]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/s2io.c
endianness annotations: rndis
[mirror_ubuntu-bionic-kernel.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/init.h>
68#include <linux/delay.h>
69#include <linux/stddef.h>
70#include <linux/ioctl.h>
71#include <linux/timex.h>
1da177e4 72#include <linux/ethtool.h>
1da177e4 73#include <linux/workqueue.h>
be3a6b02 74#include <linux/if_vlan.h>
7d3d0439
RA
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <net/tcp.h>
1da177e4 78
1da177e4
LT
79#include <asm/system.h>
80#include <asm/uaccess.h>
20346722 81#include <asm/io.h>
fe931395 82#include <asm/div64.h>
330ce0de 83#include <asm/irq.h>
1da177e4
LT
84
85/* local include */
86#include "s2io.h"
87#include "s2io-regs.h"
88
cf374a85 89#define DRV_VERSION "2.0.26.19"
6c1792f4 90
1da177e4 91/* S2io Driver name & version. */
20346722 92static char s2io_driver_name[] = "Neterion";
6c1792f4 93static char s2io_driver_version[] = DRV_VERSION;
1da177e4 94
6d517a27
VP
95static int rxd_size[2] = {32,48};
96static int rxd_count[2] = {127,85};
da6971d8 97
1ee6dd77 98static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
99{
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106}
107
20346722 108/*
1da177e4
LT
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
541ae68f
K
113#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
117
118#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121#define PANIC 1
122#define LOW 2
1ee6dd77 123static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 124{
1ee6dd77 125 struct mac_info *mac_control;
20346722
K
126
127 mac_control = &sp->mac_control;
863c11a9
AR
128 if (rxb_size <= rxd_count[sp->rxd_mode])
129 return PANIC;
130 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
131 return LOW;
132 return 0;
1da177e4
LT
133}
134
92b84437
SS
135static inline int is_s2io_card_up(const struct s2io_nic * sp)
136{
137 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138}
139
1da177e4
LT
140/* Ethtool related variables and Macros. */
141static char s2io_gstrings[][ETH_GSTRING_LEN] = {
142 "Register test\t(offline)",
143 "Eeprom test\t(offline)",
144 "Link test\t(online)",
145 "RLDRAM test\t(offline)",
146 "BIST Test\t(offline)"
147};
148
fa1f0cb3 149static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
150 {"tmac_frms"},
151 {"tmac_data_octets"},
152 {"tmac_drop_frms"},
153 {"tmac_mcst_frms"},
154 {"tmac_bcst_frms"},
155 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
156 {"tmac_ttl_octets"},
157 {"tmac_ucst_frms"},
158 {"tmac_nucst_frms"},
1da177e4 159 {"tmac_any_err_frms"},
bd1034f0 160 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
161 {"tmac_vld_ip_octets"},
162 {"tmac_vld_ip"},
163 {"tmac_drop_ip"},
164 {"tmac_icmp"},
165 {"tmac_rst_tcp"},
166 {"tmac_tcp"},
167 {"tmac_udp"},
168 {"rmac_vld_frms"},
169 {"rmac_data_octets"},
170 {"rmac_fcs_err_frms"},
171 {"rmac_drop_frms"},
172 {"rmac_vld_mcst_frms"},
173 {"rmac_vld_bcst_frms"},
174 {"rmac_in_rng_len_err_frms"},
bd1034f0 175 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
176 {"rmac_long_frms"},
177 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
178 {"rmac_unsup_ctrl_frms"},
179 {"rmac_ttl_octets"},
180 {"rmac_accepted_ucst_frms"},
181 {"rmac_accepted_nucst_frms"},
1da177e4 182 {"rmac_discarded_frms"},
bd1034f0
AR
183 {"rmac_drop_events"},
184 {"rmac_ttl_less_fb_octets"},
185 {"rmac_ttl_frms"},
1da177e4
LT
186 {"rmac_usized_frms"},
187 {"rmac_osized_frms"},
188 {"rmac_frag_frms"},
189 {"rmac_jabber_frms"},
bd1034f0
AR
190 {"rmac_ttl_64_frms"},
191 {"rmac_ttl_65_127_frms"},
192 {"rmac_ttl_128_255_frms"},
193 {"rmac_ttl_256_511_frms"},
194 {"rmac_ttl_512_1023_frms"},
195 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
196 {"rmac_ip"},
197 {"rmac_ip_octets"},
198 {"rmac_hdr_err_ip"},
199 {"rmac_drop_ip"},
200 {"rmac_icmp"},
201 {"rmac_tcp"},
202 {"rmac_udp"},
203 {"rmac_err_drp_udp"},
bd1034f0
AR
204 {"rmac_xgmii_err_sym"},
205 {"rmac_frms_q0"},
206 {"rmac_frms_q1"},
207 {"rmac_frms_q2"},
208 {"rmac_frms_q3"},
209 {"rmac_frms_q4"},
210 {"rmac_frms_q5"},
211 {"rmac_frms_q6"},
212 {"rmac_frms_q7"},
213 {"rmac_full_q0"},
214 {"rmac_full_q1"},
215 {"rmac_full_q2"},
216 {"rmac_full_q3"},
217 {"rmac_full_q4"},
218 {"rmac_full_q5"},
219 {"rmac_full_q6"},
220 {"rmac_full_q7"},
1da177e4 221 {"rmac_pause_cnt"},
bd1034f0
AR
222 {"rmac_xgmii_data_err_cnt"},
223 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
224 {"rmac_accepted_ip"},
225 {"rmac_err_tcp"},
bd1034f0
AR
226 {"rd_req_cnt"},
227 {"new_rd_req_cnt"},
228 {"new_rd_req_rtry_cnt"},
229 {"rd_rtry_cnt"},
230 {"wr_rtry_rd_ack_cnt"},
231 {"wr_req_cnt"},
232 {"new_wr_req_cnt"},
233 {"new_wr_req_rtry_cnt"},
234 {"wr_rtry_cnt"},
235 {"wr_disc_cnt"},
236 {"rd_rtry_wr_ack_cnt"},
237 {"txp_wr_cnt"},
238 {"txd_rd_cnt"},
239 {"txd_wr_cnt"},
240 {"rxd_rd_cnt"},
241 {"rxd_wr_cnt"},
242 {"txf_rd_cnt"},
fa1f0cb3
SS
243 {"rxf_wr_cnt"}
244};
245
246static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
247 {"rmac_ttl_1519_4095_frms"},
248 {"rmac_ttl_4096_8191_frms"},
249 {"rmac_ttl_8192_max_frms"},
250 {"rmac_ttl_gt_max_frms"},
251 {"rmac_osized_alt_frms"},
252 {"rmac_jabber_alt_frms"},
253 {"rmac_gt_max_alt_frms"},
254 {"rmac_vlan_frms"},
255 {"rmac_len_discard"},
256 {"rmac_fcs_discard"},
257 {"rmac_pf_discard"},
258 {"rmac_da_discard"},
259 {"rmac_red_discard"},
260 {"rmac_rts_discard"},
261 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
262 {"link_fault_cnt"}
263};
264
265static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
266 {"\n DRIVER STATISTICS"},
267 {"single_bit_ecc_errs"},
268 {"double_bit_ecc_errs"},
bd1034f0
AR
269 {"parity_err_cnt"},
270 {"serious_err_cnt"},
271 {"soft_reset_cnt"},
272 {"fifo_full_cnt"},
8116f3cf
SS
273 {"ring_0_full_cnt"},
274 {"ring_1_full_cnt"},
275 {"ring_2_full_cnt"},
276 {"ring_3_full_cnt"},
277 {"ring_4_full_cnt"},
278 {"ring_5_full_cnt"},
279 {"ring_6_full_cnt"},
280 {"ring_7_full_cnt"},
43b7c451
SH
281 {"alarm_transceiver_temp_high"},
282 {"alarm_transceiver_temp_low"},
283 {"alarm_laser_bias_current_high"},
284 {"alarm_laser_bias_current_low"},
285 {"alarm_laser_output_power_high"},
286 {"alarm_laser_output_power_low"},
287 {"warn_transceiver_temp_high"},
288 {"warn_transceiver_temp_low"},
289 {"warn_laser_bias_current_high"},
290 {"warn_laser_bias_current_low"},
291 {"warn_laser_output_power_high"},
292 {"warn_laser_output_power_low"},
293 {"lro_aggregated_pkts"},
294 {"lro_flush_both_count"},
295 {"lro_out_of_sequence_pkts"},
296 {"lro_flush_due_to_max_pkts"},
297 {"lro_avg_aggr_pkts"},
298 {"mem_alloc_fail_cnt"},
299 {"pci_map_fail_cnt"},
300 {"watchdog_timer_cnt"},
301 {"mem_allocated"},
302 {"mem_freed"},
303 {"link_up_cnt"},
304 {"link_down_cnt"},
305 {"link_up_time"},
306 {"link_down_time"},
307 {"tx_tcode_buf_abort_cnt"},
308 {"tx_tcode_desc_abort_cnt"},
309 {"tx_tcode_parity_err_cnt"},
310 {"tx_tcode_link_loss_cnt"},
311 {"tx_tcode_list_proc_err_cnt"},
312 {"rx_tcode_parity_err_cnt"},
313 {"rx_tcode_abort_cnt"},
314 {"rx_tcode_parity_abort_cnt"},
315 {"rx_tcode_rda_fail_cnt"},
316 {"rx_tcode_unkn_prot_cnt"},
317 {"rx_tcode_fcs_err_cnt"},
318 {"rx_tcode_buf_size_err_cnt"},
319 {"rx_tcode_rxd_corrupt_cnt"},
320 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
321 {"tda_err_cnt"},
322 {"pfc_err_cnt"},
323 {"pcc_err_cnt"},
324 {"tti_err_cnt"},
325 {"tpa_err_cnt"},
326 {"sm_err_cnt"},
327 {"lso_err_cnt"},
328 {"mac_tmac_err_cnt"},
329 {"mac_rmac_err_cnt"},
330 {"xgxs_txgxs_err_cnt"},
331 {"xgxs_rxgxs_err_cnt"},
332 {"rc_err_cnt"},
333 {"prc_pcix_err_cnt"},
334 {"rpa_err_cnt"},
335 {"rda_err_cnt"},
336 {"rti_err_cnt"},
337 {"mc_err_cnt"}
1da177e4
LT
338};
339
4c3616cd
AMR
340#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
341#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
342#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3
SS
343
344#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
345#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346
347#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
348#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4 349
4c3616cd 350#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
1da177e4
LT
351#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352
25fff88e
K
353#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
354 init_timer(&timer); \
355 timer.function = handle; \
356 timer.data = (unsigned long) arg; \
357 mod_timer(&timer, (jiffies + exp)) \
358
2fd37688
SS
359/* copy mac addr to def_mac_addr array */
360static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361{
362 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
363 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
364 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
365 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
366 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
367 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
368}
be3a6b02
K
369/* Add the vlan */
370static void s2io_vlan_rx_register(struct net_device *dev,
371 struct vlan_group *grp)
372{
2fda096d 373 int i;
1ee6dd77 374 struct s2io_nic *nic = dev->priv;
2fda096d
SR
375 unsigned long flags[MAX_TX_FIFOS];
376 struct mac_info *mac_control = &nic->mac_control;
377 struct config_param *config = &nic->config;
378
379 for (i = 0; i < config->tx_fifo_num; i++)
380 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
be3a6b02 381
be3a6b02 382 nic->vlgrp = grp;
2fda096d
SR
383 for (i = config->tx_fifo_num - 1; i >= 0; i--)
384 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
385 flags[i]);
be3a6b02
K
386}
387
926930b2 388/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 389static int vlan_strip_flag;
926930b2 390
cdb5bf02
SH
391/* Unregister the vlan */
392static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
393{
394 int i;
395 struct s2io_nic *nic = dev->priv;
396 unsigned long flags[MAX_TX_FIFOS];
397 struct mac_info *mac_control = &nic->mac_control;
398 struct config_param *config = &nic->config;
399
400 for (i = 0; i < config->tx_fifo_num; i++)
401 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
402
403 if (nic->vlgrp)
404 vlan_group_set_device(nic->vlgrp, vid, NULL);
405
406 for (i = config->tx_fifo_num - 1; i >= 0; i--)
407 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
408 flags[i]);
409}
410
20346722 411/*
1da177e4
LT
412 * Constants to be programmed into the Xena's registers, to configure
413 * the XAUI.
414 */
415
1da177e4 416#define END_SIGN 0x0
f71e1309 417static const u64 herc_act_dtx_cfg[] = {
541ae68f 418 /* Set address */
e960fc5c 419 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 420 /* Write data */
e960fc5c 421 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
422 /* Set address */
423 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
424 /* Write data */
425 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
426 /* Set address */
e960fc5c 427 0x801205150D440000ULL, 0x801205150D4400E0ULL,
428 /* Write data */
429 0x801205150D440004ULL, 0x801205150D4400E4ULL,
430 /* Set address */
541ae68f
K
431 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
432 /* Write data */
433 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
434 /* Done */
435 END_SIGN
436};
437
f71e1309 438static const u64 xena_dtx_cfg[] = {
c92ca04b 439 /* Set address */
1da177e4 440 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
441 /* Write data */
442 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
443 /* Set address */
444 0x8001051500000000ULL, 0x80010515000000E0ULL,
445 /* Write data */
446 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
447 /* Set address */
1da177e4 448 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
449 /* Write data */
450 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
451 END_SIGN
452};
453
20346722 454/*
1da177e4
LT
455 * Constants for Fixing the MacAddress problem seen mostly on
456 * Alpha machines.
457 */
f71e1309 458static const u64 fix_mac[] = {
1da177e4
LT
459 0x0060000000000000ULL, 0x0060600000000000ULL,
460 0x0040600000000000ULL, 0x0000600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0060600000000000ULL,
471 0x0020600000000000ULL, 0x0000600000000000ULL,
472 0x0040600000000000ULL, 0x0060600000000000ULL,
473 END_SIGN
474};
475
b41477f3
AR
476MODULE_LICENSE("GPL");
477MODULE_VERSION(DRV_VERSION);
478
479
1da177e4 480/* Module Loadable parameters. */
6cfc482b 481S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 482S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 483S2IO_PARM_INT(multiq, 0);
b41477f3
AR
484S2IO_PARM_INT(rx_ring_mode, 1);
485S2IO_PARM_INT(use_continuous_tx_intrs, 1);
486S2IO_PARM_INT(rmac_pause_time, 0x100);
487S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
488S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
489S2IO_PARM_INT(shared_splits, 0);
490S2IO_PARM_INT(tmac_util_period, 5);
491S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 492S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
493/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
494S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 495/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 496S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 497/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 498S2IO_PARM_INT(intr_type, 2);
7d3d0439 499/* Large receive offload feature */
43b7c451
SH
500static unsigned int lro_enable;
501module_param_named(lro, lro_enable, uint, 0);
502
7d3d0439
RA
503/* Max pkts to be aggregated by LRO at one time. If not specified,
504 * aggregation happens until we hit max IP pkt size(64K)
505 */
b41477f3 506S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 507S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
508
509S2IO_PARM_INT(napi, 1);
510S2IO_PARM_INT(ufo, 0);
926930b2 511S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
512
513static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
514 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
515static unsigned int rx_ring_sz[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
517static unsigned int rts_frm_len[MAX_RX_RINGS] =
518 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
519
520module_param_array(tx_fifo_len, uint, NULL, 0);
521module_param_array(rx_ring_sz, uint, NULL, 0);
522module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 523
20346722 524/*
1da177e4 525 * S2IO device table.
20346722 526 * This table lists all the devices that this driver supports.
1da177e4
LT
527 */
528static struct pci_device_id s2io_tbl[] __devinitdata = {
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
534 PCI_ANY_ID, PCI_ANY_ID},
535 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
536 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
537 {0,}
538};
539
540MODULE_DEVICE_TABLE(pci, s2io_tbl);
541
d796fdb7
LV
542static struct pci_error_handlers s2io_err_handler = {
543 .error_detected = s2io_io_error_detected,
544 .slot_reset = s2io_io_slot_reset,
545 .resume = s2io_io_resume,
546};
547
1da177e4
LT
548static struct pci_driver s2io_driver = {
549 .name = "S2IO",
550 .id_table = s2io_tbl,
551 .probe = s2io_init_nic,
552 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 553 .err_handler = &s2io_err_handler,
1da177e4
LT
554};
555
556/* A simplifier macro used both by init and free shared_mem Fns(). */
557#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
558
3a3d5756
SH
559/* netqueue manipulation helper functions */
560static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
561{
562 int i;
563#ifdef CONFIG_NETDEVICES_MULTIQUEUE
564 if (sp->config.multiq) {
565 for (i = 0; i < sp->config.tx_fifo_num; i++)
566 netif_stop_subqueue(sp->dev, i);
567 } else
568#endif
569 {
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
573 }
574}
575
576static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
577{
578#ifdef CONFIG_NETDEVICES_MULTIQUEUE
579 if (sp->config.multiq)
580 netif_stop_subqueue(sp->dev, fifo_no);
581 else
582#endif
583 {
584 sp->mac_control.fifos[fifo_no].queue_state =
585 FIFO_QUEUE_STOP;
586 netif_stop_queue(sp->dev);
587 }
588}
589
590static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
591{
592 int i;
593#ifdef CONFIG_NETDEVICES_MULTIQUEUE
594 if (sp->config.multiq) {
595 for (i = 0; i < sp->config.tx_fifo_num; i++)
596 netif_start_subqueue(sp->dev, i);
597 } else
598#endif
599 {
600 for (i = 0; i < sp->config.tx_fifo_num; i++)
601 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
603 }
604}
605
606static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
607{
608#ifdef CONFIG_NETDEVICES_MULTIQUEUE
609 if (sp->config.multiq)
610 netif_start_subqueue(sp->dev, fifo_no);
611 else
612#endif
613 {
614 sp->mac_control.fifos[fifo_no].queue_state =
615 FIFO_QUEUE_START;
616 netif_start_queue(sp->dev);
617 }
618}
619
620static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
621{
622 int i;
623#ifdef CONFIG_NETDEVICES_MULTIQUEUE
624 if (sp->config.multiq) {
625 for (i = 0; i < sp->config.tx_fifo_num; i++)
626 netif_wake_subqueue(sp->dev, i);
627 } else
628#endif
629 {
630 for (i = 0; i < sp->config.tx_fifo_num; i++)
631 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
632 netif_wake_queue(sp->dev);
633 }
634}
635
636static inline void s2io_wake_tx_queue(
637 struct fifo_info *fifo, int cnt, u8 multiq)
638{
639
640#ifdef CONFIG_NETDEVICES_MULTIQUEUE
641 if (multiq) {
642 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
643 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
644 } else
645#endif
646 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
647 if (netif_queue_stopped(fifo->dev)) {
648 fifo->queue_state = FIFO_QUEUE_START;
649 netif_wake_queue(fifo->dev);
650 }
651 }
652}
653
1da177e4
LT
654/**
655 * init_shared_mem - Allocation and Initialization of Memory
656 * @nic: Device private variable.
20346722
K
657 * Description: The function allocates all the memory areas shared
658 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
659 * Rx descriptors and the statistics block.
660 */
661
662static int init_shared_mem(struct s2io_nic *nic)
663{
664 u32 size;
665 void *tmp_v_addr, *tmp_v_addr_next;
666 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 667 struct RxD_block *pre_rxd_blk = NULL;
372cc597 668 int i, j, blk_cnt;
1da177e4
LT
669 int lst_size, lst_per_page;
670 struct net_device *dev = nic->dev;
8ae418cf 671 unsigned long tmp;
1ee6dd77 672 struct buffAdd *ba;
1da177e4 673
1ee6dd77 674 struct mac_info *mac_control;
1da177e4 675 struct config_param *config;
491976b2 676 unsigned long long mem_allocated = 0;
1da177e4
LT
677
678 mac_control = &nic->mac_control;
679 config = &nic->config;
680
681
682 /* Allocation and initialization of TXDLs in FIOFs */
683 size = 0;
684 for (i = 0; i < config->tx_fifo_num; i++) {
685 size += config->tx_cfg[i].fifo_len;
686 }
687 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 688 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 689 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 690 return -EINVAL;
1da177e4
LT
691 }
692
2fda096d
SR
693 size = 0;
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 size = config->tx_cfg[i].fifo_len;
696 /*
697 * Legal values are from 2 to 8192
698 */
699 if (size < 2) {
700 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
701 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
702 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
703 "are 2 to 8192\n");
704 return -EINVAL;
705 }
706 }
707
1ee6dd77 708 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
709 lst_per_page = PAGE_SIZE / lst_size;
710
711 for (i = 0; i < config->tx_fifo_num; i++) {
712 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 713 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 714 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722
K
715 GFP_KERNEL);
716 if (!mac_control->fifos[i].list_info) {
0c61ed5f 717 DBG_PRINT(INFO_DBG,
1da177e4
LT
718 "Malloc failed for list_info\n");
719 return -ENOMEM;
720 }
491976b2 721 mem_allocated += list_holder_size;
1da177e4
LT
722 }
723 for (i = 0; i < config->tx_fifo_num; i++) {
724 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
725 lst_per_page);
20346722
K
726 mac_control->fifos[i].tx_curr_put_info.offset = 0;
727 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 728 config->tx_cfg[i].fifo_len - 1;
20346722
K
729 mac_control->fifos[i].tx_curr_get_info.offset = 0;
730 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 731 config->tx_cfg[i].fifo_len - 1;
20346722
K
732 mac_control->fifos[i].fifo_no = i;
733 mac_control->fifos[i].nic = nic;
fed5eccd 734 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
3a3d5756 735 mac_control->fifos[i].dev = dev;
20346722 736
1da177e4
LT
737 for (j = 0; j < page_num; j++) {
738 int k = 0;
739 dma_addr_t tmp_p;
740 void *tmp_v;
741 tmp_v = pci_alloc_consistent(nic->pdev,
742 PAGE_SIZE, &tmp_p);
743 if (!tmp_v) {
0c61ed5f 744 DBG_PRINT(INFO_DBG,
1da177e4 745 "pci_alloc_consistent ");
0c61ed5f 746 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
747 return -ENOMEM;
748 }
776bd20f 749 /* If we got a zero DMA address(can happen on
750 * certain platforms like PPC), reallocate.
751 * Store virtual address of page we don't want,
752 * to be freed later.
753 */
754 if (!tmp_p) {
755 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 756 DBG_PRINT(INIT_DBG,
776bd20f 757 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 758 DBG_PRINT(INIT_DBG,
6b4d617d 759 "Virtual address %p\n", tmp_v);
776bd20f 760 tmp_v = pci_alloc_consistent(nic->pdev,
761 PAGE_SIZE, &tmp_p);
762 if (!tmp_v) {
0c61ed5f 763 DBG_PRINT(INFO_DBG,
776bd20f 764 "pci_alloc_consistent ");
0c61ed5f 765 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 766 return -ENOMEM;
767 }
491976b2 768 mem_allocated += PAGE_SIZE;
776bd20f 769 }
1da177e4
LT
770 while (k < lst_per_page) {
771 int l = (j * lst_per_page) + k;
772 if (l == config->tx_cfg[i].fifo_len)
20346722
K
773 break;
774 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 775 tmp_v + (k * lst_size);
20346722 776 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
777 tmp_p + (k * lst_size);
778 k++;
779 }
780 }
781 }
1da177e4 782
2fda096d
SR
783 for (i = 0; i < config->tx_fifo_num; i++) {
784 size = config->tx_cfg[i].fifo_len;
785 mac_control->fifos[i].ufo_in_band_v
786 = kcalloc(size, sizeof(u64), GFP_KERNEL);
787 if (!mac_control->fifos[i].ufo_in_band_v)
788 return -ENOMEM;
789 mem_allocated += (size * sizeof(u64));
790 }
fed5eccd 791
1da177e4
LT
792 /* Allocation and initialization of RXDs in Rings */
793 size = 0;
794 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
795 if (config->rx_cfg[i].num_rxd %
796 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
797 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
798 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
799 i);
800 DBG_PRINT(ERR_DBG, "RxDs per Block");
801 return FAILURE;
802 }
803 size += config->rx_cfg[i].num_rxd;
20346722 804 mac_control->rings[i].block_count =
da6971d8
AR
805 config->rx_cfg[i].num_rxd /
806 (rxd_count[nic->rxd_mode] + 1 );
807 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
808 mac_control->rings[i].block_count;
1da177e4 809 }
da6971d8 810 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 811 size = (size * (sizeof(struct RxD1)));
da6971d8 812 else
1ee6dd77 813 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
814
815 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
816 mac_control->rings[i].rx_curr_get_info.block_index = 0;
817 mac_control->rings[i].rx_curr_get_info.offset = 0;
818 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 819 config->rx_cfg[i].num_rxd - 1;
20346722
K
820 mac_control->rings[i].rx_curr_put_info.block_index = 0;
821 mac_control->rings[i].rx_curr_put_info.offset = 0;
822 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 823 config->rx_cfg[i].num_rxd - 1;
20346722
K
824 mac_control->rings[i].nic = nic;
825 mac_control->rings[i].ring_no = i;
826
da6971d8
AR
827 blk_cnt = config->rx_cfg[i].num_rxd /
828 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
829 /* Allocating all the Rx blocks */
830 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 831 struct rx_block_info *rx_blocks;
da6971d8
AR
832 int l;
833
834 rx_blocks = &mac_control->rings[i].rx_blocks[j];
835 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
836 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
837 &tmp_p_addr);
838 if (tmp_v_addr == NULL) {
839 /*
20346722
K
840 * In case of failure, free_shared_mem()
841 * is called, which should free any
842 * memory that was alloced till the
1da177e4
LT
843 * failure happened.
844 */
da6971d8 845 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
846 return -ENOMEM;
847 }
491976b2 848 mem_allocated += size;
1da177e4 849 memset(tmp_v_addr, 0, size);
da6971d8
AR
850 rx_blocks->block_virt_addr = tmp_v_addr;
851 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 852 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
853 rxd_count[nic->rxd_mode],
854 GFP_KERNEL);
372cc597
SS
855 if (!rx_blocks->rxds)
856 return -ENOMEM;
8a4bdbaa 857 mem_allocated +=
491976b2 858 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
859 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
860 rx_blocks->rxds[l].virt_addr =
861 rx_blocks->block_virt_addr +
862 (rxd_size[nic->rxd_mode] * l);
863 rx_blocks->rxds[l].dma_addr =
864 rx_blocks->block_dma_addr +
865 (rxd_size[nic->rxd_mode] * l);
866 }
1da177e4
LT
867 }
868 /* Interlinking all Rx Blocks */
869 for (j = 0; j < blk_cnt; j++) {
20346722
K
870 tmp_v_addr =
871 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 872 tmp_v_addr_next =
20346722 873 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 874 blk_cnt].block_virt_addr;
20346722
K
875 tmp_p_addr =
876 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 877 tmp_p_addr_next =
20346722 878 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
879 blk_cnt].block_dma_addr;
880
1ee6dd77 881 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
882 pre_rxd_blk->reserved_2_pNext_RxD_block =
883 (unsigned long) tmp_v_addr_next;
1da177e4
LT
884 pre_rxd_blk->pNext_RxD_Blk_physical =
885 (u64) tmp_p_addr_next;
886 }
887 }
6d517a27 888 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
889 /*
890 * Allocation of Storages for buffer addresses in 2BUFF mode
891 * and the buffers as well.
892 */
893 for (i = 0; i < config->rx_ring_num; i++) {
894 blk_cnt = config->rx_cfg[i].num_rxd /
895 (rxd_count[nic->rxd_mode]+ 1);
896 mac_control->rings[i].ba =
1ee6dd77 897 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 898 GFP_KERNEL);
da6971d8 899 if (!mac_control->rings[i].ba)
1da177e4 900 return -ENOMEM;
491976b2 901 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
902 for (j = 0; j < blk_cnt; j++) {
903 int k = 0;
904 mac_control->rings[i].ba[j] =
1ee6dd77 905 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
906 (rxd_count[nic->rxd_mode] + 1)),
907 GFP_KERNEL);
908 if (!mac_control->rings[i].ba[j])
1da177e4 909 return -ENOMEM;
491976b2
SH
910 mem_allocated += (sizeof(struct buffAdd) * \
911 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
912 while (k != rxd_count[nic->rxd_mode]) {
913 ba = &mac_control->rings[i].ba[j][k];
914
915 ba->ba_0_org = (void *) kmalloc
916 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
917 if (!ba->ba_0_org)
918 return -ENOMEM;
8a4bdbaa 919 mem_allocated +=
491976b2 920 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
921 tmp = (unsigned long)ba->ba_0_org;
922 tmp += ALIGN_SIZE;
923 tmp &= ~((unsigned long) ALIGN_SIZE);
924 ba->ba_0 = (void *) tmp;
925
926 ba->ba_1_org = (void *) kmalloc
927 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
928 if (!ba->ba_1_org)
929 return -ENOMEM;
8a4bdbaa 930 mem_allocated
491976b2 931 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
932 tmp = (unsigned long) ba->ba_1_org;
933 tmp += ALIGN_SIZE;
934 tmp &= ~((unsigned long) ALIGN_SIZE);
935 ba->ba_1 = (void *) tmp;
936 k++;
937 }
1da177e4
LT
938 }
939 }
940 }
1da177e4
LT
941
942 /* Allocation and initialization of Statistics block */
1ee6dd77 943 size = sizeof(struct stat_block);
1da177e4
LT
944 mac_control->stats_mem = pci_alloc_consistent
945 (nic->pdev, size, &mac_control->stats_mem_phy);
946
947 if (!mac_control->stats_mem) {
20346722
K
948 /*
949 * In case of failure, free_shared_mem() is called, which
950 * should free any memory that was alloced till the
1da177e4
LT
951 * failure happened.
952 */
953 return -ENOMEM;
954 }
491976b2 955 mem_allocated += size;
1da177e4
LT
956 mac_control->stats_mem_sz = size;
957
958 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 959 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 960 memset(tmp_v_addr, 0, size);
1da177e4
LT
961 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
962 (unsigned long long) tmp_p_addr);
491976b2 963 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
964 return SUCCESS;
965}
966
20346722
K
967/**
968 * free_shared_mem - Free the allocated Memory
1da177e4
LT
969 * @nic: Device private variable.
970 * Description: This function is to free all memory locations allocated by
971 * the init_shared_mem() function and return it to the kernel.
972 */
973
974static void free_shared_mem(struct s2io_nic *nic)
975{
976 int i, j, blk_cnt, size;
977 void *tmp_v_addr;
978 dma_addr_t tmp_p_addr;
1ee6dd77 979 struct mac_info *mac_control;
1da177e4
LT
980 struct config_param *config;
981 int lst_size, lst_per_page;
8910b49f 982 struct net_device *dev;
491976b2 983 int page_num = 0;
1da177e4
LT
984
985 if (!nic)
986 return;
987
8910b49f
MG
988 dev = nic->dev;
989
1da177e4
LT
990 mac_control = &nic->mac_control;
991 config = &nic->config;
992
1ee6dd77 993 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
994 lst_per_page = PAGE_SIZE / lst_size;
995
996 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
997 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
998 lst_per_page);
1da177e4
LT
999 for (j = 0; j < page_num; j++) {
1000 int mem_blks = (j * lst_per_page);
776bd20f 1001 if (!mac_control->fifos[i].list_info)
6aa20a22 1002 return;
776bd20f 1003 if (!mac_control->fifos[i].list_info[mem_blks].
1004 list_virt_addr)
1da177e4
LT
1005 break;
1006 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
1007 mac_control->fifos[i].
1008 list_info[mem_blks].
1da177e4 1009 list_virt_addr,
20346722
K
1010 mac_control->fifos[i].
1011 list_info[mem_blks].
