]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/s2io.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
6cef2b8e
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
1da177e4
LT
59#include <linux/module.h>
60#include <linux/types.h>
61#include <linux/errno.h>
62#include <linux/ioport.h>
63#include <linux/pci.h>
1e7f0bd8 64#include <linux/dma-mapping.h>
1da177e4
LT
65#include <linux/kernel.h>
66#include <linux/netdevice.h>
67#include <linux/etherdevice.h>
40239396 68#include <linux/mdio.h>
1da177e4
LT
69#include <linux/skbuff.h>
70#include <linux/init.h>
71#include <linux/delay.h>
72#include <linux/stddef.h>
73#include <linux/ioctl.h>
74#include <linux/timex.h>
1da177e4 75#include <linux/ethtool.h>
1da177e4 76#include <linux/workqueue.h>
be3a6b02 77#include <linux/if_vlan.h>
7d3d0439
RA
78#include <linux/ip.h>
79#include <linux/tcp.h>
d44570e4
JP
80#include <linux/uaccess.h>
81#include <linux/io.h>
5a0e3ad6 82#include <linux/slab.h>
7d3d0439 83#include <net/tcp.h>
1da177e4 84
1da177e4 85#include <asm/system.h>
fe931395 86#include <asm/div64.h>
330ce0de 87#include <asm/irq.h>
1da177e4
LT
88
89/* local include */
90#include "s2io.h"
91#include "s2io-regs.h"
92
29d0a2b0 93#define DRV_VERSION "2.0.26.25"
6c1792f4 94
1da177e4 95/* S2io Driver name & version. */
20346722 96static char s2io_driver_name[] = "Neterion";
6c1792f4 97static char s2io_driver_version[] = DRV_VERSION;
1da177e4 98
d44570e4
JP
99static int rxd_size[2] = {32, 48};
100static int rxd_count[2] = {127, 85};
da6971d8 101
1ee6dd77 102static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
103{
104 int ret;
105
106 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 107 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd
K
108
109 return ret;
110}
111
20346722 112/*
1da177e4
LT
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
116 */
d44570e4
JP
117#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
121
122#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 124
d44570e4 125static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
126{
127 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128}
129
1da177e4 130/* Ethtool related variables and Macros. */
6fce365d 131static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
137};
138
6fce365d 139static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
140 {"tmac_frms"},
141 {"tmac_data_octets"},
142 {"tmac_drop_frms"},
143 {"tmac_mcst_frms"},
144 {"tmac_bcst_frms"},
145 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
146 {"tmac_ttl_octets"},
147 {"tmac_ucst_frms"},
148 {"tmac_nucst_frms"},
1da177e4 149 {"tmac_any_err_frms"},
bd1034f0 150 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
151 {"tmac_vld_ip_octets"},
152 {"tmac_vld_ip"},
153 {"tmac_drop_ip"},
154 {"tmac_icmp"},
155 {"tmac_rst_tcp"},
156 {"tmac_tcp"},
157 {"tmac_udp"},
158 {"rmac_vld_frms"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
161 {"rmac_drop_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
bd1034f0 165 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
166 {"rmac_long_frms"},
167 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
168 {"rmac_unsup_ctrl_frms"},
169 {"rmac_ttl_octets"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
1da177e4 172 {"rmac_discarded_frms"},
bd1034f0
AR
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
175 {"rmac_ttl_frms"},
1da177e4
LT
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
178 {"rmac_frag_frms"},
179 {"rmac_jabber_frms"},
bd1034f0
AR
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
186 {"rmac_ip"},
187 {"rmac_ip_octets"},
188 {"rmac_hdr_err_ip"},
189 {"rmac_drop_ip"},
190 {"rmac_icmp"},
191 {"rmac_tcp"},
192 {"rmac_udp"},
193 {"rmac_err_drp_udp"},
bd1034f0
AR
194 {"rmac_xgmii_err_sym"},
195 {"rmac_frms_q0"},
196 {"rmac_frms_q1"},
197 {"rmac_frms_q2"},
198 {"rmac_frms_q3"},
199 {"rmac_frms_q4"},
200 {"rmac_frms_q5"},
201 {"rmac_frms_q6"},
202 {"rmac_frms_q7"},
203 {"rmac_full_q0"},
204 {"rmac_full_q1"},
205 {"rmac_full_q2"},
206 {"rmac_full_q3"},
207 {"rmac_full_q4"},
208 {"rmac_full_q5"},
209 {"rmac_full_q6"},
210 {"rmac_full_q7"},
1da177e4 211 {"rmac_pause_cnt"},
bd1034f0
AR
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
214 {"rmac_accepted_ip"},
215 {"rmac_err_tcp"},
bd1034f0
AR
216 {"rd_req_cnt"},
217 {"new_rd_req_cnt"},
218 {"new_rd_req_rtry_cnt"},
219 {"rd_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
221 {"wr_req_cnt"},
222 {"new_wr_req_cnt"},
223 {"new_wr_req_rtry_cnt"},
224 {"wr_rtry_cnt"},
225 {"wr_disc_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
227 {"txp_wr_cnt"},
228 {"txd_rd_cnt"},
229 {"txd_wr_cnt"},
230 {"rxd_rd_cnt"},
231 {"rxd_wr_cnt"},
232 {"txf_rd_cnt"},
fa1f0cb3
SS
233 {"rxf_wr_cnt"}
234};
235
6fce365d 236static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
244 {"rmac_vlan_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
247 {"rmac_pf_discard"},
248 {"rmac_da_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
252 {"link_fault_cnt"}
253};
254
6fce365d 255static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
bd1034f0
AR
259 {"parity_err_cnt"},
260 {"serious_err_cnt"},
261 {"soft_reset_cnt"},
262 {"fifo_full_cnt"},
8116f3cf
SS
263 {"ring_0_full_cnt"},
264 {"ring_1_full_cnt"},
265 {"ring_2_full_cnt"},
266 {"ring_3_full_cnt"},
267 {"ring_4_full_cnt"},
268 {"ring_5_full_cnt"},
269 {"ring_6_full_cnt"},
270 {"ring_7_full_cnt"},
43b7c451
SH
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
291 {"mem_allocated"},
292 {"mem_freed"},
293 {"link_up_cnt"},
294 {"link_down_cnt"},
295 {"link_up_time"},
296 {"link_down_time"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
311 {"tda_err_cnt"},
312 {"pfc_err_cnt"},
313 {"pcc_err_cnt"},
314 {"tti_err_cnt"},
315 {"tpa_err_cnt"},
316 {"sm_err_cnt"},
317 {"lso_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
322 {"rc_err_cnt"},
323 {"prc_pcix_err_cnt"},
324 {"rpa_err_cnt"},
325 {"rda_err_cnt"},
326 {"rti_err_cnt"},
327 {"mc_err_cnt"}
1da177e4
LT
328};
329
4c3616cd
AMR
330#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 333
d44570e4
JP
334#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 336
d44570e4
JP
337#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 339
4c3616cd 340#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 341#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 342
d44570e4
JP
343#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
25fff88e 348
2fd37688
SS
349/* copy mac addr to def_mac_addr array */
350static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351{
352 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358}
04025095 359
be3a6b02
K
360/* Add the vlan */
361static void s2io_vlan_rx_register(struct net_device *dev,
04025095 362 struct vlan_group *grp)
be3a6b02 363{
2fda096d 364 int i;
4cf1653a 365 struct s2io_nic *nic = netdev_priv(dev);
2fda096d 366 unsigned long flags[MAX_TX_FIFOS];
2fda096d 367 struct config_param *config = &nic->config;
ffb5df6c 368 struct mac_info *mac_control = &nic->mac_control;
2fda096d 369
13d866a9
JP
370 for (i = 0; i < config->tx_fifo_num; i++) {
371 struct fifo_info *fifo = &mac_control->fifos[i];
372
373 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374 }
be3a6b02 375
be3a6b02 376 nic->vlgrp = grp;
13d866a9
JP
377
378 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379 struct fifo_info *fifo = &mac_control->fifos[i];
380
381 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382 }
be3a6b02
K
383}
384
cdb5bf02 385/* Unregister the vlan */
04025095 386static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
387{
388 int i;
4cf1653a 389 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02 390 unsigned long flags[MAX_TX_FIFOS];
cdb5bf02 391 struct config_param *config = &nic->config;
ffb5df6c 392 struct mac_info *mac_control = &nic->mac_control;
cdb5bf02 393
13d866a9
JP
394 for (i = 0; i < config->tx_fifo_num; i++) {
395 struct fifo_info *fifo = &mac_control->fifos[i];
396
397 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398 }
cdb5bf02
SH
399
400 if (nic->vlgrp)
401 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
13d866a9
JP
403 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404 struct fifo_info *fifo = &mac_control->fifos[i];
405
406 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407 }
cdb5bf02
SH
408}
409
20346722 410/*
1da177e4
LT
411 * Constants to be programmed into the Xena's registers, to configure
412 * the XAUI.
413 */
414
1da177e4 415#define END_SIGN 0x0
f71e1309 416static const u64 herc_act_dtx_cfg[] = {
541ae68f 417 /* Set address */
e960fc5c 418 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 419 /* Write data */
e960fc5c 420 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
421 /* Set address */
422 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423 /* Write data */
424 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425 /* Set address */
e960fc5c 426 0x801205150D440000ULL, 0x801205150D4400E0ULL,
427 /* Write data */
428 0x801205150D440004ULL, 0x801205150D4400E4ULL,
429 /* Set address */
541ae68f
K
430 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431 /* Write data */
432 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433 /* Done */
434 END_SIGN
435};
436
f71e1309 437static const u64 xena_dtx_cfg[] = {
c92ca04b 438 /* Set address */
1da177e4 439 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
440 /* Write data */
441 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442 /* Set address */
443 0x8001051500000000ULL, 0x80010515000000E0ULL,
444 /* Write data */
445 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446 /* Set address */
1da177e4 447 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
448 /* Write data */
449 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
450 END_SIGN
451};
452
20346722 453/*
1da177e4
LT
454 * Constants for Fixing the MacAddress problem seen mostly on
455 * Alpha machines.
456 */
f71e1309 457static const u64 fix_mac[] = {
1da177e4
LT
458 0x0060000000000000ULL, 0x0060600000000000ULL,
459 0x0040600000000000ULL, 0x0000600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0000600000000000ULL,
471 0x0040600000000000ULL, 0x0060600000000000ULL,
472 END_SIGN
473};
474
b41477f3
AR
475MODULE_LICENSE("GPL");
476MODULE_VERSION(DRV_VERSION);
477
478
1da177e4 479/* Module Loadable parameters. */
6cfc482b 480S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 481S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 482S2IO_PARM_INT(multiq, 0);
b41477f3
AR
483S2IO_PARM_INT(rx_ring_mode, 1);
484S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485S2IO_PARM_INT(rmac_pause_time, 0x100);
486S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488S2IO_PARM_INT(shared_splits, 0);
489S2IO_PARM_INT(tmac_util_period, 5);
490S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 491S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
492/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 494/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 495S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 496/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 497S2IO_PARM_INT(intr_type, 2);
7d3d0439 498/* Large receive offload feature */
43b7c451
SH
499static unsigned int lro_enable;
500module_param_named(lro, lro_enable, uint, 0);
501
7d3d0439
RA
502/* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
504 */
b41477f3 505S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 506S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
507
508S2IO_PARM_INT(napi, 1);
509S2IO_PARM_INT(ufo, 0);
926930b2 510S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
511
512static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 513{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 514static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 515{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 516static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 517{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
518
519module_param_array(tx_fifo_len, uint, NULL, 0);
520module_param_array(rx_ring_sz, uint, NULL, 0);
521module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 522
20346722 523/*
1da177e4 524 * S2IO device table.
20346722 525 * This table lists all the devices that this driver supports.
1da177e4 526 */
a3aa1884 527static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
528 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529 PCI_ANY_ID, PCI_ANY_ID},
530 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531 PCI_ANY_ID, PCI_ANY_ID},
532 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
533 PCI_ANY_ID, PCI_ANY_ID},
534 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
536 {0,}
537};
538
539MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
d796fdb7
LV
541static struct pci_error_handlers s2io_err_handler = {
542 .error_detected = s2io_io_error_detected,
543 .slot_reset = s2io_io_slot_reset,
544 .resume = s2io_io_resume,
545};
546
1da177e4 547static struct pci_driver s2io_driver = {
d44570e4
JP
548 .name = "S2IO",
549 .id_table = s2io_tbl,
550 .probe = s2io_init_nic,
551 .remove = __devexit_p(s2io_rem_nic),
552 .err_handler = &s2io_err_handler,
1da177e4
LT
553};
554
555/* A simplifier macro used both by init and free shared_mem Fns(). */
556#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
3a3d5756
SH
558/* netqueue manipulation helper functions */
559static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560{
fd2ea0a7
DM
561 if (!sp->config.multiq) {
562 int i;
563
3a3d5756
SH
564 for (i = 0; i < sp->config.tx_fifo_num; i++)
565 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 566 }
fd2ea0a7 567 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
568}
569
570static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571{
fd2ea0a7 572 if (!sp->config.multiq)
3a3d5756
SH
573 sp->mac_control.fifos[fifo_no].queue_state =
574 FIFO_QUEUE_STOP;
fd2ea0a7
DM
575
576 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
577}
578
579static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580{
fd2ea0a7
DM
581 if (!sp->config.multiq) {
582 int i;
583
3a3d5756
SH
584 for (i = 0; i < sp->config.tx_fifo_num; i++)
585 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 586 }
fd2ea0a7 587 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
588}
589
590static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591{
fd2ea0a7 592 if (!sp->config.multiq)
3a3d5756
SH
593 sp->mac_control.fifos[fifo_no].queue_state =
594 FIFO_QUEUE_START;
fd2ea0a7
DM
595
596 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
597}
598
599static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600{
fd2ea0a7
DM
601 if (!sp->config.multiq) {
602 int i;
603
3a3d5756
SH
604 for (i = 0; i < sp->config.tx_fifo_num; i++)
605 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 606 }
fd2ea0a7 607 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
608}
609
610static inline void s2io_wake_tx_queue(
611 struct fifo_info *fifo, int cnt, u8 multiq)
612{
613
3a3d5756
SH
614 if (multiq) {
615 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 617 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
618 if (netif_queue_stopped(fifo->dev)) {
619 fifo->queue_state = FIFO_QUEUE_START;
620 netif_wake_queue(fifo->dev);
621 }
622 }
623}
624
1da177e4
LT
625/**
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
20346722
K
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
630 * Rx descriptors and the statistics block.
631 */
632
633static int init_shared_mem(struct s2io_nic *nic)
634{
635 u32 size;
636 void *tmp_v_addr, *tmp_v_addr_next;
637 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 638 struct RxD_block *pre_rxd_blk = NULL;
372cc597 639 int i, j, blk_cnt;
1da177e4
LT
640 int lst_size, lst_per_page;
641 struct net_device *dev = nic->dev;
8ae418cf 642 unsigned long tmp;
1ee6dd77 643 struct buffAdd *ba;
ffb5df6c
JP
644 struct config_param *config = &nic->config;
645 struct mac_info *mac_control = &nic->mac_control;
491976b2 646 unsigned long long mem_allocated = 0;
1da177e4 647
13d866a9 648 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
651 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653 size += tx_cfg->fifo_len;
1da177e4
LT
654 }
655 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
656 DBG_PRINT(ERR_DBG,
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size, MAX_AVAILABLE_TXDS);
b41477f3 659 return -EINVAL;
1da177e4
LT
660 }
661
2fda096d
SR
662 size = 0;
663 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
664 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666 size = tx_cfg->fifo_len;
2fda096d
SR
667 /*
668 * Legal values are from 2 to 8192
669 */
670 if (size < 2) {
9e39f7c5
JP
671 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
673 i, size);
2fda096d
SR
674 return -EINVAL;
675 }
676 }
677
1ee6dd77 678 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
679 lst_per_page = PAGE_SIZE / lst_size;
680
681 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
682 struct fifo_info *fifo = &mac_control->fifos[i];
683 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 685 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
686
687 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688 if (!fifo->list_info) {
d44570e4 689 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
690 return -ENOMEM;
691 }
491976b2 692 mem_allocated += list_holder_size;
1da177e4
LT
693 }
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696 lst_per_page);
13d866a9
JP
697 struct fifo_info *fifo = &mac_control->fifos[i];
698 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700 fifo->tx_curr_put_info.offset = 0;
701 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702 fifo->tx_curr_get_info.offset = 0;
703 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704 fifo->fifo_no = i;
705 fifo->nic = nic;
706 fifo->max_txds = MAX_SKB_FRAGS + 2;
707 fifo->dev = dev;
20346722 708
1da177e4
LT
709 for (j = 0; j < page_num; j++) {
710 int k = 0;
711 dma_addr_t tmp_p;
712 void *tmp_v;
713 tmp_v = pci_alloc_consistent(nic->pdev,
714 PAGE_SIZE, &tmp_p);
715 if (!tmp_v) {
9e39f7c5
JP
716 DBG_PRINT(INFO_DBG,
717 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
718 return -ENOMEM;
719 }
776bd20f 720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
723 * to be freed later.
724 */
725 if (!tmp_p) {
726 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 727 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
730 dev->name, tmp_v);
776bd20f 731 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 732 PAGE_SIZE, &tmp_p);
776bd20f 733 if (!tmp_v) {
0c61ed5f 734 DBG_PRINT(INFO_DBG,
9e39f7c5 735 "pci_alloc_consistent failed for TxDL\n");
776bd20f 736 return -ENOMEM;
737 }
491976b2 738 mem_allocated += PAGE_SIZE;
776bd20f 739 }
1da177e4
LT
740 while (k < lst_per_page) {
741 int l = (j * lst_per_page) + k;
13d866a9 742 if (l == tx_cfg->fifo_len)
20346722 743 break;
13d866a9 744 fifo->list_info[l].list_virt_addr =
d44570e4 745 tmp_v + (k * lst_size);
13d866a9 746 fifo->list_info[l].list_phy_addr =
d44570e4 747 tmp_p + (k * lst_size);
1da177e4
LT
748 k++;
749 }
750 }
751 }
1da177e4 752
2fda096d 753 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
754 struct fifo_info *fifo = &mac_control->fifos[i];
755 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757 size = tx_cfg->fifo_len;
758 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759 if (!fifo->ufo_in_band_v)
2fda096d
SR
760 return -ENOMEM;
761 mem_allocated += (size * sizeof(u64));
762 }
fed5eccd 763
1da177e4
LT
764 /* Allocation and initialization of RXDs in Rings */
765 size = 0;
766 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
767 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768 struct ring_info *ring = &mac_control->rings[i];
769
770 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
771 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
773 dev->name, i);
1da177e4
LT
774 return FAILURE;
775 }
13d866a9
JP
776 size += rx_cfg->num_rxd;
777 ring->block_count = rx_cfg->num_rxd /
d44570e4 778 (rxd_count[nic->rxd_mode] + 1);
13d866a9 779 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 780 }
da6971d8 781 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 782 size = (size * (sizeof(struct RxD1)));
da6971d8 783 else
1ee6dd77 784 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
785
786 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
787 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788 struct ring_info *ring = &mac_control->rings[i];
789
790 ring->rx_curr_get_info.block_index = 0;
791 ring->rx_curr_get_info.offset = 0;
792 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->rx_curr_put_info.block_index = 0;
794 ring->rx_curr_put_info.offset = 0;
795 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796 ring->nic = nic;
797 ring->ring_no = i;
798 ring->lro = lro_enable;
799
800 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
801 /* Allocating all the Rx blocks */
802 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 803 struct rx_block_info *rx_blocks;
da6971d8
AR
804 int l;
805
13d866a9 806 rx_blocks = &ring->rx_blocks[j];
d44570e4 807 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
808 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
809 &tmp_p_addr);
810 if (tmp_v_addr == NULL) {
811 /*
20346722
K
812 * In case of failure, free_shared_mem()
813 * is called, which should free any
814 * memory that was alloced till the
1da177e4
LT
815 * failure happened.
816 */
da6971d8 817 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
818 return -ENOMEM;
819 }
491976b2 820 mem_allocated += size;
1da177e4 821 memset(tmp_v_addr, 0, size);
4f870320
JP
822
823 size = sizeof(struct rxd_info) *
824 rxd_count[nic->rxd_mode];
da6971d8
AR
825 rx_blocks->block_virt_addr = tmp_v_addr;
826 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 827 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
828 if (!rx_blocks->rxds)
829 return -ENOMEM;
4f870320 830 mem_allocated += size;
d44570e4 831 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
832 rx_blocks->rxds[l].virt_addr =
833 rx_blocks->block_virt_addr +
834 (rxd_size[nic->rxd_mode] * l);
835 rx_blocks->rxds[l].dma_addr =
836 rx_blocks->block_dma_addr +
837 (rxd_size[nic->rxd_mode] * l);
838 }
1da177e4
LT
839 }
840 /* Interlinking all Rx Blocks */
841 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
842 int next = (j + 1) % blk_cnt;
843 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
844 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
845 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
846 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 847
d44570e4 848 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
1da177e4 849 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 850 (unsigned long)tmp_v_addr_next;
1da177e4 851 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 852 (u64)tmp_p_addr_next;
1da177e4
LT
853 }
854 }
6d517a27 855 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
856 /*
857 * Allocation of Storages for buffer addresses in 2BUFF mode
858 * and the buffers as well.
859 */
860 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
861 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
862 struct ring_info *ring = &mac_control->rings[i];
863
864 blk_cnt = rx_cfg->num_rxd /
d44570e4 865 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
866 size = sizeof(struct buffAdd *) * blk_cnt;
867 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 868 if (!ring->ba)
1da177e4 869 return -ENOMEM;
4f870320 870 mem_allocated += size;
da6971d8
AR
871 for (j = 0; j < blk_cnt; j++) {
872 int k = 0;
4f870320
JP
873
874 size = sizeof(struct buffAdd) *
875 (rxd_count[nic->rxd_mode] + 1);
876 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 877 if (!ring->ba[j])
1da177e4 878 return -ENOMEM;
4f870320 879 mem_allocated += size;
da6971d8 880 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 881 ba = &ring->ba[j][k];
4f870320
JP
882 size = BUF0_LEN + ALIGN_SIZE;
883 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
884 if (!ba->ba_0_org)
885 return -ENOMEM;
4f870320 886 mem_allocated += size;
da6971d8
AR
887 tmp = (unsigned long)ba->ba_0_org;
888 tmp += ALIGN_SIZE;
d44570e4
JP
889 tmp &= ~((unsigned long)ALIGN_SIZE);
890 ba->ba_0 = (void *)tmp;
da6971d8 891
4f870320
JP
892 size = BUF1_LEN + ALIGN_SIZE;
893 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
894 if (!ba->ba_1_org)
895 return -ENOMEM;
4f870320 896 mem_allocated += size;
d44570e4 897 tmp = (unsigned long)ba->ba_1_org;
da6971d8 898 tmp += ALIGN_SIZE;
d44570e4
JP
899 tmp &= ~((unsigned long)ALIGN_SIZE);
900 ba->ba_1 = (void *)tmp;
da6971d8
AR
901 k++;
902 }
1da177e4
LT
903 }
904 }
905 }
1da177e4
LT
906
907 /* Allocation and initialization of Statistics block */
1ee6dd77 908 size = sizeof(struct stat_block);
d44570e4
JP
909 mac_control->stats_mem =
910 pci_alloc_consistent(nic->pdev, size,
911 &mac_control->stats_mem_phy);
1da177e4
LT
912
913 if (!mac_control->stats_mem) {
20346722
K
914 /*
915 * In case of failure, free_shared_mem() is called, which
916 * should free any memory that was alloced till the
1da177e4
LT
917 * failure happened.
918 */
919 return -ENOMEM;
920 }
491976b2 921 mem_allocated += size;
1da177e4
LT
922 mac_control->stats_mem_sz = size;
923
924 tmp_v_addr = mac_control->stats_mem;
d44570e4 925 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
1da177e4 926 memset(tmp_v_addr, 0, size);
3a22813a
BL
927 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
928 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 929 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
930 return SUCCESS;
931}
932
20346722
K
933/**
934 * free_shared_mem - Free the allocated Memory
1da177e4
LT
935 * @nic: Device private variable.
936 * Description: This function is to free all memory locations allocated by
937 * the init_shared_mem() function and return it to the kernel.
938 */
939
940static void free_shared_mem(struct s2io_nic *nic)
941{
942 int i, j, blk_cnt, size;
943 void *tmp_v_addr;
944 dma_addr_t tmp_p_addr;
1da177e4 945 int lst_size, lst_per_page;
8910b49f 946 struct net_device *dev;
491976b2 947 int page_num = 0;
ffb5df6c
JP
948 struct config_param *config;
949 struct mac_info *mac_control;
950 struct stat_block *stats;
951 struct swStat *swstats;
1da177e4
LT
952
953 if (!nic)
954 return;
955
8910b49f
MG
956 dev = nic->dev;
957
1da177e4 958 config = &nic->config;
ffb5df6c
JP
959 mac_control = &nic->mac_control;
960 stats = mac_control->stats_info;
961 swstats = &stats->sw_stat;
1da177e4 962
d44570e4 963 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
964 lst_per_page = PAGE_SIZE / lst_size;
965
966 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
967 struct fifo_info *fifo = &mac_control->fifos[i];
968 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
969
970 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
971 for (j = 0; j < page_num; j++) {
972 int mem_blks = (j * lst_per_page);
13d866a9
JP
973 struct list_info_hold *fli;
974
975 if (!fifo->list_info)
6aa20a22 976 return;
13d866a9
JP
977
978 fli = &fifo->list_info[mem_blks];
979 if (!fli->list_virt_addr)
1da177e4
LT
980 break;
981 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
982 fli->list_virt_addr,
983 fli->list_phy_addr);
ffb5df6c 984 swstats->mem_freed += PAGE_SIZE;
1da177e4 985 }
776bd20f 986 /* If we got a zero DMA address during allocation,
987 * free the page now
988 */
989 if (mac_control->zerodma_virt_addr) {
990 pci_free_consistent(nic->pdev, PAGE_SIZE,
991 mac_control->zerodma_virt_addr,
992 (dma_addr_t)0);
6aa20a22 993 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
994 "%s: Freeing TxDL with zero DMA address. "
995 "Virtual address %p\n",
996 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 997 swstats->mem_freed += PAGE_SIZE;
776bd20f 998 }
13d866a9 999 kfree(fifo->list_info);
82c2d023 1000 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 1001 sizeof(struct list_info_hold);
1da177e4
LT
1002 }
1003
1da177e4 1004 size = SIZE_OF_BLOCK;
1da177e4 1005 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1006 struct ring_info *ring = &mac_control->rings[i];
1007
1008 blk_cnt = ring->block_count;
1da177e4 1009 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
1010 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1011 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
1012 if (tmp_v_addr == NULL)
1013 break;
1014 pci_free_consistent(nic->pdev, size,
1015 tmp_v_addr, tmp_p_addr);
ffb5df6c 1016 swstats->mem_freed += size;
13d866a9 1017 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
1018 swstats->mem_freed += sizeof(struct rxd_info) *
1019 rxd_count[nic->rxd_mode];
1da177e4
LT
1020 }
1021 }
1022
6d517a27 1023 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1024 /* Freeing buffer storage addresses in 2BUFF mode. */
1025 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1026 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1027 struct ring_info *ring = &mac_control->rings[i];
1028
1029 blk_cnt = rx_cfg->num_rxd /
1030 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
1031 for (j = 0; j < blk_cnt; j++) {
1032 int k = 0;
13d866a9 1033 if (!ring->ba[j])
da6971d8
AR
1034 continue;
1035 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 1036 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 1037 kfree(ba->ba_0_org);
ffb5df6c
JP
1038 swstats->mem_freed +=
1039 BUF0_LEN + ALIGN_SIZE;
da6971d8 1040 kfree(ba->ba_1_org);
ffb5df6c
JP
1041 swstats->mem_freed +=
1042 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
1043 k++;
1044 }
13d866a9 1045 kfree(ring->ba[j]);
ffb5df6c
JP
1046 swstats->mem_freed += sizeof(struct buffAdd) *
1047 (rxd_count[nic->rxd_mode] + 1);
1da177e4 1048 }
13d866a9 1049 kfree(ring->ba);
ffb5df6c
JP
1050 swstats->mem_freed += sizeof(struct buffAdd *) *
1051 blk_cnt;
1da177e4 1052 }
1da177e4 1053 }
1da177e4 1054
2fda096d 1055 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1056 struct fifo_info *fifo = &mac_control->fifos[i];
1057 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1058
1059 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1060 swstats->mem_freed += tx_cfg->fifo_len *
1061 sizeof(u64);
13d866a9 1062 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1063 }
1064 }
1065
1da177e4 1066 if (mac_control->stats_mem) {
ffb5df6c 1067 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1068 pci_free_consistent(nic->pdev,
1069 mac_control->stats_mem_sz,
1070 mac_control->stats_mem,
1071 mac_control->stats_mem_phy);
491976b2 1072 }
1da177e4
LT
1073}
1074
541ae68f
K
1075/**
1076 * s2io_verify_pci_mode -
1077 */
1078
1ee6dd77 1079static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1080{
1ee6dd77 1081 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1082 register u64 val64 = 0;
1083 int mode;
1084
1085 val64 = readq(&bar0->pci_mode);
1086 mode = (u8)GET_PCI_MODE(val64);
1087
d44570e4 1088 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1089 return -1; /* Unknown PCI mode */
1090 return mode;
1091}
1092
c92ca04b
AR
1093#define NEC_VENID 0x1033
1094#define NEC_DEVID 0x0125
1095static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1096{
1097 struct pci_dev *tdev = NULL;
26d36b64
AC
1098 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1099 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1100 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1101 pci_dev_put(tdev);
c92ca04b 1102 return 1;
7ad62dbc 1103 }
c92ca04b
AR
1104 }
1105 }
1106 return 0;
1107}
541ae68f 1108
7b32a312 1109static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1110/**
1111 * s2io_print_pci_mode -
1112 */
1ee6dd77 1113static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1114{
1ee6dd77 1115 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1116 register u64 val64 = 0;
1117 int mode;
1118 struct config_param *config = &nic->config;
9e39f7c5 1119 const char *pcimode;
541ae68f
K
1120
1121 val64 = readq(&bar0->pci_mode);
1122 mode = (u8)GET_PCI_MODE(val64);
1123
d44570e4 1124 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1125 return -1; /* Unknown PCI mode */
1126
c92ca04b
AR
1127 config->bus_speed = bus_speed[mode];
1128
1129 if (s2io_on_nec_bridge(nic->pdev)) {
1130 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1131 nic->dev->name);
c92ca04b
AR
1132 return mode;
1133 }
1134
d44570e4
JP
1135 switch (mode) {
1136 case PCI_MODE_PCI_33:
9e39f7c5 1137 pcimode = "33MHz PCI bus";
d44570e4
JP
1138 break;
1139 case PCI_MODE_PCI_66:
9e39f7c5 1140 pcimode = "66MHz PCI bus";
d44570e4
JP
1141 break;
1142 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1143 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1144 break;
1145 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1146 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1147 break;
1148 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1149 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1150 break;
1151 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1152 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1153 break;
1154 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1155 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1156 break;
1157 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1158 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1159 break;
1160 default:
9e39f7c5
JP
1161 pcimode = "unsupported bus!";
1162 mode = -1;
541ae68f
K
1163 }
1164
9e39f7c5
JP
1165 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1166 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1167
541ae68f
K
1168 return mode;
1169}
1170
b7c5678f
RV
1171/**
1172 * init_tti - Initialization transmit traffic interrupt scheme
1173 * @nic: device private variable
1174 * @link: link status (UP/DOWN) used to enable/disable continuous
1175 * transmit interrupts
1176 * Description: The function configures transmit traffic interrupts
1177 * Return Value: SUCCESS on success and
1178 * '-1' on failure
1179 */
1180
0d66afe7 1181static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1182{
1183 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1184 register u64 val64 = 0;
1185 int i;
ffb5df6c 1186 struct config_param *config = &nic->config;
b7c5678f
RV
1187
1188 for (i = 0; i < config->tx_fifo_num; i++) {
1189 /*
1190 * TTI Initialization. Default Tx timer gets us about
1191 * 250 interrupts per sec. Continuous interrupts are enabled
1192 * by default.
1193 */
1194 if (nic->device_type == XFRAME_II_DEVICE) {
1195 int count = (nic->config.bus_speed * 125)/2;
1196 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1197 } else
1198 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199
1200 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1201 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1204 if (i == 0)
1205 if (use_continuous_tx_intrs && (link == LINK_UP))
1206 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1207 writeq(val64, &bar0->tti_data1_mem);
1208
ac731ab6
SH
1209 if (nic->config.intr_type == MSI_X) {
1210 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214 } else {
1215 if ((nic->config.tx_steering_type ==
d44570e4
JP
1216 TX_DEFAULT_STEERING) &&
1217 (config->tx_fifo_num > 1) &&
1218 (i >= nic->udp_fifo_idx) &&
1219 (i < (nic->udp_fifo_idx +
1220 nic->total_udp_fifos)))
ac731ab6
SH
1221 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x120);
1225 else
1226 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229 TTI_DATA2_MEM_TX_UFC_D(0x80);
1230 }
b7c5678f
RV
1231
1232 writeq(val64, &bar0->tti_data2_mem);
1233
d44570e4
JP
1234 val64 = TTI_CMD_MEM_WE |
1235 TTI_CMD_MEM_STROBE_NEW_CMD |
1236 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1237 writeq(val64, &bar0->tti_command_mem);
1238
1239 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1240 TTI_CMD_MEM_STROBE_NEW_CMD,
1241 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1242 return FAILURE;
1243 }
1244
1245 return SUCCESS;
1246}
1247
20346722
K
1248/**
1249 * init_nic - Initialization of hardware
b7c5678f 1250 * @nic: device private variable
20346722
K
1251 * Description: The function sequentially configures every block
1252 * of the H/W from their reset values.
