]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/qlge/qlge_main.c
qlge: bugfix: Add missing put_page() call.
[mirror_ubuntu-jammy-kernel.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
216 status = ql_wait_cfg(qdev, bit);
217 if (status) {
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
220 goto exit;
221 }
222
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 if (status)
225 goto exit;
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
239 pci_unmap_single(qdev->pdev, map, size, direction);
240 return status;
241}
242
243/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 u32 *value)
246{
247 u32 offset = 0;
248 int status;
249
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251 if (status)
252 return status;
253 switch (type) {
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
256 {
257 status =
258 ql_wait_reg_rdy(qdev,
939678f8 259 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
260 if (status)
261 goto exit;
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265 status =
266 ql_wait_reg_rdy(qdev,
939678f8 267 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
268 if (status)
269 goto exit;
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271 status =
272 ql_wait_reg_rdy(qdev,
939678f8 273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
274 if (status)
275 goto exit;
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 status =
280 ql_wait_reg_rdy(qdev,
939678f8 281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
282 if (status)
283 goto exit;
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 296 MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 }
301 break;
302 }
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
305 default:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
308 status = -EPERM;
309 }
310exit:
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312 return status;
313}
314
315/* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
317 */
318static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319 u16 index)
320{
321 u32 offset = 0;
322 int status = 0;
323
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325 if (status)
326 return status;
327 switch (type) {
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
330 {
331 u32 cam_output;
332 u32 upper = (addr[0] << 8) | addr[1];
333 u32 lower =
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335 (addr[5]);
336
337 QPRINTK(qdev, IFUP, INFO,
7c510e4b 338 "Adding %s address %pM"
c4e84bde
RM
339 " at index %d in the CAM.\n",
340 ((type ==
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 342 "UNICAST"), addr, index);
c4e84bde
RM
343
344 status =
345 ql_wait_reg_rdy(qdev,
939678f8 346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
347 if (status)
348 goto exit;
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 (index << MAC_ADDR_IDX_SHIFT) | /* index */
351 type); /* type */
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
353 status =
354 ql_wait_reg_rdy(qdev,
939678f8 355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
356 if (status)
357 goto exit;
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 (index << MAC_ADDR_IDX_SHIFT) | /* index */
360 type); /* type */
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
362 status =
363 ql_wait_reg_rdy(qdev,
939678f8 364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
365 if (status)
366 goto exit;
367 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
368 (index << MAC_ADDR_IDX_SHIFT) | /* index */
369 type); /* type */
370 /* This field should also include the queue id
371 and possibly the function id. Right now we hardcode
372 the route field to NIC core.
373 */
374 if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 cam_output = (CAM_OUT_ROUTE_NIC |
376 (qdev->
377 func << CAM_OUT_FUNC_SHIFT) |
378 (qdev->
379 rss_ring_first_cq_id <<
380 CAM_OUT_CQ_ID_SHIFT));
381 if (qdev->vlgrp)
382 cam_output |= CAM_OUT_RV;
383 /* route to NIC core */
384 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385 }
386 break;
387 }
388 case MAC_ADDR_TYPE_VLAN:
389 {
390 u32 enable_bit = *((u32 *) &addr[0]);
391 /* For VLAN, the addr actually holds a bit that
392 * either enables or disables the vlan id we are
393 * addressing. It's either MAC_ADDR_E on or off.
394 * That's bit-27 we're talking about.
395 */
396 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 (enable_bit ? "Adding" : "Removing"),
398 index, (enable_bit ? "to" : "from"));
399
400 status =
401 ql_wait_reg_rdy(qdev,
939678f8 402 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
403 if (status)
404 goto exit;
405 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406 (index << MAC_ADDR_IDX_SHIFT) | /* index */
407 type | /* type */
408 enable_bit); /* enable/disable */
409 break;
410 }
411 case MAC_ADDR_TYPE_MULTI_FLTR:
412 default:
413 QPRINTK(qdev, IFUP, CRIT,
414 "Address type %d not yet supported.\n", type);
415 status = -EPERM;
416 }
417exit:
418 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419 return status;
420}
421
422/* Get a specific frame routing value from the CAM.
423 * Used for debug and reg dump.
424 */
425int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426{
427 int status = 0;
428
429 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430 if (status)
431 goto exit;
432
939678f8 433 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
434 if (status)
435 goto exit;
436
437 ql_write32(qdev, RT_IDX,
438 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 439 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
440 if (status)
441 goto exit;
442 *value = ql_read32(qdev, RT_DATA);
443exit:
444 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445 return status;
446}
447
448/* The NIC function for this chip has 16 routing indexes. Each one can be used
449 * to route different frame types to various inbound queues. We send broadcast/
450 * multicast/error frames to the default queue for slow handling,
451 * and CAM hit/RSS frames to the fast handling queues.
452 */
453static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454 int enable)
455{
456 int status;
457 u32 value = 0;
458
459 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460 if (status)
461 return status;
462
463 QPRINTK(qdev, IFUP, DEBUG,
464 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 (enable ? "Adding" : "Removing"),
466 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468 ((index ==
469 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 (enable ? "to" : "from"));
484
485 switch (mask) {
486 case RT_IDX_CAM_HIT:
487 {
488 value = RT_IDX_DST_CAM_Q | /* dest */
489 RT_IDX_TYPE_NICQ | /* type */
490 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491 break;
492 }
493 case RT_IDX_VALID: /* Promiscuous Mode frames. */
494 {
495 value = RT_IDX_DST_DFLT_Q | /* dest */
496 RT_IDX_TYPE_NICQ | /* type */
497 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498 break;
499 }
500 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
501 {
502 value = RT_IDX_DST_DFLT_Q | /* dest */
503 RT_IDX_TYPE_NICQ | /* type */
504 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505 break;
506 }
507 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
508 {
509 value = RT_IDX_DST_DFLT_Q | /* dest */
510 RT_IDX_TYPE_NICQ | /* type */
511 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512 break;
513 }
514 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
515 {
516 value = RT_IDX_DST_CAM_Q | /* dest */
517 RT_IDX_TYPE_NICQ | /* type */
518 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519 break;
520 }
521 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
522 {
523 value = RT_IDX_DST_CAM_Q | /* dest */
524 RT_IDX_TYPE_NICQ | /* type */
525 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526 break;
527 }
528 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
529 {
530 value = RT_IDX_DST_RSS | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533 break;
534 }
535 case 0: /* Clear the E-bit on an entry. */
536 {
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (index << RT_IDX_IDX_SHIFT);/* index */
540 break;
541 }
542 default:
543 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544 mask);
545 status = -EPERM;
546 goto exit;
547 }
548
549 if (value) {
550 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551 if (status)
552 goto exit;
553 value |= (enable ? RT_IDX_E : 0);
554 ql_write32(qdev, RT_IDX, value);
555 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556 }
557exit:
558 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559 return status;
560}
561
562static void ql_enable_interrupts(struct ql_adapter *qdev)
563{
564 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565}
566
567static void ql_disable_interrupts(struct ql_adapter *qdev)
568{
569 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570}
571
572/* If we're running with multiple MSI-X vectors then we enable on the fly.
573 * Otherwise, we may have multiple outstanding workers and don't want to
574 * enable until the last one finishes. In this case, the irq_cnt gets
575 * incremented everytime we queue a worker and decremented everytime
576 * a worker finishes. Once it hits zero we enable the interrupt.
577 */
bb0d215c 578u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 579{
bb0d215c
RM
580 u32 var = 0;
581 unsigned long hw_flags = 0;
582 struct intr_context *ctx = qdev->intr_context + intr;
583
584 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 /* Always enable if we're MSIX multi interrupts and
586 * it's not the default (zeroeth) interrupt.
587 */
c4e84bde 588 ql_write32(qdev, INTR_EN,
bb0d215c
RM
589 ctx->intr_en_mask);
590 var = ql_read32(qdev, STS);
591 return var;
c4e84bde 592 }
bb0d215c
RM
593
594 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 ql_write32(qdev, INTR_EN,
597 ctx->intr_en_mask);
598 var = ql_read32(qdev, STS);
599 }
600 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601 return var;
c4e84bde
RM
602}
603
604static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605{
606 u32 var = 0;
bb0d215c
RM
607 unsigned long hw_flags;
608 struct intr_context *ctx;
c4e84bde 609
bb0d215c
RM
610 /* HW disables for us if we're MSIX multi interrupts and
611 * it's not the default (zeroeth) interrupt.
612 */
613 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614 return 0;
615
616 ctx = qdev->intr_context + intr;
617 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 619 ql_write32(qdev, INTR_EN,
bb0d215c 620 ctx->intr_dis_mask);
c4e84bde
RM
621 var = ql_read32(qdev, STS);
622 }
bb0d215c
RM
623 atomic_inc(&ctx->irq_cnt);
624 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
625 return var;
626}
627
628static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629{
630 int i;
631 for (i = 0; i < qdev->intr_count; i++) {
632 /* The enable call does a atomic_dec_and_test
633 * and enables only if the result is zero.
634 * So we precharge it here.
635 */
bb0d215c
RM
636 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637 i == 0))
638 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
639 ql_enable_completion_interrupt(qdev, i);
640 }
641
642}
643
26351479 644static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
645{
646 int status = 0;
647 /* wait for reg to come ready */
648 status = ql_wait_reg_rdy(qdev,
649 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650 if (status)
651 goto exit;
652 /* set up for reg read */
653 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 /* wait for reg to come ready */
655 status = ql_wait_reg_rdy(qdev,
656 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657 if (status)
658 goto exit;
26351479
RM
659 /* This data is stored on flash as an array of
660 * __le32. Since ql_read32() returns cpu endian
661 * we need to swap it back.
662 */
663 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
664exit:
665 return status;
666}
667
668static int ql_get_flash_params(struct ql_adapter *qdev)
669{
670 int i;
671 int status;
26351479 672 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7
RM
673 u32 offset = 0;
674
675 /* Second function's parameters follow the first
676 * function's.
677 */
678 if (qdev->func)
679 offset = sizeof(qdev->flash) / sizeof(u32);
c4e84bde
RM
680
681 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682 return -ETIMEDOUT;
683
684 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
e78f5fa7 685 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
686 if (status) {
687 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688 goto exit;
689 }
690
691 }
692exit:
693 ql_sem_unlock(qdev, SEM_FLASH_MASK);
694 return status;
695}
696
697/* xgmac register are located behind the xgmac_addr and xgmac_data
698 * register pair. Each read/write requires us to wait for the ready
699 * bit before reading/writing the data.
700 */
701static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702{
703 int status;
704 /* wait for reg to come ready */
705 status = ql_wait_reg_rdy(qdev,
706 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707 if (status)
708 return status;
709 /* write the data to the data reg */
710 ql_write32(qdev, XGMAC_DATA, data);
711 /* trigger the write */
712 ql_write32(qdev, XGMAC_ADDR, reg);
713 return status;
714}
715
716/* xgmac register are located behind the xgmac_addr and xgmac_data
717 * register pair. Each read/write requires us to wait for the ready
718 * bit before reading/writing the data.
719 */
720int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721{
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733 if (status)
734 goto exit;
735 /* get the data */
736 *data = ql_read32(qdev, XGMAC_DATA);
737exit:
738 return status;
739}
740
741/* This is used for reading the 64-bit statistics regs. */
742int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743{
744 int status = 0;
745 u32 hi = 0;
746 u32 lo = 0;
747
748 status = ql_read_xgmac_reg(qdev, reg, &lo);
749 if (status)
750 goto exit;
751
752 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753 if (status)
754 goto exit;
755
756 *data = (u64) lo | ((u64) hi << 32);
757
758exit:
759 return status;
760}
761
762/* Take the MAC Core out of reset.
763 * Enable statistics counting.
764 * Take the transmitter/receiver out of reset.
765 * This functionality may be done in the MPI firmware at a
766 * later date.
767 */
768static int ql_port_initialize(struct ql_adapter *qdev)
769{
770 int status = 0;
771 u32 data;
772
773 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774 /* Another function has the semaphore, so
775 * wait for the port init bit to come ready.