1da177e4 1012 list_phy_addr);
8a4bdbaa 1013 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 1014 += PAGE_SIZE;
1da177e4 1015 }
776bd20f 1016 /* If we got a zero DMA address during allocation,
1017 * free the page now
1018 */
1019 if (mac_control->zerodma_virt_addr) {
1020 pci_free_consistent(nic->pdev, PAGE_SIZE,
1021 mac_control->zerodma_virt_addr,
1022 (dma_addr_t)0);
6aa20a22 1023 DBG_PRINT(INIT_DBG,
6b4d617d
AM
1024 "%s: Freeing TxDL with zero DMA addr. ",
1025 dev->name);
1026 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1027 mac_control->zerodma_virt_addr);
8a4bdbaa 1028 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 1029 += PAGE_SIZE;
776bd20f 1030 }
20346722 1031 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 1032 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1033 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
1034 }
1035
1da177e4 1036 size = SIZE_OF_BLOCK;
1da177e4 1037 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1038 blk_cnt = mac_control->rings[i].block_count;
1da177e4 1039 for (j = 0; j < blk_cnt; j++) {
20346722
K
1040 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1041 block_virt_addr;
1042 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1043 block_dma_addr;
1da177e4
LT
1044 if (tmp_v_addr == NULL)
1045 break;
1046 pci_free_consistent(nic->pdev, size,
1047 tmp_v_addr, tmp_p_addr);
491976b2 1048 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 1049 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 1050 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1051 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
1052 }
1053 }
1054
6d517a27 1055 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1056 /* Freeing buffer storage addresses in 2BUFF mode. */
1057 for (i = 0; i < config->rx_ring_num; i++) {
1058 blk_cnt = config->rx_cfg[i].num_rxd /
1059 (rxd_count[nic->rxd_mode] + 1);
1060 for (j = 0; j < blk_cnt; j++) {
1061 int k = 0;
1062 if (!mac_control->rings[i].ba[j])
1063 continue;
1064 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 1065 struct buffAdd *ba =
da6971d8
AR
1066 &mac_control->rings[i].ba[j][k];
1067 kfree(ba->ba_0_org);
491976b2
SH
1068 nic->mac_control.stats_info->sw_stat.\
1069 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1070 kfree(ba->ba_1_org);
491976b2
SH
1071 nic->mac_control.stats_info->sw_stat.\
1072 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1073 k++;
1074 }
1075 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
1076 nic->mac_control.stats_info->sw_stat.mem_freed +=
1077 (sizeof(struct buffAdd) *
1078 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1079 }
da6971d8 1080 kfree(mac_control->rings[i].ba);
8a4bdbaa 1081 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1082 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1083 }
1da177e4 1084 }
1da177e4 1085
2fda096d
SR
1086 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1087 if (mac_control->fifos[i].ufo_in_band_v) {
1088 nic->mac_control.stats_info->sw_stat.mem_freed
1089 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1090 kfree(mac_control->fifos[i].ufo_in_band_v);
1091 }
1092 }
1093
1da177e4 1094 if (mac_control->stats_mem) {
2fda096d
SR
1095 nic->mac_control.stats_info->sw_stat.mem_freed +=
1096 mac_control->stats_mem_sz;
1da177e4
LT
1097 pci_free_consistent(nic->pdev,
1098 mac_control->stats_mem_sz,
1099 mac_control->stats_mem,
1100 mac_control->stats_mem_phy);
491976b2 1101 }
1da177e4
LT
1102}
1103
541ae68f
K
1104/**
1105 * s2io_verify_pci_mode -
1106 */
1107
1ee6dd77 1108static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1109{
1ee6dd77 1110 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1111 register u64 val64 = 0;
1112 int mode;
1113
1114 val64 = readq(&bar0->pci_mode);
1115 mode = (u8)GET_PCI_MODE(val64);
1116
1117 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1118 return -1; /* Unknown PCI mode */
1119 return mode;
1120}
1121
c92ca04b
AR
1122#define NEC_VENID 0x1033
1123#define NEC_DEVID 0x0125
1124static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1125{
1126 struct pci_dev *tdev = NULL;
26d36b64
AC
1127 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1128 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 1129 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 1130 pci_dev_put(tdev);
c92ca04b
AR
1131 return 1;
1132 }
1133 }
1134 return 0;
1135}
541ae68f 1136
7b32a312 1137static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1138/**
1139 * s2io_print_pci_mode -
1140 */
1ee6dd77 1141static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1142{
1ee6dd77 1143 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1144 register u64 val64 = 0;
1145 int mode;
1146 struct config_param *config = &nic->config;
1147
1148 val64 = readq(&bar0->pci_mode);
1149 mode = (u8)GET_PCI_MODE(val64);
1150
1151 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1152 return -1; /* Unknown PCI mode */
1153
c92ca04b
AR
1154 config->bus_speed = bus_speed[mode];
1155
1156 if (s2io_on_nec_bridge(nic->pdev)) {
1157 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1158 nic->dev->name);
1159 return mode;
1160 }
1161
541ae68f
K
1162 if (val64 & PCI_MODE_32_BITS) {
1163 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1164 } else {
1165 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1166 }
1167
1168 switch(mode) {
1169 case PCI_MODE_PCI_33:
1170 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
1171 break;
1172 case PCI_MODE_PCI_66:
1173 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
1174 break;
1175 case PCI_MODE_PCIX_M1_66:
1176 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
1177 break;
1178 case PCI_MODE_PCIX_M1_100:
1179 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
1180 break;
1181 case PCI_MODE_PCIX_M1_133:
1182 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
1183 break;
1184 case PCI_MODE_PCIX_M2_66:
1185 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1186 break;
1187 case PCI_MODE_PCIX_M2_100:
1188 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1189 break;
1190 case PCI_MODE_PCIX_M2_133:
1191 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1192 break;
1193 default:
1194 return -1; /* Unsupported bus speed */
1195 }
1196
1197 return mode;
1198}
1199
b7c5678f
RV
1200/**
1201 * init_tti - Initialization transmit traffic interrupt scheme
1202 * @nic: device private variable
1203 * @link: link status (UP/DOWN) used to enable/disable continuous
1204 * transmit interrupts
1205 * Description: The function configures transmit traffic interrupts
1206 * Return Value: SUCCESS on success and
1207 * '-1' on failure
1208 */
1209
0d66afe7 1210static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1211{
1212 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1213 register u64 val64 = 0;
1214 int i;
1215 struct config_param *config;
1216
1217 config = &nic->config;
1218
1219 for (i = 0; i < config->tx_fifo_num; i++) {
1220 /*
1221 * TTI Initialization. Default Tx timer gets us about
1222 * 250 interrupts per sec. Continuous interrupts are enabled
1223 * by default.
1224 */
1225 if (nic->device_type == XFRAME_II_DEVICE) {
1226 int count = (nic->config.bus_speed * 125)/2;
1227 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1228 } else
1229 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1230
1231 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1232 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1233 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1234 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1235
1236 if (use_continuous_tx_intrs && (link == LINK_UP))
1237 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1238 writeq(val64, &bar0->tti_data1_mem);
1239
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x80);
1244
1245 writeq(val64, &bar0->tti_data2_mem);
1246
1247 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1248 TTI_CMD_MEM_OFFSET(i);
1249 writeq(val64, &bar0->tti_command_mem);
1250
1251 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1252 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1253 return FAILURE;
1254 }
1255
1256 return SUCCESS;
1257}
1258
20346722
K
1259/**
1260 * init_nic - Initialization of hardware
b7c5678f 1261 * @nic: device private variable
20346722
K
1262 * Description: The function sequentially configures every block
1263 * of the H/W from their reset values.
1264 * Return Value: SUCCESS on success and
1da177e4
LT
1265 * '-1' on failure (endian settings incorrect).
1266 */
1267
1268static int init_nic(struct s2io_nic *nic)
1269{
1ee6dd77 1270 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1271 struct net_device *dev = nic->dev;
1272 register u64 val64 = 0;
1273 void __iomem *add;
1274 u32 time;
1275 int i, j;
1ee6dd77 1276 struct mac_info *mac_control;
1da177e4 1277 struct config_param *config;
c92ca04b 1278 int dtx_cnt = 0;
1da177e4 1279 unsigned long long mem_share;
20346722 1280 int mem_size;
1da177e4
LT
1281
1282 mac_control = &nic->mac_control;
1283 config = &nic->config;
1284
5e25b9dd 1285 /* to set the swapper controle on the card */
20346722 1286 if(s2io_set_swapper(nic)) {
1da177e4 1287 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1288 return -EIO;
1da177e4
LT
1289 }
1290
541ae68f
K
1291 /*
1292 * Herc requires EOI to be removed from reset before XGXS, so..
1293 */
1294 if (nic->device_type & XFRAME_II_DEVICE) {
1295 val64 = 0xA500000000ULL;
1296 writeq(val64, &bar0->sw_reset);
1297 msleep(500);
1298 val64 = readq(&bar0->sw_reset);
1299 }
1300
1da177e4
LT
1301 /* Remove XGXS from reset state */
1302 val64 = 0;
1303 writeq(val64, &bar0->sw_reset);
1da177e4 1304 msleep(500);
20346722 1305 val64 = readq(&bar0->sw_reset);
1da177e4 1306
7962024e
SH
1307 /* Ensure that it's safe to access registers by checking
1308 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1309 */
1310 if (nic->device_type == XFRAME_II_DEVICE) {
1311 for (i = 0; i < 50; i++) {
1312 val64 = readq(&bar0->adapter_status);
1313 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1314 break;
1315 msleep(10);
1316 }
1317 if (i == 50)
1318 return -ENODEV;
1319 }
1320
1da177e4
LT
1321 /* Enable Receiving broadcasts */
1322 add = &bar0->mac_cfg;
1323 val64 = readq(&bar0->mac_cfg);
1324 val64 |= MAC_RMAC_BCAST_ENABLE;
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1326 writel((u32) val64, add);
1327 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1328 writel((u32) (val64 >> 32), (add + 4));
1329
1330 /* Read registers in all blocks */
1331 val64 = readq(&bar0->mac_int_mask);
1332 val64 = readq(&bar0->mc_int_mask);
1333 val64 = readq(&bar0->xgxs_int_mask);
1334
1335 /* Set MTU */
1336 val64 = dev->mtu;
1337 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1338
541ae68f
K
1339 if (nic->device_type & XFRAME_II_DEVICE) {
1340 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1341 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1342 &bar0->dtx_control, UF);
541ae68f
K
1343 if (dtx_cnt & 0x1)
1344 msleep(1); /* Necessary!! */
1da177e4
LT
1345 dtx_cnt++;
1346 }
541ae68f 1347 } else {
c92ca04b
AR
1348 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1349 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1350 &bar0->dtx_control, UF);
1351 val64 = readq(&bar0->dtx_control);
1352 dtx_cnt++;
1da177e4
LT
1353 }
1354 }
1355
1356 /* Tx DMA Initialization */
1357 val64 = 0;
1358 writeq(val64, &bar0->tx_fifo_partition_0);
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1360 writeq(val64, &bar0->tx_fifo_partition_2);
1361 writeq(val64, &bar0->tx_fifo_partition_3);
1362
1363
1364 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1365 val64 |=
b7c5678f 1366 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1da177e4 1367 13) | vBIT(config->tx_cfg[i].fifo_priority,
b7c5678f 1368 ((j * 32) + 5), 3);
1da177e4
LT
1369
1370 if (i == (config->tx_fifo_num - 1)) {
1371 if (i % 2 == 0)
1372 i++;
1373 }
1374
1375 switch (i) {
1376 case 1:
1377 writeq(val64, &bar0->tx_fifo_partition_0);
1378 val64 = 0;
b7c5678f 1379 j = 0;
1da177e4
LT
1380 break;
1381 case 3:
1382 writeq(val64, &bar0->tx_fifo_partition_1);
1383 val64 = 0;
b7c5678f 1384 j = 0;
1da177e4
LT
1385 break;
1386 case 5:
1387 writeq(val64, &bar0->tx_fifo_partition_2);
1388 val64 = 0;
b7c5678f 1389 j = 0;
1da177e4
LT
1390 break;
1391 case 7:
1392 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1393 val64 = 0;
1394 j = 0;
1395 break;
1396 default:
1397 j++;
1da177e4
LT
1398 break;
1399 }
1400 }
1401
5e25b9dd
K
1402 /*
1403 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1404 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1405 */
541ae68f 1406 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1407 (nic->pdev->revision < 4))
5e25b9dd
K
1408 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1409
1da177e4
LT
1410 val64 = readq(&bar0->tx_fifo_partition_0);
1411 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1412 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1413
20346722
K
1414 /*
1415 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1416 * integrity checking.
1417 */
1418 val64 = readq(&bar0->tx_pa_cfg);
1419 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1420 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1421 writeq(val64, &bar0->tx_pa_cfg);
1422
1423 /* Rx DMA intialization. */
1424 val64 = 0;
1425 for (i = 0; i < config->rx_ring_num; i++) {
1426 val64 |=
1427 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1428 3);
1429 }
1430 writeq(val64, &bar0->rx_queue_priority);
1431
20346722
K
1432 /*
1433 * Allocating equal share of memory to all the
1da177e4
LT
1434 * configured Rings.
1435 */
1436 val64 = 0;
541ae68f
K
1437 if (nic->device_type & XFRAME_II_DEVICE)
1438 mem_size = 32;
1439 else
1440 mem_size = 64;
1441
1da177e4
LT
1442 for (i = 0; i < config->rx_ring_num; i++) {
1443 switch (i) {
1444 case 0:
20346722
K
1445 mem_share = (mem_size / config->rx_ring_num +
1446 mem_size % config->rx_ring_num);
1da177e4
LT
1447 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1448 continue;
1449 case 1:
20346722 1450 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1451 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1452 continue;
1453 case 2:
20346722 1454 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1455 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1456 continue;
1457 case 3:
20346722 1458 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1459 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1460 continue;
1461 case 4:
20346722 1462 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1463 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1464 continue;
1465 case 5:
20346722 1466 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1467 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1468 continue;
1469 case 6:
20346722 1470 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1471 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1472 continue;
1473 case 7:
20346722 1474 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1475 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1476 continue;
1477 }
1478 }
1479 writeq(val64, &bar0->rx_queue_cfg);
1480
20346722 1481 /*
5e25b9dd 1482 * Filling Tx round robin registers
b7c5678f 1483 * as per the number of FIFOs for equal scheduling priority
1da177e4 1484 */
5e25b9dd
K
1485 switch (config->tx_fifo_num) {
1486 case 1:
b7c5678f 1487 val64 = 0x0;
5e25b9dd
K
1488 writeq(val64, &bar0->tx_w_round_robin_0);
1489 writeq(val64, &bar0->tx_w_round_robin_1);
1490 writeq(val64, &bar0->tx_w_round_robin_2);
1491 writeq(val64, &bar0->tx_w_round_robin_3);
1492 writeq(val64, &bar0->tx_w_round_robin_4);
1493 break;
1494 case 2:
b7c5678f 1495 val64 = 0x0001000100010001ULL;
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1498 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1499 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1500 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1501 writeq(val64, &bar0->tx_w_round_robin_4);
1502 break;
1503 case 3:
b7c5678f 1504 val64 = 0x0001020001020001ULL;
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1506 val64 = 0x0200010200010200ULL;
5e25b9dd 1507 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1508 val64 = 0x0102000102000102ULL;
5e25b9dd 1509 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1510 val64 = 0x0001020001020001ULL;
5e25b9dd 1511 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1512 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1513 writeq(val64, &bar0->tx_w_round_robin_4);
1514 break;
1515 case 4:
b7c5678f 1516 val64 = 0x0001020300010203ULL;
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1518 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1519 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1520 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1521 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 5:
b7c5678f 1525 val64 = 0x0001020304000102ULL;
5e25b9dd 1526 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1527 val64 = 0x0304000102030400ULL;
5e25b9dd 1528 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1529 val64 = 0x0102030400010203ULL;
5e25b9dd 1530 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1531 val64 = 0x0400010203040001ULL;
5e25b9dd 1532 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1533 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 6:
b7c5678f 1537 val64 = 0x0001020304050001ULL;
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1539 val64 = 0x0203040500010203ULL;
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1541 val64 = 0x0405000102030405ULL;
5e25b9dd 1542 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1543 val64 = 0x0001020304050001ULL;
5e25b9dd 1544 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1545 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1546 writeq(val64, &bar0->tx_w_round_robin_4);
1547 break;
1548 case 7:
b7c5678f 1549 val64 = 0x0001020304050600ULL;
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1551 val64 = 0x0102030405060001ULL;
5e25b9dd 1552 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1553 val64 = 0x0203040506000102ULL;
5e25b9dd 1554 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1555 val64 = 0x0304050600010203ULL;
5e25b9dd 1556 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1557 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1558 writeq(val64, &bar0->tx_w_round_robin_4);
1559 break;
1560 case 8:
b7c5678f 1561 val64 = 0x0001020304050607ULL;
5e25b9dd 1562 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1563 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1564 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1565 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1566 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1567 writeq(val64, &bar0->tx_w_round_robin_4);
1568 break;
1569 }
1570
b41477f3 1571 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1572 val64 = readq(&bar0->tx_fifo_partition_0);
1573 val64 |= (TX_FIFO_PARTITION_EN);
1574 writeq(val64, &bar0->tx_fifo_partition_0);
1575
5e25b9dd
K
1576 /* Filling the Rx round robin registers as per the
1577 * number of Rings and steering based on QoS.
1578 */
1579 switch (config->rx_ring_num) {
1580 case 1:
1581 val64 = 0x8080808080808080ULL;
1582 writeq(val64, &bar0->rts_qos_steering);
1583 break;
1584 case 2:
1585 val64 = 0x0000010000010000ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_0);
1587 val64 = 0x0100000100000100ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_1);
1589 val64 = 0x0001000001000001ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_2);
1591 val64 = 0x0000010000010000ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 val64 = 0x0100000000000000ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_4);
1595
1596 val64 = 0x8080808040404040ULL;
1597 writeq(val64, &bar0->rts_qos_steering);
1598 break;
1599 case 3:
1600 val64 = 0x0001000102000001ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_0);
1602 val64 = 0x0001020000010001ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_1);
1604 val64 = 0x0200000100010200ULL;
1605 writeq(val64, &bar0->rx_w_round_robin_2);
1606 val64 = 0x0001000102000001ULL;
1607 writeq(val64, &bar0->rx_w_round_robin_3);
1608 val64 = 0x0001020000000000ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_4);
1610
1611 val64 = 0x8080804040402020ULL;
1612 writeq(val64, &bar0->rts_qos_steering);
1613 break;
1614 case 4:
1615 val64 = 0x0001020300010200ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_0);
1617 val64 = 0x0100000102030001ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_1);
1619 val64 = 0x0200010000010203ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1621 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1622 writeq(val64, &bar0->rx_w_round_robin_3);
1623 val64 = 0x0203000100000000ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_4);
1625
1626 val64 = 0x8080404020201010ULL;
1627 writeq(val64, &bar0->rts_qos_steering);
1628 break;
1629 case 5:
1630 val64 = 0x0001000203000102ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_0);
1632 val64 = 0x0001020001030004ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_1);
1634 val64 = 0x0001000203000102ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_2);
1636 val64 = 0x0001020001030004ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_3);
1638 val64 = 0x0001000000000000ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_4);
1640
1641 val64 = 0x8080404020201008ULL;
1642 writeq(val64, &bar0->rts_qos_steering);
1643 break;
1644 case 6:
1645 val64 = 0x0001020304000102ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_0);
1647 val64 = 0x0304050001020001ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_1);
1649 val64 = 0x0203000100000102ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_2);
1651 val64 = 0x0304000102030405ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_3);
1653 val64 = 0x0001000200000000ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_4);
1655
1656 val64 = 0x8080404020100804ULL;
1657 writeq(val64, &bar0->rts_qos_steering);
1658 break;
1659 case 7:
1660 val64 = 0x0001020001020300ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_0);
1662 val64 = 0x0102030400010203ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_1);
1664 val64 = 0x0405060001020001ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 val64 = 0x0304050000010200ULL;
1667 writeq(val64, &bar0->rx_w_round_robin_3);
1668 val64 = 0x0102030000000000ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8080402010080402ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 case 8:
1675 val64 = 0x0001020300040105ULL;
1676 writeq(val64, &bar0->rx_w_round_robin_0);
1677 val64 = 0x0200030106000204ULL;
1678 writeq(val64, &bar0->rx_w_round_robin_1);
1679 val64 = 0x0103000502010007ULL;
1680 writeq(val64, &bar0->rx_w_round_robin_2);
1681 val64 = 0x0304010002060500ULL;
1682 writeq(val64, &bar0->rx_w_round_robin_3);
1683 val64 = 0x0103020400000000ULL;
1684 writeq(val64, &bar0->rx_w_round_robin_4);
1685
1686 val64 = 0x8040201008040201ULL;
1687 writeq(val64, &bar0->rts_qos_steering);
1688 break;
1689 }
1da177e4
LT
1690
1691 /* UDP Fix */
1692 val64 = 0;
20346722 1693 for (i = 0; i < 8; i++)
1da177e4
LT
1694 writeq(val64, &bar0->rts_frm_len_n[i]);
1695
5e25b9dd
K
1696 /* Set the default rts frame length for the rings configured */
1697 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1698 for (i = 0 ; i < config->rx_ring_num ; i++)
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1700
1701 /* Set the frame length for the configured rings
1702 * desired by the user
1703 */
1704 for (i = 0; i < config->rx_ring_num; i++) {
1705 /* If rts_frm_len[i] == 0 then it is assumed that user not
1706 * specified frame length steering.
1707 * If the user provides the frame length then program
1708 * the rts_frm_len register for those values or else
1709 * leave it as it is.
1710 */
1711 if (rts_frm_len[i] != 0) {
1712 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1713 &bar0->rts_frm_len_n[i]);
1714 }
1715 }
8a4bdbaa 1716
9fc93a41
SS
1717 /* Disable differentiated services steering logic */
1718 for (i = 0; i < 64; i++) {
1719 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1720 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1721 dev->name);
1722 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1723 return -ENODEV;
9fc93a41
SS
1724 }
1725 }
1726
20346722 1727 /* Program statistics memory */
1da177e4 1728 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1729
541ae68f
K
1730 if (nic->device_type == XFRAME_II_DEVICE) {
1731 val64 = STAT_BC(0x320);
1732 writeq(val64, &bar0->stat_byte_cnt);
1733 }
1734
20346722 1735 /*
1da177e4
LT
1736 * Initializing the sampling rate for the device to calculate the
1737 * bandwidth utilization.
1738 */
1739 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1740 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1741 writeq(val64, &bar0->mac_link_util);
1742
20346722
K
1743 /*
1744 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1745 * Scheme.
1746 */
1da177e4 1747
b7c5678f
RV
1748 /* Initialize TTI */
1749 if (SUCCESS != init_tti(nic, nic->last_link_state))
1750 return -ENODEV;
1da177e4 1751
8a4bdbaa
SS
1752 /* RTI Initialization */
1753 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1754 /*
8a4bdbaa
SS
1755 * Programmed to generate Apprx 500 Intrs per
1756 * second
1757 */
1758 int count = (nic->config.bus_speed * 125)/4;
1759 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1760 } else
1761 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1762 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1763 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1764 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1765
1766 writeq(val64, &bar0->rti_data1_mem);
1767
1768 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1769 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1770 if (nic->config.intr_type == MSI_X)
1771 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1772 RTI_DATA2_MEM_RX_UFC_D(0x40));
1773 else
1774 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1775 RTI_DATA2_MEM_RX_UFC_D(0x80));
1776 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1777
8a4bdbaa
SS
1778 for (i = 0; i < config->rx_ring_num; i++) {
1779 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1780 | RTI_CMD_MEM_OFFSET(i);
1781 writeq(val64, &bar0->rti_command_mem);
1da177e4 1782
8a4bdbaa
SS
1783 /*
1784 * Once the operation completes, the Strobe bit of the
1785 * command register will be reset. We poll for this
1786 * particular condition. We wait for a maximum of 500ms
1787 * for the operation to complete, if it's not complete
1788 * by then we return error.
1789 */
1790 time = 0;
1791 while (TRUE) {
1792 val64 = readq(&bar0->rti_command_mem);
1793 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1794 break;
b6e3f982 1795
8a4bdbaa
SS
1796 if (time > 10) {
1797 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1798 dev->name);
9f74ffde 1799 return -ENODEV;
b6e3f982 1800 }
8a4bdbaa
SS
1801 time++;
1802 msleep(50);
1da177e4 1803 }
1da177e4
LT
1804 }
1805
20346722
K
1806 /*
1807 * Initializing proper values as Pause threshold into all
1da177e4
LT
1808 * the 8 Queues on Rx side.
1809 */
1810 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1811 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1812
1813 /* Disable RMAC PAD STRIPPING */
509a2671 1814 add = &bar0->mac_cfg;
1da177e4
LT
1815 val64 = readq(&bar0->mac_cfg);
1816 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 val64 = readq(&bar0->mac_cfg);
1822
7d3d0439
RA
1823 /* Enable FCS stripping by adapter */
1824 add = &bar0->mac_cfg;
1825 val64 = readq(&bar0->mac_cfg);
1826 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1827 if (nic->device_type == XFRAME_II_DEVICE)
1828 writeq(val64, &bar0->mac_cfg);
1829 else {
1830 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1831 writel((u32) (val64), add);
1832 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1833 writel((u32) (val64 >> 32), (add + 4));
1834 }
1835
20346722
K
1836 /*
1837 * Set the time value to be inserted in the pause frame
1da177e4
LT
1838 * generated by xena.
1839 */
1840 val64 = readq(&bar0->rmac_pause_cfg);
1841 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1842 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1843 writeq(val64, &bar0->rmac_pause_cfg);
1844
20346722 1845 /*
1da177e4
LT
1846 * Set the Threshold Limit for Generating the pause frame
1847 * If the amount of data in any Queue exceeds ratio of
1848 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1849 * pause frame is generated
1850 */
1851 val64 = 0;
1852 for (i = 0; i < 4; i++) {
1853 val64 |=
1854 (((u64) 0xFF00 | nic->mac_control.
1855 mc_pause_threshold_q0q3)
1856 << (i * 2 * 8));
1857 }
1858 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1859
1860 val64 = 0;
1861 for (i = 0; i < 4; i++) {
1862 val64 |=
1863 (((u64) 0xFF00 | nic->mac_control.
1864 mc_pause_threshold_q4q7)
1865 << (i * 2 * 8));
1866 }
1867 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1868
20346722
K
1869 /*
1870 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1871 * exceeded the limit pointed by shared_splits
1872 */
1873 val64 = readq(&bar0->pic_control);
1874 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1875 writeq(val64, &bar0->pic_control);
1876
863c11a9
AR
1877 if (nic->config.bus_speed == 266) {
1878 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1879 writeq(0x0, &bar0->read_retry_delay);
1880 writeq(0x0, &bar0->write_retry_delay);
1881 }
1882
541ae68f
K
1883 /*
1884 * Programming the Herc to split every write transaction
1885 * that does not start on an ADB to reduce disconnects.
1886 */
1887 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1888 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1889 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1890 writeq(val64, &bar0->misc_control);
1891 val64 = readq(&bar0->pic_control2);
b7b5a128 1892 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1893 writeq(val64, &bar0->pic_control2);
541ae68f 1894 }
c92ca04b
AR
1895 if (strstr(nic->product_name, "CX4")) {
1896 val64 = TMAC_AVG_IPG(0x17);
1897 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1898 }
1899
1da177e4
LT
1900 return SUCCESS;
1901}
a371a07d
K
1902#define LINK_UP_DOWN_INTERRUPT 1
1903#define MAC_RMAC_ERR_TIMER 2
1904
1ee6dd77 1905static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1906{
eaae7f72 1907 if (nic->config.intr_type != INTA)
cc6e7c44 1908 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1909 if (nic->device_type == XFRAME_II_DEVICE)
1910 return LINK_UP_DOWN_INTERRUPT;
1911 else
1912 return MAC_RMAC_ERR_TIMER;
1913}
8116f3cf 1914
9caab458
SS
1915/**
1916 * do_s2io_write_bits - update alarm bits in alarm register
1917 * @value: alarm bits
1918 * @flag: interrupt status
1919 * @addr: address value
1920 * Description: update alarm bits in alarm register
1921 * Return Value:
1922 * NONE.
1923 */
1924static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1925{
1926 u64 temp64;
1927
1928 temp64 = readq(addr);
1929
1930 if(flag == ENABLE_INTRS)
1931 temp64 &= ~((u64) value);
1932 else
1933 temp64 |= ((u64) value);
1934 writeq(temp64, addr);
1935}
1da177e4 1936
43b7c451 1937static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1938{
1939 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1940 register u64 gen_int_mask = 0;
1941
1942 if (mask & TX_DMA_INTR) {
1943
1944 gen_int_mask |= TXDMA_INT_M;
1945
1946 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1947 TXDMA_PCC_INT | TXDMA_TTI_INT |
1948 TXDMA_LSO_INT | TXDMA_TPA_INT |
1949 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1950
1951 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1952 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1953 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1954 &bar0->pfc_err_mask);
1955
1956 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1957 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1958 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1959
1960 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1961 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1962 PCC_N_SERR | PCC_6_COF_OV_ERR |
1963 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1964 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1965 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1966
1967 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1968 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1969
1970 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1971 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1972 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1973 flag, &bar0->lso_err_mask);
1974
1975 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1976 flag, &bar0->tpa_err_mask);
1977
1978 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1979
1980 }
1981
1982 if (mask & TX_MAC_INTR) {
1983 gen_int_mask |= TXMAC_INT_M;
1984 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1985 &bar0->mac_int_mask);
1986 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1987 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1988 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1989 flag, &bar0->mac_tmac_err_mask);
1990 }
1991
1992 if (mask & TX_XGXS_INTR) {
1993 gen_int_mask |= TXXGXS_INT_M;
1994 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1995 &bar0->xgxs_int_mask);
1996 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1997 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1998 flag, &bar0->xgxs_txgxs_err_mask);
1999 }
2000
2001 if (mask & RX_DMA_INTR) {
2002 gen_int_mask |= RXDMA_INT_M;
2003 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2004 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2005 flag, &bar0->rxdma_int_mask);
2006 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2007 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2008 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2009 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2010 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2011 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2012 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2013 &bar0->prc_pcix_err_mask);
2014 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2015 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2016 &bar0->rpa_err_mask);
2017 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2018 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2019 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2020 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2021 flag, &bar0->rda_err_mask);
2022 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2023 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2024 flag, &bar0->rti_err_mask);
2025 }
2026
2027 if (mask & RX_MAC_INTR) {
2028 gen_int_mask |= RXMAC_INT_M;
2029 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2030 &bar0->mac_int_mask);
2031 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2032 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2033 RMAC_DOUBLE_ECC_ERR |
2034 RMAC_LINK_STATE_CHANGE_INT,
2035 flag, &bar0->mac_rmac_err_mask);
2036 }
2037
2038 if (mask & RX_XGXS_INTR)
2039 {
2040 gen_int_mask |= RXXGXS_INT_M;
2041 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2042 &bar0->xgxs_int_mask);
2043 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2044 &bar0->xgxs_rxgxs_err_mask);
2045 }
2046
2047 if (mask & MC_INTR) {
2048 gen_int_mask |= MC_INT_M;
2049 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2050 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2051 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2052 &bar0->mc_err_mask);
2053 }
2054 nic->general_int_mask = gen_int_mask;
2055
2056 /* Remove this line when alarm interrupts are enabled */
2057 nic->general_int_mask = 0;
2058}
20346722
K
2059/**
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
20346722
K
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
1da177e4
LT
2067 * Return Value: NONE.
2068 */
2069
2070static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2071{
1ee6dd77 2072 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2073 register u64 temp64 = 0, intr_mask = 0;
2074
2075 intr_mask = nic->general_int_mask;
1da177e4
LT
2076
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
9caab458 2079 if (mask & TX_PIC_INTR) {
1da177e4 2080 /* Enable PIC Intrs in the general intr mask register */
9caab458 2081 intr_mask |= TXPIC_INT_M;
1da177e4 2082 if (flag == ENABLE_INTRS) {
20346722 2083 /*
a371a07d 2084 * If Hercules adapter enable GPIO otherwise
b41477f3 2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2086 * interrupts for now.
2087 * TODO
1da177e4 2088 */
a371a07d
K
2089 if (s2io_link_fault_indication(nic) ==
2090 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
2091 do_s2io_write_bits(PIC_INT_GPIO, flag,
2092 &bar0->pic_int_mask);
2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2094 &bar0->gpio_int_mask);
2095 } else
a371a07d 2096 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2097 } else if (flag == DISABLE_INTRS) {
20346722
K
2098 /*
2099 * Disable PIC Intrs in the general
2100 * intr mask register
1da177e4
LT
2101 */
2102 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2103 }
2104 }
2105
1da177e4
LT
2106 /* Tx traffic interrupts */
2107 if (mask & TX_TRAFFIC_INTR) {
9caab458 2108 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2109 if (flag == ENABLE_INTRS) {
20346722 2110 /*
1da177e4 2111 * Enable all the Tx side interrupts
20346722 2112 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2113 */
2114 writeq(0x0, &bar0->tx_traffic_mask);
2115 } else if (flag == DISABLE_INTRS) {
20346722
K
2116 /*
2117 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2118 * register.
2119 */
2120 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2121 }
2122 }
2123
2124 /* Rx traffic interrupts */
2125 if (mask & RX_TRAFFIC_INTR) {
9caab458 2126 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2127 if (flag == ENABLE_INTRS) {
1da177e4
LT
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0->rx_traffic_mask);
2130 } else if (flag == DISABLE_INTRS) {
20346722
K
2131 /*
2132 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2133 * register.
2134 */
2135 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2136 }
2137 }
9caab458
SS
2138
2139 temp64 = readq(&bar0->general_int_mask);
2140 if (flag == ENABLE_INTRS)
2141 temp64 &= ~((u64) intr_mask);
2142 else
2143 temp64 = DISABLE_ALL_INTRS;
2144 writeq(temp64, &bar0->general_int_mask);
2145
2146 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2147}
2148
19a60522
SS
2149/**
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2153 */
1ee6dd77 2154static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2155{
19a60522 2156 int ret = 0, herc;
1ee6dd77 2157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2158 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2159
19a60522 2160 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
2161
2162 if (flag == FALSE) {
44c10138 2163 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2164 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2165 ret = 1;
19a60522
SS
2166 } else {
2167 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2168 ret = 1;
20346722
K
2169 }
2170 } else {
44c10138 2171 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2172 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2173 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2174 ret = 1;
5e25b9dd
K
2175 } else {
2176 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2178 ret = 1;
20346722
K
2179 }
2180 }
2181
2182 return ret;
2183}
2184/**
2185 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2186 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2187 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2188 * differs and the calling function passes the input argument flag to
2189 * indicate this.
