_get_drvdata(dev);
4582 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4583 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4584 struct e1000_hw *hw = &adapter->hw;
4585 unsigned long event = *(unsigned long *)data;
4586
4587 switch (event) {
4588 case DCA_PROVIDER_ADD:
4589 /* if already enabled, don't do it again */
7dfc16fa 4590 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4591 break;
fe4506b6 4592 if (dca_add_requester(dev) == 0) {
bbd98fe4 4593 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4594 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4595 igb_setup_dca(adapter);
4596 break;
4597 }
4598 /* Fall Through since DCA is disabled. */
4599 case DCA_PROVIDER_REMOVE:
7dfc16fa 4600 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4601 /* without this a class_device is left
047e0030 4602 * hanging around in the sysfs model */
fe4506b6 4603 dca_remove_requester(dev);
090b1795 4604 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4605 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4606 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4607 }
4608 break;
4609 }
bbd98fe4 4610
fe4506b6 4611 return 0;
9d5c8243
AK
4612}
4613
fe4506b6
JC
4614static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4615 void *p)
4616{
4617 int ret_val;
4618
4619 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4620 __igb_notify_dca);
4621
4622 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4623}
421e02f0 4624#endif /* CONFIG_IGB_DCA */
9d5c8243 4625
4ae196df
AD
4626static void igb_ping_all_vfs(struct igb_adapter *adapter)
4627{
4628 struct e1000_hw *hw = &adapter->hw;
4629 u32 ping;
4630 int i;
4631
4632 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4633 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4634 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4635 ping |= E1000_VT_MSGTYPE_CTS;
4636 igb_write_mbx(hw, &ping, 1, i);
4637 }
4638}
4639
7d5753f0
AD
4640static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4641{
4642 struct e1000_hw *hw = &adapter->hw;
4643 u32 vmolr = rd32(E1000_VMOLR(vf));
4644 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4645
4646 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4647 IGB_VF_FLAG_MULTI_PROMISC);
4648 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4649
4650 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4651 vmolr |= E1000_VMOLR_MPME;
4652 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4653 } else {
4654 /*
4655 * if we have hashes and we are clearing a multicast promisc
4656 * flag we need to write the hashes to the MTA as this step
4657 * was previously skipped
4658 */
4659 if (vf_data->num_vf_mc_hashes > 30) {
4660 vmolr |= E1000_VMOLR_MPME;
4661 } else if (vf_data->num_vf_mc_hashes) {
4662 int j;
4663 vmolr |= E1000_VMOLR_ROMPE;
4664 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4665 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4666 }
4667 }
4668
4669 wr32(E1000_VMOLR(vf), vmolr);
4670
4671 /* there are flags left unprocessed, likely not supported */
4672 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4673 return -EINVAL;
4674
4675 return 0;
4676
4677}
4678
4ae196df
AD
4679static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4680 u32 *msgbuf, u32 vf)
4681{
4682 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4683 u16 *hash_list = (u16 *)&msgbuf[1];
4684 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4685 int i;
4686
7d5753f0 4687 /* salt away the number of multicast addresses assigned
4ae196df
AD
4688 * to this VF for later use to restore when the PF multi cast
4689 * list changes
4690 */
4691 vf_data->num_vf_mc_hashes = n;
4692
7d5753f0
AD
4693 /* only up to 30 hash values supported */
4694 if (n > 30)
4695 n = 30;
4696
4697 /* store the hashes for later use */
4ae196df 4698 for (i = 0; i < n; i++)
a419aef8 4699 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4700
4701 /* Flush and reset the mta with the new values */
ff41f8dc 4702 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4703
4704 return 0;
4705}
4706
4707static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4708{
4709 struct e1000_hw *hw = &adapter->hw;
4710 struct vf_data_storage *vf_data;
4711 int i, j;
4712
4713 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4714 u32 vmolr = rd32(E1000_VMOLR(i));
4715 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4716
4ae196df 4717 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4718
4719 if ((vf_data->num_vf_mc_hashes > 30) ||
4720 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4721 vmolr |= E1000_VMOLR_MPME;
4722 } else if (vf_data->num_vf_mc_hashes) {
4723 vmolr |= E1000_VMOLR_ROMPE;
4724 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4725 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4726 }
4727 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4728 }
4729}
4730
4731static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4732{
4733 struct e1000_hw *hw = &adapter->hw;
4734 u32 pool_mask, reg, vid;
4735 int i;
4736
4737 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4738
4739 /* Find the vlan filter for this id */
4740 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4741 reg = rd32(E1000_VLVF(i));
4742
4743 /* remove the vf from the pool */
4744 reg &= ~pool_mask;
4745
4746 /* if pool is empty then remove entry from vfta */
4747 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4748 (reg & E1000_VLVF_VLANID_ENABLE)) {
4749 reg = 0;
4750 vid = reg & E1000_VLVF_VLANID_MASK;
4751 igb_vfta_set(hw, vid, false);
4752 }
4753
4754 wr32(E1000_VLVF(i), reg);
4755 }
ae641bdc
AD
4756
4757 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4758}
4759
4760static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4761{
4762 struct e1000_hw *hw = &adapter->hw;
4763 u32 reg, i;
4764
51466239
AD
4765 /* The vlvf table only exists on 82576 hardware and newer */
4766 if (hw->mac.type < e1000_82576)
4767 return -1;
4768
4769 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4770 if (!adapter->vfs_allocated_count)
4771 return -1;
4772
4773 /* Find the vlan filter for this id */
4774 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4775 reg = rd32(E1000_VLVF(i));
4776 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4777 vid == (reg & E1000_VLVF_VLANID_MASK))
4778 break;
4779 }
4780
4781 if (add) {
4782 if (i == E1000_VLVF_ARRAY_SIZE) {
4783 /* Did not find a matching VLAN ID entry that was
4784 * enabled. Search for a free filter entry, i.e.
