]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/qlge/qlge_main.c
net/mac80211/rx.c: fix build error
[mirror_ubuntu-zesty-kernel.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
42
43#include "qlge.h"
44
45char qlge_driver_name[] = DRV_NAME;
46const char qlge_driver_version[] = DRV_VERSION;
47
48MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49MODULE_DESCRIPTION(DRV_STRING " ");
50MODULE_LICENSE("GPL");
51MODULE_VERSION(DRV_VERSION);
52
53static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55/* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
60 NETIF_MSG_TX_QUEUED |
61 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
62/* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65static int debug = 0x00007fff; /* defaults above */
66module_param(debug, int, 0);
67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69#define MSIX_IRQ 0
70#define MSI_IRQ 1
71#define LEG_IRQ 2
72static int irq_type = MSIX_IRQ;
73module_param(irq_type, int, MSIX_IRQ);
74MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
77 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
129 unsigned int seconds = 3;
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
133 ssleep(1);
134 } while (--seconds);
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
216 status = ql_wait_cfg(qdev, bit);
217 if (status) {
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
220 goto exit;
221 }
222
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 if (status)
225 goto exit;
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
239 pci_unmap_single(qdev->pdev, map, size, direction);
240 return status;
241}
242
243/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 u32 *value)
246{
247 u32 offset = 0;
248 int status;
249
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251 if (status)
252 return status;
253 switch (type) {
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
256 {
257 status =
258 ql_wait_reg_rdy(qdev,
259 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
260 if (status)
261 goto exit;
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265 status =
266 ql_wait_reg_rdy(qdev,
267 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
268 if (status)
269 goto exit;
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271 status =
272 ql_wait_reg_rdy(qdev,
273 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
274 if (status)
275 goto exit;
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 status =
280 ql_wait_reg_rdy(qdev,
281 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
282 if (status)
283 goto exit;
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
286 status =
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
296 MAC_ADDR_MR, MAC_ADDR_E);
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 }
301 break;
302 }
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
305 default:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
308 status = -EPERM;
309 }
310exit:
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312 return status;
313}
314
315/* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
317 */
318static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319 u16 index)
320{
321 u32 offset = 0;
322 int status = 0;
323
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325 if (status)
326 return status;
327 switch (type) {
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
330 {
331 u32 cam_output;
332 u32 upper = (addr[0] << 8) | addr[1];
333 u32 lower =
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335 (addr[5]);
336
337 QPRINTK(qdev, IFUP, INFO,
338 "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
339 " at index %d in the CAM.\n",
340 ((type ==
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342 "UNICAST"), addr[0], addr[1], addr[2], addr[3],
343 addr[4], addr[5], index);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
351 (index << MAC_ADDR_IDX_SHIFT) | /* index */
352 type); /* type */
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
360 (index << MAC_ADDR_IDX_SHIFT) | /* index */
361 type); /* type */
362 ql_write32(qdev, MAC_ADDR_DATA, upper);
363 status =
364 ql_wait_reg_rdy(qdev,
365 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
366 if (status)
367 goto exit;
368 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
369 (index << MAC_ADDR_IDX_SHIFT) | /* index */
370 type); /* type */
371 /* This field should also include the queue id
372 and possibly the function id. Right now we hardcode
373 the route field to NIC core.
374 */
375 if (type == MAC_ADDR_TYPE_CAM_MAC) {
376 cam_output = (CAM_OUT_ROUTE_NIC |
377 (qdev->
378 func << CAM_OUT_FUNC_SHIFT) |
379 (qdev->
380 rss_ring_first_cq_id <<
381 CAM_OUT_CQ_ID_SHIFT));
382 if (qdev->vlgrp)
383 cam_output |= CAM_OUT_RV;
384 /* route to NIC core */
385 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
386 }
387 break;
388 }
389 case MAC_ADDR_TYPE_VLAN:
390 {
391 u32 enable_bit = *((u32 *) &addr[0]);
392 /* For VLAN, the addr actually holds a bit that
393 * either enables or disables the vlan id we are
394 * addressing. It's either MAC_ADDR_E on or off.
395 * That's bit-27 we're talking about.
396 */
397 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
398 (enable_bit ? "Adding" : "Removing"),
399 index, (enable_bit ? "to" : "from"));
400
401 status =
402 ql_wait_reg_rdy(qdev,
403 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
404 if (status)
405 goto exit;
406 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
407 (index << MAC_ADDR_IDX_SHIFT) | /* index */
408 type | /* type */
409 enable_bit); /* enable/disable */
410 break;
411 }
412 case MAC_ADDR_TYPE_MULTI_FLTR:
413 default:
414 QPRINTK(qdev, IFUP, CRIT,
415 "Address type %d not yet supported.\n", type);
416 status = -EPERM;
417 }
418exit:
419 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
420 return status;
421}
422
423/* Get a specific frame routing value from the CAM.
424 * Used for debug and reg dump.
425 */
426int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
427{
428 int status = 0;
429
430 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
431 if (status)
432 goto exit;
433
434 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
435 if (status)
436 goto exit;
437
438 ql_write32(qdev, RT_IDX,
439 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
440 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
441 if (status)
442 goto exit;
443 *value = ql_read32(qdev, RT_DATA);
444exit:
445 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
446 return status;
447}
448
449/* The NIC function for this chip has 16 routing indexes. Each one can be used
450 * to route different frame types to various inbound queues. We send broadcast/
451 * multicast/error frames to the default queue for slow handling,
452 * and CAM hit/RSS frames to the fast handling queues.
453 */
454static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
455 int enable)
456{
457 int status;
458 u32 value = 0;
459
460 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
461 if (status)
462 return status;
463
464 QPRINTK(qdev, IFUP, DEBUG,
465 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
466 (enable ? "Adding" : "Removing"),
467 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
468 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
469 ((index ==
470 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
471 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
472 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
473 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
474 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
475 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
476 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
477 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
478 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
479 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
480 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
481 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
482 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
483 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
484 (enable ? "to" : "from"));
485
486 switch (mask) {
487 case RT_IDX_CAM_HIT:
488 {
489 value = RT_IDX_DST_CAM_Q | /* dest */
490 RT_IDX_TYPE_NICQ | /* type */
491 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
492 break;
493 }
494 case RT_IDX_VALID: /* Promiscuous Mode frames. */
495 {
496 value = RT_IDX_DST_DFLT_Q | /* dest */
497 RT_IDX_TYPE_NICQ | /* type */
498 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
499 break;
500 }
501 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
502 {
503 value = RT_IDX_DST_DFLT_Q | /* dest */
504 RT_IDX_TYPE_NICQ | /* type */
505 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
506 break;
507 }
508 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
509 {
510 value = RT_IDX_DST_DFLT_Q | /* dest */
511 RT_IDX_TYPE_NICQ | /* type */
512 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
513 break;
514 }
515 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
516 {
517 value = RT_IDX_DST_CAM_Q | /* dest */
518 RT_IDX_TYPE_NICQ | /* type */
519 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
520 break;
521 }
522 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
523 {
524 value = RT_IDX_DST_CAM_Q | /* dest */
525 RT_IDX_TYPE_NICQ | /* type */
526 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
527 break;
528 }
529 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
530 {
531 value = RT_IDX_DST_RSS | /* dest */
532 RT_IDX_TYPE_NICQ | /* type */
533 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
534 break;
535 }
536 case 0: /* Clear the E-bit on an entry. */
537 {
538 value = RT_IDX_DST_DFLT_Q | /* dest */
539 RT_IDX_TYPE_NICQ | /* type */
540 (index << RT_IDX_IDX_SHIFT);/* index */
541 break;
542 }
543 default:
544 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
545 mask);
546 status = -EPERM;
547 goto exit;
548 }
549
550 if (value) {
551 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
552 if (status)
553 goto exit;
554 value |= (enable ? RT_IDX_E : 0);
555 ql_write32(qdev, RT_IDX, value);
556 ql_write32(qdev, RT_DATA, enable ? mask : 0);
557 }
558exit:
559 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
560 return status;
561}
562
563static void ql_enable_interrupts(struct ql_adapter *qdev)
564{
565 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
566}
567
568static void ql_disable_interrupts(struct ql_adapter *qdev)
569{
570 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
571}
572
573/* If we're running with multiple MSI-X vectors then we enable on the fly.
574 * Otherwise, we may have multiple outstanding workers and don't want to
575 * enable until the last one finishes. In this case, the irq_cnt gets
576 * incremented everytime we queue a worker and decremented everytime
577 * a worker finishes. Once it hits zero we enable the interrupt.
578 */
579void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
580{
581 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
582 ql_write32(qdev, INTR_EN,
583 qdev->intr_context[intr].intr_en_mask);
584 else {
585 if (qdev->legacy_check)
586 spin_lock(&qdev->legacy_lock);
587 if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
588 QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
589 intr);
590 ql_write32(qdev, INTR_EN,
591 qdev->intr_context[intr].intr_en_mask);
592 } else {
593 QPRINTK(qdev, INTR, ERR,
594 "Skip enable, other queue(s) are active.\n");
595 }
596 if (qdev->legacy_check)
597 spin_unlock(&qdev->legacy_lock);
598 }
599}
600
601static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
602{
603 u32 var = 0;
604
605 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
606 goto exit;
607 else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
608 ql_write32(qdev, INTR_EN,
609 qdev->intr_context[intr].intr_dis_mask);
610 var = ql_read32(qdev, STS);
611 }
612 atomic_inc(&qdev->intr_context[intr].irq_cnt);
613exit:
614 return var;
615}
616
617static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
618{
619 int i;
620 for (i = 0; i < qdev->intr_count; i++) {
621 /* The enable call does a atomic_dec_and_test
622 * and enables only if the result is zero.
623 * So we precharge it here.
624 */
625 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
626 ql_enable_completion_interrupt(qdev, i);
627 }
628
629}
630
631int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
632{
633 int status = 0;
634 /* wait for reg to come ready */
635 status = ql_wait_reg_rdy(qdev,
636 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
637 if (status)
638 goto exit;
639 /* set up for reg read */
640 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
641 /* wait for reg to come ready */
642 status = ql_wait_reg_rdy(qdev,
643 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
644 if (status)
645 goto exit;
646 /* get the data */
647 *data = ql_read32(qdev, FLASH_DATA);
648exit:
649 return status;
650}
651
652static int ql_get_flash_params(struct ql_adapter *qdev)
653{
654 int i;
655 int status;
656 u32 *p = (u32 *)&qdev->flash;
657
658 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
659 return -ETIMEDOUT;
660
661 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
662 status = ql_read_flash_word(qdev, i, p);
663 if (status) {
664 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
665 goto exit;
666 }
667
668 }
669exit:
670 ql_sem_unlock(qdev, SEM_FLASH_MASK);
671 return status;
672}
673
674/* xgmac register are located behind the xgmac_addr and xgmac_data
675 * register pair. Each read/write requires us to wait for the ready
676 * bit before reading/writing the data.
677 */
678static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
679{
680 int status;
681 /* wait for reg to come ready */
682 status = ql_wait_reg_rdy(qdev,
683 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
684 if (status)
685 return status;
686 /* write the data to the data reg */
687 ql_write32(qdev, XGMAC_DATA, data);
688 /* trigger the write */
689 ql_write32(qdev, XGMAC_ADDR, reg);
690 return status;
691}
692
693/* xgmac register are located behind the xgmac_addr and xgmac_data
694 * register pair. Each read/write requires us to wait for the ready
695 * bit before reading/writing the data.
696 */
697int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
698{
699 int status = 0;
700 /* wait for reg to come ready */
701 status = ql_wait_reg_rdy(qdev,
702 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
703 if (status)
704 goto exit;
705 /* set up for reg read */
706 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
707 /* wait for reg to come ready */
708 status = ql_wait_reg_rdy(qdev,
709 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
710 if (status)
711 goto exit;
712 /* get the data */
713 *data = ql_read32(qdev, XGMAC_DATA);
714exit:
715 return status;
716}
717
718/* This is used for reading the 64-bit statistics regs. */
719int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
720{
721 int status = 0;
722 u32 hi = 0;
723 u32 lo = 0;
724
725 status = ql_read_xgmac_reg(qdev, reg, &lo);
726 if (status)
727 goto exit;
728
729 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
730 if (status)
731 goto exit;
732
733 *data = (u64) lo | ((u64) hi << 32);
734
735exit:
736 return status;
737}
738
739/* Take the MAC Core out of reset.
740 * Enable statistics counting.
741 * Take the transmitter/receiver out of reset.
742 * This functionality may be done in the MPI firmware at a
743 * later date.
744 */
745static int ql_port_initialize(struct ql_adapter *qdev)
746{
747 int status = 0;
748 u32 data;
749
750 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
751 /* Another function has the semaphore, so
752 * wait for the port init bit to come ready.
