]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/mv643xx_eth.c
[PATCH] mv643xx_eth: Hold spinlocks only where needed
[mirror_ubuntu-artful-kernel.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/tcp.h>
36#include <linux/udp.h>
37#include <linux/etherdevice.h>
78a5e534
OH
38#include <linux/in.h>
39#include <linux/ip.h>
1da177e4
LT
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
1da177e4
LT
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
53/*
54 * The first part is the high level driver of the gigE ethernet ports.
55 */
56
57/* Constants */
58#define VLAN_HLEN 4
59#define FCS_LEN 4
b44cd572
DF
60#define DMA_ALIGN 8 /* hw requires 8-byte alignment */
61#define HW_IP_ALIGN 2 /* hw aligns IP header */
62#define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
1da177e4
LT
63#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
64
65#define INT_CAUSE_UNMASK_ALL 0x0007ffff
66#define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
1da177e4 67#define INT_CAUSE_MASK_ALL 0x00000000
63c9e549 68#define INT_CAUSE_MASK_ALL_EXT 0x00000000
1da177e4
LT
69#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
70#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
1da177e4
LT
71
72#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
73#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
74#else
75#define MAX_DESCS_PER_SKB 1
76#endif
77
78#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
79#define PHY_WAIT_MICRO_SECONDS 10
80
81/* Static function declarations */
82static int eth_port_link_is_up(unsigned int eth_port_num);
83static void eth_port_uc_addr_get(struct net_device *dev,
84 unsigned char *MacAddr);
16e03018 85static void eth_port_set_multicast_list(struct net_device *);
1da177e4
LT
86static int mv643xx_eth_real_open(struct net_device *);
87static int mv643xx_eth_real_stop(struct net_device *);
88static int mv643xx_eth_change_mtu(struct net_device *, int);
89static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
90static void eth_port_init_mac_tables(unsigned int eth_port_num);
91#ifdef MV643XX_NAPI
92static int mv643xx_poll(struct net_device *dev, int *budget);
93#endif
94static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
95static int ethernet_phy_detect(unsigned int eth_port_num);
96static struct ethtool_ops mv643xx_ethtool_ops;
97
98static char mv643xx_driver_name[] = "mv643xx_eth";
99static char mv643xx_driver_version[] = "1.0";
100
101static void __iomem *mv643xx_eth_shared_base;
102
103/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
a9f6a0dd 104static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
105
106static inline u32 mv_read(int offset)
107{
dc074a8a 108 void __iomem *reg_base;
1da177e4
LT
109
110 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
111
112 return readl(reg_base + offset);
113}
114
115static inline void mv_write(int offset, u32 data)
116{
dc074a8a 117 void __iomem *reg_base;
1da177e4
LT
118
119 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
120 writel(data, reg_base + offset);
121}
122
123/*
124 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
125 *
126 * Input : pointer to ethernet interface network device structure
127 * new mtu size
128 * Output : 0 upon success, -EINVAL upon failure
129 */
130static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
131{
8f518703 132 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 133 return -EINVAL;
1da177e4
LT
134
135 dev->mtu = new_mtu;
136 /*
137 * Stop then re-open the interface. This will allocate RX skb's with
138 * the new MTU.
139 * There is a possible danger that the open will not successed, due
140 * to memory is full, which might fail the open function.
141 */
142 if (netif_running(dev)) {
143 if (mv643xx_eth_real_stop(dev))
144 printk(KERN_ERR
145 "%s: Fatal error on stopping device\n",
146 dev->name);
147 if (mv643xx_eth_real_open(dev))
148 printk(KERN_ERR
149 "%s: Fatal error on opening device\n",
150 dev->name);
151 }
152
1da177e4
LT
153 return 0;
154}
155
156/*
157 * mv643xx_eth_rx_task
158 *
159 * Fills / refills RX queue on a certain gigabit ethernet port
160 *
161 * Input : pointer to ethernet interface network device structure
162 * Output : N/A
163 */
164static void mv643xx_eth_rx_task(void *data)
165{
166 struct net_device *dev = (struct net_device *)data;
167 struct mv643xx_private *mp = netdev_priv(dev);
168 struct pkt_info pkt_info;
169 struct sk_buff *skb;
b44cd572 170 int unaligned;
1da177e4
LT
171
172 if (test_and_set_bit(0, &mp->rx_task_busy))
173 panic("%s: Error in test_set_bit / clear_bit", dev->name);
174
175 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
b44cd572 176 skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
1da177e4
LT
177 if (!skb)
178 break;
179 mp->rx_ring_skbs++;
b44cd572
DF
180 unaligned = (u32)skb->data & (DMA_ALIGN - 1);
181 if (unaligned)
182 skb_reserve(skb, DMA_ALIGN - unaligned);
1da177e4
LT
183 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
184 pkt_info.byte_cnt = RX_SKB_SIZE;
185 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
186 DMA_FROM_DEVICE);
187 pkt_info.return_info = skb;
188 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
189 printk(KERN_ERR
190 "%s: Error allocating RX Ring\n", dev->name);
191 break;
192 }
b44cd572 193 skb_reserve(skb, HW_IP_ALIGN);
1da177e4
LT
194 }
195 clear_bit(0, &mp->rx_task_busy);
196 /*
197 * If RX ring is empty of SKB, set a timer to try allocating
198 * again in a later time .
199 */
200 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
201 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
202 /* After 100mSec */
203 mp->timeout.expires = jiffies + (HZ / 10);
204 add_timer(&mp->timeout);
205 mp->rx_timer_flag = 1;
206 }
207#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
208 else {
209 /* Return interrupts */
210 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
211 INT_CAUSE_UNMASK_ALL);
212 }
213#endif
214}
215
216/*
217 * mv643xx_eth_rx_task_timer_wrapper
218 *
219 * Timer routine to wake up RX queue filling task. This function is
220 * used only in case the RX queue is empty, and all alloc_skb has
221 * failed (due to out of memory event).
222 *
223 * Input : pointer to ethernet interface network device structure
224 * Output : N/A
225 */
226static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
227{
228 struct net_device *dev = (struct net_device *)data;
229 struct mv643xx_private *mp = netdev_priv(dev);
230
231 mp->rx_timer_flag = 0;
232 mv643xx_eth_rx_task((void *)data);
233}
234
235/*
236 * mv643xx_eth_update_mac_address
237 *
238 * Update the MAC address of the port in the address table
239 *
240 * Input : pointer to ethernet interface network device structure
241 * Output : N/A
242 */
243static void mv643xx_eth_update_mac_address(struct net_device *dev)
244{
245 struct mv643xx_private *mp = netdev_priv(dev);
246 unsigned int port_num = mp->port_num;
247
248 eth_port_init_mac_tables(port_num);
249 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
250 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
251}
252
253/*
254 * mv643xx_eth_set_rx_mode
255 *
256 * Change from promiscuos to regular rx mode
257 *
258 * Input : pointer to ethernet interface network device structure
259 * Output : N/A
260 */
261static void mv643xx_eth_set_rx_mode(struct net_device *dev)
262{
263 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4 264
1da177e4 265 if (dev->flags & IFF_PROMISC)
7342cd81 266 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
1da177e4 267 else
7342cd81
DF
268 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
269
270 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
16e03018
DF
271
272 eth_port_set_multicast_list(dev);
1da177e4
LT
273}
274
275/*
276 * mv643xx_eth_set_mac_address
277 *
278 * Change the interface's mac address.
279 * No special hardware thing should be done because interface is always
280 * put in promiscuous mode.
281 *
282 * Input : pointer to ethernet interface network device structure and
283 * a pointer to the designated entry to be added to the cache.
284 * Output : zero upon success, negative upon failure
285 */
286static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
287{
288 int i;
289
290 for (i = 0; i < 6; i++)
291 /* +2 is for the offset of the HW addr type */
292 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
293 mv643xx_eth_update_mac_address(dev);
294 return 0;
295}
296
297/*
298 * mv643xx_eth_tx_timeout
299 *
300 * Called upon a timeout on transmitting a packet
301 *
302 * Input : pointer to ethernet interface network device structure.
303 * Output : N/A
304 */
305static void mv643xx_eth_tx_timeout(struct net_device *dev)
306{
307 struct mv643xx_private *mp = netdev_priv(dev);
308
309 printk(KERN_INFO "%s: TX timeout ", dev->name);
310
311 /* Do the reset outside of interrupt context */
312 schedule_work(&mp->tx_timeout_task);
313}
314
315/*
316 * mv643xx_eth_tx_timeout_task
317 *
318 * Actual routine to reset the adapter when a timeout on Tx has occurred
319 */
320static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
321{
322 struct mv643xx_private *mp = netdev_priv(dev);
323
324 netif_device_detach(dev);
325 eth_port_reset(mp->port_num);
326 eth_port_start(mp);
327 netif_device_attach(dev);
328}
329
330/*
331 * mv643xx_eth_free_tx_queue
332 *
333 * Input : dev - a pointer to the required interface
334 *
335 * Output : 0 if was able to release skb , nonzero otherwise
336 */
337static int mv643xx_eth_free_tx_queue(struct net_device *dev,
338 unsigned int eth_int_cause_ext)
339{
340 struct mv643xx_private *mp = netdev_priv(dev);
341 struct net_device_stats *stats = &mp->stats;
342 struct pkt_info pkt_info;
343 int released = 1;
344
345 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
346 return released;
347
1da177e4
LT
348 /* Check only queue 0 */
349 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
350 if (pkt_info.cmd_sts & BIT0) {
351 printk("%s: Error in TX\n", dev->name);
352 stats->tx_errors++;
353 }
354
cb415d30
PG
355 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
356 dma_unmap_single(NULL, pkt_info.buf_ptr,
357 pkt_info.byte_cnt,
358 DMA_TO_DEVICE);
359 else
360 dma_unmap_page(NULL, pkt_info.buf_ptr,
361 pkt_info.byte_cnt,
362 DMA_TO_DEVICE);
1da177e4 363
cb415d30 364 if (pkt_info.return_info) {
1da177e4
LT
365 dev_kfree_skb_irq(pkt_info.return_info);
366 released = 0;
cb415d30 367 }
1da177e4
LT
368 }
369
1da177e4
LT
370 return released;
371}
372
373/*
374 * mv643xx_eth_receive
375 *
376 * This function is forward packets that are received from the port's
377 * queues toward kernel core or FastRoute them to another interface.
378 *
379 * Input : dev - a pointer to the required interface
380 * max - maximum number to receive (0 means unlimted)
381 *
382 * Output : number of served packets
383 */
384#ifdef MV643XX_NAPI
385static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
386#else
387static int mv643xx_eth_receive_queue(struct net_device *dev)
388#endif
389{
390 struct mv643xx_private *mp = netdev_priv(dev);
391 struct net_device_stats *stats = &mp->stats;
392 unsigned int received_packets = 0;
393 struct sk_buff *skb;
394 struct pkt_info pkt_info;
395
396#ifdef MV643XX_NAPI
b1dd9ca1 397 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
1da177e4
LT
398#else
399 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
400#endif
401 mp->rx_ring_skbs--;
402 received_packets++;
b1dd9ca1 403
1da177e4
LT
404 /* Update statistics. Note byte count includes 4 byte CRC count */
405 stats->rx_packets++;
406 stats->rx_bytes += pkt_info.byte_cnt;
407 skb = pkt_info.return_info;
408 /*
409 * In case received a packet without first / last bits on OR
410 * the error summary bit is on, the packets needs to be dropeed.