20346722 2190 * Return: 1 If xena is quiescence
1da177e4
LT
2191 * 0 If Xena is not quiescence
2192 */
2193
1ee6dd77 2194static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2195{
19a60522 2196 int mode;
1ee6dd77 2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2198 u64 val64 = readq(&bar0->adapter_status);
2199 mode = s2io_verify_pci_mode(sp);
1da177e4 2200
19a60522
SS
2201 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2206 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2210 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2214 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2218 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2219 return 0;
2220 }
2221 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2222 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2223 return 0;
2224 }
2225 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2226 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2227 return 0;
2228 }
2229 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2230 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2231 return 0;
1da177e4
LT
2232 }
2233
19a60522
SS
2234 /*
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2237 * not be asserted.
2238 */
2239 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2240 sp->device_type == XFRAME_II_DEVICE && mode !=
2241 PCI_MODE_PCI_33) {
2242 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2243 return 0;
2244 }
2245 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2246 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2247 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2248 return 0;
2249 }
2250 return 1;
1da177e4
LT
2251}
2252
2253/**
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
20346722 2256 * Description :
1da177e4
LT
2257 * New procedure to clear mac address reading problems on Alpha platforms
2258 *
2259 */
2260
1ee6dd77 2261static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2262{
1ee6dd77 2263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2264 u64 val64;
2265 int i = 0;
2266
2267 while (fix_mac[i] != END_SIGN) {
2268 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2269 udelay(10);
1da177e4
LT
2270 val64 = readq(&bar0->gpio_control);
2271 }
2272}
2273
2274/**
20346722 2275 * start_nic - Turns the device on
1da177e4 2276 * @nic : device private variable.
20346722
K
2277 * Description:
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
20346722 2283 * Return Value:
1da177e4
LT
2284 * SUCCESS on success and -1 on failure.
2285 */
2286
2287static int start_nic(struct s2io_nic *nic)
2288{
1ee6dd77 2289 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2290 struct net_device *dev = nic->dev;
2291 register u64 val64 = 0;
20346722 2292 u16 subid, i;
1ee6dd77 2293 struct mac_info *mac_control;
1da177e4
LT
2294 struct config_param *config;
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 /* PRC Initialization and configuration */
2300 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2301 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2302 &bar0->prc_rxd0_n[i]);
2303
2304 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2305 if (nic->rxd_mode == RXD_MODE_1)
2306 val64 |= PRC_CTRL_RC_ENABLED;
2307 else
2308 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2309 if (nic->device_type == XFRAME_II_DEVICE)
2310 val64 |= PRC_CTRL_GROUP_READS;
2311 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2312 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2313 writeq(val64, &bar0->prc_ctrl_n[i]);
2314 }
2315
da6971d8
AR
2316 if (nic->rxd_mode == RXD_MODE_3B) {
2317 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2318 val64 = readq(&bar0->rx_pa_cfg);
2319 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2320 writeq(val64, &bar0->rx_pa_cfg);
2321 }
1da177e4 2322
926930b2
SS
2323 if (vlan_tag_strip == 0) {
2324 val64 = readq(&bar0->rx_pa_cfg);
2325 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2326 writeq(val64, &bar0->rx_pa_cfg);
2327 vlan_strip_flag = 0;
2328 }
2329
20346722 2330 /*
1da177e4
LT
2331 * Enabling MC-RLDRAM. After enabling the device, we timeout
2332 * for around 100ms, which is approximately the time required
2333 * for the device to be ready for operation.
2334 */
2335 val64 = readq(&bar0->mc_rldram_mrs);
2336 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2337 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2338 val64 = readq(&bar0->mc_rldram_mrs);
2339
20346722 2340 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2341
2342 /* Enabling ECC Protection. */
2343 val64 = readq(&bar0->adapter_control);
2344 val64 &= ~ADAPTER_ECC_EN;
2345 writeq(val64, &bar0->adapter_control);
2346
20346722
K
2347 /*
2348 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2349 * it.
2350 */
2351 val64 = readq(&bar0->adapter_status);
19a60522 2352 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2353 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2354 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2355 (unsigned long long) val64);
2356 return FAILURE;
2357 }
2358
20346722 2359 /*
1da177e4 2360 * With some switches, link might be already up at this point.
20346722
K
2361 * Because of this weird behavior, when we enable laser,
2362 * we may not get link. We need to handle this. We cannot
2363 * figure out which switch is misbehaving. So we are forced to
2364 * make a global change.
1da177e4
LT
2365 */
2366
2367 /* Enabling Laser. */
2368 val64 = readq(&bar0->adapter_control);
2369 val64 |= ADAPTER_EOI_TX_ON;
2370 writeq(val64, &bar0->adapter_control);
2371
c92ca04b
AR
2372 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2373 /*
2374 * Dont see link state interrupts initally on some switches,
2375 * so directly scheduling the link state task here.
2376 */
2377 schedule_work(&nic->set_link_task);
2378 }
1da177e4
LT
2379 /* SXE-002: Initialize link and activity LED */
2380 subid = nic->pdev->subsystem_device;
541ae68f
K
2381 if (((subid & 0xFF) >= 0x07) &&
2382 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2383 val64 = readq(&bar0->gpio_control);
2384 val64 |= 0x0000800000000000ULL;
2385 writeq(val64, &bar0->gpio_control);
2386 val64 = 0x0411040400000000ULL;
509a2671 2387 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2388 }
2389
1da177e4
LT
2390 return SUCCESS;
2391}
fed5eccd
AR
2392/**
2393 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2394 */
1ee6dd77
RB
2395static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2396 TxD *txdlp, int get_off)
fed5eccd 2397{
1ee6dd77 2398 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2399 struct sk_buff *skb;
1ee6dd77 2400 struct TxD *txds;
fed5eccd
AR
2401 u16 j, frg_cnt;
2402
2403 txds = txdlp;
2fda096d 2404 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
fed5eccd
AR
2405 pci_unmap_single(nic->pdev, (dma_addr_t)
2406 txds->Buffer_Pointer, sizeof(u64),
2407 PCI_DMA_TODEVICE);
2408 txds++;
2409 }
2410
2411 skb = (struct sk_buff *) ((unsigned long)
2412 txds->Host_Control);
2413 if (!skb) {
1ee6dd77 2414 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2415 return NULL;
2416 }
2417 pci_unmap_single(nic->pdev, (dma_addr_t)
2418 txds->Buffer_Pointer,
2419 skb->len - skb->data_len,
2420 PCI_DMA_TODEVICE);
2421 frg_cnt = skb_shinfo(skb)->nr_frags;
2422 if (frg_cnt) {
2423 txds++;
2424 for (j = 0; j < frg_cnt; j++, txds++) {
2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2426 if (!txds->Buffer_Pointer)
2427 break;
6aa20a22 2428 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2429 txds->Buffer_Pointer,
2430 frag->size, PCI_DMA_TODEVICE);
2431 }
2432 }
1ee6dd77 2433 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2434 return(skb);
2435}
1da177e4 2436
20346722
K
2437/**
2438 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2439 * @nic : device private variable.
20346722 2440 * Description:
1da177e4 2441 * Free all queued Tx buffers.
20346722 2442 * Return Value: void
1da177e4
LT
2443*/
2444
2445static void free_tx_buffers(struct s2io_nic *nic)
2446{
2447 struct net_device *dev = nic->dev;
2448 struct sk_buff *skb;
1ee6dd77 2449 struct TxD *txdp;
1da177e4 2450 int i, j;
1ee6dd77 2451 struct mac_info *mac_control;
1da177e4 2452 struct config_param *config;
fed5eccd 2453 int cnt = 0;
1da177e4
LT
2454
2455 mac_control = &nic->mac_control;
2456 config = &nic->config;
2457
2458 for (i = 0; i < config->tx_fifo_num; i++) {
2fda096d
SR
2459 unsigned long flags;
2460 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
1da177e4 2461 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
491976b2
SH
2462 txdp = (struct TxD *) \
2463 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2464 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2465 if (skb) {
8a4bdbaa 2466 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2467 += skb->truesize;
fed5eccd
AR
2468 dev_kfree_skb(skb);
2469 cnt++;
1da177e4 2470 }
1da177e4
LT
2471 }
2472 DBG_PRINT(INTR_DBG,
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2474 dev->name, cnt, i);
20346722
K
2475 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2476 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2fda096d 2477 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
1da177e4
LT
2478 }
2479}
2480
20346722
K
2481/**
2482 * stop_nic - To stop the nic
1da177e4 2483 * @nic ; device private variable.
20346722
K
2484 * Description:
2485 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2486 * function does. This function is called to stop the device.
2487 * Return Value:
2488 * void.
2489 */
2490
2491static void stop_nic(struct s2io_nic *nic)
2492{
1ee6dd77 2493 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2494 register u64 val64 = 0;
5d3213cc 2495 u16 interruptible;
1ee6dd77 2496 struct mac_info *mac_control;
1da177e4
LT
2497 struct config_param *config;
2498
2499 mac_control = &nic->mac_control;
2500 config = &nic->config;
2501
2502 /* Disable all interrupts */
9caab458 2503 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2504 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2505 interruptible |= TX_PIC_INTR;
1da177e4
LT
2506 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2507
5d3213cc
AR
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64 = readq(&bar0->adapter_control);
2510 val64 &= ~(ADAPTER_CNTL_EN);
2511 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2512}
2513
20346722
K
2514/**
2515 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2516 * @nic: device private variable
20346722
K
2517 * @ring_no: ring number
2518 * Description:
1da177e4
LT
2519 * The function allocates Rx side skbs and puts the physical
2520 * address of these buffers into the RxD buffer pointers, so that the NIC
2521 * can DMA the received frame into these locations.
2522 * The NIC supports 3 receive modes, viz
2523 * 1. single buffer,
2524 * 2. three buffer and
2525 * 3. Five buffer modes.
20346722
K
2526 * Each mode defines how many fragments the received frame will be split
2527 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2528 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2529 * is split into 3 fragments. As of now only single buffer mode is
2530 * supported.
2531 * Return Value:
2532 * SUCCESS on success or an appropriate -ve value on failure.
2533 */
2534
ac1f60db 2535static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2536{
2537 struct net_device *dev = nic->dev;
2538 struct sk_buff *skb;
1ee6dd77 2539 struct RxD_t *rxdp;
1da177e4 2540 int off, off1, size, block_no, block_no1;
1da177e4 2541 u32 alloc_tab = 0;
20346722 2542 u32 alloc_cnt;
1ee6dd77 2543 struct mac_info *mac_control;
1da177e4 2544 struct config_param *config;
20346722 2545 u64 tmp;
1ee6dd77 2546 struct buffAdd *ba;
1da177e4 2547 unsigned long flags;
1ee6dd77 2548 struct RxD_t *first_rxdp = NULL;
363dc367 2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
6d517a27
VP
2550 struct RxD1 *rxdp1;
2551 struct RxD3 *rxdp3;
491abf25 2552 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
1da177e4
LT
2553
2554 mac_control = &nic->mac_control;
2555 config = &nic->config;
20346722
K
2556 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2557 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2558
5d3213cc 2559 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2560 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2561 while (alloc_tab < alloc_cnt) {
20346722 2562 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2563 block_index;
20346722 2564 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2565
da6971d8
AR
2566 rxdp = mac_control->rings[ring_no].
2567 rx_blocks[block_no].rxds[off].virt_addr;
2568
2569 if ((block_no == block_no1) && (off == off1) &&
2570 (rxdp->Host_Control)) {
2571 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2572 dev->name);
1da177e4
LT
2573 DBG_PRINT(INTR_DBG, " info equated\n");
2574 goto end;
2575 }
da6971d8 2576 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2577 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2578 block_index++;
da6971d8
AR
2579 if (mac_control->rings[ring_no].rx_curr_put_info.
2580 block_index == mac_control->rings[ring_no].
2581 block_count)
2582 mac_control->rings[ring_no].rx_curr_put_info.
2583 block_index = 0;
2584 block_no = mac_control->rings[ring_no].
2585 rx_curr_put_info.block_index;
2586 if (off == rxd_count[nic->rxd_mode])
2587 off = 0;
20346722 2588 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2589 offset = off;
2590 rxdp = mac_control->rings[ring_no].
2591 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2592 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2593 dev->name, rxdp);
2594 }
db874e65
SS
2595 if(!napi) {
2596 spin_lock_irqsave(&nic->put_lock, flags);
2597 mac_control->rings[ring_no].put_pos =
2598 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2599 spin_unlock_irqrestore(&nic->put_lock, flags);
2600 } else {
2601 mac_control->rings[ring_no].put_pos =
2602 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2603 }
da6971d8 2604 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
6d517a27 2605 ((nic->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2606 (rxdp->Control_2 & s2BIT(0)))) {
20346722 2607 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2608 offset = off;
1da177e4
LT
2609 goto end;
2610 }
da6971d8
AR
2611 /* calculate size of skb based on ring mode */
2612 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2613 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2614 if (nic->rxd_mode == RXD_MODE_1)
2615 size += NET_IP_ALIGN;
da6971d8 2616 else
6d517a27 2617 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2618
da6971d8
AR
2619 /* allocate skb */
2620 skb = dev_alloc_skb(size);
2621 if(!skb) {
0c61ed5f
RV
2622 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2623 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2624 if (first_rxdp) {
2625 wmb();
2626 first_rxdp->Control_1 |= RXD_OWN_XENA;
2627 }
c53d4945
SH
2628 nic->mac_control.stats_info->sw_stat. \
2629 mem_alloc_fail_cnt++;
da6971d8
AR
2630 return -ENOMEM ;
2631 }
8a4bdbaa 2632 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 2633 += skb->truesize;
da6971d8
AR
2634 if (nic->rxd_mode == RXD_MODE_1) {
2635 /* 1 buffer mode - normal operation mode */
6d517a27 2636 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2637 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2638 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2639 rxdp1->Buffer0_ptr = pci_map_single
863c11a9
AR
2640 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2641 PCI_DMA_FROMDEVICE);
491abf25
VP
2642 if( (rxdp1->Buffer0_ptr == 0) ||
2643 (rxdp1->Buffer0_ptr ==
2644 DMA_ERROR_CODE))
2645 goto pci_map_failed;
2646
8a4bdbaa 2647 rxdp->Control_2 =
491976b2 2648 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8 2649
6d517a27 2650 } else if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8 2651 /*
6d517a27
VP
2652 * 2 buffer mode -
2653 * 2 buffer mode provides 128
da6971d8 2654 * byte aligned receive buffers.
da6971d8
AR
2655 */
2656
6d517a27 2657 rxdp3 = (struct RxD3*)rxdp;
491976b2 2658 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2659 Buffer0_ptr = rxdp3->Buffer0_ptr;
2660 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2661 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2662 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2663 rxdp3->Buffer0_ptr = Buffer0_ptr;
2664 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2665
da6971d8
AR
2666 ba = &mac_control->rings[ring_no].ba[block_no][off];
2667 skb_reserve(skb, BUF0_LEN);
2668 tmp = (u64)(unsigned long) skb->data;
2669 tmp += ALIGN_SIZE;
2670 tmp &= ~ALIGN_SIZE;
2671 skb->data = (void *) (unsigned long)tmp;
27a884dc 2672 skb_reset_tail_pointer(skb);
da6971d8 2673
6d517a27
VP
2674 if (!(rxdp3->Buffer0_ptr))
2675 rxdp3->Buffer0_ptr =
75c30b13 2676 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2677 PCI_DMA_FROMDEVICE);
75c30b13
AR
2678 else
2679 pci_dma_sync_single_for_device(nic->pdev,
6d517a27 2680 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2681 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2682 if( (rxdp3->Buffer0_ptr == 0) ||
2683 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2684 goto pci_map_failed;
2685
da6971d8
AR
2686 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2687 if (nic->rxd_mode == RXD_MODE_3B) {
2688 /* Two buffer mode */
2689
2690 /*
6aa20a22 2691 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2692 * L4 payload
2693 */
6d517a27 2694 rxdp3->Buffer2_ptr = pci_map_single
da6971d8
AR
2695 (nic->pdev, skb->data, dev->mtu + 4,
2696 PCI_DMA_FROMDEVICE);
2697
491abf25
VP
2698 if( (rxdp3->Buffer2_ptr == 0) ||
2699 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2700 goto pci_map_failed;
2701
2702 rxdp3->Buffer1_ptr =
6aa20a22 2703 pci_map_single(nic->pdev,
75c30b13
AR
2704 ba->ba_1, BUF1_LEN,
2705 PCI_DMA_FROMDEVICE);
491abf25
VP
2706 if( (rxdp3->Buffer1_ptr == 0) ||
2707 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2708 pci_unmap_single
2709 (nic->pdev,
3e847423 2710 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
2711 dev->mtu + 4,
2712 PCI_DMA_FROMDEVICE);
2713 goto pci_map_failed;
75c30b13 2714 }
da6971d8
AR
2715 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2716 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2717 (dev->mtu + 4);
da6971d8 2718 }
b7b5a128 2719 rxdp->Control_2 |= s2BIT(0);
1da177e4 2720 }
1da177e4 2721 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2722 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2723 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2724 off++;
da6971d8
AR
2725 if (off == (rxd_count[nic->rxd_mode] + 1))
2726 off = 0;
20346722 2727 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2728
da6971d8 2729 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2730 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2731 if (first_rxdp) {
2732 wmb();
2733 first_rxdp->Control_1 |= RXD_OWN_XENA;
2734 }
2735 first_rxdp = rxdp;
2736 }
1da177e4
LT
2737 atomic_inc(&nic->rx_bufs_left[ring_no]);
2738 alloc_tab++;
2739 }
2740
2741 end:
303bcb4b
K
2742 /* Transfer ownership of first descriptor to adapter just before
2743 * exiting. Before that, use memory barrier so that ownership
2744 * and other fields are seen by adapter correctly.
2745 */
2746 if (first_rxdp) {
2747 wmb();
2748 first_rxdp->Control_1 |= RXD_OWN_XENA;
2749 }
2750
1da177e4 2751 return SUCCESS;
491abf25
VP
2752pci_map_failed:
2753 stats->pci_map_fail_cnt++;
2754 stats->mem_freed += skb->truesize;
2755 dev_kfree_skb_irq(skb);
2756 return -ENOMEM;
1da177e4
LT
2757}
2758
da6971d8
AR
2759static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2760{
2761 struct net_device *dev = sp->dev;
2762 int j;
2763 struct sk_buff *skb;
1ee6dd77
RB
2764 struct RxD_t *rxdp;
2765 struct mac_info *mac_control;
2766 struct buffAdd *ba;
6d517a27
VP
2767 struct RxD1 *rxdp1;
2768 struct RxD3 *rxdp3;
da6971d8
AR
2769
2770 mac_control = &sp->mac_control;
2771 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2772 rxdp = mac_control->rings[ring_no].
2773 rx_blocks[blk].rxds[j].virt_addr;
2774 skb = (struct sk_buff *)
2775 ((unsigned long) rxdp->Host_Control);
2776 if (!skb) {
2777 continue;
2778 }
2779 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2780 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2781 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2782 rxdp1->Buffer0_ptr,
2783 dev->mtu +
2784 HEADER_ETHERNET_II_802_3_SIZE
2785 + HEADER_802_2_SIZE +
2786 HEADER_SNAP_SIZE,
2787 PCI_DMA_FROMDEVICE);
1ee6dd77 2788 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2789 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2790 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2791 ba = &mac_control->rings[ring_no].
2792 ba[blk][j];
2793 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2794 rxdp3->Buffer0_ptr,
2795 BUF0_LEN,
da6971d8
AR
2796 PCI_DMA_FROMDEVICE);
2797 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2798 rxdp3->Buffer1_ptr,
2799 BUF1_LEN,
da6971d8
AR
2800 PCI_DMA_FROMDEVICE);
2801 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2802 rxdp3->Buffer2_ptr,
2803 dev->mtu + 4,
da6971d8 2804 PCI_DMA_FROMDEVICE);
1ee6dd77 2805 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2806 }
491976b2 2807 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8
AR
2808 dev_kfree_skb(skb);
2809 atomic_dec(&sp->rx_bufs_left[ring_no]);
2810 }
2811}
2812
1da177e4 2813/**
20346722 2814 * free_rx_buffers - Frees all Rx buffers
1da177e4 2815 * @sp: device private variable.
20346722 2816 * Description:
1da177e4
LT
2817 * This function will free all Rx buffers allocated by host.
2818 * Return Value:
2819 * NONE.
2820 */
2821
2822static void free_rx_buffers(struct s2io_nic *sp)
2823{
2824 struct net_device *dev = sp->dev;
da6971d8 2825 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2826 struct mac_info *mac_control;
1da177e4 2827 struct config_param *config;
1da177e4
LT
2828
2829 mac_control = &sp->mac_control;
2830 config = &sp->config;
2831
2832 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2833 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2834 free_rxd_blk(sp,i,blk);
1da177e4 2835
20346722
K
2836 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2837 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2838 mac_control->rings[i].rx_curr_put_info.offset = 0;
2839 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2840 atomic_set(&sp->rx_bufs_left[i], 0);
2841 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2842 dev->name, buf_cnt, i);
2843 }
2844}
2845
2846/**
2847 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2848 * @napi : pointer to the napi structure.
20346722 2849 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2850 * during one pass through the 'Poll" function.
2851 * Description:
2852 * Comes into picture only if NAPI support has been incorporated. It does
2853 * the same thing that rx_intr_handler does, but not in a interrupt context
2854 * also It will process only a given number of packets.
2855 * Return value:
2856 * 0 on success and 1 if there are No Rx packets to be processed.
2857 */
2858
bea3348e 2859static int s2io_poll(struct napi_struct *napi, int budget)
1da177e4 2860{
bea3348e
SH
2861 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2862 struct net_device *dev = nic->dev;
20346722 2863 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2864 struct mac_info *mac_control;
1da177e4 2865 struct config_param *config;
1ee6dd77 2866 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2867 int i;
1da177e4
LT
2868
2869 mac_control = &nic->mac_control;
2870 config = &nic->config;
2871
bea3348e 2872 nic->pkts_to_process = budget;
20346722 2873 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2874
19a60522
SS
2875 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2876 readl(&bar0->rx_traffic_int);
1da177e4
LT
2877
2878 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2879 rx_intr_handler(&mac_control->rings[i]);
2880 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2881 if (!nic->pkts_to_process) {
2882 /* Quota for the current iteration has been met */
2883 goto no_rx;
1da177e4 2884 }
1da177e4 2885 }
1da177e4 2886
bea3348e 2887 netif_rx_complete(dev, napi);
1da177e4
LT
2888
2889 for (i = 0; i < config->rx_ring_num; i++) {
2890 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2891 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2892 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2893 break;
2894 }
2895 }
2896 /* Re enable the Rx interrupts. */
c92ca04b 2897 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2898 readl(&bar0->rx_traffic_mask);
bea3348e 2899 return pkt_cnt;
1da177e4 2900
20346722 2901no_rx:
1da177e4
LT
2902 for (i = 0; i < config->rx_ring_num; i++) {
2903 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2904 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2905 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2906 break;
2907 }
2908 }
bea3348e 2909 return pkt_cnt;
1da177e4 2910}
20346722 2911
b41477f3 2912#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2913/**
b41477f3 2914 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2915 * @dev : pointer to the device structure.
2916 * Description:
b41477f3
AR
2917 * This function will be called by upper layer to check for events on the
2918 * interface in situations where interrupts are disabled. It is used for
2919 * specific in-kernel networking tasks, such as remote consoles and kernel
2920 * debugging over the network (example netdump in RedHat).
612eff0e 2921 */
612eff0e
BH
2922static void s2io_netpoll(struct net_device *dev)
2923{
1ee6dd77
RB
2924 struct s2io_nic *nic = dev->priv;
2925 struct mac_info *mac_control;
612eff0e 2926 struct config_param *config;
1ee6dd77 2927 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2928 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2929 int i;
2930
d796fdb7
LV
2931 if (pci_channel_offline(nic->pdev))
2932 return;
2933
612eff0e
BH
2934 disable_irq(dev->irq);
2935
612eff0e
BH
2936 mac_control = &nic->mac_control;
2937 config = &nic->config;
2938
612eff0e 2939 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2940 writeq(val64, &bar0->tx_traffic_int);
2941
6aa20a22 2942 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2943 * run out of skbs and will fail and eventually netpoll application such
2944 * as netdump will fail.
2945 */
2946 for (i = 0; i < config->tx_fifo_num; i++)
2947 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2948
b41477f3 2949 /* check for received packet and indicate up to network */
612eff0e
BH
2950 for (i = 0; i < config->rx_ring_num; i++)
2951 rx_intr_handler(&mac_control->rings[i]);
2952
2953 for (i = 0; i < config->rx_ring_num; i++) {
2954 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2955 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2956 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2957 break;
2958 }
2959 }
612eff0e
BH
2960 enable_irq(dev->irq);
2961 return;
2962}
2963#endif
2964
20346722 2965/**
1da177e4
LT
2966 * rx_intr_handler - Rx interrupt handler
2967 * @nic: device private variable.
20346722
K
2968 * Description:
2969 * If the interrupt is because of a received frame or if the
1da177e4 2970 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2971 * called. It picks out the RxD at which place the last Rx processing had
2972 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2973 * the offset.
2974 * Return Value:
2975 * NONE.
2976 */
1ee6dd77 2977static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2978{
1ee6dd77 2979 struct s2io_nic *nic = ring_data->nic;
1da177e4 2980 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2981 int get_block, put_block, put_offset;
1ee6dd77
RB
2982 struct rx_curr_get_info get_info, put_info;
2983 struct RxD_t *rxdp;
1da177e4 2984 struct sk_buff *skb;
20346722 2985 int pkt_cnt = 0;
7d3d0439 2986 int i;
6d517a27
VP
2987 struct RxD1* rxdp1;
2988 struct RxD3* rxdp3;
7d3d0439 2989
7ba013ac 2990 spin_lock(&nic->rx_lock);
7ba013ac 2991
20346722
K
2992 get_info = ring_data->rx_curr_get_info;
2993 get_block = get_info.block_index;
1ee6dd77 2994 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2995 put_block = put_info.block_index;
da6971d8 2996 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2997 if (!napi) {
2998 spin_lock(&nic->put_lock);
2999 put_offset = ring_data->put_pos;
3000 spin_unlock(&nic->put_lock);
3001 } else
3002 put_offset = ring_data->put_pos;
3003
da6971d8 3004 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
3005 /*
3006 * If your are next to put index then it's
3007 * FIFO full condition
3008 */
da6971d8
AR
3009 if ((get_block == put_block) &&
3010 (get_info.offset + 1) == put_info.offset) {
75c30b13 3011 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
3012 break;
3013 }
20346722
K
3014 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3015 if (skb == NULL) {
3016 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3017 dev->name);
3018 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 3019 spin_unlock(&nic->rx_lock);
20346722 3020 return;
1da177e4 3021 }
da6971d8 3022 if (nic->rxd_mode == RXD_MODE_1) {
6d517a27 3023 rxdp1 = (struct RxD1*)rxdp;
da6971d8 3024 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
3025 rxdp1->Buffer0_ptr,
3026 dev->mtu +
3027 HEADER_ETHERNET_II_802_3_SIZE +
3028 HEADER_802_2_SIZE +
3029 HEADER_SNAP_SIZE,
3030 PCI_DMA_FROMDEVICE);
da6971d8 3031 } else if (nic->rxd_mode == RXD_MODE_3B) {
6d517a27 3032 rxdp3 = (struct RxD3*)rxdp;
75c30b13 3033 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
6d517a27
VP
3034 rxdp3->Buffer0_ptr,
3035 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 3036 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
3037 rxdp3->Buffer2_ptr,
3038 dev->mtu + 4,
3039 PCI_DMA_FROMDEVICE);
da6971d8 3040 }
863c11a9 3041 prefetch(skb->data);
20346722
K
3042 rx_osm_handler(ring_data, rxdp);
3043 get_info.offset++;
da6971d8
AR
3044 ring_data->rx_curr_get_info.offset = get_info.offset;
3045 rxdp = ring_data->rx_blocks[get_block].
3046 rxds[get_info.offset].virt_addr;
3047 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 3048 get_info.offset = 0;
da6971d8 3049 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3050 get_block++;
da6971d8
AR
3051 if (get_block == ring_data->block_count)
3052 get_block = 0;
3053 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3054 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3055 }
1da177e4 3056
20346722 3057 nic->pkts_to_process -= 1;
db874e65 3058 if ((napi) && (!nic->pkts_to_process))
20346722 3059 break;
20346722 3060 pkt_cnt++;
1da177e4
LT
3061 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3062 break;
3063 }
7d3d0439
RA
3064 if (nic->lro) {
3065 /* Clear all LRO sessions before exiting */
3066 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 3067 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
3068 if (lro->in_use) {
3069 update_L3L4_header(nic, lro);
cdb5bf02 3070 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3071 clear_lro_session(lro);
3072 }
3073 }
3074 }
3075
7ba013ac 3076 spin_unlock(&nic->rx_lock);
1da177e4 3077}
20346722
K
3078
3079/**
1da177e4
LT
3080 * tx_intr_handler - Transmit interrupt handler
3081 * @nic : device private variable
20346722
K
3082 * Description:
3083 * If an interrupt was raised to indicate DMA complete of the
3084 * Tx packet, this function is called. It identifies the last TxD
3085 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3086 * DMA'ed into the NICs internal memory.
3087 * Return Value:
3088 * NONE
3089 */
3090
1ee6dd77 3091static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3092{
1ee6dd77 3093 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3094 struct tx_curr_get_info get_info, put_info;
3a3d5756 3095 struct sk_buff *skb = NULL;
1ee6dd77 3096 struct TxD *txdlp;
3a3d5756 3097 int pkt_cnt = 0;
2fda096d 3098 unsigned long flags = 0;
f9046eb3 3099 u8 err_mask;
1da177e4 3100
2fda096d
SR
3101 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3102 return;
3103
20346722 3104 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
3105 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3106 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
3107 list_virt_addr;
3108 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3109 (get_info.offset != put_info.offset) &&
3110 (txdlp->Host_Control)) {
3111 /* Check for TxD errors */
3112 if (txdlp->Control_1 & TXD_T_CODE) {
3113 unsigned long long err;
3114 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3115 if (err & 0x1) {
3116 nic->mac_control.stats_info->sw_stat.
3117 parity_err_cnt++;
3118 }
491976b2
SH
3119
3120 /* update t_code statistics */
f9046eb3
OH
3121 err_mask = err >> 48;
3122 switch(err_mask) {
491976b2
SH
3123 case 2:
3124 nic->mac_control.stats_info->sw_stat.
3125 tx_buf_abort_cnt++;
3126 break;
3127
3128 case 3:
3129 nic->mac_control.stats_info->sw_stat.
3130 tx_desc_abort_cnt++;
3131 break;
3132
3133 case 7:
3134 nic->mac_control.stats_info->sw_stat.
3135 tx_parity_err_cnt++;
3136 break;
3137
3138 case 10:
3139 nic->mac_control.stats_info->sw_stat.
3140 tx_link_loss_cnt++;
3141 break;
3142
3143 case 15:
3144 nic->mac_control.stats_info->sw_stat.