753 */
754 QPRINTK(qdev, LINK, INFO,
755 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
756 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
757 if (status) {
758 QPRINTK(qdev, LINK, CRIT,
759 "Port initialize timed out.\n");
760 }
761 return status;
762 }
763
764 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
765 /* Set the core reset. */
766 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
767 if (status)
768 goto end;
769 data |= GLOBAL_CFG_RESET;
770 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
771 if (status)
772 goto end;
773
774 /* Clear the core reset and turn on jumbo for receiver. */
775 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
776 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
777 data |= GLOBAL_CFG_TX_STAT_EN;
778 data |= GLOBAL_CFG_RX_STAT_EN;
779 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
780 if (status)
781 goto end;
782
783 /* Enable transmitter, and clear it's reset. */
784 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
785 if (status)
786 goto end;
787 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
788 data |= TX_CFG_EN; /* Enable the transmitter. */
789 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
790 if (status)
791 goto end;
792
793 /* Enable receiver and clear it's reset. */
794 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
795 if (status)
796 goto end;
797 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
798 data |= RX_CFG_EN; /* Enable the receiver. */
799 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
800 if (status)
801 goto end;
802
803 /* Turn on jumbo. */
804 status =
805 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
806 if (status)
807 goto end;
808 status =
809 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
810 if (status)
811 goto end;
812
813 /* Signal to the world that the port is enabled. */
814 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
815end:
816 ql_sem_unlock(qdev, qdev->xg_sem_mask);
817 return status;
818}
819
820/* Get the next large buffer. */
821struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
822{
823 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
824 rx_ring->lbq_curr_idx++;
825 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
826 rx_ring->lbq_curr_idx = 0;
827 rx_ring->lbq_free_cnt++;
828 return lbq_desc;
829}
830
831/* Get the next small buffer. */
832struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
833{
834 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
835 rx_ring->sbq_curr_idx++;
836 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
837 rx_ring->sbq_curr_idx = 0;
838 rx_ring->sbq_free_cnt++;
839 return sbq_desc;
840}
841
842/* Update an rx ring index. */
843static void ql_update_cq(struct rx_ring *rx_ring)
844{
845 rx_ring->cnsmr_idx++;
846 rx_ring->curr_entry++;
847 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
848 rx_ring->cnsmr_idx = 0;
849 rx_ring->curr_entry = rx_ring->cq_base;
850 }
851}
852
853static void ql_write_cq_idx(struct rx_ring *rx_ring)
854{
855 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
856}
857
858/* Process (refill) a large buffer queue. */
859static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
860{
861 int clean_idx = rx_ring->lbq_clean_idx;
862 struct bq_desc *lbq_desc;
863 struct bq_element *bq;
864 u64 map;
865 int i;
866
867 while (rx_ring->lbq_free_cnt > 16) {
868 for (i = 0; i < 16; i++) {
869 QPRINTK(qdev, RX_STATUS, DEBUG,
870 "lbq: try cleaning clean_idx = %d.\n",
871 clean_idx);
872 lbq_desc = &rx_ring->lbq[clean_idx];
873 bq = lbq_desc->bq;
874 if (lbq_desc->p.lbq_page == NULL) {
875 QPRINTK(qdev, RX_STATUS, DEBUG,
876 "lbq: getting new page for index %d.\n",
877 lbq_desc->index);
878 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
879 if (lbq_desc->p.lbq_page == NULL) {
880 QPRINTK(qdev, RX_STATUS, ERR,
881 "Couldn't get a page.\n");
882 return;
883 }
884 map = pci_map_page(qdev->pdev,
885 lbq_desc->p.lbq_page,
886 0, PAGE_SIZE,
887 PCI_DMA_FROMDEVICE);
888 if (pci_dma_mapping_error(qdev->pdev, map)) {
889 QPRINTK(qdev, RX_STATUS, ERR,
890 "PCI mapping failed.\n");
891 return;
892 }
893 pci_unmap_addr_set(lbq_desc, mapaddr, map);
894 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
895 bq->addr_lo = /*lbq_desc->addr_lo = */
896 cpu_to_le32(map);
897 bq->addr_hi = /*lbq_desc->addr_hi = */
898 cpu_to_le32(map >> 32);
899 }
900 clean_idx++;
901 if (clean_idx == rx_ring->lbq_len)
902 clean_idx = 0;
903 }
904
905 rx_ring->lbq_clean_idx = clean_idx;
906 rx_ring->lbq_prod_idx += 16;
907 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
908 rx_ring->lbq_prod_idx = 0;
909 QPRINTK(qdev, RX_STATUS, DEBUG,
910 "lbq: updating prod idx = %d.\n",
911 rx_ring->lbq_prod_idx);
912 ql_write_db_reg(rx_ring->lbq_prod_idx,
913 rx_ring->lbq_prod_idx_db_reg);
914 rx_ring->lbq_free_cnt -= 16;
915 }
916}
917
918/* Process (refill) a small buffer queue. */
919static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
920{
921 int clean_idx = rx_ring->sbq_clean_idx;
922 struct bq_desc *sbq_desc;
923 struct bq_element *bq;
924 u64 map;
925 int i;
926
927 while (rx_ring->sbq_free_cnt > 16) {
928 for (i = 0; i < 16; i++) {
929 sbq_desc = &rx_ring->sbq[clean_idx];
930 QPRINTK(qdev, RX_STATUS, DEBUG,
931 "sbq: try cleaning clean_idx = %d.\n",
932 clean_idx);
933 bq = sbq_desc->bq;
934 if (sbq_desc->p.skb == NULL) {
935 QPRINTK(qdev, RX_STATUS, DEBUG,
936 "sbq: getting new skb for index %d.\n",
937 sbq_desc->index);
938 sbq_desc->p.skb =
939 netdev_alloc_skb(qdev->ndev,
940 rx_ring->sbq_buf_size);
941 if (sbq_desc->p.skb == NULL) {
942 QPRINTK(qdev, PROBE, ERR,
943 "Couldn't get an skb.\n");
944 rx_ring->sbq_clean_idx = clean_idx;
945 return;
946 }
947 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
948 map = pci_map_single(qdev->pdev,
949 sbq_desc->p.skb->data,
950 rx_ring->sbq_buf_size /
951 2, PCI_DMA_FROMDEVICE);
952 pci_unmap_addr_set(sbq_desc, mapaddr, map);
953 pci_unmap_len_set(sbq_desc, maplen,
954 rx_ring->sbq_buf_size / 2);
955 bq->addr_lo = cpu_to_le32(map);
956 bq->addr_hi = cpu_to_le32(map >> 32);
957 }
958
959 clean_idx++;
960 if (clean_idx == rx_ring->sbq_len)
961 clean_idx = 0;
962 }
963 rx_ring->sbq_clean_idx = clean_idx;
964 rx_ring->sbq_prod_idx += 16;
965 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
966 rx_ring->sbq_prod_idx = 0;
967 QPRINTK(qdev, RX_STATUS, DEBUG,
968 "sbq: updating prod idx = %d.\n",
969 rx_ring->sbq_prod_idx);
970 ql_write_db_reg(rx_ring->sbq_prod_idx,
971 rx_ring->sbq_prod_idx_db_reg);
972
973 rx_ring->sbq_free_cnt -= 16;
974 }
975}
976
977static void ql_update_buffer_queues(struct ql_adapter *qdev,
978 struct rx_ring *rx_ring)
979{
980 ql_update_sbq(qdev, rx_ring);
981 ql_update_lbq(qdev, rx_ring);
982}
983
984/* Unmaps tx buffers. Can be called from send() if a pci mapping
985 * fails at some stage, or from the interrupt when a tx completes.
986 */
987static void ql_unmap_send(struct ql_adapter *qdev,
988 struct tx_ring_desc *tx_ring_desc, int mapped)
989{
990 int i;
991 for (i = 0; i < mapped; i++) {
992 if (i == 0 || (i == 7 && mapped > 7)) {
993 /*
994 * Unmap the skb->data area, or the
995 * external sglist (AKA the Outbound
996 * Address List (OAL)).
997 * If its the zeroeth element, then it's
998 * the skb->data area. If it's the 7th
999 * element and there is more than 6 frags,
1000 * then its an OAL.
1001 */
1002 if (i == 7) {
1003 QPRINTK(qdev, TX_DONE, DEBUG,
1004 "unmapping OAL area.\n");
1005 }
1006 pci_unmap_single(qdev->pdev,
1007 pci_unmap_addr(&tx_ring_desc->map[i],
1008 mapaddr),
1009 pci_unmap_len(&tx_ring_desc->map[i],
1010 maplen),
1011 PCI_DMA_TODEVICE);
1012 } else {
1013 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1014 i);
1015 pci_unmap_page(qdev->pdev,
1016 pci_unmap_addr(&tx_ring_desc->map[i],
1017 mapaddr),
1018 pci_unmap_len(&tx_ring_desc->map[i],
1019 maplen), PCI_DMA_TODEVICE);
1020 }
1021 }
1022
1023}
1024
1025/* Map the buffers for this transmit. This will return
1026 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1027 */
1028static int ql_map_send(struct ql_adapter *qdev,
1029 struct ob_mac_iocb_req *mac_iocb_ptr,
1030 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1031{
1032 int len = skb_headlen(skb);
1033 dma_addr_t map;
1034 int frag_idx, err, map_idx = 0;
1035 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1036 int frag_cnt = skb_shinfo(skb)->nr_frags;
1037
1038 if (frag_cnt) {
1039 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1040 }
1041 /*
1042 * Map the skb buffer first.
1043 */
1044 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1045
1046 err = pci_dma_mapping_error(qdev->pdev, map);
1047 if (err) {
1048 QPRINTK(qdev, TX_QUEUED, ERR,
1049 "PCI mapping failed with error: %d\n", err);
1050
1051 return NETDEV_TX_BUSY;
1052 }
1053
1054 tbd->len = cpu_to_le32(len);
1055 tbd->addr = cpu_to_le64(map);
1056 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1057 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1058 map_idx++;
1059
1060 /*
1061 * This loop fills the remainder of the 8 address descriptors
1062 * in the IOCB. If there are more than 7 fragments, then the
1063 * eighth address desc will point to an external list (OAL).
1064 * When this happens, the remainder of the frags will be stored
1065 * in this list.
1066 */
1067 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1068 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1069 tbd++;
1070 if (frag_idx == 6 && frag_cnt > 7) {
1071 /* Let's tack on an sglist.
1072 * Our control block will now
1073 * look like this:
1074 * iocb->seg[0] = skb->data
1075 * iocb->seg[1] = frag[0]
1076 * iocb->seg[2] = frag[1]
1077 * iocb->seg[3] = frag[2]
1078 * iocb->seg[4] = frag[3]
1079 * iocb->seg[5] = frag[4]
1080 * iocb->seg[6] = frag[5]
1081 * iocb->seg[7] = ptr to OAL (external sglist)
1082 * oal->seg[0] = frag[6]
1083 * oal->seg[1] = frag[7]
1084 * oal->seg[2] = frag[8]
1085 * oal->seg[3] = frag[9]
1086 * oal->seg[4] = frag[10]
1087 * etc...
1088 */
1089 /* Tack on the OAL in the eighth segment of IOCB. */
1090 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1091 sizeof(struct oal),
1092 PCI_DMA_TODEVICE);
1093 err = pci_dma_mapping_error(qdev->pdev, map);
1094 if (err) {
1095 QPRINTK(qdev, TX_QUEUED, ERR,
1096 "PCI mapping outbound address list with error: %d\n",
1097 err);
1098 goto map_error;
1099 }
1100
1101 tbd->addr = cpu_to_le64(map);
1102 /*
1103 * The length is the number of fragments
1104 * that remain to be mapped times the length
1105 * of our sglist (OAL).
1106 */
1107 tbd->len =
1108 cpu_to_le32((sizeof(struct tx_buf_desc) *
1109 (frag_cnt - frag_idx)) | TX_DESC_C);
1110 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1111 map);
1112 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1113 sizeof(struct oal));
1114 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1115 map_idx++;
1116 }
1117
1118 map =
1119 pci_map_page(qdev->pdev, frag->page,
1120 frag->page_offset, frag->size,
1121 PCI_DMA_TODEVICE);
1122
1123 err = pci_dma_mapping_error(qdev->pdev, map);
1124 if (err) {
1125 QPRINTK(qdev, TX_QUEUED, ERR,
1126 "PCI mapping frags failed with error: %d.\n",
1127 err);
1128 goto map_error;
1129 }
1130
1131 tbd->addr = cpu_to_le64(map);
1132 tbd->len = cpu_to_le32(frag->size);
1133 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1134 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1135 frag->size);
1136
1137 }
1138 /* Save the number of segments we've mapped. */
1139 tx_ring_desc->map_cnt = map_idx;
1140 /* Terminate the last segment. */
1141 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1142 return NETDEV_TX_OK;
1143
1144map_error:
1145 /*
1146 * If the first frag mapping failed, then i will be zero.
1147 * This causes the unmap of the skb->data area. Otherwise
1148 * we pass in the number of frags that mapped successfully
1149 * so they can be umapped.
1150 */
1151 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1152 return NETDEV_TX_BUSY;
1153}
1154
1155void ql_realign_skb(struct sk_buff *skb, int len)
1156{
1157 void *temp_addr = skb->data;
1158
1159 /* Undo the skb_reserve(skb,32) we did before
1160 * giving to hardware, and realign data on
1161 * a 2-byte boundary.
1162 */
1163 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1164 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1165 skb_copy_to_linear_data(skb, temp_addr,
1166 (unsigned int)len);
1167}
1168
1169/*
1170 * This function builds an skb for the given inbound
1171 * completion. It will be rewritten for readability in the near
1172 * future, but for not it works well.
1173 */
1174static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1175 struct rx_ring *rx_ring,
1176 struct ib_mac_iocb_rsp *ib_mac_rsp)
1177{
1178 struct bq_desc *lbq_desc;
1179 struct bq_desc *sbq_desc;
1180 struct sk_buff *skb = NULL;
1181 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1182 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1183
1184 /*
1185 * Handle the header buffer if present.
1186 */
1187 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1188 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1189 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1190 /*
1191 * Headers fit nicely into a small buffer.
1192 */
1193 sbq_desc = ql_get_curr_sbuf(rx_ring);
1194 pci_unmap_single(qdev->pdev,
1195 pci_unmap_addr(sbq_desc, mapaddr),
1196 pci_unmap_len(sbq_desc, maplen),
1197 PCI_DMA_FROMDEVICE);
1198 skb = sbq_desc->p.skb;
1199 ql_realign_skb(skb, hdr_len);
1200 skb_put(skb, hdr_len);
1201 sbq_desc->p.skb = NULL;
1202 }
1203
1204 /*
1205 * Handle the data buffer(s).
1206 */
1207 if (unlikely(!length)) { /* Is there data too? */
1208 QPRINTK(qdev, RX_STATUS, DEBUG,
1209 "No Data buffer in this packet.\n");
1210 return skb;
1211 }
1212
1213 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1214 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1215 QPRINTK(qdev, RX_STATUS, DEBUG,
1216 "Headers in small, data of %d bytes in small, combine them.\n", length);
1217 /*
1218 * Data is less than small buffer size so it's
1219 * stuffed in a small buffer.
1220 * For this case we append the data
1221 * from the "data" small buffer to the "header" small
1222 * buffer.
