]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/igb/igb_main.c
ixbge: allow vlan devices to use TSO and TCP CSUM offload
[mirror_ubuntu-zesty-kernel.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/interrupt.h>
43#include <linux/if_ether.h>
44
45#include "igb.h"
46
47#define DRV_VERSION "1.0.8-k2"
48char igb_driver_name[] = "igb";
49char igb_driver_version[] = DRV_VERSION;
50static const char igb_driver_string[] =
51 "Intel(R) Gigabit Ethernet Network Driver";
52static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
53
54
55static const struct e1000_info *igb_info_tbl[] = {
56 [board_82575] = &e1000_82575_info,
57};
58
59static struct pci_device_id igb_pci_tbl[] = {
60 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63 /* required last entry */
64 {0, }
65};
66
67MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
68
69void igb_reset(struct igb_adapter *);
70static int igb_setup_all_tx_resources(struct igb_adapter *);
71static int igb_setup_all_rx_resources(struct igb_adapter *);
72static void igb_free_all_tx_resources(struct igb_adapter *);
73static void igb_free_all_rx_resources(struct igb_adapter *);
74static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76void igb_update_stats(struct igb_adapter *);
77static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78static void __devexit igb_remove(struct pci_dev *pdev);
79static int igb_sw_init(struct igb_adapter *);
80static int igb_open(struct net_device *);
81static int igb_close(struct net_device *);
82static void igb_configure_tx(struct igb_adapter *);
83static void igb_configure_rx(struct igb_adapter *);
84static void igb_setup_rctl(struct igb_adapter *);
85static void igb_clean_all_tx_rings(struct igb_adapter *);
86static void igb_clean_all_rx_rings(struct igb_adapter *);
87static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89static void igb_set_multi(struct net_device *);
90static void igb_update_phy_info(unsigned long);
91static void igb_watchdog(unsigned long);
92static void igb_watchdog_task(struct work_struct *);
93static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94 struct igb_ring *);
95static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96static struct net_device_stats *igb_get_stats(struct net_device *);
97static int igb_change_mtu(struct net_device *, int);
98static int igb_set_mac(struct net_device *, void *);
99static irqreturn_t igb_intr(int irq, void *);
100static irqreturn_t igb_intr_msi(int irq, void *);
101static irqreturn_t igb_msix_other(int irq, void *);
102static irqreturn_t igb_msix_rx(int irq, void *);
103static irqreturn_t igb_msix_tx(int irq, void *);
104static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106static int igb_clean(struct napi_struct *, int);
107static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108 struct igb_ring *, int *, int);
109static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110 struct igb_ring *, int);
111static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112static void igb_tx_timeout(struct net_device *);
113static void igb_reset_task(struct work_struct *);
114static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115static void igb_vlan_rx_add_vid(struct net_device *, u16);
116static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117static void igb_restore_vlan(struct igb_adapter *);
118
119static int igb_suspend(struct pci_dev *, pm_message_t);
120#ifdef CONFIG_PM
121static int igb_resume(struct pci_dev *);
122#endif
123static void igb_shutdown(struct pci_dev *);
124
125#ifdef CONFIG_NET_POLL_CONTROLLER
126/* for netdump / net console */
127static void igb_netpoll(struct net_device *);
128#endif
129
130static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131 pci_channel_state_t);
132static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133static void igb_io_resume(struct pci_dev *);
134
135static struct pci_error_handlers igb_err_handler = {
136 .error_detected = igb_io_error_detected,
137 .slot_reset = igb_io_slot_reset,
138 .resume = igb_io_resume,
139};
140
141
142static struct pci_driver igb_driver = {
143 .name = igb_driver_name,
144 .id_table = igb_pci_tbl,
145 .probe = igb_probe,
146 .remove = __devexit_p(igb_remove),
147#ifdef CONFIG_PM
148 /* Power Managment Hooks */
149 .suspend = igb_suspend,
150 .resume = igb_resume,
151#endif
152 .shutdown = igb_shutdown,
153 .err_handler = &igb_err_handler
154};
155
156MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158MODULE_LICENSE("GPL");
159MODULE_VERSION(DRV_VERSION);
160
161#ifdef DEBUG
162/**
163 * igb_get_hw_dev_name - return device name string
164 * used by hardware layer to print debugging information
165 **/
166char *igb_get_hw_dev_name(struct e1000_hw *hw)
167{
168 struct igb_adapter *adapter = hw->back;
169 return adapter->netdev->name;
170}
171#endif
172
173/**
174 * igb_init_module - Driver Registration Routine
175 *
176 * igb_init_module is the first routine called when the driver is
177 * loaded. All it does is register with the PCI subsystem.
178 **/
179static int __init igb_init_module(void)
180{
181 int ret;
182 printk(KERN_INFO "%s - version %s\n",
183 igb_driver_string, igb_driver_version);
184
185 printk(KERN_INFO "%s\n", igb_copyright);
186
187 ret = pci_register_driver(&igb_driver);
188 return ret;
189}
190
191module_init(igb_init_module);
192
193/**
194 * igb_exit_module - Driver Exit Cleanup Routine
195 *
196 * igb_exit_module is called just before the driver is removed
197 * from memory.
198 **/
199static void __exit igb_exit_module(void)
200{
201 pci_unregister_driver(&igb_driver);
202}
203
204module_exit(igb_exit_module);
205
206/**
207 * igb_alloc_queues - Allocate memory for all rings
208 * @adapter: board private structure to initialize
209 *
210 * We allocate one ring per queue at run-time since we don't know the
211 * number of queues at compile-time.
212 **/
213static int igb_alloc_queues(struct igb_adapter *adapter)
214{
215 int i;
216
217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218 sizeof(struct igb_ring), GFP_KERNEL);
219 if (!adapter->tx_ring)
220 return -ENOMEM;
221
222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223 sizeof(struct igb_ring), GFP_KERNEL);
224 if (!adapter->rx_ring) {
225 kfree(adapter->tx_ring);
226 return -ENOMEM;
227 }
228
229 for (i = 0; i < adapter->num_rx_queues; i++) {
230 struct igb_ring *ring = &(adapter->rx_ring[i]);
231 ring->adapter = adapter;
232 ring->itr_register = E1000_ITR;
233
234 if (!ring->napi.poll)
235 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236 adapter->napi.weight /
237 adapter->num_rx_queues);
238 }
239 return 0;
240}
241
242#define IGB_N0_QUEUE -1
243static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244 int tx_queue, int msix_vector)
245{
246 u32 msixbm = 0;
247 struct e1000_hw *hw = &adapter->hw;
248 /* The 82575 assigns vectors using a bitmask, which matches the
249 bitmask for the EICR/EIMS/EIMC registers. To assign one
250 or more queues to a vector, we write the appropriate bits
251 into the MSIXBM register for that vector. */
252 if (rx_queue > IGB_N0_QUEUE) {
253 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254 adapter->rx_ring[rx_queue].eims_value = msixbm;
255 }
256 if (tx_queue > IGB_N0_QUEUE) {
257 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258 adapter->tx_ring[tx_queue].eims_value =
259 E1000_EICR_TX_QUEUE0 << tx_queue;
260 }
261 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
262}
263
264/**
265 * igb_configure_msix - Configure MSI-X hardware
266 *
267 * igb_configure_msix sets up the hardware to properly
268 * generate MSI-X interrupts.
269 **/
270static void igb_configure_msix(struct igb_adapter *adapter)
271{
272 u32 tmp;
273 int i, vector = 0;
274 struct e1000_hw *hw = &adapter->hw;
275
276 adapter->eims_enable_mask = 0;
277
278 for (i = 0; i < adapter->num_tx_queues; i++) {
279 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281 adapter->eims_enable_mask |= tx_ring->eims_value;
282 if (tx_ring->itr_val)
283 writel(1000000000 / (tx_ring->itr_val * 256),
284 hw->hw_addr + tx_ring->itr_register);
285 else
286 writel(1, hw->hw_addr + tx_ring->itr_register);
287 }
288
289 for (i = 0; i < adapter->num_rx_queues; i++) {
290 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292 adapter->eims_enable_mask |= rx_ring->eims_value;
293 if (rx_ring->itr_val)
294 writel(1000000000 / (rx_ring->itr_val * 256),
295 hw->hw_addr + rx_ring->itr_register);
296 else
297 writel(1, hw->hw_addr + rx_ring->itr_register);
298 }
299
300
301 /* set vector for other causes, i.e. link changes */
302 array_wr32(E1000_MSIXBM(0), vector++,
303 E1000_EIMS_OTHER);
304
305 /* disable IAM for ICR interrupt bits */
306 wr32(E1000_IAM, 0);
307
308 tmp = rd32(E1000_CTRL_EXT);
309 /* enable MSI-X PBA support*/
310 tmp |= E1000_CTRL_EXT_PBA_CLR;
311
312 /* Auto-Mask interrupts upon ICR read. */
313 tmp |= E1000_CTRL_EXT_EIAME;
314 tmp |= E1000_CTRL_EXT_IRCA;
315
316 wr32(E1000_CTRL_EXT, tmp);
317 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
318
319 wrfl();
320}
321
322/**
323 * igb_request_msix - Initialize MSI-X interrupts
324 *
325 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
326 * kernel.
327 **/
328static int igb_request_msix(struct igb_adapter *adapter)
329{
330 struct net_device *netdev = adapter->netdev;
331 int i, err = 0, vector = 0;
332
333 vector = 0;
334
335 for (i = 0; i < adapter->num_tx_queues; i++) {
336 struct igb_ring *ring = &(adapter->tx_ring[i]);
337 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338 err = request_irq(adapter->msix_entries[vector].vector,
339 &igb_msix_tx, 0, ring->name,
340 &(adapter->tx_ring[i]));
341 if (err)
342 goto out;
343 ring->itr_register = E1000_EITR(0) + (vector << 2);
344 ring->itr_val = adapter->itr;
345 vector++;
346 }
347 for (i = 0; i < adapter->num_rx_queues; i++) {
348 struct igb_ring *ring = &(adapter->rx_ring[i]);
349 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350 sprintf(ring->name, "%s-rx%d", netdev->name, i);
351 else
352 memcpy(ring->name, netdev->name, IFNAMSIZ);
353 err = request_irq(adapter->msix_entries[vector].vector,
354 &igb_msix_rx, 0, ring->name,
355 &(adapter->rx_ring[i]));
356 if (err)
357 goto out;
358 ring->itr_register = E1000_EITR(0) + (vector << 2);
359 ring->itr_val = adapter->itr;
360 vector++;
361 }
362
363 err = request_irq(adapter->msix_entries[vector].vector,
364 &igb_msix_other, 0, netdev->name, netdev);
365 if (err)
366 goto out;
367
368 adapter->napi.poll = igb_clean_rx_ring_msix;
369 for (i = 0; i < adapter->num_rx_queues; i++)
370 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371 igb_configure_msix(adapter);
372 return 0;
373out:
374 return err;
375}
376
377static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
378{
379 if (adapter->msix_entries) {
380 pci_disable_msix(adapter->pdev);
381 kfree(adapter->msix_entries);
382 adapter->msix_entries = NULL;
383 } else if (adapter->msi_enabled)
384 pci_disable_msi(adapter->pdev);
385 return;
386}
387
388
389/**
390 * igb_set_interrupt_capability - set MSI or MSI-X if supported
391 *
392 * Attempt to configure interrupts using the best available
393 * capabilities of the hardware and kernel.
394 **/
395static void igb_set_interrupt_capability(struct igb_adapter *adapter)
396{
397 int err;
398 int numvecs, i;
399
400 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
402 GFP_KERNEL);
403 if (!adapter->msix_entries)
404 goto msi_only;
405
406 for (i = 0; i < numvecs; i++)
407 adapter->msix_entries[i].entry = i;
408
409 err = pci_enable_msix(adapter->pdev,
410 adapter->msix_entries,
411 numvecs);
412 if (err == 0)
413 return;
414
415 igb_reset_interrupt_capability(adapter);
416
417 /* If we can't do MSI-X, try MSI */
418msi_only:
419 adapter->num_rx_queues = 1;
420 if (!pci_enable_msi(adapter->pdev))
421 adapter->msi_enabled = 1;
422 return;
423}
424
425/**
426 * igb_request_irq - initialize interrupts
427 *
428 * Attempts to configure interrupts using the best available
429 * capabilities of the hardware and kernel.
430 **/
431static int igb_request_irq(struct igb_adapter *adapter)
432{
433 struct net_device *netdev = adapter->netdev;
434 struct e1000_hw *hw = &adapter->hw;
435 int err = 0;
436
437 if (adapter->msix_entries) {
438 err = igb_request_msix(adapter);
439 if (!err) {
9d5c8243 440 /* enable IAM, auto-mask,
6cb5e577 441 * DO NOT USE EIAM or IAM in legacy mode */
9d5c8243
AK
442 wr32(E1000_IAM, IMS_ENABLE_MASK);
443 goto request_done;
444 }
445 /* fall back to MSI */
446 igb_reset_interrupt_capability(adapter);
447 if (!pci_enable_msi(adapter->pdev))
448 adapter->msi_enabled = 1;
449 igb_free_all_tx_resources(adapter);
450 igb_free_all_rx_resources(adapter);
451 adapter->num_rx_queues = 1;
452 igb_alloc_queues(adapter);
453 }
454 if (adapter->msi_enabled) {
455 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456 netdev->name, netdev);
457 if (!err)
458 goto request_done;
459 /* fall back to legacy interrupts */
460 igb_reset_interrupt_capability(adapter);
461 adapter->msi_enabled = 0;
462 }
463
464 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465 netdev->name, netdev);
466
6cb5e577 467 if (err)
9d5c8243
AK
468 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
469 err);
9d5c8243
AK
470
471request_done:
472 return err;
473}
474
475static void igb_free_irq(struct igb_adapter *adapter)
476{
477 struct net_device *netdev = adapter->netdev;
478
479 if (adapter->msix_entries) {
480 int vector = 0, i;
481
482 for (i = 0; i < adapter->num_tx_queues; i++)
483 free_irq(adapter->msix_entries[vector++].vector,
484 &(adapter->tx_ring[i]));
485 for (i = 0; i < adapter->num_rx_queues; i++)
486 free_irq(adapter->msix_entries[vector++].vector,
487 &(adapter->rx_ring[i]));
488
489 free_irq(adapter->msix_entries[vector++].vector, netdev);
490 return;
491 }
492
493 free_irq(adapter->pdev->irq, netdev);
494}
495
496/**
497 * igb_irq_disable - Mask off interrupt generation on the NIC
498 * @adapter: board private structure
499 **/
500static void igb_irq_disable(struct igb_adapter *adapter)
501{
502 struct e1000_hw *hw = &adapter->hw;
503
504 if (adapter->msix_entries) {
505 wr32(E1000_EIMC, ~0);
506 wr32(E1000_EIAC, 0);
507 }
508 wr32(E1000_IMC, ~0);
509 wrfl();
510 synchronize_irq(adapter->pdev->irq);
511}
512
513/**
514 * igb_irq_enable - Enable default interrupt generation settings
515 * @adapter: board private structure
516 **/
517static void igb_irq_enable(struct igb_adapter *adapter)
518{
519 struct e1000_hw *hw = &adapter->hw;
520
521 if (adapter->msix_entries) {
522 wr32(E1000_EIMS,
523 adapter->eims_enable_mask);
524 wr32(E1000_EIAC,
525 adapter->eims_enable_mask);
526 wr32(E1000_IMS, E1000_IMS_LSC);
527 } else
528 wr32(E1000_IMS, IMS_ENABLE_MASK);
529}
530
531static void igb_update_mng_vlan(struct igb_adapter *adapter)
532{
533 struct net_device *netdev = adapter->netdev;
534 u16 vid = adapter->hw.mng_cookie.vlan_id;
535 u16 old_vid = adapter->mng_vlan_id;
536 if (adapter->vlgrp) {
537 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538 if (adapter->hw.mng_cookie.status &
539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540 igb_vlan_rx_add_vid(netdev, vid);
541 adapter->mng_vlan_id = vid;
542 } else
543 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
544
545 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
546 (vid != old_vid) &&
547 !vlan_group_get_device(adapter->vlgrp, old_vid))
548 igb_vlan_rx_kill_vid(netdev, old_vid);
549 } else
550 adapter->mng_vlan_id = vid;
551 }
552}
553
554/**
555 * igb_release_hw_control - release control of the h/w to f/w
556 * @adapter: address of board private structure
557 *
558 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559 * For ASF and Pass Through versions of f/w this means that the
560 * driver is no longer loaded.
