]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/s2io.c
remove setup of platform device from jazzsonic.c
[mirror_ubuntu-artful-kernel.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
9dc737a7
AR
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
92c48799 87#define DRV_VERSION "2.0.26.1"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
6d517a27
VP
93static int rxd_size[2] = {32,48};
94static int rxd_count[2] = {127,85};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
133/* Ethtool related variables and Macros. */
134static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140};
141
fa1f0cb3 142static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
1da177e4 152 {"tmac_any_err_frms"},
bd1034f0 153 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
bd1034f0 168 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
1da177e4 175 {"rmac_discarded_frms"},
bd1034f0
AR
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
1da177e4
LT
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
bd1034f0
AR
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
bd1034f0
AR
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
1da177e4 214 {"rmac_pause_cnt"},
bd1034f0
AR
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
bd1034f0
AR
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
fa1f0cb3
SS
236 {"rxf_wr_cnt"}
237};
238
239static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
255 {"link_fault_cnt"}
256};
257
258static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
bd1034f0
AR
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
7d3d0439
RA
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
c53d4945 284 ("mem_alloc_fail_cnt"),
491abf25 285 ("pci_map_fail_cnt"),
491976b2
SH
286 ("watchdog_timer_cnt"),
287 ("mem_allocated"),
288 ("mem_freed"),
289 ("link_up_cnt"),
290 ("link_down_cnt"),
291 ("link_up_time"),
292 ("link_down_time"),
293 ("tx_tcode_buf_abort_cnt"),
294 ("tx_tcode_desc_abort_cnt"),
295 ("tx_tcode_parity_err_cnt"),
296 ("tx_tcode_link_loss_cnt"),
297 ("tx_tcode_list_proc_err_cnt"),
298 ("rx_tcode_parity_err_cnt"),
299 ("rx_tcode_abort_cnt"),
300 ("rx_tcode_parity_abort_cnt"),
301 ("rx_tcode_rda_fail_cnt"),
302 ("rx_tcode_unkn_prot_cnt"),
303 ("rx_tcode_fcs_err_cnt"),
304 ("rx_tcode_buf_size_err_cnt"),
305 ("rx_tcode_rxd_corrupt_cnt"),
306 ("rx_tcode_unkn_err_cnt")
1da177e4
LT
307};
308
fa1f0cb3
SS
309#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
310#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311 ETH_GSTRING_LEN
312#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313
314#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
315#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316
317#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
318#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
319
320#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
321#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
322
25fff88e
K
323#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
324 init_timer(&timer); \
325 timer.function = handle; \
326 timer.data = (unsigned long) arg; \
327 mod_timer(&timer, (jiffies + exp)) \
328
be3a6b02
K
329/* Add the vlan */
330static void s2io_vlan_rx_register(struct net_device *dev,
331 struct vlan_group *grp)
332{
1ee6dd77 333 struct s2io_nic *nic = dev->priv;
be3a6b02
K
334 unsigned long flags;
335
336 spin_lock_irqsave(&nic->tx_lock, flags);
337 nic->vlgrp = grp;
338 spin_unlock_irqrestore(&nic->tx_lock, flags);
339}
340
926930b2 341/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 342static int vlan_strip_flag;
926930b2 343
20346722 344/*
1da177e4
LT
345 * Constants to be programmed into the Xena's registers, to configure
346 * the XAUI.
347 */
348
1da177e4 349#define END_SIGN 0x0
f71e1309 350static const u64 herc_act_dtx_cfg[] = {
541ae68f 351 /* Set address */
e960fc5c 352 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 353 /* Write data */
e960fc5c 354 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
355 /* Set address */
356 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
357 /* Write data */
358 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
359 /* Set address */
e960fc5c 360 0x801205150D440000ULL, 0x801205150D4400E0ULL,
361 /* Write data */
362 0x801205150D440004ULL, 0x801205150D4400E4ULL,
363 /* Set address */
541ae68f
K
364 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
365 /* Write data */
366 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
367 /* Done */
368 END_SIGN
369};
370
f71e1309 371static const u64 xena_dtx_cfg[] = {
c92ca04b 372 /* Set address */
1da177e4 373 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
374 /* Write data */
375 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
376 /* Set address */
377 0x8001051500000000ULL, 0x80010515000000E0ULL,
378 /* Write data */
379 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
380 /* Set address */
1da177e4 381 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
382 /* Write data */
383 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
384 END_SIGN
385};
386
20346722 387/*
1da177e4
LT
388 * Constants for Fixing the MacAddress problem seen mostly on
389 * Alpha machines.
390 */
f71e1309 391static const u64 fix_mac[] = {
1da177e4
LT
392 0x0060000000000000ULL, 0x0060600000000000ULL,
393 0x0040600000000000ULL, 0x0000600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0060600000000000ULL,
404 0x0020600000000000ULL, 0x0000600000000000ULL,
405 0x0040600000000000ULL, 0x0060600000000000ULL,
406 END_SIGN
407};
408
b41477f3
AR
409MODULE_LICENSE("GPL");
410MODULE_VERSION(DRV_VERSION);
411
412
1da177e4 413/* Module Loadable parameters. */
b41477f3
AR
414S2IO_PARM_INT(tx_fifo_num, 1);
415S2IO_PARM_INT(rx_ring_num, 1);
416
417
418S2IO_PARM_INT(rx_ring_mode, 1);
419S2IO_PARM_INT(use_continuous_tx_intrs, 1);
420S2IO_PARM_INT(rmac_pause_time, 0x100);
421S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
422S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
423S2IO_PARM_INT(shared_splits, 0);
424S2IO_PARM_INT(tmac_util_period, 5);
425S2IO_PARM_INT(rmac_util_period, 5);
426S2IO_PARM_INT(bimodal, 0);
427S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 428/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 429S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 430/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 431S2IO_PARM_INT(intr_type, 2);
7d3d0439 432/* Large receive offload feature */
b41477f3 433S2IO_PARM_INT(lro, 0);
7d3d0439
RA
434/* Max pkts to be aggregated by LRO at one time. If not specified,
435 * aggregation happens until we hit max IP pkt size(64K)
436 */
b41477f3 437S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 438S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
439
440S2IO_PARM_INT(napi, 1);
441S2IO_PARM_INT(ufo, 0);
926930b2 442S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
443
444static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
445 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
446static unsigned int rx_ring_sz[MAX_RX_RINGS] =
447 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
448static unsigned int rts_frm_len[MAX_RX_RINGS] =
449 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
450
451module_param_array(tx_fifo_len, uint, NULL, 0);
452module_param_array(rx_ring_sz, uint, NULL, 0);
453module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 454
20346722 455/*
1da177e4 456 * S2IO device table.
20346722 457 * This table lists all the devices that this driver supports.
1da177e4
LT
458 */
459static struct pci_device_id s2io_tbl[] __devinitdata = {
460 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
461 PCI_ANY_ID, PCI_ANY_ID},
462 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
463 PCI_ANY_ID, PCI_ANY_ID},
464 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
465 PCI_ANY_ID, PCI_ANY_ID},
466 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
467 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
468 {0,}
469};
470
471MODULE_DEVICE_TABLE(pci, s2io_tbl);
472
d796fdb7
LV
473static struct pci_error_handlers s2io_err_handler = {
474 .error_detected = s2io_io_error_detected,
475 .slot_reset = s2io_io_slot_reset,
476 .resume = s2io_io_resume,
477};
478
1da177e4
LT
479static struct pci_driver s2io_driver = {
480 .name = "S2IO",
481 .id_table = s2io_tbl,
482 .probe = s2io_init_nic,
483 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 484 .err_handler = &s2io_err_handler,
1da177e4
LT
485};
486
487/* A simplifier macro used both by init and free shared_mem Fns(). */
488#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
489
490/**
491 * init_shared_mem - Allocation and Initialization of Memory
492 * @nic: Device private variable.
20346722
K
493 * Description: The function allocates all the memory areas shared
494 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
495 * Rx descriptors and the statistics block.
496 */
497
498static int init_shared_mem(struct s2io_nic *nic)
499{
500 u32 size;
501 void *tmp_v_addr, *tmp_v_addr_next;
502 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 503 struct RxD_block *pre_rxd_blk = NULL;
372cc597 504 int i, j, blk_cnt;
1da177e4
LT
505 int lst_size, lst_per_page;
506 struct net_device *dev = nic->dev;
8ae418cf 507 unsigned long tmp;
1ee6dd77 508 struct buffAdd *ba;
1da177e4 509
1ee6dd77 510 struct mac_info *mac_control;
1da177e4 511 struct config_param *config;
491976b2 512 unsigned long long mem_allocated = 0;
1da177e4
LT
513
514 mac_control = &nic->mac_control;
515 config = &nic->config;
516
517
518 /* Allocation and initialization of TXDLs in FIOFs */
519 size = 0;
520 for (i = 0; i < config->tx_fifo_num; i++) {
521 size += config->tx_cfg[i].fifo_len;
522 }
523 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 524 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 525 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 526 return -EINVAL;
1da177e4
LT
527 }
528
1ee6dd77 529 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
530 lst_per_page = PAGE_SIZE / lst_size;
531
532 for (i = 0; i < config->tx_fifo_num; i++) {
533 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 534 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722
K
535 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
536 GFP_KERNEL);
537 if (!mac_control->fifos[i].list_info) {
0c61ed5f 538 DBG_PRINT(INFO_DBG,
1da177e4
LT
539 "Malloc failed for list_info\n");
540 return -ENOMEM;
541 }
491976b2 542 mem_allocated += list_holder_size;
20346722 543 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
544 }
545 for (i = 0; i < config->tx_fifo_num; i++) {
546 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
547 lst_per_page);
20346722
K
548 mac_control->fifos[i].tx_curr_put_info.offset = 0;
549 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 550 config->tx_cfg[i].fifo_len - 1;
20346722
K
551 mac_control->fifos[i].tx_curr_get_info.offset = 0;
552 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 553 config->tx_cfg[i].fifo_len - 1;
20346722
K
554 mac_control->fifos[i].fifo_no = i;
555 mac_control->fifos[i].nic = nic;
fed5eccd 556 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 557
1da177e4
LT
558 for (j = 0; j < page_num; j++) {
559 int k = 0;
560 dma_addr_t tmp_p;
561 void *tmp_v;
562 tmp_v = pci_alloc_consistent(nic->pdev,
563 PAGE_SIZE, &tmp_p);
564 if (!tmp_v) {
0c61ed5f 565 DBG_PRINT(INFO_DBG,
1da177e4 566 "pci_alloc_consistent ");
0c61ed5f 567 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
568 return -ENOMEM;
569 }
776bd20f 570 /* If we got a zero DMA address(can happen on
571 * certain platforms like PPC), reallocate.
572 * Store virtual address of page we don't want,
573 * to be freed later.
574 */
575 if (!tmp_p) {
576 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 577 DBG_PRINT(INIT_DBG,
776bd20f 578 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 579 DBG_PRINT(INIT_DBG,
6b4d617d 580 "Virtual address %p\n", tmp_v);
776bd20f 581 tmp_v = pci_alloc_consistent(nic->pdev,
582 PAGE_SIZE, &tmp_p);
583 if (!tmp_v) {
0c61ed5f 584 DBG_PRINT(INFO_DBG,
776bd20f 585 "pci_alloc_consistent ");
0c61ed5f 586 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 587 return -ENOMEM;
588 }
491976b2 589 mem_allocated += PAGE_SIZE;
776bd20f 590 }
1da177e4
LT
591 while (k < lst_per_page) {
592 int l = (j * lst_per_page) + k;
593 if (l == config->tx_cfg[i].fifo_len)
20346722
K
594 break;
595 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 596 tmp_v + (k * lst_size);
20346722 597 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
598 tmp_p + (k * lst_size);
599 k++;
600 }
601 }
602 }
1da177e4 603
4384247b 604 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
605 if (!nic->ufo_in_band_v)
606 return -ENOMEM;
491976b2 607 mem_allocated += (size * sizeof(u64));
fed5eccd 608
1da177e4
LT
609 /* Allocation and initialization of RXDs in Rings */
610 size = 0;
611 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
612 if (config->rx_cfg[i].num_rxd %
613 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
614 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
615 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
616 i);
617 DBG_PRINT(ERR_DBG, "RxDs per Block");
618 return FAILURE;
619 }
620 size += config->rx_cfg[i].num_rxd;
20346722 621 mac_control->rings[i].block_count =
da6971d8
AR
622 config->rx_cfg[i].num_rxd /
623 (rxd_count[nic->rxd_mode] + 1 );
624 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
625 mac_control->rings[i].block_count;
1da177e4 626 }
da6971d8 627 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 628 size = (size * (sizeof(struct RxD1)));
da6971d8 629 else
1ee6dd77 630 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
631
632 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
633 mac_control->rings[i].rx_curr_get_info.block_index = 0;
634 mac_control->rings[i].rx_curr_get_info.offset = 0;
635 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 636 config->rx_cfg[i].num_rxd - 1;
20346722
K
637 mac_control->rings[i].rx_curr_put_info.block_index = 0;
638 mac_control->rings[i].rx_curr_put_info.offset = 0;
639 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 640 config->rx_cfg[i].num_rxd - 1;
20346722
K
641 mac_control->rings[i].nic = nic;
642 mac_control->rings[i].ring_no = i;
643
da6971d8
AR
644 blk_cnt = config->rx_cfg[i].num_rxd /
645 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
646 /* Allocating all the Rx blocks */
647 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 648 struct rx_block_info *rx_blocks;
da6971d8
AR
649 int l;
650
651 rx_blocks = &mac_control->rings[i].rx_blocks[j];
652 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
653 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
654 &tmp_p_addr);
655 if (tmp_v_addr == NULL) {
656 /*
20346722
K
657 * In case of failure, free_shared_mem()
658 * is called, which should free any
659 * memory that was alloced till the
1da177e4
LT
660 * failure happened.