411 */
412 if (((pkt_info.cmd_sts
413 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
414 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
415 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
416 stats->rx_dropped++;
417 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
418 ETH_RX_LAST_DESC)) !=
419 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
420 if (net_ratelimit())
421 printk(KERN_ERR
422 "%s: Received packet spread "
423 "on multiple descriptors\n",
424 dev->name);
425 }
426 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
427 stats->rx_errors++;
428
429 dev_kfree_skb_irq(skb);
430 } else {
431 /*
432 * The -4 is for the CRC in the trailer of the
433 * received packet
434 */
435 skb_put(skb, pkt_info.byte_cnt - 4);
436 skb->dev = dev;
437
438 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
439 skb->ip_summed = CHECKSUM_UNNECESSARY;
440 skb->csum = htons(
441 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
442 }
443 skb->protocol = eth_type_trans(skb, dev);
444#ifdef MV643XX_NAPI
445 netif_receive_skb(skb);
446#else
447 netif_rx(skb);
448#endif
449 }
450 }
451
452 return received_packets;
453}
454
455/*
456 * mv643xx_eth_int_handler
457 *
458 * Main interrupt handler for the gigbit ethernet ports
459 *
460 * Input : irq - irq number (not used)
461 * dev_id - a pointer to the required interface's data structure
462 * regs - not used
463 * Output : N/A
464 */
465
466static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
467 struct pt_regs *regs)
468{
469 struct net_device *dev = (struct net_device *)dev_id;
470 struct mv643xx_private *mp = netdev_priv(dev);
471 u32 eth_int_cause, eth_int_cause_ext = 0;
472 unsigned int port_num = mp->port_num;
473
474 /* Read interrupt cause registers */
475 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
476 INT_CAUSE_UNMASK_ALL;
477
478 if (eth_int_cause & BIT1)
479 eth_int_cause_ext = mv_read(
480 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
481 INT_CAUSE_UNMASK_ALL_EXT;
482
483#ifdef MV643XX_NAPI
484 if (!(eth_int_cause & 0x0007fffd)) {
485 /* Dont ack the Rx interrupt */
486#endif
487 /*
488 * Clear specific ethernet port intrerrupt registers by
489 * acknowleding relevant bits.
490 */
491 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
492 ~eth_int_cause);
493 if (eth_int_cause_ext != 0x0)
494 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
495 (port_num), ~eth_int_cause_ext);
496
497 /* UDP change : We may need this */
498 if ((eth_int_cause_ext & 0x0000ffff) &&
499 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
500 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
501 netif_wake_queue(dev);
502#ifdef MV643XX_NAPI
503 } else {
504 if (netif_rx_schedule_prep(dev)) {
505 /* Mask all the interrupts */
506 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
507 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
508 (port_num), 0);
8f518703
DF
509 /* ensure previous writes have taken effect */
510 mv_read(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num));
1da177e4
LT
511 __netif_rx_schedule(dev);
512 }
513#else
514 if (eth_int_cause & (BIT2 | BIT11))
515 mv643xx_eth_receive_queue(dev, 0);
516
517 /*
518 * After forwarded received packets to upper layer, add a task
519 * in an interrupts enabled context that refills the RX ring
520 * with skb's.
521 */
522#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
523 /* Unmask all interrupts on ethernet port */
524 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
525 INT_CAUSE_MASK_ALL);
8f518703
DF
526 /* wait for previous write to take effect */
527 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
528
1da177e4
LT
529 queue_task(&mp->rx_task, &tq_immediate);
530 mark_bh(IMMEDIATE_BH);
531#else
532 mp->rx_task.func(dev);
533#endif
534#endif
535 }
536 /* PHY status changed */
537 if (eth_int_cause_ext & (BIT16 | BIT20)) {
538 if (eth_port_link_is_up(port_num)) {
539 netif_carrier_on(dev);
540 netif_wake_queue(dev);
541 /* Start TX queue */
542 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
543 (port_num), 1);
544 } else {
545 netif_carrier_off(dev);
546 netif_stop_queue(dev);
547 }
548 }
549
550 /*
551 * If no real interrupt occured, exit.
552 * This can happen when using gigE interrupt coalescing mechanism.
553 */
554 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
555 return IRQ_NONE;
556
557 return IRQ_HANDLED;
558}
559
560#ifdef MV643XX_COAL
561
562/*
563 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
564 *
565 * DESCRIPTION:
566 * This routine sets the RX coalescing interrupt mechanism parameter.
567 * This parameter is a timeout counter, that counts in 64 t_clk
568 * chunks ; that when timeout event occurs a maskable interrupt
569 * occurs.
570 * The parameter is calculated using the tClk of the MV-643xx chip
571 * , and the required delay of the interrupt in usec.
572 *
573 * INPUT:
574 * unsigned int eth_port_num Ethernet port number
575 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
576 * unsigned int delay Delay in usec
577 *
578 * OUTPUT:
579 * Interrupt coalescing mechanism value is set in MV-643xx chip.
580 *
581 * RETURN:
582 * The interrupt coalescing value set in the gigE port.
583 *
584 */
585static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
586 unsigned int t_clk, unsigned int delay)
587{
588 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
589
590 /* Set RX Coalescing mechanism */
591 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
592 ((coal & 0x3fff) << 8) |
593 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
594 & 0xffc000ff));
595
596 return coal;
597}
598#endif
599
600/*
601 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
602 *
603 * DESCRIPTION:
604 * This routine sets the TX coalescing interrupt mechanism parameter.
605 * This parameter is a timeout counter, that counts in 64 t_clk
606 * chunks ; that when timeout event occurs a maskable interrupt
607 * occurs.
608 * The parameter is calculated using the t_cLK frequency of the
609 * MV-643xx chip and the required delay in the interrupt in uSec
610 *
611 * INPUT:
612 * unsigned int eth_port_num Ethernet port number
613 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
614 * unsigned int delay Delay in uSeconds
615 *
616 * OUTPUT:
617 * Interrupt coalescing mechanism value is set in MV-643xx chip.
618 *
619 * RETURN:
620 * The interrupt coalescing value set in the gigE port.
621 *
622 */
623static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
624 unsigned int t_clk, unsigned int delay)
625{
626 unsigned int coal;
627 coal = ((t_clk / 1000000) * delay) / 64;
628 /* Set TX Coalescing mechanism */
629 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
630 coal << 4);
631 return coal;
632}
633
634/*
635 * mv643xx_eth_open
636 *
637 * This function is called when openning the network device. The function
638 * should initialize all the hardware, initialize cyclic Rx/Tx
639 * descriptors chain and buffers and allocate an IRQ to the network
640 * device.
641 *
642 * Input : a pointer to the network device structure
643 *
644 * Output : zero of success , nonzero if fails.
645 */
646
647static int mv643xx_eth_open(struct net_device *dev)
648{
649 struct mv643xx_private *mp = netdev_priv(dev);
650 unsigned int port_num = mp->port_num;
651 int err;
652
1da177e4 653 err = request_irq(dev->irq, mv643xx_eth_int_handler,
16b81757 654 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
1da177e4
LT
655 if (err) {
656 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
657 port_num);
8f518703 658 return -EAGAIN;
1da177e4
LT
659 }
660
661 if (mv643xx_eth_real_open(dev)) {
662 printk("%s: Error opening interface\n", dev->name);
8f518703 663 free_irq(dev->irq, dev);
1da177e4 664 err = -EBUSY;
1da177e4
LT
665 }
666
1da177e4
LT
667 return err;
668}
669
670/*
671 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
672 *
673 * DESCRIPTION:
674 * This function prepares a Rx chained list of descriptors and packet
675 * buffers in a form of a ring. The routine must be called after port
676 * initialization routine and before port start routine.
677 * The Ethernet SDMA engine uses CPU bus addresses to access the various
678 * devices in the system (i.e. DRAM). This function uses the ethernet
679 * struct 'virtual to physical' routine (set by the user) to set the ring
680 * with physical addresses.
681 *
682 * INPUT:
683 * struct mv643xx_private *mp Ethernet Port Control srtuct.
684 *
685 * OUTPUT:
686 * The routine updates the Ethernet port control struct with information
687 * regarding the Rx descriptors and buffers.
688 *
689 * RETURN:
690 * None.
691 */
692static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
693{
694 volatile struct eth_rx_desc *p_rx_desc;
695 int rx_desc_num = mp->rx_ring_size;
696 int i;
697
698 /* initialize the next_desc_ptr links in the Rx descriptors ring */
699 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
700 for (i = 0; i < rx_desc_num; i++) {
701 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
702 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
703 }
704
705 /* Save Rx desc pointer to driver struct. */
706 mp->rx_curr_desc_q = 0;
707 mp->rx_used_desc_q = 0;
708
709 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
710
711 /* Add the queue to the list of RX queues of this port */
712 mp->port_rx_queue_command |= 1;
713}
714
715/*
716 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
717 *
718 * DESCRIPTION:
719 * This function prepares a Tx chained list of descriptors and packet
720 * buffers in a form of a ring. The routine must be called after port
721 * initialization routine and before port start routine.
722 * The Ethernet SDMA engine uses CPU bus addresses to access the various
723 * devices in the system (i.e. DRAM). This function uses the ethernet
724 * struct 'virtual to physical' routine (set by the user) to set the ring
725 * with physical addresses.
726 *
727 * INPUT:
728 * struct mv643xx_private *mp Ethernet Port Control srtuct.
729 *
730 * OUTPUT:
731 * The routine updates the Ethernet port control struct with information
732 * regarding the Tx descriptors and buffers.
733 *
734 * RETURN:
735 * None.
736 */
737static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
738{
739 int tx_desc_num = mp->tx_ring_size;
740 struct eth_tx_desc *p_tx_desc;
741 int i;
742
743 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
744 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
745 for (i = 0; i < tx_desc_num; i++) {
746 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
747 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
748 }
749
750 mp->tx_curr_desc_q = 0;
751 mp->tx_used_desc_q = 0;
752#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
753 mp->tx_first_desc_q = 0;
754#endif
755
756 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
757
758 /* Add the queue to the list of Tx queues of this port */
759 mp->port_tx_queue_command |= 1;
760}
761
762/* Helper function for mv643xx_eth_open */
763static int mv643xx_eth_real_open(struct net_device *dev)
764{
765 struct mv643xx_private *mp = netdev_priv(dev);
766 unsigned int port_num = mp->port_num;
767 unsigned int size;
768
769 /* Stop RX Queues */
770 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
771
1da177e4
LT
772 /* Set the MAC Address */
773 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
774
775 eth_port_init(mp);
776
777 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
778
779 memset(&mp->timeout, 0, sizeof(struct timer_list));
780 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
781 mp->timeout.data = (unsigned long)dev;
782
783 mp->rx_task_busy = 0;
784 mp->rx_timer_flag = 0;
785
786 /* Allocate RX and TX skb rings */
787 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
788 GFP_KERNEL);
789 if (!mp->rx_skb) {
790 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
791 return -ENOMEM;
792 }
793 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
794 GFP_KERNEL);
795 if (!mp->tx_skb) {
796 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
797 kfree(mp->rx_skb);
798 return -ENOMEM;
799 }
800
801 /* Allocate TX ring */
802 mp->tx_ring_skbs = 0;
803 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
804 mp->tx_desc_area_size = size;
805
806 if (mp->tx_sram_size) {
807 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
808 mp->tx_sram_size);
809 mp->tx_desc_dma = mp->tx_sram_addr;
810 } else
811 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
812 &mp->tx_desc_dma,
813 GFP_KERNEL);
814
815 if (!mp->p_tx_desc_area) {
816 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
817 dev->name, size);
818 kfree(mp->rx_skb);
819 kfree(mp->tx_skb);
820 return -ENOMEM;
821 }
822 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
823 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
824
825 ether_init_tx_desc_ring(mp);
826
827 /* Allocate RX ring */
828 mp->rx_ring_skbs = 0;
829 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
830 mp->rx_desc_area_size = size;
831
832 if (mp->rx_sram_size) {
833 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
834 mp->rx_sram_size);
835 mp->rx_desc_dma = mp->rx_sram_addr;
836 } else
837 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
838 &mp->rx_desc_dma,
839 GFP_KERNEL);
840
841 if (!mp->p_rx_desc_area) {
842 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
843 dev->name, size);
844 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
845 dev->name);
846 if (mp->rx_sram_size)
dd09b1de 847 iounmap(mp->p_tx_desc_area);
1da177e4
LT
848 else
849 dma_free_coherent(NULL, mp->tx_desc_area_size,
850 mp->p_tx_desc_area, mp->tx_desc_dma);
851 kfree(mp->rx_skb);
852 kfree(mp->tx_skb);
853 return -ENOMEM;
854 }
855 memset((void *)mp->p_rx_desc_area, 0, size);
856
857 ether_init_rx_desc_ring(mp);
858
859 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
860
861 eth_port_start(mp);
862
863 /* Interrupt Coalescing */
864
865#ifdef MV643XX_COAL
866 mp->rx_int_coal =
867 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
868#endif
869
870 mp->tx_int_coal =
871 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
872
8f518703
DF
873 /* Clear any pending ethernet port interrupts */
874 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
875 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
876
877 /* Unmask phy and link status changes interrupts */
878 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
879 INT_CAUSE_UNMASK_ALL_EXT);
1da177e4 880
8f518703
DF
881 /* Unmask RX buffer and TX end interrupt */
882 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
883 INT_CAUSE_UNMASK_ALL);
1da177e4
LT
884 return 0;
885}
886
887static void mv643xx_eth_free_tx_rings(struct net_device *dev)
888{
889 struct mv643xx_private *mp = netdev_priv(dev);
890 unsigned int port_num = mp->port_num;
891 unsigned int curr;
892
893 /* Stop Tx Queues */
894 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
895
896 /* Free outstanding skb's on TX rings */
897 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
898 if (mp->tx_skb[curr]) {
899 dev_kfree_skb(mp->tx_skb[curr]);
900 mp->tx_ring_skbs--;
901 }
902 }
903 if (mp->tx_ring_skbs)
904 printk("%s: Error on Tx descriptor free - could not free %d"
905 " descriptors\n", dev->name, mp->tx_ring_skbs);
906
907 /* Free TX ring */
908 if (mp->tx_sram_size)
909 iounmap(mp->p_tx_desc_area);
910 else
911 dma_free_coherent(NULL, mp->tx_desc_area_size,
912 mp->p_tx_desc_area, mp->tx_desc_dma);
913}
914
915static void mv643xx_eth_free_rx_rings(struct net_device *dev)
916{
917 struct mv643xx_private *mp = netdev_priv(dev);
918 unsigned int port_num = mp->port_num;
919 int curr;
920
921 /* Stop RX Queues */
922 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
923
924 /* Free preallocated skb's on RX rings */
925 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
926 if (mp->rx_skb[curr]) {
927 dev_kfree_skb(mp->rx_skb[curr]);
928 mp->rx_ring_skbs--;
929 }
930 }
931
932 if (mp->rx_ring_skbs)
933 printk(KERN_ERR
934 "%s: Error in freeing Rx Ring. %d skb's still"
935 " stuck in RX Ring - ignoring them\n", dev->name,
936 mp->rx_ring_skbs);
937 /* Free RX ring */
938 if (mp->rx_sram_size)
939 iounmap(mp->p_rx_desc_area);
940 else
941 dma_free_coherent(NULL, mp->rx_desc_area_size,
942 mp->p_rx_desc_area, mp->rx_desc_dma);
943}
944
945/*
946 * mv643xx_eth_stop
947 *
948 * This function is used when closing the network device.
