]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/qlge/qlge_main.c
ipv6: no more dev_put() in datagram_send_ctl()
[mirror_ubuntu-zesty-kernel.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
c4e84bde 37#include <linux/if_vlan.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
b7c6bfb7 41#include <net/ip6_checksum.h>
c4e84bde
RM
42
43#include "qlge.h"
44
45char qlge_driver_name[] = DRV_NAME;
46const char qlge_driver_version[] = DRV_VERSION;
47
48MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49MODULE_DESCRIPTION(DRV_STRING " ");
50MODULE_LICENSE("GPL");
51MODULE_VERSION(DRV_VERSION);
52
53static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55/* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
4974097a
RM
60/* NETIF_MSG_TX_QUEUED | */
61/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
62/* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65static int debug = 0x00007fff; /* defaults above */
66module_param(debug, int, 0);
67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69#define MSIX_IRQ 0
70#define MSI_IRQ 1
71#define LEG_IRQ 2
72static int irq_type = MSIX_IRQ;
73module_param(irq_type, int, MSIX_IRQ);
74MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 77 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
4322c5be
RM
216 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
217 if (status)
218 return status;
219
c4e84bde
RM
220 status = ql_wait_cfg(qdev, bit);
221 if (status) {
222 QPRINTK(qdev, IFUP, ERR,
223 "Timed out waiting for CFG to come ready.\n");
224 goto exit;
225 }
226
c4e84bde
RM
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
4322c5be 239 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
c4e84bde
RM
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
939678f8 257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
939678f8 265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
939678f8 271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
939678f8 279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
939678f8 286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 294 MAC_ADDR_MR, 0);
c4e84bde
RM
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308exit:
c4e84bde
RM
309 return status;
310}
311
312/* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317{
318 u32 offset = 0;
319 int status = 0;
320
c4e84bde
RM
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
323 {
324 u32 upper = (addr[0] << 8) | addr[1];
325 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
326 (addr[4] << 8) | (addr[5]);
327
328 status =
329 ql_wait_reg_rdy(qdev,
330 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
331 if (status)
332 goto exit;
333 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
334 (index << MAC_ADDR_IDX_SHIFT) |
335 type | MAC_ADDR_E);
336 ql_write32(qdev, MAC_ADDR_DATA, lower);
337 status =
338 ql_wait_reg_rdy(qdev,
339 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340 if (status)
341 goto exit;
342 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
343 (index << MAC_ADDR_IDX_SHIFT) |
344 type | MAC_ADDR_E);
345
346 ql_write32(qdev, MAC_ADDR_DATA, upper);
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 break;
353 }
c4e84bde
RM
354 case MAC_ADDR_TYPE_CAM_MAC:
355 {
356 u32 cam_output;
357 u32 upper = (addr[0] << 8) | addr[1];
358 u32 lower =
359 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
360 (addr[5]);
361
4974097a 362 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 363 "Adding %s address %pM"
c4e84bde
RM
364 " at index %d in the CAM.\n",
365 ((type ==
366 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 367 "UNICAST"), addr, index);
c4e84bde
RM
368
369 status =
370 ql_wait_reg_rdy(qdev,
939678f8 371 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
372 if (status)
373 goto exit;
374 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
375 (index << MAC_ADDR_IDX_SHIFT) | /* index */
376 type); /* type */
377 ql_write32(qdev, MAC_ADDR_DATA, lower);
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, upper);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 /* This field should also include the queue id
396 and possibly the function id. Right now we hardcode
397 the route field to NIC core.
398 */
76b26694
RM
399 cam_output = (CAM_OUT_ROUTE_NIC |
400 (qdev->
401 func << CAM_OUT_FUNC_SHIFT) |
402 (0 << CAM_OUT_CQ_ID_SHIFT));
403 if (qdev->vlgrp)
404 cam_output |= CAM_OUT_RV;
405 /* route to NIC core */
406 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
407 break;
408 }
409 case MAC_ADDR_TYPE_VLAN:
410 {
411 u32 enable_bit = *((u32 *) &addr[0]);
412 /* For VLAN, the addr actually holds a bit that
413 * either enables or disables the vlan id we are
414 * addressing. It's either MAC_ADDR_E on or off.
415 * That's bit-27 we're talking about.
416 */
417 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
418 (enable_bit ? "Adding" : "Removing"),
419 index, (enable_bit ? "to" : "from"));
420
421 status =
422 ql_wait_reg_rdy(qdev,
939678f8 423 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
424 if (status)
425 goto exit;
426 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
427 (index << MAC_ADDR_IDX_SHIFT) | /* index */
428 type | /* type */
429 enable_bit); /* enable/disable */
430 break;
431 }
432 case MAC_ADDR_TYPE_MULTI_FLTR:
433 default:
434 QPRINTK(qdev, IFUP, CRIT,
435 "Address type %d not yet supported.\n", type);
436 status = -EPERM;
437 }
438exit:
c4e84bde
RM
439 return status;
440}
441
7fab3bfe
RM
442/* Set or clear MAC address in hardware. We sometimes
443 * have to clear it to prevent wrong frame routing
444 * especially in a bonding environment.
445 */
446static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
447{
448 int status;
449 char zero_mac_addr[ETH_ALEN];
450 char *addr;
451
452 if (set) {
453 addr = &qdev->ndev->dev_addr[0];
454 QPRINTK(qdev, IFUP, DEBUG,
455 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
456 addr[0], addr[1], addr[2], addr[3],
457 addr[4], addr[5]);
458 } else {
459 memset(zero_mac_addr, 0, ETH_ALEN);
460 addr = &zero_mac_addr[0];
461 QPRINTK(qdev, IFUP, DEBUG,
462 "Clearing MAC address on %s\n",
463 qdev->ndev->name);
464 }
465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
466 if (status)
467 return status;
468 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
469 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
470 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
471 if (status)
472 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
473 "address.\n");
474 return status;
475}
476
6a473308
RM
477void ql_link_on(struct ql_adapter *qdev)
478{
479 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
480 qdev->ndev->name);
481 netif_carrier_on(qdev->ndev);
482 ql_set_mac_addr(qdev, 1);
483}
484
485void ql_link_off(struct ql_adapter *qdev)
486{
487 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
488 qdev->ndev->name);
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 QPRINTK(qdev, IFUP, DEBUG,
526 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
527 (enable ? "Adding" : "Removing"),
528 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
529 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
530 ((index ==
531 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
532 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
533 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
534 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
535 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
536 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
537 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
538 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
539 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
540 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
541 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
542 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
543 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
544 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
545 (enable ? "to" : "from"));
546
547 switch (mask) {
548 case RT_IDX_CAM_HIT:
549 {
550 value = RT_IDX_DST_CAM_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
553 break;
554 }
555 case RT_IDX_VALID: /* Promiscuous Mode frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
560 break;
561 }
562 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
563 {
564 value = RT_IDX_DST_DFLT_Q | /* dest */
565 RT_IDX_TYPE_NICQ | /* type */
566 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
567 break;
568 }
569 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
570 {
571 value = RT_IDX_DST_DFLT_Q | /* dest */
572 RT_IDX_TYPE_NICQ | /* type */
573 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
574 break;
575 }
576 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
577 {
e163d7f2 578 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
579 RT_IDX_TYPE_NICQ | /* type */
580 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
581 break;
582 }
583 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
584 {
e163d7f2 585 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
586 RT_IDX_TYPE_NICQ | /* type */
587 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
588 break;
589 }
590 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
591 {
592 value = RT_IDX_DST_RSS | /* dest */
593 RT_IDX_TYPE_NICQ | /* type */
594 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
595 break;
596 }
597 case 0: /* Clear the E-bit on an entry. */
598 {
599 value = RT_IDX_DST_DFLT_Q | /* dest */
600 RT_IDX_TYPE_NICQ | /* type */
601 (index << RT_IDX_IDX_SHIFT);/* index */
602 break;
603 }
604 default:
605 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
606 mask);
607 status = -EPERM;
608 goto exit;
609 }
610
611 if (value) {
612 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
613 if (status)
614 goto exit;
615 value |= (enable ? RT_IDX_E : 0);
616 ql_write32(qdev, RT_IDX, value);
617 ql_write32(qdev, RT_DATA, enable ? mask : 0);
618 }
619exit:
c4e84bde
RM
620 return status;
621}
622
623static void ql_enable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
626}
627
628static void ql_disable_interrupts(struct ql_adapter *qdev)
629{
630 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
631}
632
633/* If we're running with multiple MSI-X vectors then we enable on the fly.
634 * Otherwise, we may have multiple outstanding workers and don't want to
635 * enable until the last one finishes. In this case, the irq_cnt gets
636 * incremented everytime we queue a worker and decremented everytime
637 * a worker finishes. Once it hits zero we enable the interrupt.
638 */
bb0d215c 639u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 640{
bb0d215c
RM
641 u32 var = 0;
642 unsigned long hw_flags = 0;
643 struct intr_context *ctx = qdev->intr_context + intr;
644
645 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
646 /* Always enable if we're MSIX multi interrupts and
647 * it's not the default (zeroeth) interrupt.
648 */
c4e84bde 649 ql_write32(qdev, INTR_EN,
bb0d215c
RM
650 ctx->intr_en_mask);
651 var = ql_read32(qdev, STS);
652 return var;
c4e84bde 653 }
bb0d215c
RM
654
655 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
656 if (atomic_dec_and_test(&ctx->irq_cnt)) {
657 ql_write32(qdev, INTR_EN,
658 ctx->intr_en_mask);
659 var = ql_read32(qdev, STS);
660 }
661 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
662 return var;
c4e84bde
RM
663}
664
665static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
666{
667 u32 var = 0;
bb0d215c 668 struct intr_context *ctx;
c4e84bde 669
bb0d215c
RM
670 /* HW disables for us if we're MSIX multi interrupts and
671 * it's not the default (zeroeth) interrupt.
672 */
673 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
674 return 0;
675
676 ctx = qdev->intr_context + intr;
08b1bc8f 677 spin_lock(&qdev->hw_lock);
bb0d215c 678 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 679 ql_write32(qdev, INTR_EN,
bb0d215c 680 ctx->intr_dis_mask);
c4e84bde
RM
681 var = ql_read32(qdev, STS);
682 }
bb0d215c 683 atomic_inc(&ctx->irq_cnt);
08b1bc8f 684 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
685 return var;
686}
687
688static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
689{
690 int i;
691 for (i = 0; i < qdev->intr_count; i++) {
692 /* The enable call does a atomic_dec_and_test
693 * and enables only if the result is zero.
694 * So we precharge it here.
695 */
bb0d215c
RM
696 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
697 i == 0))
698 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
699 ql_enable_completion_interrupt(qdev, i);
700 }
701
702}
703
b0c2aadf
RM
704static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
705{
706 int status, i;
707 u16 csum = 0;
708 __le16 *flash = (__le16 *)&qdev->flash;
709
710 status = strncmp((char *)&qdev->flash, str, 4);
711 if (status) {
712 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
713 return status;
714 }
715
716 for (i = 0; i < size; i++)
717 csum += le16_to_cpu(*flash++);
718
719 if (csum)
720 QPRINTK(qdev, IFUP, ERR,
721 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
722
723 return csum;
724}
725
26351479 726static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
727{
728 int status = 0;
729 /* wait for reg to come ready */
730 status = ql_wait_reg_rdy(qdev,
731 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
732 if (status)
733 goto exit;
734 /* set up for reg read */
735 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
736 /* wait for reg to come ready */
737 status = ql_wait_reg_rdy(qdev,
738 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
739 if (status)
740 goto exit;
26351479
RM
741 /* This data is stored on flash as an array of
742 * __le32. Since ql_read32() returns cpu endian
743 * we need to swap it back.
744 */
745 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
746exit:
747 return status;
748}
749
cdca8d02
RM
750static int ql_get_8000_flash_params(struct ql_adapter *qdev)
751{
752 u32 i, size;
753 int status;
754 __le32 *p = (__le32 *)&qdev->flash;
755 u32 offset;
542512e4 756 u8 mac_addr[6];
cdca8d02
RM
757
758 /* Get flash offset for function and adjust
759 * for dword access.
760 */
e4552f51 761 if (!qdev->port)
cdca8d02
RM
762 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
763 else
764 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
765
766 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
767 return -ETIMEDOUT;
768
769 size = sizeof(struct flash_params_8000) / sizeof(u32);
770 for (i = 0; i < size; i++, p++) {
771 status = ql_read_flash_word(qdev, i+offset, p);
772 if (status) {
773 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
774 goto exit;
775 }
776 }
777
778 status = ql_validate_flash(qdev,
779 sizeof(struct flash_params_8000) / sizeof(u16),
780 "8000");
781 if (status) {
782 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
783 status = -EINVAL;
784 goto exit;
785 }
786
542512e4
RM
787 /* Extract either manufacturer or BOFM modified
788 * MAC address.
789 */
790 if (qdev->flash.flash_params_8000.data_type1 == 2)
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr1,
793 qdev->ndev->addr_len);
794 else
795 memcpy(mac_addr,
796 qdev->flash.flash_params_8000.mac_addr,
797 qdev->ndev->addr_len);
798
799 if (!is_valid_ether_addr(mac_addr)) {
cdca8d02
RM
800 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
801 status = -EINVAL;
802 goto exit;
803 }
804
805 memcpy(qdev->ndev->dev_addr,
542512e4 806 mac_addr,
cdca8d02
RM
807 qdev->ndev->addr_len);
808
809exit:
810 ql_sem_unlock(qdev, SEM_FLASH_MASK);
811 return status;
812}
813
b0c2aadf 814static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
815{
816 int i;
817 int status;
26351479 818 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 819 u32 offset = 0;
b0c2aadf 820 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
821
822 /* Second function's parameters follow the first
823 * function's.
824 */
e4552f51 825 if (qdev->port)
b0c2aadf 826 offset = size;
c4e84bde
RM
827
828 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
829 return -ETIMEDOUT;
830
b0c2aadf 831 for (i = 0; i < size; i++, p++) {
e78f5fa7 832 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
833 if (status) {
834 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
835 goto exit;
836 }
837
838 }
b0c2aadf
RM
839
840 status = ql_validate_flash(qdev,
841 sizeof(struct flash_params_8012) / sizeof(u16),
842 "8012");
843 if (status) {
844 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
845 status = -EINVAL;
846 goto exit;
847 }
848
849 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
850 status = -EINVAL;
851 goto exit;
852 }
853
854 memcpy(qdev->ndev->dev_addr,
855 qdev->flash.flash_params_8012.mac_addr,
856 qdev->ndev->addr_len);
857
c4e84bde
RM
858exit:
859 ql_sem_unlock(qdev, SEM_FLASH_MASK);
860 return status;
861}
862
863/* xgmac register are located behind the xgmac_addr and xgmac_data
864 * register pair. Each read/write requires us to wait for the ready
865 * bit before reading/writing the data.
866 */
867static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
868{
869 int status;
870 /* wait for reg to come ready */
871 status = ql_wait_reg_rdy(qdev,
872 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873 if (status)
874 return status;
875 /* write the data to the data reg */
876 ql_write32(qdev, XGMAC_DATA, data);
877 /* trigger the write */
878 ql_write32(qdev, XGMAC_ADDR, reg);
879 return status;
880}
881
882/* xgmac register are located behind the xgmac_addr and xgmac_data
883 * register pair. Each read/write requires us to wait for the ready
884 * bit before reading/writing the data.