1223 */
1224 sbq_desc = ql_get_curr_sbuf(rx_ring);
1225 pci_dma_sync_single_for_cpu(qdev->pdev,
1226 pci_unmap_addr
1227 (sbq_desc, mapaddr),
1228 pci_unmap_len
1229 (sbq_desc, maplen),
1230 PCI_DMA_FROMDEVICE);
1231 memcpy(skb_put(skb, length),
1232 sbq_desc->p.skb->data, length);
1233 pci_dma_sync_single_for_device(qdev->pdev,
1234 pci_unmap_addr
1235 (sbq_desc,
1236 mapaddr),
1237 pci_unmap_len
1238 (sbq_desc,
1239 maplen),
1240 PCI_DMA_FROMDEVICE);
1241 } else {
1242 QPRINTK(qdev, RX_STATUS, DEBUG,
1243 "%d bytes in a single small buffer.\n", length);
1244 sbq_desc = ql_get_curr_sbuf(rx_ring);
1245 skb = sbq_desc->p.skb;
1246 ql_realign_skb(skb, length);
1247 skb_put(skb, length);
1248 pci_unmap_single(qdev->pdev,
1249 pci_unmap_addr(sbq_desc,
1250 mapaddr),
1251 pci_unmap_len(sbq_desc,
1252 maplen),
1253 PCI_DMA_FROMDEVICE);
1254 sbq_desc->p.skb = NULL;
1255 }
1256 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1257 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1258 QPRINTK(qdev, RX_STATUS, DEBUG,
1259 "Header in small, %d bytes in large. Chain large to small!\n", length);
1260 /*
1261 * The data is in a single large buffer. We
1262 * chain it to the header buffer's skb and let
1263 * it rip.
1264 */
1265 lbq_desc = ql_get_curr_lbuf(rx_ring);
1266 pci_unmap_page(qdev->pdev,
1267 pci_unmap_addr(lbq_desc,
1268 mapaddr),
1269 pci_unmap_len(lbq_desc, maplen),
1270 PCI_DMA_FROMDEVICE);
1271 QPRINTK(qdev, RX_STATUS, DEBUG,
1272 "Chaining page to skb.\n");
1273 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1274 0, length);
1275 skb->len += length;
1276 skb->data_len += length;
1277 skb->truesize += length;
1278 lbq_desc->p.lbq_page = NULL;
1279 } else {
1280 /*
1281 * The headers and data are in a single large buffer. We
1282 * copy it to a new skb and let it go. This can happen with
1283 * jumbo mtu on a non-TCP/UDP frame.
1284 */
1285 lbq_desc = ql_get_curr_lbuf(rx_ring);
1286 skb = netdev_alloc_skb(qdev->ndev, length);
1287 if (skb == NULL) {
1288 QPRINTK(qdev, PROBE, DEBUG,
1289 "No skb available, drop the packet.\n");
1290 return NULL;
1291 }
1292 skb_reserve(skb, NET_IP_ALIGN);
1293 QPRINTK(qdev, RX_STATUS, DEBUG,
1294 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1295 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1296 0, length);
1297 skb->len += length;
1298 skb->data_len += length;
1299 skb->truesize += length;
1300 length -= length;
1301 lbq_desc->p.lbq_page = NULL;
1302 __pskb_pull_tail(skb,
1303 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1304 VLAN_ETH_HLEN : ETH_HLEN);
1305 }
1306 } else {
1307 /*
1308 * The data is in a chain of large buffers
1309 * pointed to by a small buffer. We loop
1310 * thru and chain them to the our small header
1311 * buffer's skb.
1312 * frags: There are 18 max frags and our small
1313 * buffer will hold 32 of them. The thing is,
1314 * we'll use 3 max for our 9000 byte jumbo
1315 * frames. If the MTU goes up we could
1316 * eventually be in trouble.
1317 */
1318 int size, offset, i = 0;
1319 struct bq_element *bq, bq_array[8];
1320 sbq_desc = ql_get_curr_sbuf(rx_ring);
1321 pci_unmap_single(qdev->pdev,
1322 pci_unmap_addr(sbq_desc, mapaddr),
1323 pci_unmap_len(sbq_desc, maplen),
1324 PCI_DMA_FROMDEVICE);
1325 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1326 /*
1327 * This is an non TCP/UDP IP frame, so
1328 * the headers aren't split into a small
1329 * buffer. We have to use the small buffer
1330 * that contains our sg list as our skb to
1331 * send upstairs. Copy the sg list here to
1332 * a local buffer and use it to find the
1333 * pages to chain.
1334 */
1335 QPRINTK(qdev, RX_STATUS, DEBUG,
1336 "%d bytes of headers & data in chain of large.\n", length);
1337 skb = sbq_desc->p.skb;
1338 bq = &bq_array[0];
1339 memcpy(bq, skb->data, sizeof(bq_array));
1340 sbq_desc->p.skb = NULL;
1341 skb_reserve(skb, NET_IP_ALIGN);
1342 } else {
1343 QPRINTK(qdev, RX_STATUS, DEBUG,
1344 "Headers in small, %d bytes of data in chain of large.\n", length);
1345 bq = (struct bq_element *)sbq_desc->p.skb->data;
1346 }
1347 while (length > 0) {
1348 lbq_desc = ql_get_curr_lbuf(rx_ring);
1349 if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1350 QPRINTK(qdev, RX_STATUS, ERR,
1351 "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1352 lbq_desc->bq->addr_lo, bq->addr_lo);
1353 return NULL;
1354 }
1355 pci_unmap_page(qdev->pdev,
1356 pci_unmap_addr(lbq_desc,
1357 mapaddr),
1358 pci_unmap_len(lbq_desc,
1359 maplen),
1360 PCI_DMA_FROMDEVICE);
1361 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1362 offset = 0;
1363
1364 QPRINTK(qdev, RX_STATUS, DEBUG,
1365 "Adding page %d to skb for %d bytes.\n",
1366 i, size);
1367 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1368 offset, size);
1369 skb->len += size;
1370 skb->data_len += size;
1371 skb->truesize += size;
1372 length -= size;
1373 lbq_desc->p.lbq_page = NULL;
1374 bq++;
1375 i++;
1376 }
1377 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1378 VLAN_ETH_HLEN : ETH_HLEN);
1379 }
1380 return skb;
1381}
1382
1383/* Process an inbound completion from an rx ring. */
1384static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1385 struct rx_ring *rx_ring,
1386 struct ib_mac_iocb_rsp *ib_mac_rsp)
1387{
1388 struct net_device *ndev = qdev->ndev;
1389 struct sk_buff *skb = NULL;
1390
1391 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1392
1393 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1394 if (unlikely(!skb)) {
1395 QPRINTK(qdev, RX_STATUS, DEBUG,
1396 "No skb available, drop packet.\n");
1397 return;
1398 }
1399
1400 prefetch(skb->data);
1401 skb->dev = ndev;
1402 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1403 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1404 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1405 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1406 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1407 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1408 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1409 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1410 }
1411 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1412 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1413 }
1414 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1415 QPRINTK(qdev, RX_STATUS, ERR,
1416 "Bad checksum for this %s packet.\n",
1417 ((ib_mac_rsp->
1418 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1419 skb->ip_summed = CHECKSUM_NONE;
1420 } else if (qdev->rx_csum &&
1421 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1422 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1423 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1424 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1425 skb->ip_summed = CHECKSUM_UNNECESSARY;
1426 }
1427 qdev->stats.rx_packets++;
1428 qdev->stats.rx_bytes += skb->len;
1429 skb->protocol = eth_type_trans(skb, ndev);
1430 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1431 QPRINTK(qdev, RX_STATUS, DEBUG,
1432 "Passing a VLAN packet upstream.\n");
1433 vlan_hwaccel_rx(skb, qdev->vlgrp,
1434 le16_to_cpu(ib_mac_rsp->vlan_id));
1435 } else {
1436 QPRINTK(qdev, RX_STATUS, DEBUG,
1437 "Passing a normal packet upstream.\n");
1438 netif_rx(skb);
1439 }
1440 ndev->last_rx = jiffies;
1441}
1442
1443/* Process an outbound completion from an rx ring. */
1444static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1445 struct ob_mac_iocb_rsp *mac_rsp)
1446{
1447 struct tx_ring *tx_ring;
1448 struct tx_ring_desc *tx_ring_desc;
1449
1450 QL_DUMP_OB_MAC_RSP(mac_rsp);
1451 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1452 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1453 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1454 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1455 qdev->stats.tx_packets++;
1456 dev_kfree_skb(tx_ring_desc->skb);
1457 tx_ring_desc->skb = NULL;
1458
1459 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1460 OB_MAC_IOCB_RSP_S |
1461 OB_MAC_IOCB_RSP_L |
1462 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1463 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1464 QPRINTK(qdev, TX_DONE, WARNING,
1465 "Total descriptor length did not match transfer length.\n");
1466 }
1467 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1468 QPRINTK(qdev, TX_DONE, WARNING,
1469 "Frame too short to be legal, not sent.\n");
1470 }
1471 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1472 QPRINTK(qdev, TX_DONE, WARNING,
1473 "Frame too long, but sent anyway.\n");
1474 }
1475 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1476 QPRINTK(qdev, TX_DONE, WARNING,
1477 "PCI backplane error. Frame not sent.\n");
1478 }
1479 }
1480 atomic_inc(&tx_ring->tx_count);
1481}
1482
1483/* Fire up a handler to reset the MPI processor. */
1484void ql_queue_fw_error(struct ql_adapter *qdev)
1485{
1486 netif_stop_queue(qdev->ndev);
1487 netif_carrier_off(qdev->ndev);
1488 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1489}
1490
1491void ql_queue_asic_error(struct ql_adapter *qdev)
1492{
1493 netif_stop_queue(qdev->ndev);
1494 netif_carrier_off(qdev->ndev);
1495 ql_disable_interrupts(qdev);
1496 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1497}
1498
1499static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1500 struct ib_ae_iocb_rsp *ib_ae_rsp)
1501{
1502 switch (ib_ae_rsp->event) {
1503 case MGMT_ERR_EVENT:
1504 QPRINTK(qdev, RX_ERR, ERR,
1505 "Management Processor Fatal Error.\n");
1506 ql_queue_fw_error(qdev);
1507 return;
1508
1509 case CAM_LOOKUP_ERR_EVENT:
1510 QPRINTK(qdev, LINK, ERR,
1511 "Multiple CAM hits lookup occurred.\n");
1512 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1513 ql_queue_asic_error(qdev);
1514 return;
1515
1516 case SOFT_ECC_ERROR_EVENT:
1517 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1518 ql_queue_asic_error(qdev);
1519 break;
1520
1521 case PCI_ERR_ANON_BUF_RD:
1522 QPRINTK(qdev, RX_ERR, ERR,
1523 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1524 ib_ae_rsp->q_id);
1525 ql_queue_asic_error(qdev);
1526 break;
1527
1528 default:
1529 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1530 ib_ae_rsp->event);
1531 ql_queue_asic_error(qdev);
1532 break;
1533 }
1534}
1535
1536static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1537{
1538 struct ql_adapter *qdev = rx_ring->qdev;
1539 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1540 struct ob_mac_iocb_rsp *net_rsp = NULL;
1541 int count = 0;
1542
1543 /* While there are entries in the completion queue. */
1544 while (prod != rx_ring->cnsmr_idx) {
1545
1546 QPRINTK(qdev, RX_STATUS, DEBUG,
1547 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1548 prod, rx_ring->cnsmr_idx);
1549
1550 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1551 rmb();
1552 switch (net_rsp->opcode) {
1553
1554 case OPCODE_OB_MAC_TSO_IOCB:
1555 case OPCODE_OB_MAC_IOCB:
1556 ql_process_mac_tx_intr(qdev, net_rsp);
1557 break;
1558 default:
1559 QPRINTK(qdev, RX_STATUS, DEBUG,
1560 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1561 net_rsp->opcode);
1562 }
1563 count++;
1564 ql_update_cq(rx_ring);
1565 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1566 }
1567 ql_write_cq_idx(rx_ring);
1568 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1569 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1570 if (atomic_read(&tx_ring->queue_stopped) &&
1571 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1572 /*
1573 * The queue got stopped because the tx_ring was full.
1574 * Wake it up, because it's now at least 25% empty.
1575 */
1576 netif_wake_queue(qdev->ndev);
1577 }
1578
1579 return count;
1580}
1581
1582static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1583{
1584 struct ql_adapter *qdev = rx_ring->qdev;
1585 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1586 struct ql_net_rsp_iocb *net_rsp;
1587 int count = 0;
1588
1589 /* While there are entries in the completion queue. */
1590 while (prod != rx_ring->cnsmr_idx) {
1591
1592 QPRINTK(qdev, RX_STATUS, DEBUG,
1593 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1594 prod, rx_ring->cnsmr_idx);
1595
1596 net_rsp = rx_ring->curr_entry;
1597 rmb();
1598 switch (net_rsp->opcode) {
1599 case OPCODE_IB_MAC_IOCB:
1600 ql_process_mac_rx_intr(qdev, rx_ring,
1601 (struct ib_mac_iocb_rsp *)
1602 net_rsp);
1603 break;
1604
1605 case OPCODE_IB_AE_IOCB:
1606 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1607 net_rsp);
1608 break;
1609 default:
1610 {
1611 QPRINTK(qdev, RX_STATUS, DEBUG,
1612 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1613 net_rsp->opcode);
1614 }
1615 }
1616 count++;
1617 ql_update_cq(rx_ring);
1618 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1619 if (count == budget)
1620 break;
1621 }
1622 ql_update_buffer_queues(qdev, rx_ring);
1623 ql_write_cq_idx(rx_ring);
1624 return count;
1625}
1626
1627static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1628{
1629 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1630 struct ql_adapter *qdev = rx_ring->qdev;
1631 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1632
1633 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1634 rx_ring->cq_id);
1635
1636 if (work_done < budget) {
1637 __netif_rx_complete(qdev->ndev, napi);
1638 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1639 }
1640 return work_done;
1641}
1642
1643static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1644{
1645 struct ql_adapter *qdev = netdev_priv(ndev);
1646
1647 qdev->vlgrp = grp;
1648 if (grp) {
1649 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1650 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1651 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1652 } else {
1653 QPRINTK(qdev, IFUP, DEBUG,
1654 "Turning off VLAN in NIC_RCV_CFG.\n");
1655 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1656 }
1657}
1658
1659static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1660{
1661 struct ql_adapter *qdev = netdev_priv(ndev);
1662 u32 enable_bit = MAC_ADDR_E;
1663
1664 spin_lock(&qdev->hw_lock);
1665 if (ql_set_mac_addr_reg
1666 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1667 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1668 }
1669 spin_unlock(&qdev->hw_lock);
1670}
1671
1672static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1673{
1674 struct ql_adapter *qdev = netdev_priv(ndev);
1675 u32 enable_bit = 0;
1676
1677 spin_lock(&qdev->hw_lock);
1678 if (ql_set_mac_addr_reg
1679 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1680 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1681 }
1682 spin_unlock(&qdev->hw_lock);
1683
1684}
1685
1686/* Worker thread to process a given rx_ring that is dedicated
1687 * to outbound completions.