1253 * Return Value: SUCCESS on success and
1da177e4
LT
1254 * '-1' on failure (endian settings incorrect).
1255 */
1256
1257static int init_nic(struct s2io_nic *nic)
1258{
1ee6dd77 1259 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1260 struct net_device *dev = nic->dev;
1261 register u64 val64 = 0;
1262 void __iomem *add;
1263 u32 time;
1264 int i, j;
c92ca04b 1265 int dtx_cnt = 0;
1da177e4 1266 unsigned long long mem_share;
20346722 1267 int mem_size;
ffb5df6c
JP
1268 struct config_param *config = &nic->config;
1269 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1270
5e25b9dd 1271 /* to set the swapper controle on the card */
d44570e4
JP
1272 if (s2io_set_swapper(nic)) {
1273 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1274 return -EIO;
1da177e4
LT
1275 }
1276
541ae68f
K
1277 /*
1278 * Herc requires EOI to be removed from reset before XGXS, so..
1279 */
1280 if (nic->device_type & XFRAME_II_DEVICE) {
1281 val64 = 0xA500000000ULL;
1282 writeq(val64, &bar0->sw_reset);
1283 msleep(500);
1284 val64 = readq(&bar0->sw_reset);
1285 }
1286
1da177e4
LT
1287 /* Remove XGXS from reset state */
1288 val64 = 0;
1289 writeq(val64, &bar0->sw_reset);
1da177e4 1290 msleep(500);
20346722 1291 val64 = readq(&bar0->sw_reset);
1da177e4 1292
7962024e
SH
1293 /* Ensure that it's safe to access registers by checking
1294 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295 */
1296 if (nic->device_type == XFRAME_II_DEVICE) {
1297 for (i = 0; i < 50; i++) {
1298 val64 = readq(&bar0->adapter_status);
1299 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1300 break;
1301 msleep(10);
1302 }
1303 if (i == 50)
1304 return -ENODEV;
1305 }
1306
1da177e4
LT
1307 /* Enable Receiving broadcasts */
1308 add = &bar0->mac_cfg;
1309 val64 = readq(&bar0->mac_cfg);
1310 val64 |= MAC_RMAC_BCAST_ENABLE;
1311 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1312 writel((u32)val64, add);
1da177e4
LT
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314 writel((u32) (val64 >> 32), (add + 4));
1315
1316 /* Read registers in all blocks */
1317 val64 = readq(&bar0->mac_int_mask);
1318 val64 = readq(&bar0->mc_int_mask);
1319 val64 = readq(&bar0->xgxs_int_mask);
1320
1321 /* Set MTU */
1322 val64 = dev->mtu;
1323 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1324
541ae68f
K
1325 if (nic->device_type & XFRAME_II_DEVICE) {
1326 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1327 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1328 &bar0->dtx_control, UF);
541ae68f
K
1329 if (dtx_cnt & 0x1)
1330 msleep(1); /* Necessary!! */
1da177e4
LT
1331 dtx_cnt++;
1332 }
541ae68f 1333 } else {
c92ca04b
AR
1334 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336 &bar0->dtx_control, UF);
1337 val64 = readq(&bar0->dtx_control);
1338 dtx_cnt++;
1da177e4
LT
1339 }
1340 }
1341
1342 /* Tx DMA Initialization */
1343 val64 = 0;
1344 writeq(val64, &bar0->tx_fifo_partition_0);
1345 writeq(val64, &bar0->tx_fifo_partition_1);
1346 writeq(val64, &bar0->tx_fifo_partition_2);
1347 writeq(val64, &bar0->tx_fifo_partition_3);
1348
1da177e4 1349 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1350 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1351
1352 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1353 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1354
1355 if (i == (config->tx_fifo_num - 1)) {
1356 if (i % 2 == 0)
1357 i++;
1358 }
1359
1360 switch (i) {
1361 case 1:
1362 writeq(val64, &bar0->tx_fifo_partition_0);
1363 val64 = 0;
b7c5678f 1364 j = 0;
1da177e4
LT
1365 break;
1366 case 3:
1367 writeq(val64, &bar0->tx_fifo_partition_1);
1368 val64 = 0;
b7c5678f 1369 j = 0;
1da177e4
LT
1370 break;
1371 case 5:
1372 writeq(val64, &bar0->tx_fifo_partition_2);
1373 val64 = 0;
b7c5678f 1374 j = 0;
1da177e4
LT
1375 break;
1376 case 7:
1377 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1378 val64 = 0;
1379 j = 0;
1380 break;
1381 default:
1382 j++;
1da177e4
LT
1383 break;
1384 }
1385 }
1386
5e25b9dd
K
1387 /*
1388 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390 */
d44570e4 1391 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd
K
1392 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1393
1da177e4
LT
1394 val64 = readq(&bar0->tx_fifo_partition_0);
1395 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1396 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1397
20346722
K
1398 /*
1399 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1400 * integrity checking.
1401 */
1402 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1403 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1404 TX_PA_CFG_IGNORE_SNAP_OUI |
1405 TX_PA_CFG_IGNORE_LLC_CTRL |
1406 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1407 writeq(val64, &bar0->tx_pa_cfg);
1408
1409 /* Rx DMA intialization. */
1410 val64 = 0;
1411 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1412 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1413
1414 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1415 }
1416 writeq(val64, &bar0->rx_queue_priority);
1417
20346722
K
1418 /*
1419 * Allocating equal share of memory to all the
1da177e4
LT
1420 * configured Rings.
1421 */
1422 val64 = 0;
541ae68f
K
1423 if (nic->device_type & XFRAME_II_DEVICE)
1424 mem_size = 32;
1425 else
1426 mem_size = 64;
1427
1da177e4
LT
1428 for (i = 0; i < config->rx_ring_num; i++) {
1429 switch (i) {
1430 case 0:
20346722
K
1431 mem_share = (mem_size / config->rx_ring_num +
1432 mem_size % config->rx_ring_num);
1da177e4
LT
1433 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1434 continue;
1435 case 1:
20346722 1436 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1437 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1438 continue;
1439 case 2:
20346722 1440 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1441 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1442 continue;
1443 case 3:
20346722 1444 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1445 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1446 continue;
1447 case 4:
20346722 1448 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1449 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1450 continue;
1451 case 5:
20346722 1452 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1453 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1454 continue;
1455 case 6:
20346722 1456 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1457 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1458 continue;
1459 case 7:
20346722 1460 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1461 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1462 continue;
1463 }
1464 }
1465 writeq(val64, &bar0->rx_queue_cfg);
1466
20346722 1467 /*
5e25b9dd 1468 * Filling Tx round robin registers
b7c5678f 1469 * as per the number of FIFOs for equal scheduling priority
1da177e4 1470 */
5e25b9dd
K
1471 switch (config->tx_fifo_num) {
1472 case 1:
b7c5678f 1473 val64 = 0x0;
5e25b9dd
K
1474 writeq(val64, &bar0->tx_w_round_robin_0);
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 writeq(val64, &bar0->tx_w_round_robin_2);
1477 writeq(val64, &bar0->tx_w_round_robin_3);
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 2:
b7c5678f 1481 val64 = 0x0001000100010001ULL;
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1485 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1486 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1487 writeq(val64, &bar0->tx_w_round_robin_4);
1488 break;
1489 case 3:
b7c5678f 1490 val64 = 0x0001020001020001ULL;
5e25b9dd 1491 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1492 val64 = 0x0200010200010200ULL;
5e25b9dd 1493 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1494 val64 = 0x0102000102000102ULL;
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1496 val64 = 0x0001020001020001ULL;
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1498 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 case 4:
b7c5678f 1502 val64 = 0x0001020300010203ULL;
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1506 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1507 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1508 writeq(val64, &bar0->tx_w_round_robin_4);
1509 break;
1510 case 5:
b7c5678f 1511 val64 = 0x0001020304000102ULL;
5e25b9dd 1512 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1513 val64 = 0x0304000102030400ULL;
5e25b9dd 1514 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1515 val64 = 0x0102030400010203ULL;
5e25b9dd 1516 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1517 val64 = 0x0400010203040001ULL;
5e25b9dd 1518 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1519 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1520 writeq(val64, &bar0->tx_w_round_robin_4);
1521 break;
1522 case 6:
b7c5678f 1523 val64 = 0x0001020304050001ULL;
5e25b9dd 1524 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1525 val64 = 0x0203040500010203ULL;
5e25b9dd 1526 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1527 val64 = 0x0405000102030405ULL;
5e25b9dd 1528 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1529 val64 = 0x0001020304050001ULL;
5e25b9dd 1530 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1531 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1532 writeq(val64, &bar0->tx_w_round_robin_4);
1533 break;
1534 case 7:
b7c5678f 1535 val64 = 0x0001020304050600ULL;
5e25b9dd 1536 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1537 val64 = 0x0102030405060001ULL;
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1539 val64 = 0x0203040506000102ULL;
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1541 val64 = 0x0304050600010203ULL;
5e25b9dd 1542 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1543 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1545 break;
1546 case 8:
b7c5678f 1547 val64 = 0x0001020304050607ULL;
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1549 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1551 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1552 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1553 writeq(val64, &bar0->tx_w_round_robin_4);
1554 break;
1555 }
1556
b41477f3 1557 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1558 val64 = readq(&bar0->tx_fifo_partition_0);
1559 val64 |= (TX_FIFO_PARTITION_EN);
1560 writeq(val64, &bar0->tx_fifo_partition_0);
1561
5e25b9dd 1562 /* Filling the Rx round robin registers as per the
0425b46a
SH
1563 * number of Rings and steering based on QoS with
1564 * equal priority.
1565 */
5e25b9dd
K
1566 switch (config->rx_ring_num) {
1567 case 1:
0425b46a
SH
1568 val64 = 0x0;
1569 writeq(val64, &bar0->rx_w_round_robin_0);
1570 writeq(val64, &bar0->rx_w_round_robin_1);
1571 writeq(val64, &bar0->rx_w_round_robin_2);
1572 writeq(val64, &bar0->rx_w_round_robin_3);
1573 writeq(val64, &bar0->rx_w_round_robin_4);
1574
5e25b9dd
K
1575 val64 = 0x8080808080808080ULL;
1576 writeq(val64, &bar0->rts_qos_steering);
1577 break;
1578 case 2:
0425b46a 1579 val64 = 0x0001000100010001ULL;
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1581 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1583 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1584 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1585 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587 val64 = 0x8080808040404040ULL;
1588 writeq(val64, &bar0->rts_qos_steering);
1589 break;
1590 case 3:
0425b46a 1591 val64 = 0x0001020001020001ULL;
5e25b9dd 1592 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1593 val64 = 0x0200010200010200ULL;
5e25b9dd 1594 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1595 val64 = 0x0102000102000102ULL;
5e25b9dd 1596 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1597 val64 = 0x0001020001020001ULL;
5e25b9dd 1598 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1599 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1600 writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602 val64 = 0x8080804040402020ULL;
1603 writeq(val64, &bar0->rts_qos_steering);
1604 break;
1605 case 4:
0425b46a 1606 val64 = 0x0001020300010203ULL;
5e25b9dd 1607 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1608 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1611 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1612 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614 val64 = 0x8080404020201010ULL;
1615 writeq(val64, &bar0->rts_qos_steering);
1616 break;
1617 case 5:
0425b46a 1618 val64 = 0x0001020304000102ULL;
5e25b9dd 1619 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1620 val64 = 0x0304000102030400ULL;
5e25b9dd 1621 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1622 val64 = 0x0102030400010203ULL;
5e25b9dd 1623 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1624 val64 = 0x0400010203040001ULL;
5e25b9dd 1625 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1626 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1627 writeq(val64, &bar0->rx_w_round_robin_4);
1628
1629 val64 = 0x8080404020201008ULL;
1630 writeq(val64, &bar0->rts_qos_steering);
1631 break;
1632 case 6:
0425b46a 1633 val64 = 0x0001020304050001ULL;
5e25b9dd 1634 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1635 val64 = 0x0203040500010203ULL;
5e25b9dd 1636 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1637 val64 = 0x0405000102030405ULL;
5e25b9dd 1638 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1639 val64 = 0x0001020304050001ULL;
5e25b9dd 1640 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1641 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1642 writeq(val64, &bar0->rx_w_round_robin_4);
1643
1644 val64 = 0x8080404020100804ULL;
1645 writeq(val64, &bar0->rts_qos_steering);
1646 break;
1647 case 7:
0425b46a 1648 val64 = 0x0001020304050600ULL;
5e25b9dd 1649 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1650 val64 = 0x0102030405060001ULL;
5e25b9dd 1651 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1652 val64 = 0x0203040506000102ULL;
5e25b9dd 1653 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1654 val64 = 0x0304050600010203ULL;
5e25b9dd 1655 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1656 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1657 writeq(val64, &bar0->rx_w_round_robin_4);
1658
1659 val64 = 0x8080402010080402ULL;
1660 writeq(val64, &bar0->rts_qos_steering);
1661 break;
1662 case 8:
0425b46a 1663 val64 = 0x0001020304050607ULL;
5e25b9dd 1664 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1665 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1666 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1667 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1668 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8040201008040201ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 }
1da177e4
LT
1675
1676 /* UDP Fix */
1677 val64 = 0;
20346722 1678 for (i = 0; i < 8; i++)
1da177e4
LT
1679 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
5e25b9dd
K
1681 /* Set the default rts frame length for the rings configured */
1682 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1683 for (i = 0 ; i < config->rx_ring_num ; i++)
1684 writeq(val64, &bar0->rts_frm_len_n[i]);
1685
1686 /* Set the frame length for the configured rings
1687 * desired by the user
1688 */
1689 for (i = 0; i < config->rx_ring_num; i++) {
1690 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691 * specified frame length steering.
1692 * If the user provides the frame length then program
1693 * the rts_frm_len register for those values or else
1694 * leave it as it is.
1695 */
1696 if (rts_frm_len[i] != 0) {
1697 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1698 &bar0->rts_frm_len_n[i]);
5e25b9dd
K
1699 }
1700 }
8a4bdbaa 1701
9fc93a41
SS
1702 /* Disable differentiated services steering logic */
1703 for (i = 0; i < 64; i++) {
1704 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1705 DBG_PRINT(ERR_DBG,
1706 "%s: rts_ds_steer failed on codepoint %d\n",
1707 dev->name, i);
9f74ffde 1708 return -ENODEV;
9fc93a41
SS
1709 }
1710 }
1711
20346722 1712 /* Program statistics memory */
1da177e4 1713 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1714
541ae68f
K
1715 if (nic->device_type == XFRAME_II_DEVICE) {
1716 val64 = STAT_BC(0x320);
1717 writeq(val64, &bar0->stat_byte_cnt);
1718 }
1719
20346722 1720 /*
1da177e4
LT
1721 * Initializing the sampling rate for the device to calculate the
1722 * bandwidth utilization.
1723 */
1724 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1725 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1726 writeq(val64, &bar0->mac_link_util);
1727
20346722
K
1728 /*
1729 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1730 * Scheme.
1731 */
1da177e4 1732
b7c5678f
RV
1733 /* Initialize TTI */
1734 if (SUCCESS != init_tti(nic, nic->last_link_state))
1735 return -ENODEV;
1da177e4 1736
8a4bdbaa
SS
1737 /* RTI Initialization */
1738 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1739 /*
8a4bdbaa
SS
1740 * Programmed to generate Apprx 500 Intrs per
1741 * second
1742 */
1743 int count = (nic->config.bus_speed * 125)/4;
1744 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1745 } else
1746 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1748 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1751
1752 writeq(val64, &bar0->rti_data1_mem);
1753
1754 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1757 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1759 else
d44570e4
JP
1760 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1762 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1763
8a4bdbaa 1764 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1765 val64 = RTI_CMD_MEM_WE |
1766 RTI_CMD_MEM_STROBE_NEW_CMD |
1767 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1768 writeq(val64, &bar0->rti_command_mem);
1da177e4 1769
8a4bdbaa
SS
1770 /*
1771 * Once the operation completes, the Strobe bit of the
1772 * command register will be reset. We poll for this
1773 * particular condition. We wait for a maximum of 500ms
1774 * for the operation to complete, if it's not complete
1775 * by then we return error.
1776 */
1777 time = 0;
f957bcf0 1778 while (true) {
8a4bdbaa
SS
1779 val64 = readq(&bar0->rti_command_mem);
1780 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1781 break;
b6e3f982 1782
8a4bdbaa 1783 if (time > 10) {
9e39f7c5 1784 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1785 dev->name);
9f74ffde 1786 return -ENODEV;
b6e3f982 1787 }
8a4bdbaa
SS
1788 time++;
1789 msleep(50);
1da177e4 1790 }
1da177e4
LT
1791 }
1792
20346722
K
1793 /*
1794 * Initializing proper values as Pause threshold into all
1da177e4
LT
1795 * the 8 Queues on Rx side.
1796 */
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1798 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799
1800 /* Disable RMAC PAD STRIPPING */
509a2671 1801 add = &bar0->mac_cfg;
1da177e4
LT
1802 val64 = readq(&bar0->mac_cfg);
1803 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805 writel((u32) (val64), add);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64 >> 32), (add + 4));
1808 val64 = readq(&bar0->mac_cfg);
1809
7d3d0439
RA
1810 /* Enable FCS stripping by adapter */
1811 add = &bar0->mac_cfg;
1812 val64 = readq(&bar0->mac_cfg);
1813 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1814 if (nic->device_type == XFRAME_II_DEVICE)
1815 writeq(val64, &bar0->mac_cfg);
1816 else {
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 }
1822
20346722
K
1823 /*
1824 * Set the time value to be inserted in the pause frame
1da177e4
LT
1825 * generated by xena.
1826 */
1827 val64 = readq(&bar0->rmac_pause_cfg);
1828 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1830 writeq(val64, &bar0->rmac_pause_cfg);
1831
20346722 1832 /*
1da177e4
LT
1833 * Set the Threshold Limit for Generating the pause frame
1834 * If the amount of data in any Queue exceeds ratio of
1835 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836 * pause frame is generated
1837 */
1838 val64 = 0;
1839 for (i = 0; i < 4; i++) {
d44570e4
JP
1840 val64 |= (((u64)0xFF00 |
1841 nic->mac_control.mc_pause_threshold_q0q3)
1842 << (i * 2 * 8));
1da177e4
LT
1843 }
1844 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1845
1846 val64 = 0;
1847 for (i = 0; i < 4; i++) {
d44570e4
JP
1848 val64 |= (((u64)0xFF00 |
1849 nic->mac_control.mc_pause_threshold_q4q7)
1850 << (i * 2 * 8));
1da177e4
LT
1851 }
1852 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1853
20346722
K
1854 /*
1855 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1856 * exceeded the limit pointed by shared_splits
1857 */
1858 val64 = readq(&bar0->pic_control);
1859 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1860 writeq(val64, &bar0->pic_control);
1861
863c11a9
AR
1862 if (nic->config.bus_speed == 266) {
1863 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1864 writeq(0x0, &bar0->read_retry_delay);
1865 writeq(0x0, &bar0->write_retry_delay);
1866 }
1867
541ae68f
K
1868 /*
1869 * Programming the Herc to split every write transaction
1870 * that does not start on an ADB to reduce disconnects.
1871 */
1872 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1873 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1874 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1875 writeq(val64, &bar0->misc_control);
1876 val64 = readq(&bar0->pic_control2);
b7b5a128 1877 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1878 writeq(val64, &bar0->pic_control2);
541ae68f 1879 }
c92ca04b
AR
1880 if (strstr(nic->product_name, "CX4")) {
1881 val64 = TMAC_AVG_IPG(0x17);
1882 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1883 }
1884
1da177e4
LT
1885 return SUCCESS;
1886}
a371a07d
K
1887#define LINK_UP_DOWN_INTERRUPT 1
1888#define MAC_RMAC_ERR_TIMER 2
1889
1ee6dd77 1890static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d
K
1891{
1892 if (nic->device_type == XFRAME_II_DEVICE)
1893 return LINK_UP_DOWN_INTERRUPT;
1894 else
1895 return MAC_RMAC_ERR_TIMER;
1896}
8116f3cf 1897
9caab458
SS
1898/**
1899 * do_s2io_write_bits - update alarm bits in alarm register
1900 * @value: alarm bits
1901 * @flag: interrupt status
1902 * @addr: address value
1903 * Description: update alarm bits in alarm register
1904 * Return Value:
1905 * NONE.
1906 */
1907static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1908{
1909 u64 temp64;
1910
1911 temp64 = readq(addr);
1912
d44570e4
JP
1913 if (flag == ENABLE_INTRS)
1914 temp64 &= ~((u64)value);
9caab458 1915 else
d44570e4 1916 temp64 |= ((u64)value);
9caab458
SS
1917 writeq(temp64, addr);
1918}
1da177e4 1919
43b7c451 1920static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1921{
1922 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1923 register u64 gen_int_mask = 0;
01e16faa 1924 u64 interruptible;
9caab458 1925
01e16faa 1926 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1927 if (mask & TX_DMA_INTR) {
9caab458
SS
1928 gen_int_mask |= TXDMA_INT_M;
1929
1930 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1931 TXDMA_PCC_INT | TXDMA_TTI_INT |
1932 TXDMA_LSO_INT | TXDMA_TPA_INT |
1933 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1934
1935 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1936 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1937 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1938 &bar0->pfc_err_mask);
9caab458
SS
1939
1940 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1941 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1942 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1943
1944 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1945 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1946 PCC_N_SERR | PCC_6_COF_OV_ERR |
1947 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1948 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1949 PCC_TXB_ECC_SG_ERR,
1950 flag, &bar0->pcc_err_mask);
9caab458
SS
1951
1952 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1953 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1954
1955 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1956 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1957 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1958 flag, &bar0->lso_err_mask);
9caab458
SS
1959
1960 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1961 flag, &bar0->tpa_err_mask);
9caab458
SS
1962
1963 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1964 }
1965
1966 if (mask & TX_MAC_INTR) {
1967 gen_int_mask |= TXMAC_INT_M;
1968 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1969 &bar0->mac_int_mask);
9caab458 1970 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1971 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1972 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1973 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1974 }
1975
1976 if (mask & TX_XGXS_INTR) {
1977 gen_int_mask |= TXXGXS_INT_M;
1978 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1979 &bar0->xgxs_int_mask);
9caab458 1980 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1981 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1982 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1983 }
1984
1985 if (mask & RX_DMA_INTR) {
1986 gen_int_mask |= RXDMA_INT_M;
1987 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1988 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1989 flag, &bar0->rxdma_int_mask);
9caab458 1990 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1991 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1992 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1993 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1994 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1995 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1996 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1997 &bar0->prc_pcix_err_mask);
9caab458 1998 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1999 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2000 &bar0->rpa_err_mask);
9caab458 2001 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
2002 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2003 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2004 RDA_FRM_ECC_SG_ERR |
2005 RDA_MISC_ERR|RDA_PCIX_ERR,
2006 flag, &bar0->rda_err_mask);
9caab458 2007 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
2008 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2009 flag, &bar0->rti_err_mask);
9caab458
SS
2010 }
2011
2012 if (mask & RX_MAC_INTR) {
2013 gen_int_mask |= RXMAC_INT_M;
2014 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
2015 &bar0->mac_int_mask);
2016 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2017 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2018 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
2019 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2020 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2021 do_s2io_write_bits(interruptible,
d44570e4 2022 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
2023 }
2024
d44570e4 2025 if (mask & RX_XGXS_INTR) {
9caab458
SS
2026 gen_int_mask |= RXXGXS_INT_M;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 2028 &bar0->xgxs_int_mask);
9caab458 2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 2030 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
2031 }
2032
2033 if (mask & MC_INTR) {
2034 gen_int_mask |= MC_INT_M;
d44570e4
JP
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2036 flag, &bar0->mc_int_mask);
9caab458 2037 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
2038 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2039 &bar0->mc_err_mask);
9caab458
SS
2040 }
2041 nic->general_int_mask = gen_int_mask;
2042
2043 /* Remove this line when alarm interrupts are enabled */
2044 nic->general_int_mask = 0;
2045}
d44570e4 2046
20346722
K
2047/**
2048 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2049 * @nic: device private variable,
2050 * @mask: A mask indicating which Intr block must be modified and,
2051 * @flag: A flag indicating whether to enable or disable the Intrs.
2052 * Description: This function will either disable or enable the interrupts
20346722
K
2053 * depending on the flag argument. The mask argument can be used to
2054 * enable/disable any Intr block.
1da177e4
LT
2055 * Return Value: NONE.
2056 */
2057
2058static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2059{
1ee6dd77 2060 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2061 register u64 temp64 = 0, intr_mask = 0;
2062
2063 intr_mask = nic->general_int_mask;
1da177e4
LT
2064
2065 /* Top level interrupt classification */
2066 /* PIC Interrupts */
9caab458 2067 if (mask & TX_PIC_INTR) {
1da177e4 2068 /* Enable PIC Intrs in the general intr mask register */
9caab458 2069 intr_mask |= TXPIC_INT_M;
1da177e4 2070 if (flag == ENABLE_INTRS) {
20346722 2071 /*
a371a07d 2072 * If Hercules adapter enable GPIO otherwise
b41477f3 2073 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2074 * interrupts for now.
2075 * TODO
1da177e4 2076 */
a371a07d 2077 if (s2io_link_fault_indication(nic) ==
d44570e4 2078 LINK_UP_DOWN_INTERRUPT) {
9caab458 2079 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2080 &bar0->pic_int_mask);
9caab458 2081 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2082 &bar0->gpio_int_mask);
9caab458 2083 } else
a371a07d 2084 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2085 } else if (flag == DISABLE_INTRS) {
20346722
K
2086 /*
2087 * Disable PIC Intrs in the general
2088 * intr mask register
1da177e4
LT
2089 */
2090 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2091 }
2092 }
2093
1da177e4
LT
2094 /* Tx traffic interrupts */
2095 if (mask & TX_TRAFFIC_INTR) {
9caab458 2096 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2097 if (flag == ENABLE_INTRS) {
20346722 2098 /*
1da177e4 2099 * Enable all the Tx side interrupts
20346722 2100 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2101 */
2102 writeq(0x0, &bar0->tx_traffic_mask);
2103 } else if (flag == DISABLE_INTRS) {
20346722
K
2104 /*
2105 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2106 * register.
2107 */
2108 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2109 }
2110 }
2111
2112 /* Rx traffic interrupts */
2113 if (mask & RX_TRAFFIC_INTR) {
9caab458 2114 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2115 if (flag == ENABLE_INTRS) {
1da177e4
LT
2116 /* writing 0 Enables all 8 RX interrupt levels */
2117 writeq(0x0, &bar0->rx_traffic_mask);
2118 } else if (flag == DISABLE_INTRS) {
20346722
K
2119 /*
2120 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2121 * register.
2122 */
2123 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2124 }
2125 }
9caab458
SS
2126
2127 temp64 = readq(&bar0->general_int_mask);
2128 if (flag == ENABLE_INTRS)
d44570e4 2129 temp64 &= ~((u64)intr_mask);
9caab458
SS
2130 else
2131 temp64 = DISABLE_ALL_INTRS;
2132 writeq(temp64, &bar0->general_int_mask);
2133
2134 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2135}
2136
19a60522
SS
2137/**
2138 * verify_pcc_quiescent- Checks for PCC quiescent state
2139 * Return: 1 If PCC is quiescence
2140 * 0 If PCC is not quiescence
2141 */
1ee6dd77 2142static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2143{
19a60522 2144 int ret = 0, herc;
1ee6dd77 2145 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2146 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2147
19a60522 2148 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2149
f957bcf0 2150 if (flag == false) {
44c10138 2151 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2152 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2153 ret = 1;
19a60522
SS
2154 } else {
2155 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2156 ret = 1;
20346722
K
2157 }
2158 } else {
44c10138 2159 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2160 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2161 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2162 ret = 1;
5e25b9dd
K
2163 } else {
2164 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2165 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2166 ret = 1;
20346722
K
2167 }
2168 }
2169
2170 return ret;
2171}
2172/**
2173 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2174 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2175 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2176 * differs and the calling function passes the input argument flag to
2177 * indicate this.
20346722 2178 * Return: 1 If xena is quiescence
1da177e4
LT
2179 * 0 If Xena is not quiescence
2180 */
2181
1ee6dd77 2182static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2183{
19a60522 2184 int mode;
1ee6dd77 2185 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2186 u64 val64 = readq(&bar0->adapter_status);
2187 mode = s2io_verify_pci_mode(sp);
1da177e4 2188
19a60522 2189 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2190 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2191 return 0;
2192 }
2193 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2194 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2195 return 0;
2196 }
2197 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2198 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2199 return 0;
2200 }
2201 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2202 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2206 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2210 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2214 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2218 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2219 return 0;
1da177e4
LT
2220 }
2221
19a60522
SS
2222 /*
2223 * In PCI 33 mode, the P_PLL is not used, and therefore,
2224 * the the P_PLL_LOCK bit in the adapter_status register will
2225 * not be asserted.
2226 */
2227 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2228 sp->device_type == XFRAME_II_DEVICE &&
2229 mode != PCI_MODE_PCI_33) {
9e39f7c5 2230 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2231 return 0;
2232 }
2233 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2234 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2235 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2236 return 0;
2237 }
2238 return 1;
1da177e4
LT
2239}
2240
2241/**
2242 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2243 * @sp: Pointer to device specifc structure
20346722 2244 * Description :
1da177e4
LT
2245 * New procedure to clear mac address reading problems on Alpha platforms
2246 *
2247 */
2248
d44570e4 2249static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2250{
1ee6dd77 2251 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2252 u64 val64;
2253 int i = 0;
2254
2255 while (fix_mac[i] != END_SIGN) {
2256 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2257 udelay(10);
1da177e4
LT
2258 val64 = readq(&bar0->gpio_control);
2259 }
2260}
2261
2262/**
20346722 2263 * start_nic - Turns the device on
1da177e4 2264 * @nic : device private variable.
20346722
K
2265 * Description:
2266 * This function actually turns the device on. Before this function is
2267 * called,all Registers are configured from their reset states
2268 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2269 * calling this function, the device interrupts are cleared and the NIC is
2270 * literally switched on by writing into the adapter control register.
20346722 2271 * Return Value:
1da177e4
LT
2272 * SUCCESS on success and -1 on failure.
2273 */
2274
2275static int start_nic(struct s2io_nic *nic)
2276{
1ee6dd77 2277 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2278 struct net_device *dev = nic->dev;
2279 register u64 val64 = 0;
20346722 2280 u16 subid, i;
ffb5df6c
JP
2281 struct config_param *config = &nic->config;
2282 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2283
2284 /* PRC Initialization and configuration */
2285 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2286 struct ring_info *ring = &mac_control->rings[i];
2287
d44570e4 2288 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2289 &bar0->prc_rxd0_n[i]);
2290
2291 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2292 if (nic->rxd_mode == RXD_MODE_1)
2293 val64 |= PRC_CTRL_RC_ENABLED;
2294 else
2295 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2296 if (nic->device_type == XFRAME_II_DEVICE)
2297 val64 |= PRC_CTRL_GROUP_READS;
2298 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2300 writeq(val64, &bar0->prc_ctrl_n[i]);
2301 }
2302
da6971d8
AR
2303 if (nic->rxd_mode == RXD_MODE_3B) {
2304 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305 val64 = readq(&bar0->rx_pa_cfg);
2306 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2307 writeq(val64, &bar0->rx_pa_cfg);
2308 }
1da177e4 2309
926930b2
SS
2310 if (vlan_tag_strip == 0) {
2311 val64 = readq(&bar0->rx_pa_cfg);
2312 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2313 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2314 nic->vlan_strip_flag = 0;
926930b2
SS
2315 }
2316
20346722 2317 /*
1da177e4
LT
2318 * Enabling MC-RLDRAM. After enabling the device, we timeout
2319 * for around 100ms, which is approximately the time required
2320 * for the device to be ready for operation.
2321 */
2322 val64 = readq(&bar0->mc_rldram_mrs);
2323 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2324 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2325 val64 = readq(&bar0->mc_rldram_mrs);
2326
20346722 2327 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2328
2329 /* Enabling ECC Protection. */
2330 val64 = readq(&bar0->adapter_control);
2331 val64 &= ~ADAPTER_ECC_EN;
2332 writeq(val64, &bar0->adapter_control);
2333
20346722
K
2334 /*
2335 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2336 * it.
2337 */
2338 val64 = readq(&bar0->adapter_status);
19a60522 2339 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2340 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2341 "Adapter status reads: 0x%llx\n",
2342 dev->name, (unsigned long long)val64);
1da177e4
LT
2343 return FAILURE;
2344 }
2345
20346722 2346 /*
1da177e4 2347 * With some switches, link might be already up at this point.
20346722
K
2348 * Because of this weird behavior, when we enable laser,
2349 * we may not get link. We need to handle this. We cannot
2350 * figure out which switch is misbehaving. So we are forced to
2351 * make a global change.
1da177e4
LT
2352 */
2353
2354 /* Enabling Laser. */
2355 val64 = readq(&bar0->adapter_control);
2356 val64 |= ADAPTER_EOI_TX_ON;
2357 writeq(val64, &bar0->adapter_control);
2358
c92ca04b
AR
2359 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360 /*
2361 * Dont see link state interrupts initally on some switches,
2362 * so directly scheduling the link state task here.