885 */
886int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
887{
888 int status = 0;
889 /* wait for reg to come ready */
890 status = ql_wait_reg_rdy(qdev,
891 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
892 if (status)
893 goto exit;
894 /* set up for reg read */
895 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
896 /* wait for reg to come ready */
897 status = ql_wait_reg_rdy(qdev,
898 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899 if (status)
900 goto exit;
901 /* get the data */
902 *data = ql_read32(qdev, XGMAC_DATA);
903exit:
904 return status;
905}
906
907/* This is used for reading the 64-bit statistics regs. */
908int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
909{
910 int status = 0;
911 u32 hi = 0;
912 u32 lo = 0;
913
914 status = ql_read_xgmac_reg(qdev, reg, &lo);
915 if (status)
916 goto exit;
917
918 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
919 if (status)
920 goto exit;
921
922 *data = (u64) lo | ((u64) hi << 32);
923
924exit:
925 return status;
926}
927
cdca8d02
RM
928static int ql_8000_port_initialize(struct ql_adapter *qdev)
929{
bcc2cb3b 930 int status;
cfec0cbc
RM
931 /*
932 * Get MPI firmware version for driver banner
933 * and ethool info.
934 */
935 status = ql_mb_about_fw(qdev);
936 if (status)
937 goto exit;
bcc2cb3b
RM
938 status = ql_mb_get_fw_state(qdev);
939 if (status)
940 goto exit;
941 /* Wake up a worker to get/set the TX/RX frame sizes. */
942 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
943exit:
944 return status;
cdca8d02
RM
945}
946
c4e84bde
RM
947/* Take the MAC Core out of reset.
948 * Enable statistics counting.
949 * Take the transmitter/receiver out of reset.
950 * This functionality may be done in the MPI firmware at a
951 * later date.
952 */
b0c2aadf 953static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
954{
955 int status = 0;
956 u32 data;
957
958 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
959 /* Another function has the semaphore, so
960 * wait for the port init bit to come ready.
961 */
962 QPRINTK(qdev, LINK, INFO,
963 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
964 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
965 if (status) {
966 QPRINTK(qdev, LINK, CRIT,
967 "Port initialize timed out.\n");
968 }
969 return status;
970 }
971
972 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
973 /* Set the core reset. */
974 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
975 if (status)
976 goto end;
977 data |= GLOBAL_CFG_RESET;
978 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
979 if (status)
980 goto end;
981
982 /* Clear the core reset and turn on jumbo for receiver. */
983 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
984 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
985 data |= GLOBAL_CFG_TX_STAT_EN;
986 data |= GLOBAL_CFG_RX_STAT_EN;
987 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
988 if (status)
989 goto end;
990
991 /* Enable transmitter, and clear it's reset. */
992 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
993 if (status)
994 goto end;
995 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
996 data |= TX_CFG_EN; /* Enable the transmitter. */
997 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
998 if (status)
999 goto end;
1000
1001 /* Enable receiver and clear it's reset. */
1002 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1003 if (status)
1004 goto end;
1005 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1006 data |= RX_CFG_EN; /* Enable the receiver. */
1007 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1008 if (status)
1009 goto end;
1010
1011 /* Turn on jumbo. */
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1014 if (status)
1015 goto end;
1016 status =
1017 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1018 if (status)
1019 goto end;
1020
1021 /* Signal to the world that the port is enabled. */
1022 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1023end:
1024 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1025 return status;
1026}
1027
7c734359
RM
1028static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1029{
1030 return PAGE_SIZE << qdev->lbq_buf_order;
1031}
1032
c4e84bde 1033/* Get the next large buffer. */
8668ae92 1034static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1035{
1036 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1037 rx_ring->lbq_curr_idx++;
1038 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1039 rx_ring->lbq_curr_idx = 0;
1040 rx_ring->lbq_free_cnt++;
1041 return lbq_desc;
1042}
1043
7c734359
RM
1044static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1045 struct rx_ring *rx_ring)
1046{
1047 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1048
1049 pci_dma_sync_single_for_cpu(qdev->pdev,
1050 pci_unmap_addr(lbq_desc, mapaddr),
1051 rx_ring->lbq_buf_size,
1052 PCI_DMA_FROMDEVICE);
1053
1054 /* If it's the last chunk of our master page then
1055 * we unmap it.
1056 */
1057 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1058 == ql_lbq_block_size(qdev))
1059 pci_unmap_page(qdev->pdev,
1060 lbq_desc->p.pg_chunk.map,
1061 ql_lbq_block_size(qdev),
1062 PCI_DMA_FROMDEVICE);
1063 return lbq_desc;
1064}
1065
c4e84bde 1066/* Get the next small buffer. */
8668ae92 1067static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1068{
1069 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1070 rx_ring->sbq_curr_idx++;
1071 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1072 rx_ring->sbq_curr_idx = 0;
1073 rx_ring->sbq_free_cnt++;
1074 return sbq_desc;
1075}
1076
1077/* Update an rx ring index. */
1078static void ql_update_cq(struct rx_ring *rx_ring)
1079{
1080 rx_ring->cnsmr_idx++;
1081 rx_ring->curr_entry++;
1082 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1083 rx_ring->cnsmr_idx = 0;
1084 rx_ring->curr_entry = rx_ring->cq_base;
1085 }
1086}
1087
1088static void ql_write_cq_idx(struct rx_ring *rx_ring)
1089{
1090 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1091}
1092
7c734359
RM
1093static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1094 struct bq_desc *lbq_desc)
1095{
1096 if (!rx_ring->pg_chunk.page) {
1097 u64 map;
1098 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1099 GFP_ATOMIC,
1100 qdev->lbq_buf_order);
1101 if (unlikely(!rx_ring->pg_chunk.page)) {
1102 QPRINTK(qdev, DRV, ERR,
1103 "page allocation failed.\n");
1104 return -ENOMEM;
1105 }
1106 rx_ring->pg_chunk.offset = 0;
1107 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1108 0, ql_lbq_block_size(qdev),
1109 PCI_DMA_FROMDEVICE);
1110 if (pci_dma_mapping_error(qdev->pdev, map)) {
1111 __free_pages(rx_ring->pg_chunk.page,
1112 qdev->lbq_buf_order);
1113 QPRINTK(qdev, DRV, ERR,
1114 "PCI mapping failed.\n");
1115 return -ENOMEM;
1116 }
1117 rx_ring->pg_chunk.map = map;
1118 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1119 }
1120
1121 /* Copy the current master pg_chunk info
1122 * to the current descriptor.
1123 */
1124 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1125
1126 /* Adjust the master page chunk for next
1127 * buffer get.
1128 */
1129 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1130 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1131 rx_ring->pg_chunk.page = NULL;
1132 lbq_desc->p.pg_chunk.last_flag = 1;
1133 } else {
1134 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1135 get_page(rx_ring->pg_chunk.page);
1136 lbq_desc->p.pg_chunk.last_flag = 0;
1137 }
1138 return 0;
1139}
c4e84bde
RM
1140/* Process (refill) a large buffer queue. */
1141static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1142{
49f2186d
RM
1143 u32 clean_idx = rx_ring->lbq_clean_idx;
1144 u32 start_idx = clean_idx;
c4e84bde 1145 struct bq_desc *lbq_desc;
c4e84bde
RM
1146 u64 map;
1147 int i;
1148
7c734359 1149 while (rx_ring->lbq_free_cnt > 32) {
c4e84bde
RM
1150 for (i = 0; i < 16; i++) {
1151 QPRINTK(qdev, RX_STATUS, DEBUG,
1152 "lbq: try cleaning clean_idx = %d.\n",
1153 clean_idx);
1154 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359
RM
1155 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1156 QPRINTK(qdev, IFUP, ERR,
1157 "Could not get a page chunk.\n");
c4e84bde
RM
1158 return;
1159 }
7c734359
RM
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
c4e84bde 1163 pci_unmap_addr_set(lbq_desc, mapaddr, map);
7c734359
RM
1164 pci_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
2c9a0d41 1166 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
c4e84bde
RM
1184 QPRINTK(qdev, RX_STATUS, DEBUG,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1189 }
1190}
1191
1192/* Process (refill) a small buffer queue. */
1193static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194{
49f2186d
RM
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
c4e84bde 1197 struct bq_desc *sbq_desc;
c4e84bde
RM
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = 0; i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 QPRINTK(qdev, RX_STATUS, DEBUG,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
c4e84bde
RM
1207 if (sbq_desc->p.skb == NULL) {
1208 QPRINTK(qdev, RX_STATUS, DEBUG,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
52e55f3c 1213 SMALL_BUFFER_SIZE);
c4e84bde
RM
1214 if (sbq_desc->p.skb == NULL) {
1215 QPRINTK(qdev, PROBE, ERR,
1216 "Couldn't get an skb.\n");
1217 rx_ring->sbq_clean_idx = clean_idx;
1218 return;
1219 }
1220 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1221 map = pci_map_single(qdev->pdev,
1222 sbq_desc->p.skb->data,
52e55f3c
RM
1223 rx_ring->sbq_buf_size,
1224 PCI_DMA_FROMDEVICE);
c907a35a
RM
1225 if (pci_dma_mapping_error(qdev->pdev, map)) {
1226 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
c4e84bde
RM
1232 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1233 pci_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
c4e84bde
RM
1250 QPRINTK(qdev, RX_STATUS, DEBUG,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 QPRINTK(qdev, TX_DONE, DEBUG,
1285 "unmapping OAL area.\n");
1286 }
1287 pci_unmap_single(qdev->pdev,
1288 pci_unmap_addr(&tx_ring_desc->map[i],
1289 mapaddr),
1290 pci_unmap_len(&tx_ring_desc->map[i],
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
1294 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1295 i);
1296 pci_unmap_page(qdev->pdev,
1297 pci_unmap_addr(&tx_ring_desc->map[i],
1298 mapaddr),
1299 pci_unmap_len(&tx_ring_desc->map[i],
1300 maplen), PCI_DMA_TODEVICE);
1301 }
1302 }
1303
1304}
1305
1306/* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308 */
1309static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312{
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319 if (frag_cnt) {
1320 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1321 }
1322 /*
1323 * Map the skb buffer first.
1324 */
1325 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1326
1327 err = pci_dma_mapping_error(qdev->pdev, map);
1328 if (err) {
1329 QPRINTK(qdev, TX_QUEUED, ERR,
1330 "PCI mapping failed with error: %d\n", err);
1331
1332 return NETDEV_TX_BUSY;
1333 }
1334
1335 tbd->len = cpu_to_le32(len);
1336 tbd->addr = cpu_to_le64(map);
1337 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1338 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1339 map_idx++;
1340
1341 /*
1342 * This loop fills the remainder of the 8 address descriptors
1343 * in the IOCB. If there are more than 7 fragments, then the
1344 * eighth address desc will point to an external list (OAL).
1345 * When this happens, the remainder of the frags will be stored
1346 * in this list.
1347 */
1348 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1349 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1350 tbd++;
1351 if (frag_idx == 6 && frag_cnt > 7) {
1352 /* Let's tack on an sglist.
1353 * Our control block will now
1354 * look like this:
1355 * iocb->seg[0] = skb->data
1356 * iocb->seg[1] = frag[0]
1357 * iocb->seg[2] = frag[1]
1358 * iocb->seg[3] = frag[2]
1359 * iocb->seg[4] = frag[3]
1360 * iocb->seg[5] = frag[4]
1361 * iocb->seg[6] = frag[5]
1362 * iocb->seg[7] = ptr to OAL (external sglist)
1363 * oal->seg[0] = frag[6]
1364 * oal->seg[1] = frag[7]
1365 * oal->seg[2] = frag[8]
1366 * oal->seg[3] = frag[9]
1367 * oal->seg[4] = frag[10]
1368 * etc...
1369 */
1370 /* Tack on the OAL in the eighth segment of IOCB. */
1371 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1372 sizeof(struct oal),
1373 PCI_DMA_TODEVICE);
1374 err = pci_dma_mapping_error(qdev->pdev, map);
1375 if (err) {
1376 QPRINTK(qdev, TX_QUEUED, ERR,
1377 "PCI mapping outbound address list with error: %d\n",
1378 err);
1379 goto map_error;
1380 }
1381
1382 tbd->addr = cpu_to_le64(map);
1383 /*
1384 * The length is the number of fragments
1385 * that remain to be mapped times the length
1386 * of our sglist (OAL).
1387 */
1388 tbd->len =
1389 cpu_to_le32((sizeof(struct tx_buf_desc) *
1390 (frag_cnt - frag_idx)) | TX_DESC_C);
1391 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1392 map);
1393 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1394 sizeof(struct oal));
1395 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1396 map_idx++;
1397 }
1398
1399 map =
1400 pci_map_page(qdev->pdev, frag->page,
1401 frag->page_offset, frag->size,
1402 PCI_DMA_TODEVICE);
1403
1404 err = pci_dma_mapping_error(qdev->pdev, map);
1405 if (err) {
1406 QPRINTK(qdev, TX_QUEUED, ERR,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(frag->size);
1414 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 frag->size);
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
8668ae92 1436static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1437{
1438 void *temp_addr = skb->data;
1439
1440 /* Undo the skb_reserve(skb,32) we did before
1441 * giving to hardware, and realign data on
1442 * a 2-byte boundary.
1443 */
1444 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1445 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1446 skb_copy_to_linear_data(skb, temp_addr,
1447 (unsigned int)len);
1448}
1449
1450/*
1451 * This function builds an skb for the given inbound
1452 * completion. It will be rewritten for readability in the near
1453 * future, but for not it works well.
1454 */
1455static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1456 struct rx_ring *rx_ring,
1457 struct ib_mac_iocb_rsp *ib_mac_rsp)
1458{
1459 struct bq_desc *lbq_desc;
1460 struct bq_desc *sbq_desc;
1461 struct sk_buff *skb = NULL;
1462 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1463 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1464
1465 /*
1466 * Handle the header buffer if present.
1467 */
1468 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1469 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1470 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1471 /*
1472 * Headers fit nicely into a small buffer.
1473 */
1474 sbq_desc = ql_get_curr_sbuf(rx_ring);
1475 pci_unmap_single(qdev->pdev,
1476 pci_unmap_addr(sbq_desc, mapaddr),
1477 pci_unmap_len(sbq_desc, maplen),
1478 PCI_DMA_FROMDEVICE);
1479 skb = sbq_desc->p.skb;
1480 ql_realign_skb(skb, hdr_len);
1481 skb_put(skb, hdr_len);
1482 sbq_desc->p.skb = NULL;
1483 }
1484
1485 /*
1486 * Handle the data buffer(s).
1487 */
1488 if (unlikely(!length)) { /* Is there data too? */
1489 QPRINTK(qdev, RX_STATUS, DEBUG,
1490 "No Data buffer in this packet.\n");
1491 return skb;
1492 }
1493
1494 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1495 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1496 QPRINTK(qdev, RX_STATUS, DEBUG,
1497 "Headers in small, data of %d bytes in small, combine them.\n", length);
1498 /*
1499 * Data is less than small buffer size so it's
1500 * stuffed in a small buffer.
1501 * For this case we append the data
1502 * from the "data" small buffer to the "header" small
1503 * buffer.