1688 */
1689static void ql_tx_clean(struct work_struct *work)
1690{
1691 struct rx_ring *rx_ring =
1692 container_of(work, struct rx_ring, rx_work.work);
1693 ql_clean_outbound_rx_ring(rx_ring);
1694 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1695
1696}
1697
1698/* Worker thread to process a given rx_ring that is dedicated
1699 * to inbound completions.
1700 */
1701static void ql_rx_clean(struct work_struct *work)
1702{
1703 struct rx_ring *rx_ring =
1704 container_of(work, struct rx_ring, rx_work.work);
1705 ql_clean_inbound_rx_ring(rx_ring, 64);
1706 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1707}
1708
1709/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1710static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1711{
1712 struct rx_ring *rx_ring = dev_id;
1713 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1714 &rx_ring->rx_work, 0);
1715 return IRQ_HANDLED;
1716}
1717
1718/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1719static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1720{
1721 struct rx_ring *rx_ring = dev_id;
1722 struct ql_adapter *qdev = rx_ring->qdev;
1723 netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1724 return IRQ_HANDLED;
1725}
1726
1727/* We check here to see if we're already handling a legacy
1728 * interrupt. If we are, then it must belong to another
1729 * chip with which we're sharing the interrupt line.
1730 */
1731int ql_legacy_check(struct ql_adapter *qdev)
1732{
1733 int err;
1734 spin_lock(&qdev->legacy_lock);
1735 err = atomic_read(&qdev->intr_context[0].irq_cnt);
1736 spin_unlock(&qdev->legacy_lock);
1737 return err;
1738}
1739
1740/* This handles a fatal error, MPI activity, and the default
1741 * rx_ring in an MSI-X multiple vector environment.
1742 * In MSI/Legacy environment it also process the rest of
1743 * the rx_rings.
1744 */
1745static irqreturn_t qlge_isr(int irq, void *dev_id)
1746{
1747 struct rx_ring *rx_ring = dev_id;
1748 struct ql_adapter *qdev = rx_ring->qdev;
1749 struct intr_context *intr_context = &qdev->intr_context[0];
1750 u32 var;
1751 int i;
1752 int work_done = 0;
1753
1754 if (qdev->legacy_check && qdev->legacy_check(qdev)) {
1755 QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
1756 return IRQ_NONE; /* Not our interrupt */
1757 }
1758
1759 var = ql_read32(qdev, STS);
1760
1761 /*
1762 * Check for fatal error.
1763 */
1764 if (var & STS_FE) {
1765 ql_queue_asic_error(qdev);
1766 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1767 var = ql_read32(qdev, ERR_STS);
1768 QPRINTK(qdev, INTR, ERR,
1769 "Resetting chip. Error Status Register = 0x%x\n", var);
1770 return IRQ_HANDLED;
1771 }
1772
1773 /*
1774 * Check MPI processor activity.
1775 */
1776 if (var & STS_PI) {
1777 /*
1778 * We've got an async event or mailbox completion.
1779 * Handle it and clear the source of the interrupt.
1780 */
1781 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1782 ql_disable_completion_interrupt(qdev, intr_context->intr);
1783 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1784 &qdev->mpi_work, 0);
1785 work_done++;
1786 }
1787
1788 /*
1789 * Check the default queue and wake handler if active.
1790 */
1791 rx_ring = &qdev->rx_ring[0];
1792 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1793 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1794 ql_disable_completion_interrupt(qdev, intr_context->intr);
1795 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1796 &rx_ring->rx_work, 0);
1797 work_done++;
1798 }
1799
1800 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1801 /*
1802 * Start the DPC for each active queue.
1803 */
1804 for (i = 1; i < qdev->rx_ring_count; i++) {
1805 rx_ring = &qdev->rx_ring[i];
1806 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1807 rx_ring->cnsmr_idx) {
1808 QPRINTK(qdev, INTR, INFO,
1809 "Waking handler for rx_ring[%d].\n", i);
1810 ql_disable_completion_interrupt(qdev,
1811 intr_context->
1812 intr);
1813 if (i < qdev->rss_ring_first_cq_id)
1814 queue_delayed_work_on(rx_ring->cpu,
1815 qdev->q_workqueue,
1816 &rx_ring->rx_work,
1817 0);
1818 else
1819 netif_rx_schedule(qdev->ndev,
1820 &rx_ring->napi);
1821 work_done++;
1822 }
1823 }
1824 }
1825 return work_done ? IRQ_HANDLED : IRQ_NONE;
1826}
1827
1828static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1829{
1830
1831 if (skb_is_gso(skb)) {
1832 int err;
1833 if (skb_header_cloned(skb)) {
1834 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1835 if (err)
1836 return err;
1837 }
1838
1839 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1840 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1841 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1842 mac_iocb_ptr->total_hdrs_len =
1843 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1844 mac_iocb_ptr->net_trans_offset =
1845 cpu_to_le16(skb_network_offset(skb) |
1846 skb_transport_offset(skb)
1847 << OB_MAC_TRANSPORT_HDR_SHIFT);
1848 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1849 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1850 if (likely(skb->protocol == htons(ETH_P_IP))) {
1851 struct iphdr *iph = ip_hdr(skb);
1852 iph->check = 0;
1853 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1854 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1855 iph->daddr, 0,
1856 IPPROTO_TCP,
1857 0);
1858 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1859 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1860 tcp_hdr(skb)->check =
1861 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1862 &ipv6_hdr(skb)->daddr,
1863 0, IPPROTO_TCP, 0);
1864 }
1865 return 1;
1866 }
1867 return 0;
1868}
1869
1870static void ql_hw_csum_setup(struct sk_buff *skb,
1871 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1872{
1873 int len;
1874 struct iphdr *iph = ip_hdr(skb);
1875 u16 *check;
1876 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1877 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1878 mac_iocb_ptr->net_trans_offset =
1879 cpu_to_le16(skb_network_offset(skb) |
1880 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1881
1882 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1883 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1884 if (likely(iph->protocol == IPPROTO_TCP)) {
1885 check = &(tcp_hdr(skb)->check);
1886 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1887 mac_iocb_ptr->total_hdrs_len =
1888 cpu_to_le16(skb_transport_offset(skb) +
1889 (tcp_hdr(skb)->doff << 2));
1890 } else {
1891 check = &(udp_hdr(skb)->check);
1892 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1893 mac_iocb_ptr->total_hdrs_len =
1894 cpu_to_le16(skb_transport_offset(skb) +
1895 sizeof(struct udphdr));
1896 }
1897 *check = ~csum_tcpudp_magic(iph->saddr,
1898 iph->daddr, len, iph->protocol, 0);
1899}
1900
1901static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1902{
1903 struct tx_ring_desc *tx_ring_desc;
1904 struct ob_mac_iocb_req *mac_iocb_ptr;
1905 struct ql_adapter *qdev = netdev_priv(ndev);
1906 int tso;
1907 struct tx_ring *tx_ring;
1908 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1909
1910 tx_ring = &qdev->tx_ring[tx_ring_idx];
1911
1912 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1913 QPRINTK(qdev, TX_QUEUED, INFO,
1914 "%s: shutting down tx queue %d du to lack of resources.\n",
1915 __func__, tx_ring_idx);
1916 netif_stop_queue(ndev);
1917 atomic_inc(&tx_ring->queue_stopped);
1918 return NETDEV_TX_BUSY;
1919 }
1920 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1921 mac_iocb_ptr = tx_ring_desc->queue_entry;
1922 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1923 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1924 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1925 return NETDEV_TX_BUSY;
1926 }
1927
1928 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1929 mac_iocb_ptr->tid = tx_ring_desc->index;
1930 /* We use the upper 32-bits to store the tx queue for this IO.
1931 * When we get the completion we can use it to establish the context.
1932 */
1933 mac_iocb_ptr->txq_idx = tx_ring_idx;
1934 tx_ring_desc->skb = skb;
1935
1936 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1937
1938 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1939 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1940 vlan_tx_tag_get(skb));
1941 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1942 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1943 }
1944 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1945 if (tso < 0) {
1946 dev_kfree_skb_any(skb);
1947 return NETDEV_TX_OK;
1948 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1949 ql_hw_csum_setup(skb,
1950 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1951 }
1952 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1953 tx_ring->prod_idx++;
1954 if (tx_ring->prod_idx == tx_ring->wq_len)
1955 tx_ring->prod_idx = 0;
1956 wmb();
1957
1958 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1959 ndev->trans_start = jiffies;
1960 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1961 tx_ring->prod_idx, skb->len);
1962
1963 atomic_dec(&tx_ring->tx_count);
1964 return NETDEV_TX_OK;
1965}
1966
1967static void ql_free_shadow_space(struct ql_adapter *qdev)
1968{
1969 if (qdev->rx_ring_shadow_reg_area) {
1970 pci_free_consistent(qdev->pdev,
1971 PAGE_SIZE,
1972 qdev->rx_ring_shadow_reg_area,
1973 qdev->rx_ring_shadow_reg_dma);
1974 qdev->rx_ring_shadow_reg_area = NULL;
1975 }
1976 if (qdev->tx_ring_shadow_reg_area) {
1977 pci_free_consistent(qdev->pdev,
1978 PAGE_SIZE,
1979 qdev->tx_ring_shadow_reg_area,
1980 qdev->tx_ring_shadow_reg_dma);
1981 qdev->tx_ring_shadow_reg_area = NULL;
1982 }
1983}
1984
1985static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1986{
1987 qdev->rx_ring_shadow_reg_area =
1988 pci_alloc_consistent(qdev->pdev,
1989 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1990 if (qdev->rx_ring_shadow_reg_area == NULL) {
1991 QPRINTK(qdev, IFUP, ERR,
1992 "Allocation of RX shadow space failed.\n");
1993 return -ENOMEM;
1994 }
1995 qdev->tx_ring_shadow_reg_area =
1996 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
1997 &qdev->tx_ring_shadow_reg_dma);
1998 if (qdev->tx_ring_shadow_reg_area == NULL) {
1999 QPRINTK(qdev, IFUP, ERR,
2000 "Allocation of TX shadow space failed.\n");
2001 goto err_wqp_sh_area;
2002 }
2003 return 0;
2004
2005err_wqp_sh_area:
2006 pci_free_consistent(qdev->pdev,
2007 PAGE_SIZE,
2008 qdev->rx_ring_shadow_reg_area,
2009 qdev->rx_ring_shadow_reg_dma);
2010 return -ENOMEM;
2011}
2012
2013static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2014{
2015 struct tx_ring_desc *tx_ring_desc;
2016 int i;
2017 struct ob_mac_iocb_req *mac_iocb_ptr;
2018
2019 mac_iocb_ptr = tx_ring->wq_base;
2020 tx_ring_desc = tx_ring->q;
2021 for (i = 0; i < tx_ring->wq_len; i++) {
2022 tx_ring_desc->index = i;
2023 tx_ring_desc->skb = NULL;
2024 tx_ring_desc->queue_entry = mac_iocb_ptr;
2025 mac_iocb_ptr++;
2026 tx_ring_desc++;
2027 }
2028 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2029 atomic_set(&tx_ring->queue_stopped, 0);
2030}
2031
2032static void ql_free_tx_resources(struct ql_adapter *qdev,
2033 struct tx_ring *tx_ring)
2034{
2035 if (tx_ring->wq_base) {
2036 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2037 tx_ring->wq_base, tx_ring->wq_base_dma);
2038 tx_ring->wq_base = NULL;
2039 }
2040 kfree(tx_ring->q);
2041 tx_ring->q = NULL;
2042}
2043
2044static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2045 struct tx_ring *tx_ring)
2046{
2047 tx_ring->wq_base =
2048 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2049 &tx_ring->wq_base_dma);
2050
2051 if ((tx_ring->wq_base == NULL)
2052 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2053 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2054 return -ENOMEM;
2055 }
2056 tx_ring->q =
2057 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2058 if (tx_ring->q == NULL)
2059 goto err;
2060
2061 return 0;
2062err:
2063 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2064 tx_ring->wq_base, tx_ring->wq_base_dma);
2065 return -ENOMEM;
2066}
2067
2068void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2069{
2070 int i;
2071 struct bq_desc *lbq_desc;
2072
2073 for (i = 0; i < rx_ring->lbq_len; i++) {
2074 lbq_desc = &rx_ring->lbq[i];
2075 if (lbq_desc->p.lbq_page) {
2076 pci_unmap_page(qdev->pdev,
2077 pci_unmap_addr(lbq_desc, mapaddr),
2078 pci_unmap_len(lbq_desc, maplen),
2079 PCI_DMA_FROMDEVICE);
2080
2081 put_page(lbq_desc->p.lbq_page);
2082 lbq_desc->p.lbq_page = NULL;
2083 }
2084 lbq_desc->bq->addr_lo = 0;
2085 lbq_desc->bq->addr_hi = 0;
2086 }
2087}
2088
2089/*
2090 * Allocate and map a page for each element of the lbq.