561 *
562 **/
563static void igb_release_hw_control(struct igb_adapter *adapter)
564{
565 struct e1000_hw *hw = &adapter->hw;
566 u32 ctrl_ext;
567
568 /* Let firmware take over control of h/w */
569 ctrl_ext = rd32(E1000_CTRL_EXT);
570 wr32(E1000_CTRL_EXT,
571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
572}
573
574
575/**
576 * igb_get_hw_control - get control of the h/w from f/w
577 * @adapter: address of board private structure
578 *
579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580 * For ASF and Pass Through versions of f/w this means that
581 * the driver is loaded.
582 *
583 **/
584static void igb_get_hw_control(struct igb_adapter *adapter)
585{
586 struct e1000_hw *hw = &adapter->hw;
587 u32 ctrl_ext;
588
589 /* Let firmware know the driver has taken over */
590 ctrl_ext = rd32(E1000_CTRL_EXT);
591 wr32(E1000_CTRL_EXT,
592 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
593}
594
595static void igb_init_manageability(struct igb_adapter *adapter)
596{
597 struct e1000_hw *hw = &adapter->hw;
598
599 if (adapter->en_mng_pt) {
600 u32 manc2h = rd32(E1000_MANC2H);
601 u32 manc = rd32(E1000_MANC);
602
9d5c8243
AK
603 /* enable receiving management packets to the host */
604 /* this will probably generate destination unreachable messages
605 * from the host OS, but the packets will be handled on SMBUS */
606 manc |= E1000_MANC_EN_MNG2HOST;
607#define E1000_MNG2HOST_PORT_623 (1 << 5)
608#define E1000_MNG2HOST_PORT_664 (1 << 6)
609 manc2h |= E1000_MNG2HOST_PORT_623;
610 manc2h |= E1000_MNG2HOST_PORT_664;
611 wr32(E1000_MANC2H, manc2h);
612
613 wr32(E1000_MANC, manc);
614 }
615}
616
9d5c8243
AK
617/**
618 * igb_configure - configure the hardware for RX and TX
619 * @adapter: private board structure
620 **/
621static void igb_configure(struct igb_adapter *adapter)
622{
623 struct net_device *netdev = adapter->netdev;
624 int i;
625
626 igb_get_hw_control(adapter);
627 igb_set_multi(netdev);
628
629 igb_restore_vlan(adapter);
630 igb_init_manageability(adapter);
631
632 igb_configure_tx(adapter);
633 igb_setup_rctl(adapter);
634 igb_configure_rx(adapter);
635 /* call IGB_DESC_UNUSED which always leaves
636 * at least 1 descriptor unused to make sure
637 * next_to_use != next_to_clean */
638 for (i = 0; i < adapter->num_rx_queues; i++) {
639 struct igb_ring *ring = &adapter->rx_ring[i];
640 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
641 }
642
643
644 adapter->tx_queue_len = netdev->tx_queue_len;
645}
646
647
648/**
649 * igb_up - Open the interface and prepare it to handle traffic
650 * @adapter: board private structure
651 **/
652
653int igb_up(struct igb_adapter *adapter)
654{
655 struct e1000_hw *hw = &adapter->hw;
656 int i;
657
658 /* hardware has been reset, we need to reload some things */
659 igb_configure(adapter);
660
661 clear_bit(__IGB_DOWN, &adapter->state);
662
663 napi_enable(&adapter->napi);
664
665 if (adapter->msix_entries) {
666 for (i = 0; i < adapter->num_rx_queues; i++)
667 napi_enable(&adapter->rx_ring[i].napi);
668 igb_configure_msix(adapter);
669 }
670
671 /* Clear any pending interrupts. */
672 rd32(E1000_ICR);
673 igb_irq_enable(adapter);
674
675 /* Fire a link change interrupt to start the watchdog. */
676 wr32(E1000_ICS, E1000_ICS_LSC);
677 return 0;
678}
679
680void igb_down(struct igb_adapter *adapter)
681{
682 struct e1000_hw *hw = &adapter->hw;
683 struct net_device *netdev = adapter->netdev;
684 u32 tctl, rctl;
685 int i;
686
687 /* signal that we're down so the interrupt handler does not
688 * reschedule our watchdog timer */
689 set_bit(__IGB_DOWN, &adapter->state);
690
691 /* disable receives in the hardware */
692 rctl = rd32(E1000_RCTL);
693 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694 /* flush and sleep below */
695
696 netif_stop_queue(netdev);
697
698 /* disable transmits in the hardware */
699 tctl = rd32(E1000_TCTL);
700 tctl &= ~E1000_TCTL_EN;
701 wr32(E1000_TCTL, tctl);
702 /* flush both disables and wait for them to finish */
703 wrfl();
704 msleep(10);
705
706 napi_disable(&adapter->napi);
707
708 if (adapter->msix_entries)
709 for (i = 0; i < adapter->num_rx_queues; i++)
710 napi_disable(&adapter->rx_ring[i].napi);
711 igb_irq_disable(adapter);
712
713 del_timer_sync(&adapter->watchdog_timer);
714 del_timer_sync(&adapter->phy_info_timer);
715
716 netdev->tx_queue_len = adapter->tx_queue_len;
717 netif_carrier_off(netdev);
718 adapter->link_speed = 0;
719 adapter->link_duplex = 0;
720
721 igb_reset(adapter);
722 igb_clean_all_tx_rings(adapter);
723 igb_clean_all_rx_rings(adapter);
724}
725
726void igb_reinit_locked(struct igb_adapter *adapter)
727{
728 WARN_ON(in_interrupt());
729 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
730 msleep(1);
731 igb_down(adapter);
732 igb_up(adapter);
733 clear_bit(__IGB_RESETTING, &adapter->state);
734}
735
736void igb_reset(struct igb_adapter *adapter)
737{
738 struct e1000_hw *hw = &adapter->hw;
739 struct e1000_fc_info *fc = &adapter->hw.fc;
740 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
741 u16 hwm;
742
743 /* Repartition Pba for greater than 9k mtu
744 * To take effect CTRL.RST is required.
745 */
746 pba = E1000_PBA_34K;
747
748 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
749 /* adjust PBA for jumbo frames */
750 wr32(E1000_PBA, pba);
751
752 /* To maintain wire speed transmits, the Tx FIFO should be
753 * large enough to accommodate two full transmit packets,
754 * rounded up to the next 1KB and expressed in KB. Likewise,
755 * the Rx FIFO should be large enough to accommodate at least
756 * one full receive packet and is similarly rounded up and
757 * expressed in KB. */
758 pba = rd32(E1000_PBA);
759 /* upper 16 bits has Tx packet buffer allocation size in KB */
760 tx_space = pba >> 16;
761 /* lower 16 bits has Rx packet buffer allocation size in KB */
762 pba &= 0xffff;
763 /* the tx fifo also stores 16 bytes of information about the tx
764 * but don't include ethernet FCS because hardware appends it */
765 min_tx_space = (adapter->max_frame_size +
766 sizeof(struct e1000_tx_desc) -
767 ETH_FCS_LEN) * 2;
768 min_tx_space = ALIGN(min_tx_space, 1024);
769 min_tx_space >>= 10;
770 /* software strips receive CRC, so leave room for it */
771 min_rx_space = adapter->max_frame_size;
772 min_rx_space = ALIGN(min_rx_space, 1024);
773 min_rx_space >>= 10;
774
775 /* If current Tx allocation is less than the min Tx FIFO size,
776 * and the min Tx FIFO size is less than the current Rx FIFO
777 * allocation, take space away from current Rx allocation */
778 if (tx_space < min_tx_space &&
779 ((min_tx_space - tx_space) < pba)) {
780 pba = pba - (min_tx_space - tx_space);
781
782 /* if short on rx space, rx wins and must trump tx
783 * adjustment */
784 if (pba < min_rx_space)
785 pba = min_rx_space;
786 }
787 }
788 wr32(E1000_PBA, pba);
789
790 /* flow control settings */
791 /* The high water mark must be low enough to fit one full frame
792 * (or the size used for early receive) above it in the Rx FIFO.
793 * Set it to the lower of:
794 * - 90% of the Rx FIFO size, or
795 * - the full Rx FIFO size minus one full frame */
796 hwm = min(((pba << 10) * 9 / 10),
797 ((pba << 10) - adapter->max_frame_size));
798
799 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
800 fc->low_water = fc->high_water - 8;
801 fc->pause_time = 0xFFFF;
802 fc->send_xon = 1;
803 fc->type = fc->original_type;
804
805 /* Allow time for pending master requests to run */
806 adapter->hw.mac.ops.reset_hw(&adapter->hw);
807 wr32(E1000_WUC, 0);
808
809 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
810 dev_err(&adapter->pdev->dev, "Hardware Error\n");
811
812 igb_update_mng_vlan(adapter);
813
814 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
815 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
816
817 igb_reset_adaptive(&adapter->hw);
68707acb
BH
818 if (adapter->hw.phy.ops.get_phy_info)
819 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
820}
821
822/**
823 * igb_probe - Device Initialization Routine
824 * @pdev: PCI device information struct
825 * @ent: entry in igb_pci_tbl
826 *
827 * Returns 0 on success, negative on failure
828 *
829 * igb_probe initializes an adapter identified by a pci_dev structure.
830 * The OS initialization, configuring of the adapter private structure,
831 * and a hardware reset occur.
832 **/
833static int __devinit igb_probe(struct pci_dev *pdev,
834 const struct pci_device_id *ent)
835{
836 struct net_device *netdev;
837 struct igb_adapter *adapter;
838 struct e1000_hw *hw;
839 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
840 unsigned long mmio_start, mmio_len;
841 static int cards_found;
842 int i, err, pci_using_dac;
843 u16 eeprom_data = 0;
844 u16 eeprom_apme_mask = IGB_EEPROM_APME;
845 u32 part_num;
846
847 err = pci_enable_device(pdev);
848 if (err)
849 return err;
850
851 pci_using_dac = 0;
852 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
853 if (!err) {
854 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
855 if (!err)
856 pci_using_dac = 1;
857 } else {
858 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
859 if (err) {
860 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
861 if (err) {
862 dev_err(&pdev->dev, "No usable DMA "
863 "configuration, aborting\n");
864 goto err_dma;
865 }
866 }
867 }
868
869 err = pci_request_regions(pdev, igb_driver_name);
870 if (err)
871 goto err_pci_reg;
872
873 pci_set_master(pdev);
c682fc23 874 pci_save_state(pdev);
9d5c8243
AK
875
876 err = -ENOMEM;
877 netdev = alloc_etherdev(sizeof(struct igb_adapter));
878 if (!netdev)
879 goto err_alloc_etherdev;
880
881 SET_NETDEV_DEV(netdev, &pdev->dev);
882
883 pci_set_drvdata(pdev, netdev);
884 adapter = netdev_priv(netdev);
885 adapter->netdev = netdev;
886 adapter->pdev = pdev;
887 hw = &adapter->hw;
888 hw->back = adapter;
889 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
890
891 mmio_start = pci_resource_start(pdev, 0);
892 mmio_len = pci_resource_len(pdev, 0);
893
894 err = -EIO;
895 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
896 if (!adapter->hw.hw_addr)
897 goto err_ioremap;
898
899 netdev->open = &igb_open;
900 netdev->stop = &igb_close;
901 netdev->get_stats = &igb_get_stats;
902 netdev->set_multicast_list = &igb_set_multi;
903 netdev->set_mac_address = &igb_set_mac;
904 netdev->change_mtu = &igb_change_mtu;
905 netdev->do_ioctl = &igb_ioctl;
906 igb_set_ethtool_ops(netdev);
907 netdev->tx_timeout = &igb_tx_timeout;
908 netdev->watchdog_timeo = 5 * HZ;
909 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
910 netdev->vlan_rx_register = igb_vlan_rx_register;
911 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
912 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
913#ifdef CONFIG_NET_POLL_CONTROLLER
914 netdev->poll_controller = igb_netpoll;
915#endif
916 netdev->hard_start_xmit = &igb_xmit_frame_adv;
917
918 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
919
920 netdev->mem_start = mmio_start;
921 netdev->mem_end = mmio_start + mmio_len;
922
923 adapter->bd_number = cards_found;
924
925 /* PCI config space info */
926 hw->vendor_id = pdev->vendor;
927 hw->device_id = pdev->device;
928 hw->revision_id = pdev->revision;
929 hw->subsystem_vendor_id = pdev->subsystem_vendor;
930 hw->subsystem_device_id = pdev->subsystem_device;
931
932 /* setup the private structure */
933 hw->back = adapter;
934 /* Copy the default MAC, PHY and NVM function pointers */
935 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
936 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
937 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
938 /* Initialize skew-specific constants */
939 err = ei->get_invariants(hw);
940 if (err)
941 goto err_hw_init;
942
943 err = igb_sw_init(adapter);
944 if (err)
945 goto err_sw_init;
946
947 igb_get_bus_info_pcie(hw);
948
949 hw->phy.autoneg_wait_to_complete = false;
950 hw->mac.adaptive_ifs = true;
951
952 /* Copper options */
953 if (hw->phy.media_type == e1000_media_type_copper) {
954 hw->phy.mdix = AUTO_ALL_MODES;
955 hw->phy.disable_polarity_correction = false;
956 hw->phy.ms_type = e1000_ms_hw_default;
957 }
958
959 if (igb_check_reset_block(hw))
960 dev_info(&pdev->dev,
961 "PHY reset is blocked due to SOL/IDER session.\n");
962
963 netdev->features = NETIF_F_SG |
964 NETIF_F_HW_CSUM |
965 NETIF_F_HW_VLAN_TX |
966 NETIF_F_HW_VLAN_RX |
967 NETIF_F_HW_VLAN_FILTER;
968
969 netdev->features |= NETIF_F_TSO;
970
971 netdev->features |= NETIF_F_TSO6;
972 if (pci_using_dac)
973 netdev->features |= NETIF_F_HIGHDMA;
974
975 netdev->features |= NETIF_F_LLTX;
976 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
977
978 /* before reading the NVM, reset the controller to put the device in a
979 * known good starting state */
980 hw->mac.ops.reset_hw(hw);
981
982 /* make sure the NVM is good */
983 if (igb_validate_nvm_checksum(hw) < 0) {
984 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
985 err = -EIO;
986 goto err_eeprom;
987 }
988
989 /* copy the MAC address out of the NVM */
990 if (hw->mac.ops.read_mac_addr(hw))
991 dev_err(&pdev->dev, "NVM Read Error\n");
992
993 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
994 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
995
996 if (!is_valid_ether_addr(netdev->perm_addr)) {
997 dev_err(&pdev->dev, "Invalid MAC Address\n");
998 err = -EIO;
999 goto err_eeprom;
1000 }
1001
1002 init_timer(&adapter->watchdog_timer);
1003 adapter->watchdog_timer.function = &igb_watchdog;
1004 adapter->watchdog_timer.data = (unsigned long) adapter;
1005
1006 init_timer(&adapter->phy_info_timer);
1007 adapter->phy_info_timer.function = &igb_update_phy_info;
1008 adapter->phy_info_timer.data = (unsigned long) adapter;
1009
1010 INIT_WORK(&adapter->reset_task, igb_reset_task);
1011 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1012
1013 /* Initialize link & ring properties that are user-changeable */
1014 adapter->tx_ring->count = 256;
1015 for (i = 0; i < adapter->num_tx_queues; i++)
1016 adapter->tx_ring[i].count = adapter->tx_ring->count;
1017 adapter->rx_ring->count = 256;
1018 for (i = 0; i < adapter->num_rx_queues; i++)
1019 adapter->rx_ring[i].count = adapter->rx_ring->count;
1020
1021 adapter->fc_autoneg = true;
1022 hw->mac.autoneg = true;
1023 hw->phy.autoneg_advertised = 0x2f;
1024
1025 hw->fc.original_type = e1000_fc_default;
1026 hw->fc.type = e1000_fc_default;
1027
1028 adapter->itr_setting = 3;
1029 adapter->itr = IGB_START_ITR;
1030
1031 igb_validate_mdi_setting(hw);
1032
1033 adapter->rx_csum = 1;
1034
1035 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1036 * enable the ACPI Magic Packet filter
1037 */
1038
1039 if (hw->bus.func == 0 ||
1040 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1041 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1042 &eeprom_data);
1043
1044 if (eeprom_data & eeprom_apme_mask)
1045 adapter->eeprom_wol |= E1000_WUFC_MAG;
1046
1047 /* now that we have the eeprom settings, apply the special cases where
1048 * the eeprom may be wrong or the board simply won't support wake on
1049 * lan on a particular port */
1050 switch (pdev->device) {
1051 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1052 adapter->eeprom_wol = 0;
1053 break;
1054 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1055 /* Wake events only supported on port A for dual fiber
1056 * regardless of eeprom setting */
1057 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1058 adapter->eeprom_wol = 0;
1059 break;
1060 }
1061
1062 /* initialize the wol settings based on the eeprom settings */
1063 adapter->wol = adapter->eeprom_wol;
1064
1065 /* reset the hardware with the new settings */
1066 igb_reset(adapter);
1067
1068 /* let the f/w know that the h/w is now under the control of the
1069 * driver. */
1070 igb_get_hw_control(adapter);
1071
1072 /* tell the stack to leave us alone until igb_open() is called */
1073 netif_carrier_off(netdev);
1074 netif_stop_queue(netdev);
1075
1076 strcpy(netdev->name, "eth%d");
1077 err = register_netdev(netdev);
1078 if (err)
1079 goto err_register;
1080
1081 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1082 /* print bus type/speed/width info */
1083 dev_info(&pdev->dev,
1084 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1085 netdev->name,
1086 ((hw->bus.speed == e1000_bus_speed_2500)
1087 ? "2.5Gb/s" : "unknown"),
1088 ((hw->bus.width == e1000_bus_width_pcie_x4)
1089 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1090 ? "Width x1" : "unknown"),
1091 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1092 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1093
1094 igb_read_part_num(hw, &part_num);
1095 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1096 (part_num >> 8), (part_num & 0xff));
1097
1098 dev_info(&pdev->dev,
1099 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1100 adapter->msix_entries ? "MSI-X" :
1101 adapter->msi_enabled ? "MSI" : "legacy",
1102 adapter->num_rx_queues, adapter->num_tx_queues);
1103
1104 cards_found++;
1105 return 0;
1106
1107err_register:
1108 igb_release_hw_control(adapter);
1109err_eeprom:
1110 if (!igb_check_reset_block(hw))
1111 hw->phy.ops.reset_phy(hw);
1112
1113 if (hw->flash_address)
1114 iounmap(hw->flash_address);
1115
1116 igb_remove_device(hw);
1117 kfree(adapter->tx_ring);
1118 kfree(adapter->rx_ring);
1119err_sw_init:
1120err_hw_init:
1121 iounmap(hw->hw_addr);
1122err_ioremap:
1123 free_netdev(netdev);
1124err_alloc_etherdev:
1125 pci_release_regions(pdev);
1126err_pci_reg:
1127err_dma:
1128 pci_disable_device(pdev);
1129 return err;
1130}
1131
1132/**
1133 * igb_remove - Device Removal Routine
1134 * @pdev: PCI device information struct
1135 *
1136 * igb_remove is called by the PCI subsystem to alert the driver
1137 * that it should release a PCI device. The could be caused by a
1138 * Hot-Plug event, or because the driver is going to be removed from
1139 * memory.