1504 */
1505 sbq_desc = ql_get_curr_sbuf(rx_ring);
1506 pci_dma_sync_single_for_cpu(qdev->pdev,
1507 pci_unmap_addr
1508 (sbq_desc, mapaddr),
1509 pci_unmap_len
1510 (sbq_desc, maplen),
1511 PCI_DMA_FROMDEVICE);
1512 memcpy(skb_put(skb, length),
1513 sbq_desc->p.skb->data, length);
1514 pci_dma_sync_single_for_device(qdev->pdev,
1515 pci_unmap_addr
1516 (sbq_desc,
1517 mapaddr),
1518 pci_unmap_len
1519 (sbq_desc,
1520 maplen),
1521 PCI_DMA_FROMDEVICE);
1522 } else {
1523 QPRINTK(qdev, RX_STATUS, DEBUG,
1524 "%d bytes in a single small buffer.\n", length);
1525 sbq_desc = ql_get_curr_sbuf(rx_ring);
1526 skb = sbq_desc->p.skb;
1527 ql_realign_skb(skb, length);
1528 skb_put(skb, length);
1529 pci_unmap_single(qdev->pdev,
1530 pci_unmap_addr(sbq_desc,
1531 mapaddr),
1532 pci_unmap_len(sbq_desc,
1533 maplen),
1534 PCI_DMA_FROMDEVICE);
1535 sbq_desc->p.skb = NULL;
1536 }
1537 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1538 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1539 QPRINTK(qdev, RX_STATUS, DEBUG,
1540 "Header in small, %d bytes in large. Chain large to small!\n", length);
1541 /*
1542 * The data is in a single large buffer. We
1543 * chain it to the header buffer's skb and let
1544 * it rip.
1545 */
7c734359 1546 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde 1547 QPRINTK(qdev, RX_STATUS, DEBUG,
7c734359
RM
1548 "Chaining page at offset = %d,"
1549 "for %d bytes to skb.\n",
1550 lbq_desc->p.pg_chunk.offset, length);
1551 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1552 lbq_desc->p.pg_chunk.offset,
1553 length);
c4e84bde
RM
1554 skb->len += length;
1555 skb->data_len += length;
1556 skb->truesize += length;
c4e84bde
RM
1557 } else {
1558 /*
1559 * The headers and data are in a single large buffer. We
1560 * copy it to a new skb and let it go. This can happen with
1561 * jumbo mtu on a non-TCP/UDP frame.
1562 */
7c734359 1563 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1564 skb = netdev_alloc_skb(qdev->ndev, length);
1565 if (skb == NULL) {
1566 QPRINTK(qdev, PROBE, DEBUG,
1567 "No skb available, drop the packet.\n");
1568 return NULL;
1569 }
4055c7d4
RM
1570 pci_unmap_page(qdev->pdev,
1571 pci_unmap_addr(lbq_desc,
1572 mapaddr),
1573 pci_unmap_len(lbq_desc, maplen),
1574 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1575 skb_reserve(skb, NET_IP_ALIGN);
1576 QPRINTK(qdev, RX_STATUS, DEBUG,
1577 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
7c734359
RM
1578 skb_fill_page_desc(skb, 0,
1579 lbq_desc->p.pg_chunk.page,
1580 lbq_desc->p.pg_chunk.offset,
1581 length);
c4e84bde
RM
1582 skb->len += length;
1583 skb->data_len += length;
1584 skb->truesize += length;
1585 length -= length;
c4e84bde
RM
1586 __pskb_pull_tail(skb,
1587 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1588 VLAN_ETH_HLEN : ETH_HLEN);
1589 }
1590 } else {
1591 /*
1592 * The data is in a chain of large buffers
1593 * pointed to by a small buffer. We loop
1594 * thru and chain them to the our small header
1595 * buffer's skb.
1596 * frags: There are 18 max frags and our small
1597 * buffer will hold 32 of them. The thing is,
1598 * we'll use 3 max for our 9000 byte jumbo
1599 * frames. If the MTU goes up we could
1600 * eventually be in trouble.
1601 */
7c734359 1602 int size, i = 0;
c4e84bde
RM
1603 sbq_desc = ql_get_curr_sbuf(rx_ring);
1604 pci_unmap_single(qdev->pdev,
1605 pci_unmap_addr(sbq_desc, mapaddr),
1606 pci_unmap_len(sbq_desc, maplen),
1607 PCI_DMA_FROMDEVICE);
1608 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1609 /*
1610 * This is an non TCP/UDP IP frame, so
1611 * the headers aren't split into a small
1612 * buffer. We have to use the small buffer
1613 * that contains our sg list as our skb to
1614 * send upstairs. Copy the sg list here to
1615 * a local buffer and use it to find the
1616 * pages to chain.
1617 */
1618 QPRINTK(qdev, RX_STATUS, DEBUG,
1619 "%d bytes of headers & data in chain of large.\n", length);
1620 skb = sbq_desc->p.skb;
c4e84bde
RM
1621 sbq_desc->p.skb = NULL;
1622 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1623 }
1624 while (length > 0) {
7c734359
RM
1625 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1626 size = (length < rx_ring->lbq_buf_size) ? length :
1627 rx_ring->lbq_buf_size;
c4e84bde
RM
1628
1629 QPRINTK(qdev, RX_STATUS, DEBUG,
1630 "Adding page %d to skb for %d bytes.\n",
1631 i, size);
7c734359
RM
1632 skb_fill_page_desc(skb, i,
1633 lbq_desc->p.pg_chunk.page,
1634 lbq_desc->p.pg_chunk.offset,
1635 size);
c4e84bde
RM
1636 skb->len += size;
1637 skb->data_len += size;
1638 skb->truesize += size;
1639 length -= size;
c4e84bde
RM
1640 i++;
1641 }
1642 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1643 VLAN_ETH_HLEN : ETH_HLEN);
1644 }
1645 return skb;
1646}
1647
1648/* Process an inbound completion from an rx ring. */
1649static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1650 struct rx_ring *rx_ring,
1651 struct ib_mac_iocb_rsp *ib_mac_rsp)
1652{
1653 struct net_device *ndev = qdev->ndev;
1654 struct sk_buff *skb = NULL;
22bdd4f5
RM
1655 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1656 IB_MAC_IOCB_RSP_VLAN_MASK)
c4e84bde
RM
1657
1658 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1659
1660 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1661 if (unlikely(!skb)) {
1662 QPRINTK(qdev, RX_STATUS, DEBUG,
1663 "No skb available, drop packet.\n");
1664 return;
1665 }
1666
a32959cd
RM
1667 /* Frame error, so drop the packet. */
1668 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1669 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1670 ib_mac_rsp->flags2);
1671 dev_kfree_skb_any(skb);
1672 return;
1673 }
ec33a491
RM
1674
1675 /* The max framesize filter on this chip is set higher than
1676 * MTU since FCoE uses 2k frames.
1677 */
1678 if (skb->len > ndev->mtu + ETH_HLEN) {
1679 dev_kfree_skb_any(skb);
1680 return;
1681 }
1682
c4e84bde
RM
1683 prefetch(skb->data);
1684 skb->dev = ndev;
1685 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1686 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1687 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1688 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1689 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1690 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1691 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1692 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1693 }
1694 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1695 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1696 }
d555f592 1697
d555f592
RM
1698 skb->protocol = eth_type_trans(skb, ndev);
1699 skb->ip_summed = CHECKSUM_NONE;
1700
1701 /* If rx checksum is on, and there are no
1702 * csum or frame errors.
1703 */
1704 if (qdev->rx_csum &&
d555f592
RM
1705 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1706 /* TCP frame. */
1707 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1708 QPRINTK(qdev, RX_STATUS, DEBUG,
1709 "TCP checksum done!\n");
1710 skb->ip_summed = CHECKSUM_UNNECESSARY;
1711 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1712 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1713 /* Unfragmented ipv4 UDP frame. */
1714 struct iphdr *iph = (struct iphdr *) skb->data;
1715 if (!(iph->frag_off &
1716 cpu_to_be16(IP_MF|IP_OFFSET))) {
1717 skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 QPRINTK(qdev, RX_STATUS, DEBUG,
1719 "TCP checksum done!\n");
1720 }
1721 }
c4e84bde 1722 }
d555f592 1723
bcc90f55
AK
1724 ndev->stats.rx_packets++;
1725 ndev->stats.rx_bytes += skb->len;
b2014ff8 1726 skb_record_rx_queue(skb, rx_ring->cq_id);
22bdd4f5
RM
1727 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1728 if (qdev->vlgrp &&
1729 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1730 (vlan_id != 0))
1731 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1732 vlan_id, skb);
1733 else
1734 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 1735 } else {
22bdd4f5
RM
1736 if (qdev->vlgrp &&
1737 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1738 (vlan_id != 0))
1739 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1740 else
1741 netif_receive_skb(skb);
c4e84bde 1742 }
c4e84bde
RM
1743}
1744
1745/* Process an outbound completion from an rx ring. */
1746static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1747 struct ob_mac_iocb_rsp *mac_rsp)
1748{
bcc90f55 1749 struct net_device *ndev = qdev->ndev;
c4e84bde
RM
1750 struct tx_ring *tx_ring;
1751 struct tx_ring_desc *tx_ring_desc;
1752
1753 QL_DUMP_OB_MAC_RSP(mac_rsp);
1754 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1755 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1756 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
bcc90f55
AK
1757 ndev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1758 ndev->stats.tx_packets++;
c4e84bde
RM
1759 dev_kfree_skb(tx_ring_desc->skb);
1760 tx_ring_desc->skb = NULL;
1761
1762 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1763 OB_MAC_IOCB_RSP_S |
1764 OB_MAC_IOCB_RSP_L |
1765 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1766 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1767 QPRINTK(qdev, TX_DONE, WARNING,
1768 "Total descriptor length did not match transfer length.\n");
1769 }
1770 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1771 QPRINTK(qdev, TX_DONE, WARNING,
1772 "Frame too short to be legal, not sent.\n");
1773 }
1774 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1775 QPRINTK(qdev, TX_DONE, WARNING,
1776 "Frame too long, but sent anyway.\n");
1777 }
1778 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1779 QPRINTK(qdev, TX_DONE, WARNING,
1780 "PCI backplane error. Frame not sent.\n");
1781 }
1782 }
1783 atomic_inc(&tx_ring->tx_count);
1784}
1785
1786/* Fire up a handler to reset the MPI processor. */
1787void ql_queue_fw_error(struct ql_adapter *qdev)
1788{
6a473308 1789 ql_link_off(qdev);
c4e84bde
RM
1790 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1791}
1792
1793void ql_queue_asic_error(struct ql_adapter *qdev)
1794{
6a473308 1795 ql_link_off(qdev);
c4e84bde 1796 ql_disable_interrupts(qdev);
6497b607
RM
1797 /* Clear adapter up bit to signal the recovery
1798 * process that it shouldn't kill the reset worker
1799 * thread
1800 */
1801 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1802 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1803}
1804
1805static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1806 struct ib_ae_iocb_rsp *ib_ae_rsp)
1807{
1808 switch (ib_ae_rsp->event) {
1809 case MGMT_ERR_EVENT:
1810 QPRINTK(qdev, RX_ERR, ERR,
1811 "Management Processor Fatal Error.\n");
1812 ql_queue_fw_error(qdev);
1813 return;
1814
1815 case CAM_LOOKUP_ERR_EVENT:
1816 QPRINTK(qdev, LINK, ERR,
1817 "Multiple CAM hits lookup occurred.\n");
1818 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1819 ql_queue_asic_error(qdev);
1820 return;
1821
1822 case SOFT_ECC_ERROR_EVENT:
1823 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1824 ql_queue_asic_error(qdev);
1825 break;
1826
1827 case PCI_ERR_ANON_BUF_RD:
1828 QPRINTK(qdev, RX_ERR, ERR,
1829 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1830 ib_ae_rsp->q_id);
1831 ql_queue_asic_error(qdev);
1832 break;
1833
1834 default:
1835 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1836 ib_ae_rsp->event);
1837 ql_queue_asic_error(qdev);
1838 break;
1839 }
1840}
1841
1842static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1843{
1844 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1845 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1846 struct ob_mac_iocb_rsp *net_rsp = NULL;
1847 int count = 0;
1848
1e213303 1849 struct tx_ring *tx_ring;
c4e84bde
RM
1850 /* While there are entries in the completion queue. */
1851 while (prod != rx_ring->cnsmr_idx) {
1852
1853 QPRINTK(qdev, RX_STATUS, DEBUG,
1854 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1855 prod, rx_ring->cnsmr_idx);
1856
1857 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1858 rmb();
1859 switch (net_rsp->opcode) {
1860
1861 case OPCODE_OB_MAC_TSO_IOCB:
1862 case OPCODE_OB_MAC_IOCB:
1863 ql_process_mac_tx_intr(qdev, net_rsp);
1864 break;
1865 default:
1866 QPRINTK(qdev, RX_STATUS, DEBUG,
1867 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1868 net_rsp->opcode);
1869 }
1870 count++;
1871 ql_update_cq(rx_ring);
ba7cd3ba 1872 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1873 }
1874 ql_write_cq_idx(rx_ring);
1e213303
RM
1875 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1876 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1877 net_rsp != NULL) {
c4e84bde
RM
1878 if (atomic_read(&tx_ring->queue_stopped) &&
1879 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1880 /*
1881 * The queue got stopped because the tx_ring was full.
1882 * Wake it up, because it's now at least 25% empty.
1883 */
1e213303 1884 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
1885 }
1886
1887 return count;
1888}
1889
1890static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1891{
1892 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1893 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1894 struct ql_net_rsp_iocb *net_rsp;
1895 int count = 0;
1896
1897 /* While there are entries in the completion queue. */
1898 while (prod != rx_ring->cnsmr_idx) {
1899
1900 QPRINTK(qdev, RX_STATUS, DEBUG,
1901 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1902 prod, rx_ring->cnsmr_idx);
1903
1904 net_rsp = rx_ring->curr_entry;
1905 rmb();
1906 switch (net_rsp->opcode) {
1907 case OPCODE_IB_MAC_IOCB:
1908 ql_process_mac_rx_intr(qdev, rx_ring,
1909 (struct ib_mac_iocb_rsp *)
1910 net_rsp);
1911 break;
1912
1913 case OPCODE_IB_AE_IOCB:
1914 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1915 net_rsp);
1916 break;
1917 default:
1918 {
1919 QPRINTK(qdev, RX_STATUS, DEBUG,
1920 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1921 net_rsp->opcode);
1922 }
1923 }
1924 count++;
1925 ql_update_cq(rx_ring);
ba7cd3ba 1926 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1927 if (count == budget)
1928 break;
1929 }
1930 ql_update_buffer_queues(qdev, rx_ring);
1931 ql_write_cq_idx(rx_ring);
1932 return count;
1933}
1934
1935static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1936{
1937 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1938 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
1939 struct rx_ring *trx_ring;
1940 int i, work_done = 0;
1941 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde
RM
1942
1943 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1944 rx_ring->cq_id);
1945
39aa8165
RM
1946 /* Service the TX rings first. They start
1947 * right after the RSS rings. */
1948 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1949 trx_ring = &qdev->rx_ring[i];
1950 /* If this TX completion ring belongs to this vector and
1951 * it's not empty then service it.
1952 */
1953 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1954 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1955 trx_ring->cnsmr_idx)) {
1956 QPRINTK(qdev, INTR, DEBUG,
1957 "%s: Servicing TX completion ring %d.\n",
1958 __func__, trx_ring->cq_id);
1959 ql_clean_outbound_rx_ring(trx_ring);
1960 }
1961 }
1962
1963 /*
1964 * Now service the RSS ring if it's active.