4785 * one without the enable bit set
4786 */
4787 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4788 reg = rd32(E1000_VLVF(i));
4789 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4790 break;
4791 }
4792 }
4793 if (i < E1000_VLVF_ARRAY_SIZE) {
4794 /* Found an enabled/available entry */
4795 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4796
4797 /* if !enabled we need to set this up in vfta */
4798 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4799 /* add VID to filter table */
4800 igb_vfta_set(hw, vid, true);
4ae196df
AD
4801 reg |= E1000_VLVF_VLANID_ENABLE;
4802 }
cad6d05f
AD
4803 reg &= ~E1000_VLVF_VLANID_MASK;
4804 reg |= vid;
4ae196df 4805 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4806
4807 /* do not modify RLPML for PF devices */
4808 if (vf >= adapter->vfs_allocated_count)
4809 return 0;
4810
4811 if (!adapter->vf_data[vf].vlans_enabled) {
4812 u32 size;
4813 reg = rd32(E1000_VMOLR(vf));
4814 size = reg & E1000_VMOLR_RLPML_MASK;
4815 size += 4;
4816 reg &= ~E1000_VMOLR_RLPML_MASK;
4817 reg |= size;
4818 wr32(E1000_VMOLR(vf), reg);
4819 }
ae641bdc 4820
51466239 4821 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4822 return 0;
4823 }
4824 } else {
4825 if (i < E1000_VLVF_ARRAY_SIZE) {
4826 /* remove vf from the pool */
4827 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4828 /* if pool is empty then remove entry from vfta */
4829 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4830 reg = 0;
4831 igb_vfta_set(hw, vid, false);
4832 }
4833 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4834
4835 /* do not modify RLPML for PF devices */
4836 if (vf >= adapter->vfs_allocated_count)
4837 return 0;
4838
4839 adapter->vf_data[vf].vlans_enabled--;
4840 if (!adapter->vf_data[vf].vlans_enabled) {
4841 u32 size;
4842 reg = rd32(E1000_VMOLR(vf));
4843 size = reg & E1000_VMOLR_RLPML_MASK;
4844 size -= 4;
4845 reg &= ~E1000_VMOLR_RLPML_MASK;
4846 reg |= size;
4847 wr32(E1000_VMOLR(vf), reg);
4848 }
4ae196df
AD
4849 }
4850 }
8151d294
WM
4851 return 0;
4852}
4853
4854static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4855{
4856 struct e1000_hw *hw = &adapter->hw;
4857
4858 if (vid)
4859 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4860 else
4861 wr32(E1000_VMVIR(vf), 0);
4862}
4863
4864static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4865 int vf, u16 vlan, u8 qos)
4866{
4867 int err = 0;
4868 struct igb_adapter *adapter = netdev_priv(netdev);
4869
4870 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4871 return -EINVAL;
4872 if (vlan || qos) {
4873 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4874 if (err)
4875 goto out;
4876 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4877 igb_set_vmolr(adapter, vf, !vlan);
4878 adapter->vf_data[vf].pf_vlan = vlan;
4879 adapter->vf_data[vf].pf_qos = qos;
4880 dev_info(&adapter->pdev->dev,
4881 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4882 if (test_bit(__IGB_DOWN, &adapter->state)) {
4883 dev_warn(&adapter->pdev->dev,
4884 "The VF VLAN has been set,"
4885 " but the PF device is not up.\n");
4886 dev_warn(&adapter->pdev->dev,
4887 "Bring the PF device up before"
4888 " attempting to use the VF device.\n");
4889 }
4890 } else {
4891 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4892 false, vf);
4893 igb_set_vmvir(adapter, vlan, vf);
4894 igb_set_vmolr(adapter, vf, true);
4895 adapter->vf_data[vf].pf_vlan = 0;
4896 adapter->vf_data[vf].pf_qos = 0;
4897 }
4898out:
4899 return err;
4ae196df
AD
4900}
4901
4902static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4903{
4904 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4905 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4906
4907 return igb_vlvf_set(adapter, vid, add, vf);
4908}
4909
f2ca0dbe 4910static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4911{
8151d294
WM
4912 /* clear flags */
4913 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
f2ca0dbe 4914 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4915
4916 /* reset offloads to defaults */
8151d294 4917 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
4918
4919 /* reset vlans for device */
4920 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
4921 if (adapter->vf_data[vf].pf_vlan)
4922 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4923 adapter->vf_data[vf].pf_vlan,
4924 adapter->vf_data[vf].pf_qos);
4925 else
4926 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
4927
4928 /* reset multicast table array for vf */
4929 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4930
4931 /* Flush and reset the mta with the new values */
ff41f8dc 4932 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4933}
4934
f2ca0dbe
AD
4935static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4936{
4937 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4938
4939 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
4940 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4941 random_ether_addr(vf_mac);
f2ca0dbe
AD
4942
4943 /* process remaining reset events */
4944 igb_vf_reset(adapter, vf);
4945}
4946
4947static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4948{
4949 struct e1000_hw *hw = &adapter->hw;
4950 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4951 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4952 u32 reg, msgbuf[3];
4953 u8 *addr = (u8 *)(&msgbuf[1]);
4954
4955 /* process all the same items cleared in a function level reset */
f2ca0dbe 4956 igb_vf_reset(adapter, vf);
4ae196df
AD
4957
4958 /* set vf mac address */
26ad9178 4959 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4960
4961 /* enable transmit and receive for vf */
4962 reg = rd32(E1000_VFTE);
4963 wr32(E1000_VFTE, reg | (1 << vf));
4964 reg = rd32(E1000_VFRE);
4965 wr32(E1000_VFRE, reg | (1 << vf));
4966
f2ca0dbe 4967 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4968
4969 /* reply to reset with ack and vf mac address */
4970 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4971 memcpy(addr, vf_mac, 6);
4972 igb_write_mbx(hw, msgbuf, 3, vf);
4973}
4974
4975static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4976{
f2ca0dbe
AD
4977 unsigned char *addr = (char *)&msg[1];
4978 int err = -1;
4ae196df 4979
f2ca0dbe
AD
4980 if (is_valid_ether_addr(addr))
4981 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4982
f2ca0dbe 4983 return err;
4ae196df
AD
4984}
4985
4986static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4987{
4988 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4989 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4990 u32 msg = E1000_VT_MSGTYPE_NACK;
4991
4992 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4993 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4994 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4995 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4996 vf_data->last_nack = jiffies;
4ae196df
AD
4997 }
4998}
4999
f2ca0dbe 5000static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5001{
f2ca0dbe
AD
5002 struct pci_dev *pdev = adapter->pdev;
5003 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5004 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5005 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5006 s32 retval;
5007
f2ca0dbe 5008 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5009
fef45f4c
AD
5010 if (retval) {
5011 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5012 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5013 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5014 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5015 return;
5016 goto out;
5017 }
4ae196df
AD
5018
5019 /* this is a message we already processed, do nothing */
5020 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5021 return;
4ae196df
AD
5022
5023 /*
5024 * until the vf completes a reset it should not be
5025 * allowed to start any configuration.
5026 */
5027
5028 if (msgbuf[0] == E1000_VF_RESET) {
5029 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5030 return;
4ae196df
AD
5031 }
5032
f2ca0dbe 5033 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5034 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5035 return;
5036 retval = -1;
5037 goto out;
4ae196df
AD
5038 }
5039
5040 switch ((msgbuf[0] & 0xFFFF)) {
5041 case E1000_VF_SET_MAC_ADDR:
5042 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5043 break;
7d5753f0
AD
5044 case E1000_VF_SET_PROMISC:
5045 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5046 break;
4ae196df
AD
5047 case E1000_VF_SET_MULTICAST:
5048 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5049 break;
5050 case E1000_VF_SET_LPE:
5051 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5052 break;
5053 case E1000_VF_SET_VLAN:
8151d294
WM
5054 if (adapter->vf_data[vf].pf_vlan)
5055 retval = -1;
5056 else
5057 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5058 break;
5059 default:
090b1795 5060 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5061 retval = -1;
5062 break;
5063 }
5064
fef45f4c
AD
5065 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5066out:
4ae196df
AD
5067 /* notify the VF of the results of what it sent us */
5068 if (retval)
5069 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5070 else
5071 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5072
4ae196df 5073 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5074}
4ae196df 5075
f2ca0dbe
AD
5076static void igb_msg_task(struct igb_adapter *adapter)
5077{
5078 struct e1000_hw *hw = &adapter->hw;
5079 u32 vf;
5080
5081 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5082 /* process any reset requests */
5083 if (!igb_check_for_rst(hw, vf))
5084 igb_vf_reset_event(adapter, vf);
5085
5086 /* process any messages pending */
5087 if (!igb_check_for_msg(hw, vf))
5088 igb_rcv_msg_from_vf(adapter, vf);
5089
5090 /* process any acks */
5091 if (!igb_check_for_ack(hw, vf))
5092 igb_rcv_ack_from_vf(adapter, vf);
5093 }
4ae196df
AD
5094}
5095
68d480c4
AD
5096/**
5097 * igb_set_uta - Set unicast filter table address
5098 * @adapter: board private structure
5099 *
5100 * The unicast table address is a register array of 32-bit registers.