776 */
777 QPRINTK(qdev, LINK, INFO,
778 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780 if (status) {
781 QPRINTK(qdev, LINK, CRIT,
782 "Port initialize timed out.\n");
783 }
784 return status;
785 }
786
787 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788 /* Set the core reset. */
789 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790 if (status)
791 goto end;
792 data |= GLOBAL_CFG_RESET;
793 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794 if (status)
795 goto end;
796
797 /* Clear the core reset and turn on jumbo for receiver. */
798 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
799 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
800 data |= GLOBAL_CFG_TX_STAT_EN;
801 data |= GLOBAL_CFG_RX_STAT_EN;
802 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803 if (status)
804 goto end;
805
806 /* Enable transmitter, and clear it's reset. */
807 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808 if (status)
809 goto end;
810 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
811 data |= TX_CFG_EN; /* Enable the transmitter. */
812 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813 if (status)
814 goto end;
815
816 /* Enable receiver and clear it's reset. */
817 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818 if (status)
819 goto end;
820 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
821 data |= RX_CFG_EN; /* Enable the receiver. */
822 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823 if (status)
824 goto end;
825
826 /* Turn on jumbo. */
827 status =
828 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829 if (status)
830 goto end;
831 status =
832 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833 if (status)
834 goto end;
835
836 /* Signal to the world that the port is enabled. */
837 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838end:
839 ql_sem_unlock(qdev, qdev->xg_sem_mask);
840 return status;
841}
842
843/* Get the next large buffer. */
8668ae92 844static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
845{
846 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847 rx_ring->lbq_curr_idx++;
848 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849 rx_ring->lbq_curr_idx = 0;
850 rx_ring->lbq_free_cnt++;
851 return lbq_desc;
852}
853
854/* Get the next small buffer. */
8668ae92 855static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
856{
857 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858 rx_ring->sbq_curr_idx++;
859 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860 rx_ring->sbq_curr_idx = 0;
861 rx_ring->sbq_free_cnt++;
862 return sbq_desc;
863}
864
865/* Update an rx ring index. */
866static void ql_update_cq(struct rx_ring *rx_ring)
867{
868 rx_ring->cnsmr_idx++;
869 rx_ring->curr_entry++;
870 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871 rx_ring->cnsmr_idx = 0;
872 rx_ring->curr_entry = rx_ring->cq_base;
873 }
874}
875
876static void ql_write_cq_idx(struct rx_ring *rx_ring)
877{
878 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879}
880
881/* Process (refill) a large buffer queue. */
882static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883{
884 int clean_idx = rx_ring->lbq_clean_idx;
885 struct bq_desc *lbq_desc;
c4e84bde
RM
886 u64 map;
887 int i;
888
889 while (rx_ring->lbq_free_cnt > 16) {
890 for (i = 0; i < 16; i++) {
891 QPRINTK(qdev, RX_STATUS, DEBUG,
892 "lbq: try cleaning clean_idx = %d.\n",
893 clean_idx);
894 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
895 if (lbq_desc->p.lbq_page == NULL) {
896 QPRINTK(qdev, RX_STATUS, DEBUG,
897 "lbq: getting new page for index %d.\n",
898 lbq_desc->index);
899 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900 if (lbq_desc->p.lbq_page == NULL) {
901 QPRINTK(qdev, RX_STATUS, ERR,
902 "Couldn't get a page.\n");
903 return;
904 }
905 map = pci_map_page(qdev->pdev,
906 lbq_desc->p.lbq_page,
907 0, PAGE_SIZE,
908 PCI_DMA_FROMDEVICE);
909 if (pci_dma_mapping_error(qdev->pdev, map)) {
f2603c2c
RM
910 put_page(lbq_desc->p.lbq_page);
911 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
912 QPRINTK(qdev, RX_STATUS, ERR,
913 "PCI mapping failed.\n");
914 return;
915 }
916 pci_unmap_addr_set(lbq_desc, mapaddr, map);
917 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 918 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
919 }
920 clean_idx++;
921 if (clean_idx == rx_ring->lbq_len)
922 clean_idx = 0;
923 }
924
925 rx_ring->lbq_clean_idx = clean_idx;
926 rx_ring->lbq_prod_idx += 16;
927 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
928 rx_ring->lbq_prod_idx = 0;
929 QPRINTK(qdev, RX_STATUS, DEBUG,
930 "lbq: updating prod idx = %d.\n",
931 rx_ring->lbq_prod_idx);
932 ql_write_db_reg(rx_ring->lbq_prod_idx,
933 rx_ring->lbq_prod_idx_db_reg);
934 rx_ring->lbq_free_cnt -= 16;
935 }
936}
937
938/* Process (refill) a small buffer queue. */
939static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
940{
941 int clean_idx = rx_ring->sbq_clean_idx;
942 struct bq_desc *sbq_desc;
c4e84bde
RM
943 u64 map;
944 int i;
945
946 while (rx_ring->sbq_free_cnt > 16) {
947 for (i = 0; i < 16; i++) {
948 sbq_desc = &rx_ring->sbq[clean_idx];
949 QPRINTK(qdev, RX_STATUS, DEBUG,
950 "sbq: try cleaning clean_idx = %d.\n",
951 clean_idx);
c4e84bde
RM
952 if (sbq_desc->p.skb == NULL) {
953 QPRINTK(qdev, RX_STATUS, DEBUG,
954 "sbq: getting new skb for index %d.\n",
955 sbq_desc->index);
956 sbq_desc->p.skb =
957 netdev_alloc_skb(qdev->ndev,
958 rx_ring->sbq_buf_size);
959 if (sbq_desc->p.skb == NULL) {
960 QPRINTK(qdev, PROBE, ERR,
961 "Couldn't get an skb.\n");
962 rx_ring->sbq_clean_idx = clean_idx;
963 return;
964 }
965 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
966 map = pci_map_single(qdev->pdev,
967 sbq_desc->p.skb->data,
968 rx_ring->sbq_buf_size /
969 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
970 if (pci_dma_mapping_error(qdev->pdev, map)) {
971 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
972 rx_ring->sbq_clean_idx = clean_idx;
973 return;
974 }
c4e84bde
RM
975 pci_unmap_addr_set(sbq_desc, mapaddr, map);
976 pci_unmap_len_set(sbq_desc, maplen,
977 rx_ring->sbq_buf_size / 2);
2c9a0d41 978 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
979 }
980
981 clean_idx++;
982 if (clean_idx == rx_ring->sbq_len)
983 clean_idx = 0;
984 }
985 rx_ring->sbq_clean_idx = clean_idx;
986 rx_ring->sbq_prod_idx += 16;
987 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
988 rx_ring->sbq_prod_idx = 0;
989 QPRINTK(qdev, RX_STATUS, DEBUG,
990 "sbq: updating prod idx = %d.\n",
991 rx_ring->sbq_prod_idx);
992 ql_write_db_reg(rx_ring->sbq_prod_idx,
993 rx_ring->sbq_prod_idx_db_reg);
994
995 rx_ring->sbq_free_cnt -= 16;
996 }
997}
998
999static void ql_update_buffer_queues(struct ql_adapter *qdev,
1000 struct rx_ring *rx_ring)
1001{
1002 ql_update_sbq(qdev, rx_ring);
1003 ql_update_lbq(qdev, rx_ring);
1004}
1005
1006/* Unmaps tx buffers. Can be called from send() if a pci mapping
1007 * fails at some stage, or from the interrupt when a tx completes.
1008 */
1009static void ql_unmap_send(struct ql_adapter *qdev,
1010 struct tx_ring_desc *tx_ring_desc, int mapped)
1011{
1012 int i;
1013 for (i = 0; i < mapped; i++) {
1014 if (i == 0 || (i == 7 && mapped > 7)) {
1015 /*
1016 * Unmap the skb->data area, or the
1017 * external sglist (AKA the Outbound
1018 * Address List (OAL)).
1019 * If its the zeroeth element, then it's
1020 * the skb->data area. If it's the 7th
1021 * element and there is more than 6 frags,
1022 * then its an OAL.
1023 */
1024 if (i == 7) {
1025 QPRINTK(qdev, TX_DONE, DEBUG,
1026 "unmapping OAL area.\n");
1027 }
1028 pci_unmap_single(qdev->pdev,
1029 pci_unmap_addr(&tx_ring_desc->map[i],
1030 mapaddr),
1031 pci_unmap_len(&tx_ring_desc->map[i],
1032 maplen),
1033 PCI_DMA_TODEVICE);
1034 } else {
1035 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1036 i);
1037 pci_unmap_page(qdev->pdev,
1038 pci_unmap_addr(&tx_ring_desc->map[i],
1039 mapaddr),
1040 pci_unmap_len(&tx_ring_desc->map[i],
1041 maplen), PCI_DMA_TODEVICE);
1042 }
1043 }
1044
1045}
1046
1047/* Map the buffers for this transmit. This will return
1048 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1049 */
1050static int ql_map_send(struct ql_adapter *qdev,
1051 struct ob_mac_iocb_req *mac_iocb_ptr,
1052 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1053{
1054 int len = skb_headlen(skb);
1055 dma_addr_t map;
1056 int frag_idx, err, map_idx = 0;
1057 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1058 int frag_cnt = skb_shinfo(skb)->nr_frags;
1059
1060 if (frag_cnt) {
1061 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1062 }
1063 /*
1064 * Map the skb buffer first.
1065 */
1066 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1067
1068 err = pci_dma_mapping_error(qdev->pdev, map);
1069 if (err) {
1070 QPRINTK(qdev, TX_QUEUED, ERR,
1071 "PCI mapping failed with error: %d\n", err);
1072
1073 return NETDEV_TX_BUSY;
1074 }
1075
1076 tbd->len = cpu_to_le32(len);
1077 tbd->addr = cpu_to_le64(map);
1078 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1079 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1080 map_idx++;
1081
1082 /*
1083 * This loop fills the remainder of the 8 address descriptors
1084 * in the IOCB. If there are more than 7 fragments, then the
1085 * eighth address desc will point to an external list (OAL).
1086 * When this happens, the remainder of the frags will be stored
1087 * in this list.
1088 */
1089 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1090 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1091 tbd++;
1092 if (frag_idx == 6 && frag_cnt > 7) {
1093 /* Let's tack on an sglist.
1094 * Our control block will now
1095 * look like this:
1096 * iocb->seg[0] = skb->data
1097 * iocb->seg[1] = frag[0]
1098 * iocb->seg[2] = frag[1]
1099 * iocb->seg[3] = frag[2]
1100 * iocb->seg[4] = frag[3]
1101 * iocb->seg[5] = frag[4]
1102 * iocb->seg[6] = frag[5]
1103 * iocb->seg[7] = ptr to OAL (external sglist)
1104 * oal->seg[0] = frag[6]
1105 * oal->seg[1] = frag[7]
1106 * oal->seg[2] = frag[8]
1107 * oal->seg[3] = frag[9]
1108 * oal->seg[4] = frag[10]
1109 * etc...
1110 */
1111 /* Tack on the OAL in the eighth segment of IOCB. */
1112 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1113 sizeof(struct oal),
1114 PCI_DMA_TODEVICE);
1115 err = pci_dma_mapping_error(qdev->pdev, map);
1116 if (err) {
1117 QPRINTK(qdev, TX_QUEUED, ERR,
1118 "PCI mapping outbound address list with error: %d\n",
1119 err);
1120 goto map_error;
1121 }
1122
1123 tbd->addr = cpu_to_le64(map);
1124 /*
1125 * The length is the number of fragments
1126 * that remain to be mapped times the length
1127 * of our sglist (OAL).
1128 */
1129 tbd->len =
1130 cpu_to_le32((sizeof(struct tx_buf_desc) *
1131 (frag_cnt - frag_idx)) | TX_DESC_C);
1132 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1133 map);
1134 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1135 sizeof(struct oal));
1136 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1137 map_idx++;
1138 }
1139
1140 map =
1141 pci_map_page(qdev->pdev, frag->page,
1142 frag->page_offset, frag->size,
1143 PCI_DMA_TODEVICE);
1144
1145 err = pci_dma_mapping_error(qdev->pdev, map);
1146 if (err) {
1147 QPRINTK(qdev, TX_QUEUED, ERR,
1148 "PCI mapping frags failed with error: %d.\n",
1149 err);
1150 goto map_error;
1151 }
1152
1153 tbd->addr = cpu_to_le64(map);
1154 tbd->len = cpu_to_le32(frag->size);
1155 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1156 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1157 frag->size);
1158
1159 }
1160 /* Save the number of segments we've mapped. */
1161 tx_ring_desc->map_cnt = map_idx;
1162 /* Terminate the last segment. */
1163 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1164 return NETDEV_TX_OK;
1165
1166map_error:
1167 /*
1168 * If the first frag mapping failed, then i will be zero.
1169 * This causes the unmap of the skb->data area. Otherwise
1170 * we pass in the number of frags that mapped successfully
1171 * so they can be umapped.
1172 */
1173 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1174 return NETDEV_TX_BUSY;
1175}
1176
8668ae92 1177static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1178{
1179 void *temp_addr = skb->data;
1180
1181 /* Undo the skb_reserve(skb,32) we did before
1182 * giving to hardware, and realign data on
1183 * a 2-byte boundary.
1184 */
1185 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1186 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1187 skb_copy_to_linear_data(skb, temp_addr,
1188 (unsigned int)len);
1189}
1190
1191/*
1192 * This function builds an skb for the given inbound
1193 * completion. It will be rewritten for readability in the near
1194 * future, but for not it works well.
1195 */
1196static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1197 struct rx_ring *rx_ring,
1198 struct ib_mac_iocb_rsp *ib_mac_rsp)
1199{
1200 struct bq_desc *lbq_desc;
1201 struct bq_desc *sbq_desc;
1202 struct sk_buff *skb = NULL;
1203 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1204 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1205
1206 /*
1207 * Handle the header buffer if present.
1208 */
1209 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1210 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1211 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1212 /*
1213 * Headers fit nicely into a small buffer.
1214 */
1215 sbq_desc = ql_get_curr_sbuf(rx_ring);
1216 pci_unmap_single(qdev->pdev,
1217 pci_unmap_addr(sbq_desc, mapaddr),
1218 pci_unmap_len(sbq_desc, maplen),
1219 PCI_DMA_FROMDEVICE);
1220 skb = sbq_desc->p.skb;
1221 ql_realign_skb(skb, hdr_len);
1222 skb_put(skb, hdr_len);
1223 sbq_desc->p.skb = NULL;
1224 }
1225
1226 /*
1227 * Handle the data buffer(s).
1228 */
1229 if (unlikely(!length)) { /* Is there data too? */
1230 QPRINTK(qdev, RX_STATUS, DEBUG,
1231 "No Data buffer in this packet.\n");
1232 return skb;
1233 }
1234
1235 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1236 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1237 QPRINTK(qdev, RX_STATUS, DEBUG,
1238 "Headers in small, data of %d bytes in small, combine them.\n", length);
1239 /*
1240 * Data is less than small buffer size so it's
1241 * stuffed in a small buffer.
1242 * For this case we append the data
1243 * from the "data" small buffer to the "header" small
1244 * buffer.