949 * It updates the hardware,
950 * release all memory that holds buffers and descriptors and release the IRQ.
951 * Input : a pointer to the device structure
952 * Output : zero if success , nonzero if fails
953 */
954
955/* Helper function for mv643xx_eth_stop */
956
957static int mv643xx_eth_real_stop(struct net_device *dev)
958{
959 struct mv643xx_private *mp = netdev_priv(dev);
960 unsigned int port_num = mp->port_num;
961
8f518703
DF
962 /* Mask RX buffer and TX end interrupt */
963 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
964
965 /* Mask phy and link status changes interrupts */
966 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
967
968 /* ensure previous writes have taken effect */
969 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
970
971#ifdef MV643XX_NAPI
972 netif_poll_disable(dev);
973#endif
1da177e4
LT
974 netif_carrier_off(dev);
975 netif_stop_queue(dev);
976
1da177e4
LT
977 eth_port_reset(mp->port_num);
978
8f518703
DF
979 mv643xx_eth_free_tx_rings(dev);
980 mv643xx_eth_free_rx_rings(dev);
1da177e4 981
8f518703
DF
982#ifdef MV643XX_NAPI
983 netif_poll_enable(dev);
984#endif
1da177e4
LT
985
986 return 0;
987}
988
989static int mv643xx_eth_stop(struct net_device *dev)
990{
1da177e4
LT
991 mv643xx_eth_real_stop(dev);
992
993 free_irq(dev->irq, dev);
1da177e4
LT
994
995 return 0;
996}
997
998#ifdef MV643XX_NAPI
999static void mv643xx_tx(struct net_device *dev)
1000{
1001 struct mv643xx_private *mp = netdev_priv(dev);
1002 struct pkt_info pkt_info;
1003
1004 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
cb415d30
PG
1005 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
1006 dma_unmap_single(NULL, pkt_info.buf_ptr,
1007 pkt_info.byte_cnt,
1008 DMA_TO_DEVICE);
1009 else
1010 dma_unmap_page(NULL, pkt_info.buf_ptr,
1011 pkt_info.byte_cnt,
1012 DMA_TO_DEVICE);
1da177e4 1013
cb415d30 1014 if (pkt_info.return_info)
1da177e4 1015 dev_kfree_skb_irq(pkt_info.return_info);
1da177e4
LT
1016 }
1017
1018 if (netif_queue_stopped(dev) &&
1019 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1020 netif_wake_queue(dev);
1021}
1022
1023/*
1024 * mv643xx_poll
1025 *
1026 * This function is used in case of NAPI
1027 */
1028static int mv643xx_poll(struct net_device *dev, int *budget)
1029{
1030 struct mv643xx_private *mp = netdev_priv(dev);
1031 int done = 1, orig_budget, work_done;
1032 unsigned int port_num = mp->port_num;
1da177e4
LT
1033
1034#ifdef MV643XX_TX_FAST_REFILL
1035 if (++mp->tx_clean_threshold > 5) {
1da177e4
LT
1036 mv643xx_tx(dev);
1037 mp->tx_clean_threshold = 0;
1da177e4
LT
1038 }
1039#endif
1040
1041 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1042 != (u32) mp->rx_used_desc_q) {
1043 orig_budget = *budget;
1044 if (orig_budget > dev->quota)
1045 orig_budget = dev->quota;
1046 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1047 mp->rx_task.func(dev);
1048 *budget -= work_done;
1049 dev->quota -= work_done;
1050 if (work_done >= orig_budget)
1051 done = 0;
1052 }
1053
1054 if (done) {
8f518703 1055 netif_rx_complete(dev);
1da177e4
LT
1056 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1057 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1058 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1059 INT_CAUSE_UNMASK_ALL);
1060 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1061 INT_CAUSE_UNMASK_ALL_EXT);
1da177e4
LT
1062 }
1063
1064 return done ? 0 : 1;
1065}
1066#endif
1067
f7ea3337
PJ
1068/* Hardware can't handle unaligned fragments smaller than 9 bytes.
1069 * This helper function detects that case.
1070 */
1071
1072static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1073{
1074 unsigned int frag;
1075 skb_frag_t *fragp;
1076
1077 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1078 fragp = &skb_shinfo(skb)->frags[frag];
1079 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1080 return 1;
1081
1082 }
1083 return 0;
1084}
1085
1086
1da177e4
LT
1087/*
1088 * mv643xx_eth_start_xmit
1089 *
1090 * This function is queues a packet in the Tx descriptor for
1091 * required port.
1092 *
1093 * Input : skb - a pointer to socket buffer
1094 * dev - a pointer to the required port
1095 *
1096 * Output : zero upon success
1097 */
1098static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1099{
1100 struct mv643xx_private *mp = netdev_priv(dev);
1101 struct net_device_stats *stats = &mp->stats;
1102 ETH_FUNC_RET_STATUS status;
1103 unsigned long flags;
1104 struct pkt_info pkt_info;
1105
1106 if (netif_queue_stopped(dev)) {
1107 printk(KERN_ERR
1108 "%s: Tried sending packet when interface is stopped\n",
1109 dev->name);
1110 return 1;
1111 }
1112
1113 /* This is a hard error, log it. */
1114 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1115 (skb_shinfo(skb)->nr_frags + 1)) {
1116 netif_stop_queue(dev);
1117 printk(KERN_ERR
1118 "%s: Bug in mv643xx_eth - Trying to transmit when"
1119 " queue full !\n", dev->name);
1120 return 1;
1121 }
1122
1123 /* Paranoid check - this shouldn't happen */
1124 if (skb == NULL) {
1125 stats->tx_dropped++;
1126 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1127 return 1;
1128 }
1129
f7ea3337
PJ
1130#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1131 if (has_tiny_unaligned_frags(skb)) {
1132 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1133 stats->tx_dropped++;
1134 printk(KERN_DEBUG "%s: failed to linearize tiny "
1135 "unaligned fragment\n", dev->name);
1136 return 1;
1137 }
1138 }
1139
1da177e4
LT
1140 spin_lock_irqsave(&mp->lock, flags);
1141
1da177e4 1142 if (!skb_shinfo(skb)->nr_frags) {
1da177e4 1143 if (skb->ip_summed != CHECKSUM_HW) {
26006360 1144 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1da177e4 1145 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1146 ETH_TX_FIRST_DESC |
1147 ETH_TX_LAST_DESC |
1148 5 << ETH_TX_IHL_SHIFT;
1da177e4
LT
1149 pkt_info.l4i_chk = 0;
1150 } else {
1da177e4
LT
1151
1152 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1153 ETH_TX_FIRST_DESC |
1154 ETH_TX_LAST_DESC |
1155 ETH_GEN_TCP_UDP_CHECKSUM |
1156 ETH_GEN_IP_V_4_CHECKSUM |
1157 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4
LT
1158 /* CPU already calculated pseudo header checksum. */
1159 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1160 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1161 pkt_info.l4i_chk = skb->h.uh->check;
1162 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1163 pkt_info.l4i_chk = skb->h.th->check;
1164 else {
1165 printk(KERN_ERR
1166 "%s: chksum proto != TCP or UDP\n",
1167 dev->name);
1168 spin_unlock_irqrestore(&mp->lock, flags);
1169 return 1;
1170 }
1171 }
1172 pkt_info.byte_cnt = skb->len;
1173 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1174 DMA_TO_DEVICE);
1175 pkt_info.return_info = skb;
1da177e4
LT
1176 status = eth_port_send(mp, &pkt_info);
1177 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1178 printk(KERN_ERR "%s: Error on transmitting packet\n",
1179 dev->name);
1180 stats->tx_bytes += pkt_info.byte_cnt;
1181 } else {
1182 unsigned int frag;
1da177e4 1183
1da177e4
LT
1184 /* first frag which is skb header */
1185 pkt_info.byte_cnt = skb_headlen(skb);
1186 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1187 skb_headlen(skb),
1188 DMA_TO_DEVICE);
1189 pkt_info.l4i_chk = 0;
1190 pkt_info.return_info = 0;
1da177e4 1191
26006360
DF
1192 if (skb->ip_summed != CHECKSUM_HW)
1193 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1194 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1195 5 << ETH_TX_IHL_SHIFT;
1196 else {
1197 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1198 ETH_GEN_TCP_UDP_CHECKSUM |
1199 ETH_GEN_IP_V_4_CHECKSUM |
1200 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4
LT
1201 /* CPU already calculated pseudo header checksum. */
1202 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1203 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1204 pkt_info.l4i_chk = skb->h.uh->check;
1205 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1206 pkt_info.l4i_chk = skb->h.th->check;
1207 else {
1208 printk(KERN_ERR
1209 "%s: chksum proto != TCP or UDP\n",
1210 dev->name);
1211 spin_unlock_irqrestore(&mp->lock, flags);
1212 return 1;
1213 }
1214 }
1215
1216 status = eth_port_send(mp, &pkt_info);
1217 if (status != ETH_OK) {
1218 if ((status == ETH_ERROR))
1219 printk(KERN_ERR
1220 "%s: Error on transmitting packet\n",
1221 dev->name);
1222 if (status == ETH_QUEUE_FULL)
1223 printk("Error on Queue Full \n");
1224 if (status == ETH_QUEUE_LAST_RESOURCE)
1225 printk("Tx resource error \n");
1226 }
1227 stats->tx_bytes += pkt_info.byte_cnt;
1228
1229 /* Check for the remaining frags */
1230 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1231 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1232 pkt_info.l4i_chk = 0x0000;
1233 pkt_info.cmd_sts = 0x00000000;
1234
1235 /* Last Frag enables interrupt and frees the skb */
1236 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1237 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1238 ETH_TX_LAST_DESC;
1239 pkt_info.return_info = skb;
1da177e4
LT
1240 } else {
1241 pkt_info.return_info = 0;
1242 }
1243 pkt_info.l4i_chk = 0;
1244 pkt_info.byte_cnt = this_frag->size;
1245
1246 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1247 this_frag->page_offset,
1248 this_frag->size,
1249 DMA_TO_DEVICE);
1250
1251 status = eth_port_send(mp, &pkt_info);
1252
1253 if (status != ETH_OK) {
1254 if ((status == ETH_ERROR))
1255 printk(KERN_ERR "%s: Error on "
1256 "transmitting packet\n",
1257 dev->name);
1258
1259 if (status == ETH_QUEUE_LAST_RESOURCE)
1260 printk("Tx resource error \n");
1261
1262 if (status == ETH_QUEUE_FULL)
1263 printk("Queue is full \n");
1264 }
1265 stats->tx_bytes += pkt_info.byte_cnt;
1266 }
1267 }
1268#else
f7ea3337
PJ
1269 spin_lock_irqsave(&mp->lock, flags);
1270
1da177e4
LT
1271 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1272 ETH_TX_LAST_DESC;
1273 pkt_info.l4i_chk = 0;
1274 pkt_info.byte_cnt = skb->len;
1275 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1276 DMA_TO_DEVICE);
1277 pkt_info.return_info = skb;
1da177e4
LT
1278 status = eth_port_send(mp, &pkt_info);
1279 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1280 printk(KERN_ERR "%s: Error on transmitting packet\n",
1281 dev->name);
1282 stats->tx_bytes += pkt_info.byte_cnt;
1283#endif
1284
1285 /* Check if TX queue can handle another skb. If not, then
1286 * signal higher layers to stop requesting TX
1287 */
1288 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1289 /*
1290 * Stop getting skb's from upper layers.