1140 **/
1141static void __devexit igb_remove(struct pci_dev *pdev)
1142{
1143 struct net_device *netdev = pci_get_drvdata(pdev);
1144 struct igb_adapter *adapter = netdev_priv(netdev);
1145
1146 /* flush_scheduled work may reschedule our watchdog task, so
1147 * explicitly disable watchdog tasks from being rescheduled */
1148 set_bit(__IGB_DOWN, &adapter->state);
1149 del_timer_sync(&adapter->watchdog_timer);
1150 del_timer_sync(&adapter->phy_info_timer);
1151
1152 flush_scheduled_work();
1153
9d5c8243
AK
1154 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1155 * would have already happened in close and is redundant. */
1156 igb_release_hw_control(adapter);
1157
1158 unregister_netdev(netdev);
1159
1160 if (!igb_check_reset_block(&adapter->hw))
1161 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1162
1163 igb_remove_device(&adapter->hw);
1164 igb_reset_interrupt_capability(adapter);
1165
1166 kfree(adapter->tx_ring);
1167 kfree(adapter->rx_ring);
1168
1169 iounmap(adapter->hw.hw_addr);
1170 if (adapter->hw.flash_address)
1171 iounmap(adapter->hw.flash_address);
1172 pci_release_regions(pdev);
1173
1174 free_netdev(netdev);
1175
1176 pci_disable_device(pdev);
1177}
1178
1179/**
1180 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1181 * @adapter: board private structure to initialize
1182 *
1183 * igb_sw_init initializes the Adapter private data structure.
1184 * Fields are initialized based on PCI device information and
1185 * OS network device settings (MTU size).
1186 **/
1187static int __devinit igb_sw_init(struct igb_adapter *adapter)
1188{
1189 struct e1000_hw *hw = &adapter->hw;
1190 struct net_device *netdev = adapter->netdev;
1191 struct pci_dev *pdev = adapter->pdev;
1192
1193 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1194
1195 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1196 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1197 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1198 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1199
1200 /* Number of supported queues. */
1201 /* Having more queues than CPUs doesn't make sense. */
1202 adapter->num_tx_queues = 1;
1203 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1204
1205 igb_set_interrupt_capability(adapter);
1206
1207 if (igb_alloc_queues(adapter)) {
1208 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1209 return -ENOMEM;
1210 }
1211
1212 /* Explicitly disable IRQ since the NIC can be in any state. */
1213 igb_irq_disable(adapter);
1214
1215 set_bit(__IGB_DOWN, &adapter->state);
1216 return 0;
1217}
1218
1219/**
1220 * igb_open - Called when a network interface is made active
1221 * @netdev: network interface device structure
1222 *
1223 * Returns 0 on success, negative value on failure
1224 *
1225 * The open entry point is called when a network interface is made
1226 * active by the system (IFF_UP). At this point all resources needed
1227 * for transmit and receive operations are allocated, the interrupt
1228 * handler is registered with the OS, the watchdog timer is started,
1229 * and the stack is notified that the interface is ready.
1230 **/
1231static int igb_open(struct net_device *netdev)
1232{
1233 struct igb_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235 int err;
1236 int i;
1237
1238 /* disallow open during test */
1239 if (test_bit(__IGB_TESTING, &adapter->state))
1240 return -EBUSY;
1241
1242 /* allocate transmit descriptors */
1243 err = igb_setup_all_tx_resources(adapter);
1244 if (err)
1245 goto err_setup_tx;
1246
1247 /* allocate receive descriptors */
1248 err = igb_setup_all_rx_resources(adapter);
1249 if (err)
1250 goto err_setup_rx;
1251
1252 /* e1000_power_up_phy(adapter); */
1253
1254 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1255 if ((adapter->hw.mng_cookie.status &
1256 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1257 igb_update_mng_vlan(adapter);
1258
1259 /* before we allocate an interrupt, we must be ready to handle it.
1260 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1261 * as soon as we call pci_request_irq, so we have to setup our
1262 * clean_rx handler before we do so. */
1263 igb_configure(adapter);
1264
1265 err = igb_request_irq(adapter);
1266 if (err)
1267 goto err_req_irq;
1268
1269 /* From here on the code is the same as igb_up() */
1270 clear_bit(__IGB_DOWN, &adapter->state);
1271
1272 napi_enable(&adapter->napi);
1273 if (adapter->msix_entries)
1274 for (i = 0; i < adapter->num_rx_queues; i++)
1275 napi_enable(&adapter->rx_ring[i].napi);
1276
1277 igb_irq_enable(adapter);
1278
1279 /* Clear any pending interrupts. */
1280 rd32(E1000_ICR);
1281 /* Fire a link status change interrupt to start the watchdog. */
1282 wr32(E1000_ICS, E1000_ICS_LSC);
1283
1284 return 0;
1285
1286err_req_irq:
1287 igb_release_hw_control(adapter);
1288 /* e1000_power_down_phy(adapter); */
1289 igb_free_all_rx_resources(adapter);
1290err_setup_rx:
1291 igb_free_all_tx_resources(adapter);
1292err_setup_tx:
1293 igb_reset(adapter);
1294
1295 return err;
1296}
1297
1298/**
1299 * igb_close - Disables a network interface
1300 * @netdev: network interface device structure
1301 *
1302 * Returns 0, this is not allowed to fail
1303 *
1304 * The close entry point is called when an interface is de-activated
1305 * by the OS. The hardware is still under the driver's control, but
1306 * needs to be disabled. A global MAC reset is issued to stop the
1307 * hardware, and all transmit and receive resources are freed.
1308 **/
1309static int igb_close(struct net_device *netdev)
1310{
1311 struct igb_adapter *adapter = netdev_priv(netdev);
1312
1313 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1314 igb_down(adapter);
1315
1316 igb_free_irq(adapter);
1317
1318 igb_free_all_tx_resources(adapter);
1319 igb_free_all_rx_resources(adapter);
1320
1321 /* kill manageability vlan ID if supported, but not if a vlan with
1322 * the same ID is registered on the host OS (let 8021q kill it) */
1323 if ((adapter->hw.mng_cookie.status &
1324 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1325 !(adapter->vlgrp &&
1326 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1327 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1328
1329 return 0;
1330}
1331
1332/**
1333 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1334 * @adapter: board private structure
1335 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1336 *
1337 * Return 0 on success, negative on failure
1338 **/
1339
1340int igb_setup_tx_resources(struct igb_adapter *adapter,
1341 struct igb_ring *tx_ring)
1342{
1343 struct pci_dev *pdev = adapter->pdev;
1344 int size;
1345
1346 size = sizeof(struct igb_buffer) * tx_ring->count;
1347 tx_ring->buffer_info = vmalloc(size);
1348 if (!tx_ring->buffer_info)
1349 goto err;
1350 memset(tx_ring->buffer_info, 0, size);
1351
1352 /* round up to nearest 4K */
1353 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1354 + sizeof(u32);
1355 tx_ring->size = ALIGN(tx_ring->size, 4096);
1356
1357 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1358 &tx_ring->dma);
1359
1360 if (!tx_ring->desc)
1361 goto err;
1362
1363 tx_ring->adapter = adapter;
1364 tx_ring->next_to_use = 0;
1365 tx_ring->next_to_clean = 0;
1366 spin_lock_init(&tx_ring->tx_clean_lock);
1367 spin_lock_init(&tx_ring->tx_lock);
1368 return 0;
1369
1370err:
1371 vfree(tx_ring->buffer_info);
1372 dev_err(&adapter->pdev->dev,
1373 "Unable to allocate memory for the transmit descriptor ring\n");
1374 return -ENOMEM;
1375}
1376
1377/**
1378 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1379 * (Descriptors) for all queues
1380 * @adapter: board private structure
1381 *
1382 * Return 0 on success, negative on failure
1383 **/
1384static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1385{
1386 int i, err = 0;
1387
1388 for (i = 0; i < adapter->num_tx_queues; i++) {
1389 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1390 if (err) {
1391 dev_err(&adapter->pdev->dev,
1392 "Allocation for Tx Queue %u failed\n", i);
1393 for (i--; i >= 0; i--)
1394 igb_free_tx_resources(adapter,
1395 &adapter->tx_ring[i]);
1396 break;
1397 }
1398 }
1399
1400 return err;
1401}
1402
1403/**
1404 * igb_configure_tx - Configure transmit Unit after Reset
1405 * @adapter: board private structure
1406 *
1407 * Configure the Tx unit of the MAC after a reset.
1408 **/
1409static void igb_configure_tx(struct igb_adapter *adapter)
1410{
1411 u64 tdba, tdwba;
1412 struct e1000_hw *hw = &adapter->hw;
1413 u32 tctl;
1414 u32 txdctl, txctrl;
1415 int i;
1416
1417 for (i = 0; i < adapter->num_tx_queues; i++) {
1418 struct igb_ring *ring = &(adapter->tx_ring[i]);
1419
1420 wr32(E1000_TDLEN(i),
1421 ring->count * sizeof(struct e1000_tx_desc));
1422 tdba = ring->dma;
1423 wr32(E1000_TDBAL(i),
1424 tdba & 0x00000000ffffffffULL);
1425 wr32(E1000_TDBAH(i), tdba >> 32);
1426
1427 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1428 tdwba |= 1; /* enable head wb */
1429 wr32(E1000_TDWBAL(i),
1430 tdwba & 0x00000000ffffffffULL);
1431 wr32(E1000_TDWBAH(i), tdwba >> 32);
1432
1433 ring->head = E1000_TDH(i);
1434 ring->tail = E1000_TDT(i);
1435 writel(0, hw->hw_addr + ring->tail);
1436 writel(0, hw->hw_addr + ring->head);
1437 txdctl = rd32(E1000_TXDCTL(i));
1438 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1439 wr32(E1000_TXDCTL(i), txdctl);
1440
1441 /* Turn off Relaxed Ordering on head write-backs. The
1442 * writebacks MUST be delivered in order or it will
1443 * completely screw up our bookeeping.
1444 */
1445 txctrl = rd32(E1000_DCA_TXCTRL(i));
1446 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1447 wr32(E1000_DCA_TXCTRL(i), txctrl);
1448 }
1449
1450
1451
1452 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1453
1454 /* Program the Transmit Control Register */
1455
1456 tctl = rd32(E1000_TCTL);
1457 tctl &= ~E1000_TCTL_CT;
1458 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1459 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1460
1461 igb_config_collision_dist(hw);
1462
1463 /* Setup Transmit Descriptor Settings for eop descriptor */
1464 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1465
1466 /* Enable transmits */
1467 tctl |= E1000_TCTL_EN;
1468
1469 wr32(E1000_TCTL, tctl);
1470}
1471
1472/**
1473 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1474 * @adapter: board private structure
1475 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1476 *
1477 * Returns 0 on success, negative on failure
1478 **/
1479
1480int igb_setup_rx_resources(struct igb_adapter *adapter,
1481 struct igb_ring *rx_ring)
1482{
1483 struct pci_dev *pdev = adapter->pdev;
1484 int size, desc_len;
1485
1486 size = sizeof(struct igb_buffer) * rx_ring->count;
1487 rx_ring->buffer_info = vmalloc(size);
1488 if (!rx_ring->buffer_info)
1489 goto err;
1490 memset(rx_ring->buffer_info, 0, size);
1491
1492 desc_len = sizeof(union e1000_adv_rx_desc);
1493
1494 /* Round up to nearest 4K */
1495 rx_ring->size = rx_ring->count * desc_len;
1496 rx_ring->size = ALIGN(rx_ring->size, 4096);
1497
1498 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1499 &rx_ring->dma);
1500
1501 if (!rx_ring->desc)
1502 goto err;
1503
1504 rx_ring->next_to_clean = 0;
1505 rx_ring->next_to_use = 0;
1506 rx_ring->pending_skb = NULL;
1507
1508 rx_ring->adapter = adapter;
1509 /* FIXME: do we want to setup ring->napi->poll here? */
1510 rx_ring->napi.poll = adapter->napi.poll;
1511
1512 return 0;
1513
1514err:
1515 vfree(rx_ring->buffer_info);
1516 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1517 "the receive descriptor ring\n");
1518 return -ENOMEM;
1519}
1520
1521/**
1522 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1523 * (Descriptors) for all queues
1524 * @adapter: board private structure
1525 *
1526 * Return 0 on success, negative on failure
1527 **/
1528static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1529{
1530 int i, err = 0;
1531
1532 for (i = 0; i < adapter->num_rx_queues; i++) {
1533 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1534 if (err) {
1535 dev_err(&adapter->pdev->dev,
1536 "Allocation for Rx Queue %u failed\n", i);
1537 for (i--; i >= 0; i--)
1538 igb_free_rx_resources(adapter,
1539 &adapter->rx_ring[i]);
1540 break;
1541 }
1542 }
1543
1544 return err;
1545}
1546
1547/**
1548 * igb_setup_rctl - configure the receive control registers
1549 * @adapter: Board private structure
1550 **/
1551static void igb_setup_rctl(struct igb_adapter *adapter)
1552{
1553 struct e1000_hw *hw = &adapter->hw;
1554 u32 rctl;
1555 u32 srrctl = 0;
1556 int i;
1557
1558 rctl = rd32(E1000_RCTL);
1559
1560 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1561
1562 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1563 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1564 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1565
1566 /* disable the stripping of CRC because it breaks
1567 * BMC firmware connected over SMBUS
1568 rctl |= E1000_RCTL_SECRC;
1569 */
1570
1571 rctl &= ~E1000_RCTL_SBP;
1572
1573 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1574 rctl &= ~E1000_RCTL_LPE;
1575 else
1576 rctl |= E1000_RCTL_LPE;
1577 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1578 /* Setup buffer sizes */
1579 rctl &= ~E1000_RCTL_SZ_4096;
1580 rctl |= E1000_RCTL_BSEX;
1581 switch (adapter->rx_buffer_len) {
1582 case IGB_RXBUFFER_256:
1583 rctl |= E1000_RCTL_SZ_256;
1584 rctl &= ~E1000_RCTL_BSEX;
1585 break;
1586 case IGB_RXBUFFER_512:
1587 rctl |= E1000_RCTL_SZ_512;
1588 rctl &= ~E1000_RCTL_BSEX;
1589 break;
1590 case IGB_RXBUFFER_1024:
1591 rctl |= E1000_RCTL_SZ_1024;
1592 rctl &= ~E1000_RCTL_BSEX;
1593 break;
1594 case IGB_RXBUFFER_2048:
1595 default:
1596 rctl |= E1000_RCTL_SZ_2048;
1597 rctl &= ~E1000_RCTL_BSEX;
1598 break;
1599 case IGB_RXBUFFER_4096:
1600 rctl |= E1000_RCTL_SZ_4096;
1601 break;
1602 case IGB_RXBUFFER_8192:
1603 rctl |= E1000_RCTL_SZ_8192;
1604 break;
1605 case IGB_RXBUFFER_16384:
1606 rctl |= E1000_RCTL_SZ_16384;
1607 break;
1608 }
1609 } else {
1610 rctl &= ~E1000_RCTL_BSEX;
1611 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1612 }
1613
1614 /* 82575 and greater support packet-split where the protocol
1615 * header is placed in skb->data and the packet data is
1616 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1617 * In the case of a non-split, skb->data is linearly filled,
1618 * followed by the page buffers. Therefore, skb->data is
1619 * sized to hold the largest protocol header.