5101 * The table is meant to be used in a way similar to how the MTA is used
5102 * however due to certain limitations in the hardware it is necessary to
5103 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5104 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5105 **/
5106static void igb_set_uta(struct igb_adapter *adapter)
5107{
5108 struct e1000_hw *hw = &adapter->hw;
5109 int i;
5110
5111 /* The UTA table only exists on 82576 hardware and newer */
5112 if (hw->mac.type < e1000_82576)
5113 return;
5114
5115 /* we only need to do this if VMDq is enabled */
5116 if (!adapter->vfs_allocated_count)
5117 return;
5118
5119 for (i = 0; i < hw->mac.uta_reg_count; i++)
5120 array_wr32(E1000_UTA, i, ~0);
5121}
5122
9d5c8243
AK
5123/**
5124 * igb_intr_msi - Interrupt Handler
5125 * @irq: interrupt number
5126 * @data: pointer to a network interface device structure
5127 **/
5128static irqreturn_t igb_intr_msi(int irq, void *data)
5129{
047e0030
AD
5130 struct igb_adapter *adapter = data;
5131 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5132 struct e1000_hw *hw = &adapter->hw;
5133 /* read ICR disables interrupts using IAM */
5134 u32 icr = rd32(E1000_ICR);
5135
047e0030 5136 igb_write_itr(q_vector);
9d5c8243 5137
7f081d40
AD
5138 if (icr & E1000_ICR_DRSTA)
5139 schedule_work(&adapter->reset_task);
5140
047e0030 5141 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5142 /* HW is reporting DMA is out of sync */
5143 adapter->stats.doosync++;
5144 }
5145
9d5c8243
AK
5146 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5147 hw->mac.get_link_status = 1;
5148 if (!test_bit(__IGB_DOWN, &adapter->state))
5149 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5150 }
5151
047e0030 5152 napi_schedule(&q_vector->napi);
9d5c8243
AK
5153
5154 return IRQ_HANDLED;
5155}
5156
5157/**
4a3c6433 5158 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5159 * @irq: interrupt number
5160 * @data: pointer to a network interface device structure
5161 **/
5162static irqreturn_t igb_intr(int irq, void *data)
5163{
047e0030
AD
5164 struct igb_adapter *adapter = data;
5165 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5166 struct e1000_hw *hw = &adapter->hw;
5167 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5168 * need for the IMC write */
5169 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5170 if (!icr)
5171 return IRQ_NONE; /* Not our interrupt */
5172
047e0030 5173 igb_write_itr(q_vector);
9d5c8243
AK
5174
5175 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5176 * not set, then the adapter didn't send an interrupt */
5177 if (!(icr & E1000_ICR_INT_ASSERTED))
5178 return IRQ_NONE;
5179
7f081d40
AD
5180 if (icr & E1000_ICR_DRSTA)
5181 schedule_work(&adapter->reset_task);
5182
047e0030 5183 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5184 /* HW is reporting DMA is out of sync */
5185 adapter->stats.doosync++;
5186 }
5187
9d5c8243
AK
5188 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5189 hw->mac.get_link_status = 1;
5190 /* guard against interrupt when we're going down */
5191 if (!test_bit(__IGB_DOWN, &adapter->state))
5192 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5193 }
5194
047e0030 5195 napi_schedule(&q_vector->napi);
9d5c8243
AK
5196
5197 return IRQ_HANDLED;
5198}
5199
047e0030 5200static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5201{
047e0030 5202 struct igb_adapter *adapter = q_vector->adapter;
46544258 5203 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5204
4fc82adf
AD
5205 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5206 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5207 if (!adapter->msix_entries)
6eb5a7f1 5208 igb_set_itr(adapter);
46544258 5209 else
047e0030 5210 igb_update_ring_itr(q_vector);
9d5c8243
AK
5211 }
5212
46544258
AD
5213 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5214 if (adapter->msix_entries)
047e0030 5215 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5216 else
5217 igb_irq_enable(adapter);
5218 }
9d5c8243
AK
5219}
5220
46544258
AD
5221/**
5222 * igb_poll - NAPI Rx polling callback
5223 * @napi: napi polling structure
5224 * @budget: count of how many packets we should handle
5225 **/
5226static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5227{
047e0030
AD
5228 struct igb_q_vector *q_vector = container_of(napi,
5229 struct igb_q_vector,
5230 napi);
5231 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5232
421e02f0 5233#ifdef CONFIG_IGB_DCA
047e0030
AD
5234 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5235 igb_update_dca(q_vector);
fe4506b6 5236#endif
047e0030
AD
5237 if (q_vector->tx_ring)
5238 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5239
047e0030
AD
5240 if (q_vector->rx_ring)
5241 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5242
5243 if (!tx_clean_complete)
5244 work_done = budget;
46544258 5245
9d5c8243 5246 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5247 if (work_done < budget) {
288379f0 5248 napi_complete(napi);
047e0030 5249 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5250 }
5251
46544258 5252 return work_done;
9d5c8243 5253}
6d8126f9 5254
33af6bcc 5255/**
c5b9bd5e 5256 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5257 * @adapter: board private structure
c5b9bd5e
AD
5258 * @shhwtstamps: timestamp structure to update
5259 * @regval: unsigned 64bit system time value.
5260 *
5261 * We need to convert the system time value stored in the RX/TXSTMP registers
5262 * into a hwtstamp which can be used by the upper level timestamping functions
5263 */
5264static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5265 struct skb_shared_hwtstamps *shhwtstamps,
5266 u64 regval)
5267{
5268 u64 ns;
5269
55cac248
AD
5270 /*
5271 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5272 * 24 to match clock shift we setup earlier.
5273 */
5274 if (adapter->hw.mac.type == e1000_82580)
5275 regval <<= IGB_82580_TSYNC_SHIFT;
5276
c5b9bd5e
AD
5277 ns = timecounter_cyc2time(&adapter->clock, regval);
5278 timecompare_update(&adapter->compare, ns);
5279 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5280 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5281 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5282}
5283
5284/**
5285 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5286 * @q_vector: pointer to q_vector containing needed info
2873957d 5287 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5288 *
5289 * If we were asked to do hardware stamping and such a time stamp is
5290 * available, then it must have been for this skb here because we only
5291 * allow only one such packet into the queue.
5292 */
2873957d 5293static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5294{
c5b9bd5e 5295 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5296 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5297 struct skb_shared_hwtstamps shhwtstamps;
5298 u64 regval;
33af6bcc 5299
c5b9bd5e 5300 /* if skb does not support hw timestamp or TX stamp not valid exit */
2873957d 5301 if (likely(!buffer_info->shtx.hardware) ||
c5b9bd5e
AD
5302 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5303 return;
5304
5305 regval = rd32(E1000_TXSTMPL);
5306 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5307
5308 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5309 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5310}
5311
9d5c8243
AK
5312/**
5313 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5314 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5315 * returns true if ring is completely cleaned
5316 **/
047e0030 5317static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5318{
047e0030
AD
5319 struct igb_adapter *adapter = q_vector->adapter;
5320 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5321 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5322 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5323 struct igb_buffer *buffer_info;
0e014cb1 5324 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5325 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5326 unsigned int i, eop, count = 0;
5327 bool cleaned = false;
9d5c8243 5328
9d5c8243 5329 i = tx_ring->next_to_clean;
0e014cb1
AD
5330 eop = tx_ring->buffer_info[i].next_to_watch;
5331 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5332
5333 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5334 (count < tx_ring->count)) {
5335 for (cleaned = false; !cleaned; count++) {
5336 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5337 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5338 cleaned = (i == eop);
9d5c8243 5339
2873957d
NN
5340 if (buffer_info->skb) {
5341 total_bytes += buffer_info->bytecount;
9d5c8243 5342 /* gso_segs is currently only valid for tcp */
2873957d
NN
5343 total_packets += buffer_info->gso_segs;
5344 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5345 }
5346
80785298 5347 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5348 tx_desc->wb.status = 0;
9d5c8243
AK
5349
5350 i++;
5351 if (i == tx_ring->count)
5352 i = 0;
9d5c8243 5353 }
0e014cb1
AD
5354 eop = tx_ring->buffer_info[i].next_to_watch;
5355 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5356 }
5357
9d5c8243
AK
5358 tx_ring->next_to_clean = i;
5359
fc7d345d 5360 if (unlikely(count &&
9d5c8243 5361 netif_carrier_ok(netdev) &&
c493ea45 5362 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5363 /* Make sure that anybody stopping the queue after this
5364 * sees the new next_to_clean.