2363 */
2364 schedule_work(&nic->set_link_task);
2365 }
1da177e4
LT
2366 /* SXE-002: Initialize link and activity LED */
2367 subid = nic->pdev->subsystem_device;
541ae68f
K
2368 if (((subid & 0xFF) >= 0x07) &&
2369 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2370 val64 = readq(&bar0->gpio_control);
2371 val64 |= 0x0000800000000000ULL;
2372 writeq(val64, &bar0->gpio_control);
2373 val64 = 0x0411040400000000ULL;
509a2671 2374 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2375 }
2376
1da177e4
LT
2377 return SUCCESS;
2378}
fed5eccd
AR
2379/**
2380 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 */
d44570e4
JP
2382static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2383 struct TxD *txdlp, int get_off)
fed5eccd 2384{
1ee6dd77 2385 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2386 struct sk_buff *skb;
1ee6dd77 2387 struct TxD *txds;
fed5eccd
AR
2388 u16 j, frg_cnt;
2389
2390 txds = txdlp;
2fda096d 2391 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2392 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2393 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2394 txds++;
2395 }
2396
d44570e4 2397 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2398 if (!skb) {
1ee6dd77 2399 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2400 return NULL;
2401 }
d44570e4
JP
2402 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2403 skb->len - skb->data_len, PCI_DMA_TODEVICE);
fed5eccd
AR
2404 frg_cnt = skb_shinfo(skb)->nr_frags;
2405 if (frg_cnt) {
2406 txds++;
2407 for (j = 0; j < frg_cnt; j++, txds++) {
2408 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2409 if (!txds->Buffer_Pointer)
2410 break;
d44570e4
JP
2411 pci_unmap_page(nic->pdev,
2412 (dma_addr_t)txds->Buffer_Pointer,
fed5eccd
AR
2413 frag->size, PCI_DMA_TODEVICE);
2414 }
2415 }
d44570e4
JP
2416 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2417 return skb;
fed5eccd 2418}
1da177e4 2419
20346722
K
2420/**
2421 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2422 * @nic : device private variable.
20346722 2423 * Description:
1da177e4 2424 * Free all queued Tx buffers.
20346722 2425 * Return Value: void
d44570e4 2426 */
1da177e4
LT
2427
2428static void free_tx_buffers(struct s2io_nic *nic)
2429{
2430 struct net_device *dev = nic->dev;
2431 struct sk_buff *skb;
1ee6dd77 2432 struct TxD *txdp;
1da177e4 2433 int i, j;
fed5eccd 2434 int cnt = 0;
ffb5df6c
JP
2435 struct config_param *config = &nic->config;
2436 struct mac_info *mac_control = &nic->mac_control;
2437 struct stat_block *stats = mac_control->stats_info;
2438 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2439
2440 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2441 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2442 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2443 unsigned long flags;
13d866a9
JP
2444
2445 spin_lock_irqsave(&fifo->tx_lock, flags);
2446 for (j = 0; j < tx_cfg->fifo_len; j++) {
2447 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2448 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2449 if (skb) {
ffb5df6c 2450 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2451 dev_kfree_skb(skb);
2452 cnt++;
1da177e4 2453 }
1da177e4
LT
2454 }
2455 DBG_PRINT(INTR_DBG,
9e39f7c5 2456 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2457 dev->name, cnt, i);
13d866a9
JP
2458 fifo->tx_curr_get_info.offset = 0;
2459 fifo->tx_curr_put_info.offset = 0;
2460 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2461 }
2462}
2463
20346722
K
2464/**
2465 * stop_nic - To stop the nic
1da177e4 2466 * @nic ; device private variable.
20346722
K
2467 * Description:
2468 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2469 * function does. This function is called to stop the device.
2470 * Return Value:
2471 * void.
2472 */
2473
2474static void stop_nic(struct s2io_nic *nic)
2475{
1ee6dd77 2476 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2477 register u64 val64 = 0;
5d3213cc 2478 u16 interruptible;
1da177e4
LT
2479
2480 /* Disable all interrupts */
9caab458 2481 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2482 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2483 interruptible |= TX_PIC_INTR;
1da177e4
LT
2484 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
5d3213cc
AR
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64 = readq(&bar0->adapter_control);
2488 val64 &= ~(ADAPTER_CNTL_EN);
2489 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2490}
2491
20346722
K
2492/**
2493 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2494 * @ring_info: per ring structure
3f78d885
SH
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
20346722 2498 * Description:
1da177e4
LT
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2503 * 1. single buffer,
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
20346722
K
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2510 * supported.
2511 * Return Value:
2512 * SUCCESS on success or an appropriate -ve value on failure.
2513 */
8d8bb39b 2514static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2515 int from_card_up)
1da177e4 2516{
1da177e4 2517 struct sk_buff *skb;
1ee6dd77 2518 struct RxD_t *rxdp;
0425b46a 2519 int off, size, block_no, block_no1;
1da177e4 2520 u32 alloc_tab = 0;
20346722 2521 u32 alloc_cnt;
20346722 2522 u64 tmp;
1ee6dd77 2523 struct buffAdd *ba;
1ee6dd77 2524 struct RxD_t *first_rxdp = NULL;
363dc367 2525 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2526 int rxd_index = 0;
6d517a27
VP
2527 struct RxD1 *rxdp1;
2528 struct RxD3 *rxdp3;
ffb5df6c 2529 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2530
0425b46a 2531 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2532
0425b46a 2533 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2534 while (alloc_tab < alloc_cnt) {
0425b46a 2535 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2536
0425b46a
SH
2537 off = ring->rx_curr_put_info.offset;
2538
2539 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541 rxd_index = off + 1;
2542 if (block_no)
2543 rxd_index += (block_no * ring->rxd_count);
da6971d8 2544
7d2e3cb7 2545 if ((block_no == block_no1) &&
d44570e4
JP
2546 (off == ring->rx_curr_get_info.offset) &&
2547 (rxdp->Host_Control)) {
9e39f7c5
JP
2548 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2549 ring->dev->name);
1da177e4
LT
2550 goto end;
2551 }
0425b46a
SH
2552 if (off && (off == ring->rxd_count)) {
2553 ring->rx_curr_put_info.block_index++;
2554 if (ring->rx_curr_put_info.block_index ==
d44570e4 2555 ring->block_count)
0425b46a
SH
2556 ring->rx_curr_put_info.block_index = 0;
2557 block_no = ring->rx_curr_put_info.block_index;
2558 off = 0;
2559 ring->rx_curr_put_info.offset = off;
2560 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2561 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2562 ring->dev->name, rxdp);
2563
1da177e4 2564 }
c9fcbf47 2565
da6971d8 2566 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2567 ((ring->rxd_mode == RXD_MODE_3B) &&
2568 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2569 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2570 goto end;
2571 }
da6971d8 2572 /* calculate size of skb based on ring mode */
d44570e4
JP
2573 size = ring->mtu +
2574 HEADER_ETHERNET_II_802_3_SIZE +
2575 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2576 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2577 size += NET_IP_ALIGN;
da6971d8 2578 else
0425b46a 2579 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2580
da6971d8
AR
2581 /* allocate skb */
2582 skb = dev_alloc_skb(size);
d44570e4 2583 if (!skb) {
9e39f7c5
JP
2584 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2585 ring->dev->name);
303bcb4b
K
2586 if (first_rxdp) {
2587 wmb();
2588 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589 }
ffb5df6c 2590 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2591
da6971d8
AR
2592 return -ENOMEM ;
2593 }
ffb5df6c 2594 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2595
2596 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2597 /* 1 buffer mode - normal operation mode */
d44570e4 2598 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2599 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2600 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2601 rxdp1->Buffer0_ptr =
2602 pci_map_single(ring->pdev, skb->data,
2603 size - NET_IP_ALIGN,
2604 PCI_DMA_FROMDEVICE);
8d8bb39b 2605 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2606 rxdp1->Buffer0_ptr))
491abf25
VP
2607 goto pci_map_failed;
2608
8a4bdbaa 2609 rxdp->Control_2 =
491976b2 2610 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2611 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2612 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2613 /*
6d517a27
VP
2614 * 2 buffer mode -
2615 * 2 buffer mode provides 128
da6971d8 2616 * byte aligned receive buffers.
da6971d8
AR
2617 */
2618
d44570e4 2619 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2620 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2621 Buffer0_ptr = rxdp3->Buffer0_ptr;
2622 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2623 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2624 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2625 rxdp3->Buffer0_ptr = Buffer0_ptr;
2626 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2627
0425b46a 2628 ba = &ring->ba[block_no][off];
da6971d8 2629 skb_reserve(skb, BUF0_LEN);
d44570e4 2630 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2631 tmp += ALIGN_SIZE;
2632 tmp &= ~ALIGN_SIZE;
2633 skb->data = (void *) (unsigned long)tmp;
27a884dc 2634 skb_reset_tail_pointer(skb);
da6971d8 2635
3f78d885 2636 if (from_card_up) {
6d517a27 2637 rxdp3->Buffer0_ptr =
d44570e4
JP
2638 pci_map_single(ring->pdev, ba->ba_0,
2639 BUF0_LEN,
2640 PCI_DMA_FROMDEVICE);
2641 if (pci_dma_mapping_error(nic->pdev,
2642 rxdp3->Buffer0_ptr))
3f78d885
SH
2643 goto pci_map_failed;
2644 } else
0425b46a 2645 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2646 (dma_addr_t)rxdp3->Buffer0_ptr,
2647 BUF0_LEN,
2648 PCI_DMA_FROMDEVICE);
491abf25 2649
da6971d8 2650 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2651 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2652 /* Two buffer mode */
2653
2654 /*
6aa20a22 2655 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2656 * L4 payload
2657 */
d44570e4
JP
2658 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2659 skb->data,
2660 ring->mtu + 4,
2661 PCI_DMA_FROMDEVICE);
da6971d8 2662
8d8bb39b 2663 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2664 rxdp3->Buffer2_ptr))
491abf25
VP
2665 goto pci_map_failed;
2666
3f78d885 2667 if (from_card_up) {
0425b46a
SH
2668 rxdp3->Buffer1_ptr =
2669 pci_map_single(ring->pdev,
d44570e4
JP
2670 ba->ba_1,
2671 BUF1_LEN,
2672 PCI_DMA_FROMDEVICE);
0425b46a 2673
8d8bb39b 2674 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2675 rxdp3->Buffer1_ptr)) {
2676 pci_unmap_single(ring->pdev,
2677 (dma_addr_t)(unsigned long)
2678 skb->data,
2679 ring->mtu + 4,
2680 PCI_DMA_FROMDEVICE);
3f78d885
SH
2681 goto pci_map_failed;
2682 }
75c30b13 2683 }
da6971d8
AR
2684 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2685 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2686 (ring->mtu + 4);
da6971d8 2687 }
b7b5a128 2688 rxdp->Control_2 |= s2BIT(0);
0425b46a 2689 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2690 }
303bcb4b
K
2691 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2692 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2693 off++;
0425b46a 2694 if (off == (ring->rxd_count + 1))
da6971d8 2695 off = 0;
0425b46a 2696 ring->rx_curr_put_info.offset = off;
20346722 2697
da6971d8 2698 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2699 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2700 if (first_rxdp) {
2701 wmb();
2702 first_rxdp->Control_1 |= RXD_OWN_XENA;
2703 }
2704 first_rxdp = rxdp;
2705 }
0425b46a 2706 ring->rx_bufs_left += 1;
1da177e4
LT
2707 alloc_tab++;
2708 }
2709
d44570e4 2710end:
303bcb4b
K
2711 /* Transfer ownership of first descriptor to adapter just before
2712 * exiting. Before that, use memory barrier so that ownership
2713 * and other fields are seen by adapter correctly.
2714 */
2715 if (first_rxdp) {
2716 wmb();
2717 first_rxdp->Control_1 |= RXD_OWN_XENA;
2718 }
2719
1da177e4 2720 return SUCCESS;
d44570e4 2721
491abf25 2722pci_map_failed:
ffb5df6c
JP
2723 swstats->pci_map_fail_cnt++;
2724 swstats->mem_freed += skb->truesize;
491abf25
VP
2725 dev_kfree_skb_irq(skb);
2726 return -ENOMEM;
1da177e4
LT
2727}
2728
da6971d8
AR
2729static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2730{
2731 struct net_device *dev = sp->dev;
2732 int j;
2733 struct sk_buff *skb;
1ee6dd77 2734 struct RxD_t *rxdp;
1ee6dd77 2735 struct buffAdd *ba;
6d517a27
VP
2736 struct RxD1 *rxdp1;
2737 struct RxD3 *rxdp3;
ffb5df6c
JP
2738 struct mac_info *mac_control = &sp->mac_control;
2739 struct stat_block *stats = mac_control->stats_info;
2740 struct swStat *swstats = &stats->sw_stat;
da6971d8 2741
da6971d8
AR
2742 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2743 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2744 rx_blocks[blk].rxds[j].virt_addr;
2745 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2746 if (!skb)
da6971d8 2747 continue;
da6971d8 2748 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2749 rxdp1 = (struct RxD1 *)rxdp;
2750 pci_unmap_single(sp->pdev,
2751 (dma_addr_t)rxdp1->Buffer0_ptr,
2752 dev->mtu +
2753 HEADER_ETHERNET_II_802_3_SIZE +
2754 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2755 PCI_DMA_FROMDEVICE);
1ee6dd77 2756 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2757 } else if (sp->rxd_mode == RXD_MODE_3B) {
2758 rxdp3 = (struct RxD3 *)rxdp;
2759 ba = &mac_control->rings[ring_no].ba[blk][j];
2760 pci_unmap_single(sp->pdev,
2761 (dma_addr_t)rxdp3->Buffer0_ptr,
2762 BUF0_LEN,
2763 PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(sp->pdev,
2765 (dma_addr_t)rxdp3->Buffer1_ptr,
2766 BUF1_LEN,
2767 PCI_DMA_FROMDEVICE);
2768 pci_unmap_single(sp->pdev,
2769 (dma_addr_t)rxdp3->Buffer2_ptr,
2770 dev->mtu + 4,
2771 PCI_DMA_FROMDEVICE);
1ee6dd77 2772 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2773 }
ffb5df6c 2774 swstats->mem_freed += skb->truesize;
da6971d8 2775 dev_kfree_skb(skb);
0425b46a 2776 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2777 }
2778}
2779
1da177e4 2780/**
20346722 2781 * free_rx_buffers - Frees all Rx buffers
1da177e4 2782 * @sp: device private variable.
20346722 2783 * Description:
1da177e4
LT
2784 * This function will free all Rx buffers allocated by host.
2785 * Return Value:
2786 * NONE.
2787 */
2788
2789static void free_rx_buffers(struct s2io_nic *sp)
2790{
2791 struct net_device *dev = sp->dev;
da6971d8 2792 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2793 struct config_param *config = &sp->config;
2794 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2795
2796 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2797 struct ring_info *ring = &mac_control->rings[i];
2798
da6971d8 2799 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2800 free_rxd_blk(sp, i, blk);
1da177e4 2801
13d866a9
JP
2802 ring->rx_curr_put_info.block_index = 0;
2803 ring->rx_curr_get_info.block_index = 0;
2804 ring->rx_curr_put_info.offset = 0;
2805 ring->rx_curr_get_info.offset = 0;
2806 ring->rx_bufs_left = 0;
9e39f7c5 2807 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2808 dev->name, buf_cnt, i);
2809 }
2810}
2811
8d8bb39b 2812static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2813{
8d8bb39b 2814 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2815 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2816 ring->dev->name);
f61e0a35
SH
2817 }
2818 return 0;
2819}
2820
1da177e4
LT
2821/**
2822 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2823 * @napi : pointer to the napi structure.
20346722 2824 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2825 * during one pass through the 'Poll" function.
2826 * Description:
2827 * Comes into picture only if NAPI support has been incorporated. It does
2828 * the same thing that rx_intr_handler does, but not in a interrupt context
2829 * also It will process only a given number of packets.
2830 * Return value:
2831 * 0 on success and 1 if there are No Rx packets to be processed.
2832 */
2833
f61e0a35 2834static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2835{
f61e0a35
SH
2836 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837 struct net_device *dev = ring->dev;
f61e0a35 2838 int pkts_processed = 0;
1a79d1c3
AV
2839 u8 __iomem *addr = NULL;
2840 u8 val8 = 0;
4cf1653a 2841 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2842 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2843 int budget_org = budget;
1da177e4 2844
f61e0a35
SH
2845 if (unlikely(!is_s2io_card_up(nic)))
2846 return 0;
1da177e4 2847
f61e0a35 2848 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2849 s2io_chk_rx_buffers(nic, ring);
1da177e4 2850
f61e0a35 2851 if (pkts_processed < budget_org) {
288379f0 2852 napi_complete(napi);
f61e0a35 2853 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2854 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2855 addr += 7 - ring->ring_no;
2856 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2857 writeb(val8, addr);
2858 val8 = readb(addr);
1da177e4 2859 }
f61e0a35
SH
2860 return pkts_processed;
2861}
d44570e4 2862
f61e0a35
SH
2863static int s2io_poll_inta(struct napi_struct *napi, int budget)
2864{
2865 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2866 int pkts_processed = 0;
2867 int ring_pkts_processed, i;
2868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2869 int budget_org = budget;
ffb5df6c
JP
2870 struct config_param *config = &nic->config;
2871 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2872
f61e0a35
SH
2873 if (unlikely(!is_s2io_card_up(nic)))
2874 return 0;
1da177e4 2875
1da177e4 2876 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2877 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2878 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2879 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2880 pkts_processed += ring_pkts_processed;
2881 budget -= ring_pkts_processed;
2882 if (budget <= 0)
1da177e4 2883 break;
1da177e4 2884 }
f61e0a35 2885 if (pkts_processed < budget_org) {
288379f0 2886 napi_complete(napi);
f61e0a35
SH
2887 /* Re enable the Rx interrupts for the ring */
2888 writeq(0, &bar0->rx_traffic_mask);
2889 readl(&bar0->rx_traffic_mask);
2890 }
2891 return pkts_processed;
1da177e4 2892}
20346722 2893
b41477f3 2894#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2895/**
b41477f3 2896 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2897 * @dev : pointer to the device structure.
2898 * Description:
b41477f3
AR
2899 * This function will be called by upper layer to check for events on the
2900 * interface in situations where interrupts are disabled. It is used for
2901 * specific in-kernel networking tasks, such as remote consoles and kernel
2902 * debugging over the network (example netdump in RedHat).
612eff0e 2903 */
612eff0e
BH
2904static void s2io_netpoll(struct net_device *dev)
2905{
4cf1653a 2906 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2907 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2908 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2909 int i;
ffb5df6c
JP
2910 struct config_param *config = &nic->config;
2911 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2912
d796fdb7
LV
2913 if (pci_channel_offline(nic->pdev))
2914 return;
2915
612eff0e
BH
2916 disable_irq(dev->irq);
2917
612eff0e 2918 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2919 writeq(val64, &bar0->tx_traffic_int);
2920
6aa20a22 2921 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2922 * run out of skbs and will fail and eventually netpoll application such
2923 * as netdump will fail.
2924 */
2925 for (i = 0; i < config->tx_fifo_num; i++)
2926 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2927
b41477f3 2928 /* check for received packet and indicate up to network */
13d866a9
JP
2929 for (i = 0; i < config->rx_ring_num; i++) {
2930 struct ring_info *ring = &mac_control->rings[i];
2931
2932 rx_intr_handler(ring, 0);
2933 }
612eff0e
BH
2934
2935 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2936 struct ring_info *ring = &mac_control->rings[i];
2937
2938 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2939 DBG_PRINT(INFO_DBG,
2940 "%s: Out of memory in Rx Netpoll!!\n",
2941 dev->name);
612eff0e
BH
2942 break;
2943 }
2944 }
612eff0e
BH
2945 enable_irq(dev->irq);
2946 return;
2947}
2948#endif
2949
20346722 2950/**
1da177e4 2951 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2952 * @ring_info: per ring structure.
2953 * @budget: budget for napi processing.
20346722
K
2954 * Description:
2955 * If the interrupt is because of a received frame or if the
1da177e4 2956 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2957 * called. It picks out the RxD at which place the last Rx processing had
2958 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2959 * the offset.
2960 * Return Value:
f61e0a35 2961 * No. of napi packets processed.
1da177e4 2962 */
f61e0a35 2963static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2964{
c9fcbf47 2965 int get_block, put_block;
1ee6dd77
RB
2966 struct rx_curr_get_info get_info, put_info;
2967 struct RxD_t *rxdp;
1da177e4 2968 struct sk_buff *skb;
f61e0a35 2969 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2970 int i;
d44570e4
JP
2971 struct RxD1 *rxdp1;
2972 struct RxD3 *rxdp3;
7d3d0439 2973
20346722
K
2974 get_info = ring_data->rx_curr_get_info;
2975 get_block = get_info.block_index;
1ee6dd77 2976 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2977 put_block = put_info.block_index;
da6971d8 2978 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2979
da6971d8 2980 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2981 /*
2982 * If your are next to put index then it's
2983 * FIFO full condition
2984 */
da6971d8
AR
2985 if ((get_block == put_block) &&
2986 (get_info.offset + 1) == put_info.offset) {
0425b46a 2987 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2988 ring_data->dev->name);
da6971d8
AR
2989 break;
2990 }
d44570e4 2991 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2992 if (skb == NULL) {
9e39f7c5 2993 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2994 ring_data->dev->name);
f61e0a35 2995 return 0;
1da177e4 2996 }
0425b46a 2997 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2998 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2999 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
3000 rxdp1->Buffer0_ptr,
3001 ring_data->mtu +
3002 HEADER_ETHERNET_II_802_3_SIZE +
3003 HEADER_802_2_SIZE +
3004 HEADER_SNAP_SIZE,
3005 PCI_DMA_FROMDEVICE);
0425b46a 3006 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
3007 rxdp3 = (struct RxD3 *)rxdp;
3008 pci_dma_sync_single_for_cpu(ring_data->pdev,
3009 (dma_addr_t)rxdp3->Buffer0_ptr,
3010 BUF0_LEN,
3011 PCI_DMA_FROMDEVICE);
3012 pci_unmap_single(ring_data->pdev,
3013 (dma_addr_t)rxdp3->Buffer2_ptr,
3014 ring_data->mtu + 4,
3015 PCI_DMA_FROMDEVICE);
da6971d8 3016 }
863c11a9 3017 prefetch(skb->data);
20346722
K
3018 rx_osm_handler(ring_data, rxdp);
3019 get_info.offset++;
da6971d8
AR
3020 ring_data->rx_curr_get_info.offset = get_info.offset;
3021 rxdp = ring_data->rx_blocks[get_block].
d44570e4 3022 rxds[get_info.offset].virt_addr;
0425b46a 3023 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3024 get_info.offset = 0;
da6971d8 3025 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3026 get_block++;
da6971d8
AR
3027 if (get_block == ring_data->block_count)
3028 get_block = 0;
3029 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3030 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3031 }
1da177e4 3032
f61e0a35
SH
3033 if (ring_data->nic->config.napi) {
3034 budget--;
3035 napi_pkts++;
3036 if (!budget)
0425b46a
SH
3037 break;
3038 }
20346722 3039 pkt_cnt++;
1da177e4
LT
3040 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3041 break;
3042 }
0425b46a 3043 if (ring_data->lro) {
7d3d0439 3044 /* Clear all LRO sessions before exiting */
d44570e4 3045 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 3046 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3047 if (lro->in_use) {
0425b46a 3048 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3049 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3050 clear_lro_session(lro);
3051 }
3052 }
3053 }
d44570e4 3054 return napi_pkts;
1da177e4 3055}
20346722
K
3056
3057/**
1da177e4
LT
3058 * tx_intr_handler - Transmit interrupt handler
3059 * @nic : device private variable
20346722
K
3060 * Description:
3061 * If an interrupt was raised to indicate DMA complete of the
3062 * Tx packet, this function is called. It identifies the last TxD
3063 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3064 * DMA'ed into the NICs internal memory.
3065 * Return Value:
3066 * NONE
3067 */
3068
1ee6dd77 3069static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3070{
1ee6dd77 3071 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3072 struct tx_curr_get_info get_info, put_info;
3a3d5756 3073 struct sk_buff *skb = NULL;
1ee6dd77 3074 struct TxD *txdlp;
3a3d5756 3075 int pkt_cnt = 0;
2fda096d 3076 unsigned long flags = 0;
f9046eb3 3077 u8 err_mask;
ffb5df6c
JP
3078 struct stat_block *stats = nic->mac_control.stats_info;
3079 struct swStat *swstats = &stats->sw_stat;
1da177e4 3080
2fda096d 3081 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3082 return;
2fda096d 3083
20346722 3084 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3085 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
d44570e4
JP
3086 txdlp = (struct TxD *)
3087 fifo_data->list_info[get_info.offset].list_virt_addr;
20346722
K
3088 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3089 (get_info.offset != put_info.offset) &&
3090 (txdlp->Host_Control)) {
3091 /* Check for TxD errors */
3092 if (txdlp->Control_1 & TXD_T_CODE) {
3093 unsigned long long err;
3094 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3095 if (err & 0x1) {
ffb5df6c 3096 swstats->parity_err_cnt++;
bd1034f0 3097 }
491976b2
SH
3098
3099 /* update t_code statistics */
f9046eb3 3100 err_mask = err >> 48;
d44570e4
JP
3101 switch (err_mask) {
3102 case 2:
ffb5df6c 3103 swstats->tx_buf_abort_cnt++;
491976b2
SH
3104 break;
3105
d44570e4 3106 case 3:
ffb5df6c 3107 swstats->tx_desc_abort_cnt++;
491976b2
SH
3108 break;
3109
d44570e4 3110 case 7:
ffb5df6c 3111 swstats->tx_parity_err_cnt++;
491976b2
SH
3112 break;
3113
d44570e4 3114 case 10:
ffb5df6c 3115 swstats->tx_link_loss_cnt++;
491976b2
SH
3116 break;
3117
d44570e4 3118 case 15:
ffb5df6c 3119 swstats->tx_list_proc_err_cnt++;
491976b2 3120 break;
d44570e4 3121 }
20346722 3122 }
1da177e4 3123
fed5eccd 3124 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3125 if (skb == NULL) {
2fda096d 3126 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3127 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3128 __func__);
20346722
K
3129 return;
3130 }
3a3d5756 3131 pkt_cnt++;
20346722 3132
20346722 3133 /* Updating the statistics block */
dc56e634 3134 nic->dev->stats.tx_bytes += skb->len;
ffb5df6c 3135 swstats->mem_freed += skb->truesize;
20346722
K
3136 dev_kfree_skb_irq(skb);
3137
3138 get_info.offset++;
863c11a9
AR
3139 if (get_info.offset == get_info.fifo_len + 1)
3140 get_info.offset = 0;
d44570e4
JP
3141 txdlp = (struct TxD *)
3142 fifo_data->list_info[get_info.offset].list_virt_addr;
3143 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3144 }
3145
3a3d5756 3146 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3147
3148 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3149}
3150
bd1034f0
AR
3151/**
3152 * s2io_mdio_write - Function to write in to MDIO registers
3153 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3154 * @addr : address value
3155 * @value : data value
3156 * @dev : pointer to net_device structure
3157 * Description:
3158 * This function is used to write values to the MDIO registers
3159 * NONE
3160 */
d44570e4
JP
3161static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3162 struct net_device *dev)
bd1034f0 3163{
d44570e4 3164 u64 val64;
4cf1653a 3165 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3166 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3167
d44570e4
JP
3168 /* address transaction */
3169 val64 = MDIO_MMD_INDX_ADDR(addr) |
3170 MDIO_MMD_DEV_ADDR(mmd_type) |
3171 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3172 writeq(val64, &bar0->mdio_control);
3173 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3174 writeq(val64, &bar0->mdio_control);
3175 udelay(100);
3176
d44570e4
JP
3177 /* Data transaction */
3178 val64 = MDIO_MMD_INDX_ADDR(addr) |
3179 MDIO_MMD_DEV_ADDR(mmd_type) |
3180 MDIO_MMS_PRT_ADDR(0x0) |
3181 MDIO_MDIO_DATA(value) |
3182 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3183 writeq(val64, &bar0->mdio_control);
3184 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3185 writeq(val64, &bar0->mdio_control);
3186 udelay(100);
3187
d44570e4
JP
3188 val64 = MDIO_MMD_INDX_ADDR(addr) |
3189 MDIO_MMD_DEV_ADDR(mmd_type) |
3190 MDIO_MMS_PRT_ADDR(0x0) |
3191 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3192 writeq(val64, &bar0->mdio_control);
3193 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3194 writeq(val64, &bar0->mdio_control);
3195 udelay(100);
bd1034f0
AR
3196}
3197
3198/**
3199 * s2io_mdio_read - Function to write in to MDIO registers
3200 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3201 * @addr : address value
3202 * @dev : pointer to net_device structure
3203 * Description:
3204 * This function is used to read values to the MDIO registers
3205 * NONE
3206 */
3207static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3208{
3209 u64 val64 = 0x0;
3210 u64 rval64 = 0x0;
4cf1653a 3211 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3212 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3213
3214 /* address transaction */
d44570e4
JP
3215 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3216 | MDIO_MMD_DEV_ADDR(mmd_type)
3217 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3218 writeq(val64, &bar0->mdio_control);
3219 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3220 writeq(val64, &bar0->mdio_control);
3221 udelay(100);
3222
3223 /* Data transaction */
d44570e4
JP
3224 val64 = MDIO_MMD_INDX_ADDR(addr) |
3225 MDIO_MMD_DEV_ADDR(mmd_type) |
3226 MDIO_MMS_PRT_ADDR(0x0) |
3227 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3228 writeq(val64, &bar0->mdio_control);
3229 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3230 writeq(val64, &bar0->mdio_control);
3231 udelay(100);
3232
3233 /* Read the value from regs */
3234 rval64 = readq(&bar0->mdio_control);
3235 rval64 = rval64 & 0xFFFF0000;
3236 rval64 = rval64 >> 16;
3237 return rval64;
3238}
d44570e4 3239
bd1034f0
AR
3240/**
3241 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3242 * @counter : counter value to be updated
bd1034f0
AR
3243 * @flag : flag to indicate the status
3244 * @type : counter type
3245 * Description:
3246 * This function is to check the status of the xpak counters value
3247 * NONE
3248 */
3249
d44570e4
JP
3250static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3251 u16 flag, u16 type)
bd1034f0
AR
3252{
3253 u64 mask = 0x3;
3254 u64 val64;
3255 int i;
d44570e4 3256 for (i = 0; i < index; i++)
bd1034f0
AR
3257 mask = mask << 0x2;
3258
d44570e4 3259 if (flag > 0) {
bd1034f0
AR
3260 *counter = *counter + 1;
3261 val64 = *regs_stat & mask;
3262 val64 = val64 >> (index * 0x2);
3263 val64 = val64 + 1;
d44570e4
JP
3264 if (val64 == 3) {
3265 switch (type) {
bd1034f0 3266 case 1:
9e39f7c5
JP
3267 DBG_PRINT(ERR_DBG,
3268 "Take Xframe NIC out of service.\n");
3269 DBG_PRINT(ERR_DBG,
3270"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3271 break;
bd1034f0 3272 case 2:
9e39f7c5
JP
3273 DBG_PRINT(ERR_DBG,
3274 "Take Xframe NIC out of service.\n");
3275 DBG_PRINT(ERR_DBG,
3276"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3277 break;
bd1034f0 3278 case 3:
9e39f7c5
JP
3279 DBG_PRINT(ERR_DBG,
3280 "Take Xframe NIC out of service.\n");
3281 DBG_PRINT(ERR_DBG,
3282"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3283 break;
bd1034f0 3284 default:
d44570e4
JP
3285 DBG_PRINT(ERR_DBG,
3286 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3287 }
3288 val64 = 0x0;
3289 }
3290 val64 = val64 << (index * 0x2);
3291 *regs_stat = (*regs_stat & (~mask)) | (val64);
3292
3293 } else {
3294 *regs_stat = *regs_stat & (~mask);
3295 }
3296}
3297
3298/**
3299 * s2io_updt_xpak_counter - Function to update the xpak counters
3300 * @dev : pointer to net_device struct
3301 * Description:
3302 * This function is to upate the status of the xpak counters value
3303 * NONE
3304 */
3305static void s2io_updt_xpak_counter(struct net_device *dev)
3306{
3307 u16 flag = 0x0;
3308 u16 type = 0x0;
3309 u16 val16 = 0x0;
3310 u64 val64 = 0x0;
3311 u64 addr = 0x0;
3312
4cf1653a 3313 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3314 struct stat_block *stats = sp->mac_control.stats_info;
3315 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3316
3317 /* Check the communication with the MDIO slave */
40239396 3318 addr = MDIO_CTRL1;
bd1034f0 3319 val64 = 0x0;
40239396 3320 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3321 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3322 DBG_PRINT(ERR_DBG,
3323 "ERR: MDIO slave access failed - Returned %llx\n",
3324 (unsigned long long)val64);
bd1034f0
AR
3325 return;
3326 }
3327
40239396 3328 /* Check for the expected value of control reg 1 */
d44570e4 3329 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3330 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3331 "Returned: %llx- Expected: 0x%x\n",
40239396 3332 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3333 return;
3334 }
3335
3336 /* Loading the DOM register to MDIO register */
3337 addr = 0xA100;
40239396
BH
3338 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3339 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3340
3341 /* Reading the Alarm flags */
3342 addr = 0xA070;
3343 val64 = 0x0;
40239396 3344 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3345
3346 flag = CHECKBIT(val64, 0x7);
3347 type = 1;
ffb5df6c
JP
3348 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3349 &xstats->xpak_regs_stat,
d44570e4 3350 0x0, flag, type);
bd1034f0 3351
d44570e4 3352 if (CHECKBIT(val64, 0x6))
ffb5df6c 3353 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3354
3355 flag = CHECKBIT(val64, 0x3);
3356 type = 2;
ffb5df6c
JP
3357 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3358 &xstats->xpak_regs_stat,
d44570e4 3359 0x2, flag, type);
bd1034f0 3360
d44570e4 3361 if (CHECKBIT(val64, 0x2))
ffb5df6c 3362 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3363
3364 flag = CHECKBIT(val64, 0x1);
3365 type = 3;
ffb5df6c
JP
3366 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3367 &xstats->xpak_regs_stat,
d44570e4 3368 0x4, flag, type);
bd1034f0 3369
d44570e4 3370 if (CHECKBIT(val64, 0x0))
ffb5df6c 3371 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3372
3373 /* Reading the Warning flags */
3374 addr = 0xA074;
3375 val64 = 0x0;
40239396 3376 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3377
d44570e4 3378 if (CHECKBIT(val64, 0x7))
ffb5df6c 3379 xstats->warn_transceiver_temp_high++;
bd1034f0 3380
d44570e4 3381 if (CHECKBIT(val64, 0x6))
ffb5df6c 3382 xstats->warn_transceiver_temp_low++;
bd1034f0 3383
d44570e4 3384 if (CHECKBIT(val64, 0x3))
ffb5df6c 3385 xstats->warn_laser_bias_current_high++;
bd1034f0 3386
d44570e4 3387 if (CHECKBIT(val64, 0x2))
ffb5df6c 3388 xstats->warn_laser_bias_current_low++;
bd1034f0 3389
d44570e4 3390 if (CHECKBIT(val64, 0x1))
ffb5df6c 3391 xstats->warn_laser_output_power_high++;
bd1034f0 3392
d44570e4 3393 if (CHECKBIT(val64, 0x0))
ffb5df6c 3394 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3395}
3396
20346722 3397/**
1da177e4 3398 * wait_for_cmd_complete - waits for a command to complete.