1620 */
1621 /* allocations using alloc_page take too long for regular MTU
1622 * so only enable packet split for jumbo frames */
1623 if (rctl & E1000_RCTL_LPE) {
1624 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1625 srrctl = adapter->rx_ps_hdr_size <<
1626 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1627 /* buffer size is ALWAYS one page */
1628 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1629 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1630 } else {
1631 adapter->rx_ps_hdr_size = 0;
1632 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1633 }
1634
1635 for (i = 0; i < adapter->num_rx_queues; i++)
1636 wr32(E1000_SRRCTL(i), srrctl);
1637
1638 wr32(E1000_RCTL, rctl);
1639}
1640
1641/**
1642 * igb_configure_rx - Configure receive Unit after Reset
1643 * @adapter: board private structure
1644 *
1645 * Configure the Rx unit of the MAC after a reset.
1646 **/
1647static void igb_configure_rx(struct igb_adapter *adapter)
1648{
1649 u64 rdba;
1650 struct e1000_hw *hw = &adapter->hw;
1651 u32 rctl, rxcsum;
1652 u32 rxdctl;
1653 int i;
1654
1655 /* disable receives while setting up the descriptors */
1656 rctl = rd32(E1000_RCTL);
1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 wrfl();
1659 mdelay(10);
1660
1661 if (adapter->itr_setting > 3)
1662 wr32(E1000_ITR,
1663 1000000000 / (adapter->itr * 256));
1664
1665 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1666 * the Base and Length of the Rx Descriptor Ring */
1667 for (i = 0; i < adapter->num_rx_queues; i++) {
1668 struct igb_ring *ring = &(adapter->rx_ring[i]);
1669 rdba = ring->dma;
1670 wr32(E1000_RDBAL(i),
1671 rdba & 0x00000000ffffffffULL);
1672 wr32(E1000_RDBAH(i), rdba >> 32);
1673 wr32(E1000_RDLEN(i),
1674 ring->count * sizeof(union e1000_adv_rx_desc));
1675
1676 ring->head = E1000_RDH(i);
1677 ring->tail = E1000_RDT(i);
1678 writel(0, hw->hw_addr + ring->tail);
1679 writel(0, hw->hw_addr + ring->head);
1680
1681 rxdctl = rd32(E1000_RXDCTL(i));
1682 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1683 rxdctl &= 0xFFF00000;
1684 rxdctl |= IGB_RX_PTHRESH;
1685 rxdctl |= IGB_RX_HTHRESH << 8;
1686 rxdctl |= IGB_RX_WTHRESH << 16;
1687 wr32(E1000_RXDCTL(i), rxdctl);
1688 }
1689
1690 if (adapter->num_rx_queues > 1) {
1691 u32 random[10];
1692 u32 mrqc;
1693 u32 j, shift;
1694 union e1000_reta {
1695 u32 dword;
1696 u8 bytes[4];
1697 } reta;
1698
1699 get_random_bytes(&random[0], 40);
1700
1701 shift = 6;
1702 for (j = 0; j < (32 * 4); j++) {
1703 reta.bytes[j & 3] =
1704 (j % adapter->num_rx_queues) << shift;
1705 if ((j & 3) == 3)
1706 writel(reta.dword,
1707 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1708 }
1709 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1710
1711 /* Fill out hash function seeds */
1712 for (j = 0; j < 10; j++)
1713 array_wr32(E1000_RSSRK(0), j, random[j]);
1714
1715 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1716 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1717 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1718 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1719 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1720 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1721 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1722 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1723
1724
1725 wr32(E1000_MRQC, mrqc);
1726
1727 /* Multiqueue and raw packet checksumming are mutually
1728 * exclusive. Note that this not the same as TCP/IP
1729 * checksumming, which works fine. */
1730 rxcsum = rd32(E1000_RXCSUM);
1731 rxcsum |= E1000_RXCSUM_PCSD;
1732 wr32(E1000_RXCSUM, rxcsum);
1733 } else {
1734 /* Enable Receive Checksum Offload for TCP and UDP */
1735 rxcsum = rd32(E1000_RXCSUM);
1736 if (adapter->rx_csum) {
1737 rxcsum |= E1000_RXCSUM_TUOFL;
1738
1739 /* Enable IPv4 payload checksum for UDP fragments
1740 * Must be used in conjunction with packet-split. */
1741 if (adapter->rx_ps_hdr_size)
1742 rxcsum |= E1000_RXCSUM_IPPCSE;
1743 } else {
1744 rxcsum &= ~E1000_RXCSUM_TUOFL;
1745 /* don't need to clear IPPCSE as it defaults to 0 */
1746 }
1747 wr32(E1000_RXCSUM, rxcsum);
1748 }
1749
1750 if (adapter->vlgrp)
1751 wr32(E1000_RLPML,
1752 adapter->max_frame_size + VLAN_TAG_SIZE);
1753 else
1754 wr32(E1000_RLPML, adapter->max_frame_size);
1755
1756 /* Enable Receives */
1757 wr32(E1000_RCTL, rctl);
1758}
1759
1760/**
1761 * igb_free_tx_resources - Free Tx Resources per Queue
1762 * @adapter: board private structure
1763 * @tx_ring: Tx descriptor ring for a specific queue
1764 *
1765 * Free all transmit software resources
1766 **/
1767static void igb_free_tx_resources(struct igb_adapter *adapter,
1768 struct igb_ring *tx_ring)
1769{
1770 struct pci_dev *pdev = adapter->pdev;
1771
1772 igb_clean_tx_ring(adapter, tx_ring);
1773
1774 vfree(tx_ring->buffer_info);
1775 tx_ring->buffer_info = NULL;
1776
1777 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1778
1779 tx_ring->desc = NULL;
1780}
1781
1782/**
1783 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1784 * @adapter: board private structure
1785 *
1786 * Free all transmit software resources
1787 **/
1788static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1789{
1790 int i;
1791
1792 for (i = 0; i < adapter->num_tx_queues; i++)
1793 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1794}
1795
1796static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1797 struct igb_buffer *buffer_info)
1798{
1799 if (buffer_info->dma) {
1800 pci_unmap_page(adapter->pdev,
1801 buffer_info->dma,
1802 buffer_info->length,
1803 PCI_DMA_TODEVICE);
1804 buffer_info->dma = 0;
1805 }
1806 if (buffer_info->skb) {
1807 dev_kfree_skb_any(buffer_info->skb);
1808 buffer_info->skb = NULL;
1809 }
1810 buffer_info->time_stamp = 0;
1811 /* buffer_info must be completely set up in the transmit path */
1812}
1813
1814/**
1815 * igb_clean_tx_ring - Free Tx Buffers
1816 * @adapter: board private structure
1817 * @tx_ring: ring to be cleaned
1818 **/
1819static void igb_clean_tx_ring(struct igb_adapter *adapter,
1820 struct igb_ring *tx_ring)
1821{
1822 struct igb_buffer *buffer_info;
1823 unsigned long size;
1824 unsigned int i;
1825
1826 if (!tx_ring->buffer_info)
1827 return;
1828 /* Free all the Tx ring sk_buffs */
1829
1830 for (i = 0; i < tx_ring->count; i++) {
1831 buffer_info = &tx_ring->buffer_info[i];
1832 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1833 }
1834
1835 size = sizeof(struct igb_buffer) * tx_ring->count;
1836 memset(tx_ring->buffer_info, 0, size);
1837
1838 /* Zero out the descriptor ring */
1839
1840 memset(tx_ring->desc, 0, tx_ring->size);
1841
1842 tx_ring->next_to_use = 0;
1843 tx_ring->next_to_clean = 0;
1844
1845 writel(0, adapter->hw.hw_addr + tx_ring->head);
1846 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1847}
1848
1849/**
1850 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1851 * @adapter: board private structure
1852 **/
1853static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1854{
1855 int i;
1856
1857 for (i = 0; i < adapter->num_tx_queues; i++)
1858 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1859}
1860
1861/**
1862 * igb_free_rx_resources - Free Rx Resources
1863 * @adapter: board private structure
1864 * @rx_ring: ring to clean the resources from
1865 *
1866 * Free all receive software resources
1867 **/
1868static void igb_free_rx_resources(struct igb_adapter *adapter,
1869 struct igb_ring *rx_ring)
1870{
1871 struct pci_dev *pdev = adapter->pdev;
1872
1873 igb_clean_rx_ring(adapter, rx_ring);
1874
1875 vfree(rx_ring->buffer_info);
1876 rx_ring->buffer_info = NULL;
1877
1878 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1879
1880 rx_ring->desc = NULL;
1881}
1882
1883/**
1884 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1885 * @adapter: board private structure
1886 *
1887 * Free all receive software resources
1888 **/
1889static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1890{
1891 int i;
1892
1893 for (i = 0; i < adapter->num_rx_queues; i++)
1894 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1895}
1896
1897/**
1898 * igb_clean_rx_ring - Free Rx Buffers per Queue
1899 * @adapter: board private structure
1900 * @rx_ring: ring to free buffers from
1901 **/
1902static void igb_clean_rx_ring(struct igb_adapter *adapter,
1903 struct igb_ring *rx_ring)
1904{
1905 struct igb_buffer *buffer_info;
1906 struct pci_dev *pdev = adapter->pdev;
1907 unsigned long size;
1908 unsigned int i;
1909
1910 if (!rx_ring->buffer_info)
1911 return;
1912 /* Free all the Rx ring sk_buffs */
1913 for (i = 0; i < rx_ring->count; i++) {
1914 buffer_info = &rx_ring->buffer_info[i];
1915 if (buffer_info->dma) {
1916 if (adapter->rx_ps_hdr_size)
1917 pci_unmap_single(pdev, buffer_info->dma,
1918 adapter->rx_ps_hdr_size,
1919 PCI_DMA_FROMDEVICE);
1920 else
1921 pci_unmap_single(pdev, buffer_info->dma,
1922 adapter->rx_buffer_len,
1923 PCI_DMA_FROMDEVICE);
1924 buffer_info->dma = 0;
1925 }
1926
1927 if (buffer_info->skb) {
1928 dev_kfree_skb(buffer_info->skb);
1929 buffer_info->skb = NULL;
1930 }
1931 if (buffer_info->page) {
1932 pci_unmap_page(pdev, buffer_info->page_dma,
1933 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1934 put_page(buffer_info->page);
1935 buffer_info->page = NULL;
1936 buffer_info->page_dma = 0;
1937 }
1938 }
1939
1940 /* there also may be some cached data from a chained receive */
1941 if (rx_ring->pending_skb) {
1942 dev_kfree_skb(rx_ring->pending_skb);
1943 rx_ring->pending_skb = NULL;
1944 }
1945
1946 size = sizeof(struct igb_buffer) * rx_ring->count;
1947 memset(rx_ring->buffer_info, 0, size);
1948
1949 /* Zero out the descriptor ring */
1950 memset(rx_ring->desc, 0, rx_ring->size);
1951
1952 rx_ring->next_to_clean = 0;
1953 rx_ring->next_to_use = 0;
1954
1955 writel(0, adapter->hw.hw_addr + rx_ring->head);
1956 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1957}
1958
1959/**
1960 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1961 * @adapter: board private structure
1962 **/
1963static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1964{
1965 int i;
1966
1967 for (i = 0; i < adapter->num_rx_queues; i++)
1968 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1969}
1970
1971/**
1972 * igb_set_mac - Change the Ethernet Address of the NIC
1973 * @netdev: network interface device structure
1974 * @p: pointer to an address structure
1975 *
1976 * Returns 0 on success, negative on failure
1977 **/
1978static int igb_set_mac(struct net_device *netdev, void *p)
1979{
1980 struct igb_adapter *adapter = netdev_priv(netdev);
1981 struct sockaddr *addr = p;
1982
1983 if (!is_valid_ether_addr(addr->sa_data))
1984 return -EADDRNOTAVAIL;
1985
1986 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1987 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1988
1989 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1990
1991 return 0;
1992}
1993
1994/**
1995 * igb_set_multi - Multicast and Promiscuous mode set
1996 * @netdev: network interface device structure
1997 *
1998 * The set_multi entry point is called whenever the multicast address
1999 * list or the network interface flags are updated. This routine is
2000 * responsible for configuring the hardware for proper multicast,
2001 * promiscuous mode, and all-multi behavior.
2002 **/
2003static void igb_set_multi(struct net_device *netdev)
2004{
2005 struct igb_adapter *adapter = netdev_priv(netdev);
2006 struct e1000_hw *hw = &adapter->hw;
2007 struct e1000_mac_info *mac = &hw->mac;
2008 struct dev_mc_list *mc_ptr;
2009 u8 *mta_list;
2010 u32 rctl;
2011 int i;
2012
2013 /* Check for Promiscuous and All Multicast modes */
2014
2015 rctl = rd32(E1000_RCTL);
2016
2017 if (netdev->flags & IFF_PROMISC)
2018 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2019 else if (netdev->flags & IFF_ALLMULTI) {
2020 rctl |= E1000_RCTL_MPE;
2021 rctl &= ~E1000_RCTL_UPE;
2022 } else
2023 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2024
2025 wr32(E1000_RCTL, rctl);
2026
2027 if (!netdev->mc_count) {
2028 /* nothing to program, so clear mc list */
2029 igb_update_mc_addr_list(hw, NULL, 0, 1,
2030 mac->rar_entry_count);
2031 return;
2032 }
2033
2034 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2035 if (!mta_list)
2036 return;
2037
2038 /* The shared function expects a packed array of only addresses. */
2039 mc_ptr = netdev->mc_list;
2040
2041 for (i = 0; i < netdev->mc_count; i++) {
2042 if (!mc_ptr)
2043 break;
2044 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2045 mc_ptr = mc_ptr->next;
2046 }
2047 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2048 kfree(mta_list);
2049}
2050
2051/* Need to wait a few seconds after link up to get diagnostic information from
2052 * the phy */
2053static void igb_update_phy_info(unsigned long data)
2054{
2055 struct igb_adapter *adapter = (struct igb_adapter *) data;
68707acb
BH
2056 if (adapter->hw.phy.ops.get_phy_info)
2057 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
2058}
2059
2060/**
2061 * igb_watchdog - Timer Call-back
2062 * @data: pointer to adapter cast into an unsigned long
2063 **/
2064static void igb_watchdog(unsigned long data)
2065{
2066 struct igb_adapter *adapter = (struct igb_adapter *)data;
2067 /* Do the rest outside of interrupt context */
2068 schedule_work(&adapter->watchdog_task);
2069}
2070
2071static void igb_watchdog_task(struct work_struct *work)
2072{
2073 struct igb_adapter *adapter = container_of(work,
2074 struct igb_adapter, watchdog_task);
2075 struct e1000_hw *hw = &adapter->hw;
2076
2077 struct net_device *netdev = adapter->netdev;
2078 struct igb_ring *tx_ring = adapter->tx_ring;
2079 struct e1000_mac_info *mac = &adapter->hw.mac;
2080 u32 link;
2081 s32 ret_val;
2082
2083 if ((netif_carrier_ok(netdev)) &&
2084 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2085 goto link_up;
2086
2087 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2088 if ((ret_val == E1000_ERR_PHY) &&
2089 (hw->phy.type == e1000_phy_igp_3) &&
2090 (rd32(E1000_CTRL) &
2091 E1000_PHY_CTRL_GBE_DISABLE))
2092 dev_info(&adapter->pdev->dev,
2093 "Gigabit has been disabled, downgrading speed\n");
2094
2095 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2096 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2097 link = mac->serdes_has_link;
2098 else
2099 link = rd32(E1000_STATUS) &
2100 E1000_STATUS_LU;
2101
2102 if (link) {
2103 if (!netif_carrier_ok(netdev)) {
2104 u32 ctrl;
2105 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2106 &adapter->link_speed,
2107 &adapter->link_duplex);
2108
2109 ctrl = rd32(E1000_CTRL);
2110 dev_info(&adapter->pdev->dev,
2111 "NIC Link is Up %d Mbps %s, "
2112 "Flow Control: %s\n",
2113 adapter->link_speed,
2114 adapter->link_duplex == FULL_DUPLEX ?