1245 */
1246 sbq_desc = ql_get_curr_sbuf(rx_ring);
1247 pci_dma_sync_single_for_cpu(qdev->pdev,
1248 pci_unmap_addr
1249 (sbq_desc, mapaddr),
1250 pci_unmap_len
1251 (sbq_desc, maplen),
1252 PCI_DMA_FROMDEVICE);
1253 memcpy(skb_put(skb, length),
1254 sbq_desc->p.skb->data, length);
1255 pci_dma_sync_single_for_device(qdev->pdev,
1256 pci_unmap_addr
1257 (sbq_desc,
1258 mapaddr),
1259 pci_unmap_len
1260 (sbq_desc,
1261 maplen),
1262 PCI_DMA_FROMDEVICE);
1263 } else {
1264 QPRINTK(qdev, RX_STATUS, DEBUG,
1265 "%d bytes in a single small buffer.\n", length);
1266 sbq_desc = ql_get_curr_sbuf(rx_ring);
1267 skb = sbq_desc->p.skb;
1268 ql_realign_skb(skb, length);
1269 skb_put(skb, length);
1270 pci_unmap_single(qdev->pdev,
1271 pci_unmap_addr(sbq_desc,
1272 mapaddr),
1273 pci_unmap_len(sbq_desc,
1274 maplen),
1275 PCI_DMA_FROMDEVICE);
1276 sbq_desc->p.skb = NULL;
1277 }
1278 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1279 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1280 QPRINTK(qdev, RX_STATUS, DEBUG,
1281 "Header in small, %d bytes in large. Chain large to small!\n", length);
1282 /*
1283 * The data is in a single large buffer. We
1284 * chain it to the header buffer's skb and let
1285 * it rip.
1286 */
1287 lbq_desc = ql_get_curr_lbuf(rx_ring);
1288 pci_unmap_page(qdev->pdev,
1289 pci_unmap_addr(lbq_desc,
1290 mapaddr),
1291 pci_unmap_len(lbq_desc, maplen),
1292 PCI_DMA_FROMDEVICE);
1293 QPRINTK(qdev, RX_STATUS, DEBUG,
1294 "Chaining page to skb.\n");
1295 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1296 0, length);
1297 skb->len += length;
1298 skb->data_len += length;
1299 skb->truesize += length;
1300 lbq_desc->p.lbq_page = NULL;
1301 } else {
1302 /*
1303 * The headers and data are in a single large buffer. We
1304 * copy it to a new skb and let it go. This can happen with
1305 * jumbo mtu on a non-TCP/UDP frame.
1306 */
1307 lbq_desc = ql_get_curr_lbuf(rx_ring);
1308 skb = netdev_alloc_skb(qdev->ndev, length);
1309 if (skb == NULL) {
1310 QPRINTK(qdev, PROBE, DEBUG,
1311 "No skb available, drop the packet.\n");
1312 return NULL;
1313 }
4055c7d4
RM
1314 pci_unmap_page(qdev->pdev,
1315 pci_unmap_addr(lbq_desc,
1316 mapaddr),
1317 pci_unmap_len(lbq_desc, maplen),
1318 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1319 skb_reserve(skb, NET_IP_ALIGN);
1320 QPRINTK(qdev, RX_STATUS, DEBUG,
1321 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1322 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1323 0, length);
1324 skb->len += length;
1325 skb->data_len += length;
1326 skb->truesize += length;
1327 length -= length;
1328 lbq_desc->p.lbq_page = NULL;
1329 __pskb_pull_tail(skb,
1330 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1331 VLAN_ETH_HLEN : ETH_HLEN);
1332 }
1333 } else {
1334 /*
1335 * The data is in a chain of large buffers
1336 * pointed to by a small buffer. We loop
1337 * thru and chain them to the our small header
1338 * buffer's skb.
1339 * frags: There are 18 max frags and our small
1340 * buffer will hold 32 of them. The thing is,
1341 * we'll use 3 max for our 9000 byte jumbo
1342 * frames. If the MTU goes up we could
1343 * eventually be in trouble.
1344 */
1345 int size, offset, i = 0;
2c9a0d41 1346 __le64 *bq, bq_array[8];
c4e84bde
RM
1347 sbq_desc = ql_get_curr_sbuf(rx_ring);
1348 pci_unmap_single(qdev->pdev,
1349 pci_unmap_addr(sbq_desc, mapaddr),
1350 pci_unmap_len(sbq_desc, maplen),
1351 PCI_DMA_FROMDEVICE);
1352 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1353 /*
1354 * This is an non TCP/UDP IP frame, so
1355 * the headers aren't split into a small
1356 * buffer. We have to use the small buffer
1357 * that contains our sg list as our skb to
1358 * send upstairs. Copy the sg list here to
1359 * a local buffer and use it to find the
1360 * pages to chain.
1361 */
1362 QPRINTK(qdev, RX_STATUS, DEBUG,
1363 "%d bytes of headers & data in chain of large.\n", length);
1364 skb = sbq_desc->p.skb;
1365 bq = &bq_array[0];
1366 memcpy(bq, skb->data, sizeof(bq_array));
1367 sbq_desc->p.skb = NULL;
1368 skb_reserve(skb, NET_IP_ALIGN);
1369 } else {
1370 QPRINTK(qdev, RX_STATUS, DEBUG,
1371 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1372 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1373 }
1374 while (length > 0) {
1375 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1376 pci_unmap_page(qdev->pdev,
1377 pci_unmap_addr(lbq_desc,
1378 mapaddr),
1379 pci_unmap_len(lbq_desc,
1380 maplen),
1381 PCI_DMA_FROMDEVICE);
1382 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1383 offset = 0;
1384
1385 QPRINTK(qdev, RX_STATUS, DEBUG,
1386 "Adding page %d to skb for %d bytes.\n",
1387 i, size);
1388 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1389 offset, size);
1390 skb->len += size;
1391 skb->data_len += size;
1392 skb->truesize += size;
1393 length -= size;
1394 lbq_desc->p.lbq_page = NULL;
1395 bq++;
1396 i++;
1397 }
1398 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1399 VLAN_ETH_HLEN : ETH_HLEN);
1400 }
1401 return skb;
1402}
1403
1404/* Process an inbound completion from an rx ring. */
1405static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1406 struct rx_ring *rx_ring,
1407 struct ib_mac_iocb_rsp *ib_mac_rsp)
1408{
1409 struct net_device *ndev = qdev->ndev;
1410 struct sk_buff *skb = NULL;
1411
1412 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1413
1414 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1415 if (unlikely(!skb)) {
1416 QPRINTK(qdev, RX_STATUS, DEBUG,
1417 "No skb available, drop packet.\n");
1418 return;
1419 }
1420
1421 prefetch(skb->data);
1422 skb->dev = ndev;
1423 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1424 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1425 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1426 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1427 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1428 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1429 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1431 }
1432 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1433 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1434 }
1435 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1436 QPRINTK(qdev, RX_STATUS, ERR,
1437 "Bad checksum for this %s packet.\n",
1438 ((ib_mac_rsp->
1439 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1440 skb->ip_summed = CHECKSUM_NONE;
1441 } else if (qdev->rx_csum &&
1442 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1443 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1444 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1445 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1446 skb->ip_summed = CHECKSUM_UNNECESSARY;
1447 }
1448 qdev->stats.rx_packets++;
1449 qdev->stats.rx_bytes += skb->len;
1450 skb->protocol = eth_type_trans(skb, ndev);
1451 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1452 QPRINTK(qdev, RX_STATUS, DEBUG,
1453 "Passing a VLAN packet upstream.\n");
7a9deb66 1454 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
c4e84bde
RM
1455 le16_to_cpu(ib_mac_rsp->vlan_id));
1456 } else {
1457 QPRINTK(qdev, RX_STATUS, DEBUG,
1458 "Passing a normal packet upstream.\n");
7a9deb66 1459 netif_receive_skb(skb);
c4e84bde 1460 }
c4e84bde
RM
1461}
1462
1463/* Process an outbound completion from an rx ring. */
1464static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1465 struct ob_mac_iocb_rsp *mac_rsp)
1466{
1467 struct tx_ring *tx_ring;
1468 struct tx_ring_desc *tx_ring_desc;
1469
1470 QL_DUMP_OB_MAC_RSP(mac_rsp);
1471 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1472 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1473 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1474 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1475 qdev->stats.tx_packets++;
1476 dev_kfree_skb(tx_ring_desc->skb);
1477 tx_ring_desc->skb = NULL;
1478
1479 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1480 OB_MAC_IOCB_RSP_S |
1481 OB_MAC_IOCB_RSP_L |
1482 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1483 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1484 QPRINTK(qdev, TX_DONE, WARNING,
1485 "Total descriptor length did not match transfer length.\n");
1486 }
1487 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1488 QPRINTK(qdev, TX_DONE, WARNING,
1489 "Frame too short to be legal, not sent.\n");
1490 }
1491 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1492 QPRINTK(qdev, TX_DONE, WARNING,
1493 "Frame too long, but sent anyway.\n");
1494 }
1495 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1496 QPRINTK(qdev, TX_DONE, WARNING,
1497 "PCI backplane error. Frame not sent.\n");
1498 }
1499 }
1500 atomic_inc(&tx_ring->tx_count);
1501}
1502
1503/* Fire up a handler to reset the MPI processor. */
1504void ql_queue_fw_error(struct ql_adapter *qdev)
1505{
1506 netif_stop_queue(qdev->ndev);
1507 netif_carrier_off(qdev->ndev);
1508 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1509}
1510
1511void ql_queue_asic_error(struct ql_adapter *qdev)
1512{
1513 netif_stop_queue(qdev->ndev);
1514 netif_carrier_off(qdev->ndev);
1515 ql_disable_interrupts(qdev);
6497b607
RM
1516 /* Clear adapter up bit to signal the recovery
1517 * process that it shouldn't kill the reset worker
1518 * thread
1519 */
1520 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1521 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1522}
1523
1524static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1525 struct ib_ae_iocb_rsp *ib_ae_rsp)
1526{
1527 switch (ib_ae_rsp->event) {
1528 case MGMT_ERR_EVENT:
1529 QPRINTK(qdev, RX_ERR, ERR,
1530 "Management Processor Fatal Error.\n");
1531 ql_queue_fw_error(qdev);
1532 return;
1533
1534 case CAM_LOOKUP_ERR_EVENT:
1535 QPRINTK(qdev, LINK, ERR,
1536 "Multiple CAM hits lookup occurred.\n");
1537 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1538 ql_queue_asic_error(qdev);
1539 return;
1540
1541 case SOFT_ECC_ERROR_EVENT:
1542 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1543 ql_queue_asic_error(qdev);
1544 break;
1545
1546 case PCI_ERR_ANON_BUF_RD:
1547 QPRINTK(qdev, RX_ERR, ERR,
1548 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1549 ib_ae_rsp->q_id);
1550 ql_queue_asic_error(qdev);
1551 break;
1552
1553 default:
1554 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1555 ib_ae_rsp->event);
1556 ql_queue_asic_error(qdev);
1557 break;
1558 }
1559}
1560
1561static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1562{
1563 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1564 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1565 struct ob_mac_iocb_rsp *net_rsp = NULL;
1566 int count = 0;
1567
1568 /* While there are entries in the completion queue. */
1569 while (prod != rx_ring->cnsmr_idx) {
1570
1571 QPRINTK(qdev, RX_STATUS, DEBUG,
1572 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1573 prod, rx_ring->cnsmr_idx);
1574
1575 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1576 rmb();
1577 switch (net_rsp->opcode) {
1578
1579 case OPCODE_OB_MAC_TSO_IOCB:
1580 case OPCODE_OB_MAC_IOCB:
1581 ql_process_mac_tx_intr(qdev, net_rsp);
1582 break;
1583 default:
1584 QPRINTK(qdev, RX_STATUS, DEBUG,
1585 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1586 net_rsp->opcode);
1587 }
1588 count++;
1589 ql_update_cq(rx_ring);
ba7cd3ba 1590 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1591 }
1592 ql_write_cq_idx(rx_ring);
1593 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1594 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1595 if (atomic_read(&tx_ring->queue_stopped) &&
1596 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1597 /*
1598 * The queue got stopped because the tx_ring was full.
1599 * Wake it up, because it's now at least 25% empty.
1600 */
1601 netif_wake_queue(qdev->ndev);
1602 }
1603
1604 return count;
1605}
1606
1607static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1608{
1609 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1610 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1611 struct ql_net_rsp_iocb *net_rsp;
1612 int count = 0;
1613
1614 /* While there are entries in the completion queue. */
1615 while (prod != rx_ring->cnsmr_idx) {
1616
1617 QPRINTK(qdev, RX_STATUS, DEBUG,
1618 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1619 prod, rx_ring->cnsmr_idx);
1620
1621 net_rsp = rx_ring->curr_entry;
1622 rmb();
1623 switch (net_rsp->opcode) {
1624 case OPCODE_IB_MAC_IOCB:
1625 ql_process_mac_rx_intr(qdev, rx_ring,
1626 (struct ib_mac_iocb_rsp *)
1627 net_rsp);
1628 break;
1629
1630 case OPCODE_IB_AE_IOCB:
1631 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1632 net_rsp);
1633 break;
1634 default:
1635 {
1636 QPRINTK(qdev, RX_STATUS, DEBUG,
1637 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1638 net_rsp->opcode);
1639 }
1640 }
1641 count++;
1642 ql_update_cq(rx_ring);
ba7cd3ba 1643 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1644 if (count == budget)
1645 break;
1646 }
1647 ql_update_buffer_queues(qdev, rx_ring);
1648 ql_write_cq_idx(rx_ring);
1649 return count;
1650}
1651
1652static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1653{
1654 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1655 struct ql_adapter *qdev = rx_ring->qdev;
1656 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1657
1658 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1659 rx_ring->cq_id);
1660
1661 if (work_done < budget) {
908a7a16 1662 __netif_rx_complete(napi);
c4e84bde
RM
1663 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1664 }
1665 return work_done;
1666}
1667
1668static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1669{
1670 struct ql_adapter *qdev = netdev_priv(ndev);
1671
1672 qdev->vlgrp = grp;
1673 if (grp) {
1674 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1675 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1676 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1677 } else {
1678 QPRINTK(qdev, IFUP, DEBUG,
1679 "Turning off VLAN in NIC_RCV_CFG.\n");
1680 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1681 }
1682}
1683
1684static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1685{
1686 struct ql_adapter *qdev = netdev_priv(ndev);
1687 u32 enable_bit = MAC_ADDR_E;
1688
1689 spin_lock(&qdev->hw_lock);
1690 if (ql_set_mac_addr_reg
1691 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1692 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1693 }
1694 spin_unlock(&qdev->hw_lock);
1695}
1696
1697static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1698{
1699 struct ql_adapter *qdev = netdev_priv(ndev);
1700 u32 enable_bit = 0;
1701
1702 spin_lock(&qdev->hw_lock);
1703 if (ql_set_mac_addr_reg
1704 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1705 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1706 }
1707 spin_unlock(&qdev->hw_lock);
1708
1709}
1710
1711/* Worker thread to process a given rx_ring that is dedicated
1712 * to outbound completions.