20346722 3399 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3400 * s2io_nic structure.
20346722
K
3401 * Description: Function that waits for a command to Write into RMAC
3402 * ADDR DATA registers to be completed and returns either success or
3403 * error depending on whether the command was complete or not.
1da177e4
LT
3404 * Return value:
3405 * SUCCESS on success and FAILURE on failure.
3406 */
3407
9fc93a41 3408static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3409 int bit_state)
1da177e4 3410{
9fc93a41 3411 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3412 u64 val64;
3413
9fc93a41
SS
3414 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3415 return FAILURE;
3416
3417 do {
c92ca04b 3418 val64 = readq(addr);
9fc93a41
SS
3419 if (bit_state == S2IO_BIT_RESET) {
3420 if (!(val64 & busy_bit)) {
3421 ret = SUCCESS;
3422 break;
3423 }
3424 } else {
2d146eb1 3425 if (val64 & busy_bit) {
9fc93a41
SS
3426 ret = SUCCESS;
3427 break;
3428 }
1da177e4 3429 }
c92ca04b 3430
d44570e4 3431 if (in_interrupt())
9fc93a41 3432 mdelay(delay);
c92ca04b 3433 else
9fc93a41 3434 msleep(delay);
c92ca04b 3435
9fc93a41
SS
3436 if (++cnt >= 10)
3437 delay = 50;
3438 } while (cnt < 20);
1da177e4
LT
3439 return ret;
3440}
19a60522
SS
3441/*
3442 * check_pci_device_id - Checks if the device id is supported
3443 * @id : device id
3444 * Description: Function to check if the pci device id is supported by driver.
3445 * Return value: Actual device id if supported else PCI_ANY_ID
3446 */
3447static u16 check_pci_device_id(u16 id)
3448{
3449 switch (id) {
3450 case PCI_DEVICE_ID_HERC_WIN:
3451 case PCI_DEVICE_ID_HERC_UNI:
3452 return XFRAME_II_DEVICE;
3453 case PCI_DEVICE_ID_S2IO_UNI:
3454 case PCI_DEVICE_ID_S2IO_WIN:
3455 return XFRAME_I_DEVICE;
3456 default:
3457 return PCI_ANY_ID;
3458 }
3459}
1da177e4 3460
20346722
K
3461/**
3462 * s2io_reset - Resets the card.
1da177e4
LT
3463 * @sp : private member of the device structure.
3464 * Description: Function to Reset the card. This function then also
20346722 3465 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3466 * the card reset also resets the configuration space.
3467 * Return value:
3468 * void.
3469 */
3470
d44570e4 3471static void s2io_reset(struct s2io_nic *sp)
1da177e4 3472{
1ee6dd77 3473 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3474 u64 val64;
5e25b9dd 3475 u16 subid, pci_cmd;
19a60522
SS
3476 int i;
3477 u16 val16;
491976b2
SH
3478 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3479 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3480 struct stat_block *stats;
3481 struct swStat *swstats;
491976b2 3482
9e39f7c5 3483 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3484 __func__, pci_name(sp->pdev));
1da177e4 3485
0b1f7ebe 3486 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3487 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3488
1da177e4
LT
3489 val64 = SW_RESET_ALL;
3490 writeq(val64, &bar0->sw_reset);
d44570e4 3491 if (strstr(sp->product_name, "CX4"))
c92ca04b 3492 msleep(750);
19a60522
SS
3493 msleep(250);
3494 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3495
19a60522
SS
3496 /* Restore the PCI state saved during initialization. */
3497 pci_restore_state(sp->pdev);
b8a623bf 3498 pci_save_state(sp->pdev);
19a60522
SS
3499 pci_read_config_word(sp->pdev, 0x2, &val16);
3500 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3501 break;
3502 msleep(200);
3503 }
1da177e4 3504
d44570e4
JP
3505 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3506 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3507
3508 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3509
3510 s2io_init_pci(sp);
1da177e4 3511
20346722
K
3512 /* Set swapper to enable I/O register access */
3513 s2io_set_swapper(sp);
3514
faa4f796
SH
3515 /* restore mac_addr entries */
3516 do_s2io_restore_unicast_mc(sp);
3517
cc6e7c44
RA
3518 /* Restore the MSIX table entries from local variables */
3519 restore_xmsi_data(sp);
3520
5e25b9dd 3521 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3522 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3523 /* Clear "detected parity error" bit */
303bcb4b 3524 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3525
303bcb4b
K
3526 /* Clearing PCIX Ecc status register */
3527 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3528
303bcb4b 3529 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3530 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3531 }
5e25b9dd 3532
20346722 3533 /* Reset device statistics maintained by OS */
d44570e4 3534 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3535
ffb5df6c
JP
3536 stats = sp->mac_control.stats_info;
3537 swstats = &stats->sw_stat;
3538
491976b2 3539 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3540 up_cnt = swstats->link_up_cnt;
3541 down_cnt = swstats->link_down_cnt;
3542 up_time = swstats->link_up_time;
3543 down_time = swstats->link_down_time;
3544 reset_cnt = swstats->soft_reset_cnt;
3545 mem_alloc_cnt = swstats->mem_allocated;
3546 mem_free_cnt = swstats->mem_freed;
3547 watchdog_cnt = swstats->watchdog_timer_cnt;
3548
3549 memset(stats, 0, sizeof(struct stat_block));
3550
491976b2 3551 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3552 swstats->link_up_cnt = up_cnt;
3553 swstats->link_down_cnt = down_cnt;
3554 swstats->link_up_time = up_time;
3555 swstats->link_down_time = down_time;
3556 swstats->soft_reset_cnt = reset_cnt;
3557 swstats->mem_allocated = mem_alloc_cnt;
3558 swstats->mem_freed = mem_free_cnt;
3559 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3560
1da177e4
LT
3561 /* SXE-002: Configure link and activity LED to turn it off */
3562 subid = sp->pdev->subsystem_device;
541ae68f
K
3563 if (((subid & 0xFF) >= 0x07) &&
3564 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3565 val64 = readq(&bar0->gpio_control);
3566 val64 |= 0x0000800000000000ULL;
3567 writeq(val64, &bar0->gpio_control);
3568 val64 = 0x0411040400000000ULL;
509a2671 3569 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3570 }
3571
541ae68f
K
3572 /*
3573 * Clear spurious ECC interrupts that would have occured on
3574 * XFRAME II cards after reset.
3575 */
3576 if (sp->device_type == XFRAME_II_DEVICE) {
3577 val64 = readq(&bar0->pcc_err_reg);
3578 writeq(val64, &bar0->pcc_err_reg);
3579 }
3580
f957bcf0 3581 sp->device_enabled_once = false;
1da177e4
LT
3582}
3583
3584/**
20346722
K
3585 * s2io_set_swapper - to set the swapper controle on the card
3586 * @sp : private member of the device structure,
1da177e4 3587 * pointer to the s2io_nic structure.
20346722 3588 * Description: Function to set the swapper control on the card
1da177e4
LT
3589 * correctly depending on the 'endianness' of the system.
3590 * Return value:
3591 * SUCCESS on success and FAILURE on failure.
3592 */
3593
d44570e4 3594static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3595{
3596 struct net_device *dev = sp->dev;
1ee6dd77 3597 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3598 u64 val64, valt, valr;
3599
20346722 3600 /*
1da177e4
LT
3601 * Set proper endian settings and verify the same by reading
3602 * the PIF Feed-back register.
3603 */
3604
3605 val64 = readq(&bar0->pif_rd_swapper_fb);
3606 if (val64 != 0x0123456789ABCDEFULL) {
3607 int i = 0;
3608 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3609 0x8100008181000081ULL, /* FE=1, SE=0 */
3610 0x4200004242000042ULL, /* FE=0, SE=1 */
3611 0}; /* FE=0, SE=0 */
3612
d44570e4 3613 while (i < 4) {
1da177e4
LT
3614 writeq(value[i], &bar0->swapper_ctrl);
3615 val64 = readq(&bar0->pif_rd_swapper_fb);
3616 if (val64 == 0x0123456789ABCDEFULL)
3617 break;
3618 i++;
3619 }
3620 if (i == 4) {
9e39f7c5
JP
3621 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3622 "feedback read %llx\n",
3623 dev->name, (unsigned long long)val64);
1da177e4
LT
3624 return FAILURE;
3625 }
3626 valr = value[i];
3627 } else {
3628 valr = readq(&bar0->swapper_ctrl);
3629 }
3630
3631 valt = 0x0123456789ABCDEFULL;
3632 writeq(valt, &bar0->xmsi_address);
3633 val64 = readq(&bar0->xmsi_address);
3634
d44570e4 3635 if (val64 != valt) {
1da177e4
LT
3636 int i = 0;
3637 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3638 0x0081810000818100ULL, /* FE=1, SE=0 */
3639 0x0042420000424200ULL, /* FE=0, SE=1 */
3640 0}; /* FE=0, SE=0 */
3641
d44570e4 3642 while (i < 4) {
1da177e4
LT
3643 writeq((value[i] | valr), &bar0->swapper_ctrl);
3644 writeq(valt, &bar0->xmsi_address);
3645 val64 = readq(&bar0->xmsi_address);
d44570e4 3646 if (val64 == valt)
1da177e4
LT
3647 break;
3648 i++;
3649 }
d44570e4 3650 if (i == 4) {
20346722 3651 unsigned long long x = val64;
9e39f7c5
JP
3652 DBG_PRINT(ERR_DBG,
3653 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3654 return FAILURE;
3655 }
3656 }
3657 val64 = readq(&bar0->swapper_ctrl);
3658 val64 &= 0xFFFF000000000000ULL;
3659
d44570e4 3660#ifdef __BIG_ENDIAN
20346722
K
3661 /*
3662 * The device by default set to a big endian format, so a
1da177e4
LT
3663 * big endian driver need not set anything.
3664 */
3665 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3666 SWAPPER_CTRL_TXP_SE |
3667 SWAPPER_CTRL_TXD_R_FE |
3668 SWAPPER_CTRL_TXD_W_FE |
3669 SWAPPER_CTRL_TXF_R_FE |
3670 SWAPPER_CTRL_RXD_R_FE |
3671 SWAPPER_CTRL_RXD_W_FE |
3672 SWAPPER_CTRL_RXF_W_FE |
3673 SWAPPER_CTRL_XMSI_FE |
3674 SWAPPER_CTRL_STATS_FE |
3675 SWAPPER_CTRL_STATS_SE);
eaae7f72 3676 if (sp->config.intr_type == INTA)
cc6e7c44 3677 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3678 writeq(val64, &bar0->swapper_ctrl);
3679#else
20346722 3680 /*
1da177e4 3681 * Initially we enable all bits to make it accessible by the
20346722 3682 * driver, then we selectively enable only those bits that
1da177e4
LT
3683 * we want to set.
3684 */
3685 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3686 SWAPPER_CTRL_TXP_SE |
3687 SWAPPER_CTRL_TXD_R_FE |
3688 SWAPPER_CTRL_TXD_R_SE |
3689 SWAPPER_CTRL_TXD_W_FE |
3690 SWAPPER_CTRL_TXD_W_SE |
3691 SWAPPER_CTRL_TXF_R_FE |
3692 SWAPPER_CTRL_RXD_R_FE |
3693 SWAPPER_CTRL_RXD_R_SE |
3694 SWAPPER_CTRL_RXD_W_FE |
3695 SWAPPER_CTRL_RXD_W_SE |
3696 SWAPPER_CTRL_RXF_W_FE |
3697 SWAPPER_CTRL_XMSI_FE |
3698 SWAPPER_CTRL_STATS_FE |
3699 SWAPPER_CTRL_STATS_SE);
eaae7f72 3700 if (sp->config.intr_type == INTA)
cc6e7c44 3701 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3702 writeq(val64, &bar0->swapper_ctrl);
3703#endif
3704 val64 = readq(&bar0->swapper_ctrl);
3705
20346722
K
3706 /*
3707 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3708 * feedback register.
3709 */
3710 val64 = readq(&bar0->pif_rd_swapper_fb);
3711 if (val64 != 0x0123456789ABCDEFULL) {
3712 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3713 DBG_PRINT(ERR_DBG,
3714 "%s: Endian settings are wrong, feedback read %llx\n",
3715 dev->name, (unsigned long long)val64);
1da177e4
LT
3716 return FAILURE;
3717 }
3718
3719 return SUCCESS;
3720}
3721
1ee6dd77 3722static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3723{
1ee6dd77 3724 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3725 u64 val64;
3726 int ret = 0, cnt = 0;
3727
3728 do {
3729 val64 = readq(&bar0->xmsi_access);
b7b5a128 3730 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3731 break;
3732 mdelay(1);
3733 cnt++;
d44570e4 3734 } while (cnt < 5);
cc6e7c44
RA
3735 if (cnt == 5) {
3736 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3737 ret = 1;
3738 }
3739
3740 return ret;
3741}
3742
1ee6dd77 3743static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3744{
1ee6dd77 3745 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3746 u64 val64;
f61e0a35
SH
3747 int i, msix_index;
3748
f61e0a35
SH
3749 if (nic->device_type == XFRAME_I_DEVICE)
3750 return;
cc6e7c44 3751
d44570e4
JP
3752 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3753 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3754 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3755 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3756 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3757 writeq(val64, &bar0->xmsi_access);
f61e0a35 3758 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3759 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3760 __func__, msix_index);
cc6e7c44
RA
3761 continue;
3762 }
3763 }
3764}
3765
1ee6dd77 3766static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3767{
1ee6dd77 3768 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3769 u64 val64, addr, data;
f61e0a35
SH
3770 int i, msix_index;
3771
3772 if (nic->device_type == XFRAME_I_DEVICE)
3773 return;
cc6e7c44
RA
3774
3775 /* Store and display */
d44570e4
JP
3776 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3777 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3778 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3779 writeq(val64, &bar0->xmsi_access);
f61e0a35 3780 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3781 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3782 __func__, msix_index);
cc6e7c44
RA
3783 continue;
3784 }
3785 addr = readq(&bar0->xmsi_address);
3786 data = readq(&bar0->xmsi_data);
3787 if (addr && data) {
3788 nic->msix_info[i].addr = addr;
3789 nic->msix_info[i].data = data;
3790 }
3791 }
3792}
3793
1ee6dd77 3794static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3795{
1ee6dd77 3796 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3797 u64 rx_mat;
cc6e7c44
RA
3798 u16 msi_control; /* Temp variable */
3799 int ret, i, j, msix_indx = 1;
4f870320 3800 int size;
ffb5df6c
JP
3801 struct stat_block *stats = nic->mac_control.stats_info;
3802 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3803
4f870320 3804 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3805 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3806 if (!nic->entries) {
d44570e4
JP
3807 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3808 __func__);
ffb5df6c 3809 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3810 return -ENOMEM;
3811 }
ffb5df6c 3812 swstats->mem_allocated += size;
f61e0a35 3813
4f870320 3814 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3815 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3816 if (!nic->s2io_entries) {
8a4bdbaa 3817 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3818 __func__);
ffb5df6c 3819 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3820 kfree(nic->entries);
ffb5df6c 3821 swstats->mem_freed
f61e0a35 3822 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3823 return -ENOMEM;
3824 }
ffb5df6c 3825 swstats->mem_allocated += size;
cc6e7c44 3826
ac731ab6
SH
3827 nic->entries[0].entry = 0;
3828 nic->s2io_entries[0].entry = 0;
3829 nic->s2io_entries[0].in_use = MSIX_FLG;
3830 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3831 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3832
f61e0a35
SH
3833 for (i = 1; i < nic->num_entries; i++) {
3834 nic->entries[i].entry = ((i - 1) * 8) + 1;
3835 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3836 nic->s2io_entries[i].arg = NULL;
3837 nic->s2io_entries[i].in_use = 0;
3838 }
3839
8a4bdbaa 3840 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3841 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3842 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3843 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3844 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3845 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3846 msix_indx += 8;
cc6e7c44 3847 }
8a4bdbaa 3848 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3849 readq(&bar0->rx_mat);
cc6e7c44 3850
f61e0a35 3851 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3852 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3853 if (ret) {
9e39f7c5 3854 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3855 kfree(nic->entries);
ffb5df6c
JP
3856 swstats->mem_freed += nic->num_entries *
3857 sizeof(struct msix_entry);
cc6e7c44 3858 kfree(nic->s2io_entries);
ffb5df6c
JP
3859 swstats->mem_freed += nic->num_entries *
3860 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3861 nic->entries = NULL;
3862 nic->s2io_entries = NULL;
3863 return -ENOMEM;
3864 }
3865
3866 /*
3867 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3868 * in the herc NIC. (Temp change, needs to be removed later)
3869 */
3870 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3871 msi_control |= 0x1; /* Enable MSI */
3872 pci_write_config_word(nic->pdev, 0x42, msi_control);
3873
3874 return 0;
3875}
3876
8abc4d5b 3877/* Handle software interrupt used during MSI(X) test */
33390a70 3878static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3879{
3880 struct s2io_nic *sp = dev_id;
3881
3882 sp->msi_detected = 1;
3883 wake_up(&sp->msi_wait);
3884
3885 return IRQ_HANDLED;
3886}
3887
3888/* Test interrupt path by forcing a a software IRQ */
33390a70 3889static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3890{
3891 struct pci_dev *pdev = sp->pdev;
3892 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3893 int err;
3894 u64 val64, saved64;
3895
3896 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3897 sp->name, sp);
8abc4d5b
SS
3898 if (err) {
3899 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3900 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3901 return err;
3902 }
3903
d44570e4 3904 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3905 sp->msi_detected = 0;
3906
3907 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3908 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3909 val64 |= SCHED_INT_CTRL_TIMER_EN;
3910 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3911 writeq(val64, &bar0->scheduled_int_ctrl);
3912
3913 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3914
3915 if (!sp->msi_detected) {
3916 /* MSI(X) test failed, go back to INTx mode */
2450022a 3917 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3918 "using MSI(X) during test\n",
3919 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3920
3921 err = -EOPNOTSUPP;
3922 }
3923
3924 free_irq(sp->entries[1].vector, sp);
3925
3926 writeq(saved64, &bar0->scheduled_int_ctrl);
3927
3928 return err;
3929}
18b2b7bd
SH
3930
3931static void remove_msix_isr(struct s2io_nic *sp)
3932{
3933 int i;
3934 u16 msi_control;
3935
f61e0a35 3936 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3937 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3938 int vector = sp->entries[i].vector;
3939 void *arg = sp->s2io_entries[i].arg;
3940 free_irq(vector, arg);
3941 }
3942 }
3943
3944 kfree(sp->entries);
3945 kfree(sp->s2io_entries);
3946 sp->entries = NULL;
3947 sp->s2io_entries = NULL;
3948
3949 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3950 msi_control &= 0xFFFE; /* Disable MSI */
3951 pci_write_config_word(sp->pdev, 0x42, msi_control);
3952
3953 pci_disable_msix(sp->pdev);
3954}
3955
3956static void remove_inta_isr(struct s2io_nic *sp)
3957{
3958 struct net_device *dev = sp->dev;
3959
3960 free_irq(sp->pdev->irq, dev);
3961}
3962
1da177e4
LT
3963/* ********************************************************* *
3964 * Functions defined below concern the OS part of the driver *
3965 * ********************************************************* */
3966
20346722 3967/**
1da177e4
LT
3968 * s2io_open - open entry point of the driver
3969 * @dev : pointer to the device structure.
3970 * Description:
3971 * This function is the open entry point of the driver. It mainly calls a
3972 * function to allocate Rx buffers and inserts them into the buffer
20346722 3973 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3974 * Return value:
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 * file on failure.
3977 */
3978
ac1f60db 3979static int s2io_open(struct net_device *dev)
1da177e4 3980{
4cf1653a 3981 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3982 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3983 int err = 0;
3984
20346722
K
3985 /*
3986 * Make sure you have link off by default every time
1da177e4
LT
3987 * Nic is initialized
3988 */
3989 netif_carrier_off(dev);
0b1f7ebe 3990 sp->last_link_state = 0;
1da177e4
LT
3991
3992 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3993 err = s2io_card_up(sp);
3994 if (err) {
1da177e4
LT
3995 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3996 dev->name);
e6a8fee2 3997 goto hw_init_failed;
1da177e4
LT
3998 }
3999
2fd37688 4000 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4001 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4002 s2io_card_down(sp);
20346722 4003 err = -ENODEV;
e6a8fee2 4004 goto hw_init_failed;
1da177e4 4005 }
3a3d5756 4006 s2io_start_all_tx_queue(sp);
1da177e4 4007 return 0;
20346722 4008
20346722 4009hw_init_failed:
eaae7f72 4010 if (sp->config.intr_type == MSI_X) {
491976b2 4011 if (sp->entries) {
cc6e7c44 4012 kfree(sp->entries);
ffb5df6c
JP
4013 swstats->mem_freed += sp->num_entries *
4014 sizeof(struct msix_entry);
491976b2
SH
4015 }
4016 if (sp->s2io_entries) {
cc6e7c44 4017 kfree(sp->s2io_entries);
ffb5df6c
JP
4018 swstats->mem_freed += sp->num_entries *
4019 sizeof(struct s2io_msix_entry);
491976b2 4020 }
cc6e7c44 4021 }
20346722 4022 return err;
1da177e4
LT
4023}
4024
4025/**
4026 * s2io_close -close entry point of the driver
4027 * @dev : device pointer.
4028 * Description:
4029 * This is the stop entry point of the driver. It needs to undo exactly
4030 * whatever was done by the open entry point,thus it's usually referred to
4031 * as the close function.Among other things this function mainly stops the
4032 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4033 * Return value:
4034 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4035 * file on failure.
4036 */
4037
ac1f60db 4038static int s2io_close(struct net_device *dev)
1da177e4 4039{
4cf1653a 4040 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4041 struct config_param *config = &sp->config;
4042 u64 tmp64;
4043 int offset;
cc6e7c44 4044
9f74ffde 4045 /* Return if the device is already closed *
d44570e4
JP
4046 * Can happen when s2io_card_up failed in change_mtu *
4047 */
9f74ffde
SH
4048 if (!is_s2io_card_up(sp))
4049 return 0;
4050
3a3d5756 4051 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4052 /* delete all populated mac entries */
4053 for (offset = 1; offset < config->max_mc_addr; offset++) {
4054 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4055 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4056 do_s2io_delete_unicast_mc(sp, tmp64);
4057 }
4058
e6a8fee2 4059 s2io_card_down(sp);
cc6e7c44 4060
1da177e4
LT
4061 return 0;
4062}
4063
4064/**
4065 * s2io_xmit - Tx entry point of te driver
4066 * @skb : the socket buffer containing the Tx data.
4067 * @dev : device pointer.
4068 * Description :
4069 * This function is the Tx entry point of the driver. S2IO NIC supports
4070 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4071 * NOTE: when device cant queue the pkt,just the trans_start variable will
4072 * not be upadted.
4073 * Return value:
4074 * 0 on success & 1 on failure.
4075 */
4076
61357325 4077static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4078{
4cf1653a 4079 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4080 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4081 register u64 val64;
1ee6dd77
RB
4082 struct TxD *txdp;
4083 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4084 unsigned long flags = 0;
be3a6b02 4085 u16 vlan_tag = 0;
2fda096d 4086 struct fifo_info *fifo = NULL;
6cfc482b 4087 int do_spin_lock = 1;
75c30b13 4088 int offload_type;
6cfc482b 4089 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4090 struct config_param *config = &sp->config;
4091 struct mac_info *mac_control = &sp->mac_control;
4092 struct stat_block *stats = mac_control->stats_info;
4093 struct swStat *swstats = &stats->sw_stat;
1da177e4 4094
20346722 4095 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4096
4097 if (unlikely(skb->len <= 0)) {
9e39f7c5 4098 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4099 dev_kfree_skb_any(skb);
6ed10654 4100 return NETDEV_TX_OK;
2fda096d 4101 }
491976b2 4102
92b84437 4103 if (!is_s2io_card_up(sp)) {
20346722 4104 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4105 dev->name);
20346722 4106 dev_kfree_skb(skb);
6ed10654 4107 return NETDEV_TX_OK;
1da177e4
LT
4108 }
4109
4110 queue = 0;
3a3d5756 4111 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4112 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4113 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4114 if (skb->protocol == htons(ETH_P_IP)) {
4115 struct iphdr *ip;
4116 struct tcphdr *th;
4117 ip = ip_hdr(skb);
4118
4119 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4120 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4121 ip->ihl*4);
6cfc482b
SH
4122
4123 if (ip->protocol == IPPROTO_TCP) {
4124 queue_len = sp->total_tcp_fifos;
4125 queue = (ntohs(th->source) +
d44570e4
JP
4126 ntohs(th->dest)) &
4127 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4128 if (queue >= queue_len)
4129 queue = queue_len - 1;
4130 } else if (ip->protocol == IPPROTO_UDP) {
4131 queue_len = sp->total_udp_fifos;
4132 queue = (ntohs(th->source) +
d44570e4
JP
4133 ntohs(th->dest)) &
4134 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4135 if (queue >= queue_len)
4136 queue = queue_len - 1;
4137 queue += sp->udp_fifo_idx;
4138 if (skb->len > 1024)
4139 enable_per_list_interrupt = 1;
4140 do_spin_lock = 0;
4141 }
4142 }
4143 }
4144 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4145 /* get fifo number based on skb->priority value */
4146 queue = config->fifo_mapping
d44570e4 4147 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4148 fifo = &mac_control->fifos[queue];
3a3d5756 4149
6cfc482b
SH
4150 if (do_spin_lock)
4151 spin_lock_irqsave(&fifo->tx_lock, flags);
4152 else {
4153 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4154 return NETDEV_TX_LOCKED;
4155 }
be3a6b02 4156
3a3d5756
SH
4157 if (sp->config.multiq) {
4158 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4159 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4160 return NETDEV_TX_BUSY;
4161 }
b19fa1fa 4162 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4163 if (netif_queue_stopped(dev)) {
4164 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4165 return NETDEV_TX_BUSY;
4166 }
4167 }
4168
d44570e4
JP
4169 put_off = (u16)fifo->tx_curr_put_info.offset;
4170 get_off = (u16)fifo->tx_curr_get_info.offset;
4171 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
20346722 4172
2fda096d 4173 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4174 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4175 if (txdp->Host_Control ||
d44570e4 4176 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4177 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4178 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4179 dev_kfree_skb(skb);
2fda096d 4180 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4181 return NETDEV_TX_OK;
1da177e4 4182 }
0b1f7ebe 4183
75c30b13 4184 offload_type = s2io_offload_type(skb);
75c30b13 4185 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4186 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4187 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4188 }
84fa7933 4189 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4190 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4191 TXD_TX_CKO_TCP_EN |
4192 TXD_TX_CKO_UDP_EN);
1da177e4 4193 }
fed5eccd
AR
4194 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4195 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4196 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4197 if (enable_per_list_interrupt)
4198 if (put_off & (queue_len >> 5))
4199 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4200 if (vlan_tag) {
be3a6b02
K
4201 txdp->Control_2 |= TXD_VLAN_ENABLE;
4202 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4203 }
4204
fed5eccd 4205 frg_len = skb->len - skb->data_len;
75c30b13 4206 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4207 int ufo_size;
4208
75c30b13 4209 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4210 ufo_size &= ~7;
4211 txdp->Control_1 |= TXD_UFO_EN;
4212 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4213 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4214#ifdef __BIG_ENDIAN
3459feb8 4215 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4216 fifo->ufo_in_band_v[put_off] =
d44570e4 4217 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4218#else
2fda096d 4219 fifo->ufo_in_band_v[put_off] =
d44570e4 4220 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4221#endif
2fda096d 4222 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4223 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4224 fifo->ufo_in_band_v,
4225 sizeof(u64),
4226 PCI_DMA_TODEVICE);
8d8bb39b 4227 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4228 goto pci_map_failed;
fed5eccd 4229 txdp++;
fed5eccd 4230 }
1da177e4 4231
d44570e4
JP
4232 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4233 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4234 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4235 goto pci_map_failed;
4236
d44570e4 4237 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4238 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4239 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4240 txdp->Control_1 |= TXD_UFO_EN;
4241
4242 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4243 /* For fragmented SKB. */
4244 for (i = 0; i < frg_cnt; i++) {
4245 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4246 /* A '0' length fragment will be ignored */
4247 if (!frag->size)
4248 continue;
1da177e4 4249 txdp++;
d44570e4
JP
4250 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4251 frag->page_offset,
4252 frag->size,
4253 PCI_DMA_TODEVICE);
efd51b5c 4254 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4255 if (offload_type == SKB_GSO_UDP)
fed5eccd 4256 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4257 }
4258 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4259
75c30b13 4260 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4261 frg_cnt++; /* as Txd0 was used for inband header */
4262
1da177e4 4263 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4264 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4265 writeq(val64, &tx_fifo->TxDL_Pointer);
4266
4267 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4268 TX_FIFO_LAST_LIST);
75c30b13 4269 if (offload_type)
fed5eccd 4270 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4271
1da177e4
LT
4272 writeq(val64, &tx_fifo->List_Control);
4273
303bcb4b
K
4274 mmiowb();
4275
1da177e4 4276 put_off++;
2fda096d 4277 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4278 put_off = 0;
2fda096d 4279 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4280
4281 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4282 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4283 swstats->fifo_full_cnt++;
1da177e4
LT
4284 DBG_PRINT(TX_DBG,
4285 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4286 put_off, get_off);
3a3d5756 4287 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4288 }
ffb5df6c 4289 swstats->mem_allocated += skb->truesize;
2fda096d 4290 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4291
f6f4bfa3
SH
4292 if (sp->config.intr_type == MSI_X)
4293 tx_intr_handler(fifo);
4294
6ed10654 4295 return NETDEV_TX_OK;
ffb5df6c 4296
491abf25 4297pci_map_failed:
ffb5df6c 4298 swstats->pci_map_fail_cnt++;
3a3d5756 4299 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4300 swstats->mem_freed += skb->truesize;
491abf25 4301 dev_kfree_skb(skb);
2fda096d 4302 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4303 return NETDEV_TX_OK;
1da177e4
LT
4304}
4305
25fff88e
K
4306static void
4307s2io_alarm_handle(unsigned long data)
4308{
1ee6dd77 4309 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4310 struct net_device *dev = sp->dev;
25fff88e 4311
8116f3cf 4312 s2io_handle_errors(dev);
25fff88e
K
4313 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4314}
4315
7d12e780 4316static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4317{
1ee6dd77
RB
4318 struct ring_info *ring = (struct ring_info *)dev_id;
4319 struct s2io_nic *sp = ring->nic;
f61e0a35 4320 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4321
f61e0a35 4322 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4323 return IRQ_HANDLED;
92b84437 4324
f61e0a35 4325 if (sp->config.napi) {
1a79d1c3
AV
4326 u8 __iomem *addr = NULL;
4327 u8 val8 = 0;
f61e0a35 4328
1a79d1c3 4329 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4330 addr += (7 - ring->ring_no);
4331 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4332 writeb(val8, addr);
4333 val8 = readb(addr);
288379f0 4334 napi_schedule(&ring->napi);
f61e0a35
SH
4335 } else {
4336 rx_intr_handler(ring, 0);
8d8bb39b 4337 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4338 }
7d3d0439 4339
cc6e7c44
RA
4340 return IRQ_HANDLED;
4341}
4342
7d12e780 4343static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4344{
ac731ab6
SH
4345 int i;
4346 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4347 struct s2io_nic *sp = fifos->nic;
4348 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4349 struct config_param *config = &sp->config;
4350 u64 reason;
cc6e7c44 4351
ac731ab6
SH
4352 if (unlikely(!is_s2io_card_up(sp)))
4353 return IRQ_NONE;
4354
4355 reason = readq(&bar0->general_int_status);
4356 if (unlikely(reason == S2IO_MINUS_ONE))
4357 /* Nothing much can be done. Get out */
92b84437 4358 return IRQ_HANDLED;
92b84437 4359
01e16faa
SH
4360 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4361 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4362
01e16faa
SH
4363 if (reason & GEN_INTR_TXPIC)
4364 s2io_txpic_intr_handle(sp);
ac731ab6 4365
01e16faa
SH
4366 if (reason & GEN_INTR_TXTRAFFIC)
4367 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4368
01e16faa
SH
4369 for (i = 0; i < config->tx_fifo_num; i++)
4370 tx_intr_handler(&fifos[i]);
ac731ab6 4371
01e16faa
SH
4372 writeq(sp->general_int_mask, &bar0->general_int_mask);
4373 readl(&bar0->general_int_status);
4374 return IRQ_HANDLED;
4375 }
4376 /* The interrupt was not raised by us */
4377 return IRQ_NONE;
cc6e7c44 4378}
ac731ab6 4379
1ee6dd77 4380static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4381{
1ee6dd77 4382 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4383 u64 val64;
4384
4385 val64 = readq(&bar0->pic_int_status);
4386 if (val64 & PIC_INT_GPIO) {
4387 val64 = readq(&bar0->gpio_int_reg);
4388 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4389 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4390 /*
4391 * This is unstable state so clear both up/down
4392 * interrupt and adapter to re-evaluate the link state.