2115 "Full Duplex" : "Half Duplex",
2116 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2117 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2118 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2119 E1000_CTRL_TFCE) ? "TX" : "None")));
2120
2121 /* tweak tx_queue_len according to speed/duplex and
2122 * adjust the timeout factor */
2123 netdev->tx_queue_len = adapter->tx_queue_len;
2124 adapter->tx_timeout_factor = 1;
2125 switch (adapter->link_speed) {
2126 case SPEED_10:
2127 netdev->tx_queue_len = 10;
2128 adapter->tx_timeout_factor = 14;
2129 break;
2130 case SPEED_100:
2131 netdev->tx_queue_len = 100;
2132 /* maybe add some timeout factor ? */
2133 break;
2134 }
2135
2136 netif_carrier_on(netdev);
2137 netif_wake_queue(netdev);
2138
2139 if (!test_bit(__IGB_DOWN, &adapter->state))
2140 mod_timer(&adapter->phy_info_timer,
2141 round_jiffies(jiffies + 2 * HZ));
2142 }
2143 } else {
2144 if (netif_carrier_ok(netdev)) {
2145 adapter->link_speed = 0;
2146 adapter->link_duplex = 0;
2147 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2148 netif_carrier_off(netdev);
2149 netif_stop_queue(netdev);
2150 if (!test_bit(__IGB_DOWN, &adapter->state))
2151 mod_timer(&adapter->phy_info_timer,
2152 round_jiffies(jiffies + 2 * HZ));
2153 }
2154 }
2155
2156link_up:
2157 igb_update_stats(adapter);
2158
2159 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2160 adapter->tpt_old = adapter->stats.tpt;
2161 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2162 adapter->colc_old = adapter->stats.colc;
2163
2164 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2165 adapter->gorc_old = adapter->stats.gorc;
2166 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2167 adapter->gotc_old = adapter->stats.gotc;
2168
2169 igb_update_adaptive(&adapter->hw);
2170
2171 if (!netif_carrier_ok(netdev)) {
2172 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2173 /* We've lost link, so the controller stops DMA,
2174 * but we've got queued Tx work that's never going
2175 * to get done, so reset controller to flush Tx.
2176 * (Do the reset outside of interrupt context). */
2177 adapter->tx_timeout_count++;
2178 schedule_work(&adapter->reset_task);
2179 }
2180 }
2181
2182 /* Cause software interrupt to ensure rx ring is cleaned */
2183 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2184
2185 /* Force detection of hung controller every watchdog period */
2186 tx_ring->detect_tx_hung = true;
2187
2188 /* Reset the timer */
2189 if (!test_bit(__IGB_DOWN, &adapter->state))
2190 mod_timer(&adapter->watchdog_timer,
2191 round_jiffies(jiffies + 2 * HZ));
2192}
2193
2194enum latency_range {
2195 lowest_latency = 0,
2196 low_latency = 1,
2197 bulk_latency = 2,
2198 latency_invalid = 255
2199};
2200
2201
2202static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2203 struct igb_ring *rx_ring)
2204{
2205 struct e1000_hw *hw = &adapter->hw;
2206 int new_val;
2207
2208 new_val = rx_ring->itr_val / 2;
2209 if (new_val < IGB_MIN_DYN_ITR)
2210 new_val = IGB_MIN_DYN_ITR;
2211
2212 if (new_val != rx_ring->itr_val) {
2213 rx_ring->itr_val = new_val;
2214 wr32(rx_ring->itr_register,
2215 1000000000 / (new_val * 256));
2216 }
2217}
2218
2219static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2220 struct igb_ring *rx_ring)
2221{
2222 struct e1000_hw *hw = &adapter->hw;
2223 int new_val;
2224
2225 new_val = rx_ring->itr_val * 2;
2226 if (new_val > IGB_MAX_DYN_ITR)
2227 new_val = IGB_MAX_DYN_ITR;
2228
2229 if (new_val != rx_ring->itr_val) {
2230 rx_ring->itr_val = new_val;
2231 wr32(rx_ring->itr_register,
2232 1000000000 / (new_val * 256));
2233 }
2234}
2235
2236/**
2237 * igb_update_itr - update the dynamic ITR value based on statistics
2238 * Stores a new ITR value based on packets and byte
2239 * counts during the last interrupt. The advantage of per interrupt
2240 * computation is faster updates and more accurate ITR for the current
2241 * traffic pattern. Constants in this function were computed
2242 * based on theoretical maximum wire speed and thresholds were set based
2243 * on testing data as well as attempting to minimize response time
2244 * while increasing bulk throughput.
2245 * this functionality is controlled by the InterruptThrottleRate module
2246 * parameter (see igb_param.c)
2247 * NOTE: These calculations are only valid when operating in a single-
2248 * queue environment.
2249 * @adapter: pointer to adapter
2250 * @itr_setting: current adapter->itr
2251 * @packets: the number of packets during this measurement interval
2252 * @bytes: the number of bytes during this measurement interval
2253 **/
2254static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2255 int packets, int bytes)
2256{
2257 unsigned int retval = itr_setting;
2258
2259 if (packets == 0)
2260 goto update_itr_done;
2261
2262 switch (itr_setting) {
2263 case lowest_latency:
2264 /* handle TSO and jumbo frames */
2265 if (bytes/packets > 8000)
2266 retval = bulk_latency;
2267 else if ((packets < 5) && (bytes > 512))
2268 retval = low_latency;
2269 break;
2270 case low_latency: /* 50 usec aka 20000 ints/s */
2271 if (bytes > 10000) {
2272 /* this if handles the TSO accounting */
2273 if (bytes/packets > 8000) {
2274 retval = bulk_latency;
2275 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2276 retval = bulk_latency;
2277 } else if ((packets > 35)) {
2278 retval = lowest_latency;
2279 }
2280 } else if (bytes/packets > 2000) {
2281 retval = bulk_latency;
2282 } else if (packets <= 2 && bytes < 512) {
2283 retval = lowest_latency;
2284 }
2285 break;
2286 case bulk_latency: /* 250 usec aka 4000 ints/s */
2287 if (bytes > 25000) {
2288 if (packets > 35)
2289 retval = low_latency;
2290 } else if (bytes < 6000) {
2291 retval = low_latency;
2292 }
2293 break;
2294 }
2295
2296update_itr_done:
2297 return retval;
2298}
2299
2300static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2301 int rx_only)
2302{
2303 u16 current_itr;
2304 u32 new_itr = adapter->itr;
2305
2306 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2307 if (adapter->link_speed != SPEED_1000) {
2308 current_itr = 0;
2309 new_itr = 4000;
2310 goto set_itr_now;
2311 }
2312
2313 adapter->rx_itr = igb_update_itr(adapter,
2314 adapter->rx_itr,
2315 adapter->rx_ring->total_packets,
2316 adapter->rx_ring->total_bytes);
2317 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2318 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2319 adapter->rx_itr = low_latency;
2320
2321 if (!rx_only) {
2322 adapter->tx_itr = igb_update_itr(adapter,
2323 adapter->tx_itr,
2324 adapter->tx_ring->total_packets,
2325 adapter->tx_ring->total_bytes);
2326 /* conservative mode (itr 3) eliminates the
2327 * lowest_latency setting */
2328 if (adapter->itr_setting == 3 &&
2329 adapter->tx_itr == lowest_latency)
2330 adapter->tx_itr = low_latency;
2331
2332 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2333 } else {
2334 current_itr = adapter->rx_itr;
2335 }
2336
2337 switch (current_itr) {
2338 /* counts and packets in update_itr are dependent on these numbers */
2339 case lowest_latency:
2340 new_itr = 70000;
2341 break;
2342 case low_latency:
2343 new_itr = 20000; /* aka hwitr = ~200 */
2344 break;
2345 case bulk_latency:
2346 new_itr = 4000;
2347 break;
2348 default:
2349 break;
2350 }
2351
2352set_itr_now:
2353 if (new_itr != adapter->itr) {
2354 /* this attempts to bias the interrupt rate towards Bulk
2355 * by adding intermediate steps when interrupt rate is
2356 * increasing */
2357 new_itr = new_itr > adapter->itr ?
2358 min(adapter->itr + (new_itr >> 2), new_itr) :
2359 new_itr;
2360 /* Don't write the value here; it resets the adapter's
2361 * internal timer, and causes us to delay far longer than
2362 * we should between interrupts. Instead, we write the ITR
2363 * value at the beginning of the next interrupt so the timing
2364 * ends up being correct.
2365 */
2366 adapter->itr = new_itr;
2367 adapter->set_itr = 1;
2368 }
2369
2370 return;
2371}
2372
2373
2374#define IGB_TX_FLAGS_CSUM 0x00000001
2375#define IGB_TX_FLAGS_VLAN 0x00000002
2376#define IGB_TX_FLAGS_TSO 0x00000004
2377#define IGB_TX_FLAGS_IPV4 0x00000008
2378#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2379#define IGB_TX_FLAGS_VLAN_SHIFT 16
2380
2381static inline int igb_tso_adv(struct igb_adapter *adapter,
2382 struct igb_ring *tx_ring,
2383 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2384{
2385 struct e1000_adv_tx_context_desc *context_desc;
2386 unsigned int i;
2387 int err;
2388 struct igb_buffer *buffer_info;
2389 u32 info = 0, tu_cmd = 0;
2390 u32 mss_l4len_idx, l4len;
2391 *hdr_len = 0;
2392
2393 if (skb_header_cloned(skb)) {
2394 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2395 if (err)
2396 return err;
2397 }
2398
2399 l4len = tcp_hdrlen(skb);
2400 *hdr_len += l4len;
2401
2402 if (skb->protocol == htons(ETH_P_IP)) {
2403 struct iphdr *iph = ip_hdr(skb);
2404 iph->tot_len = 0;
2405 iph->check = 0;
2406 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2407 iph->daddr, 0,
2408 IPPROTO_TCP,
2409 0);
2410 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2411 ipv6_hdr(skb)->payload_len = 0;
2412 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2413 &ipv6_hdr(skb)->daddr,
2414 0, IPPROTO_TCP, 0);
2415 }
2416
2417 i = tx_ring->next_to_use;
2418
2419 buffer_info = &tx_ring->buffer_info[i];
2420 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2421 /* VLAN MACLEN IPLEN */
2422 if (tx_flags & IGB_TX_FLAGS_VLAN)
2423 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2424 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2425 *hdr_len += skb_network_offset(skb);
2426 info |= skb_network_header_len(skb);
2427 *hdr_len += skb_network_header_len(skb);
2428 context_desc->vlan_macip_lens = cpu_to_le32(info);
2429
2430 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2431 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2432
2433 if (skb->protocol == htons(ETH_P_IP))
2434 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2435 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2436
2437 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2438
2439 /* MSS L4LEN IDX */
2440 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2441 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2442
2443 /* Context index must be unique per ring. Luckily, so is the interrupt
2444 * mask value. */
2445 mss_l4len_idx |= tx_ring->eims_value >> 4;
2446
2447 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2448 context_desc->seqnum_seed = 0;
2449
2450 buffer_info->time_stamp = jiffies;
2451 buffer_info->dma = 0;
2452 i++;
2453 if (i == tx_ring->count)
2454 i = 0;
2455
2456 tx_ring->next_to_use = i;
2457
2458 return true;
2459}
2460
2461static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2462 struct igb_ring *tx_ring,
2463 struct sk_buff *skb, u32 tx_flags)
2464{
2465 struct e1000_adv_tx_context_desc *context_desc;
2466 unsigned int i;
2467 struct igb_buffer *buffer_info;
2468 u32 info = 0, tu_cmd = 0;
2469
2470 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2471 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2472 i = tx_ring->next_to_use;
2473 buffer_info = &tx_ring->buffer_info[i];
2474 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2475
2476 if (tx_flags & IGB_TX_FLAGS_VLAN)
2477 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2478 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2479 if (skb->ip_summed == CHECKSUM_PARTIAL)
2480 info |= skb_network_header_len(skb);
2481
2482 context_desc->vlan_macip_lens = cpu_to_le32(info);
2483
2484 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2485
2486 if (skb->ip_summed == CHECKSUM_PARTIAL) {
44b0cda3
MW
2487 switch (skb->protocol) {
2488 case __constant_htons(ETH_P_IP):
9d5c8243 2489 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
2490 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2491 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2492 break;
2493 case __constant_htons(ETH_P_IPV6):
2494 /* XXX what about other V6 headers?? */
2495 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2496 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2497 break;
2498 default:
2499 if (unlikely(net_ratelimit()))
2500 dev_warn(&adapter->pdev->dev,
2501 "partial checksum but proto=%x!\n",
2502 skb->protocol);
2503 break;
2504 }
9d5c8243
AK
2505 }
2506
2507 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2508 context_desc->seqnum_seed = 0;
2509 context_desc->mss_l4len_idx =
2510 cpu_to_le32(tx_ring->eims_value >> 4);
2511
2512 buffer_info->time_stamp = jiffies;
2513 buffer_info->dma = 0;
2514
2515 i++;
2516 if (i == tx_ring->count)
2517 i = 0;
2518 tx_ring->next_to_use = i;
2519
2520 return true;
2521 }
2522
2523
2524 return false;
2525}
2526
2527#define IGB_MAX_TXD_PWR 16
2528#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2529
2530static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2531 struct igb_ring *tx_ring,
2532 struct sk_buff *skb)
2533{
2534 struct igb_buffer *buffer_info;
2535 unsigned int len = skb_headlen(skb);
2536 unsigned int count = 0, i;
2537 unsigned int f;
2538
2539 i = tx_ring->next_to_use;
2540
2541 buffer_info = &tx_ring->buffer_info[i];
2542 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2543 buffer_info->length = len;
2544 /* set time_stamp *before* dma to help avoid a possible race */
2545 buffer_info->time_stamp = jiffies;
2546 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2547 PCI_DMA_TODEVICE);
2548 count++;
2549 i++;
2550 if (i == tx_ring->count)
2551 i = 0;
2552
2553 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2554 struct skb_frag_struct *frag;
2555
2556 frag = &skb_shinfo(skb)->frags[f];
2557 len = frag->size;
2558
2559 buffer_info = &tx_ring->buffer_info[i];
2560 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2561 buffer_info->length = len;
2562 buffer_info->time_stamp = jiffies;
2563 buffer_info->dma = pci_map_page(adapter->pdev,
2564 frag->page,
2565 frag->page_offset,
2566 len,
2567 PCI_DMA_TODEVICE);
2568
2569 count++;
2570 i++;
2571 if (i == tx_ring->count)
2572 i = 0;
2573 }
2574
2575 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2576 tx_ring->buffer_info[i].skb = skb;
2577
2578 return count;
2579}
2580
2581static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2582 struct igb_ring *tx_ring,
2583 int tx_flags, int count, u32 paylen,
2584 u8 hdr_len)
2585{
2586 union e1000_adv_tx_desc *tx_desc = NULL;
2587 struct igb_buffer *buffer_info;
2588 u32 olinfo_status = 0, cmd_type_len;
2589 unsigned int i;
2590
2591 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2592 E1000_ADVTXD_DCMD_DEXT);
2593
2594 if (tx_flags & IGB_TX_FLAGS_VLAN)
2595 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2596
2597 if (tx_flags & IGB_TX_FLAGS_TSO) {
2598 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2599
2600 /* insert tcp checksum */
2601 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2602
2603 /* insert ip checksum */
2604 if (tx_flags & IGB_TX_FLAGS_IPV4)
2605 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2606
2607 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2608 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2609 }
2610
2611 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2612 IGB_TX_FLAGS_VLAN))
2613 olinfo_status |= tx_ring->eims_value >> 4;
2614
2615 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2616
2617 i = tx_ring->next_to_use;
2618 while (count--) {
2619 buffer_info = &tx_ring->buffer_info[i];
2620 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2621 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2622 tx_desc->read.cmd_type_len =
2623 cpu_to_le32(cmd_type_len | buffer_info->length);
2624 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2625 i++;
2626 if (i == tx_ring->count)
2627 i = 0;
2628 }
2629
2630 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2631 /* Force memory writes to complete before letting h/w