1291 * Getting skb's from upper layers will be enabled again after
1292 * packets are released.
1293 */
1294 netif_stop_queue(dev);
1295
1296 /* Update statistics and start of transmittion time */
1297 stats->tx_packets++;
1298 dev->trans_start = jiffies;
1299
1300 spin_unlock_irqrestore(&mp->lock, flags);
1301
1302 return 0; /* success */
1303}
1304
1305/*
1306 * mv643xx_eth_get_stats
1307 *
1308 * Returns a pointer to the interface statistics.
1309 *
1310 * Input : dev - a pointer to the required interface
1311 *
1312 * Output : a pointer to the interface's statistics
1313 */
1314
1315static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1316{
1317 struct mv643xx_private *mp = netdev_priv(dev);
1318
1319 return &mp->stats;
1320}
1321
63c9e549
DF
1322#ifdef CONFIG_NET_POLL_CONTROLLER
1323static inline void mv643xx_enable_irq(struct mv643xx_private *mp)
1324{
1325 int port_num = mp->port_num;
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(&mp->lock, flags);
1329 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1330 INT_CAUSE_UNMASK_ALL);
1331 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1332 INT_CAUSE_UNMASK_ALL_EXT);
1333 spin_unlock_irqrestore(&mp->lock, flags);
1334}
1335
1336static inline void mv643xx_disable_irq(struct mv643xx_private *mp)
1337{
1338 int port_num = mp->port_num;
1339 unsigned long flags;
1340
1341 spin_lock_irqsave(&mp->lock, flags);
1342 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1343 INT_CAUSE_MASK_ALL);
1344 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1345 INT_CAUSE_MASK_ALL_EXT);
1346 spin_unlock_irqrestore(&mp->lock, flags);
1347}
1348
1349static void mv643xx_netpoll(struct net_device *netdev)
1350{
1351 struct mv643xx_private *mp = netdev_priv(netdev);
1352
1353 mv643xx_disable_irq(mp);
1354 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
1355 mv643xx_enable_irq(mp);
1356}
1357#endif
1358
1da177e4
LT
1359/*/
1360 * mv643xx_eth_probe
1361 *
1362 * First function called after registering the network device.
1363 * It's purpose is to initialize the device as an ethernet device,
1364 * fill the ethernet device structure with pointers * to functions,
1365 * and set the MAC address of the interface
1366 *
1367 * Input : struct device *
1368 * Output : -ENOMEM if failed , 0 if success
1369 */
3ae5eaec 1370static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1371{
1da177e4
LT
1372 struct mv643xx_eth_platform_data *pd;
1373 int port_num = pdev->id;
1374 struct mv643xx_private *mp;
1375 struct net_device *dev;
1376 u8 *p;
1377 struct resource *res;
1378 int err;
1379
1380 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1381 if (!dev)
1382 return -ENOMEM;
1383
3ae5eaec 1384 platform_set_drvdata(pdev, dev);
1da177e4
LT
1385
1386 mp = netdev_priv(dev);
1387
1388 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1389 BUG_ON(!res);
1390 dev->irq = res->start;
1391
1392 mp->port_num = port_num;
1393
1394 dev->open = mv643xx_eth_open;
1395 dev->stop = mv643xx_eth_stop;
1396 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1397 dev->get_stats = mv643xx_eth_get_stats;
1398 dev->set_mac_address = mv643xx_eth_set_mac_address;
1399 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1400
1401 /* No need to Tx Timeout */
1402 dev->tx_timeout = mv643xx_eth_tx_timeout;
1403#ifdef MV643XX_NAPI
1404 dev->poll = mv643xx_poll;
1405 dev->weight = 64;
1406#endif
1407
63c9e549
DF
1408#ifdef CONFIG_NET_POLL_CONTROLLER
1409 dev->poll_controller = mv643xx_netpoll;
1410#endif
1411
1da177e4
LT
1412 dev->watchdog_timeo = 2 * HZ;
1413 dev->tx_queue_len = mp->tx_ring_size;
1414 dev->base_addr = 0;
1415 dev->change_mtu = mv643xx_eth_change_mtu;
1416 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1417
1418#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1419#ifdef MAX_SKB_FRAGS
1420 /*
1421 * Zero copy can only work if we use Discovery II memory. Else, we will
1422 * have to map the buffers to ISA memory which is only 16 MB
1423 */
1424 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1425#endif
1426#endif
1427
1428 /* Configure the timeout task */
1429 INIT_WORK(&mp->tx_timeout_task,
1430 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1431
1432 spin_lock_init(&mp->lock);
1433
1434 /* set default config values */
1435 eth_port_uc_addr_get(dev, dev->dev_addr);
1436 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1437 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1438 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1439 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1440 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1441 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1442
1443 pd = pdev->dev.platform_data;
1444 if (pd) {
1445 if (pd->mac_addr != NULL)
1446 memcpy(dev->dev_addr, pd->mac_addr, 6);
1447
1448 if (pd->phy_addr || pd->force_phy_addr)
1449 ethernet_phy_set(port_num, pd->phy_addr);
1450
1451 if (pd->port_config || pd->force_port_config)
1452 mp->port_config = pd->port_config;
1453
1454 if (pd->port_config_extend || pd->force_port_config_extend)
1455 mp->port_config_extend = pd->port_config_extend;
1456
1457 if (pd->port_sdma_config || pd->force_port_sdma_config)
1458 mp->port_sdma_config = pd->port_sdma_config;
1459
1460 if (pd->port_serial_control || pd->force_port_serial_control)
1461 mp->port_serial_control = pd->port_serial_control;
1462
1463 if (pd->rx_queue_size)
1464 mp->rx_ring_size = pd->rx_queue_size;
1465
1466 if (pd->tx_queue_size)
1467 mp->tx_ring_size = pd->tx_queue_size;
1468
1469 if (pd->tx_sram_size) {
1470 mp->tx_sram_size = pd->tx_sram_size;
1471 mp->tx_sram_addr = pd->tx_sram_addr;
1472 }
1473
1474 if (pd->rx_sram_size) {
1475 mp->rx_sram_size = pd->rx_sram_size;
1476 mp->rx_sram_addr = pd->rx_sram_addr;
1477 }
1478 }
1479
1480 err = ethernet_phy_detect(port_num);
1481 if (err) {
1482 pr_debug("MV643xx ethernet port %d: "
1483 "No PHY detected at addr %d\n",
1484 port_num, ethernet_phy_get(port_num));
1485 return err;
1486 }
1487
1488 err = register_netdev(dev);
1489 if (err)
1490 goto out;
1491
1492 p = dev->dev_addr;
1493 printk(KERN_NOTICE
1494 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1495 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1496
1497 if (dev->features & NETIF_F_SG)
1498 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1499
1500 if (dev->features & NETIF_F_IP_CSUM)
1501 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1502 dev->name);
1503
1504#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1505 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1506#endif
1507
1508#ifdef MV643XX_COAL
1509 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1510 dev->name);
1511#endif
1512
1513#ifdef MV643XX_NAPI
1514 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1515#endif
1516
b1529871
ND
1517 if (mp->tx_sram_size > 0)
1518 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1519
1da177e4
LT
1520 return 0;
1521
1522out:
1523 free_netdev(dev);
1524
1525 return err;
1526}
1527
3ae5eaec 1528static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1529{
3ae5eaec 1530 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1531
1532 unregister_netdev(dev);
1533 flush_scheduled_work();
1534
1535 free_netdev(dev);
3ae5eaec 1536 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1537 return 0;
1538}
1539
3ae5eaec 1540static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 1541{
1da177e4
LT
1542 struct resource *res;
1543
1544 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1545
1546 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1547 if (res == NULL)
1548 return -ENODEV;
1549
1550 mv643xx_eth_shared_base = ioremap(res->start,
1551 MV643XX_ETH_SHARED_REGS_SIZE);
1552 if (mv643xx_eth_shared_base == NULL)
1553 return -ENOMEM;
1554
1555 return 0;
1556
1557}
1558
3ae5eaec 1559static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4
LT
1560{
1561 iounmap(mv643xx_eth_shared_base);
1562 mv643xx_eth_shared_base = NULL;
1563
1564 return 0;
1565}
1566
3ae5eaec 1567static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
1568 .probe = mv643xx_eth_probe,
1569 .remove = mv643xx_eth_remove,
3ae5eaec
RK
1570 .driver = {
1571 .name = MV643XX_ETH_NAME,
1572 },
1da177e4
LT
1573};
1574
3ae5eaec 1575static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
1576 .probe = mv643xx_eth_shared_probe,
1577 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
1578 .driver = {
1579 .name = MV643XX_ETH_SHARED_NAME,
1580 },
1da177e4
LT
1581};
1582
1583/*
1584 * mv643xx_init_module
1585 *
1586 * Registers the network drivers into the Linux kernel
1587 *
1588 * Input : N/A
1589 *
1590 * Output : N/A
1591 */
1592static int __init mv643xx_init_module(void)
1593{
1594 int rc;
1595
3ae5eaec 1596 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 1597 if (!rc) {
3ae5eaec 1598 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 1599 if (rc)
3ae5eaec 1600 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1601 }
1602 return rc;
1603}
1604
1605/*
1606 * mv643xx_cleanup_module
1607 *
1608 * Registers the network drivers into the Linux kernel
1609 *
1610 * Input : N/A
1611 *
1612 * Output : N/A
1613 */
1614static void __exit mv643xx_cleanup_module(void)
1615{
3ae5eaec
RK
1616 platform_driver_unregister(&mv643xx_eth_driver);
1617 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1618}
1619
1620module_init(mv643xx_init_module);
1621module_exit(mv643xx_cleanup_module);
1622
1623MODULE_LICENSE("GPL");
1624MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1625 " and Dale Farnsworth");
1626MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1627
1628/*
1629 * The second part is the low level driver of the gigE ethernet ports.