2091 */
2092static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2093 struct rx_ring *rx_ring)
2094{
2095 int i;
2096 struct bq_desc *lbq_desc;
2097 u64 map;
2098 struct bq_element *bq = rx_ring->lbq_base;
2099
2100 for (i = 0; i < rx_ring->lbq_len; i++) {
2101 lbq_desc = &rx_ring->lbq[i];
2102 memset(lbq_desc, 0, sizeof(lbq_desc));
2103 lbq_desc->bq = bq;
2104 lbq_desc->index = i;
2105 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2106 if (unlikely(!lbq_desc->p.lbq_page)) {
2107 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2108 goto mem_error;
2109 } else {
2110 map = pci_map_page(qdev->pdev,
2111 lbq_desc->p.lbq_page,
2112 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2113 if (pci_dma_mapping_error(qdev->pdev, map)) {
2114 QPRINTK(qdev, IFUP, ERR,
2115 "PCI mapping failed.\n");
2116 goto mem_error;
2117 }
2118 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2119 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2120 bq->addr_lo = cpu_to_le32(map);
2121 bq->addr_hi = cpu_to_le32(map >> 32);
2122 }
2123 bq++;
2124 }
2125 return 0;
2126mem_error:
2127 ql_free_lbq_buffers(qdev, rx_ring);
2128 return -ENOMEM;
2129}
2130
2131void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2132{
2133 int i;
2134 struct bq_desc *sbq_desc;
2135
2136 for (i = 0; i < rx_ring->sbq_len; i++) {
2137 sbq_desc = &rx_ring->sbq[i];
2138 if (sbq_desc == NULL) {
2139 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2140 return;
2141 }
2142 if (sbq_desc->p.skb) {
2143 pci_unmap_single(qdev->pdev,
2144 pci_unmap_addr(sbq_desc, mapaddr),
2145 pci_unmap_len(sbq_desc, maplen),
2146 PCI_DMA_FROMDEVICE);
2147 dev_kfree_skb(sbq_desc->p.skb);
2148 sbq_desc->p.skb = NULL;
2149 }
2150 if (sbq_desc->bq == NULL) {
2151 QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2152 i);
2153 return;
2154 }
2155 sbq_desc->bq->addr_lo = 0;
2156 sbq_desc->bq->addr_hi = 0;
2157 }
2158}
2159
2160/* Allocate and map an skb for each element of the sbq. */
2161static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2162 struct rx_ring *rx_ring)
2163{
2164 int i;
2165 struct bq_desc *sbq_desc;
2166 struct sk_buff *skb;
2167 u64 map;
2168 struct bq_element *bq = rx_ring->sbq_base;
2169
2170 for (i = 0; i < rx_ring->sbq_len; i++) {
2171 sbq_desc = &rx_ring->sbq[i];
2172 memset(sbq_desc, 0, sizeof(sbq_desc));
2173 sbq_desc->index = i;
2174 sbq_desc->bq = bq;
2175 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2176 if (unlikely(!skb)) {
2177 /* Better luck next round */
2178 QPRINTK(qdev, IFUP, ERR,
2179 "small buff alloc failed for %d bytes at index %d.\n",
2180 rx_ring->sbq_buf_size, i);
2181 goto mem_err;
2182 }
2183 skb_reserve(skb, QLGE_SB_PAD);
2184 sbq_desc->p.skb = skb;
2185 /*
2186 * Map only half the buffer. Because the
2187 * other half may get some data copied to it
2188 * when the completion arrives.
2189 */
2190 map = pci_map_single(qdev->pdev,
2191 skb->data,
2192 rx_ring->sbq_buf_size / 2,
2193 PCI_DMA_FROMDEVICE);
2194 if (pci_dma_mapping_error(qdev->pdev, map)) {
2195 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2196 goto mem_err;
2197 }
2198 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2199 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2200 bq->addr_lo = /*sbq_desc->addr_lo = */
2201 cpu_to_le32(map);
2202 bq->addr_hi = /*sbq_desc->addr_hi = */
2203 cpu_to_le32(map >> 32);
2204 bq++;
2205 }
2206 return 0;
2207mem_err:
2208 ql_free_sbq_buffers(qdev, rx_ring);
2209 return -ENOMEM;
2210}
2211
2212static void ql_free_rx_resources(struct ql_adapter *qdev,
2213 struct rx_ring *rx_ring)
2214{
2215 if (rx_ring->sbq_len)
2216 ql_free_sbq_buffers(qdev, rx_ring);
2217 if (rx_ring->lbq_len)
2218 ql_free_lbq_buffers(qdev, rx_ring);
2219
2220 /* Free the small buffer queue. */
2221 if (rx_ring->sbq_base) {
2222 pci_free_consistent(qdev->pdev,
2223 rx_ring->sbq_size,
2224 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2225 rx_ring->sbq_base = NULL;
2226 }
2227
2228 /* Free the small buffer queue control blocks. */
2229 kfree(rx_ring->sbq);
2230 rx_ring->sbq = NULL;
2231
2232 /* Free the large buffer queue. */
2233 if (rx_ring->lbq_base) {
2234 pci_free_consistent(qdev->pdev,
2235 rx_ring->lbq_size,
2236 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2237 rx_ring->lbq_base = NULL;
2238 }
2239
2240 /* Free the large buffer queue control blocks. */
2241 kfree(rx_ring->lbq);
2242 rx_ring->lbq = NULL;
2243
2244 /* Free the rx queue. */
2245 if (rx_ring->cq_base) {
2246 pci_free_consistent(qdev->pdev,
2247 rx_ring->cq_size,
2248 rx_ring->cq_base, rx_ring->cq_base_dma);
2249 rx_ring->cq_base = NULL;
2250 }
2251}
2252
2253/* Allocate queues and buffers for this completions queue based
2254 * on the values in the parameter structure. */
2255static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2256 struct rx_ring *rx_ring)
2257{
2258
2259 /*
2260 * Allocate the completion queue for this rx_ring.
2261 */
2262 rx_ring->cq_base =
2263 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2264 &rx_ring->cq_base_dma);
2265
2266 if (rx_ring->cq_base == NULL) {
2267 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2268 return -ENOMEM;
2269 }
2270
2271 if (rx_ring->sbq_len) {
2272 /*
2273 * Allocate small buffer queue.
2274 */
2275 rx_ring->sbq_base =
2276 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2277 &rx_ring->sbq_base_dma);
2278
2279 if (rx_ring->sbq_base == NULL) {
2280 QPRINTK(qdev, IFUP, ERR,
2281 "Small buffer queue allocation failed.\n");
2282 goto err_mem;
2283 }
2284
2285 /*
2286 * Allocate small buffer queue control blocks.
2287 */
2288 rx_ring->sbq =
2289 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2290 GFP_KERNEL);
2291 if (rx_ring->sbq == NULL) {
2292 QPRINTK(qdev, IFUP, ERR,
2293 "Small buffer queue control block allocation failed.\n");
2294 goto err_mem;
2295 }
2296
2297 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2298 QPRINTK(qdev, IFUP, ERR,
2299 "Small buffer allocation failed.\n");
2300 goto err_mem;
2301 }
2302 }
2303
2304 if (rx_ring->lbq_len) {
2305 /*
2306 * Allocate large buffer queue.
2307 */
2308 rx_ring->lbq_base =
2309 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2310 &rx_ring->lbq_base_dma);
2311
2312 if (rx_ring->lbq_base == NULL) {
2313 QPRINTK(qdev, IFUP, ERR,
2314 "Large buffer queue allocation failed.\n");
2315 goto err_mem;
2316 }
2317 /*
2318 * Allocate large buffer queue control blocks.
2319 */
2320 rx_ring->lbq =
2321 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2322 GFP_KERNEL);
2323 if (rx_ring->lbq == NULL) {
2324 QPRINTK(qdev, IFUP, ERR,
2325 "Large buffer queue control block allocation failed.\n");
2326 goto err_mem;
2327 }
2328
2329 /*
2330 * Allocate the buffers.
2331 */
2332 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2333 QPRINTK(qdev, IFUP, ERR,
2334 "Large buffer allocation failed.\n");
2335 goto err_mem;
2336 }
2337 }
2338
2339 return 0;
2340
2341err_mem:
2342 ql_free_rx_resources(qdev, rx_ring);
2343 return -ENOMEM;
2344}
2345
2346static void ql_tx_ring_clean(struct ql_adapter *qdev)
2347{
2348 struct tx_ring *tx_ring;
2349 struct tx_ring_desc *tx_ring_desc;
2350 int i, j;
2351
2352 /*
2353 * Loop through all queues and free
2354 * any resources.
2355 */
2356 for (j = 0; j < qdev->tx_ring_count; j++) {
2357 tx_ring = &qdev->tx_ring[j];
2358 for (i = 0; i < tx_ring->wq_len; i++) {
2359 tx_ring_desc = &tx_ring->q[i];
2360 if (tx_ring_desc && tx_ring_desc->skb) {
2361 QPRINTK(qdev, IFDOWN, ERR,
2362 "Freeing lost SKB %p, from queue %d, index %d.\n",
2363 tx_ring_desc->skb, j,
2364 tx_ring_desc->index);
2365 ql_unmap_send(qdev, tx_ring_desc,
2366 tx_ring_desc->map_cnt);
2367 dev_kfree_skb(tx_ring_desc->skb);
2368 tx_ring_desc->skb = NULL;
2369 }
2370 }
2371 }
2372}
2373
2374static void ql_free_ring_cb(struct ql_adapter *qdev)
2375{
2376 kfree(qdev->ring_mem);
2377}
2378
2379static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2380{
2381 /* Allocate space for tx/rx ring control blocks. */
2382 qdev->ring_mem_size =
2383 (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2384 (qdev->rx_ring_count * sizeof(struct rx_ring));
2385 qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2386 if (qdev->ring_mem == NULL) {
2387 return -ENOMEM;
2388 } else {
2389 qdev->rx_ring = qdev->ring_mem;
2390 qdev->tx_ring = qdev->ring_mem +
2391 (qdev->rx_ring_count * sizeof(struct rx_ring));
2392 }
2393 return 0;
2394}
2395
2396static void ql_free_mem_resources(struct ql_adapter *qdev)
2397{
2398 int i;
2399
2400 for (i = 0; i < qdev->tx_ring_count; i++)
2401 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2402 for (i = 0; i < qdev->rx_ring_count; i++)
2403 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2404 ql_free_shadow_space(qdev);
2405}
2406
2407static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2408{
2409 int i;
2410
2411 /* Allocate space for our shadow registers and such. */
2412 if (ql_alloc_shadow_space(qdev))
2413 return -ENOMEM;
2414
2415 for (i = 0; i < qdev->rx_ring_count; i++) {
2416 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2417 QPRINTK(qdev, IFUP, ERR,
2418 "RX resource allocation failed.\n");
2419 goto err_mem;
2420 }
2421 }
2422 /* Allocate tx queue resources */
2423 for (i = 0; i < qdev->tx_ring_count; i++) {
2424 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2425 QPRINTK(qdev, IFUP, ERR,
2426 "TX resource allocation failed.\n");
2427 goto err_mem;
2428 }
2429 }
2430 return 0;
2431
2432err_mem:
2433 ql_free_mem_resources(qdev);
2434 return -ENOMEM;
2435}
2436
2437/* Set up the rx ring control block and pass it to the chip.
2438 * The control block is defined as
2439 * "Completion Queue Initialization Control Block", or cqicb.
2440 */
2441static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2442{
2443 struct cqicb *cqicb = &rx_ring->cqicb;
2444 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2445 (rx_ring->cq_id * sizeof(u64) * 4);
2446 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2447 (rx_ring->cq_id * sizeof(u64) * 4);
2448 void __iomem *doorbell_area =
2449 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2450 int err = 0;
2451 u16 bq_len;
2452
2453 /* Set up the shadow registers for this ring. */
2454 rx_ring->prod_idx_sh_reg = shadow_reg;
2455 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2456 shadow_reg += sizeof(u64);
2457 shadow_reg_dma += sizeof(u64);
2458 rx_ring->lbq_base_indirect = shadow_reg;
2459 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2460 shadow_reg += sizeof(u64);
2461 shadow_reg_dma += sizeof(u64);
2462 rx_ring->sbq_base_indirect = shadow_reg;
2463 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2464
2465 /* PCI doorbell mem area + 0x00 for consumer index register */
2466 rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
2467 rx_ring->cnsmr_idx = 0;
2468 rx_ring->curr_entry = rx_ring->cq_base;
2469
2470 /* PCI doorbell mem area + 0x04 for valid register */
2471 rx_ring->valid_db_reg = doorbell_area + 0x04;
2472
2473 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2474 rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
2475
2476 /* PCI doorbell mem area + 0x1c */
2477 rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
2478
2479 memset((void *)cqicb, 0, sizeof(struct cqicb));
2480 cqicb->msix_vect = rx_ring->irq;
2481
2482 cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2483
2484 cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2485 cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2486
2487 cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2488 cqicb->prod_idx_addr_hi =
2489 cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2490
2491 /*
2492 * Set up the control block load flags.
2493 */
2494 cqicb->flags = FLAGS_LC | /* Load queue base address */
2495 FLAGS_LV | /* Load MSI-X vector */
2496 FLAGS_LI; /* Load irq delay values */
2497 if (rx_ring->lbq_len) {
2498 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2499 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2500 cqicb->lbq_addr_lo =
2501 cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2502 cqicb->lbq_addr_hi =
2503 cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2504 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2505 bq_len = (u16) rx_ring->lbq_len;
2506 cqicb->lbq_len = cpu_to_le16(bq_len);
2507 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2508 rx_ring->lbq_curr_idx = 0;
2509 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2510 rx_ring->lbq_free_cnt = 16;
2511 }
2512 if (rx_ring->sbq_len) {
2513 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2514 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2515 cqicb->sbq_addr_lo =
2516 cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2517 cqicb->sbq_addr_hi =
2518 cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2519 cqicb->sbq_buf_size =
2520 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2521 bq_len = (u16) rx_ring->sbq_len;
2522 cqicb->sbq_len = cpu_to_le16(bq_len);
2523 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2524 rx_ring->sbq_curr_idx = 0;
2525 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2526 rx_ring->sbq_free_cnt = 16;
2527 }
2528 switch (rx_ring->type) {
2529 case TX_Q:
2530 /* If there's only one interrupt, then we use
2531 * worker threads to process the outbound
2532 * completion handling rx_rings. We do this so
2533 * they can be run on multiple CPUs. There is
2534 * room to play with this more where we would only
2535 * run in a worker if there are more than x number
2536 * of outbound completions on the queue and more
2537 * than one queue active. Some threshold that
2538 * would indicate a benefit in spite of the cost
2539 * of a context switch.