1713 */
1714static void ql_tx_clean(struct work_struct *work)
1715{
1716 struct rx_ring *rx_ring =
1717 container_of(work, struct rx_ring, rx_work.work);
1718 ql_clean_outbound_rx_ring(rx_ring);
1719 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1720
1721}
1722
1723/* Worker thread to process a given rx_ring that is dedicated
1724 * to inbound completions.
1725 */
1726static void ql_rx_clean(struct work_struct *work)
1727{
1728 struct rx_ring *rx_ring =
1729 container_of(work, struct rx_ring, rx_work.work);
1730 ql_clean_inbound_rx_ring(rx_ring, 64);
1731 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1732}
1733
1734/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1735static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1736{
1737 struct rx_ring *rx_ring = dev_id;
1738 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1739 &rx_ring->rx_work, 0);
1740 return IRQ_HANDLED;
1741}
1742
1743/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1744static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1745{
1746 struct rx_ring *rx_ring = dev_id;
908a7a16 1747 netif_rx_schedule(&rx_ring->napi);
c4e84bde
RM
1748 return IRQ_HANDLED;
1749}
1750
c4e84bde
RM
1751/* This handles a fatal error, MPI activity, and the default
1752 * rx_ring in an MSI-X multiple vector environment.
1753 * In MSI/Legacy environment it also process the rest of
1754 * the rx_rings.
1755 */
1756static irqreturn_t qlge_isr(int irq, void *dev_id)
1757{
1758 struct rx_ring *rx_ring = dev_id;
1759 struct ql_adapter *qdev = rx_ring->qdev;
1760 struct intr_context *intr_context = &qdev->intr_context[0];
1761 u32 var;
1762 int i;
1763 int work_done = 0;
1764
bb0d215c
RM
1765 spin_lock(&qdev->hw_lock);
1766 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1767 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1768 spin_unlock(&qdev->hw_lock);
1769 return IRQ_NONE;
c4e84bde 1770 }
bb0d215c 1771 spin_unlock(&qdev->hw_lock);
c4e84bde 1772
bb0d215c 1773 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1774
1775 /*
1776 * Check for fatal error.
1777 */
1778 if (var & STS_FE) {
1779 ql_queue_asic_error(qdev);
1780 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1781 var = ql_read32(qdev, ERR_STS);
1782 QPRINTK(qdev, INTR, ERR,
1783 "Resetting chip. Error Status Register = 0x%x\n", var);
1784 return IRQ_HANDLED;
1785 }
1786
1787 /*
1788 * Check MPI processor activity.
1789 */
1790 if (var & STS_PI) {
1791 /*
1792 * We've got an async event or mailbox completion.
1793 * Handle it and clear the source of the interrupt.
1794 */
1795 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1796 ql_disable_completion_interrupt(qdev, intr_context->intr);
1797 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1798 &qdev->mpi_work, 0);
1799 work_done++;
1800 }
1801
1802 /*
1803 * Check the default queue and wake handler if active.
1804 */
1805 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1806 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1807 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1808 ql_disable_completion_interrupt(qdev, intr_context->intr);
1809 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1810 &rx_ring->rx_work, 0);
1811 work_done++;
1812 }
1813
1814 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1815 /*
1816 * Start the DPC for each active queue.
1817 */
1818 for (i = 1; i < qdev->rx_ring_count; i++) {
1819 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1820 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1821 rx_ring->cnsmr_idx) {
1822 QPRINTK(qdev, INTR, INFO,
1823 "Waking handler for rx_ring[%d].\n", i);
1824 ql_disable_completion_interrupt(qdev,
1825 intr_context->
1826 intr);
1827 if (i < qdev->rss_ring_first_cq_id)
1828 queue_delayed_work_on(rx_ring->cpu,
1829 qdev->q_workqueue,
1830 &rx_ring->rx_work,
1831 0);
1832 else
908a7a16 1833 netif_rx_schedule(&rx_ring->napi);
c4e84bde
RM
1834 work_done++;
1835 }
1836 }
1837 }
bb0d215c 1838 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1839 return work_done ? IRQ_HANDLED : IRQ_NONE;
1840}
1841
1842static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1843{
1844
1845 if (skb_is_gso(skb)) {
1846 int err;
1847 if (skb_header_cloned(skb)) {
1848 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1849 if (err)
1850 return err;
1851 }
1852
1853 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1854 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1855 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1856 mac_iocb_ptr->total_hdrs_len =
1857 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1858 mac_iocb_ptr->net_trans_offset =
1859 cpu_to_le16(skb_network_offset(skb) |
1860 skb_transport_offset(skb)
1861 << OB_MAC_TRANSPORT_HDR_SHIFT);
1862 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1863 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1864 if (likely(skb->protocol == htons(ETH_P_IP))) {
1865 struct iphdr *iph = ip_hdr(skb);
1866 iph->check = 0;
1867 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1868 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1869 iph->daddr, 0,
1870 IPPROTO_TCP,
1871 0);
1872 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1873 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1874 tcp_hdr(skb)->check =
1875 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1876 &ipv6_hdr(skb)->daddr,
1877 0, IPPROTO_TCP, 0);
1878 }
1879 return 1;
1880 }
1881 return 0;
1882}
1883
1884static void ql_hw_csum_setup(struct sk_buff *skb,
1885 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1886{
1887 int len;
1888 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 1889 __sum16 *check;
c4e84bde
RM
1890 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1891 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1892 mac_iocb_ptr->net_trans_offset =
1893 cpu_to_le16(skb_network_offset(skb) |
1894 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1895
1896 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1897 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1898 if (likely(iph->protocol == IPPROTO_TCP)) {
1899 check = &(tcp_hdr(skb)->check);
1900 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1901 mac_iocb_ptr->total_hdrs_len =
1902 cpu_to_le16(skb_transport_offset(skb) +
1903 (tcp_hdr(skb)->doff << 2));
1904 } else {
1905 check = &(udp_hdr(skb)->check);
1906 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1907 mac_iocb_ptr->total_hdrs_len =
1908 cpu_to_le16(skb_transport_offset(skb) +
1909 sizeof(struct udphdr));
1910 }
1911 *check = ~csum_tcpudp_magic(iph->saddr,
1912 iph->daddr, len, iph->protocol, 0);
1913}
1914
1915static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1916{
1917 struct tx_ring_desc *tx_ring_desc;
1918 struct ob_mac_iocb_req *mac_iocb_ptr;
1919 struct ql_adapter *qdev = netdev_priv(ndev);
1920 int tso;
1921 struct tx_ring *tx_ring;
1922 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1923
1924 tx_ring = &qdev->tx_ring[tx_ring_idx];
1925
1926 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1927 QPRINTK(qdev, TX_QUEUED, INFO,
1928 "%s: shutting down tx queue %d du to lack of resources.\n",
1929 __func__, tx_ring_idx);
1930 netif_stop_queue(ndev);
1931 atomic_inc(&tx_ring->queue_stopped);
1932 return NETDEV_TX_BUSY;
1933 }
1934 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1935 mac_iocb_ptr = tx_ring_desc->queue_entry;
1936 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1937 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1938 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1939 return NETDEV_TX_BUSY;
1940 }
1941
1942 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1943 mac_iocb_ptr->tid = tx_ring_desc->index;
1944 /* We use the upper 32-bits to store the tx queue for this IO.
1945 * When we get the completion we can use it to establish the context.
1946 */
1947 mac_iocb_ptr->txq_idx = tx_ring_idx;
1948 tx_ring_desc->skb = skb;
1949
1950 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1951
1952 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1953 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1954 vlan_tx_tag_get(skb));
1955 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1956 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1957 }
1958 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1959 if (tso < 0) {
1960 dev_kfree_skb_any(skb);
1961 return NETDEV_TX_OK;
1962 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1963 ql_hw_csum_setup(skb,
1964 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1965 }
1966 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1967 tx_ring->prod_idx++;
1968 if (tx_ring->prod_idx == tx_ring->wq_len)
1969 tx_ring->prod_idx = 0;
1970 wmb();
1971
1972 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1973 ndev->trans_start = jiffies;
1974 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1975 tx_ring->prod_idx, skb->len);
1976
1977 atomic_dec(&tx_ring->tx_count);
1978 return NETDEV_TX_OK;
1979}
1980
1981static void ql_free_shadow_space(struct ql_adapter *qdev)
1982{
1983 if (qdev->rx_ring_shadow_reg_area) {
1984 pci_free_consistent(qdev->pdev,
1985 PAGE_SIZE,
1986 qdev->rx_ring_shadow_reg_area,
1987 qdev->rx_ring_shadow_reg_dma);
1988 qdev->rx_ring_shadow_reg_area = NULL;
1989 }
1990 if (qdev->tx_ring_shadow_reg_area) {
1991 pci_free_consistent(qdev->pdev,
1992 PAGE_SIZE,
1993 qdev->tx_ring_shadow_reg_area,
1994 qdev->tx_ring_shadow_reg_dma);
1995 qdev->tx_ring_shadow_reg_area = NULL;
1996 }
1997}
1998
1999static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2000{
2001 qdev->rx_ring_shadow_reg_area =
2002 pci_alloc_consistent(qdev->pdev,
2003 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2004 if (qdev->rx_ring_shadow_reg_area == NULL) {
2005 QPRINTK(qdev, IFUP, ERR,
2006 "Allocation of RX shadow space failed.\n");
2007 return -ENOMEM;
2008 }
2009 qdev->tx_ring_shadow_reg_area =
2010 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2011 &qdev->tx_ring_shadow_reg_dma);
2012 if (qdev->tx_ring_shadow_reg_area == NULL) {
2013 QPRINTK(qdev, IFUP, ERR,
2014 "Allocation of TX shadow space failed.\n");
2015 goto err_wqp_sh_area;
2016 }
2017 return 0;
2018
2019err_wqp_sh_area:
2020 pci_free_consistent(qdev->pdev,
2021 PAGE_SIZE,
2022 qdev->rx_ring_shadow_reg_area,
2023 qdev->rx_ring_shadow_reg_dma);
2024 return -ENOMEM;
2025}
2026
2027static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2028{
2029 struct tx_ring_desc *tx_ring_desc;
2030 int i;
2031 struct ob_mac_iocb_req *mac_iocb_ptr;
2032
2033 mac_iocb_ptr = tx_ring->wq_base;
2034 tx_ring_desc = tx_ring->q;
2035 for (i = 0; i < tx_ring->wq_len; i++) {
2036 tx_ring_desc->index = i;
2037 tx_ring_desc->skb = NULL;
2038 tx_ring_desc->queue_entry = mac_iocb_ptr;
2039 mac_iocb_ptr++;
2040 tx_ring_desc++;
2041 }
2042 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2043 atomic_set(&tx_ring->queue_stopped, 0);
2044}
2045
2046static void ql_free_tx_resources(struct ql_adapter *qdev,
2047 struct tx_ring *tx_ring)
2048{
2049 if (tx_ring->wq_base) {
2050 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2051 tx_ring->wq_base, tx_ring->wq_base_dma);
2052 tx_ring->wq_base = NULL;
2053 }
2054 kfree(tx_ring->q);
2055 tx_ring->q = NULL;
2056}
2057
2058static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2059 struct tx_ring *tx_ring)
2060{
2061 tx_ring->wq_base =
2062 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2063 &tx_ring->wq_base_dma);
2064
2065 if ((tx_ring->wq_base == NULL)
2066 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2067 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2068 return -ENOMEM;
2069 }
2070 tx_ring->q =
2071 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2072 if (tx_ring->q == NULL)
2073 goto err;
2074
2075 return 0;
2076err:
2077 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2078 tx_ring->wq_base, tx_ring->wq_base_dma);
2079 return -ENOMEM;
2080}
2081
8668ae92 2082static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2083{
2084 int i;
2085 struct bq_desc *lbq_desc;
2086
2087 for (i = 0; i < rx_ring->lbq_len; i++) {
2088 lbq_desc = &rx_ring->lbq[i];
2089 if (lbq_desc->p.lbq_page) {
2090 pci_unmap_page(qdev->pdev,
2091 pci_unmap_addr(lbq_desc, mapaddr),
2092 pci_unmap_len(lbq_desc, maplen),
2093 PCI_DMA_FROMDEVICE);
2094
2095 put_page(lbq_desc->p.lbq_page);
2096 lbq_desc->p.lbq_page = NULL;
2097 }
c4e84bde
RM
2098 }
2099}
2100
2101/*
2102 * Allocate and map a page for each element of the lbq.