1630 */
1631
1632/*
1633 * Marvell's Gigabit Ethernet controller low level driver
1634 *
1635 * DESCRIPTION:
1636 * This file introduce low level API to Marvell's Gigabit Ethernet
1637 * controller. This Gigabit Ethernet Controller driver API controls
1638 * 1) Operations (i.e. port init, start, reset etc').
1639 * 2) Data flow (i.e. port send, receive etc').
1640 * Each Gigabit Ethernet port is controlled via
1641 * struct mv643xx_private.
1642 * This struct includes user configuration information as well as
1643 * driver internal data needed for its operations.
1644 *
1645 * Supported Features:
1646 * - This low level driver is OS independent. Allocating memory for
1647 * the descriptor rings and buffers are not within the scope of
1648 * this driver.
1649 * - The user is free from Rx/Tx queue managing.
1650 * - This low level driver introduce functionality API that enable
1651 * the to operate Marvell's Gigabit Ethernet Controller in a
1652 * convenient way.
1653 * - Simple Gigabit Ethernet port operation API.
1654 * - Simple Gigabit Ethernet port data flow API.
1655 * - Data flow and operation API support per queue functionality.
1656 * - Support cached descriptors for better performance.
1657 * - Enable access to all four DRAM banks and internal SRAM memory
1658 * spaces.
1659 * - PHY access and control API.
1660 * - Port control register configuration API.
1661 * - Full control over Unicast and Multicast MAC configurations.
1662 *
1663 * Operation flow:
1664 *
1665 * Initialization phase
1666 * This phase complete the initialization of the the
1667 * mv643xx_private struct.
1668 * User information regarding port configuration has to be set
1669 * prior to calling the port initialization routine.
1670 *
1671 * In this phase any port Tx/Rx activity is halted, MIB counters
1672 * are cleared, PHY address is set according to user parameter and
1673 * access to DRAM and internal SRAM memory spaces.
1674 *
1675 * Driver ring initialization
1676 * Allocating memory for the descriptor rings and buffers is not
1677 * within the scope of this driver. Thus, the user is required to
1678 * allocate memory for the descriptors ring and buffers. Those
1679 * memory parameters are used by the Rx and Tx ring initialization
1680 * routines in order to curve the descriptor linked list in a form
1681 * of a ring.
1682 * Note: Pay special attention to alignment issues when using
1683 * cached descriptors/buffers. In this phase the driver store
1684 * information in the mv643xx_private struct regarding each queue
1685 * ring.
1686 *
1687 * Driver start
1688 * This phase prepares the Ethernet port for Rx and Tx activity.
1689 * It uses the information stored in the mv643xx_private struct to
1690 * initialize the various port registers.
1691 *
1692 * Data flow:
1693 * All packet references to/from the driver are done using
1694 * struct pkt_info.
1695 * This struct is a unified struct used with Rx and Tx operations.
1696 * This way the user is not required to be familiar with neither
1697 * Tx nor Rx descriptors structures.
1698 * The driver's descriptors rings are management by indexes.
1699 * Those indexes controls the ring resources and used to indicate
1700 * a SW resource error:
1701 * 'current'
1702 * This index points to the current available resource for use. For
1703 * example in Rx process this index will point to the descriptor
1704 * that will be passed to the user upon calling the receive
1705 * routine. In Tx process, this index will point to the descriptor
1706 * that will be assigned with the user packet info and transmitted.
1707 * 'used'
1708 * This index points to the descriptor that need to restore its
1709 * resources. For example in Rx process, using the Rx buffer return
1710 * API will attach the buffer returned in packet info to the
1711 * descriptor pointed by 'used'. In Tx process, using the Tx
1712 * descriptor return will merely return the user packet info with
1713 * the command status of the transmitted buffer pointed by the
1714 * 'used' index. Nevertheless, it is essential to use this routine
1715 * to update the 'used' index.
1716 * 'first'
1717 * This index supports Tx Scatter-Gather. It points to the first
1718 * descriptor of a packet assembled of multiple buffers. For
1719 * example when in middle of Such packet we have a Tx resource
1720 * error the 'curr' index get the value of 'first' to indicate
1721 * that the ring returned to its state before trying to transmit
1722 * this packet.
1723 *
1724 * Receive operation:
1725 * The eth_port_receive API set the packet information struct,
1726 * passed by the caller, with received information from the
1727 * 'current' SDMA descriptor.
1728 * It is the user responsibility to return this resource back
1729 * to the Rx descriptor ring to enable the reuse of this source.
1730 * Return Rx resource is done using the eth_rx_return_buff API.
1731 *
1732 * Transmit operation:
1733 * The eth_port_send API supports Scatter-Gather which enables to
1734 * send a packet spanned over multiple buffers. This means that
1735 * for each packet info structure given by the user and put into
1736 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1737 * bit will be set in the packet info command status field. This
1738 * API also consider restriction regarding buffer alignments and
1739 * sizes.
1740 * The user must return a Tx resource after ensuring the buffer
1741 * has been transmitted to enable the Tx ring indexes to update.
1742 *
1743 * BOARD LAYOUT
1744 * This device is on-board. No jumper diagram is necessary.
1745 *
1746 * EXTERNAL INTERFACE
1747 *
1748 * Prior to calling the initialization routine eth_port_init() the user
1749 * must set the following fields under mv643xx_private struct:
1750 * port_num User Ethernet port number.
1751 * port_mac_addr[6] User defined port MAC address.
1752 * port_config User port configuration value.
1753 * port_config_extend User port config extend value.
1754 * port_sdma_config User port SDMA config value.
1755 * port_serial_control User port serial control value.
1756 *
1757 * This driver data flow is done using the struct pkt_info which
1758 * is a unified struct for Rx and Tx operations:
1759 *
1760 * byte_cnt Tx/Rx descriptor buffer byte count.
1761 * l4i_chk CPU provided TCP Checksum. For Tx operation
1762 * only.
1763 * cmd_sts Tx/Rx descriptor command status.
1764 * buf_ptr Tx/Rx descriptor buffer pointer.
1765 * return_info Tx/Rx user resource return information.
1766 */
1767
1768/* defines */
1769/* SDMA command macros */
1770#define ETH_ENABLE_TX_QUEUE(eth_port) \
1771 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1772
1773/* locals */
1774
1775/* PHY routines */
1776static int ethernet_phy_get(unsigned int eth_port_num);
1777static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1778
1779/* Ethernet Port routines */
1780static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1781 int option);
1782
1783/*
1784 * eth_port_init - Initialize the Ethernet port driver
1785 *
1786 * DESCRIPTION:
1787 * This function prepares the ethernet port to start its activity:
1788 * 1) Completes the ethernet port driver struct initialization toward port
1789 * start routine.
1790 * 2) Resets the device to a quiescent state in case of warm reboot.
1791 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1792 * 4) Clean MAC tables. The reset status of those tables is unknown.
1793 * 5) Set PHY address.
1794 * Note: Call this routine prior to eth_port_start routine and after
1795 * setting user values in the user fields of Ethernet port control
1796 * struct.
1797 *
1798 * INPUT:
1799 * struct mv643xx_private *mp Ethernet port control struct
1800 *
1801 * OUTPUT:
1802 * See description.
1803 *
1804 * RETURN:
1805 * None.
1806 */
1807static void eth_port_init(struct mv643xx_private *mp)
1808{
1809 mp->port_rx_queue_command = 0;
1810 mp->port_tx_queue_command = 0;
1811
1812 mp->rx_resource_err = 0;
1813 mp->tx_resource_err = 0;
1814
1815 eth_port_reset(mp->port_num);
1816
1817 eth_port_init_mac_tables(mp->port_num);
1818
1819 ethernet_phy_reset(mp->port_num);
1820}
1821
1822/*
1823 * eth_port_start - Start the Ethernet port activity.
1824 *
1825 * DESCRIPTION:
1826 * This routine prepares the Ethernet port for Rx and Tx activity:
1827 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1828 * has been initialized a descriptor's ring (using
1829 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1830 * 2. Initialize and enable the Ethernet configuration port by writing to
1831 * the port's configuration and command registers.
1832 * 3. Initialize and enable the SDMA by writing to the SDMA's
1833 * configuration and command registers. After completing these steps,
1834 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1835 *
1836 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1837 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1838 * and ether_init_rx_desc_ring for Rx queues).
1839 *
1840 * INPUT:
1841 * struct mv643xx_private *mp Ethernet port control struct
1842 *
1843 * OUTPUT:
1844 * Ethernet port is ready to receive and transmit.
1845 *
1846 * RETURN:
1847 * None.
1848 */
1849static void eth_port_start(struct mv643xx_private *mp)
1850{
1851 unsigned int port_num = mp->port_num;
1852 int tx_curr_desc, rx_curr_desc;
1853
1854 /* Assignment of Tx CTRP of given queue */
1855 tx_curr_desc = mp->tx_curr_desc_q;
1856 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1857 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1858
1859 /* Assignment of Rx CRDP of given queue */
1860 rx_curr_desc = mp->rx_curr_desc_q;
1861 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1862 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1863
1864 /* Add the assigned Ethernet address to the port's address table */
1865 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1866
1867 /* Assign port configuration and command. */
1868 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1869
1870 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1871 mp->port_config_extend);
1872
1873
1874 /* Increase the Rx side buffer size if supporting GigE */
1875 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1876 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1877 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1878 else
1879 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1880 mp->port_serial_control);
1881
1882 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1883 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1884 MV643XX_ETH_SERIAL_PORT_ENABLE);
1885
1886 /* Assign port SDMA configuration */
1887 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1888 mp->port_sdma_config);
1889
1890 /* Enable port Rx. */
1891 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1892 mp->port_rx_queue_command);
8f543718
DF
1893
1894 /* Disable port bandwidth limits by clearing MTU register */
1895 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1da177e4
LT
1896}
1897
1898/*
1899 * eth_port_uc_addr_set - This function Set the port Unicast address.
1900 *
1901 * DESCRIPTION:
1902 * This function Set the port Ethernet MAC address.
1903 *
1904 * INPUT:
1905 * unsigned int eth_port_num Port number.
1906 * char * p_addr Address to be set
1907 *
1908 * OUTPUT:
1909 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1910 * To set the unicast table with the proper information.
1911 *
1912 * RETURN:
1913 * N/A.
1914 *
1915 */
1916static void eth_port_uc_addr_set(unsigned int eth_port_num,
1917 unsigned char *p_addr)
1918{
1919 unsigned int mac_h;
1920 unsigned int mac_l;
1921
1922 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1923 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1924 (p_addr[3] << 0);
1925
1926 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1927 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1928
1929 /* Accept frames of this address */
1930 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1931
1932 return;
1933}
1934
1935/*
1936 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1937 * (MAC address) from the ethernet hw registers.
1938 *
1939 * DESCRIPTION:
1940 * This function retrieves the port Ethernet MAC address.
1941 *
1942 * INPUT:
1943 * unsigned int eth_port_num Port number.
1944 * char *MacAddr pointer where the MAC address is stored
1945 *
1946 * OUTPUT:
1947 * Copy the MAC address to the location pointed to by MacAddr
1948 *
1949 * RETURN:
1950 * N/A.
1951 *
1952 */
1953static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1954{
1955 struct mv643xx_private *mp = netdev_priv(dev);
1956 unsigned int mac_h;
1957 unsigned int mac_l;
1958
1959 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1960 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1961
1962 p_addr[0] = (mac_h >> 24) & 0xff;
1963 p_addr[1] = (mac_h >> 16) & 0xff;
1964 p_addr[2] = (mac_h >> 8) & 0xff;
1965 p_addr[3] = mac_h & 0xff;
1966 p_addr[4] = (mac_l >> 8) & 0xff;
1967 p_addr[5] = mac_l & 0xff;
1968}
1969
1970/*
1971 * eth_port_uc_addr - This function Set the port unicast address table
1972 *
1973 * DESCRIPTION:
1974 * This function locates the proper entry in the Unicast table for the
1975 * specified MAC nibble and sets its properties according to function
1976 * parameters.
1977 *
1978 * INPUT:
1979 * unsigned int eth_port_num Port number.