3145 tx_list_proc_err_cnt++;
3146 break;
3147 }
20346722 3148 }
1da177e4 3149
fed5eccd 3150 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3151 if (skb == NULL) {
2fda096d 3152 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
20346722
K
3153 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3154 __FUNCTION__);
3155 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3156 return;
3157 }
3a3d5756 3158 pkt_cnt++;
20346722 3159
20346722 3160 /* Updating the statistics block */
20346722 3161 nic->stats.tx_bytes += skb->len;
491976b2 3162 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
3163 dev_kfree_skb_irq(skb);
3164
3165 get_info.offset++;
863c11a9
AR
3166 if (get_info.offset == get_info.fifo_len + 1)
3167 get_info.offset = 0;
1ee6dd77 3168 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
3169 [get_info.offset].list_virt_addr;
3170 fifo_data->tx_curr_get_info.offset =
3171 get_info.offset;
1da177e4
LT
3172 }
3173
3a3d5756 3174 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3175
3176 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3177}
3178
bd1034f0
AR
3179/**
3180 * s2io_mdio_write - Function to write in to MDIO registers
3181 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3182 * @addr : address value
3183 * @value : data value
3184 * @dev : pointer to net_device structure
3185 * Description:
3186 * This function is used to write values to the MDIO registers
3187 * NONE
3188 */
3189static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3190{
3191 u64 val64 = 0x0;
1ee6dd77
RB
3192 struct s2io_nic *sp = dev->priv;
3193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3194
3195 //address transaction
3196 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3197 | MDIO_MMD_DEV_ADDR(mmd_type)
3198 | MDIO_MMS_PRT_ADDR(0x0);
3199 writeq(val64, &bar0->mdio_control);
3200 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3201 writeq(val64, &bar0->mdio_control);
3202 udelay(100);
3203
3204 //Data transaction
3205 val64 = 0x0;
3206 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3207 | MDIO_MMD_DEV_ADDR(mmd_type)
3208 | MDIO_MMS_PRT_ADDR(0x0)
3209 | MDIO_MDIO_DATA(value)
3210 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3215
3216 val64 = 0x0;
3217 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3218 | MDIO_MMD_DEV_ADDR(mmd_type)
3219 | MDIO_MMS_PRT_ADDR(0x0)
3220 | MDIO_OP(MDIO_OP_READ_TRANS);
3221 writeq(val64, &bar0->mdio_control);
3222 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64, &bar0->mdio_control);
3224 udelay(100);
3225
3226}
3227
3228/**
3229 * s2io_mdio_read - Function to write in to MDIO registers
3230 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3231 * @addr : address value
3232 * @dev : pointer to net_device structure
3233 * Description:
3234 * This function is used to read values to the MDIO registers
3235 * NONE
3236 */
3237static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3238{
3239 u64 val64 = 0x0;
3240 u64 rval64 = 0x0;
1ee6dd77
RB
3241 struct s2io_nic *sp = dev->priv;
3242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3243
3244 /* address transaction */
3245 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3246 | MDIO_MMD_DEV_ADDR(mmd_type)
3247 | MDIO_MMS_PRT_ADDR(0x0);
3248 writeq(val64, &bar0->mdio_control);
3249 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3250 writeq(val64, &bar0->mdio_control);
3251 udelay(100);
3252
3253 /* Data transaction */
3254 val64 = 0x0;
3255 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3256 | MDIO_MMD_DEV_ADDR(mmd_type)
3257 | MDIO_MMS_PRT_ADDR(0x0)
3258 | MDIO_OP(MDIO_OP_READ_TRANS);
3259 writeq(val64, &bar0->mdio_control);
3260 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3261 writeq(val64, &bar0->mdio_control);
3262 udelay(100);
3263
3264 /* Read the value from regs */
3265 rval64 = readq(&bar0->mdio_control);
3266 rval64 = rval64 & 0xFFFF0000;
3267 rval64 = rval64 >> 16;
3268 return rval64;
3269}
3270/**
3271 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3272 * @counter : couter value to be updated
3273 * @flag : flag to indicate the status
3274 * @type : counter type
3275 * Description:
3276 * This function is to check the status of the xpak counters value
3277 * NONE
3278 */
3279
3280static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3281{
3282 u64 mask = 0x3;
3283 u64 val64;
3284 int i;
3285 for(i = 0; i <index; i++)
3286 mask = mask << 0x2;
3287
3288 if(flag > 0)
3289 {
3290 *counter = *counter + 1;
3291 val64 = *regs_stat & mask;
3292 val64 = val64 >> (index * 0x2);
3293 val64 = val64 + 1;
3294 if(val64 == 3)
3295 {
3296 switch(type)
3297 {
3298 case 1:
3299 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3300 "service. Excessive temperatures may "
3301 "result in premature transceiver "
3302 "failure \n");
3303 break;
3304 case 2:
3305 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3306 "service Excessive bias currents may "
3307 "indicate imminent laser diode "
3308 "failure \n");
3309 break;
3310 case 3:
3311 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3312 "service Excessive laser output "
3313 "power may saturate far-end "
3314 "receiver\n");
3315 break;
3316 default:
3317 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3318 "type \n");
3319 }
3320 val64 = 0x0;
3321 }
3322 val64 = val64 << (index * 0x2);
3323 *regs_stat = (*regs_stat & (~mask)) | (val64);
3324
3325 } else {
3326 *regs_stat = *regs_stat & (~mask);
3327 }
3328}
3329
3330/**
3331 * s2io_updt_xpak_counter - Function to update the xpak counters
3332 * @dev : pointer to net_device struct
3333 * Description:
3334 * This function is to upate the status of the xpak counters value
3335 * NONE
3336 */
3337static void s2io_updt_xpak_counter(struct net_device *dev)
3338{
3339 u16 flag = 0x0;
3340 u16 type = 0x0;
3341 u16 val16 = 0x0;
3342 u64 val64 = 0x0;
3343 u64 addr = 0x0;
3344
1ee6dd77
RB
3345 struct s2io_nic *sp = dev->priv;
3346 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3347
3348 /* Check the communication with the MDIO slave */
3349 addr = 0x0000;
3350 val64 = 0x0;
3351 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3352 if((val64 == 0xFFFF) || (val64 == 0x0000))
3353 {
3354 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3355 "Returned %llx\n", (unsigned long long)val64);
3356 return;
3357 }
3358
3359 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3360 if(val64 != 0x2040)
3361 {
3362 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3363 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3364 (unsigned long long)val64);
3365 return;
3366 }
3367
3368 /* Loading the DOM register to MDIO register */
3369 addr = 0xA100;
3370 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3371 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3372
3373 /* Reading the Alarm flags */
3374 addr = 0xA070;
3375 val64 = 0x0;
3376 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3377
3378 flag = CHECKBIT(val64, 0x7);
3379 type = 1;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x0, flag, type);
3383
3384 if(CHECKBIT(val64, 0x6))
3385 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3386
3387 flag = CHECKBIT(val64, 0x3);
3388 type = 2;
3389 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3390 &stat_info->xpak_stat.xpak_regs_stat,
3391 0x2, flag, type);
3392
3393 if(CHECKBIT(val64, 0x2))
3394 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3395
3396 flag = CHECKBIT(val64, 0x1);
3397 type = 3;
3398 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3399 &stat_info->xpak_stat.xpak_regs_stat,
3400 0x4, flag, type);
3401
3402 if(CHECKBIT(val64, 0x0))
3403 stat_info->xpak_stat.alarm_laser_output_power_low++;
3404
3405 /* Reading the Warning flags */
3406 addr = 0xA074;
3407 val64 = 0x0;
3408 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3409
3410 if(CHECKBIT(val64, 0x7))
3411 stat_info->xpak_stat.warn_transceiver_temp_high++;
3412
3413 if(CHECKBIT(val64, 0x6))
3414 stat_info->xpak_stat.warn_transceiver_temp_low++;
3415
3416 if(CHECKBIT(val64, 0x3))
3417 stat_info->xpak_stat.warn_laser_bias_current_high++;
3418
3419 if(CHECKBIT(val64, 0x2))
3420 stat_info->xpak_stat.warn_laser_bias_current_low++;
3421
3422 if(CHECKBIT(val64, 0x1))
3423 stat_info->xpak_stat.warn_laser_output_power_high++;
3424
3425 if(CHECKBIT(val64, 0x0))
3426 stat_info->xpak_stat.warn_laser_output_power_low++;
3427}
3428
20346722 3429/**
1da177e4 3430 * wait_for_cmd_complete - waits for a command to complete.
20346722 3431 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3432 * s2io_nic structure.
20346722
K
3433 * Description: Function that waits for a command to Write into RMAC
3434 * ADDR DATA registers to be completed and returns either success or
3435 * error depending on whether the command was complete or not.
1da177e4
LT
3436 * Return value:
3437 * SUCCESS on success and FAILURE on failure.
3438 */
3439
9fc93a41
SS
3440static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3441 int bit_state)
1da177e4 3442{
9fc93a41 3443 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3444 u64 val64;
3445
9fc93a41
SS
3446 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3447 return FAILURE;
3448
3449 do {
c92ca04b 3450 val64 = readq(addr);
9fc93a41
SS
3451 if (bit_state == S2IO_BIT_RESET) {
3452 if (!(val64 & busy_bit)) {
3453 ret = SUCCESS;
3454 break;
3455 }
3456 } else {
3457 if (!(val64 & busy_bit)) {
3458 ret = SUCCESS;
3459 break;
3460 }
1da177e4 3461 }
c92ca04b
AR
3462
3463 if(in_interrupt())
9fc93a41 3464 mdelay(delay);
c92ca04b 3465 else
9fc93a41 3466 msleep(delay);
c92ca04b 3467
9fc93a41
SS
3468 if (++cnt >= 10)
3469 delay = 50;
3470 } while (cnt < 20);
1da177e4
LT
3471 return ret;
3472}
19a60522
SS
3473/*
3474 * check_pci_device_id - Checks if the device id is supported
3475 * @id : device id
3476 * Description: Function to check if the pci device id is supported by driver.
3477 * Return value: Actual device id if supported else PCI_ANY_ID
3478 */
3479static u16 check_pci_device_id(u16 id)
3480{
3481 switch (id) {
3482 case PCI_DEVICE_ID_HERC_WIN:
3483 case PCI_DEVICE_ID_HERC_UNI:
3484 return XFRAME_II_DEVICE;
3485 case PCI_DEVICE_ID_S2IO_UNI:
3486 case PCI_DEVICE_ID_S2IO_WIN:
3487 return XFRAME_I_DEVICE;
3488 default:
3489 return PCI_ANY_ID;
3490 }
3491}
1da177e4 3492
20346722
K
3493/**
3494 * s2io_reset - Resets the card.
1da177e4
LT
3495 * @sp : private member of the device structure.
3496 * Description: Function to Reset the card. This function then also
20346722 3497 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3498 * the card reset also resets the configuration space.
3499 * Return value:
3500 * void.
3501 */
3502
1ee6dd77 3503static void s2io_reset(struct s2io_nic * sp)
1da177e4 3504{
1ee6dd77 3505 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3506 u64 val64;
5e25b9dd 3507 u16 subid, pci_cmd;
19a60522
SS
3508 int i;
3509 u16 val16;
491976b2
SH
3510 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3511 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3512
19a60522
SS
3513 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3514 __FUNCTION__, sp->dev->name);
1da177e4 3515
0b1f7ebe 3516 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3517 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3518
1da177e4
LT
3519 val64 = SW_RESET_ALL;
3520 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3521 if (strstr(sp->product_name, "CX4")) {
3522 msleep(750);
3523 }
19a60522
SS
3524 msleep(250);
3525 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3526
19a60522
SS
3527 /* Restore the PCI state saved during initialization. */
3528 pci_restore_state(sp->pdev);
3529 pci_read_config_word(sp->pdev, 0x2, &val16);
3530 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3531 break;
3532 msleep(200);
3533 }
1da177e4 3534
19a60522
SS
3535 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3536 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3537 }
3538
3539 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3540
3541 s2io_init_pci(sp);
1da177e4 3542
20346722
K
3543 /* Set swapper to enable I/O register access */
3544 s2io_set_swapper(sp);
3545
faa4f796
SH
3546 /* restore mac_addr entries */
3547 do_s2io_restore_unicast_mc(sp);
3548
cc6e7c44
RA
3549 /* Restore the MSIX table entries from local variables */
3550 restore_xmsi_data(sp);
3551
5e25b9dd 3552 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3553 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3554 /* Clear "detected parity error" bit */
303bcb4b 3555 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3556
303bcb4b
K
3557 /* Clearing PCIX Ecc status register */
3558 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3559
303bcb4b 3560 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3561 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3562 }
5e25b9dd 3563
20346722
K
3564 /* Reset device statistics maintained by OS */
3565 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3566
491976b2
SH
3567 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3568 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3569 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3570 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3571 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3572 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3573 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3574 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3575 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3576 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3577 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3578 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3579 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3580 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3581 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3582 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3583 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3584 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3585 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3586
1da177e4
LT
3587 /* SXE-002: Configure link and activity LED to turn it off */
3588 subid = sp->pdev->subsystem_device;
541ae68f
K
3589 if (((subid & 0xFF) >= 0x07) &&
3590 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3591 val64 = readq(&bar0->gpio_control);
3592 val64 |= 0x0000800000000000ULL;
3593 writeq(val64, &bar0->gpio_control);
3594 val64 = 0x0411040400000000ULL;
509a2671 3595 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3596 }
3597
541ae68f
K
3598 /*
3599 * Clear spurious ECC interrupts that would have occured on
3600 * XFRAME II cards after reset.
3601 */
3602 if (sp->device_type == XFRAME_II_DEVICE) {
3603 val64 = readq(&bar0->pcc_err_reg);
3604 writeq(val64, &bar0->pcc_err_reg);
3605 }
3606
1da177e4
LT
3607 sp->device_enabled_once = FALSE;
3608}
3609
3610/**
20346722
K
3611 * s2io_set_swapper - to set the swapper controle on the card
3612 * @sp : private member of the device structure,
1da177e4 3613 * pointer to the s2io_nic structure.
20346722 3614 * Description: Function to set the swapper control on the card
1da177e4
LT
3615 * correctly depending on the 'endianness' of the system.
3616 * Return value:
3617 * SUCCESS on success and FAILURE on failure.
3618 */
3619
1ee6dd77 3620static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3621{
3622 struct net_device *dev = sp->dev;
1ee6dd77 3623 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3624 u64 val64, valt, valr;
3625
20346722 3626 /*
1da177e4
LT
3627 * Set proper endian settings and verify the same by reading
3628 * the PIF Feed-back register.
3629 */
3630
3631 val64 = readq(&bar0->pif_rd_swapper_fb);
3632 if (val64 != 0x0123456789ABCDEFULL) {
3633 int i = 0;
3634 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3635 0x8100008181000081ULL, /* FE=1, SE=0 */
3636 0x4200004242000042ULL, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3638
3639 while(i<4) {
3640 writeq(value[i], &bar0->swapper_ctrl);
3641 val64 = readq(&bar0->pif_rd_swapper_fb);
3642 if (val64 == 0x0123456789ABCDEFULL)
3643 break;
3644 i++;
3645 }
3646 if (i == 4) {
3647 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3648 dev->name);
3649 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3650 (unsigned long long) val64);
3651 return FAILURE;
3652 }
3653 valr = value[i];
3654 } else {
3655 valr = readq(&bar0->swapper_ctrl);
3656 }
3657
3658 valt = 0x0123456789ABCDEFULL;
3659 writeq(valt, &bar0->xmsi_address);
3660 val64 = readq(&bar0->xmsi_address);
3661
3662 if(val64 != valt) {
3663 int i = 0;
3664 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3665 0x0081810000818100ULL, /* FE=1, SE=0 */
3666 0x0042420000424200ULL, /* FE=0, SE=1 */
3667 0}; /* FE=0, SE=0 */
3668
3669 while(i<4) {
3670 writeq((value[i] | valr), &bar0->swapper_ctrl);
3671 writeq(valt, &bar0->xmsi_address);
3672 val64 = readq(&bar0->xmsi_address);
3673 if(val64 == valt)
3674 break;
3675 i++;
3676 }
3677 if(i == 4) {
20346722 3678 unsigned long long x = val64;
1da177e4 3679 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3680 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3681 return FAILURE;
3682 }
3683 }
3684 val64 = readq(&bar0->swapper_ctrl);
3685 val64 &= 0xFFFF000000000000ULL;
3686
3687#ifdef __BIG_ENDIAN
20346722
K
3688 /*
3689 * The device by default set to a big endian format, so a
1da177e4
LT
3690 * big endian driver need not set anything.
3691 */
3692 val64 |= (SWAPPER_CTRL_TXP_FE |
3693 SWAPPER_CTRL_TXP_SE |
3694 SWAPPER_CTRL_TXD_R_FE |
3695 SWAPPER_CTRL_TXD_W_FE |
3696 SWAPPER_CTRL_TXF_R_FE |
3697 SWAPPER_CTRL_RXD_R_FE |
3698 SWAPPER_CTRL_RXD_W_FE |
3699 SWAPPER_CTRL_RXF_W_FE |
3700 SWAPPER_CTRL_XMSI_FE |
1da177e4 3701 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3702 if (sp->config.intr_type == INTA)
cc6e7c44 3703 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3704 writeq(val64, &bar0->swapper_ctrl);
3705#else
20346722 3706 /*
1da177e4 3707 * Initially we enable all bits to make it accessible by the
20346722 3708 * driver, then we selectively enable only those bits that
1da177e4
LT
3709 * we want to set.
3710 */
3711 val64 |= (SWAPPER_CTRL_TXP_FE |
3712 SWAPPER_CTRL_TXP_SE |
3713 SWAPPER_CTRL_TXD_R_FE |
3714 SWAPPER_CTRL_TXD_R_SE |
3715 SWAPPER_CTRL_TXD_W_FE |
3716 SWAPPER_CTRL_TXD_W_SE |
3717 SWAPPER_CTRL_TXF_R_FE |
3718 SWAPPER_CTRL_RXD_R_FE |
3719 SWAPPER_CTRL_RXD_R_SE |
3720 SWAPPER_CTRL_RXD_W_FE |
3721 SWAPPER_CTRL_RXD_W_SE |
3722 SWAPPER_CTRL_RXF_W_FE |
3723 SWAPPER_CTRL_XMSI_FE |
1da177e4 3724 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3725 if (sp->config.intr_type == INTA)
cc6e7c44 3726 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3727 writeq(val64, &bar0->swapper_ctrl);
3728#endif
3729 val64 = readq(&bar0->swapper_ctrl);
3730
20346722
K
3731 /*
3732 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3733 * feedback register.
3734 */
3735 val64 = readq(&bar0->pif_rd_swapper_fb);
3736 if (val64 != 0x0123456789ABCDEFULL) {
3737 /* Endian settings are incorrect, calls for another dekko. */
3738 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3739 dev->name);
3740 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3741 (unsigned long long) val64);
3742 return FAILURE;
3743 }
3744
3745 return SUCCESS;
3746}
3747
1ee6dd77 3748static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3749{
1ee6dd77 3750 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3751 u64 val64;
3752 int ret = 0, cnt = 0;
3753
3754 do {
3755 val64 = readq(&bar0->xmsi_access);
b7b5a128 3756 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3757 break;
3758 mdelay(1);
3759 cnt++;
3760 } while(cnt < 5);
3761 if (cnt == 5) {
3762 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3763 ret = 1;
3764 }
3765
3766 return ret;
3767}
3768
1ee6dd77 3769static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3770{
1ee6dd77 3771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3772 u64 val64;
3773 int i;
3774
75c30b13 3775 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3776 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3777 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
b7b5a128 3778 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
cc6e7c44
RA
3779 writeq(val64, &bar0->xmsi_access);
3780 if (wait_for_msix_trans(nic, i)) {
3781 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3782 continue;
3783 }
3784 }
3785}
3786
1ee6dd77 3787static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3788{
1ee6dd77 3789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3790 u64 val64, addr, data;
3791 int i;
3792
3793 /* Store and display */
75c30b13 3794 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
b7b5a128 3795 val64 = (s2BIT(15) | vBIT(i, 26, 6));
cc6e7c44
RA
3796 writeq(val64, &bar0->xmsi_access);
3797 if (wait_for_msix_trans(nic, i)) {
3798 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3799 continue;
3800 }
3801 addr = readq(&bar0->xmsi_address);
3802 data = readq(&bar0->xmsi_data);
3803 if (addr && data) {
3804 nic->msix_info[i].addr = addr;
3805 nic->msix_info[i].data = data;
3806 }
3807 }
3808}
3809
1ee6dd77 3810static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3811{
1ee6dd77 3812 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3813 u64 tx_mat, rx_mat;
3814 u16 msi_control; /* Temp variable */
3815 int ret, i, j, msix_indx = 1;
3816
bd684e43 3817 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
cc6e7c44 3818 GFP_KERNEL);
bd684e43 3819 if (!nic->entries) {
491976b2
SH
3820 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3821 __FUNCTION__);
c53d4945 3822 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3823 return -ENOMEM;
3824 }
8a4bdbaa 3825 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 3826 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3827
3828 nic->s2io_entries =
bd684e43 3829 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
cc6e7c44 3830 GFP_KERNEL);
bd684e43 3831 if (!nic->s2io_entries) {
8a4bdbaa 3832 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
491976b2 3833 __FUNCTION__);
c53d4945 3834 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3835 kfree(nic->entries);
8a4bdbaa 3836 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3837 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3838 return -ENOMEM;
3839 }
8a4bdbaa 3840 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 3841 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3842
3843 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3844 nic->entries[i].entry = i;
3845 nic->s2io_entries[i].entry = i;
3846 nic->s2io_entries[i].arg = NULL;
3847 nic->s2io_entries[i].in_use = 0;
3848 }
3849
3850 tx_mat = readq(&bar0->tx_mat0_n[0]);
3851 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3852 tx_mat |= TX_MAT_SET(i, msix_indx);
3853 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3854 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3855 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3856 }
3857 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3858
8a4bdbaa
SS
3859 rx_mat = readq(&bar0->rx_mat);
3860 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3861 rx_mat |= RX_MAT_SET(j, msix_indx);
3862 nic->s2io_entries[msix_indx].arg
3863 = &nic->mac_control.rings[j];
3864 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3865 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
cc6e7c44 3866 }
8a4bdbaa 3867 writeq(rx_mat, &bar0->rx_mat);
cc6e7c44 3868
c92ca04b 3869 nic->avail_msix_vectors = 0;
cc6e7c44 3870 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3871 /* We fail init if error or we get less vectors than min required */
3872 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3873 nic->avail_msix_vectors = ret;
3874 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3875 }
cc6e7c44
RA
3876 if (ret) {
3877 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3878 kfree(nic->entries);
8a4bdbaa 3879 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3880 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3881 kfree(nic->s2io_entries);
8a4bdbaa 3882 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3883 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3884 nic->entries = NULL;
3885 nic->s2io_entries = NULL;
c92ca04b 3886 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3887 return -ENOMEM;
3888 }
c92ca04b
AR
3889 if (!nic->avail_msix_vectors)
3890 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3891
3892 /*
3893 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3894 * in the herc NIC. (Temp change, needs to be removed later)
3895 */
3896 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3897 msi_control |= 0x1; /* Enable MSI */
3898 pci_write_config_word(nic->pdev, 0x42, msi_control);
3899
3900 return 0;
3901}
3902
8abc4d5b 3903/* Handle software interrupt used during MSI(X) test */
33390a70 3904static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3905{
3906 struct s2io_nic *sp = dev_id;
3907
3908 sp->msi_detected = 1;
3909 wake_up(&sp->msi_wait);
3910
3911 return IRQ_HANDLED;
3912}
3913
3914/* Test interrupt path by forcing a a software IRQ */
33390a70 3915static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3916{
3917 struct pci_dev *pdev = sp->pdev;
3918 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3919 int err;
3920 u64 val64, saved64;
3921
3922 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3923 sp->name, sp);
3924 if (err) {
3925 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3926 sp->dev->name, pci_name(pdev), pdev->irq);
3927 return err;
3928 }
3929
3930 init_waitqueue_head (&sp->msi_wait);
3931 sp->msi_detected = 0;
3932
3933 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3934 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3935 val64 |= SCHED_INT_CTRL_TIMER_EN;
3936 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3937 writeq(val64, &bar0->scheduled_int_ctrl);
3938
3939 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3940
3941 if (!sp->msi_detected) {
3942 /* MSI(X) test failed, go back to INTx mode */
2450022a 3943 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
8abc4d5b
SS
3944 "using MSI(X) during test\n", sp->dev->name,
3945 pci_name(pdev));
3946
3947 err = -EOPNOTSUPP;
3948 }
3949
3950 free_irq(sp->entries[1].vector, sp);
3951
3952 writeq(saved64, &bar0->scheduled_int_ctrl);
3953
3954 return err;
3955}
18b2b7bd
SH
3956
3957static void remove_msix_isr(struct s2io_nic *sp)
3958{
3959 int i;
3960 u16 msi_control;
3961
3962 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3963 if (sp->s2io_entries[i].in_use ==
3964 MSIX_REGISTERED_SUCCESS) {
3965 int vector = sp->entries[i].vector;
3966 void *arg = sp->s2io_entries[i].arg;
3967 free_irq(vector, arg);
3968 }
3969 }
3970
3971 kfree(sp->entries);
3972 kfree(sp->s2io_entries);
3973 sp->entries = NULL;
3974 sp->s2io_entries = NULL;
3975
3976 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3977 msi_control &= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp->pdev, 0x42, msi_control);
3979
3980 pci_disable_msix(sp->pdev);
3981}
3982
3983static void remove_inta_isr(struct s2io_nic *sp)
3984{
3985 struct net_device *dev = sp->dev;
3986
3987 free_irq(sp->pdev->irq, dev);
3988}
3989
1da177e4
LT
3990/* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3993
20346722 3994/**
1da177e4
LT
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3997 * Description:
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
20346722 4000 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
4001 * Return value:
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4003 * file on failure.
4004 */
4005
ac1f60db 4006static int s2io_open(struct net_device *dev)
1da177e4 4007{
1ee6dd77 4008 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4009 int err = 0;
4010
20346722
K
4011 /*
4012 * Make sure you have link off by default every time
1da177e4
LT
4013 * Nic is initialized
4014 */
4015 netif_carrier_off(dev);
0b1f7ebe 4016 sp->last_link_state = 0;
1da177e4 4017
eaae7f72 4018 if (sp->config.intr_type == MSI_X) {
8abc4d5b
SS
4019 int ret = s2io_enable_msi_x(sp);
4020
4021 if (!ret) {
8abc4d5b 4022 ret = s2io_test_msi(sp);
8abc4d5b 4023 /* rollback MSI-X, will re-enable during add_isr() */
18b2b7bd 4024 remove_msix_isr(sp);
8abc4d5b
SS
4025 }
4026 if (ret) {
4027
4028 DBG_PRINT(ERR_DBG,
4029 "%s: MSI-X requested but failed to enable\n",
4030 dev->name);
eaae7f72 4031 sp->config.intr_type = INTA;
8abc4d5b
SS
4032 }
4033 }
4034
c77dd43e 4035 /* NAPI doesn't work well with MSI(X) */
eaae7f72 4036 if (sp->config.intr_type != INTA) {
c77dd43e
SS
4037 if(sp->config.napi)
4038 sp->config.napi = 0;
4039 }
4040
1da177e4 4041 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4042 err = s2io_card_up(sp);
4043 if (err) {
1da177e4
LT
4044 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4045 dev->name);
e6a8fee2 4046 goto hw_init_failed;
1da177e4
LT
4047 }
4048
2fd37688 4049 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4050 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4051 s2io_card_down(sp);
20346722 4052 err = -ENODEV;
e6a8fee2 4053 goto hw_init_failed;
1da177e4 4054 }
3a3d5756 4055 s2io_start_all_tx_queue(sp);
1da177e4 4056 return 0;
20346722 4057
20346722 4058hw_init_failed:
eaae7f72 4059 if (sp->config.intr_type == MSI_X) {
491976b2 4060 if (sp->entries) {
cc6e7c44 4061 kfree(sp->entries);
8a4bdbaa 4062 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
4063 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4064 }
4065 if (sp->s2io_entries) {
cc6e7c44 4066 kfree(sp->s2io_entries);
8a4bdbaa 4067 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
4068 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4069 }
cc6e7c44 4070 }
20346722 4071 return err;
1da177e4
LT
4072}
4073
4074/**
4075 * s2io_close -close entry point of the driver
4076 * @dev : device pointer.
4077 * Description:
4078 * This is the stop entry point of the driver. It needs to undo exactly
4079 * whatever was done by the open entry point,thus it's usually referred to
4080 * as the close function.Among other things this function mainly stops the
4081 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4082 * Return value:
4083 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4084 * file on failure.
4085 */
4086
ac1f60db 4087static int s2io_close(struct net_device *dev)
1da177e4 4088{
1ee6dd77 4089 struct s2io_nic *sp = dev->priv;
faa4f796
SH
4090 struct config_param *config = &sp->config;
4091 u64 tmp64;
4092 int offset;
cc6e7c44 4093
9f74ffde
SH
4094 /* Return if the device is already closed *
4095 * Can happen when s2io_card_up failed in change_mtu *
4096 */
4097 if (!is_s2io_card_up(sp))
4098 return 0;
4099
3a3d5756 4100 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4101 /* delete all populated mac entries */
4102 for (offset = 1; offset < config->max_mc_addr; offset++) {
4103 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4104 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4105 do_s2io_delete_unicast_mc(sp, tmp64);
4106 }
4107
1da177e4 4108 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 4109 s2io_card_down(sp);
cc6e7c44 4110
1da177e4
LT
4111 return 0;
4112}
4113
4114/**
4115 * s2io_xmit - Tx entry point of te driver
4116 * @skb : the socket buffer containing the Tx data.
4117 * @dev : device pointer.
4118 * Description :
4119 * This function is the Tx entry point of the driver. S2IO NIC supports
4120 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4121 * NOTE: when device cant queue the pkt,just the trans_start variable will
4122 * not be upadted.
4123 * Return value:
4124 * 0 on success & 1 on failure.
4125 */
4126
ac1f60db 4127static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4128{
1ee6dd77 4129 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4130 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4131 register u64 val64;
1ee6dd77
RB
4132 struct TxD *txdp;
4133 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4134 unsigned long flags = 0;
be3a6b02 4135 u16 vlan_tag = 0;
2fda096d 4136 struct fifo_info *fifo = NULL;
1ee6dd77 4137 struct mac_info *mac_control;
1da177e4 4138 struct config_param *config;
6cfc482b 4139 int do_spin_lock = 1;
75c30b13 4140 int offload_type;
6cfc482b 4141 int enable_per_list_interrupt = 0;
491abf25 4142 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4143
4144 mac_control = &sp->mac_control;
4145 config = &sp->config;
4146
20346722 4147 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4148
4149 if (unlikely(skb->len <= 0)) {
4150 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4151 dev_kfree_skb_any(skb);
4152 return 0;
2fda096d 4153 }
491976b2 4154
92b84437 4155 if (!is_s2io_card_up(sp)) {
20346722 4156 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4157 dev->name);
20346722
K
4158 dev_kfree_skb(skb);
4159 return 0;
1da177e4
LT
4160 }
4161
4162 queue = 0;
3a3d5756 4163 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4164 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4165 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4166 if (skb->protocol == htons(ETH_P_IP)) {
4167 struct iphdr *ip;
4168 struct tcphdr *th;
4169 ip = ip_hdr(skb);
4170
4171 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4172 th = (struct tcphdr *)(((unsigned char *)ip) +
4173 ip->ihl*4);
4174
4175 if (ip->protocol == IPPROTO_TCP) {
4176 queue_len = sp->total_tcp_fifos;
4177 queue = (ntohs(th->source) +
4178 ntohs(th->dest)) &
4179 sp->fifo_selector[queue_len - 1];
4180 if (queue >= queue_len)
4181 queue = queue_len - 1;
4182 } else if (ip->protocol == IPPROTO_UDP) {
4183 queue_len = sp->total_udp_fifos;
4184 queue = (ntohs(th->source) +
4185 ntohs(th->dest)) &
4186 sp->fifo_selector[queue_len - 1];
4187 if (queue >= queue_len)
4188 queue = queue_len - 1;
4189 queue += sp->udp_fifo_idx;
4190 if (skb->len > 1024)
4191 enable_per_list_interrupt = 1;
4192 do_spin_lock = 0;
4193 }
4194 }
4195 }
4196 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4197 /* get fifo number based on skb->priority value */
4198 queue = config->fifo_mapping
4199 [skb->priority & (MAX_TX_FIFOS - 1)];
4200 fifo = &mac_control->fifos[queue];
3a3d5756 4201
6cfc482b
SH
4202 if (do_spin_lock)
4203 spin_lock_irqsave(&fifo->tx_lock, flags);
4204 else {
4205 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4206 return NETDEV_TX_LOCKED;
4207 }
be3a6b02 4208
3a3d5756
SH
4209#ifdef CONFIG_NETDEVICES_MULTIQUEUE
4210 if (sp->config.multiq) {
4211 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4212 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4213 return NETDEV_TX_BUSY;
4214 }
4215 } else
4216#endif
4217 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4218 if (netif_queue_stopped(dev)) {
4219 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4220 return NETDEV_TX_BUSY;
4221 }
4222 }
4223
2fda096d
SR
4224 put_off = (u16) fifo->tx_curr_put_info.offset;
4225 get_off = (u16) fifo->tx_curr_get_info.offset;
4226 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
20346722 4227
2fda096d 4228 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4229 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4230 if (txdp->Host_Control ||
4231 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4232 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4233 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4234 dev_kfree_skb(skb);
2fda096d 4235 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4236 return 0;
4237 }
0b1f7ebe 4238
75c30b13 4239 offload_type = s2io_offload_type(skb);
75c30b13 4240 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4241 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4242 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4243 }
84fa7933 4244 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4245 txdp->Control_2 |=
4246 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4247 TXD_TX_CKO_UDP_EN);
4248 }
fed5eccd
AR
4249 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4250 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4251 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4252 if (enable_per_list_interrupt)
4253 if (put_off & (queue_len >> 5))
4254 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4255 if (vlan_tag) {
be3a6b02
K
4256 txdp->Control_2 |= TXD_VLAN_ENABLE;
4257 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4258 }
4259
fed5eccd 4260 frg_len = skb->len - skb->data_len;
75c30b13 4261 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4262 int ufo_size;
4263
75c30b13 4264 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4265 ufo_size &= ~7;
4266 txdp->Control_1 |= TXD_UFO_EN;
4267 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4268 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4269#ifdef __BIG_ENDIAN
2fda096d 4270 fifo->ufo_in_band_v[put_off] =
fed5eccd
AR
4271 (u64)skb_shinfo(skb)->ip6_frag_id;
4272#else
2fda096d 4273 fifo->ufo_in_band_v[put_off] =
fed5eccd
AR
4274 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4275#endif
2fda096d 4276 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4277 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
2fda096d 4278 fifo->ufo_in_band_v,
fed5eccd 4279 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
4280 if((txdp->Buffer_Pointer == 0) ||
4281 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4282 goto pci_map_failed;
fed5eccd 4283 txdp++;
fed5eccd 4284 }
1da177e4 4285
fed5eccd
AR
4286 txdp->Buffer_Pointer = pci_map_single
4287 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
4288 if((txdp->Buffer_Pointer == 0) ||
4289 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4290 goto pci_map_failed;
4291
fed5eccd
AR
4292 txdp->Host_Control = (unsigned long) skb;
4293 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4294 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4295 txdp->Control_1 |= TXD_UFO_EN;
4296
4297 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4298 /* For fragmented SKB. */
4299 for (i = 0; i < frg_cnt; i++) {
4300 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4301 /* A '0' length fragment will be ignored */
4302 if (!frag->size)
4303 continue;
1da177e4
LT
4304 txdp++;
4305 txdp->Buffer_Pointer = (u64) pci_map_page
4306 (sp->pdev, frag->page, frag->page_offset,
4307 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4308 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4309 if (offload_type == SKB_GSO_UDP)
fed5eccd 4310 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4311 }
4312 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4313
75c30b13 4314 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4315 frg_cnt++; /* as Txd0 was used for inband header */
4316
1da177e4 4317 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4318 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4319 writeq(val64, &tx_fifo->TxDL_Pointer);
4320
4321 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4322 TX_FIFO_LAST_LIST);
75c30b13 4323 if (offload_type)
fed5eccd 4324 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4325
1da177e4
LT
4326 writeq(val64, &tx_fifo->List_Control);
4327
303bcb4b
K
4328 mmiowb();
4329
1da177e4 4330 put_off++;
2fda096d 4331 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4332 put_off = 0;
2fda096d 4333 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4334
4335 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4336 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4337 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4338 DBG_PRINT(TX_DBG,
4339 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4340 put_off, get_off);
3a3d5756 4341 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4342 }
491976b2 4343 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4 4344 dev->trans_start = jiffies;
2fda096d 4345 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4346
491abf25
VP
4347 return 0;
4348pci_map_failed:
4349 stats->pci_map_fail_cnt++;
3a3d5756 4350 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4351 stats->mem_freed += skb->truesize;
4352 dev_kfree_skb(skb);
2fda096d 4353 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4354 return 0;
4355}
4356
25fff88e
K
4357static void
4358s2io_alarm_handle(unsigned long data)
4359{
1ee6dd77 4360 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4361 struct net_device *dev = sp->dev;
25fff88e 4362
8116f3cf 4363 s2io_handle_errors(dev);
25fff88e
K
4364 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4365}
4366
1ee6dd77 4367static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4368{
4369 int rxb_size, level;
4370
4371 if (!sp->lro) {
4372 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4373 level = rx_buffer_level(sp, rxb_size, rng_n);
4374
4375 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4376 int ret;
4377 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4378 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4379 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
0c61ed5f 4380 DBG_PRINT(INFO_DBG, "Out of memory in %s",
75c30b13
AR
4381 __FUNCTION__);
4382 clear_bit(0, (&sp->tasklet_status));
4383 return -1;
4384 }
4385 clear_bit(0, (&sp->tasklet_status));
4386 } else if (level == LOW)
4387 tasklet_schedule(&sp->task);
4388
4389 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
0c61ed5f
RV
4390 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4391 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4392 }
4393 return 0;
4394}
4395
7d12e780 4396static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4397{
1ee6dd77
RB
4398 struct ring_info *ring = (struct ring_info *)dev_id;
4399 struct s2io_nic *sp = ring->nic;
cc6e7c44 4400
596c5c97 4401 if (!is_s2io_card_up(sp))
92b84437 4402 return IRQ_HANDLED;
92b84437 4403
75c30b13
AR
4404 rx_intr_handler(ring);
4405 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4406
cc6e7c44
RA
4407 return IRQ_HANDLED;
4408}
4409
7d12e780 4410static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4411{
1ee6dd77
RB
4412 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4413 struct s2io_nic *sp = fifo->nic;
cc6e7c44 4414
596c5c97 4415 if (!is_s2io_card_up(sp))
92b84437 4416 return IRQ_HANDLED;
92b84437 4417
cc6e7c44 4418 tx_intr_handler(fifo);
cc6e7c44
RA
4419 return IRQ_HANDLED;
4420}
1ee6dd77 4421static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4422{
1ee6dd77 4423 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4424 u64 val64;
4425
4426 val64 = readq(&bar0->pic_int_status);
4427 if (val64 & PIC_INT_GPIO) {
4428 val64 = readq(&bar0->gpio_int_reg);
4429 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4430 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4431 /*
4432 * This is unstable state so clear both up/down
4433 * interrupt and adapter to re-evaluate the link state.