2103 */
2104static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2105 struct rx_ring *rx_ring)
2106{
2107 int i;
2108 struct bq_desc *lbq_desc;
2109 u64 map;
2c9a0d41 2110 __le64 *bq = rx_ring->lbq_base;
c4e84bde
RM
2111
2112 for (i = 0; i < rx_ring->lbq_len; i++) {
2113 lbq_desc = &rx_ring->lbq[i];
2114 memset(lbq_desc, 0, sizeof(lbq_desc));
2c9a0d41 2115 lbq_desc->addr = bq;
c4e84bde
RM
2116 lbq_desc->index = i;
2117 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2118 if (unlikely(!lbq_desc->p.lbq_page)) {
2119 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2120 goto mem_error;
2121 } else {
2122 map = pci_map_page(qdev->pdev,
2123 lbq_desc->p.lbq_page,
2124 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2125 if (pci_dma_mapping_error(qdev->pdev, map)) {
2126 QPRINTK(qdev, IFUP, ERR,
2127 "PCI mapping failed.\n");
2128 goto mem_error;
2129 }
2130 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2131 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 2132 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2133 }
2134 bq++;
2135 }
2136 return 0;
2137mem_error:
2138 ql_free_lbq_buffers(qdev, rx_ring);
2139 return -ENOMEM;
2140}
2141
8668ae92 2142static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2143{
2144 int i;
2145 struct bq_desc *sbq_desc;
2146
2147 for (i = 0; i < rx_ring->sbq_len; i++) {
2148 sbq_desc = &rx_ring->sbq[i];
2149 if (sbq_desc == NULL) {
2150 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2151 return;
2152 }
2153 if (sbq_desc->p.skb) {
2154 pci_unmap_single(qdev->pdev,
2155 pci_unmap_addr(sbq_desc, mapaddr),
2156 pci_unmap_len(sbq_desc, maplen),
2157 PCI_DMA_FROMDEVICE);
2158 dev_kfree_skb(sbq_desc->p.skb);
2159 sbq_desc->p.skb = NULL;
2160 }
c4e84bde
RM
2161 }
2162}
2163
2164/* Allocate and map an skb for each element of the sbq. */
2165static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2166 struct rx_ring *rx_ring)
2167{
2168 int i;
2169 struct bq_desc *sbq_desc;
2170 struct sk_buff *skb;
2171 u64 map;
2c9a0d41 2172 __le64 *bq = rx_ring->sbq_base;
c4e84bde
RM
2173
2174 for (i = 0; i < rx_ring->sbq_len; i++) {
2175 sbq_desc = &rx_ring->sbq[i];
2176 memset(sbq_desc, 0, sizeof(sbq_desc));
2177 sbq_desc->index = i;
2c9a0d41 2178 sbq_desc->addr = bq;
c4e84bde
RM
2179 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2180 if (unlikely(!skb)) {
2181 /* Better luck next round */
2182 QPRINTK(qdev, IFUP, ERR,
2183 "small buff alloc failed for %d bytes at index %d.\n",
2184 rx_ring->sbq_buf_size, i);
2185 goto mem_err;
2186 }
2187 skb_reserve(skb, QLGE_SB_PAD);
2188 sbq_desc->p.skb = skb;
2189 /*
2190 * Map only half the buffer. Because the
2191 * other half may get some data copied to it
2192 * when the completion arrives.
2193 */
2194 map = pci_map_single(qdev->pdev,
2195 skb->data,
2196 rx_ring->sbq_buf_size / 2,
2197 PCI_DMA_FROMDEVICE);
2198 if (pci_dma_mapping_error(qdev->pdev, map)) {
2199 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2200 goto mem_err;
2201 }
2202 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2203 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2c9a0d41 2204 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2205 bq++;
2206 }
2207 return 0;
2208mem_err:
2209 ql_free_sbq_buffers(qdev, rx_ring);
2210 return -ENOMEM;
2211}
2212
2213static void ql_free_rx_resources(struct ql_adapter *qdev,
2214 struct rx_ring *rx_ring)
2215{
2216 if (rx_ring->sbq_len)
2217 ql_free_sbq_buffers(qdev, rx_ring);
2218 if (rx_ring->lbq_len)
2219 ql_free_lbq_buffers(qdev, rx_ring);
2220
2221 /* Free the small buffer queue. */
2222 if (rx_ring->sbq_base) {
2223 pci_free_consistent(qdev->pdev,
2224 rx_ring->sbq_size,
2225 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2226 rx_ring->sbq_base = NULL;
2227 }
2228
2229 /* Free the small buffer queue control blocks. */
2230 kfree(rx_ring->sbq);
2231 rx_ring->sbq = NULL;
2232
2233 /* Free the large buffer queue. */
2234 if (rx_ring->lbq_base) {
2235 pci_free_consistent(qdev->pdev,
2236 rx_ring->lbq_size,
2237 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2238 rx_ring->lbq_base = NULL;
2239 }
2240
2241 /* Free the large buffer queue control blocks. */
2242 kfree(rx_ring->lbq);
2243 rx_ring->lbq = NULL;
2244
2245 /* Free the rx queue. */
2246 if (rx_ring->cq_base) {
2247 pci_free_consistent(qdev->pdev,
2248 rx_ring->cq_size,
2249 rx_ring->cq_base, rx_ring->cq_base_dma);
2250 rx_ring->cq_base = NULL;
2251 }
2252}
2253
2254/* Allocate queues and buffers for this completions queue based
2255 * on the values in the parameter structure. */
2256static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2257 struct rx_ring *rx_ring)
2258{
2259
2260 /*
2261 * Allocate the completion queue for this rx_ring.
2262 */
2263 rx_ring->cq_base =
2264 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2265 &rx_ring->cq_base_dma);
2266
2267 if (rx_ring->cq_base == NULL) {
2268 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2269 return -ENOMEM;
2270 }
2271
2272 if (rx_ring->sbq_len) {
2273 /*
2274 * Allocate small buffer queue.
2275 */
2276 rx_ring->sbq_base =
2277 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2278 &rx_ring->sbq_base_dma);
2279
2280 if (rx_ring->sbq_base == NULL) {
2281 QPRINTK(qdev, IFUP, ERR,
2282 "Small buffer queue allocation failed.\n");
2283 goto err_mem;
2284 }
2285
2286 /*
2287 * Allocate small buffer queue control blocks.
2288 */
2289 rx_ring->sbq =
2290 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2291 GFP_KERNEL);
2292 if (rx_ring->sbq == NULL) {
2293 QPRINTK(qdev, IFUP, ERR,
2294 "Small buffer queue control block allocation failed.\n");
2295 goto err_mem;
2296 }
2297
2298 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2299 QPRINTK(qdev, IFUP, ERR,
2300 "Small buffer allocation failed.\n");
2301 goto err_mem;
2302 }
2303 }
2304
2305 if (rx_ring->lbq_len) {
2306 /*
2307 * Allocate large buffer queue.
2308 */
2309 rx_ring->lbq_base =
2310 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2311 &rx_ring->lbq_base_dma);
2312
2313 if (rx_ring->lbq_base == NULL) {
2314 QPRINTK(qdev, IFUP, ERR,
2315 "Large buffer queue allocation failed.\n");
2316 goto err_mem;
2317 }
2318 /*
2319 * Allocate large buffer queue control blocks.
2320 */
2321 rx_ring->lbq =
2322 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2323 GFP_KERNEL);
2324 if (rx_ring->lbq == NULL) {
2325 QPRINTK(qdev, IFUP, ERR,
2326 "Large buffer queue control block allocation failed.\n");
2327 goto err_mem;
2328 }
2329
2330 /*
2331 * Allocate the buffers.
2332 */
2333 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2334 QPRINTK(qdev, IFUP, ERR,
2335 "Large buffer allocation failed.\n");
2336 goto err_mem;
2337 }
2338 }
2339
2340 return 0;
2341
2342err_mem:
2343 ql_free_rx_resources(qdev, rx_ring);
2344 return -ENOMEM;
2345}
2346
2347static void ql_tx_ring_clean(struct ql_adapter *qdev)
2348{
2349 struct tx_ring *tx_ring;
2350 struct tx_ring_desc *tx_ring_desc;
2351 int i, j;
2352
2353 /*
2354 * Loop through all queues and free
2355 * any resources.
2356 */
2357 for (j = 0; j < qdev->tx_ring_count; j++) {
2358 tx_ring = &qdev->tx_ring[j];
2359 for (i = 0; i < tx_ring->wq_len; i++) {
2360 tx_ring_desc = &tx_ring->q[i];
2361 if (tx_ring_desc && tx_ring_desc->skb) {
2362 QPRINTK(qdev, IFDOWN, ERR,
2363 "Freeing lost SKB %p, from queue %d, index %d.\n",
2364 tx_ring_desc->skb, j,
2365 tx_ring_desc->index);
2366 ql_unmap_send(qdev, tx_ring_desc,
2367 tx_ring_desc->map_cnt);
2368 dev_kfree_skb(tx_ring_desc->skb);
2369 tx_ring_desc->skb = NULL;
2370 }
2371 }
2372 }
2373}
2374
c4e84bde
RM
2375static void ql_free_mem_resources(struct ql_adapter *qdev)
2376{
2377 int i;
2378
2379 for (i = 0; i < qdev->tx_ring_count; i++)
2380 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2381 for (i = 0; i < qdev->rx_ring_count; i++)
2382 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2383 ql_free_shadow_space(qdev);
2384}
2385
2386static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2387{
2388 int i;
2389
2390 /* Allocate space for our shadow registers and such. */
2391 if (ql_alloc_shadow_space(qdev))
2392 return -ENOMEM;
2393
2394 for (i = 0; i < qdev->rx_ring_count; i++) {
2395 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2396 QPRINTK(qdev, IFUP, ERR,
2397 "RX resource allocation failed.\n");
2398 goto err_mem;
2399 }
2400 }
2401 /* Allocate tx queue resources */
2402 for (i = 0; i < qdev->tx_ring_count; i++) {
2403 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2404 QPRINTK(qdev, IFUP, ERR,
2405 "TX resource allocation failed.\n");
2406 goto err_mem;
2407 }
2408 }
2409 return 0;
2410
2411err_mem:
2412 ql_free_mem_resources(qdev);
2413 return -ENOMEM;
2414}
2415
2416/* Set up the rx ring control block and pass it to the chip.
2417 * The control block is defined as
2418 * "Completion Queue Initialization Control Block", or cqicb.
2419 */
2420static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2421{
2422 struct cqicb *cqicb = &rx_ring->cqicb;
2423 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2424 (rx_ring->cq_id * sizeof(u64) * 4);
2425 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2426 (rx_ring->cq_id * sizeof(u64) * 4);
2427 void __iomem *doorbell_area =
2428 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2429 int err = 0;
2430 u16 bq_len;
2431
2432 /* Set up the shadow registers for this ring. */
2433 rx_ring->prod_idx_sh_reg = shadow_reg;
2434 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2435 shadow_reg += sizeof(u64);
2436 shadow_reg_dma += sizeof(u64);
2437 rx_ring->lbq_base_indirect = shadow_reg;
2438 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2439 shadow_reg += sizeof(u64);
2440 shadow_reg_dma += sizeof(u64);
2441 rx_ring->sbq_base_indirect = shadow_reg;
2442 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2443
2444 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2445 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2446 rx_ring->cnsmr_idx = 0;
2447 rx_ring->curr_entry = rx_ring->cq_base;
2448
2449 /* PCI doorbell mem area + 0x04 for valid register */
2450 rx_ring->valid_db_reg = doorbell_area + 0x04;
2451
2452 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2453 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2454
2455 /* PCI doorbell mem area + 0x1c */
8668ae92 2456 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2457
2458 memset((void *)cqicb, 0, sizeof(struct cqicb));
2459 cqicb->msix_vect = rx_ring->irq;
2460
459caf5a
RM
2461 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2462 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2463
97345524 2464 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2465
97345524 2466 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2467
2468 /*
2469 * Set up the control block load flags.
2470 */
2471 cqicb->flags = FLAGS_LC | /* Load queue base address */
2472 FLAGS_LV | /* Load MSI-X vector */
2473 FLAGS_LI; /* Load irq delay values */
2474 if (rx_ring->lbq_len) {
2475 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2476 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2477 cqicb->lbq_addr =
2478 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2479 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2480 (u16) rx_ring->lbq_buf_size;
2481 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2482 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2483 (u16) rx_ring->lbq_len;
c4e84bde
RM
2484 cqicb->lbq_len = cpu_to_le16(bq_len);
2485 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2486 rx_ring->lbq_curr_idx = 0;
2487 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2488 rx_ring->lbq_free_cnt = 16;
2489 }
2490 if (rx_ring->sbq_len) {
2491 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2492 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2493 cqicb->sbq_addr =
2494 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2495 cqicb->sbq_buf_size =
2496 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2497 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2498 (u16) rx_ring->sbq_len;
c4e84bde
RM
2499 cqicb->sbq_len = cpu_to_le16(bq_len);
2500 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2501 rx_ring->sbq_curr_idx = 0;
2502 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2503 rx_ring->sbq_free_cnt = 16;
2504 }
2505 switch (rx_ring->type) {
2506 case TX_Q:
2507 /* If there's only one interrupt, then we use
2508 * worker threads to process the outbound
2509 * completion handling rx_rings. We do this so
2510 * they can be run on multiple CPUs. There is
2511 * room to play with this more where we would only
2512 * run in a worker if there are more than x number
2513 * of outbound completions on the queue and more
2514 * than one queue active. Some threshold that
2515 * would indicate a benefit in spite of the cost
2516 * of a context switch.
2517 * If there's more than one interrupt, then the
2518 * outbound completions are processed in the ISR.
2519 */
2520 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2521 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2522 else {
2523 /* With all debug warnings on we see a WARN_ON message
2524 * when we free the skb in the interrupt context.
2525 */
2526 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2527 }
2528 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2529 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2530 break;
2531 case DEFAULT_Q:
2532 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2533 cqicb->irq_delay = 0;
2534 cqicb->pkt_delay = 0;
2535 break;
2536 case RX_Q:
2537 /* Inbound completion handling rx_rings run in
2538 * separate NAPI contexts.