1980 * unsigned char uc_nibble Unicast MAC Address last nibble.
1981 * int option 0 = Add, 1 = remove address.
1982 *
1983 * OUTPUT:
1984 * This function add/removes MAC addresses from the port unicast address
1985 * table.
1986 *
1987 * RETURN:
1988 * true is output succeeded.
1989 * false if option parameter is invalid.
1990 *
1991 */
1992static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1993 int option)
1994{
1995 unsigned int unicast_reg;
1996 unsigned int tbl_offset;
1997 unsigned int reg_offset;
1998
1999 /* Locate the Unicast table entry */
2000 uc_nibble = (0xf & uc_nibble);
2001 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
2002 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
2003
2004 switch (option) {
2005 case REJECT_MAC_ADDR:
2006 /* Clear accepts frame bit at given unicast DA table entry */
2007 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2008 (eth_port_num) + tbl_offset));
2009
2010 unicast_reg &= (0x0E << (8 * reg_offset));
2011
2012 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2013 (eth_port_num) + tbl_offset), unicast_reg);
2014 break;
2015
2016 case ACCEPT_MAC_ADDR:
2017 /* Set accepts frame bit at unicast DA filter table entry */
2018 unicast_reg =
2019 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2020 (eth_port_num) + tbl_offset));
2021
2022 unicast_reg |= (0x01 << (8 * reg_offset));
2023
2024 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2025 (eth_port_num) + tbl_offset), unicast_reg);
2026
2027 break;
2028
2029 default:
2030 return 0;
2031 }
2032
2033 return 1;
2034}
2035
16e03018
DF
2036/*
2037 * The entries in each table are indexed by a hash of a packet's MAC
2038 * address. One bit in each entry determines whether the packet is
2039 * accepted. There are 4 entries (each 8 bits wide) in each register
2040 * of the table. The bits in each entry are defined as follows:
2041 * 0 Accept=1, Drop=0
2042 * 3-1 Queue (ETH_Q0=0)
2043 * 7-4 Reserved = 0;
2044 */
2045static void eth_port_set_filter_table_entry(int table, unsigned char entry)
2046{
2047 unsigned int table_reg;
2048 unsigned int tbl_offset;
2049 unsigned int reg_offset;
2050
2051 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2052 reg_offset = entry % 4; /* Entry offset within the register */
2053
2054 /* Set "accepts frame bit" at specified table entry */
2055 table_reg = mv_read(table + tbl_offset);
2056 table_reg |= 0x01 << (8 * reg_offset);
2057 mv_write(table + tbl_offset, table_reg);
2058}
2059
2060/*
2061 * eth_port_mc_addr - Multicast address settings.
2062 *
2063 * The MV device supports multicast using two tables:
2064 * 1) Special Multicast Table for MAC addresses of the form
2065 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2066 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2067 * Table entries in the DA-Filter table.
2068 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2069 * is used as an index to the Other Multicast Table entries in the
2070 * DA-Filter table. This function calculates the CRC-8bit value.
2071 * In either case, eth_port_set_filter_table_entry() is then called
2072 * to set to set the actual table entry.
2073 */
2074static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
2075{
2076 unsigned int mac_h;
2077 unsigned int mac_l;
2078 unsigned char crc_result = 0;
2079 int table;
2080 int mac_array[48];
2081 int crc[8];
2082 int i;
2083
2084 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2085 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2086 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2087 (eth_port_num);
2088 eth_port_set_filter_table_entry(table, p_addr[5]);
2089 return;
2090 }
2091
2092 /* Calculate CRC-8 out of the given address */
2093 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2094 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2095 (p_addr[4] << 8) | (p_addr[5] << 0);
2096
2097 for (i = 0; i < 32; i++)
2098 mac_array[i] = (mac_l >> i) & 0x1;
2099 for (i = 32; i < 48; i++)
2100 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2101
2102 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2103 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2104 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2105 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2106 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2107
2108 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2109 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2110 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2111 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2112 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2113 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2114 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2115
2116 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2117 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2118 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2119 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2120 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2121 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2122
2123 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2124 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2125 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2126 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2127 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2128 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2129
2130 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2131 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2132 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2133 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2134 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2135 mac_array[3] ^ mac_array[2];
2136
2137 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2138 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2139 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2140 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2141 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2142 mac_array[4] ^ mac_array[3];
2143
2144 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2145 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2146 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2147 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2148 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2149 mac_array[4];
2150
2151 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2152 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2153 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2154 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2155 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2156
2157 for (i = 0; i < 8; i++)
2158 crc_result = crc_result | (crc[i] << i);
2159
2160 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2161 eth_port_set_filter_table_entry(table, crc_result);
2162}
2163
2164/*
2165 * Set the entire multicast list based on dev->mc_list.
2166 */
2167static void eth_port_set_multicast_list(struct net_device *dev)
2168{
2169
2170 struct dev_mc_list *mc_list;
2171 int i;
2172 int table_index;
2173 struct mv643xx_private *mp = netdev_priv(dev);
2174 unsigned int eth_port_num = mp->port_num;
2175
2176 /* If the device is in promiscuous mode or in all multicast mode,
2177 * we will fully populate both multicast tables with accept.
2178 * This is guaranteed to yield a match on all multicast addresses...
2179 */
2180 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2181 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2182 /* Set all entries in DA filter special multicast
2183 * table (Ex_dFSMT)
2184 * Set for ETH_Q0 for now
2185 * Bits
2186 * 0 Accept=1, Drop=0
2187 * 3-1 Queue ETH_Q0=0
2188 * 7-4 Reserved = 0;
2189 */
2190 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2191
2192 /* Set all entries in DA filter other multicast
2193 * table (Ex_dFOMT)
2194 * Set for ETH_Q0 for now
2195 * Bits
2196 * 0 Accept=1, Drop=0
2197 * 3-1 Queue ETH_Q0=0
2198 * 7-4 Reserved = 0;
2199 */
2200 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2201 }
2202 return;
2203 }
2204
2205 /* We will clear out multicast tables every time we get the list.
2206 * Then add the entire new list...
2207 */
2208 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2209 /* Clear DA filter special multicast table (Ex_dFSMT) */
2210 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2211 (eth_port_num) + table_index, 0);
2212
2213 /* Clear DA filter other multicast table (Ex_dFOMT) */
2214 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2215 (eth_port_num) + table_index, 0);
2216 }
2217
2218 /* Get pointer to net_device multicast list and add each one... */
2219 for (i = 0, mc_list = dev->mc_list;
2220 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2221 i++, mc_list = mc_list->next)
2222 if (mc_list->dmi_addrlen == 6)
2223 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2224}
2225
1da177e4
LT
2226/*
2227 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2228 *
2229 * DESCRIPTION:
2230 * Go through all the DA filter tables (Unicast, Special Multicast &
2231 * Other Multicast) and set each entry to 0.
2232 *
2233 * INPUT:
2234 * unsigned int eth_port_num Ethernet Port number.
2235 *
2236 * OUTPUT:
2237 * Multicast and Unicast packets are rejected.
2238 *
2239 * RETURN:
2240 * None.
2241 */
2242static void eth_port_init_mac_tables(unsigned int eth_port_num)
2243{
2244 int table_index;
2245
2246 /* Clear DA filter unicast table (Ex_dFUT) */
2247 for (table_index = 0; table_index <= 0xC; table_index += 4)
2248 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2249 (eth_port_num) + table_index), 0);
2250
2251 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2252 /* Clear DA filter special multicast table (Ex_dFSMT) */
16e03018
DF
2253 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2254 (eth_port_num) + table_index, 0);
1da177e4 2255 /* Clear DA filter other multicast table (Ex_dFOMT) */
16e03018
DF
2256 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2257 (eth_port_num) + table_index, 0);
1da177e4
LT
2258 }
2259}
2260
2261/*
2262 * eth_clear_mib_counters - Clear all MIB counters
2263 *
2264 * DESCRIPTION:
2265 * This function clears all MIB counters of a specific ethernet port.
2266 * A read from the MIB counter will reset the counter.
2267 *
2268 * INPUT:
2269 * unsigned int eth_port_num Ethernet Port number.
2270 *
2271 * OUTPUT:
2272 * After reading all MIB counters, the counters resets.
2273 *
2274 * RETURN:
2275 * MIB counter value.
2276 *
2277 */
2278static void eth_clear_mib_counters(unsigned int eth_port_num)
2279{
2280 int i;
2281
2282 /* Perform dummy reads from MIB counters */
2283 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2284 i += 4)
2285 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2286}
2287
2288static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2289{
2290 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2291}
2292
2293static void eth_update_mib_counters(struct mv643xx_private *mp)
2294{
2295 struct mv643xx_mib_counters *p = &mp->mib_counters;
2296 int offset;
2297
2298 p->good_octets_received +=
2299 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2300 p->good_octets_received +=
2301 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2302
2303 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2304 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2305 offset += 4)
2306 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2307
2308 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2309 p->good_octets_sent +=
2310 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2311
2312 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2313 offset <= ETH_MIB_LATE_COLLISION;
2314 offset += 4)
2315 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2316}
2317
2318/*
2319 * ethernet_phy_detect - Detect whether a phy is present
2320 *
2321 * DESCRIPTION:
2322 * This function tests whether there is a PHY present on
2323 * the specified port.
2324 *
2325 * INPUT:
2326 * unsigned int eth_port_num Ethernet Port number.
2327 *
2328 * OUTPUT:
2329 * None
2330 *
2331 * RETURN:
2332 * 0 on success
2333 * -ENODEV on failure
2334 *
2335 */
2336static int ethernet_phy_detect(unsigned int port_num)
2337{
2338 unsigned int phy_reg_data0;
2339 int auto_neg;
2340
2341 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2342 auto_neg = phy_reg_data0 & 0x1000;
2343 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2344 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2345
2346 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2347 if ((phy_reg_data0 & 0x1000) == auto_neg)
2348 return -ENODEV; /* change didn't take */
2349
2350 phy_reg_data0 ^= 0x1000;
2351 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2352 return 0;
2353}
2354
2355/*
2356 * ethernet_phy_get - Get the ethernet port PHY address.
2357 *
2358 * DESCRIPTION:
2359 * This routine returns the given ethernet port PHY address.
2360 *
2361 * INPUT:
2362 * unsigned int eth_port_num Ethernet Port number.
2363 *
2364 * OUTPUT:
2365 * None.
2366 *
2367 * RETURN:
2368 * PHY address.
2369 *
2370 */
2371static int ethernet_phy_get(unsigned int eth_port_num)
2372{
2373 unsigned int reg_data;
2374
2375 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2376
2377 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2378}
2379
2380/*
2381 * ethernet_phy_set - Set the ethernet port PHY address.
2382 *
2383 * DESCRIPTION:
2384 * This routine sets the given ethernet port PHY address.
2385 *
2386 * INPUT:
2387 * unsigned int eth_port_num Ethernet Port number.
2388 * int phy_addr PHY address.
2389 *
2390 * OUTPUT:
2391 * None.
2392 *
2393 * RETURN:
2394 * None.
2395 *
2396 */
2397static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2398{
2399 u32 reg_data;
2400 int addr_shift = 5 * eth_port_num;
2401
2402 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2403 reg_data &= ~(0x1f << addr_shift);
2404 reg_data |= (phy_addr & 0x1f) << addr_shift;
2405 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2406}
2407
2408/*
2409 * ethernet_phy_reset - Reset Ethernet port PHY.
2410 *
2411 * DESCRIPTION:
2412 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2413 *
2414 * INPUT:
2415 * unsigned int eth_port_num Ethernet Port number.
2416 *
2417 * OUTPUT:
2418 * The PHY is reset.
2419 *
2420 * RETURN:
2421 * None.
2422 *
2423 */
2424static void ethernet_phy_reset(unsigned int eth_port_num)
2425{
2426 unsigned int phy_reg_data;
2427
2428 /* Reset the PHY */
2429 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2430 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2431 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2432}
2433
2434/*
2435 * eth_port_reset - Reset Ethernet port
2436 *
2437 * DESCRIPTION:
2438 * This routine resets the chip by aborting any SDMA engine activity and
2439 * clearing the MIB counters. The Receiver and the Transmit unit are in
2440 * idle state after this command is performed and the port is disabled.