1965 */
1966 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1967 rx_ring->cnsmr_idx) {
1968 QPRINTK(qdev, INTR, DEBUG,
1969 "%s: Servicing RX completion ring %d.\n",
1970 __func__, rx_ring->cq_id);
1971 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1972 }
1973
c4e84bde 1974 if (work_done < budget) {
22bdd4f5 1975 napi_complete(napi);
c4e84bde
RM
1976 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1977 }
1978 return work_done;
1979}
1980
1981static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1982{
1983 struct ql_adapter *qdev = netdev_priv(ndev);
1984
1985 qdev->vlgrp = grp;
1986 if (grp) {
1987 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1988 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1989 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1990 } else {
1991 QPRINTK(qdev, IFUP, DEBUG,
1992 "Turning off VLAN in NIC_RCV_CFG.\n");
1993 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1994 }
1995}
1996
1997static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1998{
1999 struct ql_adapter *qdev = netdev_priv(ndev);
2000 u32 enable_bit = MAC_ADDR_E;
cc288f54 2001 int status;
c4e84bde 2002
cc288f54
RM
2003 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2004 if (status)
2005 return;
c4e84bde
RM
2006 if (ql_set_mac_addr_reg
2007 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2008 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
2009 }
cc288f54 2010 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
2011}
2012
2013static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2014{
2015 struct ql_adapter *qdev = netdev_priv(ndev);
2016 u32 enable_bit = 0;
cc288f54
RM
2017 int status;
2018
2019 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2020 if (status)
2021 return;
c4e84bde 2022
c4e84bde
RM
2023 if (ql_set_mac_addr_reg
2024 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2025 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
2026 }
cc288f54 2027 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
2028
2029}
2030
c4e84bde
RM
2031/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2032static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2033{
2034 struct rx_ring *rx_ring = dev_id;
288379f0 2035 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2036 return IRQ_HANDLED;
2037}
2038
c4e84bde
RM
2039/* This handles a fatal error, MPI activity, and the default
2040 * rx_ring in an MSI-X multiple vector environment.
2041 * In MSI/Legacy environment it also process the rest of
2042 * the rx_rings.
2043 */
2044static irqreturn_t qlge_isr(int irq, void *dev_id)
2045{
2046 struct rx_ring *rx_ring = dev_id;
2047 struct ql_adapter *qdev = rx_ring->qdev;
2048 struct intr_context *intr_context = &qdev->intr_context[0];
2049 u32 var;
c4e84bde
RM
2050 int work_done = 0;
2051
bb0d215c
RM
2052 spin_lock(&qdev->hw_lock);
2053 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2054 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
2055 spin_unlock(&qdev->hw_lock);
2056 return IRQ_NONE;
c4e84bde 2057 }
bb0d215c 2058 spin_unlock(&qdev->hw_lock);
c4e84bde 2059
bb0d215c 2060 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2061
2062 /*
2063 * Check for fatal error.
2064 */
2065 if (var & STS_FE) {
2066 ql_queue_asic_error(qdev);
2067 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2068 var = ql_read32(qdev, ERR_STS);
2069 QPRINTK(qdev, INTR, ERR,
2070 "Resetting chip. Error Status Register = 0x%x\n", var);
2071 return IRQ_HANDLED;
2072 }
2073
2074 /*
2075 * Check MPI processor activity.
2076 */
5ee22a5a
RM
2077 if ((var & STS_PI) &&
2078 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2079 /*
2080 * We've got an async event or mailbox completion.
2081 * Handle it and clear the source of the interrupt.
2082 */
2083 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2084 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2085 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2086 queue_delayed_work_on(smp_processor_id(),
2087 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2088 work_done++;
2089 }
2090
2091 /*
39aa8165
RM
2092 * Get the bit-mask that shows the active queues for this
2093 * pass. Compare it to the queues that this irq services
2094 * and call napi if there's a match.
c4e84bde 2095 */
39aa8165
RM
2096 var = ql_read32(qdev, ISR1);
2097 if (var & intr_context->irq_mask) {
c4e84bde 2098 QPRINTK(qdev, INTR, INFO,
39aa8165
RM
2099 "Waking handler for rx_ring[0].\n");
2100 ql_disable_completion_interrupt(qdev, intr_context->intr);
288379f0 2101 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2102 work_done++;
2103 }
bb0d215c 2104 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2105 return work_done ? IRQ_HANDLED : IRQ_NONE;
2106}
2107
2108static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2109{
2110
2111 if (skb_is_gso(skb)) {
2112 int err;
2113 if (skb_header_cloned(skb)) {
2114 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2115 if (err)
2116 return err;
2117 }
2118
2119 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2120 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2121 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2122 mac_iocb_ptr->total_hdrs_len =
2123 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2124 mac_iocb_ptr->net_trans_offset =
2125 cpu_to_le16(skb_network_offset(skb) |
2126 skb_transport_offset(skb)
2127 << OB_MAC_TRANSPORT_HDR_SHIFT);
2128 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2129 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2130 if (likely(skb->protocol == htons(ETH_P_IP))) {
2131 struct iphdr *iph = ip_hdr(skb);
2132 iph->check = 0;
2133 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2134 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2135 iph->daddr, 0,
2136 IPPROTO_TCP,
2137 0);
2138 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2139 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2140 tcp_hdr(skb)->check =
2141 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2142 &ipv6_hdr(skb)->daddr,
2143 0, IPPROTO_TCP, 0);
2144 }
2145 return 1;
2146 }
2147 return 0;
2148}
2149
2150static void ql_hw_csum_setup(struct sk_buff *skb,
2151 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2152{
2153 int len;
2154 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2155 __sum16 *check;
c4e84bde
RM
2156 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2157 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2158 mac_iocb_ptr->net_trans_offset =
2159 cpu_to_le16(skb_network_offset(skb) |
2160 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2161
2162 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2163 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2164 if (likely(iph->protocol == IPPROTO_TCP)) {
2165 check = &(tcp_hdr(skb)->check);
2166 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2167 mac_iocb_ptr->total_hdrs_len =
2168 cpu_to_le16(skb_transport_offset(skb) +
2169 (tcp_hdr(skb)->doff << 2));
2170 } else {
2171 check = &(udp_hdr(skb)->check);
2172 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2173 mac_iocb_ptr->total_hdrs_len =
2174 cpu_to_le16(skb_transport_offset(skb) +
2175 sizeof(struct udphdr));
2176 }
2177 *check = ~csum_tcpudp_magic(iph->saddr,
2178 iph->daddr, len, iph->protocol, 0);
2179}
2180
61357325 2181static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2182{
2183 struct tx_ring_desc *tx_ring_desc;
2184 struct ob_mac_iocb_req *mac_iocb_ptr;
2185 struct ql_adapter *qdev = netdev_priv(ndev);
2186 int tso;
2187 struct tx_ring *tx_ring;
1e213303 2188 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2189
2190 tx_ring = &qdev->tx_ring[tx_ring_idx];
2191
74c50b4b
RM
2192 if (skb_padto(skb, ETH_ZLEN))
2193 return NETDEV_TX_OK;
2194
c4e84bde
RM
2195 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2196 QPRINTK(qdev, TX_QUEUED, INFO,
2197 "%s: shutting down tx queue %d du to lack of resources.\n",
2198 __func__, tx_ring_idx);
1e213303 2199 netif_stop_subqueue(ndev, tx_ring->wq_id);
c4e84bde
RM
2200 atomic_inc(&tx_ring->queue_stopped);
2201 return NETDEV_TX_BUSY;
2202 }
2203 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2204 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2205 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2206
2207 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2208 mac_iocb_ptr->tid = tx_ring_desc->index;
2209 /* We use the upper 32-bits to store the tx queue for this IO.
2210 * When we get the completion we can use it to establish the context.
2211 */
2212 mac_iocb_ptr->txq_idx = tx_ring_idx;
2213 tx_ring_desc->skb = skb;
2214
2215 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2216
2217 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2218 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2219 vlan_tx_tag_get(skb));
2220 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2221 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2222 }
2223 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2224 if (tso < 0) {
2225 dev_kfree_skb_any(skb);
2226 return NETDEV_TX_OK;
2227 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2228 ql_hw_csum_setup(skb,
2229 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2230 }
0d979f74
RM
2231 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2232 NETDEV_TX_OK) {
2233 QPRINTK(qdev, TX_QUEUED, ERR,
2234 "Could not map the segments.\n");
2235 return NETDEV_TX_BUSY;
2236 }
c4e84bde
RM
2237 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2238 tx_ring->prod_idx++;
2239 if (tx_ring->prod_idx == tx_ring->wq_len)
2240 tx_ring->prod_idx = 0;
2241 wmb();
2242
2243 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
c4e84bde
RM
2244 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2245 tx_ring->prod_idx, skb->len);
2246
2247 atomic_dec(&tx_ring->tx_count);
2248 return NETDEV_TX_OK;
2249}
2250
2251static void ql_free_shadow_space(struct ql_adapter *qdev)
2252{
2253 if (qdev->rx_ring_shadow_reg_area) {
2254 pci_free_consistent(qdev->pdev,
2255 PAGE_SIZE,
2256 qdev->rx_ring_shadow_reg_area,
2257 qdev->rx_ring_shadow_reg_dma);
2258 qdev->rx_ring_shadow_reg_area = NULL;
2259 }
2260 if (qdev->tx_ring_shadow_reg_area) {
2261 pci_free_consistent(qdev->pdev,
2262 PAGE_SIZE,
2263 qdev->tx_ring_shadow_reg_area,
2264 qdev->tx_ring_shadow_reg_dma);
2265 qdev->tx_ring_shadow_reg_area = NULL;
2266 }
2267}
2268
2269static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2270{
2271 qdev->rx_ring_shadow_reg_area =
2272 pci_alloc_consistent(qdev->pdev,
2273 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2274 if (qdev->rx_ring_shadow_reg_area == NULL) {
2275 QPRINTK(qdev, IFUP, ERR,
2276 "Allocation of RX shadow space failed.\n");
2277 return -ENOMEM;
2278 }
b25215d0 2279 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2280 qdev->tx_ring_shadow_reg_area =
2281 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2282 &qdev->tx_ring_shadow_reg_dma);
2283 if (qdev->tx_ring_shadow_reg_area == NULL) {
2284 QPRINTK(qdev, IFUP, ERR,
2285 "Allocation of TX shadow space failed.\n");
2286 goto err_wqp_sh_area;
2287 }
b25215d0 2288 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2289 return 0;
2290
2291err_wqp_sh_area:
2292 pci_free_consistent(qdev->pdev,
2293 PAGE_SIZE,
2294 qdev->rx_ring_shadow_reg_area,
2295 qdev->rx_ring_shadow_reg_dma);
2296 return -ENOMEM;
2297}
2298
2299static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2300{
2301 struct tx_ring_desc *tx_ring_desc;
2302 int i;
2303 struct ob_mac_iocb_req *mac_iocb_ptr;
2304
2305 mac_iocb_ptr = tx_ring->wq_base;
2306 tx_ring_desc = tx_ring->q;
2307 for (i = 0; i < tx_ring->wq_len; i++) {
2308 tx_ring_desc->index = i;
2309 tx_ring_desc->skb = NULL;
2310 tx_ring_desc->queue_entry = mac_iocb_ptr;
2311 mac_iocb_ptr++;
2312 tx_ring_desc++;
2313 }
2314 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2315 atomic_set(&tx_ring->queue_stopped, 0);
2316}
2317
2318static void ql_free_tx_resources(struct ql_adapter *qdev,
2319 struct tx_ring *tx_ring)
2320{
2321 if (tx_ring->wq_base) {
2322 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2323 tx_ring->wq_base, tx_ring->wq_base_dma);
2324 tx_ring->wq_base = NULL;
2325 }
2326 kfree(tx_ring->q);
2327 tx_ring->q = NULL;
2328}
2329
2330static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2331 struct tx_ring *tx_ring)
2332{
2333 tx_ring->wq_base =
2334 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2335 &tx_ring->wq_base_dma);
2336
2337 if ((tx_ring->wq_base == NULL)
88c55e3c 2338 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
c4e84bde
RM
2339 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2340 return -ENOMEM;
2341 }
2342 tx_ring->q =
2343 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2344 if (tx_ring->q == NULL)
2345 goto err;
2346
2347 return 0;
2348err:
2349 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2350 tx_ring->wq_base, tx_ring->wq_base_dma);
2351 return -ENOMEM;
2352}
2353
8668ae92 2354static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2355{
c4e84bde
RM
2356 struct bq_desc *lbq_desc;
2357
7c734359
RM
2358 uint32_t curr_idx, clean_idx;
2359
2360 curr_idx = rx_ring->lbq_curr_idx;
2361 clean_idx = rx_ring->lbq_clean_idx;
2362 while (curr_idx != clean_idx) {
2363 lbq_desc = &rx_ring->lbq[curr_idx];
2364
2365 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2366 pci_unmap_page(qdev->pdev,
7c734359
RM
2367 lbq_desc->p.pg_chunk.map,
2368 ql_lbq_block_size(qdev),
c4e84bde 2369 PCI_DMA_FROMDEVICE);
7c734359 2370 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2371 }
7c734359
RM
2372
2373 put_page(lbq_desc->p.pg_chunk.page);
2374 lbq_desc->p.pg_chunk.page = NULL;
2375
2376 if (++curr_idx == rx_ring->lbq_len)
2377 curr_idx = 0;
2378
c4e84bde
RM
2379 }
2380}
2381
8668ae92 2382static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2383{
2384 int i;
2385 struct bq_desc *sbq_desc;
2386
2387 for (i = 0; i < rx_ring->sbq_len; i++) {
2388 sbq_desc = &rx_ring->sbq[i];
2389 if (sbq_desc == NULL) {
2390 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2391 return;
2392 }
2393 if (sbq_desc->p.skb) {
2394 pci_unmap_single(qdev->pdev,
2395 pci_unmap_addr(sbq_desc, mapaddr),
2396 pci_unmap_len(sbq_desc, maplen),
2397 PCI_DMA_FROMDEVICE);
2398 dev_kfree_skb(sbq_desc->p.skb);
2399 sbq_desc->p.skb = NULL;
2400 }
c4e84bde
RM
2401 }
2402}
2403
4545a3f2
RM
2404/* Free all large and small rx buffers associated
2405 * with the completion queues for this device.
2406 */
2407static void ql_free_rx_buffers(struct ql_adapter *qdev)
2408{
2409 int i;
2410 struct rx_ring *rx_ring;
2411
2412 for (i = 0; i < qdev->rx_ring_count; i++) {
2413 rx_ring = &qdev->rx_ring[i];
2414 if (rx_ring->lbq)
2415 ql_free_lbq_buffers(qdev, rx_ring);
2416 if (rx_ring->sbq)
2417 ql_free_sbq_buffers(qdev, rx_ring);
2418 }
2419}
2420
2421static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2422{
2423 struct rx_ring *rx_ring;
2424 int i;
2425
2426 for (i = 0; i < qdev->rx_ring_count; i++) {
2427 rx_ring = &qdev->rx_ring[i];
2428 if (rx_ring->type != TX_Q)
2429 ql_update_buffer_queues(qdev, rx_ring);
2430 }
2431}
2432
2433static void ql_init_lbq_ring(struct ql_adapter *qdev,
2434 struct rx_ring *rx_ring)
2435{
2436 int i;
2437 struct bq_desc *lbq_desc;
2438 __le64 *bq = rx_ring->lbq_base;
2439
2440 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2441 for (i = 0; i < rx_ring->lbq_len; i++) {
2442 lbq_desc = &rx_ring->lbq[i];
2443 memset(lbq_desc, 0, sizeof(*lbq_desc));
2444 lbq_desc->index = i;
2445 lbq_desc->addr = bq;
2446 bq++;
2447 }
2448}
2449
2450static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2451 struct rx_ring *rx_ring)
2452{
2453 int i;
2454 struct bq_desc *sbq_desc;
2c9a0d41 2455 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2456
4545a3f2 2457 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2458 for (i = 0; i < rx_ring->sbq_len; i++) {
2459 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2460 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2461 sbq_desc->index = i;
2c9a0d41 2462 sbq_desc->addr = bq;
c4e84bde
RM
2463 bq++;
2464 }
c4e84bde
RM
2465}
2466
2467static void ql_free_rx_resources(struct ql_adapter *qdev,
2468 struct rx_ring *rx_ring)
2469{
c4e84bde
RM
2470 /* Free the small buffer queue. */
2471 if (rx_ring->sbq_base) {
2472 pci_free_consistent(qdev->pdev,
2473 rx_ring->sbq_size,
2474 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2475 rx_ring->sbq_base = NULL;
2476 }
2477
2478 /* Free the small buffer queue control blocks. */
2479 kfree(rx_ring->sbq);
2480 rx_ring->sbq = NULL;
2481
2482 /* Free the large buffer queue. */
2483 if (rx_ring->lbq_base) {
2484 pci_free_consistent(qdev->pdev,
2485 rx_ring->lbq_size,
2486 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2487 rx_ring->lbq_base = NULL;
2488 }
2489
2490 /* Free the large buffer queue control blocks. */
2491 kfree(rx_ring->lbq);
2492 rx_ring->lbq = NULL;
2493
2494 /* Free the rx queue. */
2495 if (rx_ring->cq_base) {
2496 pci_free_consistent(qdev->pdev,
2497 rx_ring->cq_size,
2498 rx_ring->cq_base, rx_ring->cq_base_dma);
2499 rx_ring->cq_base = NULL;
2500 }
2501}
2502
2503/* Allocate queues and buffers for this completions queue based
2504 * on the values in the parameter structure. */
2505static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2506 struct rx_ring *rx_ring)
2507{
2508
2509 /*
2510 * Allocate the completion queue for this rx_ring.