2539 */
2540 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2541 64);
2542 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2543 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2544 break;
2545 default:
2546 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2547 rx_ring->type);
2548 }
2549 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2550 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2551 CFG_LCQ, rx_ring->cq_id);
2552 if (err) {
2553 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2554 return err;
2555 }
2556 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2557 /*
2558 * Advance the producer index for the buffer queues.
2559 */
2560 wmb();
2561 if (rx_ring->lbq_len)
2562 ql_write_db_reg(rx_ring->lbq_prod_idx,
2563 rx_ring->lbq_prod_idx_db_reg);
2564 if (rx_ring->sbq_len)
2565 ql_write_db_reg(rx_ring->sbq_prod_idx,
2566 rx_ring->sbq_prod_idx_db_reg);
2567 return err;
2568}
2569
2570static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2571{
2572 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2573 void __iomem *doorbell_area =
2574 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2575 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2576 (tx_ring->wq_id * sizeof(u64));
2577 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2578 (tx_ring->wq_id * sizeof(u64));
2579 int err = 0;
2580
2581 /*
2582 * Assign doorbell registers for this tx_ring.
2583 */
2584 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2585 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2586 tx_ring->prod_idx = 0;
2587 /* TX PCI doorbell mem area + 0x04 */
2588 tx_ring->valid_db_reg = doorbell_area + 0x04;
2589
2590 /*
2591 * Assign shadow registers for this tx_ring.
2592 */
2593 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2594 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2595
2596 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2597 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2598 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2599 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2600 wqicb->rid = 0;
97345524 2601 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2602
97345524 2603 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2604
2605 ql_init_tx_ring(qdev, tx_ring);
2606
2607 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2608 (u16) tx_ring->wq_id);
2609 if (err) {
2610 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2611 return err;
2612 }
2613 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2614 return err;
2615}
2616
2617static void ql_disable_msix(struct ql_adapter *qdev)
2618{
2619 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2620 pci_disable_msix(qdev->pdev);
2621 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2622 kfree(qdev->msi_x_entry);
2623 qdev->msi_x_entry = NULL;
2624 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2625 pci_disable_msi(qdev->pdev);
2626 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2627 }
2628}
2629
2630static void ql_enable_msix(struct ql_adapter *qdev)
2631{
2632 int i;
2633
2634 qdev->intr_count = 1;
2635 /* Get the MSIX vectors. */
2636 if (irq_type == MSIX_IRQ) {
2637 /* Try to alloc space for the msix struct,
2638 * if it fails then go to MSI/legacy.
2639 */
2640 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2641 sizeof(struct msix_entry),
2642 GFP_KERNEL);
2643 if (!qdev->msi_x_entry) {
2644 irq_type = MSI_IRQ;
2645 goto msi;
2646 }
2647
2648 for (i = 0; i < qdev->rx_ring_count; i++)
2649 qdev->msi_x_entry[i].entry = i;
2650
2651 if (!pci_enable_msix
2652 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2653 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2654 qdev->intr_count = qdev->rx_ring_count;
2655 QPRINTK(qdev, IFUP, INFO,
2656 "MSI-X Enabled, got %d vectors.\n",
2657 qdev->intr_count);
2658 return;
2659 } else {
2660 kfree(qdev->msi_x_entry);
2661 qdev->msi_x_entry = NULL;
2662 QPRINTK(qdev, IFUP, WARNING,
2663 "MSI-X Enable failed, trying MSI.\n");
2664 irq_type = MSI_IRQ;
2665 }
2666 }
2667msi:
2668 if (irq_type == MSI_IRQ) {
2669 if (!pci_enable_msi(qdev->pdev)) {
2670 set_bit(QL_MSI_ENABLED, &qdev->flags);
2671 QPRINTK(qdev, IFUP, INFO,
2672 "Running with MSI interrupts.\n");
2673 return;
2674 }
2675 }
2676 irq_type = LEG_IRQ;
c4e84bde
RM
2677 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2678}
2679
2680/*
2681 * Here we build the intr_context structures based on
2682 * our rx_ring count and intr vector count.
2683 * The intr_context structure is used to hook each vector
2684 * to possibly different handlers.
2685 */
2686static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2687{
2688 int i = 0;
2689 struct intr_context *intr_context = &qdev->intr_context[0];
2690
2691 ql_enable_msix(qdev);
2692
2693 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2694 /* Each rx_ring has it's
2695 * own intr_context since we have separate
2696 * vectors for each queue.
2697 * This only true when MSI-X is enabled.
2698 */
2699 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2700 qdev->rx_ring[i].irq = i;
2701 intr_context->intr = i;
2702 intr_context->qdev = qdev;
2703 /*
2704 * We set up each vectors enable/disable/read bits so
2705 * there's no bit/mask calculations in the critical path.
2706 */
2707 intr_context->intr_en_mask =
2708 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2709 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2710 | i;
2711 intr_context->intr_dis_mask =
2712 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2713 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2714 INTR_EN_IHD | i;
2715 intr_context->intr_read_mask =
2716 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2717 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2718 i;
2719
2720 if (i == 0) {
2721 /*
2722 * Default queue handles bcast/mcast plus
2723 * async events. Needs buffers.
2724 */
2725 intr_context->handler = qlge_isr;
2726 sprintf(intr_context->name, "%s-default-queue",
2727 qdev->ndev->name);
2728 } else if (i < qdev->rss_ring_first_cq_id) {
2729 /*
2730 * Outbound queue is for outbound completions only.
2731 */
2732 intr_context->handler = qlge_msix_tx_isr;
c224969e 2733 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2734 qdev->ndev->name, i);
2735 } else {
2736 /*
2737 * Inbound queues handle unicast frames only.
2738 */
2739 intr_context->handler = qlge_msix_rx_isr;
c224969e 2740 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2741 qdev->ndev->name, i);
2742 }
2743 }
2744 } else {
2745 /*
2746 * All rx_rings use the same intr_context since
2747 * there is only one vector.
2748 */
2749 intr_context->intr = 0;
2750 intr_context->qdev = qdev;
2751 /*
2752 * We set up each vectors enable/disable/read bits so
2753 * there's no bit/mask calculations in the critical path.
2754 */
2755 intr_context->intr_en_mask =
2756 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2757 intr_context->intr_dis_mask =
2758 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2759 INTR_EN_TYPE_DISABLE;
2760 intr_context->intr_read_mask =
2761 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2762 /*
2763 * Single interrupt means one handler for all rings.
2764 */
2765 intr_context->handler = qlge_isr;
2766 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2767 for (i = 0; i < qdev->rx_ring_count; i++)
2768 qdev->rx_ring[i].irq = 0;
2769 }
2770}
2771
2772static void ql_free_irq(struct ql_adapter *qdev)
2773{
2774 int i;
2775 struct intr_context *intr_context = &qdev->intr_context[0];
2776
2777 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2778 if (intr_context->hooked) {
2779 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2780 free_irq(qdev->msi_x_entry[i].vector,
2781 &qdev->rx_ring[i]);
2782 QPRINTK(qdev, IFDOWN, ERR,
2783 "freeing msix interrupt %d.\n", i);
2784 } else {
2785 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2786 QPRINTK(qdev, IFDOWN, ERR,
2787 "freeing msi interrupt %d.\n", i);
2788 }
2789 }
2790 }
2791 ql_disable_msix(qdev);
2792}
2793
2794static int ql_request_irq(struct ql_adapter *qdev)
2795{
2796 int i;
2797 int status = 0;
2798 struct pci_dev *pdev = qdev->pdev;
2799 struct intr_context *intr_context = &qdev->intr_context[0];
2800
2801 ql_resolve_queues_to_irqs(qdev);
2802
2803 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2804 atomic_set(&intr_context->irq_cnt, 0);
2805 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2806 status = request_irq(qdev->msi_x_entry[i].vector,
2807 intr_context->handler,
2808 0,
2809 intr_context->name,
2810 &qdev->rx_ring[i]);
2811 if (status) {
2812 QPRINTK(qdev, IFUP, ERR,
2813 "Failed request for MSIX interrupt %d.\n",
2814 i);
2815 goto err_irq;
2816 } else {
2817 QPRINTK(qdev, IFUP, INFO,
2818 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2819 i,
2820 qdev->rx_ring[i].type ==
2821 DEFAULT_Q ? "DEFAULT_Q" : "",
2822 qdev->rx_ring[i].type ==
2823 TX_Q ? "TX_Q" : "",
2824 qdev->rx_ring[i].type ==
2825 RX_Q ? "RX_Q" : "", intr_context->name);
2826 }
2827 } else {
2828 QPRINTK(qdev, IFUP, DEBUG,
2829 "trying msi or legacy interrupts.\n");
2830 QPRINTK(qdev, IFUP, DEBUG,
2831 "%s: irq = %d.\n", __func__, pdev->irq);
2832 QPRINTK(qdev, IFUP, DEBUG,
2833 "%s: context->name = %s.\n", __func__,
2834 intr_context->name);
2835 QPRINTK(qdev, IFUP, DEBUG,
2836 "%s: dev_id = 0x%p.\n", __func__,
2837 &qdev->rx_ring[0]);
2838 status =
2839 request_irq(pdev->irq, qlge_isr,
2840 test_bit(QL_MSI_ENABLED,
2841 &qdev->
2842 flags) ? 0 : IRQF_SHARED,
2843 intr_context->name, &qdev->rx_ring[0]);
2844 if (status)
2845 goto err_irq;
2846
2847 QPRINTK(qdev, IFUP, ERR,
2848 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2849 i,
2850 qdev->rx_ring[0].type ==
2851 DEFAULT_Q ? "DEFAULT_Q" : "",
2852 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2853 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2854 intr_context->name);
2855 }
2856 intr_context->hooked = 1;
2857 }
2858 return status;
2859err_irq:
2860 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2861 ql_free_irq(qdev);
2862 return status;
2863}
2864
2865static int ql_start_rss(struct ql_adapter *qdev)
2866{
2867 struct ricb *ricb = &qdev->ricb;
2868 int status = 0;
2869 int i;
2870 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2871
2872 memset((void *)ricb, 0, sizeof(ricb));
2873
2874 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2875 ricb->flags =
2876 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2877 RSS_RT6);
2878 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2879
2880 /*
2881 * Fill out the Indirection Table.
2882 */
2883 for (i = 0; i < 32; i++)
2884 hash_id[i] = i & 1;
2885
2886 /*
2887 * Random values for the IPv6 and IPv4 Hash Keys.
2888 */
2889 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2890 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2891
2892 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2893
2894 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2895 if (status) {
2896 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2897 return status;
2898 }
2899 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2900 return status;
2901}
2902
2903/* Initialize the frame-to-queue routing. */
2904static int ql_route_initialize(struct ql_adapter *qdev)
2905{
2906 int status = 0;
2907 int i;
2908
2909 /* Clear all the entries in the routing table. */
2910 for (i = 0; i < 16; i++) {
2911 status = ql_set_routing_reg(qdev, i, 0, 0);
2912 if (status) {
2913 QPRINTK(qdev, IFUP, ERR,
2914 "Failed to init routing register for CAM packets.\n");
2915 return status;
2916 }
2917 }
2918
2919 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2920 if (status) {
2921 QPRINTK(qdev, IFUP, ERR,
2922 "Failed to init routing register for error packets.\n");
2923 return status;
2924 }
2925 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2926 if (status) {
2927 QPRINTK(qdev, IFUP, ERR,
2928 "Failed to init routing register for broadcast packets.\n");
2929 return status;
2930 }
2931 /* If we have more than one inbound queue, then turn on RSS in the
2932 * routing block.
2933 */
2934 if (qdev->rss_ring_count > 1) {
2935 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2936 RT_IDX_RSS_MATCH, 1);
2937 if (status) {
2938 QPRINTK(qdev, IFUP, ERR,
2939 "Failed to init routing register for MATCH RSS packets.\n");
2940 return status;
2941 }
2942 }
2943
2944 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2945 RT_IDX_CAM_HIT, 1);
2946 if (status) {
2947 QPRINTK(qdev, IFUP, ERR,
2948 "Failed to init routing register for CAM packets.\n");
2949 return status;
2950 }
2951 return status;
2952}
2953
2954static int ql_adapter_initialize(struct ql_adapter *qdev)
2955{
2956 u32 value, mask;
2957 int i;
2958 int status = 0;
2959
2960 /*
2961 * Set up the System register to halt on errors.
2962 */
2963 value = SYS_EFE | SYS_FAE;
2964 mask = value << 16;
2965 ql_write32(qdev, SYS, mask | value);
2966
2967 /* Set the default queue. */
2968 value = NIC_RCV_CFG_DFQ;
2969 mask = NIC_RCV_CFG_DFQ_MASK;
2970 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2971
2972 /* Set the MPI interrupt to enabled. */
2973 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2974
2975 /* Enable the function, set pagesize, enable error checking. */
2976 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2977 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2978
2979 /* Set/clear header splitting. */
2980 mask = FSC_VM_PAGESIZE_MASK |
2981 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2982 ql_write32(qdev, FSC, mask | value);
2983
2984 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2985 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2986
2987 /* Start up the rx queues. */
2988 for (i = 0; i < qdev->rx_ring_count; i++) {
2989 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2990 if (status) {
2991 QPRINTK(qdev, IFUP, ERR,
2992 "Failed to start rx ring[%d].\n", i);
2993 return status;
2994 }
2995 }
2996
2997 /* If there is more than one inbound completion queue
2998 * then download a RICB to configure RSS.