2540 * If there's more than one interrupt, then the
2541 * outbound completions are processed in the ISR.
2542 */
2543 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2544 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2545 else {
2546 /* With all debug warnings on we see a WARN_ON message
2547 * when we free the skb in the interrupt context.
2548 */
2549 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2550 }
2551 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2552 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2553 break;
2554 case DEFAULT_Q:
2555 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2556 cqicb->irq_delay = 0;
2557 cqicb->pkt_delay = 0;
2558 break;
2559 case RX_Q:
2560 /* Inbound completion handling rx_rings run in
2561 * separate NAPI contexts.
2562 */
2563 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2564 64);
2565 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2566 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2567 break;
2568 default:
2569 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2570 rx_ring->type);
2571 }
2572 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2573 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2574 CFG_LCQ, rx_ring->cq_id);
2575 if (err) {
2576 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2577 return err;
2578 }
2579 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2580 /*
2581 * Advance the producer index for the buffer queues.
2582 */
2583 wmb();
2584 if (rx_ring->lbq_len)
2585 ql_write_db_reg(rx_ring->lbq_prod_idx,
2586 rx_ring->lbq_prod_idx_db_reg);
2587 if (rx_ring->sbq_len)
2588 ql_write_db_reg(rx_ring->sbq_prod_idx,
2589 rx_ring->sbq_prod_idx_db_reg);
2590 return err;
2591}
2592
2593static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2594{
2595 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2596 void __iomem *doorbell_area =
2597 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2598 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2599 (tx_ring->wq_id * sizeof(u64));
2600 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2601 (tx_ring->wq_id * sizeof(u64));
2602 int err = 0;
2603
2604 /*
2605 * Assign doorbell registers for this tx_ring.
2606 */
2607 /* TX PCI doorbell mem area for tx producer index */
2608 tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
2609 tx_ring->prod_idx = 0;
2610 /* TX PCI doorbell mem area + 0x04 */
2611 tx_ring->valid_db_reg = doorbell_area + 0x04;
2612
2613 /*
2614 * Assign shadow registers for this tx_ring.
2615 */
2616 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2617 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2618
2619 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2620 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2621 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2622 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2623 wqicb->rid = 0;
2624 wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2625 wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2626
2627 wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2628 wqicb->cnsmr_idx_addr_hi =
2629 cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2630
2631 ql_init_tx_ring(qdev, tx_ring);
2632
2633 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2634 (u16) tx_ring->wq_id);
2635 if (err) {
2636 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2637 return err;
2638 }
2639 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2640 return err;
2641}
2642
2643static void ql_disable_msix(struct ql_adapter *qdev)
2644{
2645 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2646 pci_disable_msix(qdev->pdev);
2647 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2648 kfree(qdev->msi_x_entry);
2649 qdev->msi_x_entry = NULL;
2650 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2651 pci_disable_msi(qdev->pdev);
2652 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2653 }
2654}
2655
2656static void ql_enable_msix(struct ql_adapter *qdev)
2657{
2658 int i;
2659
2660 qdev->intr_count = 1;
2661 /* Get the MSIX vectors. */
2662 if (irq_type == MSIX_IRQ) {
2663 /* Try to alloc space for the msix struct,
2664 * if it fails then go to MSI/legacy.
2665 */
2666 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2667 sizeof(struct msix_entry),
2668 GFP_KERNEL);
2669 if (!qdev->msi_x_entry) {
2670 irq_type = MSI_IRQ;
2671 goto msi;
2672 }
2673
2674 for (i = 0; i < qdev->rx_ring_count; i++)
2675 qdev->msi_x_entry[i].entry = i;
2676
2677 if (!pci_enable_msix
2678 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2679 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2680 qdev->intr_count = qdev->rx_ring_count;
2681 QPRINTK(qdev, IFUP, INFO,
2682 "MSI-X Enabled, got %d vectors.\n",
2683 qdev->intr_count);
2684 return;
2685 } else {
2686 kfree(qdev->msi_x_entry);
2687 qdev->msi_x_entry = NULL;
2688 QPRINTK(qdev, IFUP, WARNING,
2689 "MSI-X Enable failed, trying MSI.\n");
2690 irq_type = MSI_IRQ;
2691 }
2692 }
2693msi:
2694 if (irq_type == MSI_IRQ) {
2695 if (!pci_enable_msi(qdev->pdev)) {
2696 set_bit(QL_MSI_ENABLED, &qdev->flags);
2697 QPRINTK(qdev, IFUP, INFO,
2698 "Running with MSI interrupts.\n");
2699 return;
2700 }
2701 }
2702 irq_type = LEG_IRQ;
2703 spin_lock_init(&qdev->legacy_lock);
2704 qdev->legacy_check = ql_legacy_check;
2705 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2706}
2707
2708/*
2709 * Here we build the intr_context structures based on
2710 * our rx_ring count and intr vector count.
2711 * The intr_context structure is used to hook each vector
2712 * to possibly different handlers.
2713 */
2714static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2715{
2716 int i = 0;
2717 struct intr_context *intr_context = &qdev->intr_context[0];
2718
2719 ql_enable_msix(qdev);
2720
2721 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2722 /* Each rx_ring has it's
2723 * own intr_context since we have separate
2724 * vectors for each queue.
2725 * This only true when MSI-X is enabled.
2726 */
2727 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2728 qdev->rx_ring[i].irq = i;
2729 intr_context->intr = i;
2730 intr_context->qdev = qdev;
2731 /*
2732 * We set up each vectors enable/disable/read bits so
2733 * there's no bit/mask calculations in the critical path.
2734 */
2735 intr_context->intr_en_mask =
2736 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2737 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2738 | i;
2739 intr_context->intr_dis_mask =
2740 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2741 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2742 INTR_EN_IHD | i;
2743 intr_context->intr_read_mask =
2744 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2745 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2746 i;
2747
2748 if (i == 0) {
2749 /*
2750 * Default queue handles bcast/mcast plus
2751 * async events. Needs buffers.
2752 */
2753 intr_context->handler = qlge_isr;
2754 sprintf(intr_context->name, "%s-default-queue",
2755 qdev->ndev->name);
2756 } else if (i < qdev->rss_ring_first_cq_id) {
2757 /*
2758 * Outbound queue is for outbound completions only.
2759 */
2760 intr_context->handler = qlge_msix_tx_isr;
2761 sprintf(intr_context->name, "%s-txq-%d",
2762 qdev->ndev->name, i);
2763 } else {
2764 /*
2765 * Inbound queues handle unicast frames only.
2766 */
2767 intr_context->handler = qlge_msix_rx_isr;
2768 sprintf(intr_context->name, "%s-rxq-%d",
2769 qdev->ndev->name, i);
2770 }
2771 }
2772 } else {
2773 /*
2774 * All rx_rings use the same intr_context since
2775 * there is only one vector.
2776 */
2777 intr_context->intr = 0;
2778 intr_context->qdev = qdev;
2779 /*
2780 * We set up each vectors enable/disable/read bits so
2781 * there's no bit/mask calculations in the critical path.
2782 */
2783 intr_context->intr_en_mask =
2784 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2785 intr_context->intr_dis_mask =
2786 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2787 INTR_EN_TYPE_DISABLE;
2788 intr_context->intr_read_mask =
2789 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2790 /*
2791 * Single interrupt means one handler for all rings.
2792 */
2793 intr_context->handler = qlge_isr;
2794 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2795 for (i = 0; i < qdev->rx_ring_count; i++)
2796 qdev->rx_ring[i].irq = 0;
2797 }
2798}
2799
2800static void ql_free_irq(struct ql_adapter *qdev)
2801{
2802 int i;
2803 struct intr_context *intr_context = &qdev->intr_context[0];
2804
2805 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2806 if (intr_context->hooked) {
2807 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2808 free_irq(qdev->msi_x_entry[i].vector,
2809 &qdev->rx_ring[i]);
2810 QPRINTK(qdev, IFDOWN, ERR,
2811 "freeing msix interrupt %d.\n", i);
2812 } else {
2813 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2814 QPRINTK(qdev, IFDOWN, ERR,
2815 "freeing msi interrupt %d.\n", i);
2816 }
2817 }
2818 }
2819 ql_disable_msix(qdev);
2820}
2821
2822static int ql_request_irq(struct ql_adapter *qdev)
2823{
2824 int i;
2825 int status = 0;
2826 struct pci_dev *pdev = qdev->pdev;
2827 struct intr_context *intr_context = &qdev->intr_context[0];
2828
2829 ql_resolve_queues_to_irqs(qdev);
2830
2831 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2832 atomic_set(&intr_context->irq_cnt, 0);
2833 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2834 status = request_irq(qdev->msi_x_entry[i].vector,
2835 intr_context->handler,
2836 0,
2837 intr_context->name,
2838 &qdev->rx_ring[i]);
2839 if (status) {
2840 QPRINTK(qdev, IFUP, ERR,
2841 "Failed request for MSIX interrupt %d.\n",
2842 i);
2843 goto err_irq;
2844 } else {
2845 QPRINTK(qdev, IFUP, INFO,
2846 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2847 i,
2848 qdev->rx_ring[i].type ==
2849 DEFAULT_Q ? "DEFAULT_Q" : "",
2850 qdev->rx_ring[i].type ==
2851 TX_Q ? "TX_Q" : "",
2852 qdev->rx_ring[i].type ==
2853 RX_Q ? "RX_Q" : "", intr_context->name);
2854 }
2855 } else {
2856 QPRINTK(qdev, IFUP, DEBUG,
2857 "trying msi or legacy interrupts.\n");
2858 QPRINTK(qdev, IFUP, DEBUG,
2859 "%s: irq = %d.\n", __func__, pdev->irq);
2860 QPRINTK(qdev, IFUP, DEBUG,
2861 "%s: context->name = %s.\n", __func__,
2862 intr_context->name);
2863 QPRINTK(qdev, IFUP, DEBUG,
2864 "%s: dev_id = 0x%p.\n", __func__,
2865 &qdev->rx_ring[0]);
2866 status =
2867 request_irq(pdev->irq, qlge_isr,
2868 test_bit(QL_MSI_ENABLED,
2869 &qdev->
2870 flags) ? 0 : IRQF_SHARED,
2871 intr_context->name, &qdev->rx_ring[0]);
2872 if (status)
2873 goto err_irq;
2874
2875 QPRINTK(qdev, IFUP, ERR,
2876 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2877 i,
2878 qdev->rx_ring[0].type ==
2879 DEFAULT_Q ? "DEFAULT_Q" : "",
2880 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2881 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2882 intr_context->name);
2883 }
2884 intr_context->hooked = 1;
2885 }
2886 return status;
2887err_irq:
2888 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2889 ql_free_irq(qdev);
2890 return status;
2891}
2892
2893static int ql_start_rss(struct ql_adapter *qdev)
2894{
2895 struct ricb *ricb = &qdev->ricb;
2896 int status = 0;
2897 int i;
2898 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2899
2900 memset((void *)ricb, 0, sizeof(ricb));
2901
2902 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2903 ricb->flags =
2904 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2905 RSS_RT6);
2906 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2907
2908 /*
2909 * Fill out the Indirection Table.
2910 */
2911 for (i = 0; i < 32; i++)
2912 hash_id[i] = i & 1;
2913
2914 /*
2915 * Random values for the IPv6 and IPv4 Hash Keys.
2916 */
2917 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2918 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2919
2920 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2921
2922 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2923 if (status) {
2924 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2925 return status;
2926 }
2927 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2928 return status;
2929}
2930
2931/* Initialize the frame-to-queue routing. */
2932static int ql_route_initialize(struct ql_adapter *qdev)
2933{
2934 int status = 0;
2935 int i;
2936
2937 /* Clear all the entries in the routing table. */
2938 for (i = 0; i < 16; i++) {
2939 status = ql_set_routing_reg(qdev, i, 0, 0);
2940 if (status) {
2941 QPRINTK(qdev, IFUP, ERR,
2942 "Failed to init routing register for CAM packets.\n");
2943 return status;
2944 }
2945 }
2946
2947 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2948 if (status) {
2949 QPRINTK(qdev, IFUP, ERR,
2950 "Failed to init routing register for error packets.\n");
2951 return status;
2952 }
2953 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2954 if (status) {
2955 QPRINTK(qdev, IFUP, ERR,
2956 "Failed to init routing register for broadcast packets.\n");
2957 return status;
2958 }
2959 /* If we have more than one inbound queue, then turn on RSS in the
2960 * routing block.
2961 */
2962 if (qdev->rss_ring_count > 1) {
2963 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2964 RT_IDX_RSS_MATCH, 1);
2965 if (status) {
2966 QPRINTK(qdev, IFUP, ERR,
2967 "Failed to init routing register for MATCH RSS packets.\n");
2968 return status;
2969 }
2970 }
2971
2972 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2973 RT_IDX_CAM_HIT, 1);
2974 if (status) {
2975 QPRINTK(qdev, IFUP, ERR,
2976 "Failed to init routing register for CAM packets.\n");
2977 return status;
2978 }
2979 return status;
2980}
2981
2982static int ql_adapter_initialize(struct ql_adapter *qdev)
2983{
2984 u32 value, mask;
2985 int i;
2986 int status = 0;
2987
2988 /*
2989 * Set up the System register to halt on errors.
2990 */
2991 value = SYS_EFE | SYS_FAE;
2992 mask = value << 16;
2993 ql_write32(qdev, SYS, mask | value);
2994
2995 /* Set the default queue. */
2996 value = NIC_RCV_CFG_DFQ;
2997 mask = NIC_RCV_CFG_DFQ_MASK;
2998 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2999
3000 /* Set the MPI interrupt to enabled. */
3001 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3002
3003 /* Enable the function, set pagesize, enable error checking. */
3004 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3005 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3006
3007 /* Set/clear header splitting. */
3008 mask = FSC_VM_PAGESIZE_MASK |
3009 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3010 ql_write32(qdev, FSC, mask | value);
3011
3012 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3013 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3014
3015 /* Start up the rx queues. */
3016 for (i = 0; i < qdev->rx_ring_count; i++) {
3017 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3018 if (status) {
3019 QPRINTK(qdev, IFUP, ERR,
3020 "Failed to start rx ring[%d].\n", i);
3021 return status;
3022 }
3023 }
3024
3025 /* If there is more than one inbound completion queue
3026 * then download a RICB to configure RSS.