2441 *
2442 * INPUT:
2443 * unsigned int eth_port_num Ethernet Port number.
2444 *
2445 * OUTPUT:
2446 * Channel activity is halted.
2447 *
2448 * RETURN:
2449 * None.
2450 *
2451 */
2452static void eth_port_reset(unsigned int port_num)
2453{
2454 unsigned int reg_data;
2455
2456 /* Stop Tx port activity. Check port Tx activity. */
2457 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2458
2459 if (reg_data & 0xFF) {
2460 /* Issue stop command for active channels only */
2461 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2462 (reg_data << 8));
2463
2464 /* Wait for all Tx activity to terminate. */
2465 /* Check port cause register that all Tx queues are stopped */
2466 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2467 & 0xFF)
2468 udelay(10);
2469 }
2470
2471 /* Stop Rx port activity. Check port Rx activity. */
2472 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2473
2474 if (reg_data & 0xFF) {
2475 /* Issue stop command for active channels only */
2476 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2477 (reg_data << 8));
2478
2479 /* Wait for all Rx activity to terminate. */
2480 /* Check port cause register that all Rx queues are stopped */
2481 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2482 & 0xFF)
2483 udelay(10);
2484 }
2485
2486 /* Clear all MIB counters */
2487 eth_clear_mib_counters(port_num);
2488
2489 /* Reset the Enable bit in the Configuration Register */
2490 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2491 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2492 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2493}
2494
1da177e4
LT
2495
2496static int eth_port_autoneg_supported(unsigned int eth_port_num)
2497{
2498 unsigned int phy_reg_data0;
2499
2500 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2501
2502 return phy_reg_data0 & 0x1000;
2503}
2504
2505static int eth_port_link_is_up(unsigned int eth_port_num)
2506{
2507 unsigned int phy_reg_data1;
2508
2509 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2510
2511 if (eth_port_autoneg_supported(eth_port_num)) {
2512 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2513 return 1;
2514 } else if (phy_reg_data1 & 0x4) /* link up */
2515 return 1;
2516
2517 return 0;
2518}
2519
1da177e4
LT
2520/*
2521 * eth_port_read_smi_reg - Read PHY registers
2522 *
2523 * DESCRIPTION:
2524 * This routine utilize the SMI interface to interact with the PHY in
2525 * order to perform PHY register read.
2526 *
2527 * INPUT:
2528 * unsigned int port_num Ethernet Port number.
2529 * unsigned int phy_reg PHY register address offset.
2530 * unsigned int *value Register value buffer.
2531 *
2532 * OUTPUT:
2533 * Write the value of a specified PHY register into given buffer.
2534 *
2535 * RETURN:
2536 * false if the PHY is busy or read data is not in valid state.
2537 * true otherwise.
2538 *
2539 */
2540static void eth_port_read_smi_reg(unsigned int port_num,
2541 unsigned int phy_reg, unsigned int *value)
2542{
2543 int phy_addr = ethernet_phy_get(port_num);
2544 unsigned long flags;
2545 int i;
2546
2547 /* the SMI register is a shared resource */
2548 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2549
2550 /* wait for the SMI register to become available */
2551 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2552 if (i == PHY_WAIT_ITERATIONS) {
2553 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2554 goto out;
2555 }
2556 udelay(PHY_WAIT_MICRO_SECONDS);
2557 }
2558
2559 mv_write(MV643XX_ETH_SMI_REG,
2560 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2561
2562 /* now wait for the data to be valid */
2563 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2564 if (i == PHY_WAIT_ITERATIONS) {
2565 printk("mv643xx PHY read timeout, port %d\n", port_num);
2566 goto out;
2567 }
2568 udelay(PHY_WAIT_MICRO_SECONDS);
2569 }
2570
2571 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2572out:
2573 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2574}
2575
2576/*
2577 * eth_port_write_smi_reg - Write to PHY registers
2578 *
2579 * DESCRIPTION:
2580 * This routine utilize the SMI interface to interact with the PHY in
2581 * order to perform writes to PHY registers.
2582 *
2583 * INPUT:
2584 * unsigned int eth_port_num Ethernet Port number.
2585 * unsigned int phy_reg PHY register address offset.
2586 * unsigned int value Register value.
2587 *
2588 * OUTPUT:
2589 * Write the given value to the specified PHY register.
2590 *
2591 * RETURN:
2592 * false if the PHY is busy.
2593 * true otherwise.
2594 *
2595 */
2596static void eth_port_write_smi_reg(unsigned int eth_port_num,
2597 unsigned int phy_reg, unsigned int value)
2598{
2599 int phy_addr;
2600 int i;
2601 unsigned long flags;
2602
2603 phy_addr = ethernet_phy_get(eth_port_num);
2604
2605 /* the SMI register is a shared resource */
2606 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2607
2608 /* wait for the SMI register to become available */
2609 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2610 if (i == PHY_WAIT_ITERATIONS) {
2611 printk("mv643xx PHY busy timeout, port %d\n",
2612 eth_port_num);
2613 goto out;
2614 }
2615 udelay(PHY_WAIT_MICRO_SECONDS);
2616 }
2617
2618 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2619 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2620out:
2621 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2622}
2623
2624/*
2625 * eth_port_send - Send an Ethernet packet
2626 *
2627 * DESCRIPTION:
2628 * This routine send a given packet described by p_pktinfo parameter. It
2629 * supports transmitting of a packet spaned over multiple buffers. The
2630 * routine updates 'curr' and 'first' indexes according to the packet
2631 * segment passed to the routine. In case the packet segment is first,
2632 * the 'first' index is update. In any case, the 'curr' index is updated.
2633 * If the routine get into Tx resource error it assigns 'curr' index as
2634 * 'first'. This way the function can abort Tx process of multiple
2635 * descriptors per packet.
2636 *
2637 * INPUT:
2638 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2639 * struct pkt_info *p_pkt_info User packet buffer.
2640 *
2641 * OUTPUT:
2642 * Tx ring 'curr' and 'first' indexes are updated.
2643 *
2644 * RETURN:
2645 * ETH_QUEUE_FULL in case of Tx resource error.
2646 * ETH_ERROR in case the routine can not access Tx desc ring.
2647 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2648 * ETH_OK otherwise.
2649 *
2650 */
2651#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2652/*
2653 * Modified to include the first descriptor pointer in case of SG
2654 */
2655static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2656 struct pkt_info *p_pkt_info)
2657{
2658 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2659 struct eth_tx_desc *current_descriptor;
2660 struct eth_tx_desc *first_descriptor;
2661 u32 command;
8f518703 2662 unsigned long flags;
1da177e4
LT
2663
2664 /* Do not process Tx ring in case of Tx ring resource error */
2665 if (mp->tx_resource_err)
2666 return ETH_QUEUE_FULL;
2667
2668 /*
2669 * The hardware requires that each buffer that is <= 8 bytes
2670 * in length must be aligned on an 8 byte boundary.
2671 */
2672 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2673 printk(KERN_ERR
2674 "mv643xx_eth port %d: packet size <= 8 problem\n",
2675 mp->port_num);
2676 return ETH_ERROR;
2677 }
2678
8f518703
DF
2679 spin_lock_irqsave(&mp->lock, flags);
2680
b111ceb6
DF
2681 mp->tx_ring_skbs++;
2682 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2683
1da177e4
LT
2684 /* Get the Tx Desc ring indexes */
2685 tx_desc_curr = mp->tx_curr_desc_q;
2686 tx_desc_used = mp->tx_used_desc_q;
2687
2688 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2689
2690 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2691
2692 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2693 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2694 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2695 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2696
2697 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2698 ETH_BUFFER_OWNED_BY_DMA;
2699 if (command & ETH_TX_FIRST_DESC) {
2700 tx_first_desc = tx_desc_curr;
2701 mp->tx_first_desc_q = tx_first_desc;
2702 first_descriptor = current_descriptor;
2703 mp->tx_first_command = command;
2704 } else {
2705 tx_first_desc = mp->tx_first_desc_q;
2706 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2707 BUG_ON(first_descriptor == NULL);
2708 current_descriptor->cmd_sts = command;
2709 }
2710
2711 if (command & ETH_TX_LAST_DESC) {
2712 wmb();
2713 first_descriptor->cmd_sts = mp->tx_first_command;
2714
2715 wmb();
2716 ETH_ENABLE_TX_QUEUE(mp->port_num);
2717
2718 /*
2719 * Finish Tx packet. Update first desc in case of Tx resource
2720 * error */
2721 tx_first_desc = tx_next_desc;
2722 mp->tx_first_desc_q = tx_first_desc;
2723 }
2724
2725 /* Check for ring index overlap in the Tx desc ring */
2726 if (tx_next_desc == tx_desc_used) {
2727 mp->tx_resource_err = 1;
2728 mp->tx_curr_desc_q = tx_first_desc;
2729
8f518703
DF
2730 spin_unlock_irqrestore(&mp->lock, flags);
2731
1da177e4
LT
2732 return ETH_QUEUE_LAST_RESOURCE;
2733 }
2734
2735 mp->tx_curr_desc_q = tx_next_desc;
2736
8f518703
DF
2737 spin_unlock_irqrestore(&mp->lock, flags);
2738
1da177e4
LT
2739 return ETH_OK;
2740}
2741#else
2742static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2743 struct pkt_info *p_pkt_info)
2744{
2745 int tx_desc_curr;
2746 int tx_desc_used;
2747 struct eth_tx_desc *current_descriptor;
2748 unsigned int command_status;
8f518703 2749 unsigned long flags;
1da177e4
LT
2750
2751 /* Do not process Tx ring in case of Tx ring resource error */
2752 if (mp->tx_resource_err)
2753 return ETH_QUEUE_FULL;
2754
8f518703
DF
2755 spin_lock_irqsave(&mp->lock, flags);
2756
b111ceb6
DF
2757 mp->tx_ring_skbs++;
2758 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2759
1da177e4
LT
2760 /* Get the Tx Desc ring indexes */
2761 tx_desc_curr = mp->tx_curr_desc_q;
2762 tx_desc_used = mp->tx_used_desc_q;
2763 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2764
2765 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2766 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2767 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2768 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2769
2770 /* Set last desc with DMA ownership and interrupt enable. */
2771 wmb();
2772 current_descriptor->cmd_sts = command_status |
2773 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2774
2775 wmb();
2776 ETH_ENABLE_TX_QUEUE(mp->port_num);
2777
2778 /* Finish Tx packet. Update first desc in case of Tx resource error */
2779 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2780
2781 /* Update the current descriptor */
2782 mp->tx_curr_desc_q = tx_desc_curr;
2783
2784 /* Check for ring index overlap in the Tx desc ring */
2785 if (tx_desc_curr == tx_desc_used) {
2786 mp->tx_resource_err = 1;
8f518703
DF
2787
2788 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4
LT
2789 return ETH_QUEUE_LAST_RESOURCE;
2790 }
2791
8f518703 2792 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4
LT
2793 return ETH_OK;
2794}
2795#endif
2796
2797/*
2798 * eth_tx_return_desc - Free all used Tx descriptors
2799 *
2800 * DESCRIPTION:
2801 * This routine returns the transmitted packet information to the caller.
2802 * It uses the 'first' index to support Tx desc return in case a transmit
2803 * of a packet spanned over multiple buffer still in process.
2804 * In case the Tx queue was in "resource error" condition, where there are
2805 * no available Tx resources, the function resets the resource error flag.
2806 *
2807 * INPUT:
2808 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2809 * struct pkt_info *p_pkt_info User packet buffer.
2810 *
2811 * OUTPUT:
2812 * Tx ring 'first' and 'used' indexes are updated.
2813 *
2814 * RETURN:
8f518703
DF
2815 * ETH_OK on success
2816 * ETH_ERROR otherwise.