2632 * know there are new descriptors to fetch. (Only
2633 * applicable for weak-ordered memory model archs,
2634 * such as IA-64). */
2635 wmb();
2636
2637 tx_ring->next_to_use = i;
2638 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2639 /* we need this if more than one processor can write to our tail
2640 * at a time, it syncronizes IO on IA64/Altix systems */
2641 mmiowb();
2642}
2643
2644static int __igb_maybe_stop_tx(struct net_device *netdev,
2645 struct igb_ring *tx_ring, int size)
2646{
2647 struct igb_adapter *adapter = netdev_priv(netdev);
2648
2649 netif_stop_queue(netdev);
2650 /* Herbert's original patch had:
2651 * smp_mb__after_netif_stop_queue();
2652 * but since that doesn't exist yet, just open code it. */
2653 smp_mb();
2654
2655 /* We need to check again in a case another CPU has just
2656 * made room available. */
2657 if (IGB_DESC_UNUSED(tx_ring) < size)
2658 return -EBUSY;
2659
2660 /* A reprieve! */
2661 netif_start_queue(netdev);
2662 ++adapter->restart_queue;
2663 return 0;
2664}
2665
2666static int igb_maybe_stop_tx(struct net_device *netdev,
2667 struct igb_ring *tx_ring, int size)
2668{
2669 if (IGB_DESC_UNUSED(tx_ring) >= size)
2670 return 0;
2671 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2672}
2673
2674#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2675
2676static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2677 struct net_device *netdev,
2678 struct igb_ring *tx_ring)
2679{
2680 struct igb_adapter *adapter = netdev_priv(netdev);
2681 unsigned int tx_flags = 0;
2682 unsigned int len;
2683 unsigned long irq_flags;
2684 u8 hdr_len = 0;
2685 int tso = 0;
2686
2687 len = skb_headlen(skb);
2688
2689 if (test_bit(__IGB_DOWN, &adapter->state)) {
2690 dev_kfree_skb_any(skb);
2691 return NETDEV_TX_OK;
2692 }
2693
2694 if (skb->len <= 0) {
2695 dev_kfree_skb_any(skb);
2696 return NETDEV_TX_OK;
2697 }
2698
2699 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2700 /* Collision - tell upper layer to requeue */
2701 return NETDEV_TX_LOCKED;
2702
2703 /* need: 1 descriptor per page,
2704 * + 2 desc gap to keep tail from touching head,
2705 * + 1 desc for skb->data,
2706 * + 1 desc for context descriptor,
2707 * otherwise try next time */
2708 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2709 /* this is a hard error */
2710 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2711 return NETDEV_TX_BUSY;
2712 }
2713
2714 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2715 tx_flags |= IGB_TX_FLAGS_VLAN;
2716 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2717 }
2718
2719 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2720 &hdr_len) : 0;
2721
2722 if (tso < 0) {
2723 dev_kfree_skb_any(skb);
2724 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2725 return NETDEV_TX_OK;
2726 }
2727
2728 if (tso)
2729 tx_flags |= IGB_TX_FLAGS_TSO;
2730 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2731 if (skb->ip_summed == CHECKSUM_PARTIAL)
2732 tx_flags |= IGB_TX_FLAGS_CSUM;
2733
2734 if (skb->protocol == htons(ETH_P_IP))
2735 tx_flags |= IGB_TX_FLAGS_IPV4;
2736
2737 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2738 igb_tx_map_adv(adapter, tx_ring, skb),
2739 skb->len, hdr_len);
2740
2741 netdev->trans_start = jiffies;
2742
2743 /* Make sure there is space in the ring for the next send. */
2744 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2745
2746 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2747 return NETDEV_TX_OK;
2748}
2749
2750static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2751{
2752 struct igb_adapter *adapter = netdev_priv(netdev);
2753 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2754
2755 /* This goes back to the question of how to logically map a tx queue
2756 * to a flow. Right now, performance is impacted slightly negatively
2757 * if using multiple tx queues. If the stack breaks away from a
2758 * single qdisc implementation, we can look at this again. */
2759 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2760}
2761
2762/**
2763 * igb_tx_timeout - Respond to a Tx Hang
2764 * @netdev: network interface device structure
2765 **/
2766static void igb_tx_timeout(struct net_device *netdev)
2767{
2768 struct igb_adapter *adapter = netdev_priv(netdev);
2769 struct e1000_hw *hw = &adapter->hw;
2770
2771 /* Do the reset outside of interrupt context */
2772 adapter->tx_timeout_count++;
2773 schedule_work(&adapter->reset_task);
2774 wr32(E1000_EICS, adapter->eims_enable_mask &
2775 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2776}
2777
2778static void igb_reset_task(struct work_struct *work)
2779{
2780 struct igb_adapter *adapter;
2781 adapter = container_of(work, struct igb_adapter, reset_task);
2782
2783 igb_reinit_locked(adapter);
2784}
2785
2786/**
2787 * igb_get_stats - Get System Network Statistics
2788 * @netdev: network interface device structure
2789 *
2790 * Returns the address of the device statistics structure.
2791 * The statistics are actually updated from the timer callback.
2792 **/
2793static struct net_device_stats *
2794igb_get_stats(struct net_device *netdev)
2795{
2796 struct igb_adapter *adapter = netdev_priv(netdev);
2797
2798 /* only return the current stats */
2799 return &adapter->net_stats;
2800}
2801
2802/**
2803 * igb_change_mtu - Change the Maximum Transfer Unit
2804 * @netdev: network interface device structure
2805 * @new_mtu: new value for maximum frame size
2806 *
2807 * Returns 0 on success, negative on failure
2808 **/
2809static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2810{
2811 struct igb_adapter *adapter = netdev_priv(netdev);
2812 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2813
2814 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2815 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2816 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2817 return -EINVAL;
2818 }
2819
2820#define MAX_STD_JUMBO_FRAME_SIZE 9234
2821 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2822 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2823 return -EINVAL;
2824 }
2825
2826 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2827 msleep(1);
2828 /* igb_down has a dependency on max_frame_size */
2829 adapter->max_frame_size = max_frame;
2830 if (netif_running(netdev))
2831 igb_down(adapter);
2832
2833 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2834 * means we reserve 2 more, this pushes us to allocate from the next
2835 * larger slab size.
2836 * i.e. RXBUFFER_2048 --> size-4096 slab
2837 */
2838
2839 if (max_frame <= IGB_RXBUFFER_256)
2840 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2841 else if (max_frame <= IGB_RXBUFFER_512)
2842 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2843 else if (max_frame <= IGB_RXBUFFER_1024)
2844 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2845 else if (max_frame <= IGB_RXBUFFER_2048)
2846 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2847 else
2848 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2849 /* adjust allocation if LPE protects us, and we aren't using SBP */
2850 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2851 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2852 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2853
2854 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2855 netdev->mtu, new_mtu);
2856 netdev->mtu = new_mtu;
2857
2858 if (netif_running(netdev))
2859 igb_up(adapter);
2860 else
2861 igb_reset(adapter);
2862
2863 clear_bit(__IGB_RESETTING, &adapter->state);
2864
2865 return 0;
2866}
2867
2868/**
2869 * igb_update_stats - Update the board statistics counters
2870 * @adapter: board private structure
2871 **/
2872
2873void igb_update_stats(struct igb_adapter *adapter)
2874{
2875 struct e1000_hw *hw = &adapter->hw;
2876 struct pci_dev *pdev = adapter->pdev;
2877 u16 phy_tmp;
2878
2879#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2880
2881 /*
2882 * Prevent stats update while adapter is being reset, or if the pci
2883 * connection is down.
2884 */
2885 if (adapter->link_speed == 0)
2886 return;
2887 if (pci_channel_offline(pdev))
2888 return;
2889
2890 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2891 adapter->stats.gprc += rd32(E1000_GPRC);
2892 adapter->stats.gorc += rd32(E1000_GORCL);
2893 rd32(E1000_GORCH); /* clear GORCL */
2894 adapter->stats.bprc += rd32(E1000_BPRC);
2895 adapter->stats.mprc += rd32(E1000_MPRC);
2896 adapter->stats.roc += rd32(E1000_ROC);
2897
2898 adapter->stats.prc64 += rd32(E1000_PRC64);
2899 adapter->stats.prc127 += rd32(E1000_PRC127);
2900 adapter->stats.prc255 += rd32(E1000_PRC255);
2901 adapter->stats.prc511 += rd32(E1000_PRC511);
2902 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2903 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2904 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2905 adapter->stats.sec += rd32(E1000_SEC);
2906
2907 adapter->stats.mpc += rd32(E1000_MPC);
2908 adapter->stats.scc += rd32(E1000_SCC);
2909 adapter->stats.ecol += rd32(E1000_ECOL);
2910 adapter->stats.mcc += rd32(E1000_MCC);
2911 adapter->stats.latecol += rd32(E1000_LATECOL);
2912 adapter->stats.dc += rd32(E1000_DC);
2913 adapter->stats.rlec += rd32(E1000_RLEC);
2914 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2915 adapter->stats.xontxc += rd32(E1000_XONTXC);
2916 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2917 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2918 adapter->stats.fcruc += rd32(E1000_FCRUC);
2919 adapter->stats.gptc += rd32(E1000_GPTC);
2920 adapter->stats.gotc += rd32(E1000_GOTCL);
2921 rd32(E1000_GOTCH); /* clear GOTCL */
2922 adapter->stats.rnbc += rd32(E1000_RNBC);
2923 adapter->stats.ruc += rd32(E1000_RUC);
2924 adapter->stats.rfc += rd32(E1000_RFC);
2925 adapter->stats.rjc += rd32(E1000_RJC);
2926 adapter->stats.tor += rd32(E1000_TORH);
2927 adapter->stats.tot += rd32(E1000_TOTH);
2928 adapter->stats.tpr += rd32(E1000_TPR);
2929
2930 adapter->stats.ptc64 += rd32(E1000_PTC64);
2931 adapter->stats.ptc127 += rd32(E1000_PTC127);
2932 adapter->stats.ptc255 += rd32(E1000_PTC255);
2933 adapter->stats.ptc511 += rd32(E1000_PTC511);
2934 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2935 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2936
2937 adapter->stats.mptc += rd32(E1000_MPTC);
2938 adapter->stats.bptc += rd32(E1000_BPTC);
2939
2940 /* used for adaptive IFS */
2941
2942 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2943 adapter->stats.tpt += hw->mac.tx_packet_delta;
2944 hw->mac.collision_delta = rd32(E1000_COLC);
2945 adapter->stats.colc += hw->mac.collision_delta;
2946
2947 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2948 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2949 adapter->stats.tncrs += rd32(E1000_TNCRS);
2950 adapter->stats.tsctc += rd32(E1000_TSCTC);
2951 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2952
2953 adapter->stats.iac += rd32(E1000_IAC);
2954 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2955 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2956 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2957 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2958 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2959 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2960 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2961 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2962
2963 /* Fill out the OS statistics structure */
2964 adapter->net_stats.multicast = adapter->stats.mprc;
2965 adapter->net_stats.collisions = adapter->stats.colc;
2966
2967 /* Rx Errors */
2968
2969 /* RLEC on some newer hardware can be incorrect so build
2970 * our own version based on RUC and ROC */
2971 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2972 adapter->stats.crcerrs + adapter->stats.algnerrc +
2973 adapter->stats.ruc + adapter->stats.roc +
2974 adapter->stats.cexterr;
2975 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2976 adapter->stats.roc;
2977 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2978 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2979 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2980
2981 /* Tx Errors */
2982 adapter->net_stats.tx_errors = adapter->stats.ecol +
2983 adapter->stats.latecol;
2984 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2985 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2986 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2987
2988 /* Tx Dropped needs to be maintained elsewhere */
2989
2990 /* Phy Stats */
2991 if (hw->phy.media_type == e1000_media_type_copper) {
2992 if ((adapter->link_speed == SPEED_1000) &&
2993 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2994 &phy_tmp))) {
2995 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2996 adapter->phy_stats.idle_errors += phy_tmp;
2997 }
2998 }
2999
3000 /* Management Stats */
3001 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3002 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3003 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3004}
3005
3006
3007static irqreturn_t igb_msix_other(int irq, void *data)
3008{
3009 struct net_device *netdev = data;
3010 struct igb_adapter *adapter = netdev_priv(netdev);
3011 struct e1000_hw *hw = &adapter->hw;
3012 u32 eicr;
3013 /* disable interrupts from the "other" bit, avoid re-entry */
3014 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3015
3016 eicr = rd32(E1000_EICR);
3017
3018 if (eicr & E1000_EIMS_OTHER) {
3019 u32 icr = rd32(E1000_ICR);
3020 /* reading ICR causes bit 31 of EICR to be cleared */
3021 if (!(icr & E1000_ICR_LSC))
3022 goto no_link_interrupt;
3023 hw->mac.get_link_status = 1;
3024 /* guard against interrupt when we're going down */
3025 if (!test_bit(__IGB_DOWN, &adapter->state))
3026 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3027 }
3028
3029no_link_interrupt:
3030 wr32(E1000_IMS, E1000_IMS_LSC);
3031 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3032
3033 return IRQ_HANDLED;
3034}
3035
3036static irqreturn_t igb_msix_tx(int irq, void *data)
3037{
3038 struct igb_ring *tx_ring = data;
3039 struct igb_adapter *adapter = tx_ring->adapter;
3040 struct e1000_hw *hw = &adapter->hw;
3041
3042 if (!tx_ring->itr_val)
3043 wr32(E1000_EIMC, tx_ring->eims_value);
3044
3045 tx_ring->total_bytes = 0;
3046 tx_ring->total_packets = 0;
3047 if (!igb_clean_tx_irq(adapter, tx_ring))
3048 /* Ring was not completely cleaned, so fire another interrupt */
3049 wr32(E1000_EICS, tx_ring->eims_value);
3050
3051 if (!tx_ring->itr_val)
3052 wr32(E1000_EIMS, tx_ring->eims_value);
3053 return IRQ_HANDLED;
3054}
3055
3056static irqreturn_t igb_msix_rx(int irq, void *data)
3057{
3058 struct igb_ring *rx_ring = data;
3059 struct igb_adapter *adapter = rx_ring->adapter;
3060 struct e1000_hw *hw = &adapter->hw;
3061
3062 if (!rx_ring->itr_val)
3063 wr32(E1000_EIMC, rx_ring->eims_value);
3064
3065 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3066 rx_ring->total_bytes = 0;
3067 rx_ring->total_packets = 0;
3068 rx_ring->no_itr_adjust = 0;
3069 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3070 } else {
3071 if (!rx_ring->no_itr_adjust) {
3072 igb_lower_rx_eitr(adapter, rx_ring);
3073 rx_ring->no_itr_adjust = 1;
3074 }
3075 }
3076
3077 return IRQ_HANDLED;
3078}
3079
3080
3081/**
3082 * igb_intr_msi - Interrupt Handler
3083 * @irq: interrupt number
3084 * @data: pointer to a network interface device structure
3085 **/
3086static irqreturn_t igb_intr_msi(int irq, void *data)
3087{
3088 struct net_device *netdev = data;
3089 struct igb_adapter *adapter = netdev_priv(netdev);
3090 struct napi_struct *napi = &adapter->napi;
3091 struct e1000_hw *hw = &adapter->hw;
3092 /* read ICR disables interrupts using IAM */
3093 u32 icr = rd32(E1000_ICR);
3094
3095 /* Write the ITR value calculated at the end of the
3096 * previous interrupt.