5365 */
5366 smp_mb();
661086df
PWJ
5367 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5368 !(test_bit(__IGB_DOWN, &adapter->state))) {
5369 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 5370 tx_ring->tx_stats.restart_queue++;
661086df 5371 }
9d5c8243
AK
5372 }
5373
5374 if (tx_ring->detect_tx_hung) {
5375 /* Detect a transmit hang in hardware, this serializes the
5376 * check with the clearing of time_stamp and movement of i */
5377 tx_ring->detect_tx_hung = false;
5378 if (tx_ring->buffer_info[i].time_stamp &&
5379 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5380 (adapter->tx_timeout_factor * HZ)) &&
5381 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5382
9d5c8243 5383 /* detected Tx unit hang */
59d71989 5384 dev_err(tx_ring->dev,
9d5c8243 5385 "Detected Tx Unit Hang\n"
2d064c06 5386 " Tx Queue <%d>\n"
9d5c8243
AK
5387 " TDH <%x>\n"
5388 " TDT <%x>\n"
5389 " next_to_use <%x>\n"
5390 " next_to_clean <%x>\n"
9d5c8243
AK
5391 "buffer_info[next_to_clean]\n"
5392 " time_stamp <%lx>\n"
0e014cb1 5393 " next_to_watch <%x>\n"
9d5c8243
AK
5394 " jiffies <%lx>\n"
5395 " desc.status <%x>\n",
2d064c06 5396 tx_ring->queue_index,
fce99e34
AD
5397 readl(tx_ring->head),
5398 readl(tx_ring->tail),
9d5c8243
AK
5399 tx_ring->next_to_use,
5400 tx_ring->next_to_clean,
f7ba205e 5401 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5402 eop,
9d5c8243 5403 jiffies,
0e014cb1 5404 eop_desc->wb.status);
661086df 5405 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5406 }
5407 }
5408 tx_ring->total_bytes += total_bytes;
5409 tx_ring->total_packets += total_packets;
e21ed353
AD
5410 tx_ring->tx_stats.bytes += total_bytes;
5411 tx_ring->tx_stats.packets += total_packets;
0e014cb1 5412 return (count < tx_ring->count);
9d5c8243
AK
5413}
5414
9d5c8243
AK
5415/**
5416 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5417 * @q_vector: structure containing interrupt and ring information
5418 * @skb: packet to send up
5419 * @vlan_tag: vlan tag for packet
9d5c8243 5420 **/
047e0030
AD
5421static void igb_receive_skb(struct igb_q_vector *q_vector,
5422 struct sk_buff *skb,
5423 u16 vlan_tag)
5424{
5425 struct igb_adapter *adapter = q_vector->adapter;
5426
31b24b95 5427 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5428 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5429 vlan_tag, skb);
182ff8df 5430 else
047e0030 5431 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5432}
5433
04a5fcaa 5434static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5435 u32 status_err, struct sk_buff *skb)
5436{
5437 skb->ip_summed = CHECKSUM_NONE;
5438
5439 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5440 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5441 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5442 return;
85ad76b2 5443
9d5c8243
AK
5444 /* TCP/UDP checksum error bit is set */
5445 if (status_err &
5446 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5447 /*
5448 * work around errata with sctp packets where the TCPE aka
5449 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5450 * packets, (aka let the stack check the crc32c)
5451 */
85ad76b2
AD
5452 if ((skb->len == 60) &&
5453 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 5454 ring->rx_stats.csum_err++;
85ad76b2 5455
9d5c8243 5456 /* let the stack verify checksum errors */
9d5c8243
AK
5457 return;
5458 }
5459 /* It must be a TCP or UDP packet with a valid checksum */
5460 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5461 skb->ip_summed = CHECKSUM_UNNECESSARY;
5462
59d71989 5463 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5464}
5465
757b77e2 5466static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5467 struct sk_buff *skb)
5468{
5469 struct igb_adapter *adapter = q_vector->adapter;
5470 struct e1000_hw *hw = &adapter->hw;
5471 u64 regval;
5472
5473 /*
5474 * If this bit is set, then the RX registers contain the time stamp. No
5475 * other packet will be time stamped until we read these registers, so
5476 * read the registers to make them available again. Because only one
5477 * packet can be time stamped at a time, we know that the register
5478 * values must belong to this one here and therefore we don't need to
5479 * compare any of the additional attributes stored for it.
5480 *
5481 * If nothing went wrong, then it should have a skb_shared_tx that we
5482 * can turn into a skb_shared_hwtstamps.
5483 */
757b77e2
NN
5484 if (staterr & E1000_RXDADV_STAT_TSIP) {
5485 u32 *stamp = (u32 *)skb->data;
5486 regval = le32_to_cpu(*(stamp + 2));
5487 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5488 skb_pull(skb, IGB_TS_HDR_LEN);
5489 } else {
5490 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5491 return;
c5b9bd5e 5492
757b77e2
NN
5493 regval = rd32(E1000_RXSTMPL);
5494 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5495 }
c5b9bd5e
AD
5496
5497 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5498}
4c844851 5499static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5500 union e1000_adv_rx_desc *rx_desc)
5501{
5502 /* HW will not DMA in data larger than the given buffer, even if it
5503 * parses the (NFS, of course) header to be larger. In that case, it
5504 * fills the header buffer and spills the rest into the page.