4393 */
d44570e4 4394 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d
K
4395 val64 |= GPIO_INT_REG_LINK_UP;
4396 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4397 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4398 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4399 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4400 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4401 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4402 val64 = readq(&bar0->adapter_status);
d44570e4 4403 /* Enable Adapter */
19a60522
SS
4404 val64 = readq(&bar0->adapter_control);
4405 val64 |= ADAPTER_CNTL_EN;
4406 writeq(val64, &bar0->adapter_control);
4407 val64 |= ADAPTER_LED_ON;
4408 writeq(val64, &bar0->adapter_control);
4409 if (!sp->device_enabled_once)
4410 sp->device_enabled_once = 1;
c92ca04b 4411
19a60522
SS
4412 s2io_link(sp, LINK_UP);
4413 /*
4414 * unmask link down interrupt and mask link-up
4415 * intr
4416 */
4417 val64 = readq(&bar0->gpio_int_mask);
4418 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4419 val64 |= GPIO_INT_MASK_LINK_UP;
4420 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4421
d44570e4 4422 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4423 val64 = readq(&bar0->adapter_status);
19a60522
SS
4424 s2io_link(sp, LINK_DOWN);
4425 /* Link is down so unmaks link up interrupt */
4426 val64 = readq(&bar0->gpio_int_mask);
4427 val64 &= ~GPIO_INT_MASK_LINK_UP;
4428 val64 |= GPIO_INT_MASK_LINK_DOWN;
4429 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4430
4431 /* turn off LED */
4432 val64 = readq(&bar0->adapter_control);
d44570e4 4433 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4434 writeq(val64, &bar0->adapter_control);
a371a07d
K
4435 }
4436 }
c92ca04b 4437 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4438}
4439
8116f3cf
SS
4440/**
4441 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4442 * @value: alarm bits
4443 * @addr: address value
4444 * @cnt: counter variable
4445 * Description: Check for alarm and increment the counter
4446 * Return Value:
4447 * 1 - if alarm bit set
4448 * 0 - if alarm bit is not set
4449 */
d44570e4
JP
4450static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4451 unsigned long long *cnt)
8116f3cf
SS
4452{
4453 u64 val64;
4454 val64 = readq(addr);
d44570e4 4455 if (val64 & value) {
8116f3cf
SS
4456 writeq(val64, addr);
4457 (*cnt)++;
4458 return 1;
4459 }
4460 return 0;
4461
4462}
4463
4464/**
4465 * s2io_handle_errors - Xframe error indication handler
4466 * @nic: device private variable
4467 * Description: Handle alarms such as loss of link, single or
4468 * double ECC errors, critical and serious errors.
4469 * Return Value:
4470 * NONE
4471 */
d44570e4 4472static void s2io_handle_errors(void *dev_id)
8116f3cf 4473{
d44570e4 4474 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4475 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4476 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4477 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4478 int i = 0;
4479
4480 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4481 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4482
92b84437 4483 if (!is_s2io_card_up(sp))
8116f3cf
SS
4484 return;
4485
4486 if (pci_channel_offline(sp->pdev))
4487 return;
4488
4489 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4490 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4491
4492 /* Handling the XPAK counters update */
d44570e4 4493 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4494 /* waiting for an hour */
4495 stats->xpak_timer_count++;
4496 } else {
4497 s2io_updt_xpak_counter(dev);
4498 /* reset the count to zero */
4499 stats->xpak_timer_count = 0;
4500 }
4501
4502 /* Handling link status change error Intr */
4503 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4504 val64 = readq(&bar0->mac_rmac_err_reg);
4505 writeq(val64, &bar0->mac_rmac_err_reg);
4506 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4507 schedule_work(&sp->set_link_task);
4508 }
4509
4510 /* In case of a serious error, the device will be Reset. */
4511 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4512 &sw_stat->serious_err_cnt))
8116f3cf
SS
4513 goto reset;
4514
4515 /* Check for data parity error */
4516 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4517 &sw_stat->parity_err_cnt))
8116f3cf
SS
4518 goto reset;
4519
4520 /* Check for ring full counter */
4521 if (sp->device_type == XFRAME_II_DEVICE) {
4522 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4523 for (i = 0; i < 4; i++) {
4524 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4525 temp64 >>= 64 - ((i+1)*16);
4526 sw_stat->ring_full_cnt[i] += temp64;
4527 }
4528
4529 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4530 for (i = 0; i < 4; i++) {
4531 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4532 temp64 >>= 64 - ((i+1)*16);
d44570e4 4533 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4534 }
4535 }
4536
4537 val64 = readq(&bar0->txdma_int_status);
4538 /*check for pfc_err*/
4539 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4540 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4541 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4542 PFC_PCIX_ERR,
4543 &bar0->pfc_err_reg,
4544 &sw_stat->pfc_err_cnt))
8116f3cf 4545 goto reset;
d44570e4
JP
4546 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4547 &bar0->pfc_err_reg,
4548 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4549 }
4550
4551 /*check for tda_err*/
4552 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4553 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4554 TDA_SM0_ERR_ALARM |
4555 TDA_SM1_ERR_ALARM,
4556 &bar0->tda_err_reg,
4557 &sw_stat->tda_err_cnt))
8116f3cf
SS
4558 goto reset;
4559 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4560 &bar0->tda_err_reg,
4561 &sw_stat->tda_err_cnt);
8116f3cf
SS
4562 }
4563 /*check for pcc_err*/
4564 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4565 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4566 PCC_N_SERR | PCC_6_COF_OV_ERR |
4567 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4568 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4569 PCC_TXB_ECC_DB_ERR,
4570 &bar0->pcc_err_reg,
4571 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4572 goto reset;
4573 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4574 &bar0->pcc_err_reg,
4575 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4576 }
4577
4578 /*check for tti_err*/
4579 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4580 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4581 &bar0->tti_err_reg,
4582 &sw_stat->tti_err_cnt))
8116f3cf
SS
4583 goto reset;
4584 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4585 &bar0->tti_err_reg,
4586 &sw_stat->tti_err_cnt);
8116f3cf
SS
4587 }
4588
4589 /*check for lso_err*/
4590 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4591 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4592 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4593 &bar0->lso_err_reg,
4594 &sw_stat->lso_err_cnt))
8116f3cf
SS
4595 goto reset;
4596 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4597 &bar0->lso_err_reg,
4598 &sw_stat->lso_err_cnt);
8116f3cf
SS
4599 }
4600
4601 /*check for tpa_err*/
4602 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4603 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4604 &bar0->tpa_err_reg,
4605 &sw_stat->tpa_err_cnt))
8116f3cf 4606 goto reset;
d44570e4
JP
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4608 &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4610 }
4611
4612 /*check for sm_err*/
4613 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4615 &bar0->sm_err_reg,
4616 &sw_stat->sm_err_cnt))
8116f3cf
SS
4617 goto reset;
4618 }
4619
4620 val64 = readq(&bar0->mac_int_status);
4621 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4622 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4623 &bar0->mac_tmac_err_reg,
4624 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4625 goto reset;
d44570e4
JP
4626 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4627 TMAC_DESC_ECC_SG_ERR |
4628 TMAC_DESC_ECC_DB_ERR,
4629 &bar0->mac_tmac_err_reg,
4630 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4631 }
4632
4633 val64 = readq(&bar0->xgxs_int_status);
4634 if (val64 & XGXS_INT_STATUS_TXGXS) {
4635 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4636 &bar0->xgxs_txgxs_err_reg,
4637 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4638 goto reset;
4639 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4640 &bar0->xgxs_txgxs_err_reg,
4641 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4642 }
4643
4644 val64 = readq(&bar0->rxdma_int_status);
4645 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4646 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4647 RC_FTC_ECC_DB_ERR |
4648 RC_PRCn_SM_ERR_ALARM |
4649 RC_FTC_SM_ERR_ALARM,
4650 &bar0->rc_err_reg,
4651 &sw_stat->rc_err_cnt))
8116f3cf 4652 goto reset;
d44570e4
JP
4653 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4654 RC_FTC_ECC_SG_ERR |
4655 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4656 &sw_stat->rc_err_cnt);
4657 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4658 PRC_PCI_AB_WR_Rn |
4659 PRC_PCI_AB_F_WR_Rn,
4660 &bar0->prc_pcix_err_reg,
4661 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4662 goto reset;
d44570e4
JP
4663 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4664 PRC_PCI_DP_WR_Rn |
4665 PRC_PCI_DP_F_WR_Rn,
4666 &bar0->prc_pcix_err_reg,
4667 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4668 }
4669
4670 if (val64 & RXDMA_INT_RPA_INT_M) {
4671 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4672 &bar0->rpa_err_reg,
4673 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4674 goto reset;
4675 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4676 &bar0->rpa_err_reg,
4677 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4678 }
4679
4680 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4681 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4682 RDA_FRM_ECC_DB_N_AERR |
4683 RDA_SM1_ERR_ALARM |
4684 RDA_SM0_ERR_ALARM |
4685 RDA_RXD_ECC_DB_SERR,
4686 &bar0->rda_err_reg,
4687 &sw_stat->rda_err_cnt))
8116f3cf 4688 goto reset;
d44570e4
JP
4689 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4690 RDA_FRM_ECC_SG_ERR |
4691 RDA_MISC_ERR |
4692 RDA_PCIX_ERR,
4693 &bar0->rda_err_reg,
4694 &sw_stat->rda_err_cnt);
8116f3cf
SS
4695 }
4696
4697 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4698 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4699 &bar0->rti_err_reg,
4700 &sw_stat->rti_err_cnt))
8116f3cf
SS
4701 goto reset;
4702 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4703 &bar0->rti_err_reg,
4704 &sw_stat->rti_err_cnt);
8116f3cf
SS
4705 }
4706
4707 val64 = readq(&bar0->mac_int_status);
4708 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4709 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4710 &bar0->mac_rmac_err_reg,
4711 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4712 goto reset;
d44570e4
JP
4713 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4714 RMAC_SINGLE_ECC_ERR |
4715 RMAC_DOUBLE_ECC_ERR,
4716 &bar0->mac_rmac_err_reg,
4717 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4718 }
4719
4720 val64 = readq(&bar0->xgxs_int_status);
4721 if (val64 & XGXS_INT_STATUS_RXGXS) {
4722 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4723 &bar0->xgxs_rxgxs_err_reg,
4724 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4725 goto reset;
4726 }
4727
4728 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4729 if (val64 & MC_INT_STATUS_MC_INT) {
4730 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4731 &bar0->mc_err_reg,
4732 &sw_stat->mc_err_cnt))
8116f3cf
SS
4733 goto reset;
4734
4735 /* Handling Ecc errors */
4736 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4737 writeq(val64, &bar0->mc_err_reg);
4738 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4739 sw_stat->double_ecc_errs++;
4740 if (sp->device_type != XFRAME_II_DEVICE) {
4741 /*
4742 * Reset XframeI only if critical error
4743 */
4744 if (val64 &
d44570e4
JP
4745 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4746 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4747 goto reset;
4748 }
8116f3cf
SS
4749 } else
4750 sw_stat->single_ecc_errs++;
4751 }
4752 }
4753 return;
4754
4755reset:
3a3d5756 4756 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4757 schedule_work(&sp->rst_timer_task);
4758 sw_stat->soft_reset_cnt++;
4759 return;
4760}
4761
1da177e4
LT
4762/**
4763 * s2io_isr - ISR handler of the device .
4764 * @irq: the irq of the device.
4765 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4766 * Description: This function is the ISR handler of the device. It
4767 * identifies the reason for the interrupt and calls the relevant
4768 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4769 * recv buffers, if their numbers are below the panic value which is
4770 * presently set to 25% of the original number of rcv buffers allocated.
4771 * Return value:
20346722 4772 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4773 * IRQ_NONE: will be returned if interrupt is not from our device
4774 */
7d12e780 4775static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4776{
d44570e4 4777 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4778 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4779 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4780 int i;
19a60522 4781 u64 reason = 0;
1ee6dd77 4782 struct mac_info *mac_control;
1da177e4
LT
4783 struct config_param *config;
4784
d796fdb7
LV
4785 /* Pretend we handled any irq's from a disconnected card */
4786 if (pci_channel_offline(sp->pdev))
4787 return IRQ_NONE;
4788
596c5c97 4789 if (!is_s2io_card_up(sp))
92b84437 4790 return IRQ_NONE;
92b84437 4791
1da177e4 4792 config = &sp->config;
ffb5df6c 4793 mac_control = &sp->mac_control;
1da177e4 4794
20346722 4795 /*
1da177e4
LT
4796 * Identify the cause for interrupt and call the appropriate
4797 * interrupt handler. Causes for the interrupt could be;
4798 * 1. Rx of packet.
4799 * 2. Tx complete.
4800 * 3. Link down.
1da177e4
LT
4801 */
4802 reason = readq(&bar0->general_int_status);
4803
d44570e4
JP
4804 if (unlikely(reason == S2IO_MINUS_ONE))
4805 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4806
d44570e4
JP
4807 if (reason &
4808 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4809 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4810
4811 if (config->napi) {
4812 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4813 napi_schedule(&sp->napi);
f61e0a35
SH
4814 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4815 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4816 readl(&bar0->rx_traffic_int);
db874e65 4817 }
596c5c97
SS
4818 } else {
4819 /*
4820 * rx_traffic_int reg is an R1 register, writing all 1's
4821 * will ensure that the actual interrupt causing bit
4822 * get's cleared and hence a read can be avoided.
4823 */
4824 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4825 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4826
13d866a9
JP
4827 for (i = 0; i < config->rx_ring_num; i++) {
4828 struct ring_info *ring = &mac_control->rings[i];
4829
4830 rx_intr_handler(ring, 0);
4831 }
db874e65 4832 }
596c5c97 4833
db874e65 4834 /*
596c5c97 4835 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4836 * will ensure that the actual interrupt causing bit get's
4837 * cleared and hence a read can be avoided.
4838 */
596c5c97
SS
4839 if (reason & GEN_INTR_TXTRAFFIC)
4840 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4841
596c5c97
SS
4842 for (i = 0; i < config->tx_fifo_num; i++)
4843 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4844
596c5c97
SS
4845 if (reason & GEN_INTR_TXPIC)
4846 s2io_txpic_intr_handle(sp);
fe113638 4847
596c5c97
SS
4848 /*
4849 * Reallocate the buffers from the interrupt handler itself.
4850 */
4851 if (!config->napi) {
13d866a9
JP
4852 for (i = 0; i < config->rx_ring_num; i++) {
4853 struct ring_info *ring = &mac_control->rings[i];
4854
4855 s2io_chk_rx_buffers(sp, ring);
4856 }
596c5c97
SS
4857 }
4858 writeq(sp->general_int_mask, &bar0->general_int_mask);
4859 readl(&bar0->general_int_status);
20346722 4860
596c5c97 4861 return IRQ_HANDLED;
db874e65 4862
d44570e4 4863 } else if (!reason) {
596c5c97
SS
4864 /* The interrupt was not raised by us */
4865 return IRQ_NONE;
4866 }
db874e65 4867
1da177e4
LT
4868 return IRQ_HANDLED;
4869}
4870
7ba013ac
K
4871/**
4872 * s2io_updt_stats -
4873 */
1ee6dd77 4874static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4875{
1ee6dd77 4876 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4877 u64 val64;
4878 int cnt = 0;
4879
92b84437 4880 if (is_s2io_card_up(sp)) {
7ba013ac
K
4881 /* Apprx 30us on a 133 MHz bus */
4882 val64 = SET_UPDT_CLICKS(10) |
4883 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4884 writeq(val64, &bar0->stat_cfg);
4885 do {
4886 udelay(100);
4887 val64 = readq(&bar0->stat_cfg);
b7b5a128 4888 if (!(val64 & s2BIT(0)))
7ba013ac
K
4889 break;
4890 cnt++;
4891 if (cnt == 5)
4892 break; /* Updt failed */
d44570e4 4893 } while (1);
8a4bdbaa 4894 }
7ba013ac
K
4895}
4896
1da177e4 4897/**
20346722 4898 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4899 * @dev : pointer to the device structure.
4900 * Description:
20346722 4901 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4902 * structure and returns a pointer to the same.
4903 * Return value:
4904 * pointer to the updated net_device_stats structure.
4905 */
4906
ac1f60db 4907static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4908{
4cf1653a 4909 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4910 struct config_param *config = &sp->config;
4911 struct mac_info *mac_control = &sp->mac_control;
4912 struct stat_block *stats = mac_control->stats_info;
0425b46a 4913 int i;
1da177e4 4914
7ba013ac
K
4915 /* Configure Stats for immediate updt */
4916 s2io_updt_stats(sp);
4917
dc56e634
BL
4918 /* Using sp->stats as a staging area, because reset (due to mtu
4919 change, for example) will clear some hardware counters */
ffb5df6c 4920 dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
dc56e634 4921 sp->stats.tx_packets;
ffb5df6c
JP
4922 sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4923
4924 dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
dc56e634 4925 sp->stats.tx_errors;
ffb5df6c
JP
4926 sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4927
4928 dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
dc56e634 4929 sp->stats.rx_errors;
ffb5df6c
JP
4930 sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4931
4932 dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
dc56e634 4933 sp->stats.multicast;
ffb5df6c
JP
4934 sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4935
4936 dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
dc56e634 4937 sp->stats.rx_length_errors;
ffb5df6c 4938 sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
1da177e4 4939
0425b46a 4940 /* collect per-ring rx_packets and rx_bytes */
dc56e634 4941 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
0425b46a 4942 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
4943 struct ring_info *ring = &mac_control->rings[i];
4944
4945 dev->stats.rx_packets += ring->rx_packets;
4946 dev->stats.rx_bytes += ring->rx_bytes;
0425b46a
SH
4947 }
4948
d44570e4 4949 return &dev->stats;
1da177e4
LT
4950}
4951
4952/**
4953 * s2io_set_multicast - entry point for multicast address enable/disable.
4954 * @dev : pointer to the device structure
4955 * Description:
20346722
K
4956 * This function is a driver entry point which gets called by the kernel
4957 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4958 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4959 * determine, if multicast address must be enabled or if promiscuous mode
4960 * is to be disabled etc.
4961 * Return value:
4962 * void.
4963 */
4964
4965static void s2io_set_multicast(struct net_device *dev)
4966{
4967 int i, j, prev_cnt;
4968 struct dev_mc_list *mclist;
4cf1653a 4969 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4970 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4971 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 4972 0xfeffffffffffULL;
faa4f796 4973 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4974 void __iomem *add;
faa4f796 4975 struct config_param *config = &sp->config;
1da177e4
LT
4976
4977 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4978 /* Enable all Multicast addresses */
4979 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4980 &bar0->rmac_addr_data0_mem);
4981 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4982 &bar0->rmac_addr_data1_mem);
4983 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4984 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4985 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4986 writeq(val64, &bar0->rmac_addr_cmd_mem);
4987 /* Wait till command completes */
c92ca04b 4988 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4989 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4990 S2IO_BIT_RESET);
1da177e4
LT
4991
4992 sp->m_cast_flg = 1;
faa4f796 4993 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4994 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4995 /* Disable all Multicast addresses */
4996 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4997 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4998 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4999 &bar0->rmac_addr_data1_mem);
1da177e4 5000 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5001 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5002 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
5003 writeq(val64, &bar0->rmac_addr_cmd_mem);
5004 /* Wait till command completes */
c92ca04b 5005 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5006 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5007 S2IO_BIT_RESET);
1da177e4
LT
5008
5009 sp->m_cast_flg = 0;
5010 sp->all_multi_pos = 0;
5011 }
5012
5013 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5014 /* Put the NIC into promiscuous mode */
5015 add = &bar0->mac_cfg;
5016 val64 = readq(&bar0->mac_cfg);
5017 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5018
5019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5020 writel((u32)val64, add);
1da177e4
LT
5021 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5022 writel((u32) (val64 >> 32), (add + 4));
5023
926930b2
SS
5024 if (vlan_tag_strip != 1) {
5025 val64 = readq(&bar0->rx_pa_cfg);
5026 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5027 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5028 sp->vlan_strip_flag = 0;
926930b2
SS
5029 }
5030
1da177e4
LT
5031 val64 = readq(&bar0->mac_cfg);
5032 sp->promisc_flg = 1;
776bd20f 5033 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5034 dev->name);
5035 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5036 /* Remove the NIC from promiscuous mode */
5037 add = &bar0->mac_cfg;
5038 val64 = readq(&bar0->mac_cfg);
5039 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5040
5041 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5042 writel((u32)val64, add);
1da177e4
LT
5043 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5044 writel((u32) (val64 >> 32), (add + 4));
5045
926930b2
SS
5046 if (vlan_tag_strip != 0) {
5047 val64 = readq(&bar0->rx_pa_cfg);
5048 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5049 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5050 sp->vlan_strip_flag = 1;
926930b2
SS
5051 }
5052
1da177e4
LT
5053 val64 = readq(&bar0->mac_cfg);
5054 sp->promisc_flg = 0;
9e39f7c5 5055 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5056 }
5057
5058 /* Update individual M_CAST address list */
4cd24eaf
JP
5059 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5060 if (netdev_mc_count(dev) >
faa4f796 5061 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5062 DBG_PRINT(ERR_DBG,
5063 "%s: No more Rx filters can be added - "
5064 "please enable ALL_MULTI instead\n",
1da177e4 5065 dev->name);
1da177e4
LT
5066 return;
5067 }
5068
5069 prev_cnt = sp->mc_addr_count;
4cd24eaf 5070 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5071
5072 /* Clear out the previous list of Mc in the H/W. */
5073 for (i = 0; i < prev_cnt; i++) {
5074 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5075 &bar0->rmac_addr_data0_mem);
5076 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5077 &bar0->rmac_addr_data1_mem);
1da177e4 5078 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5079 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5080 RMAC_ADDR_CMD_MEM_OFFSET
5081 (config->mc_start_offset + i);
1da177e4
LT
5082 writeq(val64, &bar0->rmac_addr_cmd_mem);
5083
5084 /* Wait for command completes */
c92ca04b 5085 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5086 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5087 S2IO_BIT_RESET)) {
9e39f7c5
JP
5088 DBG_PRINT(ERR_DBG,
5089 "%s: Adding Multicasts failed\n",
5090 dev->name);
1da177e4
LT
5091 return;
5092 }
5093 }
5094
5095 /* Create the new Rx filter list and update the same in H/W. */
5508590c
JP
5096 i = 0;
5097 netdev_for_each_mc_addr(mclist, dev) {
1da177e4
LT
5098 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5099 ETH_ALEN);
a7a80d5a 5100 mac_addr = 0;
1da177e4
LT
5101 for (j = 0; j < ETH_ALEN; j++) {
5102 mac_addr |= mclist->dmi_addr[j];
5103 mac_addr <<= 8;
5104 }
5105 mac_addr >>= 8;
5106 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5107 &bar0->rmac_addr_data0_mem);
5108 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5109 &bar0->rmac_addr_data1_mem);
1da177e4 5110 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5111 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5112 RMAC_ADDR_CMD_MEM_OFFSET
5113 (i + config->mc_start_offset);
1da177e4
LT
5114 writeq(val64, &bar0->rmac_addr_cmd_mem);
5115
5116 /* Wait for command completes */
c92ca04b 5117 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5118 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5119 S2IO_BIT_RESET)) {
9e39f7c5
JP
5120 DBG_PRINT(ERR_DBG,
5121 "%s: Adding Multicasts failed\n",
5122 dev->name);
1da177e4
LT
5123 return;
5124 }
5508590c 5125 i++;
1da177e4
LT
5126 }
5127 }
5128}
5129
faa4f796
SH
5130/* read from CAM unicast & multicast addresses and store it in
5131 * def_mac_addr structure
5132 */
dac499f9 5133static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5134{
5135 int offset;
5136 u64 mac_addr = 0x0;
5137 struct config_param *config = &sp->config;
5138
5139 /* store unicast & multicast mac addresses */
5140 for (offset = 0; offset < config->max_mc_addr; offset++) {
5141 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5142 /* if read fails disable the entry */
5143 if (mac_addr == FAILURE)
5144 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5145 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5146 }
5147}
5148
5149/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5150static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5151{
5152 int offset;
5153 struct config_param *config = &sp->config;
5154 /* restore unicast mac address */
5155 for (offset = 0; offset < config->max_mac_addr; offset++)
5156 do_s2io_prog_unicast(sp->dev,
d44570e4 5157 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5158
5159 /* restore multicast mac address */
5160 for (offset = config->mc_start_offset;
d44570e4 5161 offset < config->max_mc_addr; offset++)
faa4f796
SH
5162 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5163}
5164
5165/* add a multicast MAC address to CAM */
5166static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5167{
5168 int i;
5169 u64 mac_addr = 0;
5170 struct config_param *config = &sp->config;
5171
5172 for (i = 0; i < ETH_ALEN; i++) {
5173 mac_addr <<= 8;
5174 mac_addr |= addr[i];
5175 }
5176 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5177 return SUCCESS;
5178
5179 /* check if the multicast mac already preset in CAM */
5180 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5181 u64 tmp64;
5182 tmp64 = do_s2io_read_unicast_mc(sp, i);
5183 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5184 break;
5185
5186 if (tmp64 == mac_addr)
5187 return SUCCESS;
5188 }
5189 if (i == config->max_mc_addr) {
5190 DBG_PRINT(ERR_DBG,
d44570e4 5191 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5192 return FAILURE;
5193 }
5194 /* Update the internal structure with this new mac address */
5195 do_s2io_copy_mac_addr(sp, i, mac_addr);
5196
d44570e4 5197 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5198}
5199
5200/* add MAC address to CAM */
5201static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5202{
5203 u64 val64;
5204 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5205
5206 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5207 &bar0->rmac_addr_data0_mem);
2fd37688 5208
d44570e4 5209 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5210 RMAC_ADDR_CMD_MEM_OFFSET(off);
5211 writeq(val64, &bar0->rmac_addr_cmd_mem);
5212
5213 /* Wait till command completes */
5214 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5215 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5216 S2IO_BIT_RESET)) {
faa4f796 5217 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5218 return FAILURE;
5219 }
5220 return SUCCESS;
5221}
faa4f796
SH
5222/* deletes a specified unicast/multicast mac entry from CAM */
5223static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5224{
5225 int offset;
5226 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5227 struct config_param *config = &sp->config;
5228
5229 for (offset = 1;
d44570e4 5230 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5231 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5232 if (tmp64 == addr) {
5233 /* disable the entry by writing 0xffffffffffffULL */
5234 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5235 return FAILURE;
5236 /* store the new mac list from CAM */
5237 do_s2io_store_unicast_mc(sp);
5238 return SUCCESS;
5239 }
5240 }
5241 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5242 (unsigned long long)addr);
faa4f796
SH
5243 return FAILURE;
5244}
5245
5246/* read mac entries from CAM */
5247static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5248{
5249 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5251
5252 /* read mac addr */
d44570e4 5253 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5254 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5255 writeq(val64, &bar0->rmac_addr_cmd_mem);
5256
5257 /* Wait till command completes */
5258 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5259 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5260 S2IO_BIT_RESET)) {
faa4f796
SH
5261 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5262 return FAILURE;
5263 }
5264 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5265
5266 return tmp64 >> 16;
faa4f796 5267}
2fd37688
SS
5268
5269/**
5270 * s2io_set_mac_addr driver entry point
5271 */
faa4f796 5272
2fd37688
SS
5273static int s2io_set_mac_addr(struct net_device *dev, void *p)
5274{
5275 struct sockaddr *addr = p;
5276
5277 if (!is_valid_ether_addr(addr->sa_data))
5278 return -EINVAL;
5279
5280 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5281
5282 /* store the MAC address in CAM */
d44570e4 5283 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5284}
1da177e4 5285/**
2fd37688 5286 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5287 * @dev : pointer to the device structure.
5288 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5289 * Description : This procedure will program the Xframe to receive
1da177e4 5290 * frames with new Mac Address
20346722 5291 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5292 * as defined in errno.h file on failure.
5293 */
faa4f796 5294
2fd37688 5295static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5296{
4cf1653a 5297 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5298 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5299 int i;
faa4f796
SH
5300 u64 tmp64;
5301 struct config_param *config = &sp->config;
1da177e4 5302
20346722 5303 /*
d44570e4
JP
5304 * Set the new MAC address as the new unicast filter and reflect this
5305 * change on the device address registered with the OS. It will be
5306 * at offset 0.
5307 */
1da177e4
LT
5308 for (i = 0; i < ETH_ALEN; i++) {
5309 mac_addr <<= 8;
5310 mac_addr |= addr[i];
2fd37688
SS
5311 perm_addr <<= 8;
5312 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5313 }
5314
2fd37688
SS
5315 /* check if the dev_addr is different than perm_addr */
5316 if (mac_addr == perm_addr)
d8d70caf
SS
5317 return SUCCESS;
5318
faa4f796
SH
5319 /* check if the mac already preset in CAM */
5320 for (i = 1; i < config->max_mac_addr; i++) {
5321 tmp64 = do_s2io_read_unicast_mc(sp, i);
5322 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5323 break;
5324
5325 if (tmp64 == mac_addr) {
5326 DBG_PRINT(INFO_DBG,
d44570e4
JP
5327 "MAC addr:0x%llx already present in CAM\n",
5328 (unsigned long long)mac_addr);
faa4f796
SH
5329 return SUCCESS;
5330 }
5331 }
5332 if (i == config->max_mac_addr) {
5333 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5334 return FAILURE;
5335 }
d8d70caf 5336 /* Update the internal structure with this new mac address */
faa4f796 5337 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5338
5339 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5340}
5341
5342/**
20346722 5343 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5344 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5345 * @info: pointer to the structure with parameters given by ethtool to set
5346 * link information.
5347 * Description:
20346722 5348 * The function sets different link parameters provided by the user onto
1da177e4
LT
5349 * the NIC.
5350 * Return value:
5351 * 0 on success.
d44570e4 5352 */
1da177e4
LT
5353
5354static int s2io_ethtool_sset(struct net_device *dev,
5355 struct ethtool_cmd *info)
5356{
4cf1653a 5357 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5358 if ((info->autoneg == AUTONEG_ENABLE) ||
d44570e4
JP
5359 (info->speed != SPEED_10000) ||
5360 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5361 return -EINVAL;
5362 else {
5363 s2io_close(sp->dev);
5364 s2io_open(sp->dev);
5365 }
5366
5367 return 0;
5368}
5369
5370/**
20346722 5371 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5372 * @sp : private member of the device structure, pointer to the
5373 * s2io_nic structure.
5374 * @info : pointer to the structure with parameters given by ethtool
5375 * to return link information.
5376 * Description:
5377 * Returns link specific information like speed, duplex etc.. to ethtool.
5378 * Return value :
5379 * return 0 on success.
5380 */
5381
5382static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5383{
4cf1653a 5384 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5385 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5386 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5387 info->port = PORT_FIBRE;
1a7eb72b
SS
5388
5389 /* info->transceiver */
5390 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5391
5392 if (netif_carrier_ok(sp->dev)) {
5393 info->speed = 10000;
5394 info->duplex = DUPLEX_FULL;
5395 } else {
5396 info->speed = -1;
5397 info->duplex = -1;
5398 }
5399
5400 info->autoneg = AUTONEG_DISABLE;
5401 return 0;
5402}
5403
5404/**
20346722
K
5405 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5406 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5407 * s2io_nic structure.
5408 * @info : pointer to the structure with parameters given by ethtool to
5409 * return driver information.
5410 * Description:
5411 * Returns driver specefic information like name, version etc.. to ethtool.
5412 * Return value:
5413 * void
5414 */
5415
5416static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5417 struct ethtool_drvinfo *info)
5418{
4cf1653a 5419 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5420
dbc2309d
JL
5421 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5422 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5423 strncpy(info->fw_version, "", sizeof(info->fw_version));
5424 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5425 info->regdump_len = XENA_REG_SPACE;
5426 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5427}
5428
5429/**
5430 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5431 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5432 * s2io_nic structure.
20346722 5433 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5434 * dumping the registers.
5435 * @reg_space: The input argumnet into which all the registers are dumped.
5436 * Description:
5437 * Dumps the entire register space of xFrame NIC into the user given
5438 * buffer area.
5439 * Return value :
5440 * void .
d44570e4 5441 */
1da177e4
LT
5442
5443static void s2io_ethtool_gregs(struct net_device *dev,
5444 struct ethtool_regs *regs, void *space)
5445{
5446 int i;
5447 u64 reg;
d44570e4 5448 u8 *reg_space = (u8 *)space;
4cf1653a 5449 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5450
5451 regs->len = XENA_REG_SPACE;
5452 regs->version = sp->pdev->subsystem_device;
5453
5454 for (i = 0; i < regs->len; i += 8) {
5455 reg = readq(sp->bar0 + i);
5456 memcpy((reg_space + i), &reg, 8);
5457 }
5458}
5459
5460/**
5461 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5462 * @data : address of the private member of the device structure, which
1da177e4 5463 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5464 * Description: This is actually the timer function that alternates the
5465 * adapter LED bit of the adapter control bit to set/reset every time on
5466 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4 5467 * once every second.
d44570e4 5468 */
1da177e4
LT
5469static void s2io_phy_id(unsigned long data)
5470{
d44570e4 5471 struct s2io_nic *sp = (struct s2io_nic *)data;
1ee6dd77 5472 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5473 u64 val64 = 0;
5474 u16 subid;
5475
5476 subid = sp->pdev->subsystem_device;
541ae68f 5477 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5478 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5479 val64 = readq(&bar0->gpio_control);
5480 val64 ^= GPIO_CTRL_GPIO_0;
5481 writeq(val64, &bar0->gpio_control);
5482 } else {
5483 val64 = readq(&bar0->adapter_control);
5484 val64 ^= ADAPTER_LED_ON;
5485 writeq(val64, &bar0->adapter_control);
5486 }
5487
5488 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5489}
5490
5491/**
5492 * s2io_ethtool_idnic - To physically identify the nic on the system.