2511 */
2512 rx_ring->cq_base =
2513 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2514 &rx_ring->cq_base_dma);
2515
2516 if (rx_ring->cq_base == NULL) {
2517 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2518 return -ENOMEM;
2519 }
2520
2521 if (rx_ring->sbq_len) {
2522 /*
2523 * Allocate small buffer queue.
2524 */
2525 rx_ring->sbq_base =
2526 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2527 &rx_ring->sbq_base_dma);
2528
2529 if (rx_ring->sbq_base == NULL) {
2530 QPRINTK(qdev, IFUP, ERR,
2531 "Small buffer queue allocation failed.\n");
2532 goto err_mem;
2533 }
2534
2535 /*
2536 * Allocate small buffer queue control blocks.
2537 */
2538 rx_ring->sbq =
2539 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2540 GFP_KERNEL);
2541 if (rx_ring->sbq == NULL) {
2542 QPRINTK(qdev, IFUP, ERR,
2543 "Small buffer queue control block allocation failed.\n");
2544 goto err_mem;
2545 }
2546
4545a3f2 2547 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2548 }
2549
2550 if (rx_ring->lbq_len) {
2551 /*
2552 * Allocate large buffer queue.
2553 */
2554 rx_ring->lbq_base =
2555 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2556 &rx_ring->lbq_base_dma);
2557
2558 if (rx_ring->lbq_base == NULL) {
2559 QPRINTK(qdev, IFUP, ERR,
2560 "Large buffer queue allocation failed.\n");
2561 goto err_mem;
2562 }
2563 /*
2564 * Allocate large buffer queue control blocks.
2565 */
2566 rx_ring->lbq =
2567 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2568 GFP_KERNEL);
2569 if (rx_ring->lbq == NULL) {
2570 QPRINTK(qdev, IFUP, ERR,
2571 "Large buffer queue control block allocation failed.\n");
2572 goto err_mem;
2573 }
2574
4545a3f2 2575 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2576 }
2577
2578 return 0;
2579
2580err_mem:
2581 ql_free_rx_resources(qdev, rx_ring);
2582 return -ENOMEM;
2583}
2584
2585static void ql_tx_ring_clean(struct ql_adapter *qdev)
2586{
2587 struct tx_ring *tx_ring;
2588 struct tx_ring_desc *tx_ring_desc;
2589 int i, j;
2590
2591 /*
2592 * Loop through all queues and free
2593 * any resources.
2594 */
2595 for (j = 0; j < qdev->tx_ring_count; j++) {
2596 tx_ring = &qdev->tx_ring[j];
2597 for (i = 0; i < tx_ring->wq_len; i++) {
2598 tx_ring_desc = &tx_ring->q[i];
2599 if (tx_ring_desc && tx_ring_desc->skb) {
2600 QPRINTK(qdev, IFDOWN, ERR,
2601 "Freeing lost SKB %p, from queue %d, index %d.\n",
2602 tx_ring_desc->skb, j,
2603 tx_ring_desc->index);
2604 ql_unmap_send(qdev, tx_ring_desc,
2605 tx_ring_desc->map_cnt);
2606 dev_kfree_skb(tx_ring_desc->skb);
2607 tx_ring_desc->skb = NULL;
2608 }
2609 }
2610 }
2611}
2612
c4e84bde
RM
2613static void ql_free_mem_resources(struct ql_adapter *qdev)
2614{
2615 int i;
2616
2617 for (i = 0; i < qdev->tx_ring_count; i++)
2618 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2619 for (i = 0; i < qdev->rx_ring_count; i++)
2620 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2621 ql_free_shadow_space(qdev);
2622}
2623
2624static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2625{
2626 int i;
2627
2628 /* Allocate space for our shadow registers and such. */
2629 if (ql_alloc_shadow_space(qdev))
2630 return -ENOMEM;
2631
2632 for (i = 0; i < qdev->rx_ring_count; i++) {
2633 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2634 QPRINTK(qdev, IFUP, ERR,
2635 "RX resource allocation failed.\n");
2636 goto err_mem;
2637 }
2638 }
2639 /* Allocate tx queue resources */
2640 for (i = 0; i < qdev->tx_ring_count; i++) {
2641 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2642 QPRINTK(qdev, IFUP, ERR,
2643 "TX resource allocation failed.\n");
2644 goto err_mem;
2645 }
2646 }
2647 return 0;
2648
2649err_mem:
2650 ql_free_mem_resources(qdev);
2651 return -ENOMEM;
2652}
2653
2654/* Set up the rx ring control block and pass it to the chip.
2655 * The control block is defined as
2656 * "Completion Queue Initialization Control Block", or cqicb.
2657 */
2658static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2659{
2660 struct cqicb *cqicb = &rx_ring->cqicb;
2661 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 2662 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 2663 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 2664 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
2665 void __iomem *doorbell_area =
2666 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2667 int err = 0;
2668 u16 bq_len;
d4a4aba6 2669 u64 tmp;
b8facca0
RM
2670 __le64 *base_indirect_ptr;
2671 int page_entries;
c4e84bde
RM
2672
2673 /* Set up the shadow registers for this ring. */
2674 rx_ring->prod_idx_sh_reg = shadow_reg;
2675 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 2676 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
2677 shadow_reg += sizeof(u64);
2678 shadow_reg_dma += sizeof(u64);
2679 rx_ring->lbq_base_indirect = shadow_reg;
2680 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
2681 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2682 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
2683 rx_ring->sbq_base_indirect = shadow_reg;
2684 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2685
2686 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2687 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2688 rx_ring->cnsmr_idx = 0;
2689 rx_ring->curr_entry = rx_ring->cq_base;
2690
2691 /* PCI doorbell mem area + 0x04 for valid register */
2692 rx_ring->valid_db_reg = doorbell_area + 0x04;
2693
2694 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2695 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2696
2697 /* PCI doorbell mem area + 0x1c */
8668ae92 2698 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2699
2700 memset((void *)cqicb, 0, sizeof(struct cqicb));
2701 cqicb->msix_vect = rx_ring->irq;
2702
459caf5a
RM
2703 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2704 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2705
97345524 2706 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2707
97345524 2708 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2709
2710 /*
2711 * Set up the control block load flags.
2712 */
2713 cqicb->flags = FLAGS_LC | /* Load queue base address */
2714 FLAGS_LV | /* Load MSI-X vector */
2715 FLAGS_LI; /* Load irq delay values */
2716 if (rx_ring->lbq_len) {
2717 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 2718 tmp = (u64)rx_ring->lbq_base_dma;
b8facca0
RM
2719 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2720 page_entries = 0;
2721 do {
2722 *base_indirect_ptr = cpu_to_le64(tmp);
2723 tmp += DB_PAGE_SIZE;
2724 base_indirect_ptr++;
2725 page_entries++;
2726 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
2727 cqicb->lbq_addr =
2728 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2729 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2730 (u16) rx_ring->lbq_buf_size;
2731 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2732 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2733 (u16) rx_ring->lbq_len;
c4e84bde 2734 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2735 rx_ring->lbq_prod_idx = 0;
c4e84bde 2736 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2737 rx_ring->lbq_clean_idx = 0;
2738 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2739 }
2740 if (rx_ring->sbq_len) {
2741 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 2742 tmp = (u64)rx_ring->sbq_base_dma;
b8facca0
RM
2743 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2744 page_entries = 0;
2745 do {
2746 *base_indirect_ptr = cpu_to_le64(tmp);
2747 tmp += DB_PAGE_SIZE;
2748 base_indirect_ptr++;
2749 page_entries++;
2750 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
2751 cqicb->sbq_addr =
2752 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 2753 cqicb->sbq_buf_size =
52e55f3c 2754 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
2755 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2756 (u16) rx_ring->sbq_len;
c4e84bde 2757 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2758 rx_ring->sbq_prod_idx = 0;
c4e84bde 2759 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2760 rx_ring->sbq_clean_idx = 0;
2761 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2762 }
2763 switch (rx_ring->type) {
2764 case TX_Q:
c4e84bde
RM
2765 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2766 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2767 break;
c4e84bde
RM
2768 case RX_Q:
2769 /* Inbound completion handling rx_rings run in
2770 * separate NAPI contexts.
2771 */
2772 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2773 64);
2774 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2775 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2776 break;
2777 default:
2778 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2779 rx_ring->type);
2780 }
4974097a 2781 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2782 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2783 CFG_LCQ, rx_ring->cq_id);
2784 if (err) {
2785 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2786 return err;
2787 }
c4e84bde
RM
2788 return err;
2789}
2790
2791static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2792{
2793 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2794 void __iomem *doorbell_area =
2795 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2796 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2797 (tx_ring->wq_id * sizeof(u64));
2798 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2799 (tx_ring->wq_id * sizeof(u64));
2800 int err = 0;
2801
2802 /*
2803 * Assign doorbell registers for this tx_ring.
2804 */
2805 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2806 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2807 tx_ring->prod_idx = 0;
2808 /* TX PCI doorbell mem area + 0x04 */
2809 tx_ring->valid_db_reg = doorbell_area + 0x04;
2810
2811 /*
2812 * Assign shadow registers for this tx_ring.
2813 */
2814 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2815 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2816
2817 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2818 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2819 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2820 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2821 wqicb->rid = 0;
97345524 2822 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2823
97345524 2824 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2825
2826 ql_init_tx_ring(qdev, tx_ring);
2827
e332471c 2828 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
2829 (u16) tx_ring->wq_id);
2830 if (err) {
2831 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2832 return err;
2833 }
4974097a 2834 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2835 return err;
2836}
2837
2838static void ql_disable_msix(struct ql_adapter *qdev)
2839{
2840 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2841 pci_disable_msix(qdev->pdev);
2842 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2843 kfree(qdev->msi_x_entry);
2844 qdev->msi_x_entry = NULL;
2845 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2846 pci_disable_msi(qdev->pdev);
2847 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2848 }
2849}
2850
a4ab6137
RM
2851/* We start by trying to get the number of vectors
2852 * stored in qdev->intr_count. If we don't get that
2853 * many then we reduce the count and try again.
2854 */
c4e84bde
RM
2855static void ql_enable_msix(struct ql_adapter *qdev)
2856{
a4ab6137 2857 int i, err;
c4e84bde 2858
c4e84bde
RM
2859 /* Get the MSIX vectors. */
2860 if (irq_type == MSIX_IRQ) {
2861 /* Try to alloc space for the msix struct,
2862 * if it fails then go to MSI/legacy.
2863 */
a4ab6137 2864 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
2865 sizeof(struct msix_entry),
2866 GFP_KERNEL);
2867 if (!qdev->msi_x_entry) {
2868 irq_type = MSI_IRQ;
2869 goto msi;
2870 }
2871
a4ab6137 2872 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
2873 qdev->msi_x_entry[i].entry = i;
2874
a4ab6137
RM
2875 /* Loop to get our vectors. We start with
2876 * what we want and settle for what we get.
2877 */
2878 do {
2879 err = pci_enable_msix(qdev->pdev,
2880 qdev->msi_x_entry, qdev->intr_count);
2881 if (err > 0)
2882 qdev->intr_count = err;
2883 } while (err > 0);
2884
2885 if (err < 0) {
c4e84bde
RM
2886 kfree(qdev->msi_x_entry);
2887 qdev->msi_x_entry = NULL;
2888 QPRINTK(qdev, IFUP, WARNING,
2889 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 2890 qdev->intr_count = 1;
c4e84bde 2891 irq_type = MSI_IRQ;
a4ab6137
RM
2892 } else if (err == 0) {
2893 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2894 QPRINTK(qdev, IFUP, INFO,
2895 "MSI-X Enabled, got %d vectors.\n",
2896 qdev->intr_count);
2897 return;
c4e84bde
RM
2898 }
2899 }
2900msi:
a4ab6137 2901 qdev->intr_count = 1;
c4e84bde
RM
2902 if (irq_type == MSI_IRQ) {
2903 if (!pci_enable_msi(qdev->pdev)) {
2904 set_bit(QL_MSI_ENABLED, &qdev->flags);
2905 QPRINTK(qdev, IFUP, INFO,
2906 "Running with MSI interrupts.\n");
2907 return;
2908 }
2909 }
2910 irq_type = LEG_IRQ;
c4e84bde
RM
2911 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2912}
2913
39aa8165
RM
2914/* Each vector services 1 RSS ring and and 1 or more
2915 * TX completion rings. This function loops through
2916 * the TX completion rings and assigns the vector that
2917 * will service it. An example would be if there are
2918 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2919 * This would mean that vector 0 would service RSS ring 0
2920 * and TX competion rings 0,1,2 and 3. Vector 1 would
2921 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2922 */
2923static void ql_set_tx_vect(struct ql_adapter *qdev)
2924{
2925 int i, j, vect;
2926 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2927
2928 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2929 /* Assign irq vectors to TX rx_rings.*/
2930 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2931 i < qdev->rx_ring_count; i++) {
2932 if (j == tx_rings_per_vector) {
2933 vect++;
2934 j = 0;
2935 }
2936 qdev->rx_ring[i].irq = vect;
2937 j++;
2938 }
2939 } else {
2940 /* For single vector all rings have an irq
2941 * of zero.
2942 */
2943 for (i = 0; i < qdev->rx_ring_count; i++)
2944 qdev->rx_ring[i].irq = 0;
2945 }
2946}
2947
2948/* Set the interrupt mask for this vector. Each vector
2949 * will service 1 RSS ring and 1 or more TX completion
2950 * rings. This function sets up a bit mask per vector
2951 * that indicates which rings it services.
2952 */
2953static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2954{
2955 int j, vect = ctx->intr;
2956 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2957
2958 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2959 /* Add the RSS ring serviced by this vector
2960 * to the mask.
2961 */
2962 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2963 /* Add the TX ring(s) serviced by this vector
2964 * to the mask. */
2965 for (j = 0; j < tx_rings_per_vector; j++) {
2966 ctx->irq_mask |=
2967 (1 << qdev->rx_ring[qdev->rss_ring_count +
2968 (vect * tx_rings_per_vector) + j].cq_id);
2969 }
2970 } else {
2971 /* For single vector we just shift each queue's
2972 * ID into the mask.