661 */
da6971d8 662 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
663 return -ENOMEM;
664 }
491976b2 665 mem_allocated += size;
1da177e4 666 memset(tmp_v_addr, 0, size);
da6971d8
AR
667 rx_blocks->block_virt_addr = tmp_v_addr;
668 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 669 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
670 rxd_count[nic->rxd_mode],
671 GFP_KERNEL);
372cc597
SS
672 if (!rx_blocks->rxds)
673 return -ENOMEM;
491976b2
SH
674 mem_allocated +=
675 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
676 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
677 rx_blocks->rxds[l].virt_addr =
678 rx_blocks->block_virt_addr +
679 (rxd_size[nic->rxd_mode] * l);
680 rx_blocks->rxds[l].dma_addr =
681 rx_blocks->block_dma_addr +
682 (rxd_size[nic->rxd_mode] * l);
683 }
1da177e4
LT
684 }
685 /* Interlinking all Rx Blocks */
686 for (j = 0; j < blk_cnt; j++) {
20346722
K
687 tmp_v_addr =
688 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 689 tmp_v_addr_next =
20346722 690 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 691 blk_cnt].block_virt_addr;
20346722
K
692 tmp_p_addr =
693 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 694 tmp_p_addr_next =
20346722 695 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
696 blk_cnt].block_dma_addr;
697
1ee6dd77 698 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
699 pre_rxd_blk->reserved_2_pNext_RxD_block =
700 (unsigned long) tmp_v_addr_next;
1da177e4
LT
701 pre_rxd_blk->pNext_RxD_Blk_physical =
702 (u64) tmp_p_addr_next;
703 }
704 }
6d517a27 705 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
706 /*
707 * Allocation of Storages for buffer addresses in 2BUFF mode
708 * and the buffers as well.
709 */
710 for (i = 0; i < config->rx_ring_num; i++) {
711 blk_cnt = config->rx_cfg[i].num_rxd /
712 (rxd_count[nic->rxd_mode]+ 1);
713 mac_control->rings[i].ba =
1ee6dd77 714 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 715 GFP_KERNEL);
da6971d8 716 if (!mac_control->rings[i].ba)
1da177e4 717 return -ENOMEM;
491976b2 718 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
719 for (j = 0; j < blk_cnt; j++) {
720 int k = 0;
721 mac_control->rings[i].ba[j] =
1ee6dd77 722 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
723 (rxd_count[nic->rxd_mode] + 1)),
724 GFP_KERNEL);
725 if (!mac_control->rings[i].ba[j])
1da177e4 726 return -ENOMEM;
491976b2
SH
727 mem_allocated += (sizeof(struct buffAdd) * \
728 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
729 while (k != rxd_count[nic->rxd_mode]) {
730 ba = &mac_control->rings[i].ba[j][k];
731
732 ba->ba_0_org = (void *) kmalloc
733 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
734 if (!ba->ba_0_org)
735 return -ENOMEM;
491976b2
SH
736 mem_allocated +=
737 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
738 tmp = (unsigned long)ba->ba_0_org;
739 tmp += ALIGN_SIZE;
740 tmp &= ~((unsigned long) ALIGN_SIZE);
741 ba->ba_0 = (void *) tmp;
742
743 ba->ba_1_org = (void *) kmalloc
744 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
745 if (!ba->ba_1_org)
746 return -ENOMEM;
491976b2
SH
747 mem_allocated
748 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
749 tmp = (unsigned long) ba->ba_1_org;
750 tmp += ALIGN_SIZE;
751 tmp &= ~((unsigned long) ALIGN_SIZE);
752 ba->ba_1 = (void *) tmp;
753 k++;
754 }
1da177e4
LT
755 }
756 }
757 }
1da177e4
LT
758
759 /* Allocation and initialization of Statistics block */
1ee6dd77 760 size = sizeof(struct stat_block);
1da177e4
LT
761 mac_control->stats_mem = pci_alloc_consistent
762 (nic->pdev, size, &mac_control->stats_mem_phy);
763
764 if (!mac_control->stats_mem) {
20346722
K
765 /*
766 * In case of failure, free_shared_mem() is called, which
767 * should free any memory that was alloced till the
1da177e4
LT
768 * failure happened.
769 */
770 return -ENOMEM;
771 }
491976b2 772 mem_allocated += size;
1da177e4
LT
773 mac_control->stats_mem_sz = size;
774
775 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 776 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 777 memset(tmp_v_addr, 0, size);
1da177e4
LT
778 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
779 (unsigned long long) tmp_p_addr);
491976b2 780 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
781 return SUCCESS;
782}
783
20346722
K
784/**
785 * free_shared_mem - Free the allocated Memory
1da177e4
LT
786 * @nic: Device private variable.
787 * Description: This function is to free all memory locations allocated by
788 * the init_shared_mem() function and return it to the kernel.
789 */
790
791static void free_shared_mem(struct s2io_nic *nic)
792{
793 int i, j, blk_cnt, size;
491976b2 794 u32 ufo_size = 0;
1da177e4
LT
795 void *tmp_v_addr;
796 dma_addr_t tmp_p_addr;
1ee6dd77 797 struct mac_info *mac_control;
1da177e4
LT
798 struct config_param *config;
799 int lst_size, lst_per_page;
8910b49f 800 struct net_device *dev;
491976b2 801 int page_num = 0;
1da177e4
LT
802
803 if (!nic)
804 return;
805
8910b49f
MG
806 dev = nic->dev;
807
1da177e4
LT
808 mac_control = &nic->mac_control;
809 config = &nic->config;
810
1ee6dd77 811 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
812 lst_per_page = PAGE_SIZE / lst_size;
813
814 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
815 ufo_size += config->tx_cfg[i].fifo_len;
816 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
817 lst_per_page);
1da177e4
LT
818 for (j = 0; j < page_num; j++) {
819 int mem_blks = (j * lst_per_page);
776bd20f 820 if (!mac_control->fifos[i].list_info)
6aa20a22 821 return;
776bd20f 822 if (!mac_control->fifos[i].list_info[mem_blks].
823 list_virt_addr)
1da177e4
LT
824 break;
825 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
826 mac_control->fifos[i].
827 list_info[mem_blks].
1da177e4 828 list_virt_addr,
20346722
K
829 mac_control->fifos[i].
830 list_info[mem_blks].
1da177e4 831 list_phy_addr);
491976b2
SH
832 nic->mac_control.stats_info->sw_stat.mem_freed
833 += PAGE_SIZE;
1da177e4 834 }
776bd20f 835 /* If we got a zero DMA address during allocation,
836 * free the page now
837 */
838 if (mac_control->zerodma_virt_addr) {
839 pci_free_consistent(nic->pdev, PAGE_SIZE,
840 mac_control->zerodma_virt_addr,
841 (dma_addr_t)0);
6aa20a22 842 DBG_PRINT(INIT_DBG,
6b4d617d
AM
843 "%s: Freeing TxDL with zero DMA addr. ",
844 dev->name);
845 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
846 mac_control->zerodma_virt_addr);
491976b2
SH
847 nic->mac_control.stats_info->sw_stat.mem_freed
848 += PAGE_SIZE;
776bd20f 849 }
20346722 850 kfree(mac_control->fifos[i].list_info);
491976b2
SH
851 nic->mac_control.stats_info->sw_stat.mem_freed +=
852 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
853 }
854
1da177e4 855 size = SIZE_OF_BLOCK;
1da177e4 856 for (i = 0; i < config->rx_ring_num; i++) {
20346722 857 blk_cnt = mac_control->rings[i].block_count;
1da177e4 858 for (j = 0; j < blk_cnt; j++) {
20346722
K
859 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
860 block_virt_addr;
861 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
862 block_dma_addr;
1da177e4
LT
863 if (tmp_v_addr == NULL)
864 break;
865 pci_free_consistent(nic->pdev, size,
866 tmp_v_addr, tmp_p_addr);
491976b2 867 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 868 kfree(mac_control->rings[i].rx_blocks[j].rxds);
491976b2
SH
869 nic->mac_control.stats_info->sw_stat.mem_freed +=
870 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
871 }
872 }
873
6d517a27 874 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
875 /* Freeing buffer storage addresses in 2BUFF mode. */
876 for (i = 0; i < config->rx_ring_num; i++) {
877 blk_cnt = config->rx_cfg[i].num_rxd /
878 (rxd_count[nic->rxd_mode] + 1);
879 for (j = 0; j < blk_cnt; j++) {
880 int k = 0;
881 if (!mac_control->rings[i].ba[j])
882 continue;
883 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 884 struct buffAdd *ba =
da6971d8
AR
885 &mac_control->rings[i].ba[j][k];
886 kfree(ba->ba_0_org);
491976b2
SH
887 nic->mac_control.stats_info->sw_stat.\
888 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 889 kfree(ba->ba_1_org);
491976b2
SH
890 nic->mac_control.stats_info->sw_stat.\
891 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
892 k++;
893 }
894 kfree(mac_control->rings[i].ba[j]);
491976b2
SH
895 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
896 (rxd_count[nic->rxd_mode] + 1));
1da177e4 897 }
da6971d8 898 kfree(mac_control->rings[i].ba);
491976b2
SH
899 nic->mac_control.stats_info->sw_stat.mem_freed +=
900 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 901 }
1da177e4 902 }
1da177e4
LT
903
904 if (mac_control->stats_mem) {
905 pci_free_consistent(nic->pdev,
906 mac_control->stats_mem_sz,
907 mac_control->stats_mem,
908 mac_control->stats_mem_phy);
491976b2
SH
909 nic->mac_control.stats_info->sw_stat.mem_freed +=
910 mac_control->stats_mem_sz;
1da177e4 911 }
491976b2 912 if (nic->ufo_in_band_v) {
fed5eccd 913 kfree(nic->ufo_in_band_v);
491976b2
SH
914 nic->mac_control.stats_info->sw_stat.mem_freed
915 += (ufo_size * sizeof(u64));
916 }
1da177e4
LT
917}
918
541ae68f
K
919/**
920 * s2io_verify_pci_mode -
921 */
922
1ee6dd77 923static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 924{
1ee6dd77 925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
926 register u64 val64 = 0;
927 int mode;
928
929 val64 = readq(&bar0->pci_mode);
930 mode = (u8)GET_PCI_MODE(val64);
931
932 if ( val64 & PCI_MODE_UNKNOWN_MODE)
933 return -1; /* Unknown PCI mode */
934 return mode;
935}
936
c92ca04b
AR
937#define NEC_VENID 0x1033
938#define NEC_DEVID 0x0125
939static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
940{
941 struct pci_dev *tdev = NULL;
26d36b64
AC
942 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
943 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 944 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 945 pci_dev_put(tdev);
c92ca04b
AR
946 return 1;
947 }
948 }
949 return 0;
950}
541ae68f 951
7b32a312 952static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
953/**
954 * s2io_print_pci_mode -
955 */
1ee6dd77 956static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 957{
1ee6dd77 958 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
959 register u64 val64 = 0;
960 int mode;
961 struct config_param *config = &nic->config;
962
963 val64 = readq(&bar0->pci_mode);
964 mode = (u8)GET_PCI_MODE(val64);
965
966 if ( val64 & PCI_MODE_UNKNOWN_MODE)
967 return -1; /* Unknown PCI mode */
968
c92ca04b
AR
969 config->bus_speed = bus_speed[mode];
970
971 if (s2io_on_nec_bridge(nic->pdev)) {
972 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
973 nic->dev->name);
974 return mode;
975 }
976
541ae68f
K
977 if (val64 & PCI_MODE_32_BITS) {
978 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
979 } else {
980 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
981 }
982
983 switch(mode) {
984 case PCI_MODE_PCI_33:
985 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
986 break;
987 case PCI_MODE_PCI_66:
988 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
989 break;
990 case PCI_MODE_PCIX_M1_66:
991 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
992 break;
993 case PCI_MODE_PCIX_M1_100:
994 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
995 break;
996 case PCI_MODE_PCIX_M1_133:
997 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
998 break;
999 case PCI_MODE_PCIX_M2_66:
1000 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1001 break;
1002 case PCI_MODE_PCIX_M2_100:
1003 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1004 break;
1005 case PCI_MODE_PCIX_M2_133:
1006 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1007 break;
1008 default:
1009 return -1; /* Unsupported bus speed */
1010 }
1011
1012 return mode;
1013}
1014
20346722
K
1015/**
1016 * init_nic - Initialization of hardware
1da177e4 1017 * @nic: device peivate variable
20346722
K
1018 * Description: The function sequentially configures every block
1019 * of the H/W from their reset values.