3027 */
3028 if (qdev->rss_ring_count > 1) {
3029 status = ql_start_rss(qdev);
3030 if (status) {
3031 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3032 return status;
3033 }
3034 }
3035
3036 /* Start up the tx queues. */
3037 for (i = 0; i < qdev->tx_ring_count; i++) {
3038 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3039 if (status) {
3040 QPRINTK(qdev, IFUP, ERR,
3041 "Failed to start tx ring[%d].\n", i);
3042 return status;
3043 }
3044 }
3045
3046 status = ql_port_initialize(qdev);
3047 if (status) {
3048 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3049 return status;
3050 }
3051
3052 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3053 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3054 if (status) {
3055 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3056 return status;
3057 }
3058
3059 status = ql_route_initialize(qdev);
3060 if (status) {
3061 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3062 return status;
3063 }
3064
3065 /* Start NAPI for the RSS queues. */
3066 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3067 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3068 i);
3069 napi_enable(&qdev->rx_ring[i].napi);
3070 }
3071
3072 return status;
3073}
3074
3075/* Issue soft reset to chip. */
3076static int ql_adapter_reset(struct ql_adapter *qdev)
3077{
3078 u32 value;
3079 int max_wait_time;
3080 int status = 0;
3081 int resetCnt = 0;
3082
3083#define MAX_RESET_CNT 1
3084issueReset:
3085 resetCnt++;
3086 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3087 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3088 /* Wait for reset to complete. */
3089 max_wait_time = 3;
3090 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3091 max_wait_time);
3092 do {
3093 value = ql_read32(qdev, RST_FO);
3094 if ((value & RST_FO_FR) == 0)
3095 break;
3096
3097 ssleep(1);
3098 } while ((--max_wait_time));
3099 if (value & RST_FO_FR) {
3100 QPRINTK(qdev, IFDOWN, ERR,
3101 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3102 if (resetCnt < MAX_RESET_CNT)
3103 goto issueReset;
3104 }
3105 if (max_wait_time == 0) {
3106 status = -ETIMEDOUT;
3107 QPRINTK(qdev, IFDOWN, ERR,
3108 "ETIMEOUT!!! errored out of resetting the chip!\n");
3109 }
3110
3111 return status;
3112}
3113
3114static void ql_display_dev_info(struct net_device *ndev)
3115{
3116 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3117
3118 QPRINTK(qdev, PROBE, INFO,
3119 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3120 "XG Roll = %d, XG Rev = %d.\n",
3121 qdev->func,
3122 qdev->chip_rev_id & 0x0000000f,
3123 qdev->chip_rev_id >> 4 & 0x0000000f,
3124 qdev->chip_rev_id >> 8 & 0x0000000f,
3125 qdev->chip_rev_id >> 12 & 0x0000000f);
3126 QPRINTK(qdev, PROBE, INFO,
3127 "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
3128 ndev->dev_addr[0], ndev->dev_addr[1],
3129 ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
3130 ndev->dev_addr[5]);
3131}
3132
3133static int ql_adapter_down(struct ql_adapter *qdev)
3134{
3135 struct net_device *ndev = qdev->ndev;
3136 int i, status = 0;
3137 struct rx_ring *rx_ring;
3138
3139 netif_stop_queue(ndev);
3140 netif_carrier_off(ndev);
3141
3142 cancel_delayed_work_sync(&qdev->asic_reset_work);
3143 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3144 cancel_delayed_work_sync(&qdev->mpi_work);
3145
3146 /* The default queue at index 0 is always processed in
3147 * a workqueue.
3148 */
3149 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3150
3151 /* The rest of the rx_rings are processed in
3152 * a workqueue only if it's a single interrupt
3153 * environment (MSI/Legacy).
3154 */
3155 for (i = 1; i > qdev->rx_ring_count; i++) {
3156 rx_ring = &qdev->rx_ring[i];
3157 /* Only the RSS rings use NAPI on multi irq
3158 * environment. Outbound completion processing
3159 * is done in interrupt context.
3160 */
3161 if (i >= qdev->rss_ring_first_cq_id) {
3162 napi_disable(&rx_ring->napi);
3163 } else {
3164 cancel_delayed_work_sync(&rx_ring->rx_work);
3165 }
3166 }
3167
3168 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3169
3170 ql_disable_interrupts(qdev);
3171
3172 ql_tx_ring_clean(qdev);
3173
3174 spin_lock(&qdev->hw_lock);
3175 status = ql_adapter_reset(qdev);
3176 if (status)
3177 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3178 qdev->func);
3179 spin_unlock(&qdev->hw_lock);
3180 return status;
3181}
3182
3183static int ql_adapter_up(struct ql_adapter *qdev)
3184{
3185 int err = 0;
3186
3187 spin_lock(&qdev->hw_lock);
3188 err = ql_adapter_initialize(qdev);
3189 if (err) {
3190 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3191 spin_unlock(&qdev->hw_lock);
3192 goto err_init;
3193 }
3194 spin_unlock(&qdev->hw_lock);
3195 set_bit(QL_ADAPTER_UP, &qdev->flags);
3196 ql_enable_interrupts(qdev);
3197 ql_enable_all_completion_interrupts(qdev);
3198 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3199 netif_carrier_on(qdev->ndev);
3200 netif_start_queue(qdev->ndev);
3201 }
3202
3203 return 0;
3204err_init:
3205 ql_adapter_reset(qdev);
3206 return err;
3207}
3208
3209static int ql_cycle_adapter(struct ql_adapter *qdev)
3210{
3211 int status;
3212
3213 status = ql_adapter_down(qdev);
3214 if (status)
3215 goto error;
3216
3217 status = ql_adapter_up(qdev);
3218 if (status)
3219 goto error;
3220
3221 return status;
3222error:
3223 QPRINTK(qdev, IFUP, ALERT,
3224 "Driver up/down cycle failed, closing device\n");
3225 rtnl_lock();
3226 dev_close(qdev->ndev);
3227 rtnl_unlock();
3228 return status;
3229}
3230
3231static void ql_release_adapter_resources(struct ql_adapter *qdev)
3232{
3233 ql_free_mem_resources(qdev);
3234 ql_free_irq(qdev);
3235}
3236
3237static int ql_get_adapter_resources(struct ql_adapter *qdev)
3238{
3239 int status = 0;
3240
3241 if (ql_alloc_mem_resources(qdev)) {
3242 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3243 return -ENOMEM;
3244 }
3245 status = ql_request_irq(qdev);
3246 if (status)
3247 goto err_irq;
3248 return status;
3249err_irq:
3250 ql_free_mem_resources(qdev);
3251 return status;
3252}
3253
3254static int qlge_close(struct net_device *ndev)
3255{
3256 struct ql_adapter *qdev = netdev_priv(ndev);
3257
3258 /*
3259 * Wait for device to recover from a reset.
3260 * (Rarely happens, but possible.)
3261 */
3262 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3263 msleep(1);
3264 ql_adapter_down(qdev);
3265 ql_release_adapter_resources(qdev);
3266 ql_free_ring_cb(qdev);
3267 return 0;
3268}
3269
3270static int ql_configure_rings(struct ql_adapter *qdev)
3271{
3272 int i;
3273 struct rx_ring *rx_ring;
3274 struct tx_ring *tx_ring;
3275 int cpu_cnt = num_online_cpus();
3276
3277 /*
3278 * For each processor present we allocate one
3279 * rx_ring for outbound completions, and one
3280 * rx_ring for inbound completions. Plus there is
3281 * always the one default queue. For the CPU
3282 * counts we end up with the following rx_rings:
3283 * rx_ring count =
3284 * one default queue +
3285 * (CPU count * outbound completion rx_ring) +
3286 * (CPU count * inbound (RSS) completion rx_ring)
3287 * To keep it simple we limit the total number of
3288 * queues to < 32, so we truncate CPU to 8.
3289 * This limitation can be removed when requested.
3290 */
3291
3292 if (cpu_cnt > 8)
3293 cpu_cnt = 8;
3294
3295 /*
3296 * rx_ring[0] is always the default queue.
3297 */
3298 /* Allocate outbound completion ring for each CPU. */
3299 qdev->tx_ring_count = cpu_cnt;
3300 /* Allocate inbound completion (RSS) ring for each CPU. */
3301 qdev->rss_ring_count = cpu_cnt;
3302 /* cq_id for the first inbound ring handler. */
3303 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3304 /*
3305 * qdev->rx_ring_count:
3306 * Total number of rx_rings. This includes the one
3307 * default queue, a number of outbound completion
3308 * handler rx_rings, and the number of inbound
3309 * completion handler rx_rings.
3310 */
3311 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3312
3313 if (ql_alloc_ring_cb(qdev))
3314 return -ENOMEM;
3315
3316 for (i = 0; i < qdev->tx_ring_count; i++) {
3317 tx_ring = &qdev->tx_ring[i];
3318 memset((void *)tx_ring, 0, sizeof(tx_ring));
3319 tx_ring->qdev = qdev;
3320 tx_ring->wq_id = i;
3321 tx_ring->wq_len = qdev->tx_ring_size;
3322 tx_ring->wq_size =
3323 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3324
3325 /*
3326 * The completion queue ID for the tx rings start
3327 * immediately after the default Q ID, which is zero.
3328 */
3329 tx_ring->cq_id = i + 1;
3330 }
3331
3332 for (i = 0; i < qdev->rx_ring_count; i++) {
3333 rx_ring = &qdev->rx_ring[i];
3334 memset((void *)rx_ring, 0, sizeof(rx_ring));
3335 rx_ring->qdev = qdev;
3336 rx_ring->cq_id = i;
3337 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3338 if (i == 0) { /* Default queue at index 0. */
3339 /*
3340 * Default queue handles bcast/mcast plus
3341 * async events. Needs buffers.
3342 */
3343 rx_ring->cq_len = qdev->rx_ring_size;
3344 rx_ring->cq_size =
3345 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3346 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3347 rx_ring->lbq_size =
3348 rx_ring->lbq_len * sizeof(struct bq_element);
3349 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3350 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3351 rx_ring->sbq_size =
3352 rx_ring->sbq_len * sizeof(struct bq_element);
3353 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3354 rx_ring->type = DEFAULT_Q;
3355 } else if (i < qdev->rss_ring_first_cq_id) {
3356 /*
3357 * Outbound queue handles outbound completions only.
3358 */
3359 /* outbound cq is same size as tx_ring it services. */
3360 rx_ring->cq_len = qdev->tx_ring_size;
3361 rx_ring->cq_size =
3362 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3363 rx_ring->lbq_len = 0;
3364 rx_ring->lbq_size = 0;
3365 rx_ring->lbq_buf_size = 0;
3366 rx_ring->sbq_len = 0;
3367 rx_ring->sbq_size = 0;
3368 rx_ring->sbq_buf_size = 0;
3369 rx_ring->type = TX_Q;
3370 } else { /* Inbound completions (RSS) queues */
3371 /*
3372 * Inbound queues handle unicast frames only.
3373 */
3374 rx_ring->cq_len = qdev->rx_ring_size;
3375 rx_ring->cq_size =
3376 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3377 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3378 rx_ring->lbq_size =
3379 rx_ring->lbq_len * sizeof(struct bq_element);
3380 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3381 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3382 rx_ring->sbq_size =
3383 rx_ring->sbq_len * sizeof(struct bq_element);
3384 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3385 rx_ring->type = RX_Q;
3386 }
3387 }
3388 return 0;
3389}
3390
3391static int qlge_open(struct net_device *ndev)
3392{
3393 int err = 0;
3394 struct ql_adapter *qdev = netdev_priv(ndev);
3395
3396 err = ql_configure_rings(qdev);
3397 if (err)
3398 return err;
3399
3400 err = ql_get_adapter_resources(qdev);
3401 if (err)
3402 goto error_up;
3403
3404 err = ql_adapter_up(qdev);
3405 if (err)
3406 goto error_up;
3407
3408 return err;
3409
3410error_up:
3411 ql_release_adapter_resources(qdev);
3412 ql_free_ring_cb(qdev);
3413 return err;
3414}
3415
3416static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3417{
3418 struct ql_adapter *qdev = netdev_priv(ndev);
3419
3420 if (ndev->mtu == 1500 && new_mtu == 9000) {
3421 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3422 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3423 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3424 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3425 (ndev->mtu == 9000 && new_mtu == 9000)) {
3426 return 0;
3427 } else
3428 return -EINVAL;
3429 ndev->mtu = new_mtu;
3430 return 0;
3431}
3432
3433static struct net_device_stats *qlge_get_stats(struct net_device
3434 *ndev)
3435{
3436 struct ql_adapter *qdev = netdev_priv(ndev);
3437 return &qdev->stats;
3438}
3439
3440static void qlge_set_multicast_list(struct net_device *ndev)
3441{
3442 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3443 struct dev_mc_list *mc_ptr;
3444 int i;
3445
3446 spin_lock(&qdev->hw_lock);
3447 /*
3448 * Set or clear promiscuous mode if a
3449 * transition is taking place.
3450 */
3451 if (ndev->flags & IFF_PROMISC) {
3452 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3453 if (ql_set_routing_reg
3454 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3455 QPRINTK(qdev, HW, ERR,
3456 "Failed to set promiscous mode.\n");
3457 } else {
3458 set_bit(QL_PROMISCUOUS, &qdev->flags);
3459 }
3460 }
3461 } else {
3462 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3463 if (ql_set_routing_reg
3464 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3465 QPRINTK(qdev, HW, ERR,
3466 "Failed to clear promiscous mode.\n");
3467 } else {
3468 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3469 }
3470 }
3471 }
3472
3473 /*
3474 * Set or clear all multicast mode if a
3475 * transition is taking place.