5493 * @sp : private member of the device structure, which is a pointer to the
5494 * s2io_nic structure.
20346722 5495 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5496 * ethtool.
5497 * Description: Used to physically identify the NIC on the system.
20346722 5498 * The Link LED will blink for a time specified by the user for
1da177e4 5499 * identification.
20346722 5500 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5501 * identification is possible only if it's link is up.
5502 * Return value:
5503 * int , returns 0 on success
5504 */
5505
5506static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5507{
5508 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5509 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5510 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5511 u16 subid;
5512
5513 subid = sp->pdev->subsystem_device;
5514 last_gpio_ctrl_val = readq(&bar0->gpio_control);
d44570e4 5515 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5516 val64 = readq(&bar0->adapter_control);
5517 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5518 pr_err("Adapter Link down, cannot blink LED\n");
1da177e4
LT
5519 return -EFAULT;
5520 }
5521 }
5522 if (sp->id_timer.function == NULL) {
5523 init_timer(&sp->id_timer);
5524 sp->id_timer.function = s2io_phy_id;
d44570e4 5525 sp->id_timer.data = (unsigned long)sp;
1da177e4
LT
5526 }
5527 mod_timer(&sp->id_timer, jiffies);
5528 if (data)
20346722 5529 msleep_interruptible(data * HZ);
1da177e4 5530 else
20346722 5531 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5532 del_timer_sync(&sp->id_timer);
5533
541ae68f 5534 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5535 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5536 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5537 }
5538
5539 return 0;
5540}
5541
0cec35eb 5542static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5543 struct ethtool_ringparam *ering)
0cec35eb 5544{
4cf1653a 5545 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5546 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb
SH
5547
5548 if (sp->rxd_mode == RXD_MODE_1)
5549 ering->rx_max_pending = MAX_RX_DESC_1;
5550 else if (sp->rxd_mode == RXD_MODE_3B)
5551 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5552
5553 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5554 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5555 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5556
9e39f7c5 5557 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5558 ering->tx_pending = tx_desc_count;
5559 rx_desc_count = 0;
8a4bdbaa 5560 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5561 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5562
0cec35eb
SH
5563 ering->rx_pending = rx_desc_count;
5564
5565 ering->rx_mini_max_pending = 0;
5566 ering->rx_mini_pending = 0;
d44570e4 5567 if (sp->rxd_mode == RXD_MODE_1)
0cec35eb
SH
5568 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5569 else if (sp->rxd_mode == RXD_MODE_3B)
5570 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5571 ering->rx_jumbo_pending = rx_desc_count;
5572}
5573
1da177e4
LT
5574/**
5575 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5576 * @sp : private member of the device structure, which is a pointer to the
5577 * s2io_nic structure.
1da177e4
LT
5578 * @ep : pointer to the structure with pause parameters given by ethtool.
5579 * Description:
5580 * Returns the Pause frame generation and reception capability of the NIC.
5581 * Return value:
5582 * void
5583 */
5584static void s2io_ethtool_getpause_data(struct net_device *dev,
5585 struct ethtool_pauseparam *ep)
5586{
5587 u64 val64;
4cf1653a 5588 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5589 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5590
5591 val64 = readq(&bar0->rmac_pause_cfg);
5592 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5593 ep->tx_pause = true;
1da177e4 5594 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5595 ep->rx_pause = true;
5596 ep->autoneg = false;
1da177e4
LT
5597}
5598
5599/**
5600 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5601 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5602 * s2io_nic structure.
5603 * @ep : pointer to the structure with pause parameters given by ethtool.
5604 * Description:
5605 * It can be used to set or reset Pause frame generation or reception
5606 * support of the NIC.
5607 * Return value:
5608 * int, returns 0 on Success
5609 */
5610
5611static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5612 struct ethtool_pauseparam *ep)
1da177e4
LT
5613{
5614 u64 val64;
4cf1653a 5615 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5616 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5617
5618 val64 = readq(&bar0->rmac_pause_cfg);
5619 if (ep->tx_pause)
5620 val64 |= RMAC_PAUSE_GEN_ENABLE;
5621 else
5622 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5623 if (ep->rx_pause)
5624 val64 |= RMAC_PAUSE_RX_ENABLE;
5625 else
5626 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5627 writeq(val64, &bar0->rmac_pause_cfg);
5628 return 0;
5629}
5630
5631/**
5632 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5633 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5634 * s2io_nic structure.
5635 * @off : offset at which the data must be written
5636 * @data : Its an output parameter where the data read at the given
20346722 5637 * offset is stored.
1da177e4 5638 * Description:
20346722 5639 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5640 * read data.
5641 * NOTE: Will allow to read only part of the EEPROM visible through the
5642 * I2C bus.
5643 * Return value:
5644 * -1 on failure and 0 on success.
5645 */
5646
5647#define S2IO_DEV_ID 5
d44570e4 5648static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5649{
5650 int ret = -1;
5651 u32 exit_cnt = 0;
5652 u64 val64;
1ee6dd77 5653 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5654
ad4ebed0 5655 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5656 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5657 I2C_CONTROL_ADDR(off) |
5658 I2C_CONTROL_BYTE_CNT(0x3) |
5659 I2C_CONTROL_READ |
5660 I2C_CONTROL_CNTL_START;
ad4ebed0 5661 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5662
ad4ebed0 5663 while (exit_cnt < 5) {
5664 val64 = readq(&bar0->i2c_control);
5665 if (I2C_CONTROL_CNTL_END(val64)) {
5666 *data = I2C_CONTROL_GET_DATA(val64);
5667 ret = 0;
5668 break;
5669 }
5670 msleep(50);
5671 exit_cnt++;
1da177e4 5672 }
1da177e4
LT
5673 }
5674
ad4ebed0 5675 if (sp->device_type == XFRAME_II_DEVICE) {
5676 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5677 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5678 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5679 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5680 val64 |= SPI_CONTROL_REQ;
5681 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5682 while (exit_cnt < 5) {
5683 val64 = readq(&bar0->spi_control);
5684 if (val64 & SPI_CONTROL_NACK) {
5685 ret = 1;
5686 break;
5687 } else if (val64 & SPI_CONTROL_DONE) {
5688 *data = readq(&bar0->spi_data);
5689 *data &= 0xffffff;
5690 ret = 0;
5691 break;
5692 }
5693 msleep(50);
5694 exit_cnt++;
5695 }
5696 }
1da177e4
LT
5697 return ret;
5698}
5699
5700/**
5701 * write_eeprom - actually writes the relevant part of the data value.
5702 * @sp : private member of the device structure, which is a pointer to the
5703 * s2io_nic structure.
5704 * @off : offset at which the data must be written
5705 * @data : The data that is to be written
20346722 5706 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5707 * the Eeprom. (max of 3)
5708 * Description:
5709 * Actually writes the relevant part of the data value into the Eeprom
5710 * through the I2C bus.
5711 * Return value:
5712 * 0 on success, -1 on failure.
5713 */
5714
d44570e4 5715static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5716{
5717 int exit_cnt = 0, ret = -1;
5718 u64 val64;
1ee6dd77 5719 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5720
ad4ebed0 5721 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5722 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5723 I2C_CONTROL_ADDR(off) |
5724 I2C_CONTROL_BYTE_CNT(cnt) |
5725 I2C_CONTROL_SET_DATA((u32)data) |
5726 I2C_CONTROL_CNTL_START;
ad4ebed0 5727 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5728
5729 while (exit_cnt < 5) {
5730 val64 = readq(&bar0->i2c_control);
5731 if (I2C_CONTROL_CNTL_END(val64)) {
5732 if (!(val64 & I2C_CONTROL_NACK))
5733 ret = 0;
5734 break;
5735 }
5736 msleep(50);
5737 exit_cnt++;
5738 }
5739 }
1da177e4 5740
ad4ebed0 5741 if (sp->device_type == XFRAME_II_DEVICE) {
5742 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5743 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5744
5745 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5746 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5747 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5748 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5749 val64 |= SPI_CONTROL_REQ;
5750 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5751 while (exit_cnt < 5) {
5752 val64 = readq(&bar0->spi_control);
5753 if (val64 & SPI_CONTROL_NACK) {
5754 ret = 1;
5755 break;
5756 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5757 ret = 0;
ad4ebed0 5758 break;
5759 }
5760 msleep(50);
5761 exit_cnt++;
1da177e4 5762 }
1da177e4 5763 }
1da177e4
LT
5764 return ret;
5765}
1ee6dd77 5766static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5767{
b41477f3
AR
5768 u8 *vpd_data;
5769 u8 data;
d44570e4 5770 int i = 0, cnt, fail = 0;
9dc737a7 5771 int vpd_addr = 0x80;
ffb5df6c 5772 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5773
5774 if (nic->device_type == XFRAME_II_DEVICE) {
5775 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5776 vpd_addr = 0x80;
d44570e4 5777 } else {
9dc737a7
AR
5778 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5779 vpd_addr = 0x50;
5780 }
19a60522 5781 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5782
b41477f3 5783 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5784 if (!vpd_data) {
ffb5df6c 5785 swstats->mem_alloc_fail_cnt++;
b41477f3 5786 return;
c53d4945 5787 }
ffb5df6c 5788 swstats->mem_allocated += 256;
b41477f3 5789
d44570e4 5790 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5791 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5792 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5793 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5794 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5795 msleep(2);
5796 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5797 if (data == 0x80)
5798 break;
5799 }
5800 if (cnt >= 5) {
5801 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5802 fail = 1;
5803 break;
5804 }
5805 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5806 (u32 *)&vpd_data[i]);
5807 }
19a60522 5808
d44570e4 5809 if (!fail) {
19a60522
SS
5810 /* read serial number of adapter */
5811 for (cnt = 0; cnt < 256; cnt++) {
d44570e4
JP
5812 if ((vpd_data[cnt] == 'S') &&
5813 (vpd_data[cnt+1] == 'N') &&
5814 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
19a60522
SS
5815 memset(nic->serial_num, 0, VPD_STRING_LEN);
5816 memcpy(nic->serial_num, &vpd_data[cnt + 3],
d44570e4 5817 vpd_data[cnt+2]);
19a60522
SS
5818 break;
5819 }
5820 }
5821 }
5822
876e956f 5823 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
9dc737a7 5824 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
b41477f3 5825 kfree(vpd_data);
ffb5df6c 5826 swstats->mem_freed += 256;
9dc737a7
AR
5827}
5828
1da177e4
LT
5829/**
5830 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5831 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5832 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5833 * containing all relevant information.
5834 * @data_buf : user defined value to be written into Eeprom.
5835 * Description: Reads the values stored in the Eeprom at given offset
5836 * for a given length. Stores these values int the input argument data
5837 * buffer 'data_buf' and returns these to the caller (ethtool.)
5838 * Return value:
5839 * int 0 on success
5840 */
5841
5842static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5843 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5844{
ad4ebed0 5845 u32 i, valid;
5846 u64 data;
4cf1653a 5847 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5848
5849 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5850
5851 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5852 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5853
5854 for (i = 0; i < eeprom->len; i += 4) {
5855 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5856 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5857 return -EFAULT;
5858 }
5859 valid = INV(data);
5860 memcpy((data_buf + i), &valid, 4);
5861 }
5862 return 0;
5863}
5864
5865/**
5866 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5867 * @sp : private member of the device structure, which is a pointer to the
5868 * s2io_nic structure.
20346722 5869 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5870 * containing all relevant information.
5871 * @data_buf ; user defined value to be written into Eeprom.
5872 * Description:
5873 * Tries to write the user provided value in the Eeprom, at the offset
5874 * given by the user.
5875 * Return value:
5876 * 0 on success, -EFAULT on failure.
5877 */
5878
5879static int s2io_ethtool_seeprom(struct net_device *dev,
5880 struct ethtool_eeprom *eeprom,
d44570e4 5881 u8 *data_buf)
1da177e4
LT
5882{
5883 int len = eeprom->len, cnt = 0;
ad4ebed0 5884 u64 valid = 0, data;
4cf1653a 5885 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5886
5887 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5888 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5889 "ETHTOOL_WRITE_EEPROM Err: "
5890 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5891 (sp->pdev->vendor | (sp->pdev->device << 16)),
5892 eeprom->magic);
1da177e4
LT
5893 return -EFAULT;
5894 }
5895
5896 while (len) {
d44570e4
JP
5897 data = (u32)data_buf[cnt] & 0x000000FF;
5898 if (data)
5899 valid = (u32)(data << 24);
5900 else
1da177e4
LT
5901 valid = data;
5902
5903 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5904 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5905 "ETHTOOL_WRITE_EEPROM Err: "
5906 "Cannot write into the specified offset\n");
1da177e4
LT
5907 return -EFAULT;
5908 }
5909 cnt++;
5910 len--;
5911 }
5912
5913 return 0;
5914}
5915
5916/**
20346722
K
5917 * s2io_register_test - reads and writes into all clock domains.
5918 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5919 * s2io_nic structure.
5920 * @data : variable that returns the result of each of the test conducted b
5921 * by the driver.
5922 * Description:
5923 * Read and write into all clock domains. The NIC has 3 clock domains,
5924 * see that registers in all the three regions are accessible.
5925 * Return value:
5926 * 0 on success.
5927 */
5928
d44570e4 5929static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5930{
1ee6dd77 5931 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5932 u64 val64 = 0, exp_val;
1da177e4
LT
5933 int fail = 0;
5934
20346722
K
5935 val64 = readq(&bar0->pif_rd_swapper_fb);
5936 if (val64 != 0x123456789abcdefULL) {
1da177e4 5937 fail = 1;
9e39f7c5 5938 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5939 }
5940
5941 val64 = readq(&bar0->rmac_pause_cfg);
5942 if (val64 != 0xc000ffff00000000ULL) {
5943 fail = 1;
9e39f7c5 5944 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5945 }
5946
5947 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5948 if (sp->device_type == XFRAME_II_DEVICE)
5949 exp_val = 0x0404040404040404ULL;
5950 else
5951 exp_val = 0x0808080808080808ULL;
5952 if (val64 != exp_val) {
1da177e4 5953 fail = 1;
9e39f7c5 5954 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5955 }
5956
5957 val64 = readq(&bar0->xgxs_efifo_cfg);
5958 if (val64 != 0x000000001923141EULL) {
5959 fail = 1;
9e39f7c5 5960 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5961 }
5962
5963 val64 = 0x5A5A5A5A5A5A5A5AULL;
5964 writeq(val64, &bar0->xmsi_data);
5965 val64 = readq(&bar0->xmsi_data);
5966 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5967 fail = 1;
9e39f7c5 5968 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
5969 }
5970
5971 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5972 writeq(val64, &bar0->xmsi_data);
5973 val64 = readq(&bar0->xmsi_data);
5974 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5975 fail = 1;
9e39f7c5 5976 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
5977 }
5978
5979 *data = fail;
ad4ebed0 5980 return fail;
1da177e4
LT
5981}
5982
5983/**
20346722 5984 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5985 * @sp : private member of the device structure, which is a pointer to the
5986 * s2io_nic structure.
5987 * @data:variable that returns the result of each of the test conducted by
5988 * the driver.
5989 * Description:
20346722 5990 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5991 * register.
5992 * Return value:
5993 * 0 on success.
5994 */
5995
d44570e4 5996static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
5997{
5998 int fail = 0;
ad4ebed0 5999 u64 ret_data, org_4F0, org_7F0;
6000 u8 saved_4F0 = 0, saved_7F0 = 0;
6001 struct net_device *dev = sp->dev;
1da177e4
LT
6002
6003 /* Test Write Error at offset 0 */
ad4ebed0 6004 /* Note that SPI interface allows write access to all areas
6005 * of EEPROM. Hence doing all negative testing only for Xframe I.
6006 */
6007 if (sp->device_type == XFRAME_I_DEVICE)
6008 if (!write_eeprom(sp, 0, 0, 3))
6009 fail = 1;
6010
6011 /* Save current values at offsets 0x4F0 and 0x7F0 */
6012 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6013 saved_4F0 = 1;
6014 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6015 saved_7F0 = 1;
1da177e4
LT
6016
6017 /* Test Write at offset 4f0 */
ad4ebed0 6018 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6019 fail = 1;
6020 if (read_eeprom(sp, 0x4F0, &ret_data))
6021 fail = 1;
6022
ad4ebed0 6023 if (ret_data != 0x012345) {
26b7625c 6024 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
6025 "Data written %llx Data read %llx\n",
6026 dev->name, (unsigned long long)0x12345,
6027 (unsigned long long)ret_data);
1da177e4 6028 fail = 1;
ad4ebed0 6029 }
1da177e4
LT
6030
6031 /* Reset the EEPROM data go FFFF */
ad4ebed0 6032 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6033
6034 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6035 if (sp->device_type == XFRAME_I_DEVICE)
6036 if (!write_eeprom(sp, 0x07C, 0, 3))
6037 fail = 1;
1da177e4 6038
ad4ebed0 6039 /* Test Write Request at offset 0x7f0 */
6040 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6041 fail = 1;
ad4ebed0 6042 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6043 fail = 1;
6044
ad4ebed0 6045 if (ret_data != 0x012345) {
26b7625c 6046 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6047 "Data written %llx Data read %llx\n",
6048 dev->name, (unsigned long long)0x12345,
6049 (unsigned long long)ret_data);
1da177e4 6050 fail = 1;
ad4ebed0 6051 }
1da177e4
LT
6052
6053 /* Reset the EEPROM data go FFFF */
ad4ebed0 6054 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6055
ad4ebed0 6056 if (sp->device_type == XFRAME_I_DEVICE) {
6057 /* Test Write Error at offset 0x80 */
6058 if (!write_eeprom(sp, 0x080, 0, 3))
6059 fail = 1;
1da177e4 6060
ad4ebed0 6061 /* Test Write Error at offset 0xfc */
6062 if (!write_eeprom(sp, 0x0FC, 0, 3))
6063 fail = 1;
1da177e4 6064
ad4ebed0 6065 /* Test Write Error at offset 0x100 */
6066 if (!write_eeprom(sp, 0x100, 0, 3))
6067 fail = 1;
1da177e4 6068
ad4ebed0 6069 /* Test Write Error at offset 4ec */
6070 if (!write_eeprom(sp, 0x4EC, 0, 3))
6071 fail = 1;
6072 }
6073
6074 /* Restore values at offsets 0x4F0 and 0x7F0 */
6075 if (saved_4F0)
6076 write_eeprom(sp, 0x4F0, org_4F0, 3);
6077 if (saved_7F0)
6078 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6079
6080 *data = fail;
ad4ebed0 6081 return fail;
1da177e4
LT
6082}
6083
6084/**
6085 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6086 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6087 * s2io_nic structure.
20346722 6088 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6089 * the driver.
6090 * Description:
6091 * This invokes the MemBist test of the card. We give around
6092 * 2 secs time for the Test to complete. If it's still not complete
20346722 6093 * within this peiod, we consider that the test failed.
1da177e4
LT
6094 * Return value:
6095 * 0 on success and -1 on failure.
6096 */
6097
d44570e4 6098static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6099{
6100 u8 bist = 0;
6101 int cnt = 0, ret = -1;
6102
6103 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6104 bist |= PCI_BIST_START;
6105 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6106
6107 while (cnt < 20) {
6108 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6109 if (!(bist & PCI_BIST_START)) {
6110 *data = (bist & PCI_BIST_CODE_MASK);
6111 ret = 0;
6112 break;
6113 }
6114 msleep(100);
6115 cnt++;
6116 }
6117
6118 return ret;
6119}
6120
6121/**
20346722
K
6122 * s2io-link_test - verifies the link state of the nic
6123 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6124 * s2io_nic structure.
6125 * @data: variable that returns the result of each of the test conducted by
6126 * the driver.
6127 * Description:
20346722 6128 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6129 * argument 'data' appropriately.
6130 * Return value:
6131 * 0 on success.
6132 */
6133
d44570e4 6134static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6135{
1ee6dd77 6136 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6137 u64 val64;
6138
6139 val64 = readq(&bar0->adapter_status);
d44570e4 6140 if (!(LINK_IS_UP(val64)))
1da177e4 6141 *data = 1;
c92ca04b
AR
6142 else
6143 *data = 0;
1da177e4 6144
b41477f3 6145 return *data;
1da177e4
LT
6146}
6147
6148/**
20346722
K
6149 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6150 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6151 * s2io_nic structure.
20346722 6152 * @data - variable that returns the result of each of the test
1da177e4
LT
6153 * conducted by the driver.
6154 * Description:
20346722 6155 * This is one of the offline test that tests the read and write
1da177e4
LT
6156 * access to the RldRam chip on the NIC.
6157 * Return value:
6158 * 0 on success.
6159 */
6160
d44570e4 6161static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6162{
1ee6dd77 6163 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6164 u64 val64;
ad4ebed0 6165 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6166
6167 val64 = readq(&bar0->adapter_control);
6168 val64 &= ~ADAPTER_ECC_EN;
6169 writeq(val64, &bar0->adapter_control);
6170
6171 val64 = readq(&bar0->mc_rldram_test_ctrl);
6172 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6173 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6174
6175 val64 = readq(&bar0->mc_rldram_mrs);
6176 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6177 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6178
6179 val64 |= MC_RLDRAM_MRS_ENABLE;
6180 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6181
6182 while (iteration < 2) {
6183 val64 = 0x55555555aaaa0000ULL;
d44570e4 6184 if (iteration == 1)
1da177e4 6185 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6186 writeq(val64, &bar0->mc_rldram_test_d0);
6187
6188 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6189 if (iteration == 1)
1da177e4 6190 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6191 writeq(val64, &bar0->mc_rldram_test_d1);
6192
6193 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6194 if (iteration == 1)
1da177e4 6195 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6196 writeq(val64, &bar0->mc_rldram_test_d2);
6197
ad4ebed0 6198 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6199 writeq(val64, &bar0->mc_rldram_test_add);
6200
d44570e4
JP
6201 val64 = MC_RLDRAM_TEST_MODE |
6202 MC_RLDRAM_TEST_WRITE |
6203 MC_RLDRAM_TEST_GO;
ad4ebed0 6204 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6205
6206 for (cnt = 0; cnt < 5; cnt++) {
6207 val64 = readq(&bar0->mc_rldram_test_ctrl);
6208 if (val64 & MC_RLDRAM_TEST_DONE)
6209 break;
6210 msleep(200);
6211 }
6212
6213 if (cnt == 5)
6214 break;
6215
ad4ebed0 6216 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6217 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6218
6219 for (cnt = 0; cnt < 5; cnt++) {
6220 val64 = readq(&bar0->mc_rldram_test_ctrl);
6221 if (val64 & MC_RLDRAM_TEST_DONE)
6222 break;
6223 msleep(500);
6224 }
6225
6226 if (cnt == 5)
6227 break;
6228
6229 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6230 if (!(val64 & MC_RLDRAM_TEST_PASS))
6231 test_fail = 1;
1da177e4
LT
6232
6233 iteration++;
6234 }
6235
ad4ebed0 6236 *data = test_fail;
1da177e4 6237
ad4ebed0 6238 /* Bring the adapter out of test mode */
6239 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6240
6241 return test_fail;
1da177e4
LT
6242}
6243
6244/**
6245 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6246 * @sp : private member of the device structure, which is a pointer to the
6247 * s2io_nic structure.
6248 * @ethtest : pointer to a ethtool command specific structure that will be
6249 * returned to the user.
20346722 6250 * @data : variable that returns the result of each of the test
1da177e4
LT
6251 * conducted by the driver.
6252 * Description:
6253 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6254 * the health of the card.
6255 * Return value:
6256 * void
6257 */
6258
6259static void s2io_ethtool_test(struct net_device *dev,
6260 struct ethtool_test *ethtest,
d44570e4 6261 uint64_t *data)
1da177e4 6262{
4cf1653a 6263 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6264 int orig_state = netif_running(sp->dev);
6265
6266 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6267 /* Offline Tests. */
20346722 6268 if (orig_state)
1da177e4 6269 s2io_close(sp->dev);
1da177e4
LT
6270
6271 if (s2io_register_test(sp, &data[0]))
6272 ethtest->flags |= ETH_TEST_FL_FAILED;
6273
6274 s2io_reset(sp);
1da177e4
LT
6275
6276 if (s2io_rldram_test(sp, &data[3]))
6277 ethtest->flags |= ETH_TEST_FL_FAILED;
6278
6279 s2io_reset(sp);
1da177e4
LT
6280
6281 if (s2io_eeprom_test(sp, &data[1]))
6282 ethtest->flags |= ETH_TEST_FL_FAILED;
6283
6284 if (s2io_bist_test(sp, &data[4]))
6285 ethtest->flags |= ETH_TEST_FL_FAILED;
6286
6287 if (orig_state)
6288 s2io_open(sp->dev);
6289
6290 data[2] = 0;
6291 } else {
6292 /* Online Tests. */
6293 if (!orig_state) {
d44570e4 6294 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6295 dev->name);
6296 data[0] = -1;
6297 data[1] = -1;
6298 data[2] = -1;
6299 data[3] = -1;
6300 data[4] = -1;
6301 }
6302
6303 if (s2io_link_test(sp, &data[2]))
6304 ethtest->flags |= ETH_TEST_FL_FAILED;
6305
6306 data[0] = 0;
6307 data[1] = 0;
6308 data[3] = 0;
6309 data[4] = 0;
6310 }
6311}
6312
6313static void s2io_get_ethtool_stats(struct net_device *dev,
6314 struct ethtool_stats *estats,
d44570e4 6315 u64 *tmp_stats)
1da177e4 6316{
8116f3cf 6317 int i = 0, k;
4cf1653a 6318 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6319 struct stat_block *stats = sp->mac_control.stats_info;
6320 struct swStat *swstats = &stats->sw_stat;
6321 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6322
7ba013ac 6323 s2io_updt_stats(sp);
541ae68f 6324 tmp_stats[i++] =
ffb5df6c
JP
6325 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6326 le32_to_cpu(stats->tmac_frms);
541ae68f 6327 tmp_stats[i++] =
ffb5df6c
JP
6328 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6329 le32_to_cpu(stats->tmac_data_octets);
6330 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6331 tmp_stats[i++] =
ffb5df6c
JP
6332 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6333 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6334 tmp_stats[i++] =
ffb5df6c
JP
6335 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6336 le32_to_cpu(stats->tmac_bcst_frms);
6337 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6338 tmp_stats[i++] =
ffb5df6c
JP
6339 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6340 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6341 tmp_stats[i++] =
ffb5df6c
JP
6342 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6343 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6344 tmp_stats[i++] =
ffb5df6c
JP
6345 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6346 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6347 tmp_stats[i++] =
ffb5df6c
JP
6348 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6349 le32_to_cpu(stats->tmac_any_err_frms);
6350 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6351 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6352 tmp_stats[i++] =
ffb5df6c
JP
6353 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6354 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6355 tmp_stats[i++] =
ffb5df6c
JP
6356 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6357 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6358 tmp_stats[i++] =
ffb5df6c
JP
6359 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6360 le32_to_cpu(stats->tmac_icmp);
541ae68f 6361 tmp_stats[i++] =
ffb5df6c
JP
6362 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6363 le32_to_cpu(stats->tmac_rst_tcp);
6364 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6365 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6366 le32_to_cpu(stats->tmac_udp);
541ae68f 6367 tmp_stats[i++] =
ffb5df6c
JP
6368 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6369 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6370 tmp_stats[i++] =
ffb5df6c
JP
6371 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6372 le32_to_cpu(stats->rmac_data_octets);
6373 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6374 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6375 tmp_stats[i++] =
ffb5df6c
JP
6376 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6377 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6378 tmp_stats[i++] =
ffb5df6c
JP
6379 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6380 le32_to_cpu(stats->rmac_vld_bcst_frms);
6381 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6382 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6386 tmp_stats[i++] =
ffb5df6c
JP
6387 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6388 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6389 tmp_stats[i++] =
ffb5df6c
JP
6390 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6391 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6392 tmp_stats[i++] =
ffb5df6c
JP
6393 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6394 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6395 tmp_stats[i++] =
ffb5df6c
JP
6396 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6397 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6398 tmp_stats[i++] =
ffb5df6c
JP
6399 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6400 << 32 | le32_to_cpu(stats->rmac_drop_events);
6401 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6403 tmp_stats[i++] =
ffb5df6c
JP
6404 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6405 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6406 tmp_stats[i++] =
ffb5df6c
JP
6407 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6408 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6409 tmp_stats[i++] =
ffb5df6c
JP
6410 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6411 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6412 tmp_stats[i++] =
ffb5df6c
JP
6413 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6414 le32_to_cpu(stats->rmac_jabber_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6420 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6421 tmp_stats[i++] =
ffb5df6c
JP
6422 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6423 le32_to_cpu(stats->rmac_ip);
6424 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6425 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6426 tmp_stats[i++] =
ffb5df6c
JP
6427 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6428 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6429 tmp_stats[i++] =
ffb5df6c
JP
6430 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6431 le32_to_cpu(stats->rmac_icmp);
6432 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6433 tmp_stats[i++] =
ffb5df6c
JP
6434 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6435 le32_to_cpu(stats->rmac_udp);
541ae68f 6436 tmp_stats[i++] =
ffb5df6c
JP
6437 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6438 le32_to_cpu(stats->rmac_err_drp_udp);
6439 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6447 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6448 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6449 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6450 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6451 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6452 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6453 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6454 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6455 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6456 tmp_stats[i++] =
ffb5df6c
JP
6457 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6458 le32_to_cpu(stats->rmac_pause_cnt);
6459 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6460 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6461 tmp_stats[i++] =
ffb5df6c
JP
6462 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6463 le32_to_cpu(stats->rmac_accepted_ip);
6464 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6465 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6477 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6478 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6479 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6480 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6481 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6482 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6483
6484 /* Enhanced statistics exist only for Hercules */
d44570e4 6485 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6486 tmp_stats[i++] =
ffb5df6c 6487 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6488 tmp_stats[i++] =
ffb5df6c 6489 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6490 tmp_stats[i++] =
ffb5df6c
JP
6491 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6492 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6493 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6494 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6495 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6496 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6497 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6498 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6500 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6501 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6502 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6503 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6504 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6505 }
6506
7ba013ac 6507 tmp_stats[i++] = 0;
ffb5df6c
JP
6508 tmp_stats[i++] = swstats->single_ecc_errs;
6509 tmp_stats[i++] = swstats->double_ecc_errs;
6510 tmp_stats[i++] = swstats->parity_err_cnt;
6511 tmp_stats[i++] = swstats->serious_err_cnt;
6512 tmp_stats[i++] = swstats->soft_reset_cnt;
6513 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6514 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6515 tmp_stats[i++] = swstats->ring_full_cnt[k];
6516 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6517 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6518 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6519 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6520 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6521 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6522 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6523 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6524 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6525 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6526 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6527 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6528 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6529 tmp_stats[i++] = swstats->sending_both;
6530 tmp_stats[i++] = swstats->outof_sequence_pkts;
6531 tmp_stats[i++] = swstats->flush_max_pkts;
6532 if (swstats->num_aggregations) {
6533 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6534 int count = 0;
6aa20a22 6535 /*
bd1034f0
AR
6536 * Since 64-bit divide does not work on all platforms,
6537 * do repeated subtraction.