1020 * Return Value: SUCCESS on success and
1da177e4
LT
1021 * '-1' on failure (endian settings incorrect).
1022 */
1023
1024static int init_nic(struct s2io_nic *nic)
1025{
1ee6dd77 1026 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1027 struct net_device *dev = nic->dev;
1028 register u64 val64 = 0;
1029 void __iomem *add;
1030 u32 time;
1031 int i, j;
1ee6dd77 1032 struct mac_info *mac_control;
1da177e4 1033 struct config_param *config;
c92ca04b 1034 int dtx_cnt = 0;
1da177e4 1035 unsigned long long mem_share;
20346722 1036 int mem_size;
1da177e4
LT
1037
1038 mac_control = &nic->mac_control;
1039 config = &nic->config;
1040
5e25b9dd 1041 /* to set the swapper controle on the card */
20346722 1042 if(s2io_set_swapper(nic)) {
1da177e4
LT
1043 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1044 return -1;
1045 }
1046
541ae68f
K
1047 /*
1048 * Herc requires EOI to be removed from reset before XGXS, so..
1049 */
1050 if (nic->device_type & XFRAME_II_DEVICE) {
1051 val64 = 0xA500000000ULL;
1052 writeq(val64, &bar0->sw_reset);
1053 msleep(500);
1054 val64 = readq(&bar0->sw_reset);
1055 }
1056
1da177e4
LT
1057 /* Remove XGXS from reset state */
1058 val64 = 0;
1059 writeq(val64, &bar0->sw_reset);
1da177e4 1060 msleep(500);
20346722 1061 val64 = readq(&bar0->sw_reset);
1da177e4
LT
1062
1063 /* Enable Receiving broadcasts */
1064 add = &bar0->mac_cfg;
1065 val64 = readq(&bar0->mac_cfg);
1066 val64 |= MAC_RMAC_BCAST_ENABLE;
1067 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1068 writel((u32) val64, add);
1069 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1070 writel((u32) (val64 >> 32), (add + 4));
1071
1072 /* Read registers in all blocks */
1073 val64 = readq(&bar0->mac_int_mask);
1074 val64 = readq(&bar0->mc_int_mask);
1075 val64 = readq(&bar0->xgxs_int_mask);
1076
1077 /* Set MTU */
1078 val64 = dev->mtu;
1079 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1080
541ae68f
K
1081 if (nic->device_type & XFRAME_II_DEVICE) {
1082 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1083 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1084 &bar0->dtx_control, UF);
541ae68f
K
1085 if (dtx_cnt & 0x1)
1086 msleep(1); /* Necessary!! */
1da177e4
LT
1087 dtx_cnt++;
1088 }
541ae68f 1089 } else {
c92ca04b
AR
1090 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1091 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1092 &bar0->dtx_control, UF);
1093 val64 = readq(&bar0->dtx_control);
1094 dtx_cnt++;
1da177e4
LT
1095 }
1096 }
1097
1098 /* Tx DMA Initialization */
1099 val64 = 0;
1100 writeq(val64, &bar0->tx_fifo_partition_0);
1101 writeq(val64, &bar0->tx_fifo_partition_1);
1102 writeq(val64, &bar0->tx_fifo_partition_2);
1103 writeq(val64, &bar0->tx_fifo_partition_3);
1104
1105
1106 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1107 val64 |=
1108 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1109 13) | vBIT(config->tx_cfg[i].fifo_priority,
1110 ((i * 32) + 5), 3);
1111
1112 if (i == (config->tx_fifo_num - 1)) {
1113 if (i % 2 == 0)
1114 i++;
1115 }
1116
1117 switch (i) {
1118 case 1:
1119 writeq(val64, &bar0->tx_fifo_partition_0);
1120 val64 = 0;
1121 break;
1122 case 3:
1123 writeq(val64, &bar0->tx_fifo_partition_1);
1124 val64 = 0;
1125 break;
1126 case 5:
1127 writeq(val64, &bar0->tx_fifo_partition_2);
1128 val64 = 0;
1129 break;
1130 case 7:
1131 writeq(val64, &bar0->tx_fifo_partition_3);
1132 break;
1133 }
1134 }
1135
5e25b9dd
K
1136 /*
1137 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1138 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1139 */
541ae68f 1140 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1141 (nic->pdev->revision < 4))
5e25b9dd
K
1142 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1143
1da177e4
LT
1144 val64 = readq(&bar0->tx_fifo_partition_0);
1145 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1146 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1147
20346722
K
1148 /*
1149 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1150 * integrity checking.
1151 */
1152 val64 = readq(&bar0->tx_pa_cfg);
1153 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1154 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1155 writeq(val64, &bar0->tx_pa_cfg);
1156
1157 /* Rx DMA intialization. */
1158 val64 = 0;
1159 for (i = 0; i < config->rx_ring_num; i++) {
1160 val64 |=
1161 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1162 3);
1163 }
1164 writeq(val64, &bar0->rx_queue_priority);
1165
20346722
K
1166 /*
1167 * Allocating equal share of memory to all the
1da177e4
LT
1168 * configured Rings.
1169 */
1170 val64 = 0;
541ae68f
K
1171 if (nic->device_type & XFRAME_II_DEVICE)
1172 mem_size = 32;
1173 else
1174 mem_size = 64;
1175
1da177e4
LT
1176 for (i = 0; i < config->rx_ring_num; i++) {
1177 switch (i) {
1178 case 0:
20346722
K
1179 mem_share = (mem_size / config->rx_ring_num +
1180 mem_size % config->rx_ring_num);
1da177e4
LT
1181 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1182 continue;
1183 case 1:
20346722 1184 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1185 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1186 continue;
1187 case 2:
20346722 1188 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1189 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1190 continue;
1191 case 3:
20346722 1192 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1193 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1194 continue;
1195 case 4:
20346722 1196 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1197 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1198 continue;
1199 case 5:
20346722 1200 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1201 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1202 continue;
1203 case 6:
20346722 1204 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1205 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1206 continue;
1207 case 7:
20346722 1208 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1209 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1210 continue;
1211 }
1212 }
1213 writeq(val64, &bar0->rx_queue_cfg);
1214
20346722 1215 /*
5e25b9dd
K
1216 * Filling Tx round robin registers
1217 * as per the number of FIFOs
1da177e4 1218 */
5e25b9dd
K
1219 switch (config->tx_fifo_num) {
1220 case 1:
1221 val64 = 0x0000000000000000ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_0);
1223 writeq(val64, &bar0->tx_w_round_robin_1);
1224 writeq(val64, &bar0->tx_w_round_robin_2);
1225 writeq(val64, &bar0->tx_w_round_robin_3);
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 case 2:
1229 val64 = 0x0000010000010000ULL;
1230 writeq(val64, &bar0->tx_w_round_robin_0);
1231 val64 = 0x0100000100000100ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_1);
1233 val64 = 0x0001000001000001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_2);
1235 val64 = 0x0000010000010000ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_3);
1237 val64 = 0x0100000000000000ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_4);
1239 break;
1240 case 3:
1241 val64 = 0x0001000102000001ULL;
1242 writeq(val64, &bar0->tx_w_round_robin_0);
1243 val64 = 0x0001020000010001ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_1);
1245 val64 = 0x0200000100010200ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_2);
1247 val64 = 0x0001000102000001ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_3);
1249 val64 = 0x0001020000000000ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_4);
1251 break;
1252 case 4:
1253 val64 = 0x0001020300010200ULL;
1254 writeq(val64, &bar0->tx_w_round_robin_0);
1255 val64 = 0x0100000102030001ULL;
1256 writeq(val64, &bar0->tx_w_round_robin_1);
1257 val64 = 0x0200010000010203ULL;
1258 writeq(val64, &bar0->tx_w_round_robin_2);
1259 val64 = 0x0001020001000001ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_3);
1261 val64 = 0x0203000100000000ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_4);
1263 break;
1264 case 5:
1265 val64 = 0x0001000203000102ULL;
1266 writeq(val64, &bar0->tx_w_round_robin_0);
1267 val64 = 0x0001020001030004ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_1);
1269 val64 = 0x0001000203000102ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_2);
1271 val64 = 0x0001020001030004ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_3);
1273 val64 = 0x0001000000000000ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_4);
1275 break;
1276 case 6:
1277 val64 = 0x0001020304000102ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_0);
1279 val64 = 0x0304050001020001ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_1);
1281 val64 = 0x0203000100000102ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_2);
1283 val64 = 0x0304000102030405ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_3);
1285 val64 = 0x0001000200000000ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_4);
1287 break;
1288 case 7:
1289 val64 = 0x0001020001020300ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_0);
1291 val64 = 0x0102030400010203ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_1);
1293 val64 = 0x0405060001020001ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_2);
1295 val64 = 0x0304050000010200ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_3);
1297 val64 = 0x0102030000000000ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_4);
1299 break;
1300 case 8:
1301 val64 = 0x0001020300040105ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_0);
1303 val64 = 0x0200030106000204ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_1);
1305 val64 = 0x0103000502010007ULL;
1306 writeq(val64, &bar0->tx_w_round_robin_2);
1307 val64 = 0x0304010002060500ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_3);
1309 val64 = 0x0103020400000000ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_4);
1311 break;
1312 }
1313
b41477f3 1314 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1315 val64 = readq(&bar0->tx_fifo_partition_0);
1316 val64 |= (TX_FIFO_PARTITION_EN);
1317 writeq(val64, &bar0->tx_fifo_partition_0);
1318
5e25b9dd
K
1319 /* Filling the Rx round robin registers as per the
1320 * number of Rings and steering based on QoS.
1321 */
1322 switch (config->rx_ring_num) {
1323 case 1:
1324 val64 = 0x8080808080808080ULL;
1325 writeq(val64, &bar0->rts_qos_steering);
1326 break;
1327 case 2:
1328 val64 = 0x0000010000010000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_0);
1330 val64 = 0x0100000100000100ULL;
1331 writeq(val64, &bar0->rx_w_round_robin_1);
1332 val64 = 0x0001000001000001ULL;
1333 writeq(val64, &bar0->rx_w_round_robin_2);
1334 val64 = 0x0000010000010000ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_3);
1336 val64 = 0x0100000000000000ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_4);
1338
1339 val64 = 0x8080808040404040ULL;
1340 writeq(val64, &bar0->rts_qos_steering);
1341 break;
1342 case 3:
1343 val64 = 0x0001000102000001ULL;
1344 writeq(val64, &bar0->rx_w_round_robin_0);
1345 val64 = 0x0001020000010001ULL;
1346 writeq(val64, &bar0->rx_w_round_robin_1);
1347 val64 = 0x0200000100010200ULL;
1348 writeq(val64, &bar0->rx_w_round_robin_2);
1349 val64 = 0x0001000102000001ULL;
1350 writeq(val64, &bar0->rx_w_round_robin_3);
1351 val64 = 0x0001020000000000ULL;
1352 writeq(val64, &bar0->rx_w_round_robin_4);
1353
1354 val64 = 0x8080804040402020ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 4:
1358 val64 = 0x0001020300010200ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0100000102030001ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0200010000010203ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1364 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0203000100000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8080404020201010ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 case 5:
1373 val64 = 0x0001000203000102ULL;
1374 writeq(val64, &bar0->rx_w_round_robin_0);
1375 val64 = 0x0001020001030004ULL;
1376 writeq(val64, &bar0->rx_w_round_robin_1);
1377 val64 = 0x0001000203000102ULL;
1378 writeq(val64, &bar0->rx_w_round_robin_2);
1379 val64 = 0x0001020001030004ULL;
1380 writeq(val64, &bar0->rx_w_round_robin_3);
1381 val64 = 0x0001000000000000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_4);
1383
1384 val64 = 0x8080404020201008ULL;
1385 writeq(val64, &bar0->rts_qos_steering);
1386 break;
1387 case 6:
1388 val64 = 0x0001020304000102ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_0);
1390 val64 = 0x0304050001020001ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_1);
1392 val64 = 0x0203000100000102ULL;
1393 writeq(val64, &bar0->rx_w_round_robin_2);
1394 val64 = 0x0304000102030405ULL;
1395 writeq(val64, &bar0->rx_w_round_robin_3);
1396 val64 = 0x0001000200000000ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_4);
1398
1399 val64 = 0x8080404020100804ULL;
1400 writeq(val64, &bar0->rts_qos_steering);
1401 break;
1402 case 7:
1403 val64 = 0x0001020001020300ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_0);
1405 val64 = 0x0102030400010203ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_1);
1407 val64 = 0x0405060001020001ULL;
1408 writeq(val64, &bar0->rx_w_round_robin_2);
1409 val64 = 0x0304050000010200ULL;
1410 writeq(val64, &bar0->rx_w_round_robin_3);
1411 val64 = 0x0102030000000000ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_4);
1413
1414 val64 = 0x8080402010080402ULL;
1415 writeq(val64, &bar0->rts_qos_steering);
1416 break;
1417 case 8:
1418 val64 = 0x0001020300040105ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_0);
1420 val64 = 0x0200030106000204ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_1);
1422 val64 = 0x0103000502010007ULL;
1423 writeq(val64, &bar0->rx_w_round_robin_2);
1424 val64 = 0x0304010002060500ULL;
1425 writeq(val64, &bar0->rx_w_round_robin_3);
1426 val64 = 0x0103020400000000ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_4);
1428
1429 val64 = 0x8040201008040201ULL;
1430 writeq(val64, &bar0->rts_qos_steering);
1431 break;
1432 }
1da177e4
LT
1433
1434 /* UDP Fix */
1435 val64 = 0;
20346722 1436 for (i = 0; i < 8; i++)
1da177e4
LT
1437 writeq(val64, &bar0->rts_frm_len_n[i]);
1438
5e25b9dd
K
1439 /* Set the default rts frame length for the rings configured */
1440 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1441 for (i = 0 ; i < config->rx_ring_num ; i++)
1442 writeq(val64, &bar0->rts_frm_len_n[i]);
1443
1444 /* Set the frame length for the configured rings
1445 * desired by the user
1446 */
1447 for (i = 0; i < config->rx_ring_num; i++) {
1448 /* If rts_frm_len[i] == 0 then it is assumed that user not
1449 * specified frame length steering.