2973 */
2974 for (j = 0; j < qdev->rx_ring_count; j++)
2975 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2976 }
2977}
2978
c4e84bde
RM
2979/*
2980 * Here we build the intr_context structures based on
2981 * our rx_ring count and intr vector count.
2982 * The intr_context structure is used to hook each vector
2983 * to possibly different handlers.
2984 */
2985static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2986{
2987 int i = 0;
2988 struct intr_context *intr_context = &qdev->intr_context[0];
2989
c4e84bde
RM
2990 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2991 /* Each rx_ring has it's
2992 * own intr_context since we have separate
2993 * vectors for each queue.
c4e84bde
RM
2994 */
2995 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2996 qdev->rx_ring[i].irq = i;
2997 intr_context->intr = i;
2998 intr_context->qdev = qdev;
39aa8165
RM
2999 /* Set up this vector's bit-mask that indicates
3000 * which queues it services.
3001 */
3002 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3003 /*
3004 * We set up each vectors enable/disable/read bits so
3005 * there's no bit/mask calculations in the critical path.
3006 */
3007 intr_context->intr_en_mask =
3008 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3009 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3010 | i;
3011 intr_context->intr_dis_mask =
3012 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3013 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3014 INTR_EN_IHD | i;
3015 intr_context->intr_read_mask =
3016 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3017 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3018 i;
39aa8165
RM
3019 if (i == 0) {
3020 /* The first vector/queue handles
3021 * broadcast/multicast, fatal errors,
3022 * and firmware events. This in addition
3023 * to normal inbound NAPI processing.
c4e84bde 3024 */
39aa8165 3025 intr_context->handler = qlge_isr;
b2014ff8
RM
3026 sprintf(intr_context->name, "%s-rx-%d",
3027 qdev->ndev->name, i);
3028 } else {
c4e84bde 3029 /*
39aa8165 3030 * Inbound queues handle unicast frames only.
c4e84bde 3031 */
39aa8165
RM
3032 intr_context->handler = qlge_msix_rx_isr;
3033 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3034 qdev->ndev->name, i);
c4e84bde
RM
3035 }
3036 }
3037 } else {
3038 /*
3039 * All rx_rings use the same intr_context since
3040 * there is only one vector.
3041 */
3042 intr_context->intr = 0;
3043 intr_context->qdev = qdev;
3044 /*
3045 * We set up each vectors enable/disable/read bits so
3046 * there's no bit/mask calculations in the critical path.
3047 */
3048 intr_context->intr_en_mask =
3049 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3050 intr_context->intr_dis_mask =
3051 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3052 INTR_EN_TYPE_DISABLE;
3053 intr_context->intr_read_mask =
3054 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3055 /*
3056 * Single interrupt means one handler for all rings.
3057 */
3058 intr_context->handler = qlge_isr;
3059 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3060 /* Set up this vector's bit-mask that indicates
3061 * which queues it services. In this case there is
3062 * a single vector so it will service all RSS and
3063 * TX completion rings.
3064 */
3065 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3066 }
39aa8165
RM
3067 /* Tell the TX completion rings which MSIx vector
3068 * they will be using.
3069 */
3070 ql_set_tx_vect(qdev);
c4e84bde
RM
3071}
3072
3073static void ql_free_irq(struct ql_adapter *qdev)
3074{
3075 int i;
3076 struct intr_context *intr_context = &qdev->intr_context[0];
3077
3078 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3079 if (intr_context->hooked) {
3080 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3081 free_irq(qdev->msi_x_entry[i].vector,
3082 &qdev->rx_ring[i]);
4974097a 3083 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
3084 "freeing msix interrupt %d.\n", i);
3085 } else {
3086 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 3087 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
3088 "freeing msi interrupt %d.\n", i);
3089 }
3090 }
3091 }
3092 ql_disable_msix(qdev);
3093}
3094
3095static int ql_request_irq(struct ql_adapter *qdev)
3096{
3097 int i;
3098 int status = 0;
3099 struct pci_dev *pdev = qdev->pdev;
3100 struct intr_context *intr_context = &qdev->intr_context[0];
3101
3102 ql_resolve_queues_to_irqs(qdev);
3103
3104 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3105 atomic_set(&intr_context->irq_cnt, 0);
3106 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3107 status = request_irq(qdev->msi_x_entry[i].vector,
3108 intr_context->handler,
3109 0,
3110 intr_context->name,
3111 &qdev->rx_ring[i]);
3112 if (status) {
3113 QPRINTK(qdev, IFUP, ERR,
3114 "Failed request for MSIX interrupt %d.\n",
3115 i);
3116 goto err_irq;
3117 } else {
4974097a 3118 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
3119 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3120 i,
3121 qdev->rx_ring[i].type ==
3122 DEFAULT_Q ? "DEFAULT_Q" : "",
3123 qdev->rx_ring[i].type ==
3124 TX_Q ? "TX_Q" : "",
3125 qdev->rx_ring[i].type ==
3126 RX_Q ? "RX_Q" : "", intr_context->name);
3127 }
3128 } else {
3129 QPRINTK(qdev, IFUP, DEBUG,
3130 "trying msi or legacy interrupts.\n");
3131 QPRINTK(qdev, IFUP, DEBUG,
3132 "%s: irq = %d.\n", __func__, pdev->irq);
3133 QPRINTK(qdev, IFUP, DEBUG,
3134 "%s: context->name = %s.\n", __func__,
3135 intr_context->name);
3136 QPRINTK(qdev, IFUP, DEBUG,
3137 "%s: dev_id = 0x%p.\n", __func__,
3138 &qdev->rx_ring[0]);
3139 status =
3140 request_irq(pdev->irq, qlge_isr,
3141 test_bit(QL_MSI_ENABLED,
3142 &qdev->
3143 flags) ? 0 : IRQF_SHARED,
3144 intr_context->name, &qdev->rx_ring[0]);
3145 if (status)
3146 goto err_irq;
3147
3148 QPRINTK(qdev, IFUP, ERR,
3149 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3150 i,
3151 qdev->rx_ring[0].type ==
3152 DEFAULT_Q ? "DEFAULT_Q" : "",
3153 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3154 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3155 intr_context->name);
3156 }
3157 intr_context->hooked = 1;
3158 }
3159 return status;
3160err_irq:
3161 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3162 ql_free_irq(qdev);
3163 return status;
3164}
3165
3166static int ql_start_rss(struct ql_adapter *qdev)
3167{
541ae28c
RM
3168 u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3169 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
3170 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
3171 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
3172 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
3173 0xbe, 0xac, 0x01, 0xfa};
c4e84bde
RM
3174 struct ricb *ricb = &qdev->ricb;
3175 int status = 0;
3176 int i;
3177 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3178
e332471c 3179 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3180
b2014ff8 3181 ricb->base_cq = RSS_L4K;
c4e84bde 3182 ricb->flags =
541ae28c
RM
3183 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3184 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3185
3186 /*
3187 * Fill out the Indirection Table.
3188 */
541ae28c
RM
3189 for (i = 0; i < 1024; i++)
3190 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3191
541ae28c
RM
3192 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3193 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3194
4974097a 3195 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde 3196
e332471c 3197 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde
RM
3198 if (status) {
3199 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3200 return status;
3201 }
4974097a 3202 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
3203 return status;
3204}
3205
a5f59dc9 3206static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3207{
a5f59dc9 3208 int i, status = 0;
c4e84bde 3209
8587ea35
RM
3210 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3211 if (status)
3212 return status;
c4e84bde
RM
3213 /* Clear all the entries in the routing table. */
3214 for (i = 0; i < 16; i++) {
3215 status = ql_set_routing_reg(qdev, i, 0, 0);
3216 if (status) {
3217 QPRINTK(qdev, IFUP, ERR,
a5f59dc9
RM
3218 "Failed to init routing register for CAM "
3219 "packets.\n");
3220 break;
c4e84bde
RM
3221 }
3222 }
a5f59dc9
RM
3223 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3224 return status;
3225}
3226
3227/* Initialize the frame-to-queue routing. */
3228static int ql_route_initialize(struct ql_adapter *qdev)
3229{
3230 int status = 0;
3231
fd21cf52
RM
3232 /* Clear all the entries in the routing table. */
3233 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3234 if (status)
3235 return status;
3236
fd21cf52 3237 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3238 if (status)
fd21cf52 3239 return status;
c4e84bde
RM
3240
3241 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3242 if (status) {
3243 QPRINTK(qdev, IFUP, ERR,
3244 "Failed to init routing register for error packets.\n");
8587ea35 3245 goto exit;
c4e84bde
RM
3246 }
3247 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3248 if (status) {
3249 QPRINTK(qdev, IFUP, ERR,
3250 "Failed to init routing register for broadcast packets.\n");
8587ea35 3251 goto exit;
c4e84bde
RM
3252 }
3253 /* If we have more than one inbound queue, then turn on RSS in the
3254 * routing block.
3255 */
3256 if (qdev->rss_ring_count > 1) {
3257 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3258 RT_IDX_RSS_MATCH, 1);
3259 if (status) {
3260 QPRINTK(qdev, IFUP, ERR,
3261 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3262 goto exit;
c4e84bde
RM
3263 }
3264 }
3265
3266 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3267 RT_IDX_CAM_HIT, 1);
8587ea35 3268 if (status)
c4e84bde
RM
3269 QPRINTK(qdev, IFUP, ERR,
3270 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3271exit:
3272 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3273 return status;
3274}
3275
2ee1e272 3276int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3277{
7fab3bfe 3278 int status, set;
bb58b5b6 3279
7fab3bfe
RM
3280 /* If check if the link is up and use to
3281 * determine if we are setting or clearing
3282 * the MAC address in the CAM.
3283 */
3284 set = ql_read32(qdev, STS);
3285 set &= qdev->port_link_up;
3286 status = ql_set_mac_addr(qdev, set);
bb58b5b6
RM
3287 if (status) {
3288 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3289 return status;
3290 }
3291
3292 status = ql_route_initialize(qdev);
3293 if (status)
3294 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3295
3296 return status;
3297}
3298
c4e84bde
RM
3299static int ql_adapter_initialize(struct ql_adapter *qdev)
3300{
3301 u32 value, mask;
3302 int i;
3303 int status = 0;
3304
3305 /*
3306 * Set up the System register to halt on errors.
3307 */
3308 value = SYS_EFE | SYS_FAE;
3309 mask = value << 16;
3310 ql_write32(qdev, SYS, mask | value);
3311
c9cf0a04
RM
3312 /* Set the default queue, and VLAN behavior. */
3313 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3314 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3315 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3316
3317 /* Set the MPI interrupt to enabled. */
3318 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3319
3320 /* Enable the function, set pagesize, enable error checking. */
3321 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3322 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3323
3324 /* Set/clear header splitting. */
3325 mask = FSC_VM_PAGESIZE_MASK |
3326 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3327 ql_write32(qdev, FSC, mask | value);
3328
3329 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
52e55f3c 3330 min(SMALL_BUF_MAP_SIZE, MAX_SPLIT_SIZE));
c4e84bde 3331
a3b71939
RM
3332 /* Set RX packet routing to use port/pci function on which the
3333 * packet arrived on in addition to usual frame routing.
3334 * This is helpful on bonding where both interfaces can have
3335 * the same MAC address.
3336 */
3337 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3338 /* Reroute all packets to our Interface.
3339 * They may have been routed to MPI firmware
3340 * due to WOL.
3341 */
3342 value = ql_read32(qdev, MGMT_RCV_CFG);
3343 value &= ~MGMT_RCV_CFG_RM;
3344 mask = 0xffff0000;
3345
3346 /* Sticky reg needs clearing due to WOL. */
3347 ql_write32(qdev, MGMT_RCV_CFG, mask);
3348 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3349
3350 /* Default WOL is enable on Mezz cards */
3351 if (qdev->pdev->subsystem_device == 0x0068 ||
3352 qdev->pdev->subsystem_device == 0x0180)
3353 qdev->wol = WAKE_MAGIC;
a3b71939 3354
c4e84bde
RM
3355 /* Start up the rx queues. */
3356 for (i = 0; i < qdev->rx_ring_count; i++) {
3357 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3358 if (status) {
3359 QPRINTK(qdev, IFUP, ERR,
3360 "Failed to start rx ring[%d].\n", i);
3361 return status;
3362 }
3363 }
3364
3365 /* If there is more than one inbound completion queue
3366 * then download a RICB to configure RSS.
3367 */
3368 if (qdev->rss_ring_count > 1) {
3369 status = ql_start_rss(qdev);
3370 if (status) {
3371 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3372 return status;
3373 }
3374 }
3375
3376 /* Start up the tx queues. */
3377 for (i = 0; i < qdev->tx_ring_count; i++) {
3378 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3379 if (status) {
3380 QPRINTK(qdev, IFUP, ERR,
3381 "Failed to start tx ring[%d].\n", i);
3382 return status;
3383 }
3384 }
3385
b0c2aadf
RM
3386 /* Initialize the port and set the max framesize. */
3387 status = qdev->nic_ops->port_initialize(qdev);
80928860
RM
3388 if (status)
3389 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
c4e84bde 3390
bb58b5b6
RM
3391 /* Set up the MAC address and frame routing filter. */
3392 status = ql_cam_route_initialize(qdev);
c4e84bde 3393 if (status) {
bb58b5b6
RM
3394 QPRINTK(qdev, IFUP, ERR,
3395 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3396 return status;
3397 }
3398
3399 /* Start NAPI for the RSS queues. */
b2014ff8 3400 for (i = 0; i < qdev->rss_ring_count; i++) {
4974097a 3401 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3402 i);
3403 napi_enable(&qdev->rx_ring[i].napi);
3404 }
3405
3406 return status;
3407}
3408
3409/* Issue soft reset to chip. */
3410static int ql_adapter_reset(struct ql_adapter *qdev)
3411{
3412 u32 value;
c4e84bde 3413 int status = 0;
a5f59dc9 3414 unsigned long end_jiffies;
c4e84bde 3415
a5f59dc9
RM
3416 /* Clear all the entries in the routing table. */
3417 status = ql_clear_routing_entries(qdev);
3418 if (status) {
3419 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3420 return status;
3421 }
3422
3423 end_jiffies = jiffies +
3424 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d
RM
3425
3426 /* Stop management traffic. */
3427 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3428
3429 /* Wait for the NIC and MGMNT FIFOs to empty. */
3430 ql_wait_fifo_empty(qdev);
3431
c4e84bde 3432 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3433
c4e84bde
RM
3434 do {
3435 value = ql_read32(qdev, RST_FO);
3436 if ((value & RST_FO_FR) == 0)
3437 break;
a75ee7f1
RM
3438 cpu_relax();
3439 } while (time_before(jiffies, end_jiffies));
c4e84bde 3440
c4e84bde 3441 if (value & RST_FO_FR) {
c4e84bde 3442 QPRINTK(qdev, IFDOWN, ERR,
3ac49a1c 3443 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3444 status = -ETIMEDOUT;
c4e84bde
RM
3445 }
3446
84087f4d
RM
3447 /* Resume management traffic. */
3448 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3449 return status;
3450}
3451
3452static void ql_display_dev_info(struct net_device *ndev)
3453{
3454 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3455
3456 QPRINTK(qdev, PROBE, INFO,
e4552f51 3457 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
c4e84bde
RM
3458 "XG Roll = %d, XG Rev = %d.\n",
3459 qdev->func,
e4552f51 3460 qdev->port,
c4e84bde
RM
3461 qdev->chip_rev_id & 0x0000000f,
3462 qdev->chip_rev_id >> 4 & 0x0000000f,
3463 qdev->chip_rev_id >> 8 & 0x0000000f,
3464 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3465 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3466}
3467
bc083ce9
RM
3468int ql_wol(struct ql_adapter *qdev)
3469{
3470 int status = 0;
3471 u32 wol = MB_WOL_DISABLE;
3472
3473 /* The CAM is still intact after a reset, but if we
3474 * are doing WOL, then we may need to program the
3475 * routing regs. We would also need to issue the mailbox
3476 * commands to instruct the MPI what to do per the ethtool
3477 * settings.