5505 */
5506 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5507 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5508 if (hlen > rx_ring->rx_buffer_len)
5509 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5510 return hlen;
5511}
5512
047e0030
AD
5513static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5514 int *work_done, int budget)
9d5c8243 5515{
047e0030 5516 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5517 struct net_device *netdev = rx_ring->netdev;
59d71989 5518 struct device *dev = rx_ring->dev;
9d5c8243
AK
5519 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5520 struct igb_buffer *buffer_info , *next_buffer;
5521 struct sk_buff *skb;
9d5c8243
AK
5522 bool cleaned = false;
5523 int cleaned_count = 0;
d1eff350 5524 int current_node = numa_node_id();
9d5c8243 5525 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5526 unsigned int i;
2d94d8ab
AD
5527 u32 staterr;
5528 u16 length;
047e0030 5529 u16 vlan_tag;
9d5c8243
AK
5530
5531 i = rx_ring->next_to_clean;
69d3ca53 5532 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5533 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5534 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5535
5536 while (staterr & E1000_RXD_STAT_DD) {
5537 if (*work_done >= budget)
5538 break;
5539 (*work_done)++;
9d5c8243 5540
69d3ca53
AD
5541 skb = buffer_info->skb;
5542 prefetch(skb->data - NET_IP_ALIGN);
5543 buffer_info->skb = NULL;
5544
5545 i++;
5546 if (i == rx_ring->count)
5547 i = 0;
42d0781a 5548
69d3ca53
AD
5549 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5550 prefetch(next_rxd);
5551 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5552
5553 length = le16_to_cpu(rx_desc->wb.upper.length);
5554 cleaned = true;
5555 cleaned_count++;
5556
2d94d8ab 5557 if (buffer_info->dma) {
59d71989 5558 dma_unmap_single(dev, buffer_info->dma,
4c844851 5559 rx_ring->rx_buffer_len,
59d71989 5560 DMA_FROM_DEVICE);
91615f76 5561 buffer_info->dma = 0;
4c844851 5562 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5563 skb_put(skb, length);
5564 goto send_up;
5565 }
4c844851 5566 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5567 }
5568
5569 if (length) {
59d71989
AD
5570 dma_unmap_page(dev, buffer_info->page_dma,
5571 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5572 buffer_info->page_dma = 0;
bf36c1a0 5573
aa913403 5574 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5575 buffer_info->page,
5576 buffer_info->page_offset,
5577 length);
5578
d1eff350
AD
5579 if ((page_count(buffer_info->page) != 1) ||
5580 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5581 buffer_info->page = NULL;
5582 else
5583 get_page(buffer_info->page);
9d5c8243
AK
5584
5585 skb->len += length;
5586 skb->data_len += length;
bf36c1a0 5587 skb->truesize += length;
9d5c8243 5588 }
9d5c8243 5589
bf36c1a0 5590 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5591 buffer_info->skb = next_buffer->skb;
5592 buffer_info->dma = next_buffer->dma;
5593 next_buffer->skb = skb;
5594 next_buffer->dma = 0;
bf36c1a0
AD
5595 goto next_desc;
5596 }
69d3ca53 5597send_up:
9d5c8243
AK
5598 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5599 dev_kfree_skb_irq(skb);
5600 goto next_desc;
5601 }
9d5c8243 5602
757b77e2
NN
5603 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5604 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5605 total_bytes += skb->len;
5606 total_packets++;
5607
85ad76b2 5608 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5609
5610 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5611 skb_record_rx_queue(skb, rx_ring->queue_index);
5612
5613 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5614 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5615
047e0030 5616 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5617
9d5c8243
AK
5618next_desc:
5619 rx_desc->wb.upper.status_error = 0;
5620
5621 /* return some buffers to hardware, one at a time is too slow */
5622 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5623 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5624 cleaned_count = 0;
5625 }
5626
5627 /* use prefetched values */
5628 rx_desc = next_rxd;
5629 buffer_info = next_buffer;
9d5c8243
AK
5630 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5631 }
bf36c1a0 5632
9d5c8243 5633 rx_ring->next_to_clean = i;
c493ea45 5634 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5635
5636 if (cleaned_count)
3b644cf6 5637 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5638
5639 rx_ring->total_packets += total_packets;
5640 rx_ring->total_bytes += total_bytes;
5641 rx_ring->rx_stats.packets += total_packets;
5642 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5643 return cleaned;
5644}
5645
9d5c8243
AK
5646/**
5647 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5648 * @adapter: address of board private structure
5649 **/
d7ee5b3a 5650void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5651{
e694e964 5652 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5653 union e1000_adv_rx_desc *rx_desc;
5654 struct igb_buffer *buffer_info;
5655 struct sk_buff *skb;
5656 unsigned int i;
db761762 5657 int bufsz;
9d5c8243
AK
5658
5659 i = rx_ring->next_to_use;
5660 buffer_info = &rx_ring->buffer_info[i];
5661
4c844851 5662 bufsz = rx_ring->rx_buffer_len;
db761762 5663
9d5c8243
AK
5664 while (cleaned_count--) {
5665 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5666
6ec43fe6 5667 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5668 if (!buffer_info->page) {
42d0781a 5669 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5670 if (!buffer_info->page) {
04a5fcaa 5671 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5672 goto no_buffers;
5673 }
5674 buffer_info->page_offset = 0;
5675 } else {
5676 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5677 }
5678 buffer_info->page_dma =
59d71989 5679 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5680 buffer_info->page_offset,
5681 PAGE_SIZE / 2,
59d71989
AD
5682 DMA_FROM_DEVICE);
5683 if (dma_mapping_error(rx_ring->dev,
5684 buffer_info->page_dma)) {
42d0781a
AD
5685 buffer_info->page_dma = 0;
5686 rx_ring->rx_stats.alloc_failed++;
5687 goto no_buffers;
5688 }
9d5c8243
AK
5689 }
5690
42d0781a
AD
5691 skb = buffer_info->skb;
5692 if (!skb) {
89d71a66 5693 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5694 if (!skb) {
04a5fcaa 5695 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5696 goto no_buffers;
5697 }
5698
9d5c8243 5699 buffer_info->skb = skb;
42d0781a
AD
5700 }
5701 if (!buffer_info->dma) {
59d71989 5702 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5703 skb->data,
9d5c8243 5704 bufsz,
59d71989
AD
5705 DMA_FROM_DEVICE);
5706 if (dma_mapping_error(rx_ring->dev,
5707 buffer_info->dma)) {
42d0781a
AD
5708 buffer_info->dma = 0;
5709 rx_ring->rx_stats.alloc_failed++;
5710 goto no_buffers;
5711 }
9d5c8243
AK
5712 }
5713 /* Refresh the desc even if buffer_addrs didn't change because
5714 * each write-back erases this info. */
6ec43fe6 5715 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5716 rx_desc->read.pkt_addr =
5717 cpu_to_le64(buffer_info->page_dma);
5718 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5719 } else {
42d0781a 5720 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5721 rx_desc->read.hdr_addr = 0;
5722 }
5723
5724 i++;
5725 if (i == rx_ring->count)
5726 i = 0;
5727 buffer_info = &rx_ring->buffer_info[i];
5728 }
5729
5730no_buffers:
5731 if (rx_ring->next_to_use != i) {
5732 rx_ring->next_to_use = i;
5733 if (i == 0)
5734 i = (rx_ring->count - 1);
5735 else
5736 i--;
5737
5738 /* Force memory writes to complete before letting h/w
5739 * know there are new descriptors to fetch. (Only
5740 * applicable for weak-ordered memory model archs,
5741 * such as IA-64). */
5742 wmb();
fce99e34 5743 writel(i, rx_ring->tail);
9d5c8243
AK
5744 }
5745}
5746
5747/**
5748 * igb_mii_ioctl -
5749 * @netdev:
5750 * @ifreq:
5751 * @cmd:
5752 **/
5753static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5754{
5755 struct igb_adapter *adapter = netdev_priv(netdev);
5756 struct mii_ioctl_data *data = if_mii(ifr);
5757
5758 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5759 return -EOPNOTSUPP;
5760
5761 switch (cmd) {
5762 case SIOCGMIIPHY:
5763 data->phy_id = adapter->hw.phy.addr;
5764 break;
5765 case SIOCGMIIREG:
f5f4cf08
AD
5766 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5767 &data->val_out))
9d5c8243
AK
5768 return -EIO;
5769 break;
5770 case SIOCSMIIREG:
5771 default:
5772 return -EOPNOTSUPP;
5773 }
5774 return 0;
5775}
5776
c6cb090b
PO
5777/**
5778 * igb_hwtstamp_ioctl - control hardware time stamping
5779 * @netdev:
5780 * @ifreq:
5781 * @cmd:
5782 *
33af6bcc
PO
5783 * Outgoing time stamping can be enabled and disabled. Play nice and
5784 * disable it when requested, although it shouldn't case any overhead
5785 * when no packet needs it. At most one packet in the queue may be
5786 * marked for time stamping, otherwise it would be impossible to tell
5787 * for sure to which packet the hardware time stamp belongs.
5788 *
5789 * Incoming time stamping has to be configured via the hardware
5790 * filters. Not all combinations are supported, in particular event
5791 * type has to be specified. Matching the kind of event packet is
5792 * not supported, with the exception of "all V2 events regardless of
5793 * level 2 or 4".