1450 * If the user provides the frame length then program
1451 * the rts_frm_len register for those values or else
1452 * leave it as it is.
1453 */
1454 if (rts_frm_len[i] != 0) {
1455 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1456 &bar0->rts_frm_len_n[i]);
1457 }
1458 }
926930b2 1459
9fc93a41
SS
1460 /* Disable differentiated services steering logic */
1461 for (i = 0; i < 64; i++) {
1462 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1463 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1464 dev->name);
1465 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1466 return FAILURE;
1467 }
1468 }
1469
20346722 1470 /* Program statistics memory */
1da177e4 1471 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1472
541ae68f
K
1473 if (nic->device_type == XFRAME_II_DEVICE) {
1474 val64 = STAT_BC(0x320);
1475 writeq(val64, &bar0->stat_byte_cnt);
1476 }
1477
20346722 1478 /*
1da177e4
LT
1479 * Initializing the sampling rate for the device to calculate the
1480 * bandwidth utilization.
1481 */
1482 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1483 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1484 writeq(val64, &bar0->mac_link_util);
1485
1486
20346722
K
1487 /*
1488 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1489 * Scheme.
1490 */
20346722
K
1491 /*
1492 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1493 * 250 interrupts per sec. Continuous interrupts are enabled
1494 * by default.
1495 */
541ae68f
K
1496 if (nic->device_type == XFRAME_II_DEVICE) {
1497 int count = (nic->config.bus_speed * 125)/2;
1498 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1499 } else {
1500
1501 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1502 }
1503 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1504 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1505 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1506 if (use_continuous_tx_intrs)
1507 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1508 writeq(val64, &bar0->tti_data1_mem);
1509
1510 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1511 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1512 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1513 writeq(val64, &bar0->tti_data2_mem);
1514
1515 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1516 writeq(val64, &bar0->tti_command_mem);
1517
20346722 1518 /*
1da177e4
LT
1519 * Once the operation completes, the Strobe bit of the command
1520 * register will be reset. We poll for this particular condition
1521 * We wait for a maximum of 500ms for the operation to complete,
1522 * if it's not complete by then we return error.
1523 */
1524 time = 0;
1525 while (TRUE) {
1526 val64 = readq(&bar0->tti_command_mem);
1527 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1528 break;
1529 }
1530 if (time > 10) {
1531 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1532 dev->name);
1533 return -1;
1534 }
1535 msleep(50);
1536 time++;
1537 }
1538
b6e3f982
K
1539 if (nic->config.bimodal) {
1540 int k = 0;
1541 for (k = 0; k < config->rx_ring_num; k++) {
1542 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1543 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1544 writeq(val64, &bar0->tti_command_mem);
541ae68f 1545
541ae68f 1546 /*
b6e3f982
K
1547 * Once the operation completes, the Strobe bit of the command
1548 * register will be reset. We poll for this particular condition
1549 * We wait for a maximum of 500ms for the operation to complete,
1550 * if it's not complete by then we return error.
1551 */
1552 time = 0;
1553 while (TRUE) {
1554 val64 = readq(&bar0->tti_command_mem);
1555 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1556 break;
1557 }
1558 if (time > 10) {
1559 DBG_PRINT(ERR_DBG,
1560 "%s: TTI init Failed\n",
1561 dev->name);
1562 return -1;
1563 }
1564 time++;
1565 msleep(50);
1566 }
1567 }
541ae68f 1568 } else {
1da177e4 1569
b6e3f982
K
1570 /* RTI Initialization */
1571 if (nic->device_type == XFRAME_II_DEVICE) {
1572 /*
1573 * Programmed to generate Apprx 500 Intrs per
1574 * second
1575 */
1576 int count = (nic->config.bus_speed * 125)/4;
1577 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1578 } else {
1579 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1580 }
1581 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1582 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1583 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1584
b6e3f982 1585 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1586
b6e3f982 1587 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1588 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1589 if (nic->intr_type == MSI_X)
1590 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1591 RTI_DATA2_MEM_RX_UFC_D(0x40));
1592 else
1593 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1594 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1595 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1596
b6e3f982
K
1597 for (i = 0; i < config->rx_ring_num; i++) {
1598 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1599 | RTI_CMD_MEM_OFFSET(i);
1600 writeq(val64, &bar0->rti_command_mem);
1601
1602 /*
1603 * Once the operation completes, the Strobe bit of the
1604 * command register will be reset. We poll for this
1605 * particular condition. We wait for a maximum of 500ms
1606 * for the operation to complete, if it's not complete
1607 * by then we return error.
1608 */
1609 time = 0;
1610 while (TRUE) {
1611 val64 = readq(&bar0->rti_command_mem);
1612 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1613 break;
1614 }
1615 if (time > 10) {
1616 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1617 dev->name);
1618 return -1;
1619 }
1620 time++;
1621 msleep(50);
1622 }
1da177e4 1623 }
1da177e4
LT
1624 }
1625
20346722
K
1626 /*
1627 * Initializing proper values as Pause threshold into all
1da177e4
LT
1628 * the 8 Queues on Rx side.
1629 */
1630 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1631 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1632
1633 /* Disable RMAC PAD STRIPPING */
509a2671 1634 add = &bar0->mac_cfg;
1da177e4
LT
1635 val64 = readq(&bar0->mac_cfg);
1636 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1637 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1638 writel((u32) (val64), add);
1639 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1640 writel((u32) (val64 >> 32), (add + 4));
1641 val64 = readq(&bar0->mac_cfg);
1642
7d3d0439
RA
1643 /* Enable FCS stripping by adapter */
1644 add = &bar0->mac_cfg;
1645 val64 = readq(&bar0->mac_cfg);
1646 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1647 if (nic->device_type == XFRAME_II_DEVICE)
1648 writeq(val64, &bar0->mac_cfg);
1649 else {
1650 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1651 writel((u32) (val64), add);
1652 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1653 writel((u32) (val64 >> 32), (add + 4));
1654 }
1655
20346722
K
1656 /*
1657 * Set the time value to be inserted in the pause frame
1da177e4
LT
1658 * generated by xena.
1659 */
1660 val64 = readq(&bar0->rmac_pause_cfg);
1661 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1662 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1663 writeq(val64, &bar0->rmac_pause_cfg);
1664
20346722 1665 /*
1da177e4
LT
1666 * Set the Threshold Limit for Generating the pause frame
1667 * If the amount of data in any Queue exceeds ratio of
1668 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1669 * pause frame is generated
1670 */
1671 val64 = 0;
1672 for (i = 0; i < 4; i++) {
1673 val64 |=
1674 (((u64) 0xFF00 | nic->mac_control.
1675 mc_pause_threshold_q0q3)
1676 << (i * 2 * 8));
1677 }
1678 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1679
1680 val64 = 0;
1681 for (i = 0; i < 4; i++) {
1682 val64 |=
1683 (((u64) 0xFF00 | nic->mac_control.
1684 mc_pause_threshold_q4q7)
1685 << (i * 2 * 8));
1686 }
1687 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1688
20346722
K
1689 /*
1690 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1691 * exceeded the limit pointed by shared_splits
1692 */
1693 val64 = readq(&bar0->pic_control);
1694 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1695 writeq(val64, &bar0->pic_control);
1696
863c11a9
AR
1697 if (nic->config.bus_speed == 266) {
1698 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1699 writeq(0x0, &bar0->read_retry_delay);
1700 writeq(0x0, &bar0->write_retry_delay);
1701 }
1702
541ae68f
K
1703 /*
1704 * Programming the Herc to split every write transaction
1705 * that does not start on an ADB to reduce disconnects.
1706 */
1707 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1708 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1709 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1710 writeq(val64, &bar0->misc_control);
1711 val64 = readq(&bar0->pic_control2);
1712 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1713 writeq(val64, &bar0->pic_control2);
541ae68f 1714 }
c92ca04b
AR
1715 if (strstr(nic->product_name, "CX4")) {
1716 val64 = TMAC_AVG_IPG(0x17);
1717 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1718 }
1719
1da177e4
LT
1720 return SUCCESS;
1721}
a371a07d
K
1722#define LINK_UP_DOWN_INTERRUPT 1
1723#define MAC_RMAC_ERR_TIMER 2
1724
1ee6dd77 1725static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1726{
cc6e7c44
RA
1727 if (nic->intr_type != INTA)
1728 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1729 if (nic->device_type == XFRAME_II_DEVICE)
1730 return LINK_UP_DOWN_INTERRUPT;
1731 else
1732 return MAC_RMAC_ERR_TIMER;
1733}
1da177e4 1734
20346722
K
1735/**
1736 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1737 * @nic: device private variable,
1738 * @mask: A mask indicating which Intr block must be modified and,
1739 * @flag: A flag indicating whether to enable or disable the Intrs.
1740 * Description: This function will either disable or enable the interrupts
20346722
K
1741 * depending on the flag argument. The mask argument can be used to
1742 * enable/disable any Intr block.
1da177e4
LT
1743 * Return Value: NONE.
1744 */
1745
1746static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1747{
1ee6dd77 1748 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1749 register u64 val64 = 0, temp64 = 0;
1750
1751 /* Top level interrupt classification */
1752 /* PIC Interrupts */
1753 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1754 /* Enable PIC Intrs in the general intr mask register */
a113ae06 1755 val64 = TXPIC_INT_M;
1da177e4
LT
1756 if (flag == ENABLE_INTRS) {
1757 temp64 = readq(&bar0->general_int_mask);
1758 temp64 &= ~((u64) val64);
1759 writeq(temp64, &bar0->general_int_mask);
20346722 1760 /*
a371a07d 1761 * If Hercules adapter enable GPIO otherwise
b41477f3 1762 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1763 * interrupts for now.
1764 * TODO
1da177e4 1765 */
a371a07d
K
1766 if (s2io_link_fault_indication(nic) ==
1767 LINK_UP_DOWN_INTERRUPT ) {
1768 temp64 = readq(&bar0->pic_int_mask);
1769 temp64 &= ~((u64) PIC_INT_GPIO);
1770 writeq(temp64, &bar0->pic_int_mask);
1771 temp64 = readq(&bar0->gpio_int_mask);
1772 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1773 writeq(temp64, &bar0->gpio_int_mask);
1774 } else {
1775 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1776 }
20346722 1777 /*
1da177e4
LT
1778 * No MSI Support is available presently, so TTI and
1779 * RTI interrupts are also disabled.