4434 */
a371a07d
K
4435 val64 |= GPIO_INT_REG_LINK_DOWN;
4436 val64 |= GPIO_INT_REG_LINK_UP;
4437 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4438 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4439 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4440 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4441 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4442 }
c92ca04b
AR
4443 else if (val64 & GPIO_INT_REG_LINK_UP) {
4444 val64 = readq(&bar0->adapter_status);
c92ca04b 4445 /* Enable Adapter */
19a60522
SS
4446 val64 = readq(&bar0->adapter_control);
4447 val64 |= ADAPTER_CNTL_EN;
4448 writeq(val64, &bar0->adapter_control);
4449 val64 |= ADAPTER_LED_ON;
4450 writeq(val64, &bar0->adapter_control);
4451 if (!sp->device_enabled_once)
4452 sp->device_enabled_once = 1;
c92ca04b 4453
19a60522
SS
4454 s2io_link(sp, LINK_UP);
4455 /*
4456 * unmask link down interrupt and mask link-up
4457 * intr
4458 */
4459 val64 = readq(&bar0->gpio_int_mask);
4460 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4461 val64 |= GPIO_INT_MASK_LINK_UP;
4462 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4463
c92ca04b
AR
4464 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4465 val64 = readq(&bar0->adapter_status);
19a60522
SS
4466 s2io_link(sp, LINK_DOWN);
4467 /* Link is down so unmaks link up interrupt */
4468 val64 = readq(&bar0->gpio_int_mask);
4469 val64 &= ~GPIO_INT_MASK_LINK_UP;
4470 val64 |= GPIO_INT_MASK_LINK_DOWN;
4471 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4472
4473 /* turn off LED */
4474 val64 = readq(&bar0->adapter_control);
4475 val64 = val64 &(~ADAPTER_LED_ON);
4476 writeq(val64, &bar0->adapter_control);
a371a07d
K
4477 }
4478 }
c92ca04b 4479 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4480}
4481
8116f3cf
SS
4482/**
4483 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4484 * @value: alarm bits
4485 * @addr: address value
4486 * @cnt: counter variable
4487 * Description: Check for alarm and increment the counter
4488 * Return Value:
4489 * 1 - if alarm bit set
4490 * 0 - if alarm bit is not set
4491 */
43b7c451 4492static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4493 unsigned long long *cnt)
4494{
4495 u64 val64;
4496 val64 = readq(addr);
4497 if ( val64 & value ) {
4498 writeq(val64, addr);
4499 (*cnt)++;
4500 return 1;
4501 }
4502 return 0;
4503
4504}
4505
4506/**
4507 * s2io_handle_errors - Xframe error indication handler
4508 * @nic: device private variable
4509 * Description: Handle alarms such as loss of link, single or
4510 * double ECC errors, critical and serious errors.
4511 * Return Value:
4512 * NONE
4513 */
4514static void s2io_handle_errors(void * dev_id)
4515{
4516 struct net_device *dev = (struct net_device *) dev_id;
4517 struct s2io_nic *sp = dev->priv;
4518 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4519 u64 temp64 = 0,val64=0;
4520 int i = 0;
4521
4522 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4523 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4524
92b84437 4525 if (!is_s2io_card_up(sp))
8116f3cf
SS
4526 return;
4527
4528 if (pci_channel_offline(sp->pdev))
4529 return;
4530
4531 memset(&sw_stat->ring_full_cnt, 0,
4532 sizeof(sw_stat->ring_full_cnt));
4533
4534 /* Handling the XPAK counters update */
4535 if(stats->xpak_timer_count < 72000) {
4536 /* waiting for an hour */
4537 stats->xpak_timer_count++;
4538 } else {
4539 s2io_updt_xpak_counter(dev);
4540 /* reset the count to zero */
4541 stats->xpak_timer_count = 0;
4542 }
4543
4544 /* Handling link status change error Intr */
4545 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4546 val64 = readq(&bar0->mac_rmac_err_reg);
4547 writeq(val64, &bar0->mac_rmac_err_reg);
4548 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4549 schedule_work(&sp->set_link_task);
4550 }
4551
4552 /* In case of a serious error, the device will be Reset. */
4553 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4554 &sw_stat->serious_err_cnt))
4555 goto reset;
4556
4557 /* Check for data parity error */
4558 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4559 &sw_stat->parity_err_cnt))
4560 goto reset;
4561
4562 /* Check for ring full counter */
4563 if (sp->device_type == XFRAME_II_DEVICE) {
4564 val64 = readq(&bar0->ring_bump_counter1);
4565 for (i=0; i<4; i++) {
4566 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4567 temp64 >>= 64 - ((i+1)*16);
4568 sw_stat->ring_full_cnt[i] += temp64;
4569 }
4570
4571 val64 = readq(&bar0->ring_bump_counter2);
4572 for (i=0; i<4; i++) {
4573 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4574 temp64 >>= 64 - ((i+1)*16);
4575 sw_stat->ring_full_cnt[i+4] += temp64;
4576 }
4577 }
4578
4579 val64 = readq(&bar0->txdma_int_status);
4580 /*check for pfc_err*/
4581 if (val64 & TXDMA_PFC_INT) {
4582 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4583 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4584 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4585 &sw_stat->pfc_err_cnt))
4586 goto reset;
4587 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4588 &sw_stat->pfc_err_cnt);
4589 }
4590
4591 /*check for tda_err*/
4592 if (val64 & TXDMA_TDA_INT) {
4593 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4594 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4595 &sw_stat->tda_err_cnt))
4596 goto reset;
4597 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4598 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4599 }
4600 /*check for pcc_err*/
4601 if (val64 & TXDMA_PCC_INT) {
4602 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4603 | PCC_N_SERR | PCC_6_COF_OV_ERR
4604 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4605 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4606 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4607 &sw_stat->pcc_err_cnt))
4608 goto reset;
4609 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4610 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4611 }
4612
4613 /*check for tti_err*/
4614 if (val64 & TXDMA_TTI_INT) {
4615 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4616 &sw_stat->tti_err_cnt))
4617 goto reset;
4618 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4619 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4620 }
4621
4622 /*check for lso_err*/
4623 if (val64 & TXDMA_LSO_INT) {
4624 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4625 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4626 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4627 goto reset;
4628 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4629 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4630 }
4631
4632 /*check for tpa_err*/
4633 if (val64 & TXDMA_TPA_INT) {
4634 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4635 &sw_stat->tpa_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4638 &sw_stat->tpa_err_cnt);
4639 }
4640
4641 /*check for sm_err*/
4642 if (val64 & TXDMA_SM_INT) {
4643 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4644 &sw_stat->sm_err_cnt))
4645 goto reset;
4646 }
4647
4648 val64 = readq(&bar0->mac_int_status);
4649 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4650 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4651 &bar0->mac_tmac_err_reg,
4652 &sw_stat->mac_tmac_err_cnt))
4653 goto reset;
4654 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4655 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4656 &bar0->mac_tmac_err_reg,
4657 &sw_stat->mac_tmac_err_cnt);
4658 }
4659
4660 val64 = readq(&bar0->xgxs_int_status);
4661 if (val64 & XGXS_INT_STATUS_TXGXS) {
4662 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4663 &bar0->xgxs_txgxs_err_reg,
4664 &sw_stat->xgxs_txgxs_err_cnt))
4665 goto reset;
4666 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4667 &bar0->xgxs_txgxs_err_reg,
4668 &sw_stat->xgxs_txgxs_err_cnt);
4669 }
4670
4671 val64 = readq(&bar0->rxdma_int_status);
4672 if (val64 & RXDMA_INT_RC_INT_M) {
4673 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4674 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4675 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4676 goto reset;
4677 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4678 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4679 &sw_stat->rc_err_cnt);
4680 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4681 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4682 &sw_stat->prc_pcix_err_cnt))
4683 goto reset;
4684 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4685 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4686 &sw_stat->prc_pcix_err_cnt);
4687 }
4688
4689 if (val64 & RXDMA_INT_RPA_INT_M) {
4690 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4691 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4692 goto reset;
4693 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4694 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4695 }
4696
4697 if (val64 & RXDMA_INT_RDA_INT_M) {
4698 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4699 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4700 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4701 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4702 goto reset;
4703 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4704 | RDA_MISC_ERR | RDA_PCIX_ERR,
4705 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4706 }
4707
4708 if (val64 & RXDMA_INT_RTI_INT_M) {
4709 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4710 &sw_stat->rti_err_cnt))
4711 goto reset;
4712 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4713 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4714 }
4715
4716 val64 = readq(&bar0->mac_int_status);
4717 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4718 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4719 &bar0->mac_rmac_err_reg,
4720 &sw_stat->mac_rmac_err_cnt))
4721 goto reset;
4722 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4723 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4724 &sw_stat->mac_rmac_err_cnt);
4725 }
4726
4727 val64 = readq(&bar0->xgxs_int_status);
4728 if (val64 & XGXS_INT_STATUS_RXGXS) {
4729 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4730 &bar0->xgxs_rxgxs_err_reg,
4731 &sw_stat->xgxs_rxgxs_err_cnt))
4732 goto reset;
4733 }
4734
4735 val64 = readq(&bar0->mc_int_status);
4736 if(val64 & MC_INT_STATUS_MC_INT) {
4737 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4738 &sw_stat->mc_err_cnt))
4739 goto reset;
4740
4741 /* Handling Ecc errors */
4742 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4743 writeq(val64, &bar0->mc_err_reg);
4744 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4745 sw_stat->double_ecc_errs++;
4746 if (sp->device_type != XFRAME_II_DEVICE) {
4747 /*
4748 * Reset XframeI only if critical error
4749 */
4750 if (val64 &
4751 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4752 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4753 goto reset;
4754 }
4755 } else
4756 sw_stat->single_ecc_errs++;
4757 }
4758 }
4759 return;
4760
4761reset:
3a3d5756 4762 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4763 schedule_work(&sp->rst_timer_task);
4764 sw_stat->soft_reset_cnt++;
4765 return;
4766}
4767
1da177e4
LT
4768/**
4769 * s2io_isr - ISR handler of the device .
4770 * @irq: the irq of the device.
4771 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4772 * Description: This function is the ISR handler of the device. It
4773 * identifies the reason for the interrupt and calls the relevant
4774 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4775 * recv buffers, if their numbers are below the panic value which is
4776 * presently set to 25% of the original number of rcv buffers allocated.
4777 * Return value:
20346722 4778 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4779 * IRQ_NONE: will be returned if interrupt is not from our device
4780 */
7d12e780 4781static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4782{
4783 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4784 struct s2io_nic *sp = dev->priv;
4785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4786 int i;
19a60522 4787 u64 reason = 0;
1ee6dd77 4788 struct mac_info *mac_control;
1da177e4
LT
4789 struct config_param *config;
4790
d796fdb7
LV
4791 /* Pretend we handled any irq's from a disconnected card */
4792 if (pci_channel_offline(sp->pdev))
4793 return IRQ_NONE;
4794
596c5c97 4795 if (!is_s2io_card_up(sp))
92b84437 4796 return IRQ_NONE;
92b84437 4797
1da177e4
LT
4798 mac_control = &sp->mac_control;
4799 config = &sp->config;
4800
20346722 4801 /*
1da177e4
LT
4802 * Identify the cause for interrupt and call the appropriate
4803 * interrupt handler. Causes for the interrupt could be;
4804 * 1. Rx of packet.
4805 * 2. Tx complete.
4806 * 3. Link down.
1da177e4
LT
4807 */
4808 reason = readq(&bar0->general_int_status);
4809
596c5c97
SS
4810 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4811 /* Nothing much can be done. Get out */
4812 return IRQ_HANDLED;
1da177e4 4813 }
5d3213cc 4814
596c5c97
SS
4815 if (reason & (GEN_INTR_RXTRAFFIC |
4816 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4817 {
4818 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4819
4820 if (config->napi) {
4821 if (reason & GEN_INTR_RXTRAFFIC) {
4822 if (likely(netif_rx_schedule_prep(dev,
4823 &sp->napi))) {
4824 __netif_rx_schedule(dev, &sp->napi);
4825 writeq(S2IO_MINUS_ONE,
4826 &bar0->rx_traffic_mask);
4827 } else
4828 writeq(S2IO_MINUS_ONE,
4829 &bar0->rx_traffic_int);
db874e65 4830 }
596c5c97
SS
4831 } else {
4832 /*
4833 * rx_traffic_int reg is an R1 register, writing all 1's
4834 * will ensure that the actual interrupt causing bit
4835 * get's cleared and hence a read can be avoided.
4836 */
4837 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4838 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4839
4840 for (i = 0; i < config->rx_ring_num; i++)
4841 rx_intr_handler(&mac_control->rings[i]);
db874e65 4842 }
596c5c97 4843
db874e65 4844 /*
596c5c97 4845 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4846 * will ensure that the actual interrupt causing bit get's
4847 * cleared and hence a read can be avoided.
4848 */
596c5c97
SS
4849 if (reason & GEN_INTR_TXTRAFFIC)
4850 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4851
596c5c97
SS
4852 for (i = 0; i < config->tx_fifo_num; i++)
4853 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4854
596c5c97
SS
4855 if (reason & GEN_INTR_TXPIC)
4856 s2io_txpic_intr_handle(sp);
fe113638 4857
596c5c97
SS
4858 /*
4859 * Reallocate the buffers from the interrupt handler itself.
4860 */
4861 if (!config->napi) {
4862 for (i = 0; i < config->rx_ring_num; i++)
4863 s2io_chk_rx_buffers(sp, i);
4864 }
4865 writeq(sp->general_int_mask, &bar0->general_int_mask);
4866 readl(&bar0->general_int_status);
20346722 4867
596c5c97 4868 return IRQ_HANDLED;
db874e65 4869
596c5c97
SS
4870 }
4871 else if (!reason) {
4872 /* The interrupt was not raised by us */
4873 return IRQ_NONE;
4874 }
db874e65 4875
1da177e4
LT
4876 return IRQ_HANDLED;
4877}
4878
7ba013ac
K
4879/**
4880 * s2io_updt_stats -
4881 */
1ee6dd77 4882static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4883{
1ee6dd77 4884 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4885 u64 val64;
4886 int cnt = 0;
4887
92b84437 4888 if (is_s2io_card_up(sp)) {
7ba013ac
K
4889 /* Apprx 30us on a 133 MHz bus */
4890 val64 = SET_UPDT_CLICKS(10) |
4891 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4892 writeq(val64, &bar0->stat_cfg);
4893 do {
4894 udelay(100);
4895 val64 = readq(&bar0->stat_cfg);
b7b5a128 4896 if (!(val64 & s2BIT(0)))
7ba013ac
K
4897 break;
4898 cnt++;
4899 if (cnt == 5)
4900 break; /* Updt failed */
4901 } while(1);
8a4bdbaa 4902 }
7ba013ac
K
4903}
4904
1da177e4 4905/**
20346722 4906 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4907 * @dev : pointer to the device structure.
4908 * Description:
20346722 4909 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4910 * structure and returns a pointer to the same.
4911 * Return value:
4912 * pointer to the updated net_device_stats structure.
4913 */
4914
ac1f60db 4915static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4916{
1ee6dd77
RB
4917 struct s2io_nic *sp = dev->priv;
4918 struct mac_info *mac_control;
1da177e4
LT
4919 struct config_param *config;
4920
20346722 4921
1da177e4
LT
4922 mac_control = &sp->mac_control;
4923 config = &sp->config;
4924
7ba013ac
K
4925 /* Configure Stats for immediate updt */
4926 s2io_updt_stats(sp);
4927
4928 sp->stats.tx_packets =
4929 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4930 sp->stats.tx_errors =
4931 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4932 sp->stats.rx_errors =
ee705dba 4933 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4934 sp->stats.multicast =
4935 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4936 sp->stats.rx_length_errors =
ee705dba 4937 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4938
4939 return (&sp->stats);
4940}
4941
4942/**
4943 * s2io_set_multicast - entry point for multicast address enable/disable.
4944 * @dev : pointer to the device structure
4945 * Description:
20346722
K
4946 * This function is a driver entry point which gets called by the kernel
4947 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4948 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4949 * determine, if multicast address must be enabled or if promiscuous mode
4950 * is to be disabled etc.
4951 * Return value:
4952 * void.
4953 */
4954
4955static void s2io_set_multicast(struct net_device *dev)
4956{
4957 int i, j, prev_cnt;
4958 struct dev_mc_list *mclist;
1ee6dd77
RB
4959 struct s2io_nic *sp = dev->priv;
4960 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4961 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4962 0xfeffffffffffULL;
faa4f796 4963 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4964 void __iomem *add;
faa4f796 4965 struct config_param *config = &sp->config;
1da177e4
LT
4966
4967 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4968 /* Enable all Multicast addresses */
4969 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4970 &bar0->rmac_addr_data0_mem);
4971 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4972 &bar0->rmac_addr_data1_mem);
4973 val64 = RMAC_ADDR_CMD_MEM_WE |
4974 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 4975 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4976 writeq(val64, &bar0->rmac_addr_cmd_mem);
4977 /* Wait till command completes */
c92ca04b 4978 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4979 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4980 S2IO_BIT_RESET);
1da177e4
LT
4981
4982 sp->m_cast_flg = 1;
faa4f796 4983 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4984 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4985 /* Disable all Multicast addresses */
4986 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4987 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4988 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4989 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4990 val64 = RMAC_ADDR_CMD_MEM_WE |
4991 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4992 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4993 writeq(val64, &bar0->rmac_addr_cmd_mem);
4994 /* Wait till command completes */
c92ca04b 4995 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4996 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4997 S2IO_BIT_RESET);
1da177e4
LT
4998
4999 sp->m_cast_flg = 0;
5000 sp->all_multi_pos = 0;
5001 }
5002
5003 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5004 /* Put the NIC into promiscuous mode */
5005 add = &bar0->mac_cfg;
5006 val64 = readq(&bar0->mac_cfg);
5007 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5008
5009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5010 writel((u32) val64, add);
5011 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5012 writel((u32) (val64 >> 32), (add + 4));
5013
926930b2
SS
5014 if (vlan_tag_strip != 1) {
5015 val64 = readq(&bar0->rx_pa_cfg);
5016 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5017 writeq(val64, &bar0->rx_pa_cfg);
5018 vlan_strip_flag = 0;
5019 }
5020
1da177e4
LT
5021 val64 = readq(&bar0->mac_cfg);
5022 sp->promisc_flg = 1;
776bd20f 5023 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5024 dev->name);
5025 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5026 /* Remove the NIC from promiscuous mode */
5027 add = &bar0->mac_cfg;
5028 val64 = readq(&bar0->mac_cfg);
5029 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5030
5031 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5032 writel((u32) val64, add);
5033 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5034 writel((u32) (val64 >> 32), (add + 4));
5035
926930b2
SS
5036 if (vlan_tag_strip != 0) {
5037 val64 = readq(&bar0->rx_pa_cfg);
5038 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5039 writeq(val64, &bar0->rx_pa_cfg);
5040 vlan_strip_flag = 1;
5041 }
5042
1da177e4
LT
5043 val64 = readq(&bar0->mac_cfg);
5044 sp->promisc_flg = 0;
776bd20f 5045 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
5046 dev->name);
5047 }
5048
5049 /* Update individual M_CAST address list */
5050 if ((!sp->m_cast_flg) && dev->mc_count) {
5051 if (dev->mc_count >
faa4f796 5052 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5053 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5054 dev->name);
5055 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5056 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5057 return;
5058 }
5059
5060 prev_cnt = sp->mc_addr_count;
5061 sp->mc_addr_count = dev->mc_count;
5062
5063 /* Clear out the previous list of Mc in the H/W. */
5064 for (i = 0; i < prev_cnt; i++) {
5065 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5066 &bar0->rmac_addr_data0_mem);
5067 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5068 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5069 val64 = RMAC_ADDR_CMD_MEM_WE |
5070 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5071 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5072 (config->mc_start_offset + i);
1da177e4
LT
5073 writeq(val64, &bar0->rmac_addr_cmd_mem);
5074
5075 /* Wait for command completes */
c92ca04b 5076 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5077 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5078 S2IO_BIT_RESET)) {
1da177e4
LT
5079 DBG_PRINT(ERR_DBG, "%s: Adding ",
5080 dev->name);
5081 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5082 return;
5083 }
5084 }
5085
5086 /* Create the new Rx filter list and update the same in H/W. */
5087 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5088 i++, mclist = mclist->next) {
5089 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5090 ETH_ALEN);
a7a80d5a 5091 mac_addr = 0;
1da177e4
LT
5092 for (j = 0; j < ETH_ALEN; j++) {
5093 mac_addr |= mclist->dmi_addr[j];
5094 mac_addr <<= 8;
5095 }
5096 mac_addr >>= 8;
5097 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5098 &bar0->rmac_addr_data0_mem);
5099 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5100 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5101 val64 = RMAC_ADDR_CMD_MEM_WE |
5102 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5103 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5104 (i + config->mc_start_offset);
1da177e4
LT
5105 writeq(val64, &bar0->rmac_addr_cmd_mem);
5106
5107 /* Wait for command completes */
c92ca04b 5108 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5109 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5110 S2IO_BIT_RESET)) {
1da177e4
LT
5111 DBG_PRINT(ERR_DBG, "%s: Adding ",
5112 dev->name);
5113 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5114 return;
5115 }
5116 }
5117 }
5118}
5119
faa4f796
SH
5120/* read from CAM unicast & multicast addresses and store it in
5121 * def_mac_addr structure
5122 */
5123void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5124{
5125 int offset;
5126 u64 mac_addr = 0x0;
5127 struct config_param *config = &sp->config;
5128
5129 /* store unicast & multicast mac addresses */
5130 for (offset = 0; offset < config->max_mc_addr; offset++) {
5131 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5132 /* if read fails disable the entry */
5133 if (mac_addr == FAILURE)
5134 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5135 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5136 }
5137}
5138
5139/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5140static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5141{
5142 int offset;
5143 struct config_param *config = &sp->config;
5144 /* restore unicast mac address */
5145 for (offset = 0; offset < config->max_mac_addr; offset++)
5146 do_s2io_prog_unicast(sp->dev,
5147 sp->def_mac_addr[offset].mac_addr);
5148
5149 /* restore multicast mac address */
5150 for (offset = config->mc_start_offset;
5151 offset < config->max_mc_addr; offset++)
5152 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5153}
5154
5155/* add a multicast MAC address to CAM */
5156static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5157{
5158 int i;
5159 u64 mac_addr = 0;
5160 struct config_param *config = &sp->config;
5161
5162 for (i = 0; i < ETH_ALEN; i++) {
5163 mac_addr <<= 8;
5164 mac_addr |= addr[i];
5165 }
5166 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5167 return SUCCESS;
5168
5169 /* check if the multicast mac already preset in CAM */
5170 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5171 u64 tmp64;
5172 tmp64 = do_s2io_read_unicast_mc(sp, i);
5173 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5174 break;
5175
5176 if (tmp64 == mac_addr)
5177 return SUCCESS;
5178 }
5179 if (i == config->max_mc_addr) {
5180 DBG_PRINT(ERR_DBG,
5181 "CAM full no space left for multicast MAC\n");
5182 return FAILURE;
5183 }
5184 /* Update the internal structure with this new mac address */
5185 do_s2io_copy_mac_addr(sp, i, mac_addr);
5186
5187 return (do_s2io_add_mac(sp, mac_addr, i));
5188}
5189
5190/* add MAC address to CAM */
5191static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5192{
5193 u64 val64;
5194 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5195
5196 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5197 &bar0->rmac_addr_data0_mem);
5198
5199 val64 =
5200 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5201 RMAC_ADDR_CMD_MEM_OFFSET(off);
5202 writeq(val64, &bar0->rmac_addr_cmd_mem);
5203
5204 /* Wait till command completes */
5205 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5206 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5207 S2IO_BIT_RESET)) {
faa4f796 5208 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5209 return FAILURE;
5210 }
5211 return SUCCESS;
5212}
faa4f796
SH
5213/* deletes a specified unicast/multicast mac entry from CAM */
5214static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5215{
5216 int offset;
5217 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5218 struct config_param *config = &sp->config;
5219
5220 for (offset = 1;
5221 offset < config->max_mc_addr; offset++) {
5222 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5223 if (tmp64 == addr) {
5224 /* disable the entry by writing 0xffffffffffffULL */
5225 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5226 return FAILURE;
5227 /* store the new mac list from CAM */
5228 do_s2io_store_unicast_mc(sp);
5229 return SUCCESS;
5230 }
5231 }
5232 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5233 (unsigned long long)addr);
5234 return FAILURE;
5235}
5236
5237/* read mac entries from CAM */
5238static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5239{
5240 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5241 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5242
5243 /* read mac addr */
5244 val64 =
5245 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5246 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5247 writeq(val64, &bar0->rmac_addr_cmd_mem);
5248
5249 /* Wait till command completes */
5250 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5251 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5252 S2IO_BIT_RESET)) {
5253 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5254 return FAILURE;
5255 }
5256 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5257 return (tmp64 >> 16);
5258}
2fd37688
SS
5259
5260/**
5261 * s2io_set_mac_addr driver entry point
5262 */
faa4f796 5263
2fd37688
SS
5264static int s2io_set_mac_addr(struct net_device *dev, void *p)
5265{
5266 struct sockaddr *addr = p;
5267
5268 if (!is_valid_ether_addr(addr->sa_data))
5269 return -EINVAL;
5270
5271 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5272
5273 /* store the MAC address in CAM */
5274 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5275}
1da177e4 5276/**
2fd37688 5277 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5278 * @dev : pointer to the device structure.
5279 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5280 * Description : This procedure will program the Xframe to receive
1da177e4 5281 * frames with new Mac Address
20346722 5282 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5283 * as defined in errno.h file on failure.
5284 */
faa4f796 5285
2fd37688 5286static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5287{
1ee6dd77 5288 struct s2io_nic *sp = dev->priv;
2fd37688 5289 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5290 int i;
faa4f796
SH
5291 u64 tmp64;
5292 struct config_param *config = &sp->config;
1da177e4 5293
20346722 5294 /*
2fd37688
SS
5295 * Set the new MAC address as the new unicast filter and reflect this
5296 * change on the device address registered with the OS. It will be
5297 * at offset 0.
5298 */
1da177e4
LT
5299 for (i = 0; i < ETH_ALEN; i++) {
5300 mac_addr <<= 8;
5301 mac_addr |= addr[i];
2fd37688
SS
5302 perm_addr <<= 8;
5303 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5304 }
5305
2fd37688
SS
5306 /* check if the dev_addr is different than perm_addr */
5307 if (mac_addr == perm_addr)
d8d70caf
SS
5308 return SUCCESS;
5309
faa4f796
SH
5310 /* check if the mac already preset in CAM */
5311 for (i = 1; i < config->max_mac_addr; i++) {
5312 tmp64 = do_s2io_read_unicast_mc(sp, i);
5313 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5314 break;
5315
5316 if (tmp64 == mac_addr) {
5317 DBG_PRINT(INFO_DBG,
5318 "MAC addr:0x%llx already present in CAM\n",
5319 (unsigned long long)mac_addr);
5320 return SUCCESS;
5321 }
5322 }
5323 if (i == config->max_mac_addr) {
5324 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5325 return FAILURE;
5326 }
d8d70caf 5327 /* Update the internal structure with this new mac address */
faa4f796
SH
5328 do_s2io_copy_mac_addr(sp, i, mac_addr);
5329 return (do_s2io_add_mac(sp, mac_addr, i));
1da177e4
LT
5330}
5331
5332/**
20346722 5333 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5334 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5335 * @info: pointer to the structure with parameters given by ethtool to set
5336 * link information.
5337 * Description:
20346722 5338 * The function sets different link parameters provided by the user onto
1da177e4
LT
5339 * the NIC.
5340 * Return value:
5341 * 0 on success.
5342*/
5343
5344static int s2io_ethtool_sset(struct net_device *dev,
5345 struct ethtool_cmd *info)
5346{
1ee6dd77 5347 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5348 if ((info->autoneg == AUTONEG_ENABLE) ||
5349 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5350 return -EINVAL;
5351 else {
5352 s2io_close(sp->dev);
5353 s2io_open(sp->dev);
5354 }
5355
5356 return 0;
5357}
5358
5359/**
20346722 5360 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5361 * @sp : private member of the device structure, pointer to the
5362 * s2io_nic structure.
5363 * @info : pointer to the structure with parameters given by ethtool
5364 * to return link information.
5365 * Description:
5366 * Returns link specific information like speed, duplex etc.. to ethtool.
5367 * Return value :
5368 * return 0 on success.