5794 *
c6cb090b
PO
5795 **/
5796static int igb_hwtstamp_ioctl(struct net_device *netdev,
5797 struct ifreq *ifr, int cmd)
5798{
33af6bcc
PO
5799 struct igb_adapter *adapter = netdev_priv(netdev);
5800 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5801 struct hwtstamp_config config;
c5b9bd5e
AD
5802 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5803 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5804 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5805 bool is_l4 = false;
5806 bool is_l2 = false;
33af6bcc 5807 u32 regval;
c6cb090b
PO
5808
5809 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5810 return -EFAULT;
5811
5812 /* reserved for future extensions */
5813 if (config.flags)
5814 return -EINVAL;
5815
33af6bcc
PO
5816 switch (config.tx_type) {
5817 case HWTSTAMP_TX_OFF:
c5b9bd5e 5818 tsync_tx_ctl = 0;
33af6bcc 5819 case HWTSTAMP_TX_ON:
33af6bcc
PO
5820 break;
5821 default:
5822 return -ERANGE;
5823 }
5824
5825 switch (config.rx_filter) {
5826 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5827 tsync_rx_ctl = 0;
33af6bcc
PO
5828 break;
5829 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5830 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5831 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5832 case HWTSTAMP_FILTER_ALL:
5833 /*
5834 * register TSYNCRXCFG must be set, therefore it is not
5835 * possible to time stamp both Sync and Delay_Req messages
5836 * => fall back to time stamping all packets
5837 */
c5b9bd5e 5838 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5839 config.rx_filter = HWTSTAMP_FILTER_ALL;
5840 break;
5841 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5842 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5843 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5844 is_l4 = true;
33af6bcc
PO
5845 break;
5846 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5847 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5848 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5849 is_l4 = true;
33af6bcc
PO
5850 break;
5851 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5852 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5853 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5854 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5855 is_l2 = true;
5856 is_l4 = true;
33af6bcc
PO
5857 config.rx_filter = HWTSTAMP_FILTER_SOME;
5858 break;
5859 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5860 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5861 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5862 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5863 is_l2 = true;
5864 is_l4 = true;
33af6bcc
PO
5865 config.rx_filter = HWTSTAMP_FILTER_SOME;
5866 break;
5867 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5868 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5869 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5870 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5871 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5872 is_l2 = true;
33af6bcc
PO
5873 break;
5874 default:
5875 return -ERANGE;
5876 }
5877
c5b9bd5e
AD
5878 if (hw->mac.type == e1000_82575) {
5879 if (tsync_rx_ctl | tsync_tx_ctl)
5880 return -EINVAL;
5881 return 0;
5882 }
5883
757b77e2
NN
5884 /*
5885 * Per-packet timestamping only works if all packets are
5886 * timestamped, so enable timestamping in all packets as
5887 * long as one rx filter was configured.
5888 */
5889 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5890 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5891 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5892 }
5893
33af6bcc
PO
5894 /* enable/disable TX */
5895 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5896 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5897 regval |= tsync_tx_ctl;
33af6bcc
PO
5898 wr32(E1000_TSYNCTXCTL, regval);
5899
c5b9bd5e 5900 /* enable/disable RX */
33af6bcc 5901 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5902 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5903 regval |= tsync_rx_ctl;
33af6bcc 5904 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5905
c5b9bd5e
AD
5906 /* define which PTP packets are time stamped */
5907 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5908
c5b9bd5e
AD
5909 /* define ethertype filter for timestamped packets */
5910 if (is_l2)
5911 wr32(E1000_ETQF(3),
5912 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5913 E1000_ETQF_1588 | /* enable timestamping */
5914 ETH_P_1588)); /* 1588 eth protocol type */
5915 else
5916 wr32(E1000_ETQF(3), 0);
5917
5918#define PTP_PORT 319
5919 /* L4 Queue Filter[3]: filter by destination port and protocol */
5920 if (is_l4) {
5921 u32 ftqf = (IPPROTO_UDP /* UDP */
5922 | E1000_FTQF_VF_BP /* VF not compared */
5923 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5924 | E1000_FTQF_MASK); /* mask all inputs */
5925 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5926
5927 wr32(E1000_IMIR(3), htons(PTP_PORT));
5928 wr32(E1000_IMIREXT(3),
5929 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5930 if (hw->mac.type == e1000_82576) {
5931 /* enable source port check */
5932 wr32(E1000_SPQF(3), htons(PTP_PORT));
5933 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5934 }
5935 wr32(E1000_FTQF(3), ftqf);
5936 } else {
5937 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5938 }
33af6bcc
PO
5939 wrfl();
5940
5941 adapter->hwtstamp_config = config;
5942
5943 /* clear TX/RX time stamp registers, just to be sure */
5944 regval = rd32(E1000_TXSTMPH);
5945 regval = rd32(E1000_RXSTMPH);
c6cb090b 5946
33af6bcc
PO
5947 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5948 -EFAULT : 0;
c6cb090b
PO
5949}
5950
9d5c8243
AK
5951/**
5952 * igb_ioctl -
5953 * @netdev:
5954 * @ifreq:
5955 * @cmd:
5956 **/
5957static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5958{
5959 switch (cmd) {
5960 case SIOCGMIIPHY:
5961 case SIOCGMIIREG:
5962 case SIOCSMIIREG:
5963 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5964 case SIOCSHWTSTAMP:
5965 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5966 default:
5967 return -EOPNOTSUPP;
5968 }
5969}
5970
009bc06e
AD
5971s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5972{
5973 struct igb_adapter *adapter = hw->back;
5974 u16 cap_offset;
5975
5976 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5977 if (!cap_offset)
5978 return -E1000_ERR_CONFIG;
5979
5980 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5981
5982 return 0;
5983}
5984
5985s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5986{
5987 struct igb_adapter *adapter = hw->back;
5988 u16 cap_offset;
5989
5990 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5991 if (!cap_offset)
5992 return -E1000_ERR_CONFIG;
5993
5994 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5995
5996 return 0;
5997}
5998
9d5c8243
AK
5999static void igb_vlan_rx_register(struct net_device *netdev,
6000 struct vlan_group *grp)
6001{
6002 struct igb_adapter *adapter = netdev_priv(netdev);
6003 struct e1000_hw *hw = &adapter->hw;
6004 u32 ctrl, rctl;
6005
6006 igb_irq_disable(adapter);
6007 adapter->vlgrp = grp;
6008
6009 if (grp) {
6010 /* enable VLAN tag insert/strip */
6011 ctrl = rd32(E1000_CTRL);
6012 ctrl |= E1000_CTRL_VME;
6013 wr32(E1000_CTRL, ctrl);
6014
51466239 6015 /* Disable CFI check */