1780 */
1781 } else if (flag == DISABLE_INTRS) {
20346722
K
1782 /*
1783 * Disable PIC Intrs in the general
1784 * intr mask register
1da177e4
LT
1785 */
1786 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1787 temp64 = readq(&bar0->general_int_mask);
1788 val64 |= temp64;
1789 writeq(val64, &bar0->general_int_mask);
1790 }
1791 }
1792
1da177e4
LT
1793 /* MAC Interrupts */
1794 /* Enabling/Disabling MAC interrupts */
1795 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1796 val64 = TXMAC_INT_M | RXMAC_INT_M;
1797 if (flag == ENABLE_INTRS) {
1798 temp64 = readq(&bar0->general_int_mask);
1799 temp64 &= ~((u64) val64);
1800 writeq(temp64, &bar0->general_int_mask);
20346722
K
1801 /*
1802 * All MAC block error interrupts are disabled for now
1da177e4
LT
1803 * TODO
1804 */
1da177e4 1805 } else if (flag == DISABLE_INTRS) {
20346722
K
1806 /*
1807 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1808 */
1809 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1810 writeq(DISABLE_ALL_INTRS,
1811 &bar0->mac_rmac_err_mask);
1812
1813 temp64 = readq(&bar0->general_int_mask);
1814 val64 |= temp64;
1815 writeq(val64, &bar0->general_int_mask);
1816 }
1817 }
1818
1da177e4
LT
1819 /* Tx traffic interrupts */
1820 if (mask & TX_TRAFFIC_INTR) {
1821 val64 = TXTRAFFIC_INT_M;
1822 if (flag == ENABLE_INTRS) {
1823 temp64 = readq(&bar0->general_int_mask);
1824 temp64 &= ~((u64) val64);
1825 writeq(temp64, &bar0->general_int_mask);
20346722 1826 /*
1da177e4 1827 * Enable all the Tx side interrupts
20346722 1828 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1829 */
1830 writeq(0x0, &bar0->tx_traffic_mask);
1831 } else if (flag == DISABLE_INTRS) {
20346722
K
1832 /*
1833 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1834 * register.
1835 */
1836 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1837 temp64 = readq(&bar0->general_int_mask);
1838 val64 |= temp64;
1839 writeq(val64, &bar0->general_int_mask);
1840 }
1841 }
1842
1843 /* Rx traffic interrupts */
1844 if (mask & RX_TRAFFIC_INTR) {
1845 val64 = RXTRAFFIC_INT_M;
1846 if (flag == ENABLE_INTRS) {
1847 temp64 = readq(&bar0->general_int_mask);
1848 temp64 &= ~((u64) val64);
1849 writeq(temp64, &bar0->general_int_mask);
1850 /* writing 0 Enables all 8 RX interrupt levels */
1851 writeq(0x0, &bar0->rx_traffic_mask);
1852 } else if (flag == DISABLE_INTRS) {
20346722
K
1853 /*
1854 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1855 * register.
1856 */
1857 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1858 temp64 = readq(&bar0->general_int_mask);
1859 val64 |= temp64;
1860 writeq(val64, &bar0->general_int_mask);
1861 }
1862 }
1863}
1864
19a60522
SS
1865/**
1866 * verify_pcc_quiescent- Checks for PCC quiescent state
1867 * Return: 1 If PCC is quiescence
1868 * 0 If PCC is not quiescence
1869 */
1ee6dd77 1870static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1871{
19a60522 1872 int ret = 0, herc;
1ee6dd77 1873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1874 u64 val64 = readq(&bar0->adapter_status);
1875
1876 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
1877
1878 if (flag == FALSE) {
44c10138 1879 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1881 ret = 1;
19a60522
SS
1882 } else {
1883 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1884 ret = 1;
20346722
K
1885 }
1886 } else {
44c10138 1887 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 1888 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 1889 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1890 ret = 1;
5e25b9dd
K
1891 } else {
1892 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 1893 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1894 ret = 1;
20346722
K
1895 }
1896 }
1897
1898 return ret;
1899}
1900/**
1901 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 1902 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1903 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1904 * differs and the calling function passes the input argument flag to
1905 * indicate this.
20346722 1906 * Return: 1 If xena is quiescence
1da177e4
LT
1907 * 0 If Xena is not quiescence
1908 */
1909
1ee6dd77 1910static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 1911{
19a60522 1912 int mode;
1ee6dd77 1913 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1914 u64 val64 = readq(&bar0->adapter_status);
1915 mode = s2io_verify_pci_mode(sp);
1da177e4 1916
19a60522
SS
1917 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1918 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1919 return 0;
1920 }
1921 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1922 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1923 return 0;
1924 }
1925 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1926 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1927 return 0;
1928 }
1929 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1930 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1931 return 0;
1932 }
1933 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1934 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1935 return 0;
1936 }
1937 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1938 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1939 return 0;
1940 }
1941 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1942 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1943 return 0;
1944 }
1945 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1946 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1947 return 0;
1da177e4
LT
1948 }
1949
19a60522
SS
1950 /*
1951 * In PCI 33 mode, the P_PLL is not used, and therefore,
1952 * the the P_PLL_LOCK bit in the adapter_status register will
1953 * not be asserted.
1954 */
1955 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1956 sp->device_type == XFRAME_II_DEVICE && mode !=
1957 PCI_MODE_PCI_33) {
1958 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1959 return 0;
1960 }
1961 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1962 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1963 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1964 return 0;
1965 }
1966 return 1;
1da177e4
LT
1967}
1968
1969/**
1970 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1971 * @sp: Pointer to device specifc structure
20346722 1972 * Description :
1da177e4
LT
1973 * New procedure to clear mac address reading problems on Alpha platforms
1974 *
1975 */
1976
1ee6dd77 1977static void fix_mac_address(struct s2io_nic * sp)
1da177e4 1978{
1ee6dd77 1979 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
1980 u64 val64;
1981 int i = 0;
1982
1983 while (fix_mac[i] != END_SIGN) {
1984 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1985 udelay(10);
1da177e4
LT
1986 val64 = readq(&bar0->gpio_control);
1987 }
1988}
1989
1990/**
20346722 1991 * start_nic - Turns the device on
1da177e4 1992 * @nic : device private variable.
20346722
K
1993 * Description:
1994 * This function actually turns the device on. Before this function is
1995 * called,all Registers are configured from their reset states
1996 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1997 * calling this function, the device interrupts are cleared and the NIC is
1998 * literally switched on by writing into the adapter control register.
20346722 1999 * Return Value:
1da177e4
LT
2000 * SUCCESS on success and -1 on failure.
2001 */
2002
2003static int start_nic(struct s2io_nic *nic)
2004{
1ee6dd77 2005 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2006 struct net_device *dev = nic->dev;
2007 register u64 val64 = 0;
20346722 2008 u16 subid, i;
1ee6dd77 2009 struct mac_info *mac_control;
1da177e4
LT
2010 struct config_param *config;
2011
2012 mac_control = &nic->mac_control;
2013 config = &nic->config;
2014
2015 /* PRC Initialization and configuration */
2016 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2017 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2018 &bar0->prc_rxd0_n[i]);
2019
2020 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
2021 if (nic->config.bimodal)
2022 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
2023 if (nic->rxd_mode == RXD_MODE_1)
2024 val64 |= PRC_CTRL_RC_ENABLED;
2025 else
2026 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2027 if (nic->device_type == XFRAME_II_DEVICE)
2028 val64 |= PRC_CTRL_GROUP_READS;
2029 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2030 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2031 writeq(val64, &bar0->prc_ctrl_n[i]);
2032 }
2033
da6971d8
AR
2034 if (nic->rxd_mode == RXD_MODE_3B) {
2035 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2036 val64 = readq(&bar0->rx_pa_cfg);
2037 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2038 writeq(val64, &bar0->rx_pa_cfg);
2039 }
1da177e4 2040
926930b2
SS
2041 if (vlan_tag_strip == 0) {
2042 val64 = readq(&bar0->rx_pa_cfg);
2043 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2044 writeq(val64, &bar0->rx_pa_cfg);
2045 vlan_strip_flag = 0;
2046 }
2047
20346722 2048 /*
1da177e4
LT
2049 * Enabling MC-RLDRAM. After enabling the device, we timeout
2050 * for around 100ms, which is approximately the time required
2051 * for the device to be ready for operation.
2052 */
2053 val64 = readq(&bar0->mc_rldram_mrs);
2054 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2055 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2056 val64 = readq(&bar0->mc_rldram_mrs);
2057
20346722 2058 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2059
2060 /* Enabling ECC Protection. */
2061 val64 = readq(&bar0->adapter_control);
2062 val64 &= ~ADAPTER_ECC_EN;
2063 writeq(val64, &bar0->adapter_control);
2064
20346722
K
2065 /*
2066 * Clearing any possible Link state change interrupts that
1da177e4
LT
2067 * could have popped up just before Enabling the card.
2068 */
2069 val64 = readq(&bar0->mac_rmac_err_reg);
2070 if (val64)
2071 writeq(val64, &bar0->mac_rmac_err_reg);
2072
20346722
K
2073 /*
2074 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2075 * it.
2076 */
2077 val64 = readq(&bar0->adapter_status);
19a60522 2078 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2079 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2080 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2081 (unsigned long long) val64);
2082 return FAILURE;
2083 }
2084
20346722 2085 /*
1da177e4 2086 * With some switches, link might be already up at this point.
20346722
K
2087 * Because of this weird behavior, when we enable laser,
2088 * we may not get link. We need to handle this. We cannot
2089 * figure out which switch is misbehaving. So we are forced to
2090 * make a global change.
1da177e4
LT
2091 */
2092
2093 /* Enabling Laser. */
2094 val64 = readq(&bar0->adapter_control);
2095 val64 |= ADAPTER_EOI_TX_ON;
2096 writeq(val64, &bar0->adapter_control);
2097
c92ca04b
AR
2098 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2099 /*
2100 * Dont see link state interrupts initally on some switches,
2101 * so directly scheduling the link state task here.
2102 */
2103 schedule_work(&nic->set_link_task);
2104 }
1da177e4
LT
2105 /* SXE-002: Initialize link and activity LED */
2106 subid = nic->pdev->subsystem_device;
541ae68f
K
2107 if (((subid & 0xFF) >= 0x07) &&
2108 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2109 val64 = readq(&bar0->gpio_control);
2110 val64 |= 0x0000800000000000ULL;
2111 writeq(val64, &bar0->gpio_control);
2112 val64 = 0x0411040400000000ULL;
509a2671 2113 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2114 }
2115
1da177e4
LT
2116 return SUCCESS;
2117}
fed5eccd
AR
2118/**
2119 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2120 */
1ee6dd77
RB
2121static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2122 TxD *txdlp, int get_off)
fed5eccd 2123{
1ee6dd77 2124 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2125 struct sk_buff *skb;
1ee6dd77 2126 struct TxD *txds;
fed5eccd
AR
2127 u16 j, frg_cnt;
2128
2129 txds = txdlp;
26b7625c 2130 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2131 pci_unmap_single(nic->pdev, (dma_addr_t)
2132 txds->Buffer_Pointer, sizeof(u64),
2133 PCI_DMA_TODEVICE);
2134 txds++;
2135 }
2136
2137 skb = (struct sk_buff *) ((unsigned long)
2138 txds->Host_Control);
2139 if (!skb) {
1ee6dd77 2140 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2141 return NULL;
2142 }
2143 pci_unmap_single(nic->pdev, (dma_addr_t)
2144 txds->Buffer_Pointer,
2145 skb->len - skb->data_len,
2146 PCI_DMA_TODEVICE);
2147 frg_cnt = skb_shinfo(skb)->nr_frags;
2148 if (frg_cnt) {
2149 txds++;
2150 for (j = 0; j < frg_cnt; j++, txds++) {
2151 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2152 if (!txds->Buffer_Pointer)
2153 break;
6aa20a22 2154 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2155 txds->Buffer_Pointer,
2156 frag->size, PCI_DMA_TODEVICE);
2157 }
2158 }
1ee6dd77 2159 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2160 return(skb);
2161}
1da177e4 2162
20346722
K
2163/**
2164 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2165 * @nic : device private variable.
20346722 2166 * Description:
1da177e4 2167 * Free all queued Tx buffers.
20346722 2168 * Return Value: void
1da177e4
LT
2169*/
2170
2171static void free_tx_buffers(struct s2io_nic *nic)
2172{
2173 struct net_device *dev = nic->dev;
2174 struct sk_buff *skb;
1ee6dd77 2175 struct TxD *txdp;
1da177e4 2176 int i, j;
1ee6dd77 2177 struct mac_info *mac_control;
1da177e4 2178 struct config_param *config;
fed5eccd 2179 int cnt = 0;
1da177e4
LT
2180
2181 mac_control = &nic->mac_control;
2182 config = &nic->config;
2183
2184 for (i = 0; i < config->tx_fifo_num; i++) {
2185 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
491976b2
SH
2186 txdp = (struct TxD *) \
2187 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2188 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2189 if (skb) {
491976b2
SH
2190 nic->mac_control.stats_info->sw_stat.mem_freed
2191 += skb->truesize;
fed5eccd
AR
2192 dev_kfree_skb(skb);
2193 cnt++;
1da177e4 2194 }
1da177e4
LT
2195 }
2196 DBG_PRINT(INTR_DBG,
2197 "%s:forcibly freeing %d skbs on FIFO%d\n",
2198 dev->name, cnt, i);
20346722
K
2199 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2200 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2201 }
2202}
2203
20346722
K
2204/**
2205 * stop_nic - To stop the nic
1da177e4 2206 * @nic ; device private variable.
20346722
K
2207 * Description:
2208 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2209 * function does. This function is called to stop the device.
2210 * Return Value:
2211 * void.