3097 */
3098 if (adapter->set_itr) {
3099 wr32(E1000_ITR,
3100 1000000000 / (adapter->itr * 256));
3101 adapter->set_itr = 0;
3102 }
3103
3104 /* read ICR disables interrupts using IAM */
3105 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3106 hw->mac.get_link_status = 1;
3107 if (!test_bit(__IGB_DOWN, &adapter->state))
3108 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3109 }
3110
3111 if (netif_rx_schedule_prep(netdev, napi)) {
3112 adapter->tx_ring->total_bytes = 0;
3113 adapter->tx_ring->total_packets = 0;
3114 adapter->rx_ring->total_bytes = 0;
3115 adapter->rx_ring->total_packets = 0;
3116 __netif_rx_schedule(netdev, napi);
3117 }
3118
3119 return IRQ_HANDLED;
3120}
3121
3122/**
3123 * igb_intr - Interrupt Handler
3124 * @irq: interrupt number
3125 * @data: pointer to a network interface device structure
3126 **/
3127static irqreturn_t igb_intr(int irq, void *data)
3128{
3129 struct net_device *netdev = data;
3130 struct igb_adapter *adapter = netdev_priv(netdev);
3131 struct napi_struct *napi = &adapter->napi;
3132 struct e1000_hw *hw = &adapter->hw;
3133 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3134 * need for the IMC write */
3135 u32 icr = rd32(E1000_ICR);
3136 u32 eicr = 0;
3137 if (!icr)
3138 return IRQ_NONE; /* Not our interrupt */
3139
3140 /* Write the ITR value calculated at the end of the
3141 * previous interrupt.
3142 */
3143 if (adapter->set_itr) {
3144 wr32(E1000_ITR,
3145 1000000000 / (adapter->itr * 256));
3146 adapter->set_itr = 0;
3147 }
3148
3149 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3150 * not set, then the adapter didn't send an interrupt */
3151 if (!(icr & E1000_ICR_INT_ASSERTED))
3152 return IRQ_NONE;
3153
3154 eicr = rd32(E1000_EICR);
3155
3156 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3157 hw->mac.get_link_status = 1;
3158 /* guard against interrupt when we're going down */
3159 if (!test_bit(__IGB_DOWN, &adapter->state))
3160 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3161 }
3162
3163 if (netif_rx_schedule_prep(netdev, napi)) {
3164 adapter->tx_ring->total_bytes = 0;
3165 adapter->rx_ring->total_bytes = 0;
3166 adapter->tx_ring->total_packets = 0;
3167 adapter->rx_ring->total_packets = 0;
3168 __netif_rx_schedule(netdev, napi);
3169 }
3170
3171 return IRQ_HANDLED;
3172}
3173
3174/**
3175 * igb_clean - NAPI Rx polling callback
3176 * @adapter: board private structure
3177 **/
3178static int igb_clean(struct napi_struct *napi, int budget)
3179{
3180 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3181 napi);
3182 struct net_device *netdev = adapter->netdev;
3183 int tx_clean_complete = 1, work_done = 0;
3184 int i;
3185
3186 /* Must NOT use netdev_priv macro here. */
3187 adapter = netdev->priv;
3188
3189 /* Keep link state information with original netdev */
3190 if (!netif_carrier_ok(netdev))
3191 goto quit_polling;
3192
3193 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3194 * being cleaned by multiple cpus simultaneously. A failure obtaining
3195 * the lock means tx_ring[i] is currently being cleaned anyway. */
3196 for (i = 0; i < adapter->num_tx_queues; i++) {
3197 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3198 tx_clean_complete &= igb_clean_tx_irq(adapter,
3199 &adapter->tx_ring[i]);
3200 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3201 }
3202 }
3203
3204 for (i = 0; i < adapter->num_rx_queues; i++)
3205 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3206 adapter->rx_ring[i].napi.weight);
3207
3208 /* If no Tx and not enough Rx work done, exit the polling mode */
3209 if ((tx_clean_complete && (work_done < budget)) ||
3210 !netif_running(netdev)) {
3211quit_polling:
3212 if (adapter->itr_setting & 3)
3213 igb_set_itr(adapter, E1000_ITR, false);
3214 netif_rx_complete(netdev, napi);
3215 if (!test_bit(__IGB_DOWN, &adapter->state))
3216 igb_irq_enable(adapter);
3217 return 0;
3218 }
3219
3220 return 1;
3221}
3222
3223static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3224{
3225 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3226 struct igb_adapter *adapter = rx_ring->adapter;
3227 struct e1000_hw *hw = &adapter->hw;
3228 struct net_device *netdev = adapter->netdev;
3229 int work_done = 0;
3230
3231 /* Keep link state information with original netdev */
3232 if (!netif_carrier_ok(netdev))
3233 goto quit_polling;
3234
3235 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3236
3237
3238 /* If not enough Rx work done, exit the polling mode */
3239 if ((work_done == 0) || !netif_running(netdev)) {
3240quit_polling:
3241 netif_rx_complete(netdev, napi);
3242
3243 wr32(E1000_EIMS, rx_ring->eims_value);
3244 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3245 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3246 int mean_size = rx_ring->total_bytes /
3247 rx_ring->total_packets;
3248 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3249 igb_raise_rx_eitr(adapter, rx_ring);
3250 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3251 igb_lower_rx_eitr(adapter, rx_ring);
3252 }
3253 return 0;
3254 }
3255
3256 return 1;
3257}
6d8126f9
AV
3258
3259static inline u32 get_head(struct igb_ring *tx_ring)
3260{
3261 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3262 return le32_to_cpu(*(volatile __le32 *)end);
3263}
3264
9d5c8243
AK
3265/**
3266 * igb_clean_tx_irq - Reclaim resources after transmit completes
3267 * @adapter: board private structure
3268 * returns true if ring is completely cleaned
3269 **/
3270static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3271 struct igb_ring *tx_ring)
3272{
3273 struct net_device *netdev = adapter->netdev;
3274 struct e1000_hw *hw = &adapter->hw;
3275 struct e1000_tx_desc *tx_desc;
3276 struct igb_buffer *buffer_info;
3277 struct sk_buff *skb;
3278 unsigned int i;
3279 u32 head, oldhead;
3280 unsigned int count = 0;
3281 bool cleaned = false;
3282 bool retval = true;
3283 unsigned int total_bytes = 0, total_packets = 0;
3284
3285 rmb();
6d8126f9 3286 head = get_head(tx_ring);
9d5c8243
AK
3287 i = tx_ring->next_to_clean;
3288 while (1) {
3289 while (i != head) {
3290 cleaned = true;
3291 tx_desc = E1000_TX_DESC(*tx_ring, i);
3292 buffer_info = &tx_ring->buffer_info[i];
3293 skb = buffer_info->skb;
3294
3295 if (skb) {
3296 unsigned int segs, bytecount;
3297 /* gso_segs is currently only valid for tcp */
3298 segs = skb_shinfo(skb)->gso_segs ?: 1;
3299 /* multiply data chunks by size of headers */
3300 bytecount = ((segs - 1) * skb_headlen(skb)) +
3301 skb->len;
3302 total_packets += segs;
3303 total_bytes += bytecount;
3304 }
3305
3306 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3307 tx_desc->upper.data = 0;
3308
3309 i++;
3310 if (i == tx_ring->count)
3311 i = 0;
3312
3313 count++;
3314 if (count == IGB_MAX_TX_CLEAN) {
3315 retval = false;
3316 goto done_cleaning;
3317 }
3318 }
3319 oldhead = head;
3320 rmb();
6d8126f9 3321 head = get_head(tx_ring);
9d5c8243
AK
3322 if (head == oldhead)
3323 goto done_cleaning;
3324 } /* while (1) */
3325
3326done_cleaning:
3327 tx_ring->next_to_clean = i;
3328
3329 if (unlikely(cleaned &&
3330 netif_carrier_ok(netdev) &&
3331 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3332 /* Make sure that anybody stopping the queue after this
3333 * sees the new next_to_clean.
3334 */
3335 smp_mb();
3336 if (netif_queue_stopped(netdev) &&
3337 !(test_bit(__IGB_DOWN, &adapter->state))) {
3338 netif_wake_queue(netdev);
3339 ++adapter->restart_queue;
3340 }
3341 }
3342
3343 if (tx_ring->detect_tx_hung) {
3344 /* Detect a transmit hang in hardware, this serializes the
3345 * check with the clearing of time_stamp and movement of i */
3346 tx_ring->detect_tx_hung = false;
3347 if (tx_ring->buffer_info[i].time_stamp &&
3348 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3349 (adapter->tx_timeout_factor * HZ))
3350 && !(rd32(E1000_STATUS) &
3351 E1000_STATUS_TXOFF)) {
3352
3353 tx_desc = E1000_TX_DESC(*tx_ring, i);
3354 /* detected Tx unit hang */
3355 dev_err(&adapter->pdev->dev,
3356 "Detected Tx Unit Hang\n"
3357 " Tx Queue <%lu>\n"
3358 " TDH <%x>\n"
3359 " TDT <%x>\n"
3360 " next_to_use <%x>\n"
3361 " next_to_clean <%x>\n"
3362 " head (WB) <%x>\n"
3363 "buffer_info[next_to_clean]\n"
3364 " time_stamp <%lx>\n"
3365 " jiffies <%lx>\n"
3366 " desc.status <%x>\n",
3367 (unsigned long)((tx_ring - adapter->tx_ring) /
3368 sizeof(struct igb_ring)),
3369 readl(adapter->hw.hw_addr + tx_ring->head),
3370 readl(adapter->hw.hw_addr + tx_ring->tail),
3371 tx_ring->next_to_use,
3372 tx_ring->next_to_clean,
3373 head,
3374 tx_ring->buffer_info[i].time_stamp,
3375 jiffies,
3376 tx_desc->upper.fields.status);
3377 netif_stop_queue(netdev);
3378 }
3379 }
3380 tx_ring->total_bytes += total_bytes;
3381 tx_ring->total_packets += total_packets;
3382 adapter->net_stats.tx_bytes += total_bytes;
3383 adapter->net_stats.tx_packets += total_packets;
3384 return retval;
3385}
3386
3387
3388/**
3389 * igb_receive_skb - helper function to handle rx indications
3390 * @adapter: board private structure
3391 * @status: descriptor status field as written by hardware
3392 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3393 * @skb: pointer to sk_buff to be indicated to stack
3394 **/
6d8126f9 3395static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
9d5c8243
AK
3396 struct sk_buff *skb)
3397{
3398 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3399 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3400 le16_to_cpu(vlan) &
3401 E1000_RXD_SPC_VLAN_MASK);
3402 else
3403 netif_receive_skb(skb);
3404}
3405
3406
3407static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3408 u32 status_err, struct sk_buff *skb)
3409{
3410 skb->ip_summed = CHECKSUM_NONE;
3411
3412 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3413 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3414 return;
3415 /* TCP/UDP checksum error bit is set */
3416 if (status_err &
3417 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3418 /* let the stack verify checksum errors */
3419 adapter->hw_csum_err++;
3420 return;
3421 }
3422 /* It must be a TCP or UDP packet with a valid checksum */
3423 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3424 skb->ip_summed = CHECKSUM_UNNECESSARY;
3425
3426 adapter->hw_csum_good++;
3427}
3428
3429static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3430 struct igb_ring *rx_ring,
3431 int *work_done, int budget)
3432{
3433 struct net_device *netdev = adapter->netdev;
3434 struct pci_dev *pdev = adapter->pdev;
3435 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3436 struct igb_buffer *buffer_info , *next_buffer;
3437 struct sk_buff *skb;
3438 unsigned int i, j;
3439 u32 length, hlen, staterr;
3440 bool cleaned = false;
3441 int cleaned_count = 0;
3442 unsigned int total_bytes = 0, total_packets = 0;
3443
3444 i = rx_ring->next_to_clean;
3445 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3446 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3447
3448 while (staterr & E1000_RXD_STAT_DD) {
3449 if (*work_done >= budget)
3450 break;
3451 (*work_done)++;
3452 buffer_info = &rx_ring->buffer_info[i];
3453
3454 /* HW will not DMA in data larger than the given buffer, even
3455 * if it parses the (NFS, of course) header to be larger. In
3456 * that case, it fills the header buffer and spills the rest
3457 * into the page.
3458 */
7deb07b1
AV
3459 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3460 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
9d5c8243
AK
3461 if (hlen > adapter->rx_ps_hdr_size)
3462 hlen = adapter->rx_ps_hdr_size;
3463
3464 length = le16_to_cpu(rx_desc->wb.upper.length);
3465 cleaned = true;
3466 cleaned_count++;
3467
3468 if (rx_ring->pending_skb != NULL) {
3469 skb = rx_ring->pending_skb;
3470 rx_ring->pending_skb = NULL;
3471 j = rx_ring->pending_skb_page;
3472 } else {
3473 skb = buffer_info->skb;
3474 prefetch(skb->data - NET_IP_ALIGN);
3475 buffer_info->skb = NULL;
3476 if (hlen) {
3477 pci_unmap_single(pdev, buffer_info->dma,
3478 adapter->rx_ps_hdr_size +
3479 NET_IP_ALIGN,
3480 PCI_DMA_FROMDEVICE);
3481 skb_put(skb, hlen);
3482 } else {
3483 pci_unmap_single(pdev, buffer_info->dma,
3484 adapter->rx_buffer_len +
3485 NET_IP_ALIGN,
3486 PCI_DMA_FROMDEVICE);
3487 skb_put(skb, length);
3488 goto send_up;
3489 }
3490 j = 0;
3491 }
3492
3493 while (length) {
3494 pci_unmap_page(pdev, buffer_info->page_dma,
3495 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3496 buffer_info->page_dma = 0;
3497 skb_fill_page_desc(skb, j, buffer_info->page,
3498 0, length);
3499 buffer_info->page = NULL;
3500
3501 skb->len += length;
3502 skb->data_len += length;
3503 skb->truesize += length;
3504 rx_desc->wb.upper.status_error = 0;
3505 if (staterr & E1000_RXD_STAT_EOP)
3506 break;
3507
3508 j++;
3509 cleaned_count++;
3510 i++;
3511 if (i == rx_ring->count)
3512 i = 0;
3513
3514 buffer_info = &rx_ring->buffer_info[i];
3515 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3516 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3517 length = le16_to_cpu(rx_desc->wb.upper.length);
3518 if (!(staterr & E1000_RXD_STAT_DD)) {
3519 rx_ring->pending_skb = skb;
3520 rx_ring->pending_skb_page = j;
3521 goto out;
3522 }
3523 }
3524send_up:
3525 pskb_trim(skb, skb->len - 4);
3526 i++;
3527 if (i == rx_ring->count)
3528 i = 0;
3529 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3530 prefetch(next_rxd);
3531 next_buffer = &rx_ring->buffer_info[i];
3532
3533 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3534 dev_kfree_skb_irq(skb);
3535 goto next_desc;
3536 }
3537 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3538
3539 total_bytes += skb->len;
3540 total_packets++;
3541
3542 igb_rx_checksum_adv(adapter, staterr, skb);
3543
3544 skb->protocol = eth_type_trans(skb, netdev);
3545
3546 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3547
3548 netdev->last_rx = jiffies;
3549
3550next_desc:
3551 rx_desc->wb.upper.status_error = 0;
3552
3553 /* return some buffers to hardware, one at a time is too slow */
3554 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3555 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3556 cleaned_count);
3557 cleaned_count = 0;
3558 }
3559
3560 /* use prefetched values */
3561 rx_desc = next_rxd;
3562 buffer_info = next_buffer;
3563
3564 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3565 }
3566out:
3567 rx_ring->next_to_clean = i;
3568 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3569
3570 if (cleaned_count)
3571 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3572
3573 rx_ring->total_packets += total_packets;
3574 rx_ring->total_bytes += total_bytes;
3575 rx_ring->rx_stats.packets += total_packets;
3576 rx_ring->rx_stats.bytes += total_bytes;
3577 adapter->net_stats.rx_bytes += total_bytes;
3578 adapter->net_stats.rx_packets += total_packets;
3579 return cleaned;
3580}
3581
3582
3583/**
3584 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3585 * @adapter: address of board private structure
3586 **/