9d5c8243 6016 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6017 rctl &= ~E1000_RCTL_CFIEN;
6018 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6019 } else {
6020 /* disable VLAN tag insert/strip */
6021 ctrl = rd32(E1000_CTRL);
6022 ctrl &= ~E1000_CTRL_VME;
6023 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6024 }
6025
e1739522
AD
6026 igb_rlpml_set(adapter);
6027
9d5c8243
AK
6028 if (!test_bit(__IGB_DOWN, &adapter->state))
6029 igb_irq_enable(adapter);
6030}
6031
6032static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6033{
6034 struct igb_adapter *adapter = netdev_priv(netdev);
6035 struct e1000_hw *hw = &adapter->hw;
4ae196df 6036 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6037
51466239
AD
6038 /* attempt to add filter to vlvf array */
6039 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6040
51466239
AD
6041 /* add the filter since PF can receive vlans w/o entry in vlvf */
6042 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6043}
6044
6045static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6046{
6047 struct igb_adapter *adapter = netdev_priv(netdev);
6048 struct e1000_hw *hw = &adapter->hw;
4ae196df 6049 int pf_id = adapter->vfs_allocated_count;
51466239 6050 s32 err;
9d5c8243
AK
6051
6052 igb_irq_disable(adapter);
6053 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6054
6055 if (!test_bit(__IGB_DOWN, &adapter->state))
6056 igb_irq_enable(adapter);
6057
51466239
AD
6058 /* remove vlan from VLVF table array */
6059 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6060
51466239
AD
6061 /* if vid was not present in VLVF just remove it from table */
6062 if (err)
4ae196df 6063 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6064}
6065
6066static void igb_restore_vlan(struct igb_adapter *adapter)
6067{
6068 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6069
6070 if (adapter->vlgrp) {
6071 u16 vid;
6072 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6073 if (!vlan_group_get_device(adapter->vlgrp, vid))
6074 continue;
6075 igb_vlan_rx_add_vid(adapter->netdev, vid);
6076 }
6077 }
6078}
6079
6080int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6081{
090b1795 6082 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6083 struct e1000_mac_info *mac = &adapter->hw.mac;
6084
6085 mac->autoneg = 0;
6086
9d5c8243
AK
6087 switch (spddplx) {
6088 case SPEED_10 + DUPLEX_HALF:
6089 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6090 break;
6091 case SPEED_10 + DUPLEX_FULL:
6092 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6093 break;
6094 case SPEED_100 + DUPLEX_HALF:
6095 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6096 break;
6097 case SPEED_100 + DUPLEX_FULL:
6098 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6099 break;
6100 case SPEED_1000 + DUPLEX_FULL:
6101 mac->autoneg = 1;
6102 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6103 break;
6104 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6105 default:
090b1795 6106 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6107 return -EINVAL;
6108 }
6109 return 0;
6110}
6111
3fe7c4c9 6112static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6113{
6114 struct net_device *netdev = pci_get_drvdata(pdev);
6115 struct igb_adapter *adapter = netdev_priv(netdev);
6116 struct e1000_hw *hw = &adapter->hw;
2d064c06 6117 u32 ctrl, rctl, status;
9d5c8243
AK
6118 u32 wufc = adapter->wol;
6119#ifdef CONFIG_PM
6120 int retval = 0;
6121#endif
6122
6123 netif_device_detach(netdev);
6124
a88f10ec
AD
6125 if (netif_running(netdev))
6126 igb_close(netdev);
6127
047e0030 6128 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6129
6130#ifdef CONFIG_PM
6131 retval = pci_save_state(pdev);
6132 if (retval)
6133 return retval;
6134#endif
6135
6136 status = rd32(E1000_STATUS);
6137 if (status & E1000_STATUS_LU)
6138 wufc &= ~E1000_WUFC_LNKC;
6139
6140 if (wufc) {
6141 igb_setup_rctl(adapter);
ff41f8dc 6142 igb_set_rx_mode(netdev);
9d5c8243
AK
6143
6144 /* turn on all-multi mode if wake on multicast is enabled */
6145 if (wufc & E1000_WUFC_MC) {
6146 rctl = rd32(E1000_RCTL);
6147 rctl |= E1000_RCTL_MPE;
6148 wr32(E1000_RCTL, rctl);
6149 }
6150
6151 ctrl = rd32(E1000_CTRL);
6152 /* advertise wake from D3Cold */
6153 #define E1000_CTRL_ADVD3WUC 0x00100000
6154 /* phy power management enable */
6155 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6156 ctrl |= E1000_CTRL_ADVD3WUC;
6157 wr32(E1000_CTRL, ctrl);
6158
9d5c8243 6159 /* Allow time for pending master requests to run */
330a6d6a 6160 igb_disable_pcie_master(hw);
9d5c8243
AK
6161
6162 wr32(E1000_WUC, E1000_WUC_PME_EN);
6163 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6164 } else {
6165 wr32(E1000_WUC, 0);
6166 wr32(E1000_WUFC, 0);
9d5c8243
AK
6167 }
6168
3fe7c4c9
RW
6169 *enable_wake = wufc || adapter->en_mng_pt;
6170 if (!*enable_wake)
88a268c1
NN
6171 igb_power_down_link(adapter);
6172 else
6173 igb_power_up_link(adapter);
9d5c8243
AK
6174
6175 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6176 * would have already happened in close and is redundant. */
6177 igb_release_hw_control(adapter);
6178
6179 pci_disable_device(pdev);
6180
9d5c8243
AK
6181 return 0;
6182}
6183
6184#ifdef CONFIG_PM
3fe7c4c9
RW
6185static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6186{
6187 int retval;
6188 bool wake;
6189
6190 retval = __igb_shutdown(pdev, &wake);
6191 if (retval)
6192 return retval;
6193
6194 if (wake) {
6195 pci_prepare_to_sleep(pdev);
6196 } else {
6197 pci_wake_from_d3(pdev, false);
6198 pci_set_power_state(pdev, PCI_D3hot);
6199 }
6200
6201 return 0;
6202}
6203
9d5c8243
AK
6204static int igb_resume(struct pci_dev *pdev)
6205{
6206 struct net_device *netdev = pci_get_drvdata(pdev);
6207 struct igb_adapter *adapter = netdev_priv(netdev);
6208 struct e1000_hw *hw = &adapter->hw;
6209 u32 err;
6210
6211 pci_set_power_state(pdev, PCI_D0);
6212 pci_restore_state(pdev);
b94f2d77 6213 pci_save_state(pdev);
42bfd33a 6214
aed5dec3 6215 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6216 if (err) {
6217 dev_err(&pdev->dev,
6218 "igb: Cannot enable PCI device from suspend\n");
6219 return err;
6220 }
6221 pci_set_master(pdev);
6222
6223 pci_enable_wake(pdev, PCI_D3hot, 0);
6224 pci_enable_wake(pdev, PCI_D3cold, 0);
6225
047e0030 6226 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6227 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6228 return -ENOMEM;
9d5c8243
AK
6229 }
6230
9d5c8243 6231 igb_reset(adapter);
a8564f03
AD
6232
6233 /* let the f/w know that the h/w is now under the control of the
6234 * driver. */
6235 igb_get_hw_control(adapter);
6236
9d5c8243
AK
6237 wr32(E1000_WUS, ~0);
6238
a88f10ec
AD
6239 if (netif_running(netdev)) {
6240 err = igb_open(netdev);
6241 if (err)
6242 return err;
6243 }
9d5c8243
AK
6244
6245 netif_device_attach(netdev);
6246
9d5c8243
AK
6247 return 0;
6248}
6249#endif
6250
6251static void igb_shutdown(struct pci_dev *pdev)
6252{
3fe7c4c9
RW
6253 bool wake;
6254
6255 __igb_shutdown(pdev, &wake);
6256
6257 if (system_state == SYSTEM_POWER_OFF) {
6258 pci_wake_from_d3(pdev, wake);
6259 pci_set_power_state(pdev, PCI_D3hot);
6260 }
9d5c8243
AK
6261}
6262
6263#ifdef CONFIG_NET_POLL_CONTROLLER
6264/*
6265 * Polling 'interrupt' - used by things like netconsole to send skbs
6266 * without having to re-enable interrupts. It's not called while
6267 * the interrupt routine is executing.