2212 */
2213
2214static void stop_nic(struct s2io_nic *nic)
2215{
1ee6dd77 2216 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2217 register u64 val64 = 0;
5d3213cc 2218 u16 interruptible;
1ee6dd77 2219 struct mac_info *mac_control;
1da177e4
LT
2220 struct config_param *config;
2221
2222 mac_control = &nic->mac_control;
2223 config = &nic->config;
2224
2225 /* Disable all interrupts */
e960fc5c 2226 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2227 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2228 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2229 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2230
5d3213cc
AR
2231 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2232 val64 = readq(&bar0->adapter_control);
2233 val64 &= ~(ADAPTER_CNTL_EN);
2234 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2235}
2236
20346722
K
2237/**
2238 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2239 * @nic: device private variable
20346722
K
2240 * @ring_no: ring number
2241 * Description:
1da177e4
LT
2242 * The function allocates Rx side skbs and puts the physical
2243 * address of these buffers into the RxD buffer pointers, so that the NIC
2244 * can DMA the received frame into these locations.
2245 * The NIC supports 3 receive modes, viz
2246 * 1. single buffer,
2247 * 2. three buffer and
2248 * 3. Five buffer modes.
20346722
K
2249 * Each mode defines how many fragments the received frame will be split
2250 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2251 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2252 * is split into 3 fragments. As of now only single buffer mode is
2253 * supported.
2254 * Return Value:
2255 * SUCCESS on success or an appropriate -ve value on failure.
2256 */
2257
ac1f60db 2258static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2259{
2260 struct net_device *dev = nic->dev;
2261 struct sk_buff *skb;
1ee6dd77 2262 struct RxD_t *rxdp;
1da177e4 2263 int off, off1, size, block_no, block_no1;
1da177e4 2264 u32 alloc_tab = 0;
20346722 2265 u32 alloc_cnt;
1ee6dd77 2266 struct mac_info *mac_control;
1da177e4 2267 struct config_param *config;
20346722 2268 u64 tmp;
1ee6dd77 2269 struct buffAdd *ba;
1da177e4 2270 unsigned long flags;
1ee6dd77 2271 struct RxD_t *first_rxdp = NULL;
363dc367 2272 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
6d517a27
VP
2273 struct RxD1 *rxdp1;
2274 struct RxD3 *rxdp3;
491abf25 2275 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
1da177e4
LT
2276
2277 mac_control = &nic->mac_control;
2278 config = &nic->config;
20346722
K
2279 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2280 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2281
5d3213cc 2282 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2283 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2284 while (alloc_tab < alloc_cnt) {
20346722 2285 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2286 block_index;
20346722 2287 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2288
da6971d8
AR
2289 rxdp = mac_control->rings[ring_no].
2290 rx_blocks[block_no].rxds[off].virt_addr;
2291
2292 if ((block_no == block_no1) && (off == off1) &&
2293 (rxdp->Host_Control)) {
2294 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2295 dev->name);
1da177e4
LT
2296 DBG_PRINT(INTR_DBG, " info equated\n");
2297 goto end;
2298 }
da6971d8 2299 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2300 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2301 block_index++;
da6971d8
AR
2302 if (mac_control->rings[ring_no].rx_curr_put_info.
2303 block_index == mac_control->rings[ring_no].
2304 block_count)
2305 mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index = 0;
2307 block_no = mac_control->rings[ring_no].
2308 rx_curr_put_info.block_index;
2309 if (off == rxd_count[nic->rxd_mode])
2310 off = 0;
20346722 2311 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2312 offset = off;
2313 rxdp = mac_control->rings[ring_no].
2314 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2315 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2316 dev->name, rxdp);
2317 }
db874e65
SS
2318 if(!napi) {
2319 spin_lock_irqsave(&nic->put_lock, flags);
2320 mac_control->rings[ring_no].put_pos =
2321 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2322 spin_unlock_irqrestore(&nic->put_lock, flags);
2323 } else {
2324 mac_control->rings[ring_no].put_pos =
2325 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326 }
da6971d8 2327 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
6d517a27 2328 ((nic->rxd_mode == RXD_MODE_3B) &&
da6971d8 2329 (rxdp->Control_2 & BIT(0)))) {
20346722 2330 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2331 offset = off;
1da177e4
LT
2332 goto end;
2333 }
da6971d8
AR
2334 /* calculate size of skb based on ring mode */
2335 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337 if (nic->rxd_mode == RXD_MODE_1)
2338 size += NET_IP_ALIGN;
da6971d8 2339 else
6d517a27 2340 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2341
da6971d8
AR
2342 /* allocate skb */
2343 skb = dev_alloc_skb(size);
2344 if(!skb) {
0c61ed5f
RV
2345 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2346 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2347 if (first_rxdp) {
2348 wmb();
2349 first_rxdp->Control_1 |= RXD_OWN_XENA;
2350 }
c53d4945
SH
2351 nic->mac_control.stats_info->sw_stat. \
2352 mem_alloc_fail_cnt++;
da6971d8
AR
2353 return -ENOMEM ;
2354 }
491976b2
SH
2355 nic->mac_control.stats_info->sw_stat.mem_allocated
2356 += skb->truesize;
da6971d8
AR
2357 if (nic->rxd_mode == RXD_MODE_1) {
2358 /* 1 buffer mode - normal operation mode */
6d517a27 2359 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2360 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2361 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2362 rxdp1->Buffer0_ptr = pci_map_single
863c11a9
AR
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
491abf25
VP
2365 if( (rxdp1->Buffer0_ptr == 0) ||
2366 (rxdp1->Buffer0_ptr ==
2367 DMA_ERROR_CODE))
2368 goto pci_map_failed;
2369
491976b2
SH
2370 rxdp->Control_2 =
2371 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8 2372
6d517a27 2373 } else if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8 2374 /*
6d517a27
VP
2375 * 2 buffer mode -
2376 * 2 buffer mode provides 128
da6971d8 2377 * byte aligned receive buffers.
da6971d8
AR
2378 */
2379
6d517a27 2380 rxdp3 = (struct RxD3*)rxdp;
491976b2 2381 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2382 Buffer0_ptr = rxdp3->Buffer0_ptr;
2383 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2384 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2385 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2386 rxdp3->Buffer0_ptr = Buffer0_ptr;
2387 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2388
da6971d8
AR
2389 ba = &mac_control->rings[ring_no].ba[block_no][off];
2390 skb_reserve(skb, BUF0_LEN);
2391 tmp = (u64)(unsigned long) skb->data;
2392 tmp += ALIGN_SIZE;
2393 tmp &= ~ALIGN_SIZE;
2394 skb->data = (void *) (unsigned long)tmp;
27a884dc 2395 skb_reset_tail_pointer(skb);
da6971d8 2396
6d517a27
VP
2397 if (!(rxdp3->Buffer0_ptr))
2398 rxdp3->Buffer0_ptr =
75c30b13 2399 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2400 PCI_DMA_FROMDEVICE);
75c30b13
AR
2401 else
2402 pci_dma_sync_single_for_device(nic->pdev,
6d517a27 2403 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2404 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2405 if( (rxdp3->Buffer0_ptr == 0) ||
2406 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2407 goto pci_map_failed;
2408
da6971d8
AR
2409 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2410 if (nic->rxd_mode == RXD_MODE_3B) {
2411 /* Two buffer mode */
2412
2413 /*
6aa20a22 2414 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2415 * L4 payload
2416 */
6d517a27 2417 rxdp3->Buffer2_ptr = pci_map_single
da6971d8
AR
2418 (nic->pdev, skb->data, dev->mtu + 4,
2419 PCI_DMA_FROMDEVICE);
2420
491abf25
VP
2421 if( (rxdp3->Buffer2_ptr == 0) ||
2422 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2423 goto pci_map_failed;
2424
2425 rxdp3->Buffer1_ptr =
6aa20a22 2426 pci_map_single(nic->pdev,
75c30b13
AR
2427 ba->ba_1, BUF1_LEN,
2428 PCI_DMA_FROMDEVICE);
491abf25
VP
2429 if( (rxdp3->Buffer1_ptr == 0) ||
2430 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2431 pci_unmap_single
2432 (nic->pdev,
3e847423 2433 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
2434 dev->mtu + 4,
2435 PCI_DMA_FROMDEVICE);
2436 goto pci_map_failed;
75c30b13 2437 }
da6971d8
AR
2438 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2439 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2440 (dev->mtu + 4);
da6971d8
AR
2441 }
2442 rxdp->Control_2 |= BIT(0);
1da177e4 2443 }
1da177e4 2444 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2445 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2446 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2447 off++;
da6971d8
AR
2448 if (off == (rxd_count[nic->rxd_mode] + 1))
2449 off = 0;
20346722 2450 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2451
da6971d8 2452 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2453 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2454 if (first_rxdp) {
2455 wmb();
2456 first_rxdp->Control_1 |= RXD_OWN_XENA;
2457 }
2458 first_rxdp = rxdp;
2459 }
1da177e4
LT
2460 atomic_inc(&nic->rx_bufs_left[ring_no]);
2461 alloc_tab++;
2462 }
2463
2464 end:
303bcb4b
K
2465 /* Transfer ownership of first descriptor to adapter just before
2466 * exiting. Before that, use memory barrier so that ownership
2467 * and other fields are seen by adapter correctly.
2468 */
2469 if (first_rxdp) {
2470 wmb();
2471 first_rxdp->Control_1 |= RXD_OWN_XENA;
2472 }
2473
1da177e4 2474 return SUCCESS;
491abf25
VP
2475pci_map_failed:
2476 stats->pci_map_fail_cnt++;
2477 stats->mem_freed += skb->truesize;
2478 dev_kfree_skb_irq(skb);
2479 return -ENOMEM;
1da177e4
LT
2480}
2481
da6971d8
AR
2482static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2483{
2484 struct net_device *dev = sp->dev;
2485 int j;
2486 struct sk_buff *skb;
1ee6dd77
RB
2487 struct RxD_t *rxdp;
2488 struct mac_info *mac_control;
2489 struct buffAdd *ba;
6d517a27
VP
2490 struct RxD1 *rxdp1;
2491 struct RxD3 *rxdp3;
da6971d8
AR
2492
2493 mac_control = &sp->mac_control;
2494 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2495 rxdp = mac_control->rings[ring_no].
2496 rx_blocks[blk].rxds[j].virt_addr;
2497 skb = (struct sk_buff *)
2498 ((unsigned long) rxdp->Host_Control);
2499 if (!skb) {
2500 continue;
2501 }
2502 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2503 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2504 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2505 rxdp1->Buffer0_ptr,
2506 dev->mtu +
2507 HEADER_ETHERNET_II_802_3_SIZE
2508 + HEADER_802_2_SIZE +
2509 HEADER_SNAP_SIZE,
2510 PCI_DMA_FROMDEVICE);
1ee6dd77 2511 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2512 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2513 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2514 ba = &mac_control->rings[ring_no].
2515 ba[blk][j];
2516 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2517 rxdp3->Buffer0_ptr,
2518 BUF0_LEN,
da6971d8
AR
2519 PCI_DMA_FROMDEVICE);
2520 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2521 rxdp3->Buffer1_ptr,
2522 BUF1_LEN,
da6971d8
AR
2523 PCI_DMA_FROMDEVICE);
2524 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2525 rxdp3->Buffer2_ptr,
2526 dev->mtu + 4,
da6971d8 2527 PCI_DMA_FROMDEVICE);
1ee6dd77 2528 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2529 }
491976b2 2530 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8
AR
2531 dev_kfree_skb(skb);
2532 atomic_dec(&sp->rx_bufs_left[ring_no]);
2533 }
2534}
2535
1da177e4 2536/**
20346722 2537 * free_rx_buffers - Frees all Rx buffers
1da177e4 2538 * @sp: device private variable.
20346722 2539 * Description:
1da177e4
LT
2540 * This function will free all Rx buffers allocated by host.
2541 * Return Value:
2542 * NONE.
2543 */
2544
2545static void free_rx_buffers(struct s2io_nic *sp)
2546{
2547 struct net_device *dev = sp->dev;
da6971d8 2548 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2549 struct mac_info *mac_control;
1da177e4 2550 struct config_param *config;
1da177e4
LT
2551
2552 mac_control = &sp->mac_control;
2553 config = &sp->config;
2554
2555 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2556 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2557 free_rxd_blk(sp,i,blk);
1da177e4 2558
20346722
K
2559 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2560 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2561 mac_control->rings[i].rx_curr_put_info.offset = 0;
2562 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2563 atomic_set(&sp->rx_bufs_left[i], 0);
2564 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2565 dev->name, buf_cnt, i);
2566 }
2567}
2568
2569/**
2570 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2571 * @napi : pointer to the napi structure.
20346722 2572 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2573 * during one pass through the 'Poll" function.
2574 * Description:
2575 * Comes into picture only if NAPI support has been incorporated. It does
2576 * the same thing that rx_intr_handler does, but not in a interrupt context
2577 * also It will process only a given number of packets.
2578 * Return value:
2579 * 0 on success and 1 if there are No Rx packets to be processed.