3587static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3588 struct igb_ring *rx_ring,
3589 int cleaned_count)
3590{
3591 struct net_device *netdev = adapter->netdev;
3592 struct pci_dev *pdev = adapter->pdev;
3593 union e1000_adv_rx_desc *rx_desc;
3594 struct igb_buffer *buffer_info;
3595 struct sk_buff *skb;
3596 unsigned int i;
3597
3598 i = rx_ring->next_to_use;
3599 buffer_info = &rx_ring->buffer_info[i];
3600
3601 while (cleaned_count--) {
3602 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3603
3604 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3605 buffer_info->page = alloc_page(GFP_ATOMIC);
3606 if (!buffer_info->page) {
3607 adapter->alloc_rx_buff_failed++;
3608 goto no_buffers;
3609 }
3610 buffer_info->page_dma =
3611 pci_map_page(pdev,
3612 buffer_info->page,
3613 0, PAGE_SIZE,
3614 PCI_DMA_FROMDEVICE);
3615 }
3616
3617 if (!buffer_info->skb) {
3618 int bufsz;
3619
3620 if (adapter->rx_ps_hdr_size)
3621 bufsz = adapter->rx_ps_hdr_size;
3622 else
3623 bufsz = adapter->rx_buffer_len;
3624 bufsz += NET_IP_ALIGN;
3625 skb = netdev_alloc_skb(netdev, bufsz);
3626
3627 if (!skb) {
3628 adapter->alloc_rx_buff_failed++;
3629 goto no_buffers;
3630 }
3631
3632 /* Make buffer alignment 2 beyond a 16 byte boundary
3633 * this will result in a 16 byte aligned IP header after
3634 * the 14 byte MAC header is removed
3635 */
3636 skb_reserve(skb, NET_IP_ALIGN);
3637
3638 buffer_info->skb = skb;
3639 buffer_info->dma = pci_map_single(pdev, skb->data,
3640 bufsz,
3641 PCI_DMA_FROMDEVICE);
3642
3643 }
3644 /* Refresh the desc even if buffer_addrs didn't change because
3645 * each write-back erases this info. */
3646 if (adapter->rx_ps_hdr_size) {
3647 rx_desc->read.pkt_addr =
3648 cpu_to_le64(buffer_info->page_dma);
3649 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3650 } else {
3651 rx_desc->read.pkt_addr =
3652 cpu_to_le64(buffer_info->dma);
3653 rx_desc->read.hdr_addr = 0;
3654 }
3655
3656 i++;
3657 if (i == rx_ring->count)
3658 i = 0;
3659 buffer_info = &rx_ring->buffer_info[i];
3660 }
3661
3662no_buffers:
3663 if (rx_ring->next_to_use != i) {
3664 rx_ring->next_to_use = i;
3665 if (i == 0)
3666 i = (rx_ring->count - 1);
3667 else
3668 i--;
3669
3670 /* Force memory writes to complete before letting h/w
3671 * know there are new descriptors to fetch. (Only
3672 * applicable for weak-ordered memory model archs,
3673 * such as IA-64). */
3674 wmb();
3675 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3676 }
3677}
3678
3679/**
3680 * igb_mii_ioctl -
3681 * @netdev:
3682 * @ifreq:
3683 * @cmd:
3684 **/
3685static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3686{
3687 struct igb_adapter *adapter = netdev_priv(netdev);
3688 struct mii_ioctl_data *data = if_mii(ifr);
3689
3690 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3691 return -EOPNOTSUPP;
3692
3693 switch (cmd) {
3694 case SIOCGMIIPHY:
3695 data->phy_id = adapter->hw.phy.addr;
3696 break;
3697 case SIOCGMIIREG:
3698 if (!capable(CAP_NET_ADMIN))
3699 return -EPERM;
3700 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3701 data->reg_num
3702 & 0x1F, &data->val_out))
3703 return -EIO;
3704 break;
3705 case SIOCSMIIREG:
3706 default:
3707 return -EOPNOTSUPP;
3708 }
3709 return 0;
3710}
3711
3712/**
3713 * igb_ioctl -
3714 * @netdev:
3715 * @ifreq:
3716 * @cmd:
3717 **/
3718static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3719{
3720 switch (cmd) {
3721 case SIOCGMIIPHY:
3722 case SIOCGMIIREG:
3723 case SIOCSMIIREG:
3724 return igb_mii_ioctl(netdev, ifr, cmd);
3725 default:
3726 return -EOPNOTSUPP;
3727 }
3728}
3729
3730static void igb_vlan_rx_register(struct net_device *netdev,
3731 struct vlan_group *grp)
3732{
3733 struct igb_adapter *adapter = netdev_priv(netdev);
3734 struct e1000_hw *hw = &adapter->hw;
3735 u32 ctrl, rctl;
3736
3737 igb_irq_disable(adapter);
3738 adapter->vlgrp = grp;
3739
3740 if (grp) {
3741 /* enable VLAN tag insert/strip */
3742 ctrl = rd32(E1000_CTRL);
3743 ctrl |= E1000_CTRL_VME;
3744 wr32(E1000_CTRL, ctrl);
3745
3746 /* enable VLAN receive filtering */
3747 rctl = rd32(E1000_RCTL);
3748 rctl |= E1000_RCTL_VFE;
3749 rctl &= ~E1000_RCTL_CFIEN;
3750 wr32(E1000_RCTL, rctl);
3751 igb_update_mng_vlan(adapter);
3752 wr32(E1000_RLPML,
3753 adapter->max_frame_size + VLAN_TAG_SIZE);
3754 } else {
3755 /* disable VLAN tag insert/strip */
3756 ctrl = rd32(E1000_CTRL);
3757 ctrl &= ~E1000_CTRL_VME;
3758 wr32(E1000_CTRL, ctrl);
3759
3760 /* disable VLAN filtering */
3761 rctl = rd32(E1000_RCTL);
3762 rctl &= ~E1000_RCTL_VFE;
3763 wr32(E1000_RCTL, rctl);
3764 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3765 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3766 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3767 }
3768 wr32(E1000_RLPML,
3769 adapter->max_frame_size);
3770 }
3771
3772 if (!test_bit(__IGB_DOWN, &adapter->state))
3773 igb_irq_enable(adapter);
3774}
3775
3776static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3777{
3778 struct igb_adapter *adapter = netdev_priv(netdev);
3779 struct e1000_hw *hw = &adapter->hw;
3780 u32 vfta, index;
3781
3782 if ((adapter->hw.mng_cookie.status &
3783 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3784 (vid == adapter->mng_vlan_id))
3785 return;
3786 /* add VID to filter table */
3787 index = (vid >> 5) & 0x7F;
3788 vfta = array_rd32(E1000_VFTA, index);
3789 vfta |= (1 << (vid & 0x1F));
3790 igb_write_vfta(&adapter->hw, index, vfta);
3791}
3792
3793static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3794{
3795 struct igb_adapter *adapter = netdev_priv(netdev);
3796 struct e1000_hw *hw = &adapter->hw;
3797 u32 vfta, index;
3798
3799 igb_irq_disable(adapter);
3800 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3801
3802 if (!test_bit(__IGB_DOWN, &adapter->state))
3803 igb_irq_enable(adapter);
3804
3805 if ((adapter->hw.mng_cookie.status &
3806 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3807 (vid == adapter->mng_vlan_id)) {
3808 /* release control to f/w */
3809 igb_release_hw_control(adapter);
3810 return;
3811 }
3812
3813 /* remove VID from filter table */
3814 index = (vid >> 5) & 0x7F;
3815 vfta = array_rd32(E1000_VFTA, index);
3816 vfta &= ~(1 << (vid & 0x1F));
3817 igb_write_vfta(&adapter->hw, index, vfta);
3818}
3819
3820static void igb_restore_vlan(struct igb_adapter *adapter)
3821{
3822 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3823
3824 if (adapter->vlgrp) {
3825 u16 vid;
3826 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3827 if (!vlan_group_get_device(adapter->vlgrp, vid))
3828 continue;
3829 igb_vlan_rx_add_vid(adapter->netdev, vid);
3830 }
3831 }
3832}
3833
3834int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3835{
3836 struct e1000_mac_info *mac = &adapter->hw.mac;
3837
3838 mac->autoneg = 0;
3839
3840 /* Fiber NICs only allow 1000 gbps Full duplex */
3841 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3842 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3843 dev_err(&adapter->pdev->dev,
3844 "Unsupported Speed/Duplex configuration\n");
3845 return -EINVAL;
3846 }
3847
3848 switch (spddplx) {
3849 case SPEED_10 + DUPLEX_HALF:
3850 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3851 break;
3852 case SPEED_10 + DUPLEX_FULL:
3853 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3854 break;
3855 case SPEED_100 + DUPLEX_HALF:
3856 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3857 break;
3858 case SPEED_100 + DUPLEX_FULL:
3859 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3860 break;
3861 case SPEED_1000 + DUPLEX_FULL:
3862 mac->autoneg = 1;
3863 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3864 break;
3865 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3866 default:
3867 dev_err(&adapter->pdev->dev,
3868 "Unsupported Speed/Duplex configuration\n");
3869 return -EINVAL;
3870 }
3871 return 0;
3872}
3873
3874
3875static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3876{
3877 struct net_device *netdev = pci_get_drvdata(pdev);
3878 struct igb_adapter *adapter = netdev_priv(netdev);
3879 struct e1000_hw *hw = &adapter->hw;
3880 u32 ctrl, ctrl_ext, rctl, status;
3881 u32 wufc = adapter->wol;
3882#ifdef CONFIG_PM
3883 int retval = 0;
3884#endif
3885
3886 netif_device_detach(netdev);
3887
3888 if (netif_running(netdev)) {
3889 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3890 igb_down(adapter);
3891 igb_free_irq(adapter);
3892 }
3893
3894#ifdef CONFIG_PM
3895 retval = pci_save_state(pdev);
3896 if (retval)
3897 return retval;
3898#endif
3899
3900 status = rd32(E1000_STATUS);
3901 if (status & E1000_STATUS_LU)
3902 wufc &= ~E1000_WUFC_LNKC;
3903
3904 if (wufc) {
3905 igb_setup_rctl(adapter);
3906 igb_set_multi(netdev);
3907
3908 /* turn on all-multi mode if wake on multicast is enabled */
3909 if (wufc & E1000_WUFC_MC) {
3910 rctl = rd32(E1000_RCTL);
3911 rctl |= E1000_RCTL_MPE;
3912 wr32(E1000_RCTL, rctl);
3913 }
3914
3915 ctrl = rd32(E1000_CTRL);
3916 /* advertise wake from D3Cold */
3917 #define E1000_CTRL_ADVD3WUC 0x00100000
3918 /* phy power management enable */
3919 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3920 ctrl |= E1000_CTRL_ADVD3WUC;
3921 wr32(E1000_CTRL, ctrl);
3922
3923 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3924 adapter->hw.phy.media_type ==
3925 e1000_media_type_internal_serdes) {
3926 /* keep the laser running in D3 */
3927 ctrl_ext = rd32(E1000_CTRL_EXT);
3928 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3929 wr32(E1000_CTRL_EXT, ctrl_ext);
3930 }
3931
3932 /* Allow time for pending master requests to run */
3933 igb_disable_pcie_master(&adapter->hw);
3934
3935 wr32(E1000_WUC, E1000_WUC_PME_EN);
3936 wr32(E1000_WUFC, wufc);
3937 pci_enable_wake(pdev, PCI_D3hot, 1);
3938 pci_enable_wake(pdev, PCI_D3cold, 1);
3939 } else {
3940 wr32(E1000_WUC, 0);
3941 wr32(E1000_WUFC, 0);
3942 pci_enable_wake(pdev, PCI_D3hot, 0);
3943 pci_enable_wake(pdev, PCI_D3cold, 0);
3944 }
3945
9d5c8243
AK
3946 /* make sure adapter isn't asleep if manageability is enabled */
3947 if (adapter->en_mng_pt) {
3948 pci_enable_wake(pdev, PCI_D3hot, 1);
3949 pci_enable_wake(pdev, PCI_D3cold, 1);
3950 }
3951
3952 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3953 * would have already happened in close and is redundant. */
3954 igb_release_hw_control(adapter);
3955
3956 pci_disable_device(pdev);
3957
3958 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3959
3960 return 0;
3961}
3962
3963#ifdef CONFIG_PM
3964static int igb_resume(struct pci_dev *pdev)
3965{
3966 struct net_device *netdev = pci_get_drvdata(pdev);
3967 struct igb_adapter *adapter = netdev_priv(netdev);
3968 struct e1000_hw *hw = &adapter->hw;
3969 u32 err;
3970
3971 pci_set_power_state(pdev, PCI_D0);
3972 pci_restore_state(pdev);
3973 err = pci_enable_device(pdev);
3974 if (err) {
3975 dev_err(&pdev->dev,
3976 "igb: Cannot enable PCI device from suspend\n");
3977 return err;
3978 }
3979 pci_set_master(pdev);
3980
3981 pci_enable_wake(pdev, PCI_D3hot, 0);
3982 pci_enable_wake(pdev, PCI_D3cold, 0);
3983
3984 if (netif_running(netdev)) {
3985 err = igb_request_irq(adapter);
3986 if (err)
3987 return err;
3988 }
3989
3990 /* e1000_power_up_phy(adapter); */
3991
3992 igb_reset(adapter);
3993 wr32(E1000_WUS, ~0);
3994
3995 igb_init_manageability(adapter);
3996
3997 if (netif_running(netdev))
3998 igb_up(adapter);
3999
4000 netif_device_attach(netdev);
4001
4002 /* let the f/w know that the h/w is now under the control of the
4003 * driver. */
4004 igb_get_hw_control(adapter);
4005
4006 return 0;
4007}
4008#endif
4009
4010static void igb_shutdown(struct pci_dev *pdev)
4011{
4012 igb_suspend(pdev, PMSG_SUSPEND);
4013}
4014
4015#ifdef CONFIG_NET_POLL_CONTROLLER
4016/*
4017 * Polling 'interrupt' - used by things like netconsole to send skbs
4018 * without having to re-enable interrupts. It's not called while
4019 * the interrupt routine is executing.
4020 */
4021static void igb_netpoll(struct net_device *netdev)
4022{
4023 struct igb_adapter *adapter = netdev_priv(netdev);
4024 int i;
4025 int work_done = 0;
4026
4027 igb_irq_disable(adapter);
4028 for (i = 0; i < adapter->num_tx_queues; i++)
4029 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4030
4031 for (i = 0; i < adapter->num_rx_queues; i++)
4032 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4033 &work_done,
4034 adapter->rx_ring[i].napi.weight);
4035
4036 igb_irq_enable(adapter);
4037}
4038#endif /* CONFIG_NET_POLL_CONTROLLER */
4039
4040/**
4041 * igb_io_error_detected - called when PCI error is detected
4042 * @pdev: Pointer to PCI device
4043 * @state: The current pci connection state
4044 *
4045 * This function is called after a PCI bus error affecting
4046 * this device has been detected.
4047 */
4048static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4049 pci_channel_state_t state)
4050{
4051 struct net_device *netdev = pci_get_drvdata(pdev);
4052 struct igb_adapter *adapter = netdev_priv(netdev);
4053
4054 netif_device_detach(netdev);
4055
4056 if (netif_running(netdev))
4057 igb_down(adapter);
4058 pci_disable_device(pdev);
4059
4060 /* Request a slot slot reset. */
4061 return PCI_ERS_RESULT_NEED_RESET;
4062}
4063
4064/**
4065 * igb_io_slot_reset - called after the pci bus has been reset.
4066 * @pdev: Pointer to PCI device
4067 *
4068 * Restart the card from scratch, as if from a cold-boot. Implementation
4069 * resembles the first-half of the igb_resume routine.
4070 */
4071static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4072{
4073 struct net_device *netdev = pci_get_drvdata(pdev);
4074 struct igb_adapter *adapter = netdev_priv(netdev);
4075 struct e1000_hw *hw = &adapter->hw;
4076
4077 if (pci_enable_device(pdev)) {
4078 dev_err(&pdev->dev,
4079 "Cannot re-enable PCI device after reset.\n");
4080 return PCI_ERS_RESULT_DISCONNECT;
4081 }
4082 pci_set_master(pdev);
c682fc23 4083 pci_restore_state(pdev);
9d5c8243
AK
4084
4085 pci_enable_wake(pdev, PCI_D3hot, 0);
4086 pci_enable_wake(pdev, PCI_D3cold, 0);
4087
4088 igb_reset(adapter);
4089 wr32(E1000_WUS, ~0);
4090
4091 return PCI_ERS_RESULT_RECOVERED;
4092}
4093
4094/**
4095 * igb_io_resume - called when traffic can start flowing again.
4096 * @pdev: Pointer to PCI device
4097 *
4098 * This callback is called when the error recovery driver tells us that
4099 * its OK to resume normal operation. Implementation resembles the
4100 * second-half of the igb_resume routine.
4101 */
4102static void igb_io_resume(struct pci_dev *pdev)
4103{
4104 struct net_device *netdev = pci_get_drvdata(pdev);
4105 struct igb_adapter *adapter = netdev_priv(netdev);
4106
4107 igb_init_manageability(adapter);
4108
4109 if (netif_running(netdev)) {
4110 if (igb_up(adapter)) {
4111 dev_err(&pdev->dev, "igb_up failed after reset\n");
4112 return;
4113 }
4114 }
4115
4116 netif_device_attach(netdev);
4117
4118 /* let the f/w know that the h/w is now under the control of the
4119 * driver. */
4120 igb_get_hw_control(adapter);
4121
4122}
4123
4124/* igb_main.c */