3476 */
3477 if ((ndev->flags & IFF_ALLMULTI) ||
3478 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3479 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3480 if (ql_set_routing_reg
3481 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3482 QPRINTK(qdev, HW, ERR,
3483 "Failed to set all-multi mode.\n");
3484 } else {
3485 set_bit(QL_ALLMULTI, &qdev->flags);
3486 }
3487 }
3488 } else {
3489 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3490 if (ql_set_routing_reg
3491 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3492 QPRINTK(qdev, HW, ERR,
3493 "Failed to clear all-multi mode.\n");
3494 } else {
3495 clear_bit(QL_ALLMULTI, &qdev->flags);
3496 }
3497 }
3498 }
3499
3500 if (ndev->mc_count) {
3501 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3502 i++, mc_ptr = mc_ptr->next)
3503 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3504 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3505 QPRINTK(qdev, HW, ERR,
3506 "Failed to loadmulticast address.\n");
3507 goto exit;
3508 }
3509 if (ql_set_routing_reg
3510 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3511 QPRINTK(qdev, HW, ERR,
3512 "Failed to set multicast match mode.\n");
3513 } else {
3514 set_bit(QL_ALLMULTI, &qdev->flags);
3515 }
3516 }
3517exit:
3518 spin_unlock(&qdev->hw_lock);
3519}
3520
3521static int qlge_set_mac_address(struct net_device *ndev, void *p)
3522{
3523 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3524 struct sockaddr *addr = p;
3525
3526 if (netif_running(ndev))
3527 return -EBUSY;
3528
3529 if (!is_valid_ether_addr(addr->sa_data))
3530 return -EADDRNOTAVAIL;
3531 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3532
3533 spin_lock(&qdev->hw_lock);
3534 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3535 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3536 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3537 return -1;
3538 }
3539 spin_unlock(&qdev->hw_lock);
3540
3541 return 0;
3542}
3543
3544static void qlge_tx_timeout(struct net_device *ndev)
3545{
3546 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3547 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3548}
3549
3550static void ql_asic_reset_work(struct work_struct *work)
3551{
3552 struct ql_adapter *qdev =
3553 container_of(work, struct ql_adapter, asic_reset_work.work);
3554 ql_cycle_adapter(qdev);
3555}
3556
3557static void ql_get_board_info(struct ql_adapter *qdev)
3558{
3559 qdev->func =
3560 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3561 if (qdev->func) {
3562 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3563 qdev->port_link_up = STS_PL1;
3564 qdev->port_init = STS_PI1;
3565 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3566 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3567 } else {
3568 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3569 qdev->port_link_up = STS_PL0;
3570 qdev->port_init = STS_PI0;
3571 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3572 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3573 }
3574 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3575}
3576
3577static void ql_release_all(struct pci_dev *pdev)
3578{
3579 struct net_device *ndev = pci_get_drvdata(pdev);
3580 struct ql_adapter *qdev = netdev_priv(ndev);
3581
3582 if (qdev->workqueue) {
3583 destroy_workqueue(qdev->workqueue);
3584 qdev->workqueue = NULL;
3585 }
3586 if (qdev->q_workqueue) {
3587 destroy_workqueue(qdev->q_workqueue);
3588 qdev->q_workqueue = NULL;
3589 }
3590 if (qdev->reg_base)
3591 iounmap((void *)qdev->reg_base);
3592 if (qdev->doorbell_area)
3593 iounmap(qdev->doorbell_area);
3594 pci_release_regions(pdev);
3595 pci_set_drvdata(pdev, NULL);
3596}
3597
3598static int __devinit ql_init_device(struct pci_dev *pdev,
3599 struct net_device *ndev, int cards_found)
3600{
3601 struct ql_adapter *qdev = netdev_priv(ndev);
3602 int pos, err = 0;
3603 u16 val16;
3604
3605 memset((void *)qdev, 0, sizeof(qdev));
3606 err = pci_enable_device(pdev);
3607 if (err) {
3608 dev_err(&pdev->dev, "PCI device enable failed.\n");
3609 return err;
3610 }
3611
3612 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3613 if (pos <= 0) {
3614 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3615 "aborting.\n");
3616 goto err_out;
3617 } else {
3618 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3619 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3620 val16 |= (PCI_EXP_DEVCTL_CERE |
3621 PCI_EXP_DEVCTL_NFERE |
3622 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3623 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3624 }
3625
3626 err = pci_request_regions(pdev, DRV_NAME);
3627 if (err) {
3628 dev_err(&pdev->dev, "PCI region request failed.\n");
3629 goto err_out;
3630 }
3631
3632 pci_set_master(pdev);
3633 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3634 set_bit(QL_DMA64, &qdev->flags);
3635 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3636 } else {
3637 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3638 if (!err)
3639 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3640 }
3641
3642 if (err) {
3643 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3644 goto err_out;
3645 }
3646
3647 pci_set_drvdata(pdev, ndev);
3648 qdev->reg_base =
3649 ioremap_nocache(pci_resource_start(pdev, 1),
3650 pci_resource_len(pdev, 1));
3651 if (!qdev->reg_base) {
3652 dev_err(&pdev->dev, "Register mapping failed.\n");
3653 err = -ENOMEM;
3654 goto err_out;
3655 }
3656
3657 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3658 qdev->doorbell_area =
3659 ioremap_nocache(pci_resource_start(pdev, 3),
3660 pci_resource_len(pdev, 3));
3661 if (!qdev->doorbell_area) {
3662 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3663 err = -ENOMEM;
3664 goto err_out;
3665 }
3666
3667 ql_get_board_info(qdev);
3668 qdev->ndev = ndev;
3669 qdev->pdev = pdev;
3670 qdev->msg_enable = netif_msg_init(debug, default_msg);
3671 spin_lock_init(&qdev->hw_lock);
3672 spin_lock_init(&qdev->stats_lock);
3673
3674 /* make sure the EEPROM is good */
3675 err = ql_get_flash_params(qdev);
3676 if (err) {
3677 dev_err(&pdev->dev, "Invalid FLASH.\n");
3678 goto err_out;
3679 }
3680
3681 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3682 goto err_out;
3683
3684 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3685 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3686
3687 /* Set up the default ring sizes. */
3688 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3689 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3690
3691 /* Set up the coalescing parameters. */
3692 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3693 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3694 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3695 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3696
3697 /*
3698 * Set up the operating parameters.
3699 */
3700 qdev->rx_csum = 1;
3701
3702 qdev->q_workqueue = create_workqueue(ndev->name);
3703 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3704 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3705 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3706 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3707
3708 if (!cards_found) {
3709 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3710 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3711 DRV_NAME, DRV_VERSION);
3712 }
3713 return 0;
3714err_out:
3715 ql_release_all(pdev);
3716 pci_disable_device(pdev);
3717 return err;
3718}
3719
3720static int __devinit qlge_probe(struct pci_dev *pdev,
3721 const struct pci_device_id *pci_entry)
3722{
3723 struct net_device *ndev = NULL;
3724 struct ql_adapter *qdev = NULL;
3725 static int cards_found = 0;
3726 int err = 0;
3727
3728 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3729 if (!ndev)
3730 return -ENOMEM;
3731
3732 err = ql_init_device(pdev, ndev, cards_found);
3733 if (err < 0) {
3734 free_netdev(ndev);
3735 return err;
3736 }
3737
3738 qdev = netdev_priv(ndev);
3739 SET_NETDEV_DEV(ndev, &pdev->dev);
3740 ndev->features = (0
3741 | NETIF_F_IP_CSUM
3742 | NETIF_F_SG
3743 | NETIF_F_TSO
3744 | NETIF_F_TSO6
3745 | NETIF_F_TSO_ECN
3746 | NETIF_F_HW_VLAN_TX
3747 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3748
3749 if (test_bit(QL_DMA64, &qdev->flags))
3750 ndev->features |= NETIF_F_HIGHDMA;
3751
3752 /*
3753 * Set up net_device structure.
3754 */
3755 ndev->tx_queue_len = qdev->tx_ring_size;
3756 ndev->irq = pdev->irq;
3757 ndev->open = qlge_open;
3758 ndev->stop = qlge_close;
3759 ndev->hard_start_xmit = qlge_send;
3760 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3761 ndev->change_mtu = qlge_change_mtu;
3762 ndev->get_stats = qlge_get_stats;
3763 ndev->set_multicast_list = qlge_set_multicast_list;
3764 ndev->set_mac_address = qlge_set_mac_address;
3765 ndev->tx_timeout = qlge_tx_timeout;
3766 ndev->watchdog_timeo = 10 * HZ;
3767 ndev->vlan_rx_register = ql_vlan_rx_register;
3768 ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
3769 ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
3770 err = register_netdev(ndev);
3771 if (err) {
3772 dev_err(&pdev->dev, "net device registration failed.\n");
3773 ql_release_all(pdev);
3774 pci_disable_device(pdev);
3775 return err;
3776 }
3777 netif_carrier_off(ndev);
3778 netif_stop_queue(ndev);
3779 ql_display_dev_info(ndev);
3780 cards_found++;
3781 return 0;
3782}
3783
3784static void __devexit qlge_remove(struct pci_dev *pdev)
3785{
3786 struct net_device *ndev = pci_get_drvdata(pdev);
3787 unregister_netdev(ndev);
3788 ql_release_all(pdev);
3789 pci_disable_device(pdev);
3790 free_netdev(ndev);
3791}
3792
3793/*
3794 * This callback is called by the PCI subsystem whenever
3795 * a PCI bus error is detected.
3796 */
3797static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3798 enum pci_channel_state state)
3799{
3800 struct net_device *ndev = pci_get_drvdata(pdev);
3801 struct ql_adapter *qdev = netdev_priv(ndev);
3802
3803 if (netif_running(ndev))
3804 ql_adapter_down(qdev);
3805
3806 pci_disable_device(pdev);
3807
3808 /* Request a slot reset. */
3809 return PCI_ERS_RESULT_NEED_RESET;
3810}
3811
3812/*
3813 * This callback is called after the PCI buss has been reset.
3814 * Basically, this tries to restart the card from scratch.
3815 * This is a shortened version of the device probe/discovery code,
3816 * it resembles the first-half of the () routine.
3817 */
3818static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3819{
3820 struct net_device *ndev = pci_get_drvdata(pdev);
3821 struct ql_adapter *qdev = netdev_priv(ndev);
3822
3823 if (pci_enable_device(pdev)) {
3824 QPRINTK(qdev, IFUP, ERR,
3825 "Cannot re-enable PCI device after reset.\n");
3826 return PCI_ERS_RESULT_DISCONNECT;
3827 }
3828
3829 pci_set_master(pdev);
3830
3831 netif_carrier_off(ndev);
3832 netif_stop_queue(ndev);
3833 ql_adapter_reset(qdev);
3834
3835 /* Make sure the EEPROM is good */
3836 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3837
3838 if (!is_valid_ether_addr(ndev->perm_addr)) {
3839 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3840 return PCI_ERS_RESULT_DISCONNECT;
3841 }
3842
3843 return PCI_ERS_RESULT_RECOVERED;
3844}
3845
3846static void qlge_io_resume(struct pci_dev *pdev)
3847{
3848 struct net_device *ndev = pci_get_drvdata(pdev);
3849 struct ql_adapter *qdev = netdev_priv(ndev);
3850
3851 pci_set_master(pdev);
3852
3853 if (netif_running(ndev)) {
3854 if (ql_adapter_up(qdev)) {
3855 QPRINTK(qdev, IFUP, ERR,
3856 "Device initialization failed after reset.\n");
3857 return;
3858 }
3859 }
3860
3861 netif_device_attach(ndev);
3862}
3863
3864static struct pci_error_handlers qlge_err_handler = {
3865 .error_detected = qlge_io_error_detected,
3866 .slot_reset = qlge_io_slot_reset,
3867 .resume = qlge_io_resume,
3868};
3869
3870static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3871{
3872 struct net_device *ndev = pci_get_drvdata(pdev);
3873 struct ql_adapter *qdev = netdev_priv(ndev);
3874 int err;
3875
3876 netif_device_detach(ndev);
3877
3878 if (netif_running(ndev)) {
3879 err = ql_adapter_down(qdev);
3880 if (!err)
3881 return err;
3882 }
3883
3884 err = pci_save_state(pdev);
3885 if (err)
3886 return err;
3887
3888 pci_disable_device(pdev);
3889
3890 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3891
3892 return 0;
3893}
3894
04da2cf9 3895#ifdef CONFIG_PM
c4e84bde
RM
3896static int qlge_resume(struct pci_dev *pdev)
3897{
3898 struct net_device *ndev = pci_get_drvdata(pdev);
3899 struct ql_adapter *qdev = netdev_priv(ndev);
3900 int err;
3901
3902 pci_set_power_state(pdev, PCI_D0);
3903 pci_restore_state(pdev);
3904 err = pci_enable_device(pdev);
3905 if (err) {
3906 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3907 return err;
3908 }
3909 pci_set_master(pdev);
3910
3911 pci_enable_wake(pdev, PCI_D3hot, 0);
3912 pci_enable_wake(pdev, PCI_D3cold, 0);
3913
3914 if (netif_running(ndev)) {
3915 err = ql_adapter_up(qdev);
3916 if (err)
3917 return err;
3918 }
3919
3920 netif_device_attach(ndev);
3921
3922 return 0;
3923}
04da2cf9 3924#endif /* CONFIG_PM */
c4e84bde
RM
3925
3926static void qlge_shutdown(struct pci_dev *pdev)
3927{
3928 qlge_suspend(pdev, PMSG_SUSPEND);
3929}
3930
3931static struct pci_driver qlge_driver = {
3932 .name = DRV_NAME,
3933 .id_table = qlge_pci_tbl,
3934 .probe = qlge_probe,
3935 .remove = __devexit_p(qlge_remove),
3936#ifdef CONFIG_PM
3937 .suspend = qlge_suspend,
3938 .resume = qlge_resume,
3939#endif
3940 .shutdown = qlge_shutdown,
3941 .err_handler = &qlge_err_handler
3942};
3943
3944static int __init qlge_init_module(void)
3945{
3946 return pci_register_driver(&qlge_driver);
3947}
3948
3949static void __exit qlge_exit(void)
3950{
3951 pci_unregister_driver(&qlge_driver);
3952}
3953
3954module_init(qlge_init_module);
3955module_exit(qlge_exit);