2580 */
2581
bea3348e 2582static int s2io_poll(struct napi_struct *napi, int budget)
1da177e4 2583{
bea3348e
SH
2584 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2585 struct net_device *dev = nic->dev;
20346722 2586 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2587 struct mac_info *mac_control;
1da177e4 2588 struct config_param *config;
1ee6dd77 2589 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2590 int i;
1da177e4 2591
7ba013ac 2592 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2593 mac_control = &nic->mac_control;
2594 config = &nic->config;
2595
bea3348e 2596 nic->pkts_to_process = budget;
20346722 2597 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2598
19a60522
SS
2599 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2600 readl(&bar0->rx_traffic_int);
1da177e4
LT
2601
2602 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2603 rx_intr_handler(&mac_control->rings[i]);
2604 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2605 if (!nic->pkts_to_process) {
2606 /* Quota for the current iteration has been met */
2607 goto no_rx;
1da177e4 2608 }
1da177e4 2609 }
1da177e4 2610
bea3348e 2611 netif_rx_complete(dev, napi);
1da177e4
LT
2612
2613 for (i = 0; i < config->rx_ring_num; i++) {
2614 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2615 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2616 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2617 break;
2618 }
2619 }
2620 /* Re enable the Rx interrupts. */
c92ca04b 2621 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2622 readl(&bar0->rx_traffic_mask);
7ba013ac 2623 atomic_dec(&nic->isr_cnt);
bea3348e 2624 return pkt_cnt;
1da177e4 2625
20346722 2626no_rx:
1da177e4
LT
2627 for (i = 0; i < config->rx_ring_num; i++) {
2628 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2629 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2630 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2631 break;
2632 }
2633 }
7ba013ac 2634 atomic_dec(&nic->isr_cnt);
bea3348e 2635 return pkt_cnt;
1da177e4 2636}
20346722 2637
b41477f3 2638#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2639/**
b41477f3 2640 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2641 * @dev : pointer to the device structure.
2642 * Description:
b41477f3
AR
2643 * This function will be called by upper layer to check for events on the
2644 * interface in situations where interrupts are disabled. It is used for
2645 * specific in-kernel networking tasks, such as remote consoles and kernel
2646 * debugging over the network (example netdump in RedHat).
612eff0e 2647 */
612eff0e
BH
2648static void s2io_netpoll(struct net_device *dev)
2649{
1ee6dd77
RB
2650 struct s2io_nic *nic = dev->priv;
2651 struct mac_info *mac_control;
612eff0e 2652 struct config_param *config;
1ee6dd77 2653 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2654 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2655 int i;
2656
d796fdb7
LV
2657 if (pci_channel_offline(nic->pdev))
2658 return;
2659
612eff0e
BH
2660 disable_irq(dev->irq);
2661
2662 atomic_inc(&nic->isr_cnt);
2663 mac_control = &nic->mac_control;
2664 config = &nic->config;
2665
612eff0e 2666 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2667 writeq(val64, &bar0->tx_traffic_int);
2668
6aa20a22 2669 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2670 * run out of skbs and will fail and eventually netpoll application such
2671 * as netdump will fail.
2672 */
2673 for (i = 0; i < config->tx_fifo_num; i++)
2674 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2675
b41477f3 2676 /* check for received packet and indicate up to network */
612eff0e
BH
2677 for (i = 0; i < config->rx_ring_num; i++)
2678 rx_intr_handler(&mac_control->rings[i]);
2679
2680 for (i = 0; i < config->rx_ring_num; i++) {
2681 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2682 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2683 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2684 break;
2685 }
2686 }
2687 atomic_dec(&nic->isr_cnt);
2688 enable_irq(dev->irq);
2689 return;
2690}
2691#endif
2692
20346722 2693/**
1da177e4
LT
2694 * rx_intr_handler - Rx interrupt handler
2695 * @nic: device private variable.
20346722
K
2696 * Description:
2697 * If the interrupt is because of a received frame or if the
1da177e4 2698 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2699 * called. It picks out the RxD at which place the last Rx processing had
2700 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2701 * the offset.
2702 * Return Value:
2703 * NONE.
2704 */
1ee6dd77 2705static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2706{
1ee6dd77 2707 struct s2io_nic *nic = ring_data->nic;
1da177e4 2708 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2709 int get_block, put_block, put_offset;
1ee6dd77
RB
2710 struct rx_curr_get_info get_info, put_info;
2711 struct RxD_t *rxdp;
1da177e4 2712 struct sk_buff *skb;
20346722 2713 int pkt_cnt = 0;
7d3d0439 2714 int i;
6d517a27
VP
2715 struct RxD1* rxdp1;
2716 struct RxD3* rxdp3;
7d3d0439 2717
7ba013ac
K
2718 spin_lock(&nic->rx_lock);
2719 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2720 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2721 __FUNCTION__, dev->name);
2722 spin_unlock(&nic->rx_lock);
776bd20f 2723 return;
7ba013ac
K
2724 }
2725
20346722
K
2726 get_info = ring_data->rx_curr_get_info;
2727 get_block = get_info.block_index;
1ee6dd77 2728 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2729 put_block = put_info.block_index;
da6971d8 2730 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2731 if (!napi) {
2732 spin_lock(&nic->put_lock);
2733 put_offset = ring_data->put_pos;
2734 spin_unlock(&nic->put_lock);
2735 } else
2736 put_offset = ring_data->put_pos;
2737
da6971d8 2738 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2739 /*
2740 * If your are next to put index then it's
2741 * FIFO full condition
2742 */
da6971d8
AR
2743 if ((get_block == put_block) &&
2744 (get_info.offset + 1) == put_info.offset) {
75c30b13 2745 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2746 break;
2747 }
20346722
K
2748 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2749 if (skb == NULL) {
2750 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2751 dev->name);
2752 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2753 spin_unlock(&nic->rx_lock);
20346722 2754 return;
1da177e4 2755 }
da6971d8 2756 if (nic->rxd_mode == RXD_MODE_1) {
6d517a27 2757 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2758 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2759 rxdp1->Buffer0_ptr,
2760 dev->mtu +
2761 HEADER_ETHERNET_II_802_3_SIZE +
2762 HEADER_802_2_SIZE +
2763 HEADER_SNAP_SIZE,
2764 PCI_DMA_FROMDEVICE);
da6971d8 2765 } else if (nic->rxd_mode == RXD_MODE_3B) {
6d517a27 2766 rxdp3 = (struct RxD3*)rxdp;
75c30b13 2767 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
6d517a27
VP
2768 rxdp3->Buffer0_ptr,
2769 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2770 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2771 rxdp3->Buffer2_ptr,
2772 dev->mtu + 4,
2773 PCI_DMA_FROMDEVICE);
da6971d8 2774 }
863c11a9 2775 prefetch(skb->data);
20346722
K
2776 rx_osm_handler(ring_data, rxdp);
2777 get_info.offset++;
da6971d8
AR
2778 ring_data->rx_curr_get_info.offset = get_info.offset;
2779 rxdp = ring_data->rx_blocks[get_block].
2780 rxds[get_info.offset].virt_addr;
2781 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2782 get_info.offset = 0;
da6971d8 2783 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2784 get_block++;
da6971d8
AR
2785 if (get_block == ring_data->block_count)
2786 get_block = 0;
2787 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2788 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2789 }
1da177e4 2790
20346722 2791 nic->pkts_to_process -= 1;
db874e65 2792 if ((napi) && (!nic->pkts_to_process))
20346722 2793 break;
20346722 2794 pkt_cnt++;
1da177e4
LT
2795 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2796 break;
2797 }
7d3d0439
RA
2798 if (nic->lro) {
2799 /* Clear all LRO sessions before exiting */
2800 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2801 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2802 if (lro->in_use) {
2803 update_L3L4_header(nic, lro);
2804 queue_rx_frame(lro->parent);
2805 clear_lro_session(lro);
2806 }
2807 }
2808 }
2809
7ba013ac 2810 spin_unlock(&nic->rx_lock);
1da177e4 2811}
20346722
K
2812
2813/**
1da177e4
LT
2814 * tx_intr_handler - Transmit interrupt handler
2815 * @nic : device private variable
20346722
K
2816 * Description:
2817 * If an interrupt was raised to indicate DMA complete of the
2818 * Tx packet, this function is called. It identifies the last TxD
2819 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2820 * DMA'ed into the NICs internal memory.
2821 * Return Value:
2822 * NONE
2823 */
2824
1ee6dd77 2825static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2826{
1ee6dd77 2827 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2828 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2829 struct tx_curr_get_info get_info, put_info;
1da177e4 2830 struct sk_buff *skb;
1ee6dd77 2831 struct TxD *txdlp;
f9046eb3 2832 u8 err_mask;
1da177e4 2833
20346722 2834 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2835 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2836 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2837 list_virt_addr;
2838 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2839 (get_info.offset != put_info.offset) &&
2840 (txdlp->Host_Control)) {
2841 /* Check for TxD errors */
2842 if (txdlp->Control_1 & TXD_T_CODE) {
2843 unsigned long long err;
2844 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2845 if (err & 0x1) {
2846 nic->mac_control.stats_info->sw_stat.
2847 parity_err_cnt++;
2848 }
491976b2
SH
2849
2850 /* update t_code statistics */
f9046eb3
OH
2851 err_mask = err >> 48;
2852 switch(err_mask) {
491976b2
SH
2853 case 2:
2854 nic->mac_control.stats_info->sw_stat.
2855 tx_buf_abort_cnt++;
2856 break;
2857
2858 case 3:
2859 nic->mac_control.stats_info->sw_stat.
2860 tx_desc_abort_cnt++;
2861 break;
2862
2863 case 7:
2864 nic->mac_control.stats_info->sw_stat.
2865 tx_parity_err_cnt++;
2866 break;
2867
2868 case 10:
2869 nic->mac_control.stats_info->sw_stat.
2870 tx_link_loss_cnt++;
2871 break;
2872
2873 case 15:
2874 nic->mac_control.stats_info->sw_stat.