2999 */
3000 if (qdev->rss_ring_count > 1) {
3001 status = ql_start_rss(qdev);
3002 if (status) {
3003 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3004 return status;
3005 }
3006 }
3007
3008 /* Start up the tx queues. */
3009 for (i = 0; i < qdev->tx_ring_count; i++) {
3010 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3011 if (status) {
3012 QPRINTK(qdev, IFUP, ERR,
3013 "Failed to start tx ring[%d].\n", i);
3014 return status;
3015 }
3016 }
3017
3018 status = ql_port_initialize(qdev);
3019 if (status) {
3020 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3021 return status;
3022 }
3023
3024 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3025 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3026 if (status) {
3027 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3028 return status;
3029 }
3030
3031 status = ql_route_initialize(qdev);
3032 if (status) {
3033 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3034 return status;
3035 }
3036
3037 /* Start NAPI for the RSS queues. */
3038 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3039 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3040 i);
3041 napi_enable(&qdev->rx_ring[i].napi);
3042 }
3043
3044 return status;
3045}
3046
3047/* Issue soft reset to chip. */
3048static int ql_adapter_reset(struct ql_adapter *qdev)
3049{
3050 u32 value;
3051 int max_wait_time;
3052 int status = 0;
3053 int resetCnt = 0;
3054
3055#define MAX_RESET_CNT 1
3056issueReset:
3057 resetCnt++;
3058 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3059 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3060 /* Wait for reset to complete. */
3061 max_wait_time = 3;
3062 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3063 max_wait_time);
3064 do {
3065 value = ql_read32(qdev, RST_FO);
3066 if ((value & RST_FO_FR) == 0)
3067 break;
3068
3069 ssleep(1);
3070 } while ((--max_wait_time));
3071 if (value & RST_FO_FR) {
3072 QPRINTK(qdev, IFDOWN, ERR,
3073 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3074 if (resetCnt < MAX_RESET_CNT)
3075 goto issueReset;
3076 }
3077 if (max_wait_time == 0) {
3078 status = -ETIMEDOUT;
3079 QPRINTK(qdev, IFDOWN, ERR,
3080 "ETIMEOUT!!! errored out of resetting the chip!\n");
3081 }
3082
3083 return status;
3084}
3085
3086static void ql_display_dev_info(struct net_device *ndev)
3087{
3088 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3089
3090 QPRINTK(qdev, PROBE, INFO,
3091 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3092 "XG Roll = %d, XG Rev = %d.\n",
3093 qdev->func,
3094 qdev->chip_rev_id & 0x0000000f,
3095 qdev->chip_rev_id >> 4 & 0x0000000f,
3096 qdev->chip_rev_id >> 8 & 0x0000000f,
3097 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3098 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3099}
3100
3101static int ql_adapter_down(struct ql_adapter *qdev)
3102{
3103 struct net_device *ndev = qdev->ndev;
3104 int i, status = 0;
3105 struct rx_ring *rx_ring;
3106
3107 netif_stop_queue(ndev);
3108 netif_carrier_off(ndev);
3109
6497b607
RM
3110 /* Don't kill the reset worker thread if we
3111 * are in the process of recovery.
3112 */
3113 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3114 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3115 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3116 cancel_delayed_work_sync(&qdev->mpi_work);
3117
3118 /* The default queue at index 0 is always processed in
3119 * a workqueue.
3120 */
3121 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3122
3123 /* The rest of the rx_rings are processed in
3124 * a workqueue only if it's a single interrupt
3125 * environment (MSI/Legacy).
3126 */
c062076c 3127 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3128 rx_ring = &qdev->rx_ring[i];
3129 /* Only the RSS rings use NAPI on multi irq
3130 * environment. Outbound completion processing
3131 * is done in interrupt context.
3132 */
3133 if (i >= qdev->rss_ring_first_cq_id) {
3134 napi_disable(&rx_ring->napi);
3135 } else {
3136 cancel_delayed_work_sync(&rx_ring->rx_work);
3137 }
3138 }
3139
3140 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3141
3142 ql_disable_interrupts(qdev);
3143
3144 ql_tx_ring_clean(qdev);
3145
3146 spin_lock(&qdev->hw_lock);
3147 status = ql_adapter_reset(qdev);
3148 if (status)
3149 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3150 qdev->func);
3151 spin_unlock(&qdev->hw_lock);
3152 return status;
3153}
3154
3155static int ql_adapter_up(struct ql_adapter *qdev)
3156{
3157 int err = 0;
3158
3159 spin_lock(&qdev->hw_lock);
3160 err = ql_adapter_initialize(qdev);
3161 if (err) {
3162 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3163 spin_unlock(&qdev->hw_lock);
3164 goto err_init;
3165 }
3166 spin_unlock(&qdev->hw_lock);
3167 set_bit(QL_ADAPTER_UP, &qdev->flags);
3168 ql_enable_interrupts(qdev);
3169 ql_enable_all_completion_interrupts(qdev);
3170 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3171 netif_carrier_on(qdev->ndev);
3172 netif_start_queue(qdev->ndev);
3173 }
3174
3175 return 0;
3176err_init:
3177 ql_adapter_reset(qdev);
3178 return err;
3179}
3180
3181static int ql_cycle_adapter(struct ql_adapter *qdev)
3182{
3183 int status;
3184
3185 status = ql_adapter_down(qdev);
3186 if (status)
3187 goto error;
3188
3189 status = ql_adapter_up(qdev);
3190 if (status)
3191 goto error;
3192
3193 return status;
3194error:
3195 QPRINTK(qdev, IFUP, ALERT,
3196 "Driver up/down cycle failed, closing device\n");
3197 rtnl_lock();
3198 dev_close(qdev->ndev);
3199 rtnl_unlock();
3200 return status;
3201}
3202
3203static void ql_release_adapter_resources(struct ql_adapter *qdev)
3204{
3205 ql_free_mem_resources(qdev);
3206 ql_free_irq(qdev);
3207}
3208
3209static int ql_get_adapter_resources(struct ql_adapter *qdev)
3210{
3211 int status = 0;
3212
3213 if (ql_alloc_mem_resources(qdev)) {
3214 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3215 return -ENOMEM;
3216 }
3217 status = ql_request_irq(qdev);
3218 if (status)
3219 goto err_irq;
3220 return status;
3221err_irq:
3222 ql_free_mem_resources(qdev);
3223 return status;
3224}
3225
3226static int qlge_close(struct net_device *ndev)
3227{
3228 struct ql_adapter *qdev = netdev_priv(ndev);
3229
3230 /*
3231 * Wait for device to recover from a reset.
3232 * (Rarely happens, but possible.)
3233 */
3234 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3235 msleep(1);
3236 ql_adapter_down(qdev);
3237 ql_release_adapter_resources(qdev);
c4e84bde
RM
3238 return 0;
3239}
3240
3241static int ql_configure_rings(struct ql_adapter *qdev)
3242{
3243 int i;
3244 struct rx_ring *rx_ring;
3245 struct tx_ring *tx_ring;
3246 int cpu_cnt = num_online_cpus();
3247
3248 /*
3249 * For each processor present we allocate one
3250 * rx_ring for outbound completions, and one
3251 * rx_ring for inbound completions. Plus there is
3252 * always the one default queue. For the CPU
3253 * counts we end up with the following rx_rings:
3254 * rx_ring count =
3255 * one default queue +
3256 * (CPU count * outbound completion rx_ring) +
3257 * (CPU count * inbound (RSS) completion rx_ring)
3258 * To keep it simple we limit the total number of
3259 * queues to < 32, so we truncate CPU to 8.
3260 * This limitation can be removed when requested.
3261 */
3262
683d46a9
RM
3263 if (cpu_cnt > MAX_CPUS)
3264 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3265
3266 /*
3267 * rx_ring[0] is always the default queue.
3268 */
3269 /* Allocate outbound completion ring for each CPU. */
3270 qdev->tx_ring_count = cpu_cnt;
3271 /* Allocate inbound completion (RSS) ring for each CPU. */
3272 qdev->rss_ring_count = cpu_cnt;
3273 /* cq_id for the first inbound ring handler. */
3274 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3275 /*
3276 * qdev->rx_ring_count:
3277 * Total number of rx_rings. This includes the one
3278 * default queue, a number of outbound completion
3279 * handler rx_rings, and the number of inbound
3280 * completion handler rx_rings.
3281 */
3282 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3283
c4e84bde
RM
3284 for (i = 0; i < qdev->tx_ring_count; i++) {
3285 tx_ring = &qdev->tx_ring[i];
3286 memset((void *)tx_ring, 0, sizeof(tx_ring));
3287 tx_ring->qdev = qdev;
3288 tx_ring->wq_id = i;
3289 tx_ring->wq_len = qdev->tx_ring_size;
3290 tx_ring->wq_size =
3291 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3292
3293 /*
3294 * The completion queue ID for the tx rings start
3295 * immediately after the default Q ID, which is zero.
3296 */
3297 tx_ring->cq_id = i + 1;
3298 }
3299
3300 for (i = 0; i < qdev->rx_ring_count; i++) {
3301 rx_ring = &qdev->rx_ring[i];
3302 memset((void *)rx_ring, 0, sizeof(rx_ring));
3303 rx_ring->qdev = qdev;
3304 rx_ring->cq_id = i;
3305 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3306 if (i == 0) { /* Default queue at index 0. */
3307 /*
3308 * Default queue handles bcast/mcast plus
3309 * async events. Needs buffers.
3310 */
3311 rx_ring->cq_len = qdev->rx_ring_size;
3312 rx_ring->cq_size =
3313 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3314 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3315 rx_ring->lbq_size =
2c9a0d41 3316 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3317 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3318 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3319 rx_ring->sbq_size =
2c9a0d41 3320 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3321 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3322 rx_ring->type = DEFAULT_Q;
3323 } else if (i < qdev->rss_ring_first_cq_id) {
3324 /*
3325 * Outbound queue handles outbound completions only.
3326 */
3327 /* outbound cq is same size as tx_ring it services. */
3328 rx_ring->cq_len = qdev->tx_ring_size;
3329 rx_ring->cq_size =
3330 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3331 rx_ring->lbq_len = 0;
3332 rx_ring->lbq_size = 0;
3333 rx_ring->lbq_buf_size = 0;
3334 rx_ring->sbq_len = 0;
3335 rx_ring->sbq_size = 0;
3336 rx_ring->sbq_buf_size = 0;
3337 rx_ring->type = TX_Q;
3338 } else { /* Inbound completions (RSS) queues */
3339 /*
3340 * Inbound queues handle unicast frames only.
3341 */
3342 rx_ring->cq_len = qdev->rx_ring_size;
3343 rx_ring->cq_size =
3344 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3345 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3346 rx_ring->lbq_size =
2c9a0d41 3347 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3348 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3349 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3350 rx_ring->sbq_size =
2c9a0d41 3351 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3352 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3353 rx_ring->type = RX_Q;
3354 }
3355 }
3356 return 0;
3357}
3358
3359static int qlge_open(struct net_device *ndev)
3360{
3361 int err = 0;
3362 struct ql_adapter *qdev = netdev_priv(ndev);
3363
3364 err = ql_configure_rings(qdev);
3365 if (err)
3366 return err;
3367
3368 err = ql_get_adapter_resources(qdev);
3369 if (err)
3370 goto error_up;
3371
3372 err = ql_adapter_up(qdev);
3373 if (err)
3374 goto error_up;
3375
3376 return err;
3377
3378error_up:
3379 ql_release_adapter_resources(qdev);
c4e84bde
RM
3380 return err;
3381}
3382
3383static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3384{
3385 struct ql_adapter *qdev = netdev_priv(ndev);
3386
3387 if (ndev->mtu == 1500 && new_mtu == 9000) {
3388 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3389 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3390 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3391 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3392 (ndev->mtu == 9000 && new_mtu == 9000)) {
3393 return 0;
3394 } else
3395 return -EINVAL;
3396 ndev->mtu = new_mtu;
3397 return 0;
3398}
3399
3400static struct net_device_stats *qlge_get_stats(struct net_device
3401 *ndev)
3402{
3403 struct ql_adapter *qdev = netdev_priv(ndev);
3404 return &qdev->stats;
3405}
3406
3407static void qlge_set_multicast_list(struct net_device *ndev)
3408{
3409 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3410 struct dev_mc_list *mc_ptr;
3411 int i;
3412
3413 spin_lock(&qdev->hw_lock);
3414 /*
3415 * Set or clear promiscuous mode if a
3416 * transition is taking place.
3417 */
3418 if (ndev->flags & IFF_PROMISC) {
3419 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3420 if (ql_set_routing_reg
3421 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3422 QPRINTK(qdev, HW, ERR,
3423 "Failed to set promiscous mode.\n");
3424 } else {
3425 set_bit(QL_PROMISCUOUS, &qdev->flags);
3426 }
3427 }
3428 } else {
3429 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3430 if (ql_set_routing_reg
3431 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3432 QPRINTK(qdev, HW, ERR,
3433 "Failed to clear promiscous mode.\n");
3434 } else {
3435 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3436 }
3437 }
3438 }
3439
3440 /*
3441 * Set or clear all multicast mode if a
3442 * transition is taking place.