6538 */
ffb5df6c
JP
6539 while (tmp >= swstats->num_aggregations) {
6540 tmp -= swstats->num_aggregations;
bd1034f0
AR
6541 count++;
6542 }
6543 tmp_stats[i++] = count;
d44570e4 6544 } else
bd1034f0 6545 tmp_stats[i++] = 0;
ffb5df6c
JP
6546 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6547 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6548 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6549 tmp_stats[i++] = swstats->mem_allocated;
6550 tmp_stats[i++] = swstats->mem_freed;
6551 tmp_stats[i++] = swstats->link_up_cnt;
6552 tmp_stats[i++] = swstats->link_down_cnt;
6553 tmp_stats[i++] = swstats->link_up_time;
6554 tmp_stats[i++] = swstats->link_down_time;
6555
6556 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6557 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6558 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6559 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6560 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6561
6562 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6563 tmp_stats[i++] = swstats->rx_abort_cnt;
6564 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6565 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6566 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6567 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6568 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6569 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6570 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6571 tmp_stats[i++] = swstats->tda_err_cnt;
6572 tmp_stats[i++] = swstats->pfc_err_cnt;
6573 tmp_stats[i++] = swstats->pcc_err_cnt;
6574 tmp_stats[i++] = swstats->tti_err_cnt;
6575 tmp_stats[i++] = swstats->tpa_err_cnt;
6576 tmp_stats[i++] = swstats->sm_err_cnt;
6577 tmp_stats[i++] = swstats->lso_err_cnt;
6578 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6579 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6580 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6581 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6582 tmp_stats[i++] = swstats->rc_err_cnt;
6583 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6584 tmp_stats[i++] = swstats->rpa_err_cnt;
6585 tmp_stats[i++] = swstats->rda_err_cnt;
6586 tmp_stats[i++] = swstats->rti_err_cnt;
6587 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6588}
6589
ac1f60db 6590static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6591{
d44570e4 6592 return XENA_REG_SPACE;
1da177e4
LT
6593}
6594
6595
d44570e4 6596static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
1da177e4 6597{
4cf1653a 6598 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 6599
d44570e4 6600 return sp->rx_csum;
1da177e4 6601}
ac1f60db
AB
6602
6603static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6604{
4cf1653a 6605 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6606
6607 if (data)
6608 sp->rx_csum = 1;
6609 else
6610 sp->rx_csum = 0;
6611
6612 return 0;
6613}
ac1f60db
AB
6614
6615static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6616{
d44570e4 6617 return XENA_EEPROM_SPACE;
1da177e4
LT
6618}
6619
b9f2c044 6620static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6621{
4cf1653a 6622 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6623
6624 switch (sset) {
6625 case ETH_SS_TEST:
6626 return S2IO_TEST_LEN;
6627 case ETH_SS_STATS:
d44570e4 6628 switch (sp->device_type) {
b9f2c044
JG
6629 case XFRAME_I_DEVICE:
6630 return XFRAME_I_STAT_LEN;
6631 case XFRAME_II_DEVICE:
6632 return XFRAME_II_STAT_LEN;
6633 default:
6634 return 0;
6635 }
6636 default:
6637 return -EOPNOTSUPP;
6638 }
1da177e4 6639}
ac1f60db
AB
6640
6641static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6642 u32 stringset, u8 *data)
1da177e4 6643{
fa1f0cb3 6644 int stat_size = 0;
4cf1653a 6645 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6646
1da177e4
LT
6647 switch (stringset) {
6648 case ETH_SS_TEST:
6649 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6650 break;
6651 case ETH_SS_STATS:
fa1f0cb3 6652 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6653 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6654 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6655 memcpy(data + stat_size,
d44570e4
JP
6656 &ethtool_enhanced_stats_keys,
6657 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6658 stat_size += sizeof(ethtool_enhanced_stats_keys);
6659 }
6660
6661 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6662 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6663 }
6664}
1da177e4 6665
ac1f60db 6666static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6667{
6668 if (data)
6669 dev->features |= NETIF_F_IP_CSUM;
6670 else
6671 dev->features &= ~NETIF_F_IP_CSUM;
6672
6673 return 0;
6674}
6675
75c30b13
AR
6676static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6677{
6678 return (dev->features & NETIF_F_TSO) != 0;
6679}
6680static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6681{
6682 if (data)
6683 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6684 else
6685 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6686
6687 return 0;
6688}
1da177e4 6689
7282d491 6690static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6691 .get_settings = s2io_ethtool_gset,
6692 .set_settings = s2io_ethtool_sset,
6693 .get_drvinfo = s2io_ethtool_gdrvinfo,
6694 .get_regs_len = s2io_ethtool_get_regs_len,
6695 .get_regs = s2io_ethtool_gregs,
6696 .get_link = ethtool_op_get_link,
6697 .get_eeprom_len = s2io_get_eeprom_len,
6698 .get_eeprom = s2io_ethtool_geeprom,
6699 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6700 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6701 .get_pauseparam = s2io_ethtool_getpause_data,
6702 .set_pauseparam = s2io_ethtool_setpause_data,
6703 .get_rx_csum = s2io_ethtool_get_rx_csum,
6704 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6705 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6706 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6707 .get_tso = s2io_ethtool_op_get_tso,
6708 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6709 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6710 .self_test = s2io_ethtool_test,
6711 .get_strings = s2io_ethtool_get_strings,
6712 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6713 .get_ethtool_stats = s2io_get_ethtool_stats,
6714 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6715};
6716
6717/**
20346722 6718 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6719 * @dev : Device pointer.
6720 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6721 * a proprietary structure used to pass information to the driver.
6722 * @cmd : This is used to distinguish between the different commands that
6723 * can be passed to the IOCTL functions.
6724 * Description:
20346722
K
6725 * Currently there are no special functionality supported in IOCTL, hence
6726 * function always return EOPNOTSUPPORTED
1da177e4
LT
6727 */
6728
ac1f60db 6729static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6730{
6731 return -EOPNOTSUPP;
6732}
6733
6734/**
6735 * s2io_change_mtu - entry point to change MTU size for the device.
6736 * @dev : device pointer.
6737 * @new_mtu : the new MTU size for the device.
6738 * Description: A driver entry point to change MTU size for the device.
6739 * Before changing the MTU the device must be stopped.
6740 * Return value:
6741 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6742 * file on failure.
6743 */
6744
ac1f60db 6745static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6746{
4cf1653a 6747 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6748 int ret = 0;
1da177e4
LT
6749
6750 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6751 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6752 return -EPERM;
6753 }
6754
1da177e4 6755 dev->mtu = new_mtu;
d8892c6e 6756 if (netif_running(dev)) {
3a3d5756 6757 s2io_stop_all_tx_queue(sp);
e6a8fee2 6758 s2io_card_down(sp);
9f74ffde
SH
6759 ret = s2io_card_up(sp);
6760 if (ret) {
d8892c6e 6761 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6762 __func__);
9f74ffde 6763 return ret;
d8892c6e 6764 }
3a3d5756 6765 s2io_wake_all_tx_queue(sp);
d8892c6e 6766 } else { /* Device is down */
1ee6dd77 6767 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6768 u64 val64 = new_mtu;
6769
6770 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6771 }
1da177e4 6772
9f74ffde 6773 return ret;
1da177e4
LT
6774}
6775
1da177e4
LT
6776/**
6777 * s2io_set_link - Set the LInk status
6778 * @data: long pointer to device private structue
6779 * Description: Sets the link status for the adapter
6780 */
6781
c4028958 6782static void s2io_set_link(struct work_struct *work)
1da177e4 6783{
d44570e4
JP
6784 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6785 set_link_task);
1da177e4 6786 struct net_device *dev = nic->dev;
1ee6dd77 6787 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6788 register u64 val64;
6789 u16 subid;
6790
22747d6b
FR
6791 rtnl_lock();
6792
6793 if (!netif_running(dev))
6794 goto out_unlock;
6795
92b84437 6796 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6797 /* The card is being reset, no point doing anything */
22747d6b 6798 goto out_unlock;
1da177e4
LT
6799 }
6800
6801 subid = nic->pdev->subsystem_device;
a371a07d
K
6802 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6803 /*
6804 * Allow a small delay for the NICs self initiated
6805 * cleanup to complete.
6806 */
6807 msleep(100);
6808 }
1da177e4
LT
6809
6810 val64 = readq(&bar0->adapter_status);
19a60522
SS
6811 if (LINK_IS_UP(val64)) {
6812 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6813 if (verify_xena_quiescence(nic)) {
6814 val64 = readq(&bar0->adapter_control);
6815 val64 |= ADAPTER_CNTL_EN;
1da177e4 6816 writeq(val64, &bar0->adapter_control);
19a60522 6817 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6818 nic->device_type, subid)) {
19a60522
SS
6819 val64 = readq(&bar0->gpio_control);
6820 val64 |= GPIO_CTRL_GPIO_0;
6821 writeq(val64, &bar0->gpio_control);
6822 val64 = readq(&bar0->gpio_control);
6823 } else {
6824 val64 |= ADAPTER_LED_ON;
6825 writeq(val64, &bar0->adapter_control);
a371a07d 6826 }
f957bcf0 6827 nic->device_enabled_once = true;
19a60522 6828 } else {
9e39f7c5
JP
6829 DBG_PRINT(ERR_DBG,
6830 "%s: Error: device is not Quiescent\n",
6831 dev->name);
3a3d5756 6832 s2io_stop_all_tx_queue(nic);
1da177e4 6833 }
19a60522 6834 }
92c48799
SS
6835 val64 = readq(&bar0->adapter_control);
6836 val64 |= ADAPTER_LED_ON;
6837 writeq(val64, &bar0->adapter_control);
6838 s2io_link(nic, LINK_UP);
19a60522
SS
6839 } else {
6840 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6841 subid)) {
6842 val64 = readq(&bar0->gpio_control);
6843 val64 &= ~GPIO_CTRL_GPIO_0;
6844 writeq(val64, &bar0->gpio_control);
6845 val64 = readq(&bar0->gpio_control);
1da177e4 6846 }
92c48799
SS
6847 /* turn off LED */
6848 val64 = readq(&bar0->adapter_control);
d44570e4 6849 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6850 writeq(val64, &bar0->adapter_control);
19a60522 6851 s2io_link(nic, LINK_DOWN);
1da177e4 6852 }
92b84437 6853 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6854
6855out_unlock:
d8d70caf 6856 rtnl_unlock();
1da177e4
LT
6857}
6858
1ee6dd77 6859static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6860 struct buffAdd *ba,
6861 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6862 u64 *temp2, int size)
5d3213cc
AR
6863{
6864 struct net_device *dev = sp->dev;
491abf25 6865 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6866
6867 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6868 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6869 /* allocate skb */
6870 if (*skb) {
6871 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6872 /*
6873 * As Rx frame are not going to be processed,
6874 * using same mapped address for the Rxd
6875 * buffer pointer
6876 */
6d517a27 6877 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6878 } else {
6879 *skb = dev_alloc_skb(size);
6880 if (!(*skb)) {
9e39f7c5
JP
6881 DBG_PRINT(INFO_DBG,
6882 "%s: Out of memory to allocate %s\n",
6883 dev->name, "1 buf mode SKBs");
ffb5df6c 6884 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6885 return -ENOMEM ;
6886 }
ffb5df6c 6887 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6888 /* storing the mapped addr in a temp variable
6889 * such it will be used for next rxd whose
6890 * Host Control is NULL
6891 */
6d517a27 6892 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6893 pci_map_single(sp->pdev, (*skb)->data,
6894 size - NET_IP_ALIGN,
6895 PCI_DMA_FROMDEVICE);
8d8bb39b 6896 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6897 goto memalloc_failed;
5d3213cc
AR
6898 rxdp->Host_Control = (unsigned long) (*skb);
6899 }
6900 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6901 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6902 /* Two buffer Mode */
6903 if (*skb) {
6d517a27
VP
6904 rxdp3->Buffer2_ptr = *temp2;
6905 rxdp3->Buffer0_ptr = *temp0;
6906 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6907 } else {
6908 *skb = dev_alloc_skb(size);
2ceaac75 6909 if (!(*skb)) {
9e39f7c5
JP
6910 DBG_PRINT(INFO_DBG,
6911 "%s: Out of memory to allocate %s\n",
6912 dev->name,
6913 "2 buf mode SKBs");
ffb5df6c 6914 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6915 return -ENOMEM;
6916 }
ffb5df6c 6917 stats->mem_allocated += (*skb)->truesize;
6d517a27 6918 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6919 pci_map_single(sp->pdev, (*skb)->data,
6920 dev->mtu + 4,
6921 PCI_DMA_FROMDEVICE);
8d8bb39b 6922 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6923 goto memalloc_failed;
6d517a27 6924 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6925 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6926 PCI_DMA_FROMDEVICE);
8d8bb39b 6927 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6928 rxdp3->Buffer0_ptr)) {
6929 pci_unmap_single(sp->pdev,
6930 (dma_addr_t)rxdp3->Buffer2_ptr,
6931 dev->mtu + 4,
6932 PCI_DMA_FROMDEVICE);
491abf25
VP
6933 goto memalloc_failed;
6934 }
5d3213cc
AR
6935 rxdp->Host_Control = (unsigned long) (*skb);
6936
6937 /* Buffer-1 will be dummy buffer not used */
6d517a27 6938 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6939 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6940 PCI_DMA_FROMDEVICE);
8d8bb39b 6941 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6942 rxdp3->Buffer1_ptr)) {
6943 pci_unmap_single(sp->pdev,
6944 (dma_addr_t)rxdp3->Buffer0_ptr,
6945 BUF0_LEN, PCI_DMA_FROMDEVICE);
6946 pci_unmap_single(sp->pdev,
6947 (dma_addr_t)rxdp3->Buffer2_ptr,
6948 dev->mtu + 4,
6949 PCI_DMA_FROMDEVICE);
491abf25
VP
6950 goto memalloc_failed;
6951 }
5d3213cc
AR
6952 }
6953 }
6954 return 0;
d44570e4
JP
6955
6956memalloc_failed:
6957 stats->pci_map_fail_cnt++;
6958 stats->mem_freed += (*skb)->truesize;
6959 dev_kfree_skb(*skb);
6960 return -ENOMEM;
5d3213cc 6961}
491abf25 6962
1ee6dd77
RB
6963static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6964 int size)
5d3213cc
AR
6965{
6966 struct net_device *dev = sp->dev;
6967 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 6968 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
6969 } else if (sp->rxd_mode == RXD_MODE_3B) {
6970 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6971 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 6972 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
6973 }
6974}
6975
1ee6dd77 6976static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6977{
6978 int i, j, k, blk_cnt = 0, size;
5d3213cc 6979 struct config_param *config = &sp->config;
ffb5df6c 6980 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 6981 struct net_device *dev = sp->dev;
1ee6dd77 6982 struct RxD_t *rxdp = NULL;
5d3213cc 6983 struct sk_buff *skb = NULL;
1ee6dd77 6984 struct buffAdd *ba = NULL;
5d3213cc
AR
6985 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6986
6987 /* Calculate the size based on ring mode */
6988 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6989 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6990 if (sp->rxd_mode == RXD_MODE_1)
6991 size += NET_IP_ALIGN;
6992 else if (sp->rxd_mode == RXD_MODE_3B)
6993 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6994
6995 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
6996 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6997 struct ring_info *ring = &mac_control->rings[i];
6998
d44570e4 6999 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
7000
7001 for (j = 0; j < blk_cnt; j++) {
7002 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
7003 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7004 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 7005 ba = &ring->ba[j][k];
d44570e4
JP
7006 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7007 (u64 *)&temp0_64,
7008 (u64 *)&temp1_64,
7009 (u64 *)&temp2_64,
7010 size) == -ENOMEM) {
ac1f90d6
SS
7011 return 0;
7012 }
5d3213cc
AR
7013
7014 set_rxd_buffer_size(sp, rxdp, size);
7015 wmb();
7016 /* flip the Ownership bit to Hardware */
7017 rxdp->Control_1 |= RXD_OWN_XENA;
7018 }
7019 }
7020 }
7021 return 0;
7022
7023}
7024
d44570e4 7025static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 7026{
e6a8fee2 7027 int ret = 0;
c92ca04b 7028 struct net_device *dev = sp->dev;
e6a8fee2 7029 int err = 0;
1da177e4 7030
eaae7f72 7031 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7032 ret = s2io_enable_msi_x(sp);
7033 if (ret) {
7034 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7035 sp->config.intr_type = INTA;
20346722 7036 }
1da177e4 7037
d44570e4
JP
7038 /*
7039 * Store the values of the MSIX table in
7040 * the struct s2io_nic structure
7041 */
e6a8fee2 7042 store_xmsi_data(sp);
c92ca04b 7043
e6a8fee2 7044 /* After proper initialization of H/W, register ISR */
eaae7f72 7045 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7046 int i, msix_rx_cnt = 0;
7047
f61e0a35
SH
7048 for (i = 0; i < sp->num_entries; i++) {
7049 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7050 if (sp->s2io_entries[i].type ==
d44570e4 7051 MSIX_RING_TYPE) {
ac731ab6
SH
7052 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7053 dev->name, i);
7054 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7055 s2io_msix_ring_handle,
7056 0,
7057 sp->desc[i],
7058 sp->s2io_entries[i].arg);
ac731ab6 7059 } else if (sp->s2io_entries[i].type ==
d44570e4 7060 MSIX_ALARM_TYPE) {
ac731ab6 7061 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7062 dev->name, i);
ac731ab6 7063 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7064 s2io_msix_fifo_handle,
7065 0,
7066 sp->desc[i],
7067 sp->s2io_entries[i].arg);
ac731ab6 7068
fb6a825b 7069 }
ac731ab6
SH
7070 /* if either data or addr is zero print it. */
7071 if (!(sp->msix_info[i].addr &&
d44570e4 7072 sp->msix_info[i].data)) {
ac731ab6 7073 DBG_PRINT(ERR_DBG,
d44570e4
JP
7074 "%s @Addr:0x%llx Data:0x%llx\n",
7075 sp->desc[i],
7076 (unsigned long long)
7077 sp->msix_info[i].addr,
7078 (unsigned long long)
7079 ntohl(sp->msix_info[i].data));
ac731ab6 7080 } else
fb6a825b 7081 msix_rx_cnt++;
ac731ab6
SH
7082 if (err) {
7083 remove_msix_isr(sp);
7084
7085 DBG_PRINT(ERR_DBG,
d44570e4
JP
7086 "%s:MSI-X-%d registration "
7087 "failed\n", dev->name, i);
ac731ab6
SH
7088
7089 DBG_PRINT(ERR_DBG,
d44570e4
JP
7090 "%s: Defaulting to INTA\n",
7091 dev->name);
ac731ab6
SH
7092 sp->config.intr_type = INTA;
7093 break;
fb6a825b 7094 }
ac731ab6
SH
7095 sp->s2io_entries[i].in_use =
7096 MSIX_REGISTERED_SUCCESS;
c92ca04b 7097 }
e6a8fee2 7098 }
18b2b7bd 7099 if (!err) {
6cef2b8e 7100 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7101 DBG_PRINT(INFO_DBG,
7102 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7103 }
e6a8fee2 7104 }
eaae7f72 7105 if (sp->config.intr_type == INTA) {
d44570e4
JP
7106 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7107 sp->name, dev);
e6a8fee2
AR
7108 if (err) {
7109 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7110 dev->name);
7111 return -1;
7112 }
7113 }
7114 return 0;
7115}
d44570e4
JP
7116
7117static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7118{
18b2b7bd
SH
7119 if (sp->config.intr_type == MSI_X)
7120 remove_msix_isr(sp);
7121 else
7122 remove_inta_isr(sp);
e6a8fee2
AR
7123}
7124
d44570e4 7125static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7126{
7127 int cnt = 0;
1ee6dd77 7128 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7129 register u64 val64 = 0;
5f490c96
SH
7130 struct config_param *config;
7131 config = &sp->config;
e6a8fee2 7132
9f74ffde
SH
7133 if (!is_s2io_card_up(sp))
7134 return;
7135
e6a8fee2
AR
7136 del_timer_sync(&sp->alarm_timer);
7137 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7138 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7139 msleep(50);
92b84437 7140 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7141
5f490c96 7142 /* Disable napi */
f61e0a35
SH
7143 if (sp->config.napi) {
7144 int off = 0;
7145 if (config->intr_type == MSI_X) {
7146 for (; off < sp->config.rx_ring_num; off++)
7147 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7148 }
f61e0a35
SH
7149 else
7150 napi_disable(&sp->napi);
7151 }
5f490c96 7152
e6a8fee2 7153 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7154 if (do_io)
7155 stop_nic(sp);
e6a8fee2
AR
7156
7157 s2io_rem_isr(sp);
1da177e4 7158
01e16faa
SH
7159 /* stop the tx queue, indicate link down */
7160 s2io_link(sp, LINK_DOWN);
7161
1da177e4 7162 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7163 while (do_io) {
5d3213cc
AR
7164 /* As per the HW requirement we need to replenish the
7165 * receive buffer to avoid the ring bump. Since there is
7166 * no intention of processing the Rx frame at this pointwe are
7167 * just settting the ownership bit of rxd in Each Rx
7168 * ring to HW and set the appropriate buffer size
7169 * based on the ring mode
7170 */
7171 rxd_owner_bit_reset(sp);
7172
1da177e4 7173 val64 = readq(&bar0->adapter_status);
19a60522 7174 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7175 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7176 break;
1da177e4
LT
7177 }
7178
7179 msleep(50);
7180 cnt++;
7181 if (cnt == 10) {
9e39f7c5
JP
7182 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7183 "adapter status reads 0x%llx\n",
d44570e4 7184 (unsigned long long)val64);
1da177e4
LT
7185 break;
7186 }
d796fdb7
LV
7187 }
7188 if (do_io)
7189 s2io_reset(sp);
1da177e4 7190
7ba013ac 7191 /* Free all Tx buffers */
1da177e4 7192 free_tx_buffers(sp);
7ba013ac
K
7193
7194 /* Free all Rx buffers */
1da177e4
LT
7195 free_rx_buffers(sp);
7196
92b84437 7197 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7198}
7199
d44570e4 7200static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7201{
7202 do_s2io_card_down(sp, 1);
7203}
7204
d44570e4 7205static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7206{
cc6e7c44 7207 int i, ret = 0;
1da177e4 7208 struct config_param *config;
ffb5df6c 7209 struct mac_info *mac_control;
d44570e4 7210 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7211 u16 interruptible;
1da177e4
LT
7212
7213 /* Initialize the H/W I/O registers */
9f74ffde
SH
7214 ret = init_nic(sp);
7215 if (ret != 0) {
1da177e4
LT
7216 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7217 dev->name);
9f74ffde
SH
7218 if (ret != -EIO)
7219 s2io_reset(sp);
7220 return ret;
1da177e4
LT
7221 }
7222
20346722
K
7223 /*
7224 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7225 * Rx ring and initializing buffers into 30 Rx blocks
7226 */
1da177e4 7227 config = &sp->config;
ffb5df6c 7228 mac_control = &sp->mac_control;
1da177e4
LT
7229
7230 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7231 struct ring_info *ring = &mac_control->rings[i];
7232
7233 ring->mtu = dev->mtu;
7234 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7235 if (ret) {
1da177e4
LT
7236 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7237 dev->name);
7238 s2io_reset(sp);
7239 free_rx_buffers(sp);
7240 return -ENOMEM;
7241 }
7242 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7243 ring->rx_bufs_left);
1da177e4 7244 }
5f490c96
SH
7245
7246 /* Initialise napi */
f61e0a35 7247 if (config->napi) {
f61e0a35
SH
7248 if (config->intr_type == MSI_X) {
7249 for (i = 0; i < sp->config.rx_ring_num; i++)
7250 napi_enable(&sp->mac_control.rings[i].napi);
7251 } else {
7252 napi_enable(&sp->napi);
7253 }
7254 }
5f490c96 7255
19a60522
SS
7256 /* Maintain the state prior to the open */
7257 if (sp->promisc_flg)
7258 sp->promisc_flg = 0;
7259 if (sp->m_cast_flg) {
7260 sp->m_cast_flg = 0;
d44570e4 7261 sp->all_multi_pos = 0;
19a60522 7262 }
1da177e4
LT
7263
7264 /* Setting its receive mode */
7265 s2io_set_multicast(dev);
7266
7d3d0439 7267 if (sp->lro) {
b41477f3 7268 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7269 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7270 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7271 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7272 sp->lro_max_aggr_per_sess = lro_max_pkts;
7273 }
7274
1da177e4
LT
7275 /* Enable Rx Traffic and interrupts on the NIC */
7276 if (start_nic(sp)) {
7277 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7278 s2io_reset(sp);
e6a8fee2
AR
7279 free_rx_buffers(sp);
7280 return -ENODEV;
7281 }
7282
7283 /* Add interrupt service routine */
7284 if (s2io_add_isr(sp) != 0) {
eaae7f72 7285 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7286 s2io_rem_isr(sp);
7287 s2io_reset(sp);
1da177e4
LT
7288 free_rx_buffers(sp);
7289 return -ENODEV;
7290 }
7291
25fff88e
K
7292 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7293
01e16faa
SH
7294 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7295
e6a8fee2 7296 /* Enable select interrupts */
9caab458 7297 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7298 if (sp->config.intr_type != INTA) {
7299 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7300 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7301 } else {
e6a8fee2 7302 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7303 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7304 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7305 }
7306
1da177e4
LT
7307 return 0;
7308}
7309
20346722 7310/**
1da177e4
LT
7311 * s2io_restart_nic - Resets the NIC.
7312 * @data : long pointer to the device private structure
7313 * Description:
7314 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7315 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7316 * the run time of the watch dog routine which is run holding a
7317 * spin lock.
7318 */
7319
c4028958 7320static void s2io_restart_nic(struct work_struct *work)
1da177e4 7321{
1ee6dd77 7322 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7323 struct net_device *dev = sp->dev;
1da177e4 7324
22747d6b
FR
7325 rtnl_lock();
7326
7327 if (!netif_running(dev))
7328 goto out_unlock;
7329
e6a8fee2 7330 s2io_card_down(sp);
1da177e4 7331 if (s2io_card_up(sp)) {
d44570e4 7332 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7333 }
3a3d5756 7334 s2io_wake_all_tx_queue(sp);
d44570e4 7335 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7336out_unlock:
7337 rtnl_unlock();
1da177e4
LT
7338}
7339
20346722
K
7340/**
7341 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7342 * @dev : Pointer to net device structure
7343 * Description:
7344 * This function is triggered if the Tx Queue is stopped
7345 * for a pre-defined amount of time when the Interface is still up.
7346 * If the Interface is jammed in such a situation, the hardware is
7347 * reset (by s2io_close) and restarted again (by s2io_open) to
7348 * overcome any problem that might have been caused in the hardware.
7349 * Return value:
7350 * void
7351 */
7352
7353static void s2io_tx_watchdog(struct net_device *dev)
7354{
4cf1653a 7355 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7356 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7357
7358 if (netif_carrier_ok(dev)) {
ffb5df6c 7359 swstats->watchdog_timer_cnt++;
1da177e4 7360 schedule_work(&sp->rst_timer_task);
ffb5df6c 7361 swstats->soft_reset_cnt++;
1da177e4
LT
7362 }
7363}
7364
7365/**
7366 * rx_osm_handler - To perform some OS related operations on SKB.
7367 * @sp: private member of the device structure,pointer to s2io_nic structure.
7368 * @skb : the socket buffer pointer.
7369 * @len : length of the packet
7370 * @cksum : FCS checksum of the frame.
7371 * @ring_no : the ring from which this RxD was extracted.
20346722 7372 * Description:
b41477f3 7373 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7374 * some OS related operations on the SKB before passing it to the upper
7375 * layers. It mainly checks if the checksum is OK, if so adds it to the
7376 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7377 * to the upper layer. If the checksum is wrong, it increments the Rx
7378 * packet error count, frees the SKB and returns error.
7379 * Return value:
7380 * SUCCESS on success and -1 on failure.
7381 */
1ee6dd77 7382static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7383{
1ee6dd77 7384 struct s2io_nic *sp = ring_data->nic;
d44570e4 7385 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7386 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7387 ((unsigned long)rxdp->Host_Control);
20346722 7388 int ring_no = ring_data->ring_no;
1da177e4 7389 u16 l3_csum, l4_csum;
863c11a9 7390 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7391 struct lro *uninitialized_var(lro);
f9046eb3 7392 u8 err_mask;
ffb5df6c 7393 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7394
20346722 7395 skb->dev = dev;
c92ca04b 7396
863c11a9 7397 if (err) {
bd1034f0 7398 /* Check for parity error */
d44570e4 7399 if (err & 0x1)
ffb5df6c 7400 swstats->parity_err_cnt++;
d44570e4 7401
f9046eb3 7402 err_mask = err >> 48;
d44570e4
JP
7403 switch (err_mask) {
7404 case 1:
ffb5df6c 7405 swstats->rx_parity_err_cnt++;
491976b2
SH
7406 break;
7407
d44570e4 7408 case 2:
ffb5df6c 7409 swstats->rx_abort_cnt++;
491976b2
SH
7410 break;
7411
d44570e4 7412 case 3:
ffb5df6c 7413 swstats->rx_parity_abort_cnt++;
491976b2
SH
7414 break;
7415
d44570e4 7416 case 4:
ffb5df6c 7417 swstats->rx_rda_fail_cnt++;
491976b2
SH
7418 break;
7419
d44570e4 7420 case 5:
ffb5df6c 7421 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7422 break;
7423
d44570e4 7424 case 6:
ffb5df6c 7425 swstats->rx_fcs_err_cnt++;
491976b2 7426 break;
bd1034f0 7427
d44570e4 7428 case 7:
ffb5df6c 7429 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7430 break;
7431
d44570e4 7432 case 8:
ffb5df6c 7433 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7434 break;
7435
d44570e4 7436 case 15:
ffb5df6c 7437 swstats->rx_unkn_err_cnt++;
491976b2
SH
7438 break;
7439 }
863c11a9 7440 /*
d44570e4
JP
7441 * Drop the packet if bad transfer code. Exception being
7442 * 0x5, which could be due to unsupported IPv6 extension header.
7443 * In this case, we let stack handle the packet.
7444 * Note that in this case, since checksum will be incorrect,
7445 * stack will validate the same.
7446 */
f9046eb3
OH
7447 if (err_mask != 0x5) {
7448 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7449 dev->name, err_mask);
dc56e634 7450 dev->stats.rx_crc_errors++;
ffb5df6c 7451 swstats->mem_freed
491976b2 7452 += skb->truesize;
863c11a9 7453 dev_kfree_skb(skb);
0425b46a 7454 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7455 rxdp->Host_Control = 0;
7456 return 0;
7457 }
20346722 7458 }
1da177e4 7459
20346722 7460 /* Updating statistics */
0425b46a 7461 ring_data->rx_packets++;
20346722 7462 rxdp->Host_Control = 0;
da6971d8
AR
7463 if (sp->rxd_mode == RXD_MODE_1) {
7464 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7465
0425b46a 7466 ring_data->rx_bytes += len;
da6971d8
AR
7467 skb_put(skb, len);
7468
6d517a27 7469 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7470 int get_block = ring_data->rx_curr_get_info.block_index;
7471 int get_off = ring_data->rx_curr_get_info.offset;
7472 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7473 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7474 unsigned char *buff = skb_push(skb, buf0_len);
7475
1ee6dd77 7476 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7477 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7478 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7479 skb_put(skb, buf2_len);
da6971d8 7480 }
20346722 7481
d44570e4
JP
7482 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7483 ((!ring_data->lro) ||
7484 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7485 (sp->rx_csum)) {
7486 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7487 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7488 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7489 /*
1da177e4
LT
7490 * NIC verifies if the Checksum of the received
7491 * frame is Ok or not and accordingly returns
7492 * a flag in the RxD.
7493 */
7494 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7495 if (ring_data->lro) {
7d3d0439
RA
7496 u32 tcp_len;
7497 u8 *tcp;
7498 int ret = 0;
7499
0425b46a 7500 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7501 skb->data, &tcp,
7502 &tcp_len, &lro,
7503 rxdp, sp);
7d3d0439 7504 switch (ret) {
d44570e4
JP
7505 case 3: /* Begin anew */
7506 lro->parent = skb;
7507 goto aggregate;
7508 case 1: /* Aggregate */
7509 lro_append_pkt(sp, lro, skb, tcp_len);
7510 goto aggregate;
7511 case 4: /* Flush session */
7512 lro_append_pkt(sp, lro, skb, tcp_len);
7513 queue_rx_frame(lro->parent,
7514 lro->vlan_tag);
7515 clear_lro_session(lro);
ffb5df6c 7516 swstats->flush_max_pkts++;
d44570e4
JP
7517 goto aggregate;
7518 case 2: /* Flush both */
7519 lro->parent->data_len = lro->frags_len;
ffb5df6c 7520 swstats->sending_both++;
d44570e4
JP
7521 queue_rx_frame(lro->parent,
7522 lro->vlan_tag);
7523 clear_lro_session(lro);
7524 goto send_up;
7525 case 0: /* sessions exceeded */
7526 case -1: /* non-TCP or not L2 aggregatable */
7527 case 5: /*
7528 * First pkt in session not
7529 * L3/L4 aggregatable
7530 */
7531 break;
7532 default:
7533 DBG_PRINT(ERR_DBG,
7534 "%s: Samadhana!!\n",
7535 __func__);
7536 BUG();
7d3d0439
RA
7537 }
7538 }
1da177e4 7539 } else {
20346722
K
7540 /*
7541 * Packet with erroneous checksum, let the
1da177e4
LT
7542 * upper layers deal with it.
7543 */
7544 skb->ip_summed = CHECKSUM_NONE;
7545 }
cdb5bf02 7546 } else
1da177e4 7547 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7548
ffb5df6c 7549 swstats->mem_freed += skb->truesize;
7d3d0439 7550send_up:
0c8dfc83 7551 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7552 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7553aggregate:
0425b46a 7554 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7555 return SUCCESS;
7556}
7557
7558/**
7559 * s2io_link - stops/starts the Tx queue.
7560 * @sp : private member of the device structure, which is a pointer to the
7561 * s2io_nic structure.
7562 * @link : inidicates whether link is UP/DOWN.
7563 * Description:
7564 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7565 * status of the NIC is is down or up. This is called by the Alarm
7566 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7567 * Return value:
7568 * void.
7569 */
7570
d44570e4 7571static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7572{
d44570e4 7573 struct net_device *dev = (struct net_device *)sp->dev;
ffb5df6c 7574 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7575
7576 if (link != sp->last_link_state) {
b7c5678f 7577 init_tti(sp, link);
1da177e4
LT
7578 if (link == LINK_DOWN) {
7579 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7580 s2io_stop_all_tx_queue(sp);
1da177e4 7581 netif_carrier_off(dev);
ffb5df6c
JP
7582 if (swstats->link_up_cnt)
7583 swstats->link_up_time =
7584 jiffies - sp->start_time;
7585 swstats->link_down_cnt++;
1da177e4
LT
7586 } else {
7587 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7588 if (swstats->link_down_cnt)
7589 swstats->link_down_time =
d44570e4 7590 jiffies - sp->start_time;
ffb5df6c 7591 swstats->link_up_cnt++;
1da177e4 7592 netif_carrier_on(dev);
3a3d5756 7593 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7594 }
7595 }
7596 sp->last_link_state = link;
491976b2 7597 sp->start_time = jiffies;
1da177e4
LT
7598}
7599
20346722
K
7600/**
7601 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7602 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7603 * s2io_nic structure.
7604 * Description:
7605 * This function initializes a few of the PCI and PCI-X configuration registers
7606 * with recommended values.