1da177e4
LT
2817 *
2818 */
2819static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2820 struct pkt_info *p_pkt_info)
2821{
2822 int tx_desc_used;
8f518703
DF
2823 int tx_busy_desc;
2824 struct eth_tx_desc *p_tx_desc_used;
2825 unsigned int command_status;
2826 unsigned long flags;
2827 int err = ETH_OK;
2828
2829 spin_lock_irqsave(&mp->lock, flags);
2830
1da177e4 2831#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
8f518703 2832 tx_busy_desc = mp->tx_first_desc_q;
1da177e4 2833#else
8f518703 2834 tx_busy_desc = mp->tx_curr_desc_q;
1da177e4 2835#endif
1da177e4
LT
2836
2837 /* Get the Tx Desc ring indexes */
2838 tx_desc_used = mp->tx_used_desc_q;
2839
2840 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2841
2842 /* Sanity check */
8f518703
DF
2843 if (p_tx_desc_used == NULL) {
2844 err = ETH_ERROR;
2845 goto out;
2846 }
1da177e4
LT
2847
2848 /* Stop release. About to overlap the current available Tx descriptor */
8f518703
DF
2849 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
2850 err = ETH_ERROR;
2851 goto out;
2852 }
1da177e4
LT
2853
2854 command_status = p_tx_desc_used->cmd_sts;
2855
2856 /* Still transmitting... */
8f518703
DF
2857 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2858 err = ETH_ERROR;
2859 goto out;
2860 }
1da177e4
LT
2861
2862 /* Pass the packet information to the caller */
2863 p_pkt_info->cmd_sts = command_status;
2864 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
4eaa3cb3
PG
2865 p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
2866 p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
1da177e4
LT
2867 mp->tx_skb[tx_desc_used] = NULL;
2868
2869 /* Update the next descriptor to release. */
2870 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2871
2872 /* Any Tx return cancels the Tx resource error status */
2873 mp->tx_resource_err = 0;
2874
b111ceb6
DF
2875 BUG_ON(mp->tx_ring_skbs == 0);
2876 mp->tx_ring_skbs--;
2877
8f518703
DF
2878out:
2879 spin_unlock_irqrestore(&mp->lock, flags);
2880
2881 return err;
1da177e4
LT
2882}
2883
2884/*
2885 * eth_port_receive - Get received information from Rx ring.
2886 *
2887 * DESCRIPTION:
2888 * This routine returns the received data to the caller. There is no
2889 * data copying during routine operation. All information is returned
2890 * using pointer to packet information struct passed from the caller.
2891 * If the routine exhausts Rx ring resources then the resource error flag
2892 * is set.
2893 *
2894 * INPUT:
2895 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2896 * struct pkt_info *p_pkt_info User packet buffer.
2897 *
2898 * OUTPUT:
2899 * Rx ring current and used indexes are updated.
2900 *
2901 * RETURN:
2902 * ETH_ERROR in case the routine can not access Rx desc ring.
2903 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2904 * ETH_END_OF_JOB if there is no received data.
2905 * ETH_OK otherwise.
2906 */
2907static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2908 struct pkt_info *p_pkt_info)
2909{
2910 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2911 volatile struct eth_rx_desc *p_rx_desc;
2912 unsigned int command_status;
8f518703 2913 unsigned long flags;
1da177e4
LT
2914
2915 /* Do not process Rx ring in case of Rx ring resource error */
2916 if (mp->rx_resource_err)
2917 return ETH_QUEUE_FULL;
2918
8f518703
DF
2919 spin_lock_irqsave(&mp->lock, flags);
2920
1da177e4
LT
2921 /* Get the Rx Desc ring 'curr and 'used' indexes */
2922 rx_curr_desc = mp->rx_curr_desc_q;
2923 rx_used_desc = mp->rx_used_desc_q;
2924
2925 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2926
2927 /* The following parameters are used to save readings from memory */
2928 command_status = p_rx_desc->cmd_sts;
2929 rmb();
2930
2931 /* Nothing to receive... */
8f518703
DF
2932 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2933 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 2934 return ETH_END_OF_JOB;
8f518703 2935 }
1da177e4
LT
2936
2937 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2938 p_pkt_info->cmd_sts = command_status;
2939 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2940 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2941 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2942
2943 /* Clean the return info field to indicate that the packet has been */
2944 /* moved to the upper layers */
2945 mp->rx_skb[rx_curr_desc] = NULL;
2946
2947 /* Update current index in data structure */
2948 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2949 mp->rx_curr_desc_q = rx_next_curr_desc;
2950
2951 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2952 if (rx_next_curr_desc == rx_used_desc)
2953 mp->rx_resource_err = 1;
2954
8f518703
DF
2955 spin_unlock_irqrestore(&mp->lock, flags);
2956
1da177e4
LT
2957 return ETH_OK;
2958}
2959
2960/*
2961 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2962 *
2963 * DESCRIPTION:
2964 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2965 * next 'used' descriptor and attached the returned buffer to it.
2966 * In case the Rx ring was in "resource error" condition, where there are
2967 * no available Rx resources, the function resets the resource error flag.
2968 *
2969 * INPUT:
2970 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2971 * struct pkt_info *p_pkt_info Information on returned buffer.
2972 *
2973 * OUTPUT:
2974 * New available Rx resource in Rx descriptor ring.
2975 *
2976 * RETURN:
2977 * ETH_ERROR in case the routine can not access Rx desc ring.
2978 * ETH_OK otherwise.
2979 */
2980static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2981 struct pkt_info *p_pkt_info)
2982{
2983 int used_rx_desc; /* Where to return Rx resource */
2984 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
2985 unsigned long flags;
2986
2987 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
2988
2989 /* Get 'used' Rx descriptor */
2990 used_rx_desc = mp->rx_used_desc_q;
2991 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2992
2993 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2994 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2995 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2996
2997 /* Flush the write pipe */
2998
2999 /* Return the descriptor to DMA ownership */
3000 wmb();
3001 p_used_rx_desc->cmd_sts =
3002 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
3003 wmb();
3004
3005 /* Move the used descriptor pointer to the next descriptor */
3006 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
3007
3008 /* Any Rx return cancels the Rx resource error status */
3009 mp->rx_resource_err = 0;
3010
8f518703
DF
3011 spin_unlock_irqrestore(&mp->lock, flags);
3012
1da177e4
LT
3013 return ETH_OK;
3014}
3015
3016/************* Begin ethtool support *************************/
3017
3018struct mv643xx_stats {
3019 char stat_string[ETH_GSTRING_LEN];
3020 int sizeof_stat;
3021 int stat_offset;
3022};
3023
3024#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
3025 offsetof(struct mv643xx_private, m)
3026
3027static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
3028 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
3029 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
3030 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
3031 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
3032 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
3033 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
3034 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
3035 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
3036 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
3037 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
3038 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
3039 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
3040 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
3041 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
3042 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
3043 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
3044 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
3045 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
3046 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
3047 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
3048 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
3049 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
3050 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
3051 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
3052 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3053 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3054 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3055 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3056 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3057 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3058 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3059 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3060 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3061 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3062 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3063 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3064 { "collision", MV643XX_STAT(mib_counters.collision) },
3065 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3066};
3067
3068#define MV643XX_STATS_LEN \
3069 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
3070
3071static int
3072mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
3073{
3074 struct mv643xx_private *mp = netdev->priv;
3075 int port_num = mp->port_num;
3076 int autoneg = eth_port_autoneg_supported(port_num);
3077 int mode_10_bit;
3078 int auto_duplex;
3079 int half_duplex = 0;
3080 int full_duplex = 0;
3081 int auto_speed;
3082 int speed_10 = 0;
3083 int speed_100 = 0;
3084 int speed_1000 = 0;
3085
3086 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
3087 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
3088
3089 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
3090
3091 if (mode_10_bit) {
3092 ecmd->supported = SUPPORTED_10baseT_Half;
3093 } else {
3094 ecmd->supported = (SUPPORTED_10baseT_Half |
3095 SUPPORTED_10baseT_Full |
3096 SUPPORTED_100baseT_Half |
3097 SUPPORTED_100baseT_Full |
3098 SUPPORTED_1000baseT_Full |
3099 (autoneg ? SUPPORTED_Autoneg : 0) |
3100 SUPPORTED_TP);
3101
3102 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
3103 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
3104
3105 ecmd->advertising = ADVERTISED_TP;
3106
3107 if (autoneg) {
3108 ecmd->advertising |= ADVERTISED_Autoneg;
3109
3110 if (auto_duplex) {
3111 half_duplex = 1;
3112 full_duplex = 1;
3113 } else {
3114 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
3115 full_duplex = 1;
3116 else
3117 half_duplex = 1;
3118 }
3119
3120 if (auto_speed) {
3121 speed_10 = 1;
3122 speed_100 = 1;
3123 speed_1000 = 1;
3124 } else {
3125 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
3126 speed_1000 = 1;
3127 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
3128 speed_100 = 1;
3129 else
3130 speed_10 = 1;
3131 }
3132
3133 if (speed_10 & half_duplex)
3134 ecmd->advertising |= ADVERTISED_10baseT_Half;
3135 if (speed_10 & full_duplex)
3136 ecmd->advertising |= ADVERTISED_10baseT_Full;
3137 if (speed_100 & half_duplex)
3138 ecmd->advertising |= ADVERTISED_100baseT_Half;
3139 if (speed_100 & full_duplex)
3140 ecmd->advertising |= ADVERTISED_100baseT_Full;
3141 if (speed_1000)
3142 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3143 }
3144 }
3145
3146 ecmd->port = PORT_TP;
3147 ecmd->phy_address = ethernet_phy_get(port_num);
3148
3149 ecmd->transceiver = XCVR_EXTERNAL;
3150
3151 if (netif_carrier_ok(netdev)) {
3152 if (mode_10_bit)
3153 ecmd->speed = SPEED_10;
3154 else {
3155 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
3156 ecmd->speed = SPEED_1000;
3157 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
3158 ecmd->speed = SPEED_100;
3159 else
3160 ecmd->speed = SPEED_10;
3161 }
3162
3163 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
3164 ecmd->duplex = DUPLEX_FULL;
3165 else
3166 ecmd->duplex = DUPLEX_HALF;
3167 } else {
3168 ecmd->speed = -1;
3169 ecmd->duplex = -1;
3170 }
3171
3172 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3173 return 0;
3174}
3175
3176static void
3177mv643xx_get_drvinfo(struct net_device *netdev,
3178 struct ethtool_drvinfo *drvinfo)
3179{
3180 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3181 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3182 strncpy(drvinfo->fw_version, "N/A", 32);
3183 strncpy(drvinfo->bus_info, "mv643xx", 32);
3184 drvinfo->n_stats = MV643XX_STATS_LEN;
3185}
3186
3187static int
3188mv643xx_get_stats_count(struct net_device *netdev)
3189{
3190 return MV643XX_STATS_LEN;
3191}
3192
3193static void
3194mv643xx_get_ethtool_stats(struct net_device *netdev,
3195 struct ethtool_stats *stats, uint64_t *data)
3196{
3197 struct mv643xx_private *mp = netdev->priv;
3198 int i;
3199
3200 eth_update_mib_counters(mp);
3201
3202 for(i = 0; i < MV643XX_STATS_LEN; i++) {
3203 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3204 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3205 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3206 }
3207}
3208
3209static void
3210mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3211{
3212 int i;
3213
3214 switch(stringset) {
3215 case ETH_SS_STATS:
3216 for (i=0; i < MV643XX_STATS_LEN; i++) {
3217 memcpy(data + i * ETH_GSTRING_LEN,
3218 mv643xx_gstrings_stats[i].stat_string,
3219 ETH_GSTRING_LEN);
3220 }
3221 break;
3222 }
3223}
3224
3225static struct ethtool_ops mv643xx_ethtool_ops = {
3226 .get_settings = mv643xx_get_settings,
3227 .get_drvinfo = mv643xx_get_drvinfo,
3228 .get_link = ethtool_op_get_link,
3229 .get_sg = ethtool_op_get_sg,
3230 .set_sg = ethtool_op_set_sg,
3231 .get_strings = mv643xx_get_strings,
3232 .get_stats_count = mv643xx_get_stats_count,
3233 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3234};
3235
3236/************* End ethtool support *************************/