3478 */
3479
3480 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3481 WAKE_MCAST | WAKE_BCAST)) {
3482 QPRINTK(qdev, IFDOWN, ERR,
3483 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3484 qdev->wol);
3485 return -EINVAL;
3486 }
3487
3488 if (qdev->wol & WAKE_MAGIC) {
3489 status = ql_mb_wol_set_magic(qdev, 1);
3490 if (status) {
3491 QPRINTK(qdev, IFDOWN, ERR,
3492 "Failed to set magic packet on %s.\n",
3493 qdev->ndev->name);
3494 return status;
3495 } else
3496 QPRINTK(qdev, DRV, INFO,
3497 "Enabled magic packet successfully on %s.\n",
3498 qdev->ndev->name);
3499
3500 wol |= MB_WOL_MAGIC_PKT;
3501 }
3502
3503 if (qdev->wol) {
3504 /* Reroute all packets to Management Interface */
3505 ql_write32(qdev, MGMT_RCV_CFG, (MGMT_RCV_CFG_RM |
3506 (MGMT_RCV_CFG_RM << 16)));
3507 wol |= MB_WOL_MODE_ON;
3508 status = ql_mb_wol_mode(qdev, wol);
3509 QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
3510 (status == 0) ? "Sucessfully set" : "Failed", wol,
3511 qdev->ndev->name);
3512 }
3513
3514 return status;
3515}
3516
c4e84bde
RM
3517static int ql_adapter_down(struct ql_adapter *qdev)
3518{
c4e84bde 3519 int i, status = 0;
c4e84bde 3520
6a473308 3521 ql_link_off(qdev);
c4e84bde 3522
6497b607
RM
3523 /* Don't kill the reset worker thread if we
3524 * are in the process of recovery.
3525 */
3526 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3527 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3528 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3529 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3530 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3531 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde 3532
39aa8165
RM
3533 for (i = 0; i < qdev->rss_ring_count; i++)
3534 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3535
3536 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3537
3538 ql_disable_interrupts(qdev);
3539
3540 ql_tx_ring_clean(qdev);
3541
6b318cb3
RM
3542 /* Call netif_napi_del() from common point.
3543 */
b2014ff8 3544 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3545 netif_napi_del(&qdev->rx_ring[i].napi);
3546
4545a3f2 3547 ql_free_rx_buffers(qdev);
2d6a5e95 3548
c4e84bde
RM
3549 status = ql_adapter_reset(qdev);
3550 if (status)
3551 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3552 qdev->func);
c4e84bde
RM
3553 return status;
3554}
3555
3556static int ql_adapter_up(struct ql_adapter *qdev)
3557{
3558 int err = 0;
3559
c4e84bde
RM
3560 err = ql_adapter_initialize(qdev);
3561 if (err) {
3562 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
c4e84bde
RM
3563 goto err_init;
3564 }
c4e84bde 3565 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3566 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3567 /* If the port is initialized and the
3568 * link is up the turn on the carrier.
3569 */
3570 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3571 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3572 ql_link_on(qdev);
c4e84bde
RM
3573 ql_enable_interrupts(qdev);
3574 ql_enable_all_completion_interrupts(qdev);
1e213303 3575 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3576
3577 return 0;
3578err_init:
3579 ql_adapter_reset(qdev);
3580 return err;
3581}
3582
c4e84bde
RM
3583static void ql_release_adapter_resources(struct ql_adapter *qdev)
3584{
3585 ql_free_mem_resources(qdev);
3586 ql_free_irq(qdev);
3587}
3588
3589static int ql_get_adapter_resources(struct ql_adapter *qdev)
3590{
3591 int status = 0;
3592
3593 if (ql_alloc_mem_resources(qdev)) {
3594 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3595 return -ENOMEM;
3596 }
3597 status = ql_request_irq(qdev);
c4e84bde
RM
3598 return status;
3599}
3600
3601static int qlge_close(struct net_device *ndev)
3602{
3603 struct ql_adapter *qdev = netdev_priv(ndev);
3604
3605 /*
3606 * Wait for device to recover from a reset.
3607 * (Rarely happens, but possible.)
3608 */
3609 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3610 msleep(1);
3611 ql_adapter_down(qdev);
3612 ql_release_adapter_resources(qdev);
c4e84bde
RM
3613 return 0;
3614}
3615
3616static int ql_configure_rings(struct ql_adapter *qdev)
3617{
3618 int i;
3619 struct rx_ring *rx_ring;
3620 struct tx_ring *tx_ring;
a4ab6137 3621 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
3622 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
3623 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
3624
3625 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
3626
3627 /* In a perfect world we have one RSS ring for each CPU
3628 * and each has it's own vector. To do that we ask for
3629 * cpu_cnt vectors. ql_enable_msix() will adjust the
3630 * vector count to what we actually get. We then
3631 * allocate an RSS ring for each.
3632 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 3633 */
a4ab6137
RM
3634 qdev->intr_count = cpu_cnt;
3635 ql_enable_msix(qdev);
3636 /* Adjust the RSS ring count to the actual vector count. */
3637 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 3638 qdev->tx_ring_count = cpu_cnt;
b2014ff8 3639 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 3640
c4e84bde
RM
3641 for (i = 0; i < qdev->tx_ring_count; i++) {
3642 tx_ring = &qdev->tx_ring[i];
e332471c 3643 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
3644 tx_ring->qdev = qdev;
3645 tx_ring->wq_id = i;
3646 tx_ring->wq_len = qdev->tx_ring_size;
3647 tx_ring->wq_size =
3648 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3649
3650 /*
3651 * The completion queue ID for the tx rings start
39aa8165 3652 * immediately after the rss rings.
c4e84bde 3653 */
39aa8165 3654 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
3655 }
3656
3657 for (i = 0; i < qdev->rx_ring_count; i++) {
3658 rx_ring = &qdev->rx_ring[i];
e332471c 3659 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
3660 rx_ring->qdev = qdev;
3661 rx_ring->cq_id = i;
3662 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 3663 if (i < qdev->rss_ring_count) {
39aa8165
RM
3664 /*
3665 * Inbound (RSS) queues.
3666 */
c4e84bde
RM
3667 rx_ring->cq_len = qdev->rx_ring_size;
3668 rx_ring->cq_size =
3669 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3670 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3671 rx_ring->lbq_size =
2c9a0d41 3672 rx_ring->lbq_len * sizeof(__le64);
7c734359
RM
3673 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
3674 QPRINTK(qdev, IFUP, DEBUG,
3675 "lbq_buf_size %d, order = %d\n",
3676 rx_ring->lbq_buf_size, qdev->lbq_buf_order);
c4e84bde
RM
3677 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3678 rx_ring->sbq_size =
2c9a0d41 3679 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 3680 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
3681 rx_ring->type = RX_Q;
3682 } else {
c4e84bde
RM
3683 /*
3684 * Outbound queue handles outbound completions only.
3685 */
3686 /* outbound cq is same size as tx_ring it services. */
3687 rx_ring->cq_len = qdev->tx_ring_size;
3688 rx_ring->cq_size =
3689 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3690 rx_ring->lbq_len = 0;
3691 rx_ring->lbq_size = 0;
3692 rx_ring->lbq_buf_size = 0;
3693 rx_ring->sbq_len = 0;
3694 rx_ring->sbq_size = 0;
3695 rx_ring->sbq_buf_size = 0;
3696 rx_ring->type = TX_Q;
c4e84bde
RM
3697 }
3698 }
3699 return 0;
3700}
3701
3702static int qlge_open(struct net_device *ndev)
3703{
3704 int err = 0;
3705 struct ql_adapter *qdev = netdev_priv(ndev);
3706
3707 err = ql_configure_rings(qdev);
3708 if (err)
3709 return err;
3710
3711 err = ql_get_adapter_resources(qdev);
3712 if (err)
3713 goto error_up;
3714
3715 err = ql_adapter_up(qdev);
3716 if (err)
3717 goto error_up;
3718
3719 return err;
3720
3721error_up:
3722 ql_release_adapter_resources(qdev);
c4e84bde
RM
3723 return err;
3724}
3725
7c734359
RM
3726static int ql_change_rx_buffers(struct ql_adapter *qdev)
3727{
3728 struct rx_ring *rx_ring;
3729 int i, status;
3730 u32 lbq_buf_len;
3731
3732 /* Wait for an oustanding reset to complete. */
3733 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
3734 int i = 3;
3735 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
3736 QPRINTK(qdev, IFUP, ERR,
3737 "Waiting for adapter UP...\n");
3738 ssleep(1);
3739 }
3740
3741 if (!i) {
3742 QPRINTK(qdev, IFUP, ERR,
3743 "Timed out waiting for adapter UP\n");
3744 return -ETIMEDOUT;
3745 }
3746 }
3747
3748 status = ql_adapter_down(qdev);
3749 if (status)
3750 goto error;
3751
3752 /* Get the new rx buffer size. */
3753 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
3754 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
3755 qdev->lbq_buf_order = get_order(lbq_buf_len);
3756
3757 for (i = 0; i < qdev->rss_ring_count; i++) {
3758 rx_ring = &qdev->rx_ring[i];
3759 /* Set the new size. */
3760 rx_ring->lbq_buf_size = lbq_buf_len;
3761 }
3762
3763 status = ql_adapter_up(qdev);
3764 if (status)
3765 goto error;
3766
3767 return status;
3768error:
3769 QPRINTK(qdev, IFUP, ALERT,
3770 "Driver up/down cycle failed, closing device.\n");
3771 set_bit(QL_ADAPTER_UP, &qdev->flags);
3772 dev_close(qdev->ndev);
3773 return status;
3774}
3775
c4e84bde
RM
3776static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3777{
3778 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 3779 int status;
c4e84bde
RM
3780
3781 if (ndev->mtu == 1500 && new_mtu == 9000) {
3782 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3783 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3784 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3785 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3786 (ndev->mtu == 9000 && new_mtu == 9000)) {
3787 return 0;
3788 } else
3789 return -EINVAL;
7c734359
RM
3790
3791 queue_delayed_work(qdev->workqueue,
3792 &qdev->mpi_port_cfg_work, 3*HZ);
3793
3794 if (!netif_running(qdev->ndev)) {
3795 ndev->mtu = new_mtu;
3796 return 0;
3797 }
3798
c4e84bde 3799 ndev->mtu = new_mtu;
7c734359
RM
3800 status = ql_change_rx_buffers(qdev);
3801 if (status) {
3802 QPRINTK(qdev, IFUP, ERR,
3803 "Changing MTU failed.\n");
3804 }
3805
3806 return status;
c4e84bde
RM
3807}
3808
3809static struct net_device_stats *qlge_get_stats(struct net_device
3810 *ndev)
3811{
bcc90f55 3812 return &ndev->stats;
c4e84bde
RM
3813}
3814
3815static void qlge_set_multicast_list(struct net_device *ndev)
3816{
3817 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3818 struct dev_mc_list *mc_ptr;
cc288f54 3819 int i, status;
c4e84bde 3820
cc288f54
RM
3821 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3822 if (status)
3823 return;
c4e84bde
RM
3824 /*
3825 * Set or clear promiscuous mode if a
3826 * transition is taking place.
3827 */
3828 if (ndev->flags & IFF_PROMISC) {
3829 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3830 if (ql_set_routing_reg
3831 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3832 QPRINTK(qdev, HW, ERR,
3833 "Failed to set promiscous mode.\n");
3834 } else {
3835 set_bit(QL_PROMISCUOUS, &qdev->flags);
3836 }
3837 }
3838 } else {
3839 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3840 if (ql_set_routing_reg
3841 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3842 QPRINTK(qdev, HW, ERR,
3843 "Failed to clear promiscous mode.\n");
3844 } else {
3845 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3846 }
3847 }
3848 }
3849
3850 /*
3851 * Set or clear all multicast mode if a
3852 * transition is taking place.
3853 */
3854 if ((ndev->flags & IFF_ALLMULTI) ||
3855 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3856 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3857 if (ql_set_routing_reg
3858 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3859 QPRINTK(qdev, HW, ERR,
3860 "Failed to set all-multi mode.\n");
3861 } else {
3862 set_bit(QL_ALLMULTI, &qdev->flags);
3863 }
3864 }
3865 } else {
3866 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3867 if (ql_set_routing_reg
3868 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3869 QPRINTK(qdev, HW, ERR,
3870 "Failed to clear all-multi mode.\n");
3871 } else {
3872 clear_bit(QL_ALLMULTI, &qdev->flags);
3873 }
3874 }
3875 }
3876
3877 if (ndev->mc_count) {
cc288f54
RM
3878 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3879 if (status)
3880 goto exit;
c4e84bde
RM
3881 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3882 i++, mc_ptr = mc_ptr->next)
3883 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3884 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3885 QPRINTK(qdev, HW, ERR,
3886 "Failed to loadmulticast address.\n");
cc288f54 3887 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3888 goto exit;
3889 }
cc288f54 3890 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3891 if (ql_set_routing_reg
3892 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3893 QPRINTK(qdev, HW, ERR,
3894 "Failed to set multicast match mode.\n");
3895 } else {
3896 set_bit(QL_ALLMULTI, &qdev->flags);
3897 }
3898 }
3899exit:
8587ea35 3900 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3901}
3902
3903static int qlge_set_mac_address(struct net_device *ndev, void *p)
3904{
3905 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3906 struct sockaddr *addr = p;
cc288f54 3907 int status;
c4e84bde
RM
3908
3909 if (netif_running(ndev))
3910 return -EBUSY;
3911
3912 if (!is_valid_ether_addr(addr->sa_data))
3913 return -EADDRNOTAVAIL;
3914 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3915
cc288f54
RM
3916 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3917 if (status)
3918 return status;
cc288f54
RM
3919 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3920 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54
RM
3921 if (status)
3922 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3923 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3924 return status;
c4e84bde
RM
3925}
3926
3927static void qlge_tx_timeout(struct net_device *ndev)
3928{
3929 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3930 ql_queue_asic_error(qdev);
c4e84bde
RM
3931}
3932
3933static void ql_asic_reset_work(struct work_struct *work)
3934{
3935 struct ql_adapter *qdev =
3936 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 3937 int status;
f2c0d8df 3938 rtnl_lock();
db98812f
RM
3939 status = ql_adapter_down(qdev);
3940 if (status)
3941 goto error;
3942
3943 status = ql_adapter_up(qdev);
3944 if (status)
3945 goto error;
2cd6dbaa
RM
3946
3947 /* Restore rx mode. */
3948 clear_bit(QL_ALLMULTI, &qdev->flags);
3949 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3950 qlge_set_multicast_list(qdev->ndev);
3951
f2c0d8df 3952 rtnl_unlock();
db98812f
RM
3953 return;
3954error:
3955 QPRINTK(qdev, IFUP, ALERT,
3956 "Driver up/down cycle failed, closing device\n");
f2c0d8df 3957
db98812f
RM
3958 set_bit(QL_ADAPTER_UP, &qdev->flags);
3959 dev_close(qdev->ndev);
3960 rtnl_unlock();
c4e84bde
RM
3961}
3962
b0c2aadf
RM
3963static struct nic_operations qla8012_nic_ops = {
3964 .get_flash = ql_get_8012_flash_params,
3965 .port_initialize = ql_8012_port_initialize,
3966};
3967
cdca8d02
RM
3968static struct nic_operations qla8000_nic_ops = {
3969 .get_flash = ql_get_8000_flash_params,
3970 .port_initialize = ql_8000_port_initialize,
3971};
3972
e4552f51
RM
3973/* Find the pcie function number for the other NIC
3974 * on this chip. Since both NIC functions share a
3975 * common firmware we have the lowest enabled function
3976 * do any common work. Examples would be resetting
3977 * after a fatal firmware error, or doing a firmware
3978 * coredump.