3443 */
3444 if ((ndev->flags & IFF_ALLMULTI) ||
3445 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3446 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3447 if (ql_set_routing_reg
3448 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3449 QPRINTK(qdev, HW, ERR,
3450 "Failed to set all-multi mode.\n");
3451 } else {
3452 set_bit(QL_ALLMULTI, &qdev->flags);
3453 }
3454 }
3455 } else {
3456 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3457 if (ql_set_routing_reg
3458 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3459 QPRINTK(qdev, HW, ERR,
3460 "Failed to clear all-multi mode.\n");
3461 } else {
3462 clear_bit(QL_ALLMULTI, &qdev->flags);
3463 }
3464 }
3465 }
3466
3467 if (ndev->mc_count) {
3468 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3469 i++, mc_ptr = mc_ptr->next)
3470 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3471 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3472 QPRINTK(qdev, HW, ERR,
3473 "Failed to loadmulticast address.\n");
3474 goto exit;
3475 }
3476 if (ql_set_routing_reg
3477 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3478 QPRINTK(qdev, HW, ERR,
3479 "Failed to set multicast match mode.\n");
3480 } else {
3481 set_bit(QL_ALLMULTI, &qdev->flags);
3482 }
3483 }
3484exit:
3485 spin_unlock(&qdev->hw_lock);
3486}
3487
3488static int qlge_set_mac_address(struct net_device *ndev, void *p)
3489{
3490 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3491 struct sockaddr *addr = p;
8668ae92 3492 int ret = 0;
c4e84bde
RM
3493
3494 if (netif_running(ndev))
3495 return -EBUSY;
3496
3497 if (!is_valid_ether_addr(addr->sa_data))
3498 return -EADDRNOTAVAIL;
3499 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3500
3501 spin_lock(&qdev->hw_lock);
3502 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3503 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3504 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
8668ae92 3505 ret = -1;
c4e84bde
RM
3506 }
3507 spin_unlock(&qdev->hw_lock);
3508
8668ae92 3509 return ret;
c4e84bde
RM
3510}
3511
3512static void qlge_tx_timeout(struct net_device *ndev)
3513{
3514 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3515 ql_queue_asic_error(qdev);
c4e84bde
RM
3516}
3517
3518static void ql_asic_reset_work(struct work_struct *work)
3519{
3520 struct ql_adapter *qdev =
3521 container_of(work, struct ql_adapter, asic_reset_work.work);
3522 ql_cycle_adapter(qdev);
3523}
3524
3525static void ql_get_board_info(struct ql_adapter *qdev)
3526{
3527 qdev->func =
3528 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3529 if (qdev->func) {
3530 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3531 qdev->port_link_up = STS_PL1;
3532 qdev->port_init = STS_PI1;
3533 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3534 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3535 } else {
3536 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3537 qdev->port_link_up = STS_PL0;
3538 qdev->port_init = STS_PI0;
3539 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3540 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3541 }
3542 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3543}
3544
3545static void ql_release_all(struct pci_dev *pdev)
3546{
3547 struct net_device *ndev = pci_get_drvdata(pdev);
3548 struct ql_adapter *qdev = netdev_priv(ndev);
3549
3550 if (qdev->workqueue) {
3551 destroy_workqueue(qdev->workqueue);
3552 qdev->workqueue = NULL;
3553 }
3554 if (qdev->q_workqueue) {
3555 destroy_workqueue(qdev->q_workqueue);
3556 qdev->q_workqueue = NULL;
3557 }
3558 if (qdev->reg_base)
8668ae92 3559 iounmap(qdev->reg_base);
c4e84bde
RM
3560 if (qdev->doorbell_area)
3561 iounmap(qdev->doorbell_area);
3562 pci_release_regions(pdev);
3563 pci_set_drvdata(pdev, NULL);
3564}
3565
3566static int __devinit ql_init_device(struct pci_dev *pdev,
3567 struct net_device *ndev, int cards_found)
3568{
3569 struct ql_adapter *qdev = netdev_priv(ndev);
3570 int pos, err = 0;
3571 u16 val16;
3572
3573 memset((void *)qdev, 0, sizeof(qdev));
3574 err = pci_enable_device(pdev);
3575 if (err) {
3576 dev_err(&pdev->dev, "PCI device enable failed.\n");
3577 return err;
3578 }
3579
3580 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3581 if (pos <= 0) {
3582 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3583 "aborting.\n");
3584 goto err_out;
3585 } else {
3586 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3587 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3588 val16 |= (PCI_EXP_DEVCTL_CERE |
3589 PCI_EXP_DEVCTL_NFERE |
3590 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3591 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3592 }
3593
3594 err = pci_request_regions(pdev, DRV_NAME);
3595 if (err) {
3596 dev_err(&pdev->dev, "PCI region request failed.\n");
3597 goto err_out;
3598 }
3599
3600 pci_set_master(pdev);
3601 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3602 set_bit(QL_DMA64, &qdev->flags);
3603 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3604 } else {
3605 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3606 if (!err)
3607 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3608 }
3609
3610 if (err) {
3611 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3612 goto err_out;
3613 }
3614
3615 pci_set_drvdata(pdev, ndev);
3616 qdev->reg_base =
3617 ioremap_nocache(pci_resource_start(pdev, 1),
3618 pci_resource_len(pdev, 1));
3619 if (!qdev->reg_base) {
3620 dev_err(&pdev->dev, "Register mapping failed.\n");
3621 err = -ENOMEM;
3622 goto err_out;
3623 }
3624
3625 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3626 qdev->doorbell_area =
3627 ioremap_nocache(pci_resource_start(pdev, 3),
3628 pci_resource_len(pdev, 3));
3629 if (!qdev->doorbell_area) {
3630 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3631 err = -ENOMEM;
3632 goto err_out;
3633 }
3634
3635 ql_get_board_info(qdev);
3636 qdev->ndev = ndev;
3637 qdev->pdev = pdev;
3638 qdev->msg_enable = netif_msg_init(debug, default_msg);
3639 spin_lock_init(&qdev->hw_lock);
3640 spin_lock_init(&qdev->stats_lock);
3641
3642 /* make sure the EEPROM is good */
3643 err = ql_get_flash_params(qdev);
3644 if (err) {
3645 dev_err(&pdev->dev, "Invalid FLASH.\n");
3646 goto err_out;
3647 }
3648
3649 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3650 goto err_out;
3651
3652 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3653 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3654
3655 /* Set up the default ring sizes. */
3656 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3657 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3658
3659 /* Set up the coalescing parameters. */
3660 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3661 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3662 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3663 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3664
3665 /*
3666 * Set up the operating parameters.
3667 */
3668 qdev->rx_csum = 1;
3669
3670 qdev->q_workqueue = create_workqueue(ndev->name);
3671 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3672 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3673 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3674 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3675
3676 if (!cards_found) {
3677 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3678 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3679 DRV_NAME, DRV_VERSION);
3680 }
3681 return 0;
3682err_out:
3683 ql_release_all(pdev);
3684 pci_disable_device(pdev);
3685 return err;
3686}
3687
25ed7849
SH
3688
3689static const struct net_device_ops qlge_netdev_ops = {
3690 .ndo_open = qlge_open,
3691 .ndo_stop = qlge_close,
3692 .ndo_start_xmit = qlge_send,
3693 .ndo_change_mtu = qlge_change_mtu,
3694 .ndo_get_stats = qlge_get_stats,
3695 .ndo_set_multicast_list = qlge_set_multicast_list,
3696 .ndo_set_mac_address = qlge_set_mac_address,
3697 .ndo_validate_addr = eth_validate_addr,
3698 .ndo_tx_timeout = qlge_tx_timeout,
3699 .ndo_vlan_rx_register = ql_vlan_rx_register,
3700 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3701 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3702};
3703
c4e84bde
RM
3704static int __devinit qlge_probe(struct pci_dev *pdev,
3705 const struct pci_device_id *pci_entry)
3706{
3707 struct net_device *ndev = NULL;
3708 struct ql_adapter *qdev = NULL;
3709 static int cards_found = 0;
3710 int err = 0;
3711
3712 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3713 if (!ndev)
3714 return -ENOMEM;
3715
3716 err = ql_init_device(pdev, ndev, cards_found);
3717 if (err < 0) {
3718 free_netdev(ndev);
3719 return err;
3720 }
3721
3722 qdev = netdev_priv(ndev);
3723 SET_NETDEV_DEV(ndev, &pdev->dev);
3724 ndev->features = (0
3725 | NETIF_F_IP_CSUM
3726 | NETIF_F_SG
3727 | NETIF_F_TSO
3728 | NETIF_F_TSO6
3729 | NETIF_F_TSO_ECN
3730 | NETIF_F_HW_VLAN_TX
3731 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3732
3733 if (test_bit(QL_DMA64, &qdev->flags))
3734 ndev->features |= NETIF_F_HIGHDMA;
3735
3736 /*
3737 * Set up net_device structure.
3738 */
3739 ndev->tx_queue_len = qdev->tx_ring_size;
3740 ndev->irq = pdev->irq;
25ed7849
SH
3741
3742 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3743 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3744 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3745
c4e84bde
RM
3746 err = register_netdev(ndev);
3747 if (err) {
3748 dev_err(&pdev->dev, "net device registration failed.\n");
3749 ql_release_all(pdev);
3750 pci_disable_device(pdev);
3751 return err;
3752 }
3753 netif_carrier_off(ndev);
3754 netif_stop_queue(ndev);
3755 ql_display_dev_info(ndev);
3756 cards_found++;
3757 return 0;
3758}
3759
3760static void __devexit qlge_remove(struct pci_dev *pdev)
3761{
3762 struct net_device *ndev = pci_get_drvdata(pdev);
3763 unregister_netdev(ndev);
3764 ql_release_all(pdev);
3765 pci_disable_device(pdev);
3766 free_netdev(ndev);
3767}
3768
3769/*
3770 * This callback is called by the PCI subsystem whenever
3771 * a PCI bus error is detected.
3772 */
3773static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3774 enum pci_channel_state state)
3775{
3776 struct net_device *ndev = pci_get_drvdata(pdev);
3777 struct ql_adapter *qdev = netdev_priv(ndev);
3778
3779 if (netif_running(ndev))
3780 ql_adapter_down(qdev);
3781
3782 pci_disable_device(pdev);
3783
3784 /* Request a slot reset. */
3785 return PCI_ERS_RESULT_NEED_RESET;
3786}
3787
3788/*
3789 * This callback is called after the PCI buss has been reset.
3790 * Basically, this tries to restart the card from scratch.
3791 * This is a shortened version of the device probe/discovery code,
3792 * it resembles the first-half of the () routine.
3793 */
3794static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3795{
3796 struct net_device *ndev = pci_get_drvdata(pdev);
3797 struct ql_adapter *qdev = netdev_priv(ndev);
3798
3799 if (pci_enable_device(pdev)) {
3800 QPRINTK(qdev, IFUP, ERR,
3801 "Cannot re-enable PCI device after reset.\n");
3802 return PCI_ERS_RESULT_DISCONNECT;
3803 }
3804
3805 pci_set_master(pdev);
3806
3807 netif_carrier_off(ndev);
3808 netif_stop_queue(ndev);
3809 ql_adapter_reset(qdev);
3810
3811 /* Make sure the EEPROM is good */
3812 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3813
3814 if (!is_valid_ether_addr(ndev->perm_addr)) {
3815 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3816 return PCI_ERS_RESULT_DISCONNECT;
3817 }
3818
3819 return PCI_ERS_RESULT_RECOVERED;
3820}
3821
3822static void qlge_io_resume(struct pci_dev *pdev)
3823{
3824 struct net_device *ndev = pci_get_drvdata(pdev);
3825 struct ql_adapter *qdev = netdev_priv(ndev);
3826
3827 pci_set_master(pdev);
3828
3829 if (netif_running(ndev)) {
3830 if (ql_adapter_up(qdev)) {
3831 QPRINTK(qdev, IFUP, ERR,
3832 "Device initialization failed after reset.\n");
3833 return;
3834 }
3835 }
3836
3837 netif_device_attach(ndev);
3838}
3839
3840static struct pci_error_handlers qlge_err_handler = {
3841 .error_detected = qlge_io_error_detected,
3842 .slot_reset = qlge_io_slot_reset,
3843 .resume = qlge_io_resume,
3844};
3845
3846static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3847{
3848 struct net_device *ndev = pci_get_drvdata(pdev);
3849 struct ql_adapter *qdev = netdev_priv(ndev);
0047e5d2 3850 int err, i;
c4e84bde
RM
3851
3852 netif_device_detach(ndev);
3853
3854 if (netif_running(ndev)) {
3855 err = ql_adapter_down(qdev);
3856 if (!err)
3857 return err;
3858 }
3859
0047e5d2
RM
3860 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3861 netif_napi_del(&qdev->rx_ring[i].napi);
3862
c4e84bde
RM
3863 err = pci_save_state(pdev);
3864 if (err)
3865 return err;
3866
3867 pci_disable_device(pdev);
3868
3869 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3870
3871 return 0;
3872}
3873
04da2cf9 3874#ifdef CONFIG_PM
c4e84bde
RM
3875static int qlge_resume(struct pci_dev *pdev)
3876{
3877 struct net_device *ndev = pci_get_drvdata(pdev);
3878 struct ql_adapter *qdev = netdev_priv(ndev);
3879 int err;
3880
3881 pci_set_power_state(pdev, PCI_D0);
3882 pci_restore_state(pdev);
3883 err = pci_enable_device(pdev);
3884 if (err) {
3885 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3886 return err;
3887 }
3888 pci_set_master(pdev);
3889
3890 pci_enable_wake(pdev, PCI_D3hot, 0);
3891 pci_enable_wake(pdev, PCI_D3cold, 0);
3892
3893 if (netif_running(ndev)) {
3894 err = ql_adapter_up(qdev);
3895 if (err)
3896 return err;
3897 }
3898
3899 netif_device_attach(ndev);
3900
3901 return 0;
3902}
04da2cf9 3903#endif /* CONFIG_PM */
c4e84bde
RM
3904
3905static void qlge_shutdown(struct pci_dev *pdev)
3906{
3907 qlge_suspend(pdev, PMSG_SUSPEND);
3908}
3909
3910static struct pci_driver qlge_driver = {
3911 .name = DRV_NAME,
3912 .id_table = qlge_pci_tbl,
3913 .probe = qlge_probe,
3914 .remove = __devexit_p(qlge_remove),
3915#ifdef CONFIG_PM
3916 .suspend = qlge_suspend,
3917 .resume = qlge_resume,
3918#endif
3919 .shutdown = qlge_shutdown,
3920 .err_handler = &qlge_err_handler
3921};
3922
3923static int __init qlge_init_module(void)
3924{
3925 return pci_register_driver(&qlge_driver);
3926}
3927
3928static void __exit qlge_exit(void)
3929{
3930 pci_unregister_driver(&qlge_driver);
3931}
3932
3933module_init(qlge_init_module);
3934module_exit(qlge_exit);