5369 */
5370
5371static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5372{
1ee6dd77 5373 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5374 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5375 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5376 info->port = PORT_FIBRE;
1a7eb72b
SS
5377
5378 /* info->transceiver */
5379 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5380
5381 if (netif_carrier_ok(sp->dev)) {
5382 info->speed = 10000;
5383 info->duplex = DUPLEX_FULL;
5384 } else {
5385 info->speed = -1;
5386 info->duplex = -1;
5387 }
5388
5389 info->autoneg = AUTONEG_DISABLE;
5390 return 0;
5391}
5392
5393/**
20346722
K
5394 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5395 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5396 * s2io_nic structure.
5397 * @info : pointer to the structure with parameters given by ethtool to
5398 * return driver information.
5399 * Description:
5400 * Returns driver specefic information like name, version etc.. to ethtool.
5401 * Return value:
5402 * void
5403 */
5404
5405static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5406 struct ethtool_drvinfo *info)
5407{
1ee6dd77 5408 struct s2io_nic *sp = dev->priv;
1da177e4 5409
dbc2309d
JL
5410 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5411 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5412 strncpy(info->fw_version, "", sizeof(info->fw_version));
5413 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5414 info->regdump_len = XENA_REG_SPACE;
5415 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5416}
5417
5418/**
5419 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5420 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5421 * s2io_nic structure.
20346722 5422 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5423 * dumping the registers.
5424 * @reg_space: The input argumnet into which all the registers are dumped.
5425 * Description:
5426 * Dumps the entire register space of xFrame NIC into the user given
5427 * buffer area.
5428 * Return value :
5429 * void .
5430*/
5431
5432static void s2io_ethtool_gregs(struct net_device *dev,
5433 struct ethtool_regs *regs, void *space)
5434{
5435 int i;
5436 u64 reg;
5437 u8 *reg_space = (u8 *) space;
1ee6dd77 5438 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5439
5440 regs->len = XENA_REG_SPACE;
5441 regs->version = sp->pdev->subsystem_device;
5442
5443 for (i = 0; i < regs->len; i += 8) {
5444 reg = readq(sp->bar0 + i);
5445 memcpy((reg_space + i), &reg, 8);
5446 }
5447}
5448
5449/**
5450 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5451 * @data : address of the private member of the device structure, which
1da177e4 5452 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5453 * Description: This is actually the timer function that alternates the
5454 * adapter LED bit of the adapter control bit to set/reset every time on
5455 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5456 * once every second.
5457*/
5458static void s2io_phy_id(unsigned long data)
5459{
1ee6dd77
RB
5460 struct s2io_nic *sp = (struct s2io_nic *) data;
5461 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5462 u64 val64 = 0;
5463 u16 subid;
5464
5465 subid = sp->pdev->subsystem_device;
541ae68f
K
5466 if ((sp->device_type == XFRAME_II_DEVICE) ||
5467 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5468 val64 = readq(&bar0->gpio_control);
5469 val64 ^= GPIO_CTRL_GPIO_0;
5470 writeq(val64, &bar0->gpio_control);
5471 } else {
5472 val64 = readq(&bar0->adapter_control);
5473 val64 ^= ADAPTER_LED_ON;
5474 writeq(val64, &bar0->adapter_control);
5475 }
5476
5477 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5478}
5479
5480/**
5481 * s2io_ethtool_idnic - To physically identify the nic on the system.
5482 * @sp : private member of the device structure, which is a pointer to the
5483 * s2io_nic structure.
20346722 5484 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5485 * ethtool.
5486 * Description: Used to physically identify the NIC on the system.
20346722 5487 * The Link LED will blink for a time specified by the user for
1da177e4 5488 * identification.
20346722 5489 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5490 * identification is possible only if it's link is up.
5491 * Return value:
5492 * int , returns 0 on success
5493 */
5494
5495static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5496{
5497 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5498 struct s2io_nic *sp = dev->priv;
5499 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5500 u16 subid;
5501
5502 subid = sp->pdev->subsystem_device;
5503 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
5504 if ((sp->device_type == XFRAME_I_DEVICE) &&
5505 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5506 val64 = readq(&bar0->adapter_control);
5507 if (!(val64 & ADAPTER_CNTL_EN)) {
5508 printk(KERN_ERR
5509 "Adapter Link down, cannot blink LED\n");
5510 return -EFAULT;
5511 }
5512 }
5513 if (sp->id_timer.function == NULL) {
5514 init_timer(&sp->id_timer);
5515 sp->id_timer.function = s2io_phy_id;
5516 sp->id_timer.data = (unsigned long) sp;
5517 }
5518 mod_timer(&sp->id_timer, jiffies);
5519 if (data)
20346722 5520 msleep_interruptible(data * HZ);
1da177e4 5521 else
20346722 5522 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5523 del_timer_sync(&sp->id_timer);
5524
541ae68f 5525 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5526 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5527 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5528 }
5529
5530 return 0;
5531}
5532
0cec35eb
SH
5533static void s2io_ethtool_gringparam(struct net_device *dev,
5534 struct ethtool_ringparam *ering)
5535{
5536 struct s2io_nic *sp = dev->priv;
5537 int i,tx_desc_count=0,rx_desc_count=0;
5538
5539 if (sp->rxd_mode == RXD_MODE_1)
5540 ering->rx_max_pending = MAX_RX_DESC_1;
5541 else if (sp->rxd_mode == RXD_MODE_3B)
5542 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5543
5544 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5545 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5546 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5547
0cec35eb
SH
5548 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5549 ering->tx_pending = tx_desc_count;
5550 rx_desc_count = 0;
8a4bdbaa 5551 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5552 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5553
0cec35eb
SH
5554 ering->rx_pending = rx_desc_count;
5555
5556 ering->rx_mini_max_pending = 0;
5557 ering->rx_mini_pending = 0;
5558 if(sp->rxd_mode == RXD_MODE_1)
5559 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5560 else if (sp->rxd_mode == RXD_MODE_3B)
5561 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5562 ering->rx_jumbo_pending = rx_desc_count;
5563}
5564
1da177e4
LT
5565/**
5566 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5567 * @sp : private member of the device structure, which is a pointer to the
5568 * s2io_nic structure.
1da177e4
LT
5569 * @ep : pointer to the structure with pause parameters given by ethtool.
5570 * Description:
5571 * Returns the Pause frame generation and reception capability of the NIC.
5572 * Return value:
5573 * void
5574 */
5575static void s2io_ethtool_getpause_data(struct net_device *dev,
5576 struct ethtool_pauseparam *ep)
5577{
5578 u64 val64;
1ee6dd77
RB
5579 struct s2io_nic *sp = dev->priv;
5580 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5581
5582 val64 = readq(&bar0->rmac_pause_cfg);
5583 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5584 ep->tx_pause = TRUE;
5585 if (val64 & RMAC_PAUSE_RX_ENABLE)
5586 ep->rx_pause = TRUE;
5587 ep->autoneg = FALSE;
5588}
5589
5590/**
5591 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5592 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5593 * s2io_nic structure.
5594 * @ep : pointer to the structure with pause parameters given by ethtool.
5595 * Description:
5596 * It can be used to set or reset Pause frame generation or reception
5597 * support of the NIC.
5598 * Return value:
5599 * int, returns 0 on Success
5600 */
5601
5602static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5603 struct ethtool_pauseparam *ep)
1da177e4
LT
5604{
5605 u64 val64;
1ee6dd77
RB
5606 struct s2io_nic *sp = dev->priv;
5607 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5608
5609 val64 = readq(&bar0->rmac_pause_cfg);
5610 if (ep->tx_pause)
5611 val64 |= RMAC_PAUSE_GEN_ENABLE;
5612 else
5613 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5614 if (ep->rx_pause)
5615 val64 |= RMAC_PAUSE_RX_ENABLE;
5616 else
5617 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5618 writeq(val64, &bar0->rmac_pause_cfg);
5619 return 0;
5620}
5621
5622/**
5623 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5624 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5625 * s2io_nic structure.
5626 * @off : offset at which the data must be written
5627 * @data : Its an output parameter where the data read at the given
20346722 5628 * offset is stored.
1da177e4 5629 * Description:
20346722 5630 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5631 * read data.
5632 * NOTE: Will allow to read only part of the EEPROM visible through the
5633 * I2C bus.
5634 * Return value:
5635 * -1 on failure and 0 on success.
5636 */
5637
5638#define S2IO_DEV_ID 5
1ee6dd77 5639static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5640{
5641 int ret = -1;
5642 u32 exit_cnt = 0;
5643 u64 val64;
1ee6dd77 5644 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5645
ad4ebed0 5646 if (sp->device_type == XFRAME_I_DEVICE) {
5647 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5648 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5649 I2C_CONTROL_CNTL_START;
5650 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5651
ad4ebed0 5652 while (exit_cnt < 5) {
5653 val64 = readq(&bar0->i2c_control);
5654 if (I2C_CONTROL_CNTL_END(val64)) {
5655 *data = I2C_CONTROL_GET_DATA(val64);
5656 ret = 0;
5657 break;
5658 }
5659 msleep(50);
5660 exit_cnt++;
1da177e4 5661 }
1da177e4
LT
5662 }
5663
ad4ebed0 5664 if (sp->device_type == XFRAME_II_DEVICE) {
5665 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5666 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5667 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5668 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5669 val64 |= SPI_CONTROL_REQ;
5670 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5671 while (exit_cnt < 5) {
5672 val64 = readq(&bar0->spi_control);
5673 if (val64 & SPI_CONTROL_NACK) {
5674 ret = 1;
5675 break;
5676 } else if (val64 & SPI_CONTROL_DONE) {
5677 *data = readq(&bar0->spi_data);
5678 *data &= 0xffffff;
5679 ret = 0;
5680 break;
5681 }
5682 msleep(50);
5683 exit_cnt++;
5684 }
5685 }
1da177e4
LT
5686 return ret;
5687}
5688
5689/**
5690 * write_eeprom - actually writes the relevant part of the data value.
5691 * @sp : private member of the device structure, which is a pointer to the
5692 * s2io_nic structure.
5693 * @off : offset at which the data must be written
5694 * @data : The data that is to be written
20346722 5695 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5696 * the Eeprom. (max of 3)
5697 * Description:
5698 * Actually writes the relevant part of the data value into the Eeprom
5699 * through the I2C bus.
5700 * Return value:
5701 * 0 on success, -1 on failure.
5702 */
5703
1ee6dd77 5704static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5705{
5706 int exit_cnt = 0, ret = -1;
5707 u64 val64;
1ee6dd77 5708 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5709
ad4ebed0 5710 if (sp->device_type == XFRAME_I_DEVICE) {
5711 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5712 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5713 I2C_CONTROL_CNTL_START;
5714 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5715
5716 while (exit_cnt < 5) {
5717 val64 = readq(&bar0->i2c_control);
5718 if (I2C_CONTROL_CNTL_END(val64)) {
5719 if (!(val64 & I2C_CONTROL_NACK))
5720 ret = 0;
5721 break;
5722 }
5723 msleep(50);
5724 exit_cnt++;
5725 }
5726 }
1da177e4 5727
ad4ebed0 5728 if (sp->device_type == XFRAME_II_DEVICE) {
5729 int write_cnt = (cnt == 8) ? 0 : cnt;
5730 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5731
5732 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5733 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5734 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5735 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5736 val64 |= SPI_CONTROL_REQ;
5737 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5738 while (exit_cnt < 5) {
5739 val64 = readq(&bar0->spi_control);
5740 if (val64 & SPI_CONTROL_NACK) {
5741 ret = 1;
5742 break;
5743 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5744 ret = 0;
ad4ebed0 5745 break;
5746 }
5747 msleep(50);
5748 exit_cnt++;
1da177e4 5749 }
1da177e4 5750 }
1da177e4
LT
5751 return ret;
5752}
1ee6dd77 5753static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5754{
b41477f3
AR
5755 u8 *vpd_data;
5756 u8 data;
9dc737a7
AR
5757 int i=0, cnt, fail = 0;
5758 int vpd_addr = 0x80;
5759
5760 if (nic->device_type == XFRAME_II_DEVICE) {
5761 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5762 vpd_addr = 0x80;
5763 }
5764 else {
5765 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5766 vpd_addr = 0x50;
5767 }
19a60522 5768 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5769
b41477f3 5770 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5771 if (!vpd_data) {
5772 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5773 return;
c53d4945 5774 }
491976b2 5775 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5776
9dc737a7
AR
5777 for (i = 0; i < 256; i +=4 ) {
5778 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5779 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5780 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5781 for (cnt = 0; cnt <5; cnt++) {
5782 msleep(2);
5783 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5784 if (data == 0x80)
5785 break;
5786 }
5787 if (cnt >= 5) {
5788 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5789 fail = 1;
5790 break;
5791 }
5792 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5793 (u32 *)&vpd_data[i]);
5794 }
19a60522
SS
5795
5796 if(!fail) {
5797 /* read serial number of adapter */
5798 for (cnt = 0; cnt < 256; cnt++) {
5799 if ((vpd_data[cnt] == 'S') &&
5800 (vpd_data[cnt+1] == 'N') &&
5801 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5802 memset(nic->serial_num, 0, VPD_STRING_LEN);
5803 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5804 vpd_data[cnt+2]);
5805 break;
5806 }
5807 }
5808 }
5809
5810 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5811 memset(nic->product_name, 0, vpd_data[1]);
5812 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5813 }
b41477f3 5814 kfree(vpd_data);
491976b2 5815 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5816}
5817
1da177e4
LT
5818/**
5819 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5820 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5821 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5822 * containing all relevant information.
5823 * @data_buf : user defined value to be written into Eeprom.
5824 * Description: Reads the values stored in the Eeprom at given offset
5825 * for a given length. Stores these values int the input argument data
5826 * buffer 'data_buf' and returns these to the caller (ethtool.)
5827 * Return value:
5828 * int 0 on success
5829 */
5830
5831static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5832 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5833{
ad4ebed0 5834 u32 i, valid;
5835 u64 data;
1ee6dd77 5836 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5837
5838 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5839
5840 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5841 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5842
5843 for (i = 0; i < eeprom->len; i += 4) {
5844 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5845 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5846 return -EFAULT;
5847 }
5848 valid = INV(data);
5849 memcpy((data_buf + i), &valid, 4);
5850 }
5851 return 0;
5852}
5853
5854/**
5855 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5856 * @sp : private member of the device structure, which is a pointer to the
5857 * s2io_nic structure.
20346722 5858 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5859 * containing all relevant information.
5860 * @data_buf ; user defined value to be written into Eeprom.
5861 * Description:
5862 * Tries to write the user provided value in the Eeprom, at the offset
5863 * given by the user.
5864 * Return value:
5865 * 0 on success, -EFAULT on failure.
5866 */
5867
5868static int s2io_ethtool_seeprom(struct net_device *dev,
5869 struct ethtool_eeprom *eeprom,
5870 u8 * data_buf)
5871{
5872 int len = eeprom->len, cnt = 0;
ad4ebed0 5873 u64 valid = 0, data;
1ee6dd77 5874 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5875
5876 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5877 DBG_PRINT(ERR_DBG,
5878 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5879 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5880 eeprom->magic);
5881 return -EFAULT;
5882 }
5883
5884 while (len) {
5885 data = (u32) data_buf[cnt] & 0x000000FF;
5886 if (data) {
5887 valid = (u32) (data << 24);
5888 } else
5889 valid = data;
5890
5891 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5892 DBG_PRINT(ERR_DBG,
5893 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5894 DBG_PRINT(ERR_DBG,
5895 "write into the specified offset\n");
5896 return -EFAULT;
5897 }
5898 cnt++;
5899 len--;
5900 }
5901
5902 return 0;
5903}
5904
5905/**
20346722
K
5906 * s2io_register_test - reads and writes into all clock domains.
5907 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5908 * s2io_nic structure.
5909 * @data : variable that returns the result of each of the test conducted b
5910 * by the driver.
5911 * Description:
5912 * Read and write into all clock domains. The NIC has 3 clock domains,
5913 * see that registers in all the three regions are accessible.
5914 * Return value:
5915 * 0 on success.
5916 */
5917
1ee6dd77 5918static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5919{
1ee6dd77 5920 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5921 u64 val64 = 0, exp_val;
1da177e4
LT
5922 int fail = 0;
5923
20346722
K
5924 val64 = readq(&bar0->pif_rd_swapper_fb);
5925 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5926 fail = 1;
5927 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5928 }
5929
5930 val64 = readq(&bar0->rmac_pause_cfg);
5931 if (val64 != 0xc000ffff00000000ULL) {
5932 fail = 1;
5933 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5934 }
5935
5936 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5937 if (sp->device_type == XFRAME_II_DEVICE)
5938 exp_val = 0x0404040404040404ULL;
5939 else
5940 exp_val = 0x0808080808080808ULL;
5941 if (val64 != exp_val) {
1da177e4
LT
5942 fail = 1;
5943 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5944 }
5945
5946 val64 = readq(&bar0->xgxs_efifo_cfg);
5947 if (val64 != 0x000000001923141EULL) {
5948 fail = 1;
5949 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5950 }
5951
5952 val64 = 0x5A5A5A5A5A5A5A5AULL;
5953 writeq(val64, &bar0->xmsi_data);
5954 val64 = readq(&bar0->xmsi_data);
5955 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5956 fail = 1;
5957 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5958 }
5959
5960 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5961 writeq(val64, &bar0->xmsi_data);
5962 val64 = readq(&bar0->xmsi_data);
5963 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5964 fail = 1;
5965 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5966 }
5967
5968 *data = fail;
ad4ebed0 5969 return fail;
1da177e4
LT
5970}
5971
5972/**
20346722 5973 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5974 * @sp : private member of the device structure, which is a pointer to the
5975 * s2io_nic structure.
5976 * @data:variable that returns the result of each of the test conducted by
5977 * the driver.
5978 * Description:
20346722 5979 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5980 * register.
5981 * Return value:
5982 * 0 on success.
5983 */
5984
1ee6dd77 5985static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5986{
5987 int fail = 0;
ad4ebed0 5988 u64 ret_data, org_4F0, org_7F0;
5989 u8 saved_4F0 = 0, saved_7F0 = 0;
5990 struct net_device *dev = sp->dev;
1da177e4
LT
5991
5992 /* Test Write Error at offset 0 */
ad4ebed0 5993 /* Note that SPI interface allows write access to all areas
5994 * of EEPROM. Hence doing all negative testing only for Xframe I.
5995 */
5996 if (sp->device_type == XFRAME_I_DEVICE)
5997 if (!write_eeprom(sp, 0, 0, 3))
5998 fail = 1;
5999
6000 /* Save current values at offsets 0x4F0 and 0x7F0 */
6001 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6002 saved_4F0 = 1;
6003 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6004 saved_7F0 = 1;
1da177e4
LT
6005
6006 /* Test Write at offset 4f0 */
ad4ebed0 6007 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6008 fail = 1;
6009 if (read_eeprom(sp, 0x4F0, &ret_data))
6010 fail = 1;
6011
ad4ebed0 6012 if (ret_data != 0x012345) {
26b7625c
AM
6013 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6014 "Data written %llx Data read %llx\n",
6015 dev->name, (unsigned long long)0x12345,
6016 (unsigned long long)ret_data);
1da177e4 6017 fail = 1;
ad4ebed0 6018 }
1da177e4
LT
6019
6020 /* Reset the EEPROM data go FFFF */
ad4ebed0 6021 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6022
6023 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6024 if (sp->device_type == XFRAME_I_DEVICE)
6025 if (!write_eeprom(sp, 0x07C, 0, 3))
6026 fail = 1;
1da177e4 6027
ad4ebed0 6028 /* Test Write Request at offset 0x7f0 */
6029 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6030 fail = 1;
ad4ebed0 6031 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6032 fail = 1;
6033
ad4ebed0 6034 if (ret_data != 0x012345) {
26b7625c
AM
6035 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6036 "Data written %llx Data read %llx\n",
6037 dev->name, (unsigned long long)0x12345,
6038 (unsigned long long)ret_data);
1da177e4 6039 fail = 1;
ad4ebed0 6040 }
1da177e4
LT
6041
6042 /* Reset the EEPROM data go FFFF */
ad4ebed0 6043 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6044
ad4ebed0 6045 if (sp->device_type == XFRAME_I_DEVICE) {
6046 /* Test Write Error at offset 0x80 */
6047 if (!write_eeprom(sp, 0x080, 0, 3))
6048 fail = 1;
1da177e4 6049
ad4ebed0 6050 /* Test Write Error at offset 0xfc */
6051 if (!write_eeprom(sp, 0x0FC, 0, 3))
6052 fail = 1;
1da177e4 6053
ad4ebed0 6054 /* Test Write Error at offset 0x100 */
6055 if (!write_eeprom(sp, 0x100, 0, 3))
6056 fail = 1;
1da177e4 6057
ad4ebed0 6058 /* Test Write Error at offset 4ec */
6059 if (!write_eeprom(sp, 0x4EC, 0, 3))
6060 fail = 1;
6061 }
6062
6063 /* Restore values at offsets 0x4F0 and 0x7F0 */
6064 if (saved_4F0)
6065 write_eeprom(sp, 0x4F0, org_4F0, 3);
6066 if (saved_7F0)
6067 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6068
6069 *data = fail;
ad4ebed0 6070 return fail;
1da177e4
LT
6071}
6072
6073/**
6074 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6075 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6076 * s2io_nic structure.
20346722 6077 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6078 * the driver.
6079 * Description:
6080 * This invokes the MemBist test of the card. We give around
6081 * 2 secs time for the Test to complete. If it's still not complete
20346722 6082 * within this peiod, we consider that the test failed.
1da177e4
LT
6083 * Return value:
6084 * 0 on success and -1 on failure.
6085 */
6086
1ee6dd77 6087static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
6088{
6089 u8 bist = 0;
6090 int cnt = 0, ret = -1;
6091
6092 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6093 bist |= PCI_BIST_START;
6094 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6095
6096 while (cnt < 20) {
6097 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6098 if (!(bist & PCI_BIST_START)) {
6099 *data = (bist & PCI_BIST_CODE_MASK);
6100 ret = 0;
6101 break;
6102 }
6103 msleep(100);
6104 cnt++;
6105 }
6106
6107 return ret;
6108}
6109
6110/**
20346722
K
6111 * s2io-link_test - verifies the link state of the nic
6112 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6113 * s2io_nic structure.
6114 * @data: variable that returns the result of each of the test conducted by
6115 * the driver.
6116 * Description:
20346722 6117 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6118 * argument 'data' appropriately.
6119 * Return value:
6120 * 0 on success.
6121 */
6122
1ee6dd77 6123static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6124{
1ee6dd77 6125 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6126 u64 val64;
6127
6128 val64 = readq(&bar0->adapter_status);
c92ca04b 6129 if(!(LINK_IS_UP(val64)))
1da177e4 6130 *data = 1;
c92ca04b
AR
6131 else
6132 *data = 0;
1da177e4 6133
b41477f3 6134 return *data;
1da177e4
LT
6135}
6136
6137/**
20346722
K
6138 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6139 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6140 * s2io_nic structure.
20346722 6141 * @data - variable that returns the result of each of the test
1da177e4
LT
6142 * conducted by the driver.
6143 * Description:
20346722 6144 * This is one of the offline test that tests the read and write
1da177e4
LT
6145 * access to the RldRam chip on the NIC.
6146 * Return value:
6147 * 0 on success.
6148 */
6149
1ee6dd77 6150static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6151{
1ee6dd77 6152 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6153 u64 val64;
ad4ebed0 6154 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6155
6156 val64 = readq(&bar0->adapter_control);
6157 val64 &= ~ADAPTER_ECC_EN;
6158 writeq(val64, &bar0->adapter_control);
6159
6160 val64 = readq(&bar0->mc_rldram_test_ctrl);
6161 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6162 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6163
6164 val64 = readq(&bar0->mc_rldram_mrs);
6165 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6166 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6167
6168 val64 |= MC_RLDRAM_MRS_ENABLE;
6169 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6170
6171 while (iteration < 2) {
6172 val64 = 0x55555555aaaa0000ULL;
6173 if (iteration == 1) {
6174 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6175 }
6176 writeq(val64, &bar0->mc_rldram_test_d0);
6177
6178 val64 = 0xaaaa5a5555550000ULL;
6179 if (iteration == 1) {
6180 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6181 }
6182 writeq(val64, &bar0->mc_rldram_test_d1);
6183
6184 val64 = 0x55aaaaaaaa5a0000ULL;
6185 if (iteration == 1) {
6186 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6187 }
6188 writeq(val64, &bar0->mc_rldram_test_d2);
6189
ad4ebed0 6190 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6191 writeq(val64, &bar0->mc_rldram_test_add);
6192
ad4ebed0 6193 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6194 MC_RLDRAM_TEST_GO;
6195 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6196
6197 for (cnt = 0; cnt < 5; cnt++) {
6198 val64 = readq(&bar0->mc_rldram_test_ctrl);
6199 if (val64 & MC_RLDRAM_TEST_DONE)
6200 break;
6201 msleep(200);
6202 }
6203
6204 if (cnt == 5)
6205 break;
6206
ad4ebed0 6207 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6208 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6209
6210 for (cnt = 0; cnt < 5; cnt++) {
6211 val64 = readq(&bar0->mc_rldram_test_ctrl);
6212 if (val64 & MC_RLDRAM_TEST_DONE)
6213 break;
6214 msleep(500);
6215 }
6216
6217 if (cnt == 5)
6218 break;
6219
6220 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6221 if (!(val64 & MC_RLDRAM_TEST_PASS))
6222 test_fail = 1;
1da177e4
LT
6223
6224 iteration++;
6225 }
6226
ad4ebed0 6227 *data = test_fail;
1da177e4 6228
ad4ebed0 6229 /* Bring the adapter out of test mode */
6230 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6231
6232 return test_fail;
1da177e4
LT
6233}
6234
6235/**
6236 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6237 * @sp : private member of the device structure, which is a pointer to the
6238 * s2io_nic structure.
6239 * @ethtest : pointer to a ethtool command specific structure that will be
6240 * returned to the user.
20346722 6241 * @data : variable that returns the result of each of the test
1da177e4
LT
6242 * conducted by the driver.
6243 * Description:
6244 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6245 * the health of the card.
6246 * Return value:
6247 * void
6248 */
6249
6250static void s2io_ethtool_test(struct net_device *dev,
6251 struct ethtool_test *ethtest,
6252 uint64_t * data)
6253{
1ee6dd77 6254 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6255 int orig_state = netif_running(sp->dev);
6256
6257 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6258 /* Offline Tests. */
20346722 6259 if (orig_state)
1da177e4 6260 s2io_close(sp->dev);
1da177e4
LT
6261
6262 if (s2io_register_test(sp, &data[0]))
6263 ethtest->flags |= ETH_TEST_FL_FAILED;
6264
6265 s2io_reset(sp);
1da177e4
LT
6266
6267 if (s2io_rldram_test(sp, &data[3]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6269
6270 s2io_reset(sp);
1da177e4
LT
6271
6272 if (s2io_eeprom_test(sp, &data[1]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 if (s2io_bist_test(sp, &data[4]))
6276 ethtest->flags |= ETH_TEST_FL_FAILED;
6277
6278 if (orig_state)
6279 s2io_open(sp->dev);
6280
6281 data[2] = 0;
6282 } else {
6283 /* Online Tests. */
6284 if (!orig_state) {
6285 DBG_PRINT(ERR_DBG,
6286 "%s: is not up, cannot run test\n",
6287 dev->name);
6288 data[0] = -1;
6289 data[1] = -1;
6290 data[2] = -1;
6291 data[3] = -1;
6292 data[4] = -1;
6293 }
6294
6295 if (s2io_link_test(sp, &data[2]))
6296 ethtest->flags |= ETH_TEST_FL_FAILED;
6297
6298 data[0] = 0;
6299 data[1] = 0;
6300 data[3] = 0;
6301 data[4] = 0;
6302 }
6303}
6304
6305static void s2io_get_ethtool_stats(struct net_device *dev,
6306 struct ethtool_stats *estats,
6307 u64 * tmp_stats)
6308{
8116f3cf 6309 int i = 0, k;
1ee6dd77
RB
6310 struct s2io_nic *sp = dev->priv;
6311 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6312
7ba013ac 6313 s2io_updt_stats(sp);
541ae68f
K
6314 tmp_stats[i++] =
6315 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6316 le32_to_cpu(stat_info->tmac_frms);
6317 tmp_stats[i++] =
6318 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6319 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6320 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_mcst_frms);
6324 tmp_stats[i++] =
6325 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6326 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6327 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_ttl_octets);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6333 le32_to_cpu(stat_info->tmac_ucst_frms);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 6340 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6341 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6344 le32_to_cpu(stat_info->tmac_vld_ip);
6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6347 le32_to_cpu(stat_info->tmac_drop_ip);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6350 le32_to_cpu(stat_info->tmac_icmp);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6353 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6354 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
6355 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6356 le32_to_cpu(stat_info->tmac_udp);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_vld_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6363 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6364 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
6365 tmp_stats[i++] =
6366 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6367 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6371 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6372 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6373 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6374 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6375 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6378 le32_to_cpu(stat_info->rmac_ttl_octets);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6381 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6382 tmp_stats[i++] =
6383 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6384 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6387 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6390 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6391 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6392 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6395 le32_to_cpu(stat_info->rmac_usized_frms);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6398 le32_to_cpu(stat_info->rmac_osized_frms);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6401 le32_to_cpu(stat_info->rmac_frag_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6408 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6410 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6413 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6415 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6418 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6419 tmp_stats[i++] =
6420 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6421 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
6425 le32_to_cpu(stat_info->rmac_udp);
6426 tmp_stats[i++] =
6427 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6428 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6438 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6439 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6440 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6441 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6442 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6443 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6444 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6445 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
6446 tmp_stats[i++] =
6447 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6448 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6449 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6450 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
6451 tmp_stats[i++] =
6452 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6453 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6454 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6455 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6473
6474 /* Enhanced statistics exist only for Hercules */
6475 if(sp->device_type == XFRAME_II_DEVICE) {
6476 tmp_stats[i++] =
6477 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6478 tmp_stats[i++] =
6479 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6480 tmp_stats[i++] =
6481 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6482 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6483 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6484 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6485 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6486 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6487 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6488 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6489 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6490 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6491 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6492 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6493 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6494 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6495 }
6496
7ba013ac
K
6497 tmp_stats[i++] = 0;
6498 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6499 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6500 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6501 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6503 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6504 for (k = 0; k < MAX_RX_RINGS; k++)
6505 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6506 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6507 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6508 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6509 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6510 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6511 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6512 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6513 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6514 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6515 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6516 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6517 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6518 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6519 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6520 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6521 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6522 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6523 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6524 int count = 0;
6aa20a22 6525 /*
bd1034f0
AR
6526 * Since 64-bit divide does not work on all platforms,
6527 * do repeated subtraction.
6528 */
6529 while (tmp >= stat_info->sw_stat.num_aggregations) {
6530 tmp -= stat_info->sw_stat.num_aggregations;
6531 count++;
6532 }
6533 tmp_stats[i++] = count;
fe931395 6534 }
bd1034f0
AR
6535 else
6536 tmp_stats[i++] = 0;
c53d4945 6537 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6538 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6539 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6540 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6541 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6542 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6545 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6546
6547 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6552
6553 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6562 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6574 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6575 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6576 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6577 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6578 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6579}
6580
ac1f60db 6581static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6582{
6583 return (XENA_REG_SPACE);
6584}
6585
6586
ac1f60db 6587static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6588{
1ee6dd77 6589 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6590
6591 return (sp->rx_csum);
6592}
ac1f60db
AB
6593
6594static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6595{
1ee6dd77 6596 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6597
6598 if (data)
6599 sp->rx_csum = 1;
6600 else
6601 sp->rx_csum = 0;
6602
6603 return 0;
6604}
ac1f60db
AB
6605
6606static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6607{
6608 return (XENA_EEPROM_SPACE);
6609}
6610
b9f2c044 6611static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6612{
b9f2c044
JG
6613 struct s2io_nic *sp = dev->priv;
6614
6615 switch (sset) {
6616 case ETH_SS_TEST:
6617 return S2IO_TEST_LEN;
6618 case ETH_SS_STATS:
6619 switch(sp->device_type) {
6620 case XFRAME_I_DEVICE:
6621 return XFRAME_I_STAT_LEN;
6622 case XFRAME_II_DEVICE:
6623 return XFRAME_II_STAT_LEN;
6624 default:
6625 return 0;
6626 }
6627 default:
6628 return -EOPNOTSUPP;
6629 }
1da177e4 6630}
ac1f60db
AB
6631
6632static void s2io_ethtool_get_strings(struct net_device *dev,
6633 u32 stringset, u8 * data)
1da177e4 6634{
fa1f0cb3
SS
6635 int stat_size = 0;
6636 struct s2io_nic *sp = dev->priv;
6637
1da177e4
LT
6638 switch (stringset) {
6639 case ETH_SS_TEST:
6640 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6641 break;
6642 case ETH_SS_STATS:
fa1f0cb3
SS
6643 stat_size = sizeof(ethtool_xena_stats_keys);
6644 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6645 if(sp->device_type == XFRAME_II_DEVICE) {
6646 memcpy(data + stat_size,
6647 &ethtool_enhanced_stats_keys,
6648 sizeof(ethtool_enhanced_stats_keys));
6649 stat_size += sizeof(ethtool_enhanced_stats_keys);
6650 }
6651
6652 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6653 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6654 }
6655}
1da177e4 6656
ac1f60db 6657static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6658{
6659 if (data)
6660 dev->features |= NETIF_F_IP_CSUM;
6661 else
6662 dev->features &= ~NETIF_F_IP_CSUM;
6663
6664 return 0;
6665}
6666
75c30b13
AR
6667static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6668{
6669 return (dev->features & NETIF_F_TSO) != 0;
6670}
6671static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6672{
6673 if (data)
6674 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6675 else
6676 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6677
6678 return 0;
6679}
1da177e4 6680
7282d491 6681static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6682 .get_settings = s2io_ethtool_gset,
6683 .set_settings = s2io_ethtool_sset,
6684 .get_drvinfo = s2io_ethtool_gdrvinfo,
6685 .get_regs_len = s2io_ethtool_get_regs_len,
6686 .get_regs = s2io_ethtool_gregs,
6687 .get_link = ethtool_op_get_link,
6688 .get_eeprom_len = s2io_get_eeprom_len,
6689 .get_eeprom = s2io_ethtool_geeprom,
6690 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6691 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6692 .get_pauseparam = s2io_ethtool_getpause_data,
6693 .set_pauseparam = s2io_ethtool_setpause_data,
6694 .get_rx_csum = s2io_ethtool_get_rx_csum,
6695 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6696 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6697 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6698 .get_tso = s2io_ethtool_op_get_tso,
6699 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6700 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6701 .self_test = s2io_ethtool_test,
6702 .get_strings = s2io_ethtool_get_strings,
6703 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6704 .get_ethtool_stats = s2io_get_ethtool_stats,
6705 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6706};
6707
6708/**
20346722 6709 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6710 * @dev : Device pointer.