3979 */
3980static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3981{
3982 int status = 0;
3983 u32 temp;
3984 u32 nic_func1, nic_func2;
3985
3986 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3987 &temp);
3988 if (status)
3989 return status;
3990
3991 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3992 MPI_TEST_NIC_FUNC_MASK);
3993 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3994 MPI_TEST_NIC_FUNC_MASK);
3995
3996 if (qdev->func == nic_func1)
3997 qdev->alt_func = nic_func2;
3998 else if (qdev->func == nic_func2)
3999 qdev->alt_func = nic_func1;
4000 else
4001 status = -EIO;
4002
4003 return status;
4004}
b0c2aadf 4005
e4552f51 4006static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4007{
e4552f51 4008 int status;
c4e84bde
RM
4009 qdev->func =
4010 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4011 if (qdev->func > 3)
4012 return -EIO;
4013
4014 status = ql_get_alt_pcie_func(qdev);
4015 if (status)
4016 return status;
4017
4018 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4019 if (qdev->port) {
c4e84bde
RM
4020 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4021 qdev->port_link_up = STS_PL1;
4022 qdev->port_init = STS_PI1;
4023 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4024 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4025 } else {
4026 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4027 qdev->port_link_up = STS_PL0;
4028 qdev->port_init = STS_PI0;
4029 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4030 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4031 }
4032 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4033 qdev->device_id = qdev->pdev->device;
4034 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4035 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4036 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4037 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4038 return status;
c4e84bde
RM
4039}
4040
4041static void ql_release_all(struct pci_dev *pdev)
4042{
4043 struct net_device *ndev = pci_get_drvdata(pdev);
4044 struct ql_adapter *qdev = netdev_priv(ndev);
4045
4046 if (qdev->workqueue) {
4047 destroy_workqueue(qdev->workqueue);
4048 qdev->workqueue = NULL;
4049 }
39aa8165 4050
c4e84bde 4051 if (qdev->reg_base)
8668ae92 4052 iounmap(qdev->reg_base);
c4e84bde
RM
4053 if (qdev->doorbell_area)
4054 iounmap(qdev->doorbell_area);
4055 pci_release_regions(pdev);
4056 pci_set_drvdata(pdev, NULL);
4057}
4058
4059static int __devinit ql_init_device(struct pci_dev *pdev,
4060 struct net_device *ndev, int cards_found)
4061{
4062 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4063 int err = 0;
c4e84bde 4064
e332471c 4065 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4066 err = pci_enable_device(pdev);
4067 if (err) {
4068 dev_err(&pdev->dev, "PCI device enable failed.\n");
4069 return err;
4070 }
4071
ebd6e774
RM
4072 qdev->ndev = ndev;
4073 qdev->pdev = pdev;
4074 pci_set_drvdata(pdev, ndev);
c4e84bde 4075
bc9167f3
RM
4076 /* Set PCIe read request size */
4077 err = pcie_set_readrq(pdev, 4096);
4078 if (err) {
4079 dev_err(&pdev->dev, "Set readrq failed.\n");
4080 goto err_out;
4081 }
4082
c4e84bde
RM
4083 err = pci_request_regions(pdev, DRV_NAME);
4084 if (err) {
4085 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4086 return err;
c4e84bde
RM
4087 }
4088
4089 pci_set_master(pdev);
6a35528a 4090 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4091 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4092 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4093 } else {
284901a9 4094 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4095 if (!err)
284901a9 4096 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4097 }
4098
4099 if (err) {
4100 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4101 goto err_out;
4102 }
4103
6d190c6e 4104 pci_save_state(pdev);
c4e84bde
RM
4105 qdev->reg_base =
4106 ioremap_nocache(pci_resource_start(pdev, 1),
4107 pci_resource_len(pdev, 1));
4108 if (!qdev->reg_base) {
4109 dev_err(&pdev->dev, "Register mapping failed.\n");
4110 err = -ENOMEM;
4111 goto err_out;
4112 }
4113
4114 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4115 qdev->doorbell_area =
4116 ioremap_nocache(pci_resource_start(pdev, 3),
4117 pci_resource_len(pdev, 3));
4118 if (!qdev->doorbell_area) {
4119 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4120 err = -ENOMEM;
4121 goto err_out;
4122 }
4123
e4552f51
RM
4124 err = ql_get_board_info(qdev);
4125 if (err) {
4126 dev_err(&pdev->dev, "Register access failed.\n");
4127 err = -EIO;
4128 goto err_out;
4129 }
c4e84bde
RM
4130 qdev->msg_enable = netif_msg_init(debug, default_msg);
4131 spin_lock_init(&qdev->hw_lock);
4132 spin_lock_init(&qdev->stats_lock);
4133
4134 /* make sure the EEPROM is good */
b0c2aadf 4135 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4136 if (err) {
4137 dev_err(&pdev->dev, "Invalid FLASH.\n");
4138 goto err_out;
4139 }
4140
c4e84bde
RM
4141 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4142
4143 /* Set up the default ring sizes. */
4144 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4145 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4146
4147 /* Set up the coalescing parameters. */
4148 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4149 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4150 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4151 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4152
4153 /*
4154 * Set up the operating parameters.
4155 */
4156 qdev->rx_csum = 1;
c4e84bde
RM
4157 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4158 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4159 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4160 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4161 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4162 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
bcc2cb3b 4163 init_completion(&qdev->ide_completion);
c4e84bde
RM
4164
4165 if (!cards_found) {
4166 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4167 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4168 DRV_NAME, DRV_VERSION);
4169 }
4170 return 0;
4171err_out:
4172 ql_release_all(pdev);
4173 pci_disable_device(pdev);
4174 return err;
4175}
4176
25ed7849
SH
4177
4178static const struct net_device_ops qlge_netdev_ops = {
4179 .ndo_open = qlge_open,
4180 .ndo_stop = qlge_close,
4181 .ndo_start_xmit = qlge_send,
4182 .ndo_change_mtu = qlge_change_mtu,
4183 .ndo_get_stats = qlge_get_stats,
4184 .ndo_set_multicast_list = qlge_set_multicast_list,
4185 .ndo_set_mac_address = qlge_set_mac_address,
4186 .ndo_validate_addr = eth_validate_addr,
4187 .ndo_tx_timeout = qlge_tx_timeout,
4188 .ndo_vlan_rx_register = ql_vlan_rx_register,
4189 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
4190 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
4191};
4192
c4e84bde
RM
4193static int __devinit qlge_probe(struct pci_dev *pdev,
4194 const struct pci_device_id *pci_entry)
4195{
4196 struct net_device *ndev = NULL;
4197 struct ql_adapter *qdev = NULL;
4198 static int cards_found = 0;
4199 int err = 0;
4200
1e213303
RM
4201 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4202 min(MAX_CPUS, (int)num_online_cpus()));
c4e84bde
RM
4203 if (!ndev)
4204 return -ENOMEM;
4205
4206 err = ql_init_device(pdev, ndev, cards_found);
4207 if (err < 0) {
4208 free_netdev(ndev);
4209 return err;
4210 }
4211
4212 qdev = netdev_priv(ndev);
4213 SET_NETDEV_DEV(ndev, &pdev->dev);
4214 ndev->features = (0
4215 | NETIF_F_IP_CSUM
4216 | NETIF_F_SG
4217 | NETIF_F_TSO
4218 | NETIF_F_TSO6
4219 | NETIF_F_TSO_ECN
4220 | NETIF_F_HW_VLAN_TX
4221 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 4222 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
4223
4224 if (test_bit(QL_DMA64, &qdev->flags))
4225 ndev->features |= NETIF_F_HIGHDMA;
4226
4227 /*
4228 * Set up net_device structure.
4229 */
4230 ndev->tx_queue_len = qdev->tx_ring_size;
4231 ndev->irq = pdev->irq;
25ed7849
SH
4232
4233 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4234 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4235 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4236
c4e84bde
RM
4237 err = register_netdev(ndev);
4238 if (err) {
4239 dev_err(&pdev->dev, "net device registration failed.\n");
4240 ql_release_all(pdev);
4241 pci_disable_device(pdev);
4242 return err;
4243 }
6a473308 4244 ql_link_off(qdev);
c4e84bde
RM
4245 ql_display_dev_info(ndev);
4246 cards_found++;
4247 return 0;
4248}
4249
4250static void __devexit qlge_remove(struct pci_dev *pdev)
4251{
4252 struct net_device *ndev = pci_get_drvdata(pdev);
4253 unregister_netdev(ndev);
4254 ql_release_all(pdev);
4255 pci_disable_device(pdev);
4256 free_netdev(ndev);
4257}
4258
6d190c6e
RM
4259/* Clean up resources without touching hardware. */
4260static void ql_eeh_close(struct net_device *ndev)
4261{
4262 int i;
4263 struct ql_adapter *qdev = netdev_priv(ndev);
4264
4265 if (netif_carrier_ok(ndev)) {
4266 netif_carrier_off(ndev);
4267 netif_stop_queue(ndev);
4268 }
4269
4270 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
4271 cancel_delayed_work_sync(&qdev->asic_reset_work);
4272 cancel_delayed_work_sync(&qdev->mpi_reset_work);
4273 cancel_delayed_work_sync(&qdev->mpi_work);
4274 cancel_delayed_work_sync(&qdev->mpi_idc_work);
4275 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
4276
4277 for (i = 0; i < qdev->rss_ring_count; i++)
4278 netif_napi_del(&qdev->rx_ring[i].napi);
4279
4280 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4281 ql_tx_ring_clean(qdev);
4282 ql_free_rx_buffers(qdev);
4283 ql_release_adapter_resources(qdev);
4284}
4285
c4e84bde
RM
4286/*
4287 * This callback is called by the PCI subsystem whenever
4288 * a PCI bus error is detected.
4289 */
4290static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4291 enum pci_channel_state state)
4292{
4293 struct net_device *ndev = pci_get_drvdata(pdev);
fbc663ce 4294
6d190c6e
RM
4295 switch (state) {
4296 case pci_channel_io_normal:
4297 return PCI_ERS_RESULT_CAN_RECOVER;
4298 case pci_channel_io_frozen:
4299 netif_device_detach(ndev);
4300 if (netif_running(ndev))
4301 ql_eeh_close(ndev);
4302 pci_disable_device(pdev);
4303 return PCI_ERS_RESULT_NEED_RESET;
4304 case pci_channel_io_perm_failure:
4305 dev_err(&pdev->dev,
4306 "%s: pci_channel_io_perm_failure.\n", __func__);
fbc663ce 4307 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4308 }
c4e84bde
RM
4309
4310 /* Request a slot reset. */
4311 return PCI_ERS_RESULT_NEED_RESET;
4312}
4313
4314/*
4315 * This callback is called after the PCI buss has been reset.
4316 * Basically, this tries to restart the card from scratch.
4317 * This is a shortened version of the device probe/discovery code,
4318 * it resembles the first-half of the () routine.
4319 */
4320static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4321{
4322 struct net_device *ndev = pci_get_drvdata(pdev);
4323 struct ql_adapter *qdev = netdev_priv(ndev);
4324
6d190c6e
RM
4325 pdev->error_state = pci_channel_io_normal;
4326
4327 pci_restore_state(pdev);
c4e84bde
RM
4328 if (pci_enable_device(pdev)) {
4329 QPRINTK(qdev, IFUP, ERR,
4330 "Cannot re-enable PCI device after reset.\n");
4331 return PCI_ERS_RESULT_DISCONNECT;
4332 }
c4e84bde 4333 pci_set_master(pdev);
c4e84bde
RM
4334 return PCI_ERS_RESULT_RECOVERED;
4335}
4336
4337static void qlge_io_resume(struct pci_dev *pdev)
4338{
4339 struct net_device *ndev = pci_get_drvdata(pdev);
4340 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4341 int err = 0;
c4e84bde 4342
6d190c6e
RM
4343 if (ql_adapter_reset(qdev))
4344 QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
c4e84bde 4345 if (netif_running(ndev)) {
6d190c6e
RM
4346 err = qlge_open(ndev);
4347 if (err) {
c4e84bde
RM
4348 QPRINTK(qdev, IFUP, ERR,
4349 "Device initialization failed after reset.\n");
4350 return;
4351 }
6d190c6e
RM
4352 } else {
4353 QPRINTK(qdev, IFUP, ERR,
4354 "Device was not running prior to EEH.\n");
c4e84bde 4355 }
c4e84bde
RM
4356 netif_device_attach(ndev);
4357}
4358
4359static struct pci_error_handlers qlge_err_handler = {
4360 .error_detected = qlge_io_error_detected,
4361 .slot_reset = qlge_io_slot_reset,
4362 .resume = qlge_io_resume,
4363};
4364
4365static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4366{
4367 struct net_device *ndev = pci_get_drvdata(pdev);
4368 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4369 int err;
c4e84bde
RM
4370
4371 netif_device_detach(ndev);
4372
4373 if (netif_running(ndev)) {
4374 err = ql_adapter_down(qdev);
4375 if (!err)
4376 return err;
4377 }
4378
bc083ce9 4379 ql_wol(qdev);
c4e84bde
RM
4380 err = pci_save_state(pdev);
4381 if (err)
4382 return err;
4383
4384 pci_disable_device(pdev);
4385
4386 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4387
4388 return 0;
4389}
4390
04da2cf9 4391#ifdef CONFIG_PM
c4e84bde
RM
4392static int qlge_resume(struct pci_dev *pdev)
4393{
4394 struct net_device *ndev = pci_get_drvdata(pdev);
4395 struct ql_adapter *qdev = netdev_priv(ndev);
4396 int err;
4397
4398 pci_set_power_state(pdev, PCI_D0);
4399 pci_restore_state(pdev);
4400 err = pci_enable_device(pdev);
4401 if (err) {
4402 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4403 return err;
4404 }
4405 pci_set_master(pdev);
4406
4407 pci_enable_wake(pdev, PCI_D3hot, 0);
4408 pci_enable_wake(pdev, PCI_D3cold, 0);
4409
4410 if (netif_running(ndev)) {
4411 err = ql_adapter_up(qdev);
4412 if (err)
4413 return err;
4414 }
4415
4416 netif_device_attach(ndev);
4417
4418 return 0;
4419}
04da2cf9 4420#endif /* CONFIG_PM */
c4e84bde
RM
4421
4422static void qlge_shutdown(struct pci_dev *pdev)
4423{
4424 qlge_suspend(pdev, PMSG_SUSPEND);
4425}
4426
4427static struct pci_driver qlge_driver = {
4428 .name = DRV_NAME,
4429 .id_table = qlge_pci_tbl,
4430 .probe = qlge_probe,
4431 .remove = __devexit_p(qlge_remove),
4432#ifdef CONFIG_PM
4433 .suspend = qlge_suspend,
4434 .resume = qlge_resume,
4435#endif
4436 .shutdown = qlge_shutdown,
4437 .err_handler = &qlge_err_handler
4438};
4439
4440static int __init qlge_init_module(void)
4441{
4442 return pci_register_driver(&qlge_driver);
4443}
4444
4445static void __exit qlge_exit(void)
4446{
4447 pci_unregister_driver(&qlge_driver);
4448}
4449
4450module_init(qlge_init_module);
4451module_exit(qlge_exit);