6268 */
6269static void igb_netpoll(struct net_device *netdev)
6270{
6271 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6272 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6273 int i;
9d5c8243 6274
eebbbdba 6275 if (!adapter->msix_entries) {
047e0030 6276 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6277 igb_irq_disable(adapter);
047e0030 6278 napi_schedule(&q_vector->napi);
eebbbdba
AD
6279 return;
6280 }
9d5c8243 6281
047e0030
AD
6282 for (i = 0; i < adapter->num_q_vectors; i++) {
6283 struct igb_q_vector *q_vector = adapter->q_vector[i];
6284 wr32(E1000_EIMC, q_vector->eims_value);
6285 napi_schedule(&q_vector->napi);
eebbbdba 6286 }
9d5c8243
AK
6287}
6288#endif /* CONFIG_NET_POLL_CONTROLLER */
6289
6290/**
6291 * igb_io_error_detected - called when PCI error is detected
6292 * @pdev: Pointer to PCI device
6293 * @state: The current pci connection state
6294 *
6295 * This function is called after a PCI bus error affecting
6296 * this device has been detected.
6297 */
6298static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6299 pci_channel_state_t state)
6300{
6301 struct net_device *netdev = pci_get_drvdata(pdev);
6302 struct igb_adapter *adapter = netdev_priv(netdev);
6303
6304 netif_device_detach(netdev);
6305
59ed6eec
AD
6306 if (state == pci_channel_io_perm_failure)
6307 return PCI_ERS_RESULT_DISCONNECT;
6308
9d5c8243
AK
6309 if (netif_running(netdev))
6310 igb_down(adapter);
6311 pci_disable_device(pdev);
6312
6313 /* Request a slot slot reset. */
6314 return PCI_ERS_RESULT_NEED_RESET;
6315}
6316
6317/**
6318 * igb_io_slot_reset - called after the pci bus has been reset.
6319 * @pdev: Pointer to PCI device
6320 *
6321 * Restart the card from scratch, as if from a cold-boot. Implementation
6322 * resembles the first-half of the igb_resume routine.
6323 */
6324static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6325{
6326 struct net_device *netdev = pci_get_drvdata(pdev);
6327 struct igb_adapter *adapter = netdev_priv(netdev);
6328 struct e1000_hw *hw = &adapter->hw;
40a914fa 6329 pci_ers_result_t result;
42bfd33a 6330 int err;
9d5c8243 6331
aed5dec3 6332 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6333 dev_err(&pdev->dev,
6334 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6335 result = PCI_ERS_RESULT_DISCONNECT;
6336 } else {
6337 pci_set_master(pdev);
6338 pci_restore_state(pdev);
b94f2d77 6339 pci_save_state(pdev);
9d5c8243 6340
40a914fa
AD
6341 pci_enable_wake(pdev, PCI_D3hot, 0);
6342 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6343
40a914fa
AD
6344 igb_reset(adapter);
6345 wr32(E1000_WUS, ~0);
6346 result = PCI_ERS_RESULT_RECOVERED;
6347 }
9d5c8243 6348
ea943d41
JK
6349 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6350 if (err) {
6351 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6352 "failed 0x%0x\n", err);
6353 /* non-fatal, continue */
6354 }
40a914fa
AD
6355
6356 return result;
9d5c8243
AK
6357}
6358
6359/**
6360 * igb_io_resume - called when traffic can start flowing again.
6361 * @pdev: Pointer to PCI device
6362 *
6363 * This callback is called when the error recovery driver tells us that
6364 * its OK to resume normal operation. Implementation resembles the
6365 * second-half of the igb_resume routine.
6366 */
6367static void igb_io_resume(struct pci_dev *pdev)
6368{
6369 struct net_device *netdev = pci_get_drvdata(pdev);
6370 struct igb_adapter *adapter = netdev_priv(netdev);
6371
9d5c8243
AK
6372 if (netif_running(netdev)) {
6373 if (igb_up(adapter)) {
6374 dev_err(&pdev->dev, "igb_up failed after reset\n");
6375 return;
6376 }
6377 }
6378
6379 netif_device_attach(netdev);
6380
6381 /* let the f/w know that the h/w is now under the control of the
6382 * driver. */
6383 igb_get_hw_control(adapter);
9d5c8243
AK
6384}
6385
26ad9178
AD
6386static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6387 u8 qsel)
6388{
6389 u32 rar_low, rar_high;
6390 struct e1000_hw *hw = &adapter->hw;
6391
6392 /* HW expects these in little endian so we reverse the byte order
6393 * from network order (big endian) to little endian
6394 */
6395 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6396 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6397 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6398
6399 /* Indicate to hardware the Address is Valid. */
6400 rar_high |= E1000_RAH_AV;
6401
6402 if (hw->mac.type == e1000_82575)
6403 rar_high |= E1000_RAH_POOL_1 * qsel;
6404 else
6405 rar_high |= E1000_RAH_POOL_1 << qsel;
6406
6407 wr32(E1000_RAL(index), rar_low);
6408 wrfl();
6409 wr32(E1000_RAH(index), rar_high);
6410 wrfl();
6411}
6412
4ae196df
AD
6413static int igb_set_vf_mac(struct igb_adapter *adapter,
6414 int vf, unsigned char *mac_addr)
6415{
6416 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6417 /* VF MAC addresses start at end of receive addresses and moves
6418 * torwards the first, as a result a collision should not be possible */
6419 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6420
37680117 6421 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6422
26ad9178 6423 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6424
6425 return 0;
6426}
6427
8151d294
WM
6428static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6429{
6430 struct igb_adapter *adapter = netdev_priv(netdev);
6431 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6432 return -EINVAL;
6433 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6434 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6435 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6436 " change effective.");
6437 if (test_bit(__IGB_DOWN, &adapter->state)) {
6438 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6439 " but the PF device is not up.\n");
6440 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6441 " attempting to use the VF device.\n");
6442 }
6443 return igb_set_vf_mac(adapter, vf, mac);
6444}
6445
6446static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6447{
6448 return -EOPNOTSUPP;
6449}
6450
6451static int igb_ndo_get_vf_config(struct net_device *netdev,
6452 int vf, struct ifla_vf_info *ivi)
6453{
6454 struct igb_adapter *adapter = netdev_priv(netdev);
6455 if (vf >= adapter->vfs_allocated_count)
6456 return -EINVAL;
6457 ivi->vf = vf;
6458 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6459 ivi->tx_rate = 0;
6460 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6461 ivi->qos = adapter->vf_data[vf].pf_qos;
6462 return 0;
6463}
6464
4ae196df
AD
6465static void igb_vmm_control(struct igb_adapter *adapter)
6466{
6467 struct e1000_hw *hw = &adapter->hw;
10d8e907 6468 u32 reg;
4ae196df 6469
52a1dd4d
AD
6470 switch (hw->mac.type) {
6471 case e1000_82575:
6472 default:
6473 /* replication is not supported for 82575 */
4ae196df 6474 return;
52a1dd4d
AD
6475 case e1000_82576:
6476 /* notify HW that the MAC is adding vlan tags */
6477 reg = rd32(E1000_DTXCTL);
6478 reg |= E1000_DTXCTL_VLAN_ADDED;
6479 wr32(E1000_DTXCTL, reg);
6480 case e1000_82580:
6481 /* enable replication vlan tag stripping */
6482 reg = rd32(E1000_RPLOLR);
6483 reg |= E1000_RPLOLR_STRVLAN;
6484 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6485 case e1000_i350:
6486 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6487 break;
6488 }
10d8e907 6489
d4960307
AD
6490 if (adapter->vfs_allocated_count) {
6491 igb_vmdq_set_loopback_pf(hw, true);
6492 igb_vmdq_set_replication_pf(hw, true);
6493 } else {
6494 igb_vmdq_set_loopback_pf(hw, false);
6495 igb_vmdq_set_replication_pf(hw, false);
6496 }
4ae196df
AD
6497}
6498
9d5c8243 6499/* igb_main.c */