6711 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6712 * a proprietary structure used to pass information to the driver.
6713 * @cmd : This is used to distinguish between the different commands that
6714 * can be passed to the IOCTL functions.
6715 * Description:
20346722
K
6716 * Currently there are no special functionality supported in IOCTL, hence
6717 * function always return EOPNOTSUPPORTED
1da177e4
LT
6718 */
6719
ac1f60db 6720static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6721{
6722 return -EOPNOTSUPP;
6723}
6724
6725/**
6726 * s2io_change_mtu - entry point to change MTU size for the device.
6727 * @dev : device pointer.
6728 * @new_mtu : the new MTU size for the device.
6729 * Description: A driver entry point to change MTU size for the device.
6730 * Before changing the MTU the device must be stopped.
6731 * Return value:
6732 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6733 * file on failure.
6734 */
6735
ac1f60db 6736static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6737{
1ee6dd77 6738 struct s2io_nic *sp = dev->priv;
9f74ffde 6739 int ret = 0;
1da177e4
LT
6740
6741 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6742 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6743 dev->name);
6744 return -EPERM;
6745 }
6746
1da177e4 6747 dev->mtu = new_mtu;
d8892c6e 6748 if (netif_running(dev)) {
3a3d5756 6749 s2io_stop_all_tx_queue(sp);
e6a8fee2 6750 s2io_card_down(sp);
9f74ffde
SH
6751 ret = s2io_card_up(sp);
6752 if (ret) {
d8892c6e
K
6753 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6754 __FUNCTION__);
9f74ffde 6755 return ret;
d8892c6e 6756 }
3a3d5756 6757 s2io_wake_all_tx_queue(sp);
d8892c6e 6758 } else { /* Device is down */
1ee6dd77 6759 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6760 u64 val64 = new_mtu;
6761
6762 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6763 }
1da177e4 6764
9f74ffde 6765 return ret;
1da177e4
LT
6766}
6767
6768/**
6769 * s2io_tasklet - Bottom half of the ISR.
6770 * @dev_adr : address of the device structure in dma_addr_t format.
6771 * Description:
6772 * This is the tasklet or the bottom half of the ISR. This is
20346722 6773 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 6774 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 6775 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
6776 * replenish the Rx buffers in the Rx buffer descriptors.
6777 * Return value:
6778 * void.
6779 */
6780
6781static void s2io_tasklet(unsigned long dev_addr)
6782{
6783 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 6784 struct s2io_nic *sp = dev->priv;
1da177e4 6785 int i, ret;
1ee6dd77 6786 struct mac_info *mac_control;
1da177e4
LT
6787 struct config_param *config;
6788
6789 mac_control = &sp->mac_control;
6790 config = &sp->config;
6791
6792 if (!TASKLET_IN_USE) {
6793 for (i = 0; i < config->rx_ring_num; i++) {
6794 ret = fill_rx_buffers(sp, i);
6795 if (ret == -ENOMEM) {
0c61ed5f 6796 DBG_PRINT(INFO_DBG, "%s: Out of ",
1da177e4 6797 dev->name);
491976b2 6798 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
1da177e4
LT
6799 break;
6800 } else if (ret == -EFILL) {
0c61ed5f 6801 DBG_PRINT(INFO_DBG,
1da177e4
LT
6802 "%s: Rx Ring %d is full\n",
6803 dev->name, i);
6804 break;
6805 }
6806 }
6807 clear_bit(0, (&sp->tasklet_status));
6808 }
6809}
6810
6811/**
6812 * s2io_set_link - Set the LInk status
6813 * @data: long pointer to device private structue
6814 * Description: Sets the link status for the adapter
6815 */
6816
c4028958 6817static void s2io_set_link(struct work_struct *work)
1da177e4 6818{
1ee6dd77 6819 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6820 struct net_device *dev = nic->dev;
1ee6dd77 6821 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6822 register u64 val64;
6823 u16 subid;
6824
22747d6b
FR
6825 rtnl_lock();
6826
6827 if (!netif_running(dev))
6828 goto out_unlock;
6829
92b84437 6830 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6831 /* The card is being reset, no point doing anything */
22747d6b 6832 goto out_unlock;
1da177e4
LT
6833 }
6834
6835 subid = nic->pdev->subsystem_device;
a371a07d
K
6836 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6837 /*
6838 * Allow a small delay for the NICs self initiated
6839 * cleanup to complete.
6840 */
6841 msleep(100);
6842 }
1da177e4
LT
6843
6844 val64 = readq(&bar0->adapter_status);
19a60522
SS
6845 if (LINK_IS_UP(val64)) {
6846 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6847 if (verify_xena_quiescence(nic)) {
6848 val64 = readq(&bar0->adapter_control);
6849 val64 |= ADAPTER_CNTL_EN;
1da177e4 6850 writeq(val64, &bar0->adapter_control);
19a60522
SS
6851 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6852 nic->device_type, subid)) {
6853 val64 = readq(&bar0->gpio_control);
6854 val64 |= GPIO_CTRL_GPIO_0;
6855 writeq(val64, &bar0->gpio_control);
6856 val64 = readq(&bar0->gpio_control);
6857 } else {
6858 val64 |= ADAPTER_LED_ON;
6859 writeq(val64, &bar0->adapter_control);
a371a07d 6860 }
1da177e4 6861 nic->device_enabled_once = TRUE;
19a60522
SS
6862 } else {
6863 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6864 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6865 s2io_stop_all_tx_queue(nic);
1da177e4 6866 }
19a60522 6867 }
92c48799
SS
6868 val64 = readq(&bar0->adapter_control);
6869 val64 |= ADAPTER_LED_ON;
6870 writeq(val64, &bar0->adapter_control);
6871 s2io_link(nic, LINK_UP);
19a60522
SS
6872 } else {
6873 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6874 subid)) {
6875 val64 = readq(&bar0->gpio_control);
6876 val64 &= ~GPIO_CTRL_GPIO_0;
6877 writeq(val64, &bar0->gpio_control);
6878 val64 = readq(&bar0->gpio_control);
1da177e4 6879 }
92c48799
SS
6880 /* turn off LED */
6881 val64 = readq(&bar0->adapter_control);
6882 val64 = val64 &(~ADAPTER_LED_ON);
6883 writeq(val64, &bar0->adapter_control);
19a60522 6884 s2io_link(nic, LINK_DOWN);
1da177e4 6885 }
92b84437 6886 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6887
6888out_unlock:
d8d70caf 6889 rtnl_unlock();
1da177e4
LT
6890}
6891
1ee6dd77
RB
6892static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6893 struct buffAdd *ba,
6894 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6895 u64 *temp2, int size)
5d3213cc
AR
6896{
6897 struct net_device *dev = sp->dev;
491abf25 6898 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6899
6900 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6901 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6902 /* allocate skb */
6903 if (*skb) {
6904 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6905 /*
6906 * As Rx frame are not going to be processed,
6907 * using same mapped address for the Rxd
6908 * buffer pointer
6909 */
6d517a27 6910 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6911 } else {
6912 *skb = dev_alloc_skb(size);
6913 if (!(*skb)) {
0c61ed5f 6914 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6915 DBG_PRINT(INFO_DBG, "memory to allocate ");
6916 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6917 sp->mac_control.stats_info->sw_stat. \
6918 mem_alloc_fail_cnt++;
5d3213cc
AR
6919 return -ENOMEM ;
6920 }
8a4bdbaa 6921 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6922 += (*skb)->truesize;
5d3213cc
AR
6923 /* storing the mapped addr in a temp variable
6924 * such it will be used for next rxd whose
6925 * Host Control is NULL
6926 */
6d517a27 6927 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6928 pci_map_single( sp->pdev, (*skb)->data,
6929 size - NET_IP_ALIGN,
6930 PCI_DMA_FROMDEVICE);
491abf25
VP
6931 if( (rxdp1->Buffer0_ptr == 0) ||
6932 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6933 goto memalloc_failed;
6934 }
5d3213cc
AR
6935 rxdp->Host_Control = (unsigned long) (*skb);
6936 }
6937 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6938 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6939 /* Two buffer Mode */
6940 if (*skb) {
6d517a27
VP
6941 rxdp3->Buffer2_ptr = *temp2;
6942 rxdp3->Buffer0_ptr = *temp0;
6943 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6944 } else {
6945 *skb = dev_alloc_skb(size);
2ceaac75 6946 if (!(*skb)) {
c53d4945
SH
6947 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6948 DBG_PRINT(INFO_DBG, "memory to allocate ");
6949 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6950 sp->mac_control.stats_info->sw_stat. \
6951 mem_alloc_fail_cnt++;
2ceaac75
DR
6952 return -ENOMEM;
6953 }
8a4bdbaa 6954 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6955 += (*skb)->truesize;
6d517a27 6956 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6957 pci_map_single(sp->pdev, (*skb)->data,
6958 dev->mtu + 4,
6959 PCI_DMA_FROMDEVICE);
491abf25
VP
6960 if( (rxdp3->Buffer2_ptr == 0) ||
6961 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6962 goto memalloc_failed;
6963 }
6d517a27 6964 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6965 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6966 PCI_DMA_FROMDEVICE);
491abf25
VP
6967 if( (rxdp3->Buffer0_ptr == 0) ||
6968 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6969 pci_unmap_single (sp->pdev,
3e847423 6970 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6971 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6972 goto memalloc_failed;
6973 }
5d3213cc
AR
6974 rxdp->Host_Control = (unsigned long) (*skb);
6975
6976 /* Buffer-1 will be dummy buffer not used */
6d517a27 6977 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6978 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6979 PCI_DMA_FROMDEVICE);
491abf25
VP
6980 if( (rxdp3->Buffer1_ptr == 0) ||
6981 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6982 pci_unmap_single (sp->pdev,
3e847423
AV
6983 (dma_addr_t)rxdp3->Buffer0_ptr,
6984 BUF0_LEN, PCI_DMA_FROMDEVICE);
6985 pci_unmap_single (sp->pdev,
6986 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6987 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6988 goto memalloc_failed;
6989 }
5d3213cc
AR
6990 }
6991 }
6992 return 0;
491abf25
VP
6993 memalloc_failed:
6994 stats->pci_map_fail_cnt++;
6995 stats->mem_freed += (*skb)->truesize;
6996 dev_kfree_skb(*skb);
6997 return -ENOMEM;
5d3213cc 6998}
491abf25 6999
1ee6dd77
RB
7000static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7001 int size)
5d3213cc
AR
7002{
7003 struct net_device *dev = sp->dev;
7004 if (sp->rxd_mode == RXD_MODE_1) {
7005 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
7006 } else if (sp->rxd_mode == RXD_MODE_3B) {
7007 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7008 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7009 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
7010 }
7011}
7012
1ee6dd77 7013static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
7014{
7015 int i, j, k, blk_cnt = 0, size;
1ee6dd77 7016 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
7017 struct config_param *config = &sp->config;
7018 struct net_device *dev = sp->dev;
1ee6dd77 7019 struct RxD_t *rxdp = NULL;
5d3213cc 7020 struct sk_buff *skb = NULL;
1ee6dd77 7021 struct buffAdd *ba = NULL;
5d3213cc
AR
7022 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7023
7024 /* Calculate the size based on ring mode */
7025 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7026 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7027 if (sp->rxd_mode == RXD_MODE_1)
7028 size += NET_IP_ALIGN;
7029 else if (sp->rxd_mode == RXD_MODE_3B)
7030 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
7031
7032 for (i = 0; i < config->rx_ring_num; i++) {
7033 blk_cnt = config->rx_cfg[i].num_rxd /
7034 (rxd_count[sp->rxd_mode] +1);
7035
7036 for (j = 0; j < blk_cnt; j++) {
7037 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7038 rxdp = mac_control->rings[i].
7039 rx_blocks[j].rxds[k].virt_addr;
6d517a27 7040 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 7041 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 7042 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
7043 &skb,(u64 *)&temp0_64,
7044 (u64 *)&temp1_64,
ac1f90d6
SS
7045 (u64 *)&temp2_64,
7046 size) == ENOMEM) {
7047 return 0;
7048 }
5d3213cc
AR
7049
7050 set_rxd_buffer_size(sp, rxdp, size);
7051 wmb();
7052 /* flip the Ownership bit to Hardware */
7053 rxdp->Control_1 |= RXD_OWN_XENA;
7054 }
7055 }
7056 }
7057 return 0;
7058
7059}
7060
1ee6dd77 7061static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 7062{
e6a8fee2 7063 int ret = 0;
c92ca04b 7064 struct net_device *dev = sp->dev;
e6a8fee2 7065 int err = 0;
1da177e4 7066
eaae7f72 7067 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7068 ret = s2io_enable_msi_x(sp);
7069 if (ret) {
7070 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7071 sp->config.intr_type = INTA;
20346722 7072 }
1da177e4 7073
1ee6dd77 7074 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 7075 store_xmsi_data(sp);
c92ca04b 7076
e6a8fee2 7077 /* After proper initialization of H/W, register ISR */
eaae7f72 7078 if (sp->config.intr_type == MSI_X) {
fb6a825b 7079 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 7080
e6a8fee2
AR
7081 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
7082 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
7083 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7084 dev->name, i);
7085 err = request_irq(sp->entries[i].vector,
7086 s2io_msix_fifo_handle, 0, sp->desc[i],
7087 sp->s2io_entries[i].arg);
fb6a825b
SS
7088 /* If either data or addr is zero print it */
7089 if(!(sp->msix_info[i].addr &&
7090 sp->msix_info[i].data)) {
2450022a 7091 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
fb6a825b
SS
7092 "Data:0x%lx\n",sp->desc[i],
7093 (unsigned long long)
7094 sp->msix_info[i].addr,
7095 (unsigned long)
7096 ntohl(sp->msix_info[i].data));
7097 } else {
7098 msix_tx_cnt++;
7099 }
e6a8fee2
AR
7100 } else {
7101 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7102 dev->name, i);
7103 err = request_irq(sp->entries[i].vector,
7104 s2io_msix_ring_handle, 0, sp->desc[i],
7105 sp->s2io_entries[i].arg);
fb6a825b
SS
7106 /* If either data or addr is zero print it */
7107 if(!(sp->msix_info[i].addr &&
7108 sp->msix_info[i].data)) {
2450022a 7109 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
fb6a825b
SS
7110 "Data:0x%lx\n",sp->desc[i],
7111 (unsigned long long)
7112 sp->msix_info[i].addr,
7113 (unsigned long)
7114 ntohl(sp->msix_info[i].data));
7115 } else {
7116 msix_rx_cnt++;
7117 }
c92ca04b 7118 }
e6a8fee2 7119 if (err) {
18b2b7bd 7120 remove_msix_isr(sp);
e6a8fee2
AR
7121 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7122 "failed\n", dev->name, i);
18b2b7bd
SH
7123 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7124 dev->name);
7125 sp->config.intr_type = INTA;
7126 break;
e6a8fee2
AR
7127 }
7128 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7129 }
18b2b7bd
SH
7130 if (!err) {
7131 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7132 msix_tx_cnt);
7133 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7134 msix_rx_cnt);
7135 }
e6a8fee2 7136 }
eaae7f72 7137 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
7138 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7139 sp->name, dev);
7140 if (err) {
7141 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7142 dev->name);
7143 return -1;
7144 }
7145 }
7146 return 0;
7147}
1ee6dd77 7148static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 7149{
18b2b7bd
SH
7150 if (sp->config.intr_type == MSI_X)
7151 remove_msix_isr(sp);
7152 else
7153 remove_inta_isr(sp);
e6a8fee2
AR
7154}
7155
d796fdb7 7156static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
7157{
7158 int cnt = 0;
1ee6dd77 7159 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
7160 unsigned long flags;
7161 register u64 val64 = 0;
5f490c96
SH
7162 struct config_param *config;
7163 config = &sp->config;
e6a8fee2 7164
9f74ffde
SH
7165 if (!is_s2io_card_up(sp))
7166 return;
7167
e6a8fee2
AR
7168 del_timer_sync(&sp->alarm_timer);
7169 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 7170 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
7171 msleep(50);
7172 }
92b84437 7173 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7174
5f490c96
SH
7175 /* Disable napi */
7176 if (config->napi)
7177 napi_disable(&sp->napi);
7178
e6a8fee2 7179 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7180 if (do_io)
7181 stop_nic(sp);
e6a8fee2
AR
7182
7183 s2io_rem_isr(sp);
1da177e4
LT
7184
7185 /* Kill tasklet. */
7186 tasklet_kill(&sp->task);
7187
7188 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 7189 while(do_io) {
5d3213cc
AR
7190 /* As per the HW requirement we need to replenish the
7191 * receive buffer to avoid the ring bump. Since there is
7192 * no intention of processing the Rx frame at this pointwe are
7193 * just settting the ownership bit of rxd in Each Rx
7194 * ring to HW and set the appropriate buffer size
7195 * based on the ring mode
7196 */
7197 rxd_owner_bit_reset(sp);
7198
1da177e4 7199 val64 = readq(&bar0->adapter_status);
19a60522
SS
7200 if (verify_xena_quiescence(sp)) {
7201 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
7202 break;
7203 }
7204
7205 msleep(50);
7206 cnt++;
7207 if (cnt == 10) {
7208 DBG_PRINT(ERR_DBG,
7209 "s2io_close:Device not Quiescent ");
7210 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7211 (unsigned long long) val64);
7212 break;
7213 }
d796fdb7
LV
7214 }
7215 if (do_io)
7216 s2io_reset(sp);
1da177e4 7217
7ba013ac 7218 /* Free all Tx buffers */
1da177e4 7219 free_tx_buffers(sp);
7ba013ac
K
7220
7221 /* Free all Rx buffers */
7222 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 7223 free_rx_buffers(sp);
7ba013ac 7224 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 7225
92b84437 7226 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7227}
7228
d796fdb7
LV
7229static void s2io_card_down(struct s2io_nic * sp)
7230{
7231 do_s2io_card_down(sp, 1);
7232}
7233
1ee6dd77 7234static int s2io_card_up(struct s2io_nic * sp)
1da177e4 7235{
cc6e7c44 7236 int i, ret = 0;
1ee6dd77 7237 struct mac_info *mac_control;
1da177e4
LT
7238 struct config_param *config;
7239 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 7240 u16 interruptible;
1da177e4
LT
7241
7242 /* Initialize the H/W I/O registers */
9f74ffde
SH
7243 ret = init_nic(sp);
7244 if (ret != 0) {
1da177e4
LT
7245 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7246 dev->name);
9f74ffde
SH
7247 if (ret != -EIO)
7248 s2io_reset(sp);
7249 return ret;
1da177e4
LT
7250 }
7251
20346722
K
7252 /*
7253 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7254 * Rx ring and initializing buffers into 30 Rx blocks
7255 */
7256 mac_control = &sp->mac_control;
7257 config = &sp->config;
7258
7259 for (i = 0; i < config->rx_ring_num; i++) {
7260 if ((ret = fill_rx_buffers(sp, i))) {
7261 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7262 dev->name);
7263 s2io_reset(sp);
7264 free_rx_buffers(sp);
7265 return -ENOMEM;
7266 }
7267 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7268 atomic_read(&sp->rx_bufs_left[i]));
7269 }
5f490c96
SH
7270
7271 /* Initialise napi */
7272 if (config->napi)
7273 napi_enable(&sp->napi);
7274
19a60522
SS
7275 /* Maintain the state prior to the open */
7276 if (sp->promisc_flg)
7277 sp->promisc_flg = 0;
7278 if (sp->m_cast_flg) {
7279 sp->m_cast_flg = 0;
7280 sp->all_multi_pos= 0;
7281 }
1da177e4
LT
7282
7283 /* Setting its receive mode */
7284 s2io_set_multicast(dev);
7285
7d3d0439 7286 if (sp->lro) {
b41477f3 7287 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
7288 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7289 /* Check if we can use(if specified) user provided value */
7290 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7291 sp->lro_max_aggr_per_sess = lro_max_pkts;
7292 }
7293
1da177e4
LT
7294 /* Enable Rx Traffic and interrupts on the NIC */
7295 if (start_nic(sp)) {
7296 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7297 s2io_reset(sp);
e6a8fee2
AR
7298 free_rx_buffers(sp);
7299 return -ENODEV;
7300 }
7301
7302 /* Add interrupt service routine */
7303 if (s2io_add_isr(sp) != 0) {
eaae7f72 7304 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7305 s2io_rem_isr(sp);
7306 s2io_reset(sp);
1da177e4
LT
7307 free_rx_buffers(sp);
7308 return -ENODEV;
7309 }
7310
25fff88e
K
7311 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7312
e6a8fee2
AR
7313 /* Enable tasklet for the device */
7314 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7315
7316 /* Enable select interrupts */
9caab458 7317 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
eaae7f72 7318 if (sp->config.intr_type != INTA)
e6a8fee2
AR
7319 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7320 else {
7321 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7322 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7323 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7324 }
7325
92b84437 7326 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
1da177e4
LT
7327 return 0;
7328}
7329
20346722 7330/**
1da177e4
LT
7331 * s2io_restart_nic - Resets the NIC.
7332 * @data : long pointer to the device private structure
7333 * Description:
7334 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7335 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7336 * the run time of the watch dog routine which is run holding a
7337 * spin lock.
7338 */
7339
c4028958 7340static void s2io_restart_nic(struct work_struct *work)
1da177e4 7341{
1ee6dd77 7342 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7343 struct net_device *dev = sp->dev;
1da177e4 7344
22747d6b
FR
7345 rtnl_lock();
7346
7347 if (!netif_running(dev))
7348 goto out_unlock;
7349
e6a8fee2 7350 s2io_card_down(sp);
1da177e4
LT
7351 if (s2io_card_up(sp)) {
7352 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7353 dev->name);
7354 }
3a3d5756 7355 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7356 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7357 dev->name);
22747d6b
FR
7358out_unlock:
7359 rtnl_unlock();
1da177e4
LT
7360}
7361
20346722
K
7362/**
7363 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7364 * @dev : Pointer to net device structure
7365 * Description:
7366 * This function is triggered if the Tx Queue is stopped
7367 * for a pre-defined amount of time when the Interface is still up.
7368 * If the Interface is jammed in such a situation, the hardware is
7369 * reset (by s2io_close) and restarted again (by s2io_open) to
7370 * overcome any problem that might have been caused in the hardware.
7371 * Return value:
7372 * void
7373 */
7374
7375static void s2io_tx_watchdog(struct net_device *dev)
7376{
1ee6dd77 7377 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7378
7379 if (netif_carrier_ok(dev)) {
c53d4945 7380 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7381 schedule_work(&sp->rst_timer_task);
bd1034f0 7382 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7383 }
7384}
7385
7386/**
7387 * rx_osm_handler - To perform some OS related operations on SKB.
7388 * @sp: private member of the device structure,pointer to s2io_nic structure.
7389 * @skb : the socket buffer pointer.
7390 * @len : length of the packet
7391 * @cksum : FCS checksum of the frame.
7392 * @ring_no : the ring from which this RxD was extracted.
20346722 7393 * Description:
b41477f3 7394 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7395 * some OS related operations on the SKB before passing it to the upper
7396 * layers. It mainly checks if the checksum is OK, if so adds it to the
7397 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7398 * to the upper layer. If the checksum is wrong, it increments the Rx
7399 * packet error count, frees the SKB and returns error.
7400 * Return value:
7401 * SUCCESS on success and -1 on failure.
7402 */
1ee6dd77 7403static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7404{
1ee6dd77 7405 struct s2io_nic *sp = ring_data->nic;
1da177e4 7406 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
7407 struct sk_buff *skb = (struct sk_buff *)
7408 ((unsigned long) rxdp->Host_Control);
7409 int ring_no = ring_data->ring_no;
1da177e4 7410 u16 l3_csum, l4_csum;
863c11a9 7411 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7412 struct lro *lro;
f9046eb3 7413 u8 err_mask;
da6971d8 7414
20346722 7415 skb->dev = dev;
c92ca04b 7416
863c11a9 7417 if (err) {
bd1034f0
AR
7418 /* Check for parity error */
7419 if (err & 0x1) {
7420 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7421 }
f9046eb3
OH
7422 err_mask = err >> 48;
7423 switch(err_mask) {
491976b2
SH
7424 case 1:
7425 sp->mac_control.stats_info->sw_stat.
7426 rx_parity_err_cnt++;
7427 break;
7428
7429 case 2:
7430 sp->mac_control.stats_info->sw_stat.
7431 rx_abort_cnt++;
7432 break;
7433
7434 case 3:
7435 sp->mac_control.stats_info->sw_stat.
7436 rx_parity_abort_cnt++;
7437 break;
7438
7439 case 4:
7440 sp->mac_control.stats_info->sw_stat.
7441 rx_rda_fail_cnt++;
7442 break;
7443
7444 case 5:
7445 sp->mac_control.stats_info->sw_stat.
7446 rx_unkn_prot_cnt++;
7447 break;
7448
7449 case 6:
7450 sp->mac_control.stats_info->sw_stat.
7451 rx_fcs_err_cnt++;
7452 break;
bd1034f0 7453
491976b2
SH
7454 case 7:
7455 sp->mac_control.stats_info->sw_stat.
7456 rx_buf_size_err_cnt++;
7457 break;
7458
7459 case 8:
7460 sp->mac_control.stats_info->sw_stat.
7461 rx_rxd_corrupt_cnt++;
7462 break;
7463
7464 case 15:
7465 sp->mac_control.stats_info->sw_stat.
7466 rx_unkn_err_cnt++;
7467 break;
7468 }
863c11a9
AR
7469 /*
7470 * Drop the packet if bad transfer code. Exception being
7471 * 0x5, which could be due to unsupported IPv6 extension header.
7472 * In this case, we let stack handle the packet.
7473 * Note that in this case, since checksum will be incorrect,
7474 * stack will validate the same.
7475 */
f9046eb3
OH
7476 if (err_mask != 0x5) {
7477 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7478 dev->name, err_mask);
863c11a9 7479 sp->stats.rx_crc_errors++;
8a4bdbaa 7480 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7481 += skb->truesize;
863c11a9
AR
7482 dev_kfree_skb(skb);
7483 atomic_dec(&sp->rx_bufs_left[ring_no]);
7484 rxdp->Host_Control = 0;
7485 return 0;
7486 }
20346722 7487 }
1da177e4 7488
20346722 7489 /* Updating statistics */
573608e4 7490 sp->stats.rx_packets++;
20346722 7491 rxdp->Host_Control = 0;
da6971d8
AR
7492 if (sp->rxd_mode == RXD_MODE_1) {
7493 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7494
da6971d8
AR
7495 sp->stats.rx_bytes += len;
7496 skb_put(skb, len);
7497
6d517a27 7498 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7499 int get_block = ring_data->rx_curr_get_info.block_index;
7500 int get_off = ring_data->rx_curr_get_info.offset;
7501 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7502 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7503 unsigned char *buff = skb_push(skb, buf0_len);
7504
1ee6dd77 7505 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
7506 sp->stats.rx_bytes += buf0_len + buf2_len;
7507 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7508 skb_put(skb, buf2_len);
da6971d8 7509 }
20346722 7510
7d3d0439
RA
7511 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7512 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7513 (sp->rx_csum)) {
7514 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7515 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7516 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7517 /*
1da177e4
LT
7518 * NIC verifies if the Checksum of the received
7519 * frame is Ok or not and accordingly returns
7520 * a flag in the RxD.
7521 */
7522 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
7523 if (sp->lro) {
7524 u32 tcp_len;
7525 u8 *tcp;
7526 int ret = 0;
7527
7528 ret = s2io_club_tcp_session(skb->data, &tcp,
43b7c451
SH
7529 &tcp_len, &lro,
7530 rxdp, sp);
7d3d0439
RA
7531 switch (ret) {
7532 case 3: /* Begin anew */
7533 lro->parent = skb;
7534 goto aggregate;
7535 case 1: /* Aggregate */
7536 {
7537 lro_append_pkt(sp, lro,
7538 skb, tcp_len);
7539 goto aggregate;
7540 }
7541 case 4: /* Flush session */
7542 {
7543 lro_append_pkt(sp, lro,
7544 skb, tcp_len);
cdb5bf02
SH
7545 queue_rx_frame(lro->parent,
7546 lro->vlan_tag);
7d3d0439
RA
7547 clear_lro_session(lro);
7548 sp->mac_control.stats_info->
7549 sw_stat.flush_max_pkts++;
7550 goto aggregate;
7551 }
7552 case 2: /* Flush both */
7553 lro->parent->data_len =
7554 lro->frags_len;
7555 sp->mac_control.stats_info->
7556 sw_stat.sending_both++;
cdb5bf02
SH
7557 queue_rx_frame(lro->parent,
7558 lro->vlan_tag);
7d3d0439
RA
7559 clear_lro_session(lro);
7560 goto send_up;
7561 case 0: /* sessions exceeded */
c92ca04b
AR
7562 case -1: /* non-TCP or not
7563 * L2 aggregatable
7564 */
7d3d0439
RA
7565 case 5: /*
7566 * First pkt in session not
7567 * L3/L4 aggregatable
7568 */
7569 break;
7570 default:
7571 DBG_PRINT(ERR_DBG,
7572 "%s: Samadhana!!\n",
7573 __FUNCTION__);
7574 BUG();
7575 }
7576 }
1da177e4 7577 } else {
20346722
K
7578 /*
7579 * Packet with erroneous checksum, let the
1da177e4
LT
7580 * upper layers deal with it.
7581 */
7582 skb->ip_summed = CHECKSUM_NONE;
7583 }
cdb5bf02 7584 } else
1da177e4 7585 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7586
491976b2 7587 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7588send_up:
cdb5bf02 7589 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
1da177e4 7590 dev->last_rx = jiffies;
7d3d0439 7591aggregate:
1da177e4 7592 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
7593 return SUCCESS;
7594}
7595
7596/**
7597 * s2io_link - stops/starts the Tx queue.
7598 * @sp : private member of the device structure, which is a pointer to the
7599 * s2io_nic structure.
7600 * @link : inidicates whether link is UP/DOWN.
7601 * Description:
7602 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7603 * status of the NIC is is down or up. This is called by the Alarm
7604 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7605 * Return value:
7606 * void.
7607 */
7608
1ee6dd77 7609static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7610{
7611 struct net_device *dev = (struct net_device *) sp->dev;
7612
7613 if (link != sp->last_link_state) {
b7c5678f 7614 init_tti(sp, link);
1da177e4
LT
7615 if (link == LINK_DOWN) {
7616 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7617 s2io_stop_all_tx_queue(sp);
1da177e4 7618 netif_carrier_off(dev);
491976b2 7619 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7620 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7621 jiffies - sp->start_time;
7622 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7623 } else {
7624 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7625 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7626 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7627 jiffies - sp->start_time;
7628 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7629 netif_carrier_on(dev);
3a3d5756 7630 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7631 }
7632 }
7633 sp->last_link_state = link;
491976b2 7634 sp->start_time = jiffies;
1da177e4
LT
7635}
7636
20346722
K
7637/**
7638 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7639 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7640 * s2io_nic structure.
7641 * Description:
7642 * This function initializes a few of the PCI and PCI-X configuration registers
7643 * with recommended values.