7607 * Return value:
7608 * void
7609 */
7610
d44570e4 7611static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7612{
20346722 7613 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7614
7615 /* Enable Data Parity Error Recovery in PCI-X command register. */
7616 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7617 &(pcix_cmd));
1da177e4 7618 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7619 (pcix_cmd | 1));
1da177e4 7620 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7621 &(pcix_cmd));
1da177e4
LT
7622
7623 /* Set the PErr Response bit in PCI command register. */
7624 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7625 pci_write_config_word(sp->pdev, PCI_COMMAND,
7626 (pci_cmd | PCI_COMMAND_PARITY));
7627 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7628}
7629
3a3d5756 7630static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7631 u8 *dev_multiq)
9dc737a7 7632{
d44570e4 7633 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7634 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7635 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7636
7637 if (tx_fifo_num < 1)
7638 tx_fifo_num = 1;
7639 else
7640 tx_fifo_num = MAX_TX_FIFOS;
7641
9e39f7c5 7642 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7643 }
2fda096d 7644
6cfc482b 7645 if (multiq)
3a3d5756 7646 *dev_multiq = multiq;
6cfc482b
SH
7647
7648 if (tx_steering_type && (1 == tx_fifo_num)) {
7649 if (tx_steering_type != TX_DEFAULT_STEERING)
7650 DBG_PRINT(ERR_DBG,
9e39f7c5 7651 "Tx steering is not supported with "
d44570e4 7652 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7653 tx_steering_type = NO_STEERING;
7654 }
7655
7656 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7657 (tx_steering_type > TX_DEFAULT_STEERING)) {
7658 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7659 "Requested transmit steering not supported\n");
7660 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7661 tx_steering_type = NO_STEERING;
3a3d5756
SH
7662 }
7663
0425b46a 7664 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7665 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7666 "Requested number of rx rings not supported\n");
7667 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7668 MAX_RX_RINGS);
0425b46a 7669 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7670 }
0425b46a 7671
eccb8628 7672 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7673 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7674 "Defaulting to INTA\n");
7675 *dev_intr_type = INTA;
7676 }
596c5c97 7677
9dc737a7 7678 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7679 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7680 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7681 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7682 "Defaulting to INTA\n");
9dc737a7
AR
7683 *dev_intr_type = INTA;
7684 }
fb6a825b 7685
6d517a27 7686 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7687 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7688 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7689 rx_ring_mode = 1;
9dc737a7
AR
7690 }
7691 return SUCCESS;
7692}
7693
9fc93a41
SS
7694/**
7695 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7696 * or Traffic class respectively.
b7c5678f 7697 * @nic: device private variable
9fc93a41
SS
7698 * Description: The function configures the receive steering to
7699 * desired receive ring.
7700 * Return Value: SUCCESS on success and
7701 * '-1' on failure (endian settings incorrect).
7702 */
7703static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7704{
7705 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7706 register u64 val64 = 0;
7707
7708 if (ds_codepoint > 63)
7709 return FAILURE;
7710
7711 val64 = RTS_DS_MEM_DATA(ring);
7712 writeq(val64, &bar0->rts_ds_mem_data);
7713
7714 val64 = RTS_DS_MEM_CTRL_WE |
7715 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7716 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7717
7718 writeq(val64, &bar0->rts_ds_mem_ctrl);
7719
7720 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7721 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7722 S2IO_BIT_RESET);
9fc93a41
SS
7723}
7724
04025095
SH
7725static const struct net_device_ops s2io_netdev_ops = {
7726 .ndo_open = s2io_open,
7727 .ndo_stop = s2io_close,
7728 .ndo_get_stats = s2io_get_stats,
7729 .ndo_start_xmit = s2io_xmit,
7730 .ndo_validate_addr = eth_validate_addr,
7731 .ndo_set_multicast_list = s2io_set_multicast,
7732 .ndo_do_ioctl = s2io_ioctl,
7733 .ndo_set_mac_address = s2io_set_mac_addr,
7734 .ndo_change_mtu = s2io_change_mtu,
7735 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7736 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7737 .ndo_tx_timeout = s2io_tx_watchdog,
7738#ifdef CONFIG_NET_POLL_CONTROLLER
7739 .ndo_poll_controller = s2io_netpoll,
7740#endif
7741};
7742
1da177e4 7743/**
20346722 7744 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7745 * @pdev : structure containing the PCI related information of the device.
7746 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7747 * Description:
7748 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7749 * All OS related initialization including memory and device structure and
7750 * initlaization of the device private variable is done. Also the swapper
7751 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7752 * registers of the device.
7753 * Return value:
7754 * returns 0 on success and negative on failure.
7755 */
7756
7757static int __devinit
7758s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7759{
1ee6dd77 7760 struct s2io_nic *sp;
1da177e4 7761 struct net_device *dev;
1da177e4 7762 int i, j, ret;
f957bcf0 7763 int dma_flag = false;
1da177e4
LT
7764 u32 mac_up, mac_down;
7765 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7766 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7767 u16 subid;
1da177e4 7768 struct config_param *config;
ffb5df6c 7769 struct mac_info *mac_control;
541ae68f 7770 int mode;
cc6e7c44 7771 u8 dev_intr_type = intr_type;
3a3d5756 7772 u8 dev_multiq = 0;
1da177e4 7773
3a3d5756
SH
7774 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7775 if (ret)
9dc737a7 7776 return ret;
1da177e4 7777
d44570e4
JP
7778 ret = pci_enable_device(pdev);
7779 if (ret) {
1da177e4 7780 DBG_PRINT(ERR_DBG,
9e39f7c5 7781 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7782 return ret;
7783 }
7784
6a35528a 7785 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7786 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7787 dma_flag = true;
d44570e4 7788 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7789 DBG_PRINT(ERR_DBG,
d44570e4
JP
7790 "Unable to obtain 64bit DMA "
7791 "for consistent allocations\n");
1da177e4
LT
7792 pci_disable_device(pdev);
7793 return -ENOMEM;
7794 }
284901a9 7795 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7796 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7797 } else {
7798 pci_disable_device(pdev);
7799 return -ENOMEM;
7800 }
d44570e4
JP
7801 ret = pci_request_regions(pdev, s2io_driver_name);
7802 if (ret) {
9e39f7c5 7803 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7804 __func__, ret);
eccb8628
VP
7805 pci_disable_device(pdev);
7806 return -ENODEV;
1da177e4 7807 }
3a3d5756 7808 if (dev_multiq)
6cfc482b 7809 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7810 else
b19fa1fa 7811 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7812 if (dev == NULL) {
7813 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7814 pci_disable_device(pdev);
7815 pci_release_regions(pdev);
7816 return -ENODEV;
7817 }
7818
7819 pci_set_master(pdev);
7820 pci_set_drvdata(pdev, dev);
1da177e4
LT
7821 SET_NETDEV_DEV(dev, &pdev->dev);
7822
7823 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7824 sp = netdev_priv(dev);
1ee6dd77 7825 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7826 sp->dev = dev;
7827 sp->pdev = pdev;
1da177e4 7828 sp->high_dma_flag = dma_flag;
f957bcf0 7829 sp->device_enabled_once = false;
da6971d8
AR
7830 if (rx_ring_mode == 1)
7831 sp->rxd_mode = RXD_MODE_1;
7832 if (rx_ring_mode == 2)
7833 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7834
eaae7f72 7835 sp->config.intr_type = dev_intr_type;
1da177e4 7836
541ae68f 7837 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7838 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f
K
7839 sp->device_type = XFRAME_II_DEVICE;
7840 else
7841 sp->device_type = XFRAME_I_DEVICE;
7842
43b7c451 7843 sp->lro = lro_enable;
6aa20a22 7844
1da177e4
LT
7845 /* Initialize some PCI/PCI-X fields of the NIC. */
7846 s2io_init_pci(sp);
7847
20346722 7848 /*
1da177e4 7849 * Setting the device configuration parameters.
20346722
K
7850 * Most of these parameters can be specified by the user during
7851 * module insertion as they are module loadable parameters. If
7852 * these parameters are not not specified during load time, they
1da177e4
LT
7853 * are initialized with default values.
7854 */
1da177e4 7855 config = &sp->config;
ffb5df6c 7856 mac_control = &sp->mac_control;
1da177e4 7857
596c5c97 7858 config->napi = napi;
6cfc482b 7859 config->tx_steering_type = tx_steering_type;
596c5c97 7860
1da177e4 7861 /* Tx side parameters. */
6cfc482b
SH
7862 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7863 config->tx_fifo_num = MAX_TX_FIFOS;
7864 else
7865 config->tx_fifo_num = tx_fifo_num;
7866
7867 /* Initialize the fifos used for tx steering */
7868 if (config->tx_fifo_num < 5) {
d44570e4
JP
7869 if (config->tx_fifo_num == 1)
7870 sp->total_tcp_fifos = 1;
7871 else
7872 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7873 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7874 sp->total_udp_fifos = 1;
7875 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7876 } else {
7877 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7878 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7879 sp->udp_fifo_idx = sp->total_tcp_fifos;
7880 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7881 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7882 }
7883
3a3d5756 7884 config->multiq = dev_multiq;
6cfc482b 7885 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7886 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7887
7888 tx_cfg->fifo_len = tx_fifo_len[i];
7889 tx_cfg->fifo_priority = i;
1da177e4
LT
7890 }
7891
20346722
K
7892 /* mapping the QoS priority to the configured fifos */
7893 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7894 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7895
6cfc482b
SH
7896 /* map the hashing selector table to the configured fifos */
7897 for (i = 0; i < config->tx_fifo_num; i++)
7898 sp->fifo_selector[i] = fifo_selector[i];
7899
7900
1da177e4
LT
7901 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7902 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7903 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7904
7905 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7906 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7907 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7908 break;
7909 }
7910 }
fed5eccd
AR
7911 /* + 2 because one Txd for skb->data and one Txd for UFO */
7912 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7913
7914 /* Rx side parameters. */
1da177e4 7915 config->rx_ring_num = rx_ring_num;
0425b46a 7916 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7917 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7918 struct ring_info *ring = &mac_control->rings[i];
7919
7920 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7921 rx_cfg->ring_priority = i;
7922 ring->rx_bufs_left = 0;
7923 ring->rxd_mode = sp->rxd_mode;
7924 ring->rxd_count = rxd_count[sp->rxd_mode];
7925 ring->pdev = sp->pdev;
7926 ring->dev = sp->dev;
1da177e4
LT
7927 }
7928
7929 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7930 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7931
7932 rx_cfg->ring_org = RING_ORG_BUFF1;
7933 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7934 }
7935
7936 /* Setting Mac Control parameters */
7937 mac_control->rmac_pause_time = rmac_pause_time;
7938 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7939 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7940
7941
1da177e4
LT
7942 /* initialize the shared memory used by the NIC and the host */
7943 if (init_shared_mem(sp)) {
d44570e4 7944 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7945 ret = -ENOMEM;
7946 goto mem_alloc_failed;
7947 }
7948
275f165f 7949 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7950 if (!sp->bar0) {
19a60522 7951 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7952 dev->name);
7953 ret = -ENOMEM;
7954 goto bar0_remap_failed;
7955 }
7956
275f165f 7957 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7958 if (!sp->bar1) {
19a60522 7959 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7960 dev->name);
7961 ret = -ENOMEM;
7962 goto bar1_remap_failed;
7963 }
7964
7965 dev->irq = pdev->irq;
d44570e4 7966 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
7967
7968 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7969 for (j = 0; j < MAX_TX_FIFOS; j++) {
d44570e4
JP
7970 mac_control->tx_FIFO_start[j] =
7971 (struct TxFIFO_element __iomem *)
7972 (sp->bar1 + (j * 0x00020000));
1da177e4
LT
7973 }
7974
7975 /* Driver entry points */
04025095 7976 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7977 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 7978 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
612eff0e 7979
1da177e4 7980 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
f957bcf0 7981 if (sp->high_dma_flag == true)
1da177e4 7982 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7983 dev->features |= NETIF_F_TSO;
f83ef8c0 7984 dev->features |= NETIF_F_TSO6;
db874e65 7985 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7986 dev->features |= NETIF_F_UFO;
7987 dev->features |= NETIF_F_HW_CSUM;
7988 }
1da177e4 7989 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7990 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7991 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7992
e960fc5c 7993 pci_save_state(sp->pdev);
1da177e4
LT
7994
7995 /* Setting swapper control on the NIC, for proper reset operation */
7996 if (s2io_set_swapper(sp)) {
9e39f7c5 7997 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
7998 dev->name);
7999 ret = -EAGAIN;
8000 goto set_swap_failed;
8001 }
8002
541ae68f
K
8003 /* Verify if the Herc works on the slot its placed into */
8004 if (sp->device_type & XFRAME_II_DEVICE) {
8005 mode = s2io_verify_pci_mode(sp);
8006 if (mode < 0) {
9e39f7c5
JP
8007 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8008 __func__);
541ae68f
K
8009 ret = -EBADSLT;
8010 goto set_swap_failed;
8011 }
8012 }
8013
f61e0a35
SH
8014 if (sp->config.intr_type == MSI_X) {
8015 sp->num_entries = config->rx_ring_num + 1;
8016 ret = s2io_enable_msi_x(sp);
8017
8018 if (!ret) {
8019 ret = s2io_test_msi(sp);
8020 /* rollback MSI-X, will re-enable during add_isr() */
8021 remove_msix_isr(sp);
8022 }
8023 if (ret) {
8024
8025 DBG_PRINT(ERR_DBG,
9e39f7c5 8026 "MSI-X requested but failed to enable\n");
f61e0a35
SH
8027 sp->config.intr_type = INTA;
8028 }
8029 }
8030
8031 if (config->intr_type == MSI_X) {
13d866a9
JP
8032 for (i = 0; i < config->rx_ring_num ; i++) {
8033 struct ring_info *ring = &mac_control->rings[i];
8034
8035 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8036 }
f61e0a35
SH
8037 } else {
8038 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8039 }
8040
541ae68f
K
8041 /* Not needed for Herc */
8042 if (sp->device_type & XFRAME_I_DEVICE) {
8043 /*
8044 * Fix for all "FFs" MAC address problems observed on
8045 * Alpha platforms
8046 */
8047 fix_mac_address(sp);
8048 s2io_reset(sp);
8049 }
1da177e4
LT
8050
8051 /*
1da177e4
LT
8052 * MAC address initialization.
8053 * For now only one mac address will be read and used.
8054 */
8055 bar0 = sp->bar0;
8056 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8057 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8058 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8059 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8061 S2IO_BIT_RESET);
1da177e4 8062 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8063 mac_down = (u32)tmp64;
1da177e4
LT
8064 mac_up = (u32) (tmp64 >> 32);
8065
1da177e4
LT
8066 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8067 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8068 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8069 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8070 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8071 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8072
1da177e4
LT
8073 /* Set the factory defined MAC address initially */
8074 dev->addr_len = ETH_ALEN;
8075 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8076 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8077
faa4f796
SH
8078 /* initialize number of multicast & unicast MAC entries variables */
8079 if (sp->device_type == XFRAME_I_DEVICE) {
8080 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8081 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8082 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8083 } else if (sp->device_type == XFRAME_II_DEVICE) {
8084 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8085 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8086 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8087 }
8088
8089 /* store mac addresses from CAM to s2io_nic structure */
8090 do_s2io_store_unicast_mc(sp);
8091
f61e0a35
SH
8092 /* Configure MSIX vector for number of rings configured plus one */
8093 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8094 (config->intr_type == MSI_X))
f61e0a35
SH
8095 sp->num_entries = config->rx_ring_num + 1;
8096
d44570e4 8097 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8098 store_xmsi_data(sp);
b41477f3
AR
8099 /* reset Nic and bring it to known state */
8100 s2io_reset(sp);
8101
1da177e4 8102 /*
99993af6 8103 * Initialize link state flags
541ae68f 8104 * and the card state parameter
1da177e4 8105 */
92b84437 8106 sp->state = 0;
1da177e4 8107
1da177e4 8108 /* Initialize spinlocks */
13d866a9
JP
8109 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8110 struct fifo_info *fifo = &mac_control->fifos[i];
8111
8112 spin_lock_init(&fifo->tx_lock);
8113 }
db874e65 8114
20346722
K
8115 /*
8116 * SXE-002: Configure link and activity LED to init state
8117 * on driver load.
1da177e4
LT
8118 */
8119 subid = sp->pdev->subsystem_device;
8120 if ((subid & 0xFF) >= 0x07) {
8121 val64 = readq(&bar0->gpio_control);
8122 val64 |= 0x0000800000000000ULL;
8123 writeq(val64, &bar0->gpio_control);
8124 val64 = 0x0411040400000000ULL;
d44570e4 8125 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8126 val64 = readq(&bar0->gpio_control);
8127 }
8128
8129 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8130
8131 if (register_netdev(dev)) {
8132 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8133 ret = -ENODEV;
8134 goto register_failed;
8135 }
9dc737a7 8136 s2io_vpd_read(sp);
0c61ed5f 8137 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
d44570e4 8138 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8139 sp->product_name, pdev->revision);
b41477f3
AR
8140 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8141 s2io_driver_version);
9e39f7c5
JP
8142 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8143 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8144 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8145 mode = s2io_print_pci_mode(sp);
541ae68f 8146 if (mode < 0) {
541ae68f 8147 ret = -EBADSLT;
9dc737a7 8148 unregister_netdev(dev);
541ae68f
K
8149 goto set_swap_failed;
8150 }
541ae68f 8151 }
d44570e4
JP
8152 switch (sp->rxd_mode) {
8153 case RXD_MODE_1:
8154 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8155 dev->name);
8156 break;
8157 case RXD_MODE_3B:
8158 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8159 dev->name);
8160 break;
9dc737a7 8161 }
db874e65 8162
f61e0a35
SH
8163 switch (sp->config.napi) {
8164 case 0:
8165 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8166 break;
8167 case 1:
db874e65 8168 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8169 break;
8170 }
3a3d5756
SH
8171
8172 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8173 sp->config.tx_fifo_num);
3a3d5756 8174
0425b46a
SH
8175 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8176 sp->config.rx_ring_num);
8177
d44570e4
JP
8178 switch (sp->config.intr_type) {
8179 case INTA:
8180 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8181 break;
8182 case MSI_X:
8183 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8184 break;
9dc737a7 8185 }
3a3d5756 8186 if (sp->config.multiq) {
13d866a9
JP
8187 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8188 struct fifo_info *fifo = &mac_control->fifos[i];
8189
8190 fifo->multiq = config->multiq;
8191 }
3a3d5756 8192 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8193 dev->name);
3a3d5756
SH
8194 } else
8195 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8196 dev->name);
3a3d5756 8197
6cfc482b
SH
8198 switch (sp->config.tx_steering_type) {
8199 case NO_STEERING:
d44570e4
JP
8200 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8201 dev->name);
8202 break;
6cfc482b 8203 case TX_PRIORITY_STEERING:
d44570e4
JP
8204 DBG_PRINT(ERR_DBG,
8205 "%s: Priority steering enabled for transmit\n",
8206 dev->name);
6cfc482b
SH
8207 break;
8208 case TX_DEFAULT_STEERING:
d44570e4
JP
8209 DBG_PRINT(ERR_DBG,
8210 "%s: Default steering enabled for transmit\n",
8211 dev->name);
6cfc482b
SH
8212 }
8213
7d3d0439
RA
8214 if (sp->lro)
8215 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8216 dev->name);
db874e65 8217 if (ufo)
d44570e4
JP
8218 DBG_PRINT(ERR_DBG,
8219 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8220 dev->name);
7ba013ac 8221 /* Initialize device name */
9dc737a7 8222 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8223
cd0fce03
BL
8224 if (vlan_tag_strip)
8225 sp->vlan_strip_flag = 1;
8226 else
8227 sp->vlan_strip_flag = 0;
8228
20346722
K
8229 /*
8230 * Make Link state as off at this point, when the Link change
8231 * interrupt comes the state will be automatically changed to
1da177e4
LT
8232 * the right state.
8233 */
8234 netif_carrier_off(dev);
1da177e4
LT
8235
8236 return 0;
8237
d44570e4
JP
8238register_failed:
8239set_swap_failed:
1da177e4 8240 iounmap(sp->bar1);
d44570e4 8241bar1_remap_failed:
1da177e4 8242 iounmap(sp->bar0);
d44570e4
JP
8243bar0_remap_failed:
8244mem_alloc_failed:
1da177e4
LT
8245 free_shared_mem(sp);
8246 pci_disable_device(pdev);
eccb8628 8247 pci_release_regions(pdev);
1da177e4
LT
8248 pci_set_drvdata(pdev, NULL);
8249 free_netdev(dev);
8250
8251 return ret;
8252}
8253
8254/**
20346722 8255 * s2io_rem_nic - Free the PCI device
1da177e4 8256 * @pdev: structure containing the PCI related information of the device.
20346722 8257 * Description: This function is called by the Pci subsystem to release a
1da177e4 8258 * PCI device and free up all resource held up by the device. This could
20346722 8259 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8260 * from memory.
8261 */
8262
8263static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8264{
8265 struct net_device *dev =
d44570e4 8266 (struct net_device *)pci_get_drvdata(pdev);
1ee6dd77 8267 struct s2io_nic *sp;
1da177e4
LT
8268
8269 if (dev == NULL) {
8270 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8271 return;
8272 }
8273
22747d6b
FR
8274 flush_scheduled_work();
8275
4cf1653a 8276 sp = netdev_priv(dev);
1da177e4
LT
8277 unregister_netdev(dev);
8278
8279 free_shared_mem(sp);
8280 iounmap(sp->bar0);
8281 iounmap(sp->bar1);
eccb8628 8282 pci_release_regions(pdev);
1da177e4 8283 pci_set_drvdata(pdev, NULL);
1da177e4 8284 free_netdev(dev);
19a60522 8285 pci_disable_device(pdev);
1da177e4
LT
8286}
8287
8288/**
8289 * s2io_starter - Entry point for the driver
8290 * Description: This function is the entry point for the driver. It verifies
8291 * the module loadable parameters and initializes PCI configuration space.
8292 */
8293
43b7c451 8294static int __init s2io_starter(void)
1da177e4 8295{
29917620 8296 return pci_register_driver(&s2io_driver);
1da177e4
LT
8297}
8298
8299/**
20346722 8300 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8301 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8302 */
8303
372cc597 8304static __exit void s2io_closer(void)
1da177e4
LT
8305{
8306 pci_unregister_driver(&s2io_driver);
8307 DBG_PRINT(INIT_DBG, "cleanup done\n");
8308}
8309
8310module_init(s2io_starter);
8311module_exit(s2io_closer);
7d3d0439 8312
6aa20a22 8313static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8314 struct tcphdr **tcp, struct RxD_t *rxdp,
8315 struct s2io_nic *sp)
7d3d0439
RA
8316{
8317 int ip_off;
8318 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8319
8320 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8321 DBG_PRINT(INIT_DBG,
8322 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8323 __func__);
7d3d0439
RA
8324 return -1;
8325 }
8326
cdb5bf02 8327 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8328 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8329 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8330 /*
8331 * If vlan stripping is disabled and the frame is VLAN tagged,
8332 * shift the offset by the VLAN header size bytes.
8333 */
cd0fce03 8334 if ((!sp->vlan_strip_flag) &&
d44570e4 8335 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8336 ip_off += HEADER_VLAN_SIZE;
8337 } else {
7d3d0439 8338 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8339 return -1;
7d3d0439
RA
8340 }
8341
8342 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8343 ip_len = (u8)((*ip)->ihl);
8344 ip_len <<= 2;
8345 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8346
8347 return 0;
8348}
8349
1ee6dd77 8350static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8351 struct tcphdr *tcp)
8352{
d44570e4
JP
8353 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8354 if ((lro->iph->saddr != ip->saddr) ||
8355 (lro->iph->daddr != ip->daddr) ||
8356 (lro->tcph->source != tcp->source) ||
8357 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8358 return -1;
8359 return 0;
8360}
8361
8362static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8363{
d44570e4 8364 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8365}
8366
1ee6dd77 8367static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8368 struct iphdr *ip, struct tcphdr *tcp,
8369 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8370{
d44570e4 8371 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8372 lro->l2h = l2h;
8373 lro->iph = ip;
8374 lro->tcph = tcp;
8375 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8376 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8377 lro->sg_num = 1;
8378 lro->total_len = ntohs(ip->tot_len);
8379 lro->frags_len = 0;
cdb5bf02 8380 lro->vlan_tag = vlan_tag;
6aa20a22 8381 /*
d44570e4
JP
8382 * Check if we saw TCP timestamp.
8383 * Other consistency checks have already been done.
8384 */
7d3d0439 8385 if (tcp->doff == 8) {
c8855953
SR
8386 __be32 *ptr;
8387 ptr = (__be32 *)(tcp+1);
7d3d0439 8388 lro->saw_ts = 1;
c8855953 8389 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8390 lro->cur_tsecr = *(ptr+2);
8391 }
8392 lro->in_use = 1;
8393}
8394
1ee6dd77 8395static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8396{
8397 struct iphdr *ip = lro->iph;
8398 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8399 __sum16 nchk;
ffb5df6c
JP
8400 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8401
d44570e4 8402 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8403
8404 /* Update L3 header */
8405 ip->tot_len = htons(lro->total_len);
8406 ip->check = 0;
8407 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8408 ip->check = nchk;
8409
8410 /* Update L4 header */
8411 tcp->ack_seq = lro->tcp_ack;
8412 tcp->window = lro->window;
8413
8414 /* Update tsecr field if this session has timestamps enabled */
8415 if (lro->saw_ts) {
c8855953 8416 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8417 *(ptr+2) = lro->cur_tsecr;
8418 }
8419
8420 /* Update counters required for calculation of
8421 * average no. of packets aggregated.
8422 */
ffb5df6c
JP
8423 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8424 swstats->num_aggregations++;
7d3d0439
RA
8425}
8426
1ee6dd77 8427static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8428 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8429{
d44570e4 8430 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8431 lro->total_len += l4_pyld;
8432 lro->frags_len += l4_pyld;
8433 lro->tcp_next_seq += l4_pyld;
8434 lro->sg_num++;
8435
8436 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8437 lro->tcp_ack = tcp->ack_seq;
8438 lro->window = tcp->window;
6aa20a22 8439
7d3d0439 8440 if (lro->saw_ts) {
c8855953 8441 __be32 *ptr;
7d3d0439 8442 /* Update tsecr and tsval from this packet */
c8855953
SR
8443 ptr = (__be32 *)(tcp+1);
8444 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8445 lro->cur_tsecr = *(ptr + 2);
8446 }
8447}
8448
1ee6dd77 8449static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8450 struct tcphdr *tcp, u32 tcp_pyld_len)
8451{
7d3d0439
RA
8452 u8 *ptr;
8453
d44570e4 8454 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8455
7d3d0439
RA
8456 if (!tcp_pyld_len) {
8457 /* Runt frame or a pure ack */
8458 return -1;
8459 }
8460
8461 if (ip->ihl != 5) /* IP has options */
8462 return -1;
8463
75c30b13
AR
8464 /* If we see CE codepoint in IP header, packet is not mergeable */
8465 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8466 return -1;
8467
8468 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8469 if (tcp->urg || tcp->psh || tcp->rst ||
8470 tcp->syn || tcp->fin ||
8471 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8472 /*
8473 * Currently recognize only the ack control word and
8474 * any other control field being set would result in
8475 * flushing the LRO session
8476 */
8477 return -1;
8478 }
8479
6aa20a22 8480 /*
7d3d0439
RA
8481 * Allow only one TCP timestamp option. Don't aggregate if
8482 * any other options are detected.
8483 */
8484 if (tcp->doff != 5 && tcp->doff != 8)
8485 return -1;
8486
8487 if (tcp->doff == 8) {
6aa20a22 8488 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8489 while (*ptr == TCPOPT_NOP)
8490 ptr++;
8491 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8492 return -1;
8493
8494 /* Ensure timestamp value increases monotonically */
8495 if (l_lro)
c8855953 8496 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8497 return -1;
8498
8499 /* timestamp echo reply should be non-zero */
c8855953 8500 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8501 return -1;
8502 }
8503
8504 return 0;
8505}
8506
d44570e4
JP
8507static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8508 u8 **tcp, u32 *tcp_len, struct lro **lro,
8509 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8510{
8511 struct iphdr *ip;
8512 struct tcphdr *tcph;
8513 int ret = 0, i;
cdb5bf02 8514 u16 vlan_tag = 0;
ffb5df6c 8515 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8516
d44570e4
JP
8517 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8518 rxdp, sp);
8519 if (ret)
7d3d0439 8520 return ret;
7d3d0439 8521
d44570e4
JP
8522 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8523
cdb5bf02 8524 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8525 tcph = (struct tcphdr *)*tcp;
8526 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8527 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8528 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8529 if (l_lro->in_use) {
8530 if (check_for_socket_match(l_lro, ip, tcph))
8531 continue;
8532 /* Sock pair matched */
8533 *lro = l_lro;
8534
8535 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8536 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8537 "expected 0x%x, actual 0x%x\n",
8538 __func__,
7d3d0439
RA
8539 (*lro)->tcp_next_seq,
8540 ntohl(tcph->seq));
8541
ffb5df6c 8542 swstats->outof_sequence_pkts++;
7d3d0439
RA
8543 ret = 2;
8544 break;
8545 }
8546
d44570e4
JP
8547 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8548 *tcp_len))
7d3d0439
RA
8549 ret = 1; /* Aggregate */
8550 else
8551 ret = 2; /* Flush both */
8552 break;
8553 }
8554 }
8555
8556 if (ret == 0) {
8557 /* Before searching for available LRO objects,
8558 * check if the pkt is L3/L4 aggregatable. If not
8559 * don't create new LRO session. Just send this
8560 * packet up.
8561 */
d44570e4 8562 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8563 return 5;
7d3d0439 8564
d44570e4 8565 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8566 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8567 if (!(l_lro->in_use)) {
8568 *lro = l_lro;
8569 ret = 3; /* Begin anew */
8570 break;
8571 }
8572 }
8573 }
8574
8575 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8576 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8577 __func__);
7d3d0439
RA
8578 *lro = NULL;
8579 return ret;
8580 }
8581
8582 switch (ret) {
d44570e4
JP
8583 case 3:
8584 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8585 vlan_tag);
8586 break;
8587 case 2:
8588 update_L3L4_header(sp, *lro);
8589 break;
8590 case 1:
8591 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8592 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8593 update_L3L4_header(sp, *lro);
d44570e4
JP
8594 ret = 4; /* Flush the LRO */
8595 }
8596 break;
8597 default:
9e39f7c5 8598 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8599 break;
7d3d0439
RA
8600 }
8601
8602 return ret;
8603}
8604
1ee6dd77 8605static void clear_lro_session(struct lro *lro)
7d3d0439 8606{
1ee6dd77 8607 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8608
8609 memset(lro, 0, lro_struct_size);
8610}
8611
cdb5bf02 8612static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8613{
8614 struct net_device *dev = skb->dev;
4cf1653a 8615 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8616
8617 skb->protocol = eth_type_trans(skb, dev);
d44570e4 8618 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8619 /* Queueing the vlan frame to the upper layer */
8620 if (sp->config.napi)
8621 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8622 else
8623 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8624 } else {
8625 if (sp->config.napi)
8626 netif_receive_skb(skb);
8627 else
8628 netif_rx(skb);
8629 }
7d3d0439
RA
8630}
8631
1ee6dd77 8632static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8633 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8634{
75c30b13 8635 struct sk_buff *first = lro->parent;
ffb5df6c 8636 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8637
8638 first->len += tcp_len;
8639 first->data_len = lro->frags_len;
8640 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8641 if (skb_shinfo(first)->frag_list)
8642 lro->last_frag->next = skb;
7d3d0439
RA
8643 else
8644 skb_shinfo(first)->frag_list = skb;
372cc597 8645 first->truesize += skb->truesize;
75c30b13 8646 lro->last_frag = skb;
ffb5df6c 8647 swstats->clubbed_frms_cnt++;
7d3d0439
RA
8648 return;
8649}
d796fdb7
LV
8650
8651/**
8652 * s2io_io_error_detected - called when PCI error is detected
8653 * @pdev: Pointer to PCI device
8453d43f 8654 * @state: The current pci connection state
d796fdb7
LV
8655 *
8656 * This function is called after a PCI bus error affecting
8657 * this device has been detected.
8658 */
8659static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8660 pci_channel_state_t state)
d796fdb7
LV
8661{
8662 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8663 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8664
8665 netif_device_detach(netdev);
8666
1e3c8bd6
DN
8667 if (state == pci_channel_io_perm_failure)
8668 return PCI_ERS_RESULT_DISCONNECT;
8669
d796fdb7
LV
8670 if (netif_running(netdev)) {
8671 /* Bring down the card, while avoiding PCI I/O */
8672 do_s2io_card_down(sp, 0);
d796fdb7
LV
8673 }
8674 pci_disable_device(pdev);
8675
8676 return PCI_ERS_RESULT_NEED_RESET;
8677}
8678
8679/**
8680 * s2io_io_slot_reset - called after the pci bus has been reset.
8681 * @pdev: Pointer to PCI device
8682 *
8683 * Restart the card from scratch, as if from a cold-boot.
8684 * At this point, the card has exprienced a hard reset,
8685 * followed by fixups by BIOS, and has its config space
8686 * set up identically to what it was at cold boot.
8687 */
8688static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8689{
8690 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8691 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8692
8693 if (pci_enable_device(pdev)) {
6cef2b8e 8694 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8695 return PCI_ERS_RESULT_DISCONNECT;
8696 }
8697
8698 pci_set_master(pdev);
8699 s2io_reset(sp);
8700
8701 return PCI_ERS_RESULT_RECOVERED;
8702}
8703
8704/**
8705 * s2io_io_resume - called when traffic can start flowing again.
8706 * @pdev: Pointer to PCI device
8707 *
8708 * This callback is called when the error recovery driver tells
8709 * us that its OK to resume normal operation.
8710 */
8711static void s2io_io_resume(struct pci_dev *pdev)
8712{
8713 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8714 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8715
8716 if (netif_running(netdev)) {
8717 if (s2io_card_up(sp)) {
6cef2b8e 8718 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8719 return;
8720 }
8721
8722 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8723 s2io_card_down(sp);
6cef2b8e 8724 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8725 return;
8726 }
8727 }
8728
8729 netif_device_attach(netdev);
fd2ea0a7 8730 netif_tx_wake_all_queues(netdev);
d796fdb7 8731}