7644 * Return value:
7645 * void
7646 */
7647
1ee6dd77 7648static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7649{
20346722 7650 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7651
7652 /* Enable Data Parity Error Recovery in PCI-X command register. */
7653 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7654 &(pcix_cmd));
1da177e4 7655 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7656 (pcix_cmd | 1));
1da177e4 7657 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7658 &(pcix_cmd));
1da177e4
LT
7659
7660 /* Set the PErr Response bit in PCI command register. */
7661 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7662 pci_write_config_word(sp->pdev, PCI_COMMAND,
7663 (pci_cmd | PCI_COMMAND_PARITY));
7664 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7665}
7666
3a3d5756
SH
7667static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7668 u8 *dev_multiq)
9dc737a7 7669{
2fda096d 7670 if ((tx_fifo_num > MAX_TX_FIFOS) ||
6cfc482b 7671 (tx_fifo_num < 1)) {
2fda096d
SR
7672 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7673 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7674
7675 if (tx_fifo_num < 1)
7676 tx_fifo_num = 1;
7677 else
7678 tx_fifo_num = MAX_TX_FIFOS;
7679
2fda096d
SR
7680 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7681 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7682 }
2fda096d 7683
3a3d5756
SH
7684#ifndef CONFIG_NETDEVICES_MULTIQUEUE
7685 if (multiq) {
7686 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7687 multiq = 0;
7688 }
7689#endif
6cfc482b 7690 if (multiq)
3a3d5756 7691 *dev_multiq = multiq;
6cfc482b
SH
7692
7693 if (tx_steering_type && (1 == tx_fifo_num)) {
7694 if (tx_steering_type != TX_DEFAULT_STEERING)
7695 DBG_PRINT(ERR_DBG,
7696 "s2io: Tx steering is not supported with "
7697 "one fifo. Disabling Tx steering.\n");
7698 tx_steering_type = NO_STEERING;
7699 }
7700
7701 if ((tx_steering_type < NO_STEERING) ||
7702 (tx_steering_type > TX_DEFAULT_STEERING)) {
7703 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7704 "supported\n");
7705 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7706 tx_steering_type = NO_STEERING;
3a3d5756
SH
7707 }
7708
9dc737a7
AR
7709 if ( rx_ring_num > 8) {
7710 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7711 "supported\n");
7712 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7713 rx_ring_num = 8;
7714 }
db874e65
SS
7715 if (*dev_intr_type != INTA)
7716 napi = 0;
7717
eccb8628 7718 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7719 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7720 "Defaulting to INTA\n");
7721 *dev_intr_type = INTA;
7722 }
596c5c97 7723
9dc737a7
AR
7724 if ((*dev_intr_type == MSI_X) &&
7725 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7726 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7727 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7728 "Defaulting to INTA\n");
7729 *dev_intr_type = INTA;
7730 }
fb6a825b 7731
6d517a27 7732 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7733 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7734 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7735 rx_ring_mode = 1;
9dc737a7
AR
7736 }
7737 return SUCCESS;
7738}
7739
9fc93a41
SS
7740/**
7741 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7742 * or Traffic class respectively.
b7c5678f 7743 * @nic: device private variable
9fc93a41
SS
7744 * Description: The function configures the receive steering to
7745 * desired receive ring.
7746 * Return Value: SUCCESS on success and
7747 * '-1' on failure (endian settings incorrect).
7748 */
7749static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7750{
7751 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7752 register u64 val64 = 0;
7753
7754 if (ds_codepoint > 63)
7755 return FAILURE;
7756
7757 val64 = RTS_DS_MEM_DATA(ring);
7758 writeq(val64, &bar0->rts_ds_mem_data);
7759
7760 val64 = RTS_DS_MEM_CTRL_WE |
7761 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7762 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7763
7764 writeq(val64, &bar0->rts_ds_mem_ctrl);
7765
7766 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7767 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7768 S2IO_BIT_RESET);
7769}
7770
1da177e4 7771/**
20346722 7772 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7773 * @pdev : structure containing the PCI related information of the device.
7774 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7775 * Description:
7776 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7777 * All OS related initialization including memory and device structure and
7778 * initlaization of the device private variable is done. Also the swapper
7779 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7780 * registers of the device.
7781 * Return value:
7782 * returns 0 on success and negative on failure.
7783 */
7784
7785static int __devinit
7786s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7787{
1ee6dd77 7788 struct s2io_nic *sp;
1da177e4 7789 struct net_device *dev;
1da177e4
LT
7790 int i, j, ret;
7791 int dma_flag = FALSE;
7792 u32 mac_up, mac_down;
7793 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7794 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7795 u16 subid;
1ee6dd77 7796 struct mac_info *mac_control;
1da177e4 7797 struct config_param *config;
541ae68f 7798 int mode;
cc6e7c44 7799 u8 dev_intr_type = intr_type;
3a3d5756 7800 u8 dev_multiq = 0;
0795af57 7801 DECLARE_MAC_BUF(mac);
1da177e4 7802
3a3d5756
SH
7803 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7804 if (ret)
9dc737a7 7805 return ret;
1da177e4
LT
7806
7807 if ((ret = pci_enable_device(pdev))) {
7808 DBG_PRINT(ERR_DBG,
7809 "s2io_init_nic: pci_enable_device failed\n");
7810 return ret;
7811 }
7812
1e7f0bd8 7813 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7814 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7815 dma_flag = TRUE;
1da177e4 7816 if (pci_set_consistent_dma_mask
1e7f0bd8 7817 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7818 DBG_PRINT(ERR_DBG,
7819 "Unable to obtain 64bit DMA for \
7820 consistent allocations\n");
7821 pci_disable_device(pdev);
7822 return -ENOMEM;
7823 }
1e7f0bd8 7824 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7825 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7826 } else {
7827 pci_disable_device(pdev);
7828 return -ENOMEM;
7829 }
eccb8628
VP
7830 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7831 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7832 pci_disable_device(pdev);
7833 return -ENODEV;
1da177e4 7834 }
3a3d5756
SH
7835#ifdef CONFIG_NETDEVICES_MULTIQUEUE
7836 if (dev_multiq)
6cfc482b 7837 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756
SH
7838 else
7839#endif
1ee6dd77 7840 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7841 if (dev == NULL) {
7842 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7843 pci_disable_device(pdev);
7844 pci_release_regions(pdev);
7845 return -ENODEV;
7846 }
7847
7848 pci_set_master(pdev);
7849 pci_set_drvdata(pdev, dev);
1da177e4
LT
7850 SET_NETDEV_DEV(dev, &pdev->dev);
7851
7852 /* Private member variable initialized to s2io NIC structure */
7853 sp = dev->priv;
1ee6dd77 7854 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7855 sp->dev = dev;
7856 sp->pdev = pdev;
1da177e4 7857 sp->high_dma_flag = dma_flag;
1da177e4 7858 sp->device_enabled_once = FALSE;
da6971d8
AR
7859 if (rx_ring_mode == 1)
7860 sp->rxd_mode = RXD_MODE_1;
7861 if (rx_ring_mode == 2)
7862 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7863
eaae7f72 7864 sp->config.intr_type = dev_intr_type;
1da177e4 7865
541ae68f
K
7866 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7867 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7868 sp->device_type = XFRAME_II_DEVICE;
7869 else
7870 sp->device_type = XFRAME_I_DEVICE;
7871
43b7c451 7872 sp->lro = lro_enable;
6aa20a22 7873
1da177e4
LT
7874 /* Initialize some PCI/PCI-X fields of the NIC. */
7875 s2io_init_pci(sp);
7876
20346722 7877 /*
1da177e4 7878 * Setting the device configuration parameters.
20346722
K
7879 * Most of these parameters can be specified by the user during
7880 * module insertion as they are module loadable parameters. If
7881 * these parameters are not not specified during load time, they
1da177e4
LT
7882 * are initialized with default values.
7883 */
7884 mac_control = &sp->mac_control;
7885 config = &sp->config;
7886
596c5c97 7887 config->napi = napi;
6cfc482b 7888 config->tx_steering_type = tx_steering_type;
596c5c97 7889
1da177e4 7890 /* Tx side parameters. */
6cfc482b
SH
7891 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7892 config->tx_fifo_num = MAX_TX_FIFOS;
7893 else
7894 config->tx_fifo_num = tx_fifo_num;
7895
7896 /* Initialize the fifos used for tx steering */
7897 if (config->tx_fifo_num < 5) {
7898 if (config->tx_fifo_num == 1)
7899 sp->total_tcp_fifos = 1;
7900 else
7901 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7902 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7903 sp->total_udp_fifos = 1;
7904 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7905 } else {
7906 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7907 FIFO_OTHER_MAX_NUM);
7908 sp->udp_fifo_idx = sp->total_tcp_fifos;
7909 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7910 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7911 }
7912
3a3d5756 7913 config->multiq = dev_multiq;
6cfc482b 7914 for (i = 0; i < config->tx_fifo_num; i++) {
1da177e4
LT
7915 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7916 config->tx_cfg[i].fifo_priority = i;
7917 }
7918
20346722
K
7919 /* mapping the QoS priority to the configured fifos */
7920 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7921 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7922
6cfc482b
SH
7923 /* map the hashing selector table to the configured fifos */
7924 for (i = 0; i < config->tx_fifo_num; i++)
7925 sp->fifo_selector[i] = fifo_selector[i];
7926
7927
1da177e4
LT
7928 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7929 for (i = 0; i < config->tx_fifo_num; i++) {
7930 config->tx_cfg[i].f_no_snoop =
7931 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7932 if (config->tx_cfg[i].fifo_len < 65) {
7933 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7934 break;
7935 }
7936 }
fed5eccd
AR
7937 /* + 2 because one Txd for skb->data and one Txd for UFO */
7938 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7939
7940 /* Rx side parameters. */
1da177e4
LT
7941 config->rx_ring_num = rx_ring_num;
7942 for (i = 0; i < MAX_RX_RINGS; i++) {
7943 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7944 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7945 config->rx_cfg[i].ring_priority = i;
7946 }
7947
7948 for (i = 0; i < rx_ring_num; i++) {
7949 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7950 config->rx_cfg[i].f_no_snoop =
7951 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7952 }
7953
7954 /* Setting Mac Control parameters */
7955 mac_control->rmac_pause_time = rmac_pause_time;
7956 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7957 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7958
7959
7960 /* Initialize Ring buffer parameters. */
7961 for (i = 0; i < config->rx_ring_num; i++)
7962 atomic_set(&sp->rx_bufs_left[i], 0);
7963
7964 /* initialize the shared memory used by the NIC and the host */
7965 if (init_shared_mem(sp)) {
7966 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7967 dev->name);
1da177e4
LT
7968 ret = -ENOMEM;
7969 goto mem_alloc_failed;
7970 }
7971
7972 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7973 pci_resource_len(pdev, 0));
7974 if (!sp->bar0) {
19a60522 7975 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7976 dev->name);
7977 ret = -ENOMEM;
7978 goto bar0_remap_failed;
7979 }
7980
7981 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7982 pci_resource_len(pdev, 2));
7983 if (!sp->bar1) {
19a60522 7984 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7985 dev->name);
7986 ret = -ENOMEM;
7987 goto bar1_remap_failed;
7988 }
7989
7990 dev->irq = pdev->irq;
7991 dev->base_addr = (unsigned long) sp->bar0;
7992
7993 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7994 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7995 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7996 (sp->bar1 + (j * 0x00020000));
7997 }
7998
7999 /* Driver entry points */
8000 dev->open = &s2io_open;
8001 dev->stop = &s2io_close;
8002 dev->hard_start_xmit = &s2io_xmit;
8003 dev->get_stats = &s2io_get_stats;
8004 dev->set_multicast_list = &s2io_set_multicast;
8005 dev->do_ioctl = &s2io_ioctl;
2fd37688 8006 dev->set_mac_address = &s2io_set_mac_addr;
1da177e4
LT
8007 dev->change_mtu = &s2io_change_mtu;
8008 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
8009 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8010 dev->vlan_rx_register = s2io_vlan_rx_register;
cdb5bf02 8011 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 8012
1da177e4
LT
8013 /*
8014 * will use eth_mac_addr() for dev->set_mac_address
8015 * mac address will be set every time dev->open() is called
8016 */
bea3348e 8017 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
1da177e4 8018
612eff0e
BH
8019#ifdef CONFIG_NET_POLL_CONTROLLER
8020 dev->poll_controller = s2io_netpoll;
8021#endif
8022
1da177e4
LT
8023 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8024 if (sp->high_dma_flag == TRUE)
8025 dev->features |= NETIF_F_HIGHDMA;
1da177e4 8026 dev->features |= NETIF_F_TSO;
f83ef8c0 8027 dev->features |= NETIF_F_TSO6;
db874e65 8028 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
8029 dev->features |= NETIF_F_UFO;
8030 dev->features |= NETIF_F_HW_CSUM;
8031 }
3a3d5756
SH
8032#ifdef CONFIG_NETDEVICES_MULTIQUEUE
8033 if (config->multiq)
8034 dev->features |= NETIF_F_MULTI_QUEUE;
8035#endif
1da177e4
LT
8036 dev->tx_timeout = &s2io_tx_watchdog;
8037 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
8038 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8039 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 8040
e960fc5c 8041 pci_save_state(sp->pdev);
1da177e4
LT
8042
8043 /* Setting swapper control on the NIC, for proper reset operation */
8044 if (s2io_set_swapper(sp)) {
8045 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8046 dev->name);
8047 ret = -EAGAIN;
8048 goto set_swap_failed;
8049 }
8050
541ae68f
K
8051 /* Verify if the Herc works on the slot its placed into */
8052 if (sp->device_type & XFRAME_II_DEVICE) {
8053 mode = s2io_verify_pci_mode(sp);
8054 if (mode < 0) {
8055 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8056 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8057 ret = -EBADSLT;
8058 goto set_swap_failed;
8059 }
8060 }
8061
8062 /* Not needed for Herc */
8063 if (sp->device_type & XFRAME_I_DEVICE) {
8064 /*
8065 * Fix for all "FFs" MAC address problems observed on
8066 * Alpha platforms
8067 */
8068 fix_mac_address(sp);
8069 s2io_reset(sp);
8070 }
1da177e4
LT
8071
8072 /*
1da177e4
LT
8073 * MAC address initialization.
8074 * For now only one mac address will be read and used.
8075 */
8076 bar0 = sp->bar0;
8077 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 8078 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8079 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8080 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 8081 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
8082 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8083 mac_down = (u32) tmp64;
8084 mac_up = (u32) (tmp64 >> 32);
8085
1da177e4
LT
8086 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8087 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8088 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8089 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8090 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8091 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8092
1da177e4
LT
8093 /* Set the factory defined MAC address initially */
8094 dev->addr_len = ETH_ALEN;
8095 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8096 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8097
faa4f796
SH
8098 /* initialize number of multicast & unicast MAC entries variables */
8099 if (sp->device_type == XFRAME_I_DEVICE) {
8100 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8101 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8102 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8103 } else if (sp->device_type == XFRAME_II_DEVICE) {
8104 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8105 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8106 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8107 }
8108
8109 /* store mac addresses from CAM to s2io_nic structure */
8110 do_s2io_store_unicast_mc(sp);
8111
c77dd43e
SS
8112 /* Store the values of the MSIX table in the s2io_nic structure */
8113 store_xmsi_data(sp);
b41477f3
AR
8114 /* reset Nic and bring it to known state */
8115 s2io_reset(sp);
8116
1da177e4 8117 /*
20346722 8118 * Initialize the tasklet status and link state flags
541ae68f 8119 * and the card state parameter
1da177e4 8120 */
1da177e4 8121 sp->tasklet_status = 0;
92b84437 8122 sp->state = 0;
1da177e4 8123
1da177e4 8124 /* Initialize spinlocks */
2fda096d
SR
8125 for (i = 0; i < sp->config.tx_fifo_num; i++)
8126 spin_lock_init(&mac_control->fifos[i].tx_lock);
db874e65
SS
8127
8128 if (!napi)
8129 spin_lock_init(&sp->put_lock);
7ba013ac 8130 spin_lock_init(&sp->rx_lock);
1da177e4 8131
20346722
K
8132 /*
8133 * SXE-002: Configure link and activity LED to init state
8134 * on driver load.
1da177e4
LT
8135 */
8136 subid = sp->pdev->subsystem_device;
8137 if ((subid & 0xFF) >= 0x07) {
8138 val64 = readq(&bar0->gpio_control);
8139 val64 |= 0x0000800000000000ULL;
8140 writeq(val64, &bar0->gpio_control);
8141 val64 = 0x0411040400000000ULL;
8142 writeq(val64, (void __iomem *) bar0 + 0x2700);
8143 val64 = readq(&bar0->gpio_control);
8144 }
8145
8146 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8147
8148 if (register_netdev(dev)) {
8149 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8150 ret = -ENODEV;
8151 goto register_failed;
8152 }
9dc737a7 8153 s2io_vpd_read(sp);
0c61ed5f 8154 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 8155 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 8156 sp->product_name, pdev->revision);
b41477f3
AR
8157 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8158 s2io_driver_version);
0795af57
JP
8159 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8160 dev->name, print_mac(mac, dev->dev_addr));
19a60522 8161 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8162 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8163 mode = s2io_print_pci_mode(sp);
541ae68f 8164 if (mode < 0) {
9dc737a7 8165 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8166 ret = -EBADSLT;
9dc737a7 8167 unregister_netdev(dev);
541ae68f
K
8168 goto set_swap_failed;
8169 }
541ae68f 8170 }
9dc737a7
AR
8171 switch(sp->rxd_mode) {
8172 case RXD_MODE_1:
8173 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8174 dev->name);
8175 break;
8176 case RXD_MODE_3B:
8177 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8178 dev->name);
8179 break;
9dc737a7 8180 }
db874e65
SS
8181
8182 if (napi)
8183 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
3a3d5756
SH
8184
8185 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8186 sp->config.tx_fifo_num);
8187
eaae7f72 8188 switch(sp->config.intr_type) {
9dc737a7
AR
8189 case INTA:
8190 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8191 break;
9dc737a7
AR
8192 case MSI_X:
8193 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8194 break;
8195 }
3a3d5756
SH
8196 if (sp->config.multiq) {
8197 for (i = 0; i < sp->config.tx_fifo_num; i++)
8198 mac_control->fifos[i].multiq = config->multiq;
8199 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8200 dev->name);
8201 } else
8202 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8203 dev->name);
8204
6cfc482b
SH
8205 switch (sp->config.tx_steering_type) {
8206 case NO_STEERING:
8207 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8208 " transmit\n", dev->name);
8209 break;
8210 case TX_PRIORITY_STEERING:
8211 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8212 " transmit\n", dev->name);
8213 break;
8214 case TX_DEFAULT_STEERING:
8215 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8216 " transmit\n", dev->name);
8217 }
8218
7d3d0439
RA
8219 if (sp->lro)
8220 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8221 dev->name);
db874e65
SS
8222 if (ufo)
8223 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8224 " enabled\n", dev->name);
7ba013ac 8225 /* Initialize device name */
9dc737a7 8226 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8227
20346722
K
8228 /*
8229 * Make Link state as off at this point, when the Link change
8230 * interrupt comes the state will be automatically changed to
1da177e4
LT
8231 * the right state.
8232 */
8233 netif_carrier_off(dev);
1da177e4
LT
8234
8235 return 0;
8236
8237 register_failed:
8238 set_swap_failed:
8239 iounmap(sp->bar1);
8240 bar1_remap_failed:
8241 iounmap(sp->bar0);
8242 bar0_remap_failed:
8243 mem_alloc_failed:
8244 free_shared_mem(sp);
8245 pci_disable_device(pdev);
eccb8628 8246 pci_release_regions(pdev);
1da177e4
LT
8247 pci_set_drvdata(pdev, NULL);
8248 free_netdev(dev);
8249
8250 return ret;
8251}
8252
8253/**
20346722 8254 * s2io_rem_nic - Free the PCI device
1da177e4 8255 * @pdev: structure containing the PCI related information of the device.
20346722 8256 * Description: This function is called by the Pci subsystem to release a
1da177e4 8257 * PCI device and free up all resource held up by the device. This could
20346722 8258 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8259 * from memory.
8260 */
8261
8262static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8263{
8264 struct net_device *dev =
8265 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 8266 struct s2io_nic *sp;
1da177e4
LT
8267
8268 if (dev == NULL) {
8269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8270 return;
8271 }
8272
22747d6b
FR
8273 flush_scheduled_work();
8274
1da177e4
LT
8275 sp = dev->priv;
8276 unregister_netdev(dev);
8277
8278 free_shared_mem(sp);
8279 iounmap(sp->bar0);
8280 iounmap(sp->bar1);
eccb8628 8281 pci_release_regions(pdev);
1da177e4 8282 pci_set_drvdata(pdev, NULL);
1da177e4 8283 free_netdev(dev);
19a60522 8284 pci_disable_device(pdev);
1da177e4
LT
8285}
8286
8287/**
8288 * s2io_starter - Entry point for the driver
8289 * Description: This function is the entry point for the driver. It verifies
8290 * the module loadable parameters and initializes PCI configuration space.
8291 */
8292
43b7c451 8293static int __init s2io_starter(void)
1da177e4 8294{
29917620 8295 return pci_register_driver(&s2io_driver);
1da177e4
LT
8296}
8297
8298/**
20346722 8299 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8300 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8301 */
8302
372cc597 8303static __exit void s2io_closer(void)
1da177e4
LT
8304{
8305 pci_unregister_driver(&s2io_driver);
8306 DBG_PRINT(INIT_DBG, "cleanup done\n");
8307}
8308
8309module_init(s2io_starter);
8310module_exit(s2io_closer);
7d3d0439 8311
6aa20a22 8312static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
cdb5bf02
SH
8313 struct tcphdr **tcp, struct RxD_t *rxdp,
8314 struct s2io_nic *sp)
7d3d0439
RA
8315{
8316 int ip_off;
8317 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8318
8319 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8320 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8321 __FUNCTION__);
8322 return -1;
8323 }
8324
cdb5bf02
SH
8325 /* Checking for DIX type or DIX type with VLAN */
8326 if ((l2_type == 0)
8327 || (l2_type == 4)) {
8328 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8329 /*
8330 * If vlan stripping is disabled and the frame is VLAN tagged,
8331 * shift the offset by the VLAN header size bytes.
8332 */
8333 if ((!vlan_strip_flag) &&
8334 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8335 ip_off += HEADER_VLAN_SIZE;
8336 } else {
7d3d0439 8337 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8338 return -1;
7d3d0439
RA
8339 }
8340
8341 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8342 ip_len = (u8)((*ip)->ihl);
8343 ip_len <<= 2;
8344 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8345
8346 return 0;
8347}
8348
1ee6dd77 8349static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8350 struct tcphdr *tcp)
8351{
8352 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8353 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8354 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8355 return -1;
8356 return 0;
8357}
8358
8359static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8360{
8361 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8362}
8363
1ee6dd77 8364static void initiate_new_session(struct lro *lro, u8 *l2h,
cdb5bf02 8365 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439
RA
8366{
8367 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8368 lro->l2h = l2h;
8369 lro->iph = ip;
8370 lro->tcph = tcp;
8371 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8372 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8373 lro->sg_num = 1;
8374 lro->total_len = ntohs(ip->tot_len);
8375 lro->frags_len = 0;
cdb5bf02 8376 lro->vlan_tag = vlan_tag;
6aa20a22 8377 /*
7d3d0439
RA
8378 * check if we saw TCP timestamp. Other consistency checks have
8379 * already been done.
8380 */
8381 if (tcp->doff == 8) {
c8855953
SR
8382 __be32 *ptr;
8383 ptr = (__be32 *)(tcp+1);
7d3d0439 8384 lro->saw_ts = 1;
c8855953 8385 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8386 lro->cur_tsecr = *(ptr+2);
8387 }
8388 lro->in_use = 1;
8389}
8390
1ee6dd77 8391static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8392{
8393 struct iphdr *ip = lro->iph;
8394 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8395 __sum16 nchk;
1ee6dd77 8396 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
8397 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8398
8399 /* Update L3 header */
8400 ip->tot_len = htons(lro->total_len);
8401 ip->check = 0;
8402 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8403 ip->check = nchk;
8404
8405 /* Update L4 header */
8406 tcp->ack_seq = lro->tcp_ack;
8407 tcp->window = lro->window;
8408
8409 /* Update tsecr field if this session has timestamps enabled */
8410 if (lro->saw_ts) {
c8855953 8411 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8412 *(ptr+2) = lro->cur_tsecr;
8413 }
8414
8415 /* Update counters required for calculation of
8416 * average no. of packets aggregated.
8417 */
8418 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8419 statinfo->sw_stat.num_aggregations++;
8420}
8421
1ee6dd77 8422static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8423 struct tcphdr *tcp, u32 l4_pyld)
8424{
8425 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8426 lro->total_len += l4_pyld;
8427 lro->frags_len += l4_pyld;
8428 lro->tcp_next_seq += l4_pyld;
8429 lro->sg_num++;
8430
8431 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8432 lro->tcp_ack = tcp->ack_seq;
8433 lro->window = tcp->window;
6aa20a22 8434
7d3d0439 8435 if (lro->saw_ts) {
c8855953 8436 __be32 *ptr;
7d3d0439 8437 /* Update tsecr and tsval from this packet */
c8855953
SR
8438 ptr = (__be32 *)(tcp+1);
8439 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8440 lro->cur_tsecr = *(ptr + 2);
8441 }
8442}
8443
1ee6dd77 8444static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8445 struct tcphdr *tcp, u32 tcp_pyld_len)
8446{
7d3d0439
RA
8447 u8 *ptr;
8448
79dc1901
AM
8449 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8450
7d3d0439
RA
8451 if (!tcp_pyld_len) {
8452 /* Runt frame or a pure ack */
8453 return -1;
8454 }
8455
8456 if (ip->ihl != 5) /* IP has options */
8457 return -1;
8458
75c30b13
AR
8459 /* If we see CE codepoint in IP header, packet is not mergeable */
8460 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8461 return -1;
8462
8463 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8464 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8465 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8466 /*
8467 * Currently recognize only the ack control word and
8468 * any other control field being set would result in
8469 * flushing the LRO session
8470 */
8471 return -1;
8472 }
8473
6aa20a22 8474 /*
7d3d0439
RA
8475 * Allow only one TCP timestamp option. Don't aggregate if
8476 * any other options are detected.
8477 */
8478 if (tcp->doff != 5 && tcp->doff != 8)
8479 return -1;
8480
8481 if (tcp->doff == 8) {
6aa20a22 8482 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8483 while (*ptr == TCPOPT_NOP)
8484 ptr++;
8485 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8486 return -1;
8487
8488 /* Ensure timestamp value increases monotonically */
8489 if (l_lro)
c8855953 8490 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8491 return -1;
8492
8493 /* timestamp echo reply should be non-zero */
c8855953 8494 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8495 return -1;
8496 }
8497
8498 return 0;
8499}
8500
8501static int
1ee6dd77
RB
8502s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8503 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8504{
8505 struct iphdr *ip;
8506 struct tcphdr *tcph;
8507 int ret = 0, i;
cdb5bf02 8508 u16 vlan_tag = 0;
7d3d0439
RA
8509
8510 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
cdb5bf02 8511 rxdp, sp))) {
7d3d0439
RA
8512 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8513 ip->saddr, ip->daddr);
cdb5bf02 8514 } else
7d3d0439 8515 return ret;
7d3d0439 8516
cdb5bf02 8517 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8518 tcph = (struct tcphdr *)*tcp;
8519 *tcp_len = get_l4_pyld_length(ip, tcph);
8520 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 8521 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
8522 if (l_lro->in_use) {
8523 if (check_for_socket_match(l_lro, ip, tcph))
8524 continue;
8525 /* Sock pair matched */
8526 *lro = l_lro;
8527
8528 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8529 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8530 "0x%x, actual 0x%x\n", __FUNCTION__,
8531 (*lro)->tcp_next_seq,
8532 ntohl(tcph->seq));
8533
8534 sp->mac_control.stats_info->
8535 sw_stat.outof_sequence_pkts++;
8536 ret = 2;
8537 break;
8538 }
8539
8540 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8541 ret = 1; /* Aggregate */
8542 else
8543 ret = 2; /* Flush both */
8544 break;
8545 }
8546 }
8547
8548 if (ret == 0) {
8549 /* Before searching for available LRO objects,
8550 * check if the pkt is L3/L4 aggregatable. If not
8551 * don't create new LRO session. Just send this
8552 * packet up.
8553 */
8554 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8555 return 5;
8556 }
8557
8558 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 8559 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
8560 if (!(l_lro->in_use)) {
8561 *lro = l_lro;
8562 ret = 3; /* Begin anew */
8563 break;
8564 }
8565 }
8566 }
8567
8568 if (ret == 0) { /* sessions exceeded */
8569 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8570 __FUNCTION__);
8571 *lro = NULL;
8572 return ret;
8573 }
8574
8575 switch (ret) {
8576 case 3:
cdb5bf02
SH
8577 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8578 vlan_tag);
7d3d0439
RA
8579 break;
8580 case 2:
8581 update_L3L4_header(sp, *lro);
8582 break;
8583 case 1:
8584 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8585 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8586 update_L3L4_header(sp, *lro);
8587 ret = 4; /* Flush the LRO */
8588 }
8589 break;
8590 default:
8591 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8592 __FUNCTION__);
8593 break;
8594 }
8595
8596 return ret;
8597}
8598
1ee6dd77 8599static void clear_lro_session(struct lro *lro)
7d3d0439 8600{
1ee6dd77 8601 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8602
8603 memset(lro, 0, lro_struct_size);
8604}
8605
cdb5bf02 8606static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8607{
8608 struct net_device *dev = skb->dev;
cdb5bf02 8609 struct s2io_nic *sp = dev->priv;
7d3d0439
RA
8610
8611 skb->protocol = eth_type_trans(skb, dev);
cdb5bf02
SH
8612 if (sp->vlgrp && vlan_tag
8613 && (vlan_strip_flag)) {
8614 /* Queueing the vlan frame to the upper layer */
8615 if (sp->config.napi)
8616 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8617 else
8618 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8619 } else {
8620 if (sp->config.napi)
8621 netif_receive_skb(skb);
8622 else
8623 netif_rx(skb);
8624 }
7d3d0439
RA
8625}
8626
1ee6dd77
RB
8627static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8628 struct sk_buff *skb,
7d3d0439
RA
8629 u32 tcp_len)
8630{
75c30b13 8631 struct sk_buff *first = lro->parent;
7d3d0439
RA
8632
8633 first->len += tcp_len;
8634 first->data_len = lro->frags_len;
8635 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8636 if (skb_shinfo(first)->frag_list)
8637 lro->last_frag->next = skb;
7d3d0439
RA
8638 else
8639 skb_shinfo(first)->frag_list = skb;
372cc597 8640 first->truesize += skb->truesize;
75c30b13 8641 lro->last_frag = skb;
7d3d0439
RA
8642 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8643 return;
8644}
d796fdb7
LV
8645
8646/**
8647 * s2io_io_error_detected - called when PCI error is detected
8648 * @pdev: Pointer to PCI device
8453d43f 8649 * @state: The current pci connection state
d796fdb7
LV
8650 *
8651 * This function is called after a PCI bus error affecting
8652 * this device has been detected.
8653 */
8654static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8655 pci_channel_state_t state)
8656{
8657 struct net_device *netdev = pci_get_drvdata(pdev);
8658 struct s2io_nic *sp = netdev->priv;
8659
8660 netif_device_detach(netdev);
8661
8662 if (netif_running(netdev)) {
8663 /* Bring down the card, while avoiding PCI I/O */
8664 do_s2io_card_down(sp, 0);
d796fdb7
LV
8665 }
8666 pci_disable_device(pdev);
8667
8668 return PCI_ERS_RESULT_NEED_RESET;
8669}
8670
8671/**
8672 * s2io_io_slot_reset - called after the pci bus has been reset.
8673 * @pdev: Pointer to PCI device
8674 *
8675 * Restart the card from scratch, as if from a cold-boot.
8676 * At this point, the card has exprienced a hard reset,
8677 * followed by fixups by BIOS, and has its config space
8678 * set up identically to what it was at cold boot.
8679 */
8680static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8681{
8682 struct net_device *netdev = pci_get_drvdata(pdev);
8683 struct s2io_nic *sp = netdev->priv;
8684
8685 if (pci_enable_device(pdev)) {
8686 printk(KERN_ERR "s2io: "
8687 "Cannot re-enable PCI device after reset.\n");
8688 return PCI_ERS_RESULT_DISCONNECT;
8689 }
8690
8691 pci_set_master(pdev);
8692 s2io_reset(sp);
8693
8694 return PCI_ERS_RESULT_RECOVERED;
8695}
8696
8697/**
8698 * s2io_io_resume - called when traffic can start flowing again.
8699 * @pdev: Pointer to PCI device
8700 *
8701 * This callback is called when the error recovery driver tells
8702 * us that its OK to resume normal operation.
8703 */
8704static void s2io_io_resume(struct pci_dev *pdev)
8705{
8706 struct net_device *netdev = pci_get_drvdata(pdev);
8707 struct s2io_nic *sp = netdev->priv;
8708
8709 if (netif_running(netdev)) {
8710 if (s2io_card_up(sp)) {
8711 printk(KERN_ERR "s2io: "
8712 "Can't bring device back up after reset.\n");
8713 return;
8714 }
8715
8716 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8717 s2io_card_down(sp);
8718 printk(KERN_ERR "s2io: "
8719 "Can't resetore mac addr after reset.\n");
8720 return;
8721 }
8722 }
8723
8724 netif_device_attach(netdev);
8725 netif_wake_queue(netdev);
8726}