2875 tx_list_proc_err_cnt++;
2876 break;
2877 }
20346722 2878 }
1da177e4 2879
fed5eccd 2880 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2881 if (skb == NULL) {
2882 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2883 __FUNCTION__);
2884 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2885 return;
2886 }
2887
20346722 2888 /* Updating the statistics block */
20346722 2889 nic->stats.tx_bytes += skb->len;
491976b2 2890 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
2891 dev_kfree_skb_irq(skb);
2892
2893 get_info.offset++;
863c11a9
AR
2894 if (get_info.offset == get_info.fifo_len + 1)
2895 get_info.offset = 0;
1ee6dd77 2896 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
2897 [get_info.offset].list_virt_addr;
2898 fifo_data->tx_curr_get_info.offset =
2899 get_info.offset;
1da177e4
LT
2900 }
2901
2902 spin_lock(&nic->tx_lock);
2903 if (netif_queue_stopped(dev))
2904 netif_wake_queue(dev);
2905 spin_unlock(&nic->tx_lock);
2906}
2907
bd1034f0
AR
2908/**
2909 * s2io_mdio_write - Function to write in to MDIO registers
2910 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2911 * @addr : address value
2912 * @value : data value
2913 * @dev : pointer to net_device structure
2914 * Description:
2915 * This function is used to write values to the MDIO registers
2916 * NONE
2917 */
2918static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2919{
2920 u64 val64 = 0x0;
1ee6dd77
RB
2921 struct s2io_nic *sp = dev->priv;
2922 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2923
2924 //address transaction
2925 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2926 | MDIO_MMD_DEV_ADDR(mmd_type)
2927 | MDIO_MMS_PRT_ADDR(0x0);
2928 writeq(val64, &bar0->mdio_control);
2929 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2930 writeq(val64, &bar0->mdio_control);
2931 udelay(100);
2932
2933 //Data transaction
2934 val64 = 0x0;
2935 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2936 | MDIO_MMD_DEV_ADDR(mmd_type)
2937 | MDIO_MMS_PRT_ADDR(0x0)
2938 | MDIO_MDIO_DATA(value)
2939 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2940 writeq(val64, &bar0->mdio_control);
2941 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2942 writeq(val64, &bar0->mdio_control);
2943 udelay(100);
2944
2945 val64 = 0x0;
2946 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2947 | MDIO_MMD_DEV_ADDR(mmd_type)
2948 | MDIO_MMS_PRT_ADDR(0x0)
2949 | MDIO_OP(MDIO_OP_READ_TRANS);
2950 writeq(val64, &bar0->mdio_control);
2951 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2952 writeq(val64, &bar0->mdio_control);
2953 udelay(100);
2954
2955}
2956
2957/**
2958 * s2io_mdio_read - Function to write in to MDIO registers
2959 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960 * @addr : address value
2961 * @dev : pointer to net_device structure
2962 * Description:
2963 * This function is used to read values to the MDIO registers
2964 * NONE
2965 */
2966static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2967{
2968 u64 val64 = 0x0;
2969 u64 rval64 = 0x0;
1ee6dd77
RB
2970 struct s2io_nic *sp = dev->priv;
2971 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2972
2973 /* address transaction */
2974 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2975 | MDIO_MMD_DEV_ADDR(mmd_type)
2976 | MDIO_MMS_PRT_ADDR(0x0);
2977 writeq(val64, &bar0->mdio_control);
2978 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2979 writeq(val64, &bar0->mdio_control);
2980 udelay(100);
2981
2982 /* Data transaction */
2983 val64 = 0x0;
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_OP(MDIO_OP_READ_TRANS);
2988 writeq(val64, &bar0->mdio_control);
2989 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2990 writeq(val64, &bar0->mdio_control);
2991 udelay(100);
2992
2993 /* Read the value from regs */
2994 rval64 = readq(&bar0->mdio_control);
2995 rval64 = rval64 & 0xFFFF0000;
2996 rval64 = rval64 >> 16;
2997 return rval64;
2998}
2999/**
3000 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3001 * @counter : couter value to be updated
3002 * @flag : flag to indicate the status
3003 * @type : counter type
3004 * Description:
3005 * This function is to check the status of the xpak counters value
3006 * NONE
3007 */
3008
3009static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3010{
3011 u64 mask = 0x3;
3012 u64 val64;
3013 int i;
3014 for(i = 0; i <index; i++)
3015 mask = mask << 0x2;
3016
3017 if(flag > 0)
3018 {
3019 *counter = *counter + 1;
3020 val64 = *regs_stat & mask;
3021 val64 = val64 >> (index * 0x2);
3022 val64 = val64 + 1;
3023 if(val64 == 3)
3024 {
3025 switch(type)
3026 {
3027 case 1:
3028 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3029 "service. Excessive temperatures may "
3030 "result in premature transceiver "
3031 "failure \n");
3032 break;
3033 case 2:
3034 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3035 "service Excessive bias currents may "
3036 "indicate imminent laser diode "
3037 "failure \n");
3038 break;
3039 case 3:
3040 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3041 "service Excessive laser output "
3042 "power may saturate far-end "
3043 "receiver\n");
3044 break;
3045 default:
3046 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3047 "type \n");
3048 }
3049 val64 = 0x0;
3050 }
3051 val64 = val64 << (index * 0x2);
3052 *regs_stat = (*regs_stat & (~mask)) | (val64);
3053
3054 } else {
3055 *regs_stat = *regs_stat & (~mask);
3056 }
3057}
3058
3059/**
3060 * s2io_updt_xpak_counter - Function to update the xpak counters
3061 * @dev : pointer to net_device struct
3062 * Description:
3063 * This function is to upate the status of the xpak counters value
3064 * NONE
3065 */
3066static void s2io_updt_xpak_counter(struct net_device *dev)
3067{
3068 u16 flag = 0x0;
3069 u16 type = 0x0;
3070 u16 val16 = 0x0;
3071 u64 val64 = 0x0;
3072 u64 addr = 0x0;
3073
1ee6dd77
RB
3074 struct s2io_nic *sp = dev->priv;
3075 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3076
3077 /* Check the communication with the MDIO slave */
3078 addr = 0x0000;
3079 val64 = 0x0;
3080 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3081 if((val64 == 0xFFFF) || (val64 == 0x0000))
3082 {
3083 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3084 "Returned %llx\n", (unsigned long long)val64);
3085 return;
3086 }
3087
3088 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3089 if(val64 != 0x2040)
3090 {
3091 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3092 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3093 (unsigned long long)val64);
3094 return;
3095 }
3096
3097 /* Loading the DOM register to MDIO register */
3098 addr = 0xA100;
3099 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3100 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3101
3102 /* Reading the Alarm flags */
3103 addr = 0xA070;
3104 val64 = 0x0;
3105 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3106
3107 flag = CHECKBIT(val64, 0x7);
3108 type = 1;
3109 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3110 &stat_info->xpak_stat.xpak_regs_stat,
3111 0x0, flag, type);
3112
3113 if(CHECKBIT(val64, 0x6))
3114 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3115
3116 flag = CHECKBIT(val64, 0x3);
3117 type = 2;
3118 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3119 &stat_info->xpak_stat.xpak_regs_stat,
3120 0x2, flag, type);
3121
3122 if(CHECKBIT(val64, 0x2))
3123 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3124
3125 flag = CHECKBIT(val64, 0x1);
3126 type = 3;
3127 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3128 &stat_info->xpak_stat.xpak_regs_stat,
3129 0x4, flag, type);
3130
3131 if(CHECKBIT(val64, 0x0))
3132 stat_info->xpak_stat.alarm_laser_output_power_low++;
3133
3134 /* Reading the Warning flags */
3135 addr = 0xA074;
3136 val64 = 0x0;
3137 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3138
3139 if(CHECKBIT(val64, 0x7))
3140 stat_info->xpak_stat.warn_transceiver_temp_high++;
3141
3142 if(CHECKBIT(val64, 0x6))
3143 stat_info->xpak_stat.warn_transceiver_temp_low++;
3144
3145 if(CHECKBIT(val64, 0x3))
3146 stat_info->xpak_stat.warn_laser_bias_current_high++;
3147
3148 if(CHECKBIT(val64, 0x2))
3149 stat_info->xpak_stat.warn_laser_bias_current_low++;
3150
3151 if(CHECKBIT(val64, 0x1))
3152 stat_info->xpak_stat.warn_laser_output_power_high++;
3153
3154 if(CHECKBIT(val64, 0x0))
3155 stat_info->xpak_stat.warn_laser_output_power_low++;
3156}
3157
20346722 3158/**
1da177e4
LT
3159 * alarm_intr_handler - Alarm Interrrupt handler
3160 * @nic: device private variable
20346722 3161 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3162 * complete, this function is called. If the interrupt was to indicate
20346722
K
3163 * a loss of link, the OSM link status handler is invoked for any other
3164 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3165 * and a H/W reset is issued.
3166 * Return Value:
3167 * NONE
3168*/
3169
3170static void alarm_intr_handler(struct s2io_nic *nic)
3171{
3172 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 3173 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 3174 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3175 u64 cnt;
3176 int i;
372cc597
SS
3177 if (atomic_read(&nic->card_state) == CARD_DOWN)
3178 return;
d796fdb7
LV
3179 if (pci_channel_offline(nic->pdev))
3180 return;
bd1034f0
AR
3181 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3182 /* Handling the XPAK counters update */
3183 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3184 /* waiting for an hour */
3185 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3186 } else {
3187 s2io_updt_xpak_counter(dev);
3188 /* reset the count to zero */
3189 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3190 }
1da177e4
LT
3191
3192 /* Handling link status change error Intr */
a371a07d
K
3193 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3194 err_reg = readq(&bar0->mac_rmac_err_reg);
3195 writeq(err_reg, &bar0->mac_rmac_err_reg);
3196 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3197 schedule_work(&nic->set_link_task);
3198 }
1da177e4
LT
3199 }
3200
5e25b9dd
K
3201 /* Handling Ecc errors */
3202 val64 = readq(&bar0->mc_err_reg);
3203 writeq(val64, &bar0->mc_err_reg);
3204 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3205 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3206 nic->mac_control.stats_info->sw_stat.
3207 double_ecc_errs++;
776bd20f 3208 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3209 dev->name);
776bd20f 3210 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3211 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3212 /* Reset XframeI only if critical error */
3213 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3214 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3215 netif_stop_queue(dev);
3216 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3217 nic->mac_control.stats_info->sw_stat.
3218 soft_reset_cnt++;
776bd20f 3219 }
e960fc5c 3220 }
5e25b9dd 3221 } else {
7ba013ac
K
3222 nic->mac_control.stats_info->sw_stat.
3223 single_ecc_errs++;
5e25b9dd
K
3224 }
3225 }
3226
1da177e4
LT
3227 /* In case of a serious error, the device will be Reset. */
3228 val64 = readq(&bar0->serr_source);
3229 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3230 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3231 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
6aa20a22 3232 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
776bd20f 3233 (unsigned long long)val64);
1da177e4
LT
3234 netif_stop_queue(dev);
3235 schedule_work(&nic->rst_timer_task);
bd1034f0 3236 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3237 }
3238
3239 /*
3240 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3241 * Error occurs, the adapter will be recycled by disabling the
20346722 3242 * adapter enable bit and enabling it again after the device
1da177e4
LT
3243 * becomes Quiescent.
3244 */
3245 val64 = readq(&bar0->pcc_err_reg);
3246 writeq(val64, &bar0->pcc_err_reg);
3247 if (val64 & PCC_FB_ECC_DB_ERR) {
3248 u64 ac = readq(&bar0->adapter_control);
3249 ac &= ~(ADAPTER_CNTL_EN);
3250 writeq(ac, &bar0->adapter_control);
3251 ac = readq(&bar0->adapter_control);
3252 schedule_work(&nic->set_link_task);
3253 }
bd1034f0
AR
3254 /* Check for data parity error */
3255 val64 = readq(&bar0->pic_int_status);
3256 if (val64 & PIC_INT_GPIO) {
3257 val64 = readq(&bar0->gpio_int_reg);
3258 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3259 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3260 schedule_work(&nic->rst_timer_task);
3261 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3262 }
3263 }
3264
3265 /* Check for ring full counter */
3266 if (nic->device_type & XFRAME_II_DEVICE) {
3267 val64 = readq(&bar0->ring_bump_counter1);
3268 for (i=0; i<4; i++) {
3269 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3270 cnt >>= 64 - ((i+1)*16);
3271 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3272 += cnt;
3273 }
3274
3275 val64 = readq(&bar0->ring_bump_counter2);
3276 for (i=0; i<4; i++) {
3277 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3278 cnt >>= 64 - ((i+1)*16);
3279 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3280 += cnt;
3281 }
3282 }
1da177e4
LT
3283
3284 /* Other type of interrupts are not being handled now, TODO */
3285}
3286
20346722 3287/**
1da177e4 3288 * wait_for_cmd_complete - waits for a command to complete.
20346722 3289 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3290 * s2io_nic structure.
20346722
K
3291 * Description: Function that waits for a command to Write into RMAC
3292 * ADDR DATA registers to be completed and returns either success or
3293 * error depending on whether the command was complete or not.
1da177e4
LT
3294 * Return value:
3295 * SUCCESS on success and FAILURE on failure.
3296 */
3297
9fc93a41
SS
3298static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3299 int bit_state)
1da177e4 3300{
9fc93a41 3301 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3302 u64 val64;
3303
9fc93a41
SS
3304 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3305 return FAILURE;
3306
3307 do {
c92ca04b 3308 val64 = readq(addr);
9fc93a41
SS
3309 if (bit_state == S2IO_BIT_RESET) {
3310 if (!(val64 & busy_bit)) {
3311 ret = SUCCESS;
3312 break;
3313 }
3314 } else {
3315 if (!(val64 & busy_bit)) {
3316 ret = SUCCESS;
3317 break;
3318 }
1da177e4 3319 }
c92ca04b
AR
3320
3321 if(in_interrupt())
9fc93a41 3322 mdelay(delay);
c92ca04b 3323 else
9fc93a41 3324 msleep(delay);
c92ca04b 3325
9fc93a41
SS
3326 if (++cnt >= 10)
3327 delay = 50;
3328 } while (cnt < 20);
1da177e4
LT
3329 return ret;
3330}
19a60522
SS
3331/*
3332 * check_pci_device_id - Checks if the device id is supported
3333 * @id : device id
3334 * Description: Function to check if the pci device id is supported by driver.
3335 * Return value: Actual device id if supported else PCI_ANY_ID
3336 */
3337static u16 check_pci_device_id(u16 id)
3338{
3339 switch (id) {
3340 case PCI_DEVICE_ID_HERC_WIN:
3341 case PCI_DEVICE_ID_HERC_UNI:
3342 return XFRAME_II_DEVICE;
3343 case PCI_DEVICE_ID_S2IO_UNI:
3344 case PCI_DEVICE_ID_S2IO_WIN:
3345 return XFRAME_I_DEVICE;
3346 default:
3347 return PCI_ANY_ID;
3348 }
3349}
1da177e4 3350
20346722
K
3351/**
3352 * s2io_reset - Resets the card.
1da177e4
LT
3353 * @sp : private member of the device structure.
3354 * Description: Function to Reset the card. This function then also
20346722 3355 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3356 * the card reset also resets the configuration space.
3357 * Return value:
3358 * void.
3359 */
3360
1ee6dd77 3361static void s2io_reset(struct s2io_nic * sp)
1da177e4 3362{
1ee6dd77 3363 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3364 u64 val64;
5e25b9dd 3365 u16 subid, pci_cmd;
19a60522
SS
3366 int i;
3367 u16 val16;
491976b2
SH
3368 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3369 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3370
19a60522
SS
3371 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3372 __FUNCTION__, sp->dev->name);
1da177e4 3373
0b1f7ebe 3374 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3375 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3376
1da177e4
LT
3377 val64 = SW_RESET_ALL;
3378 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3379 if (strstr(sp->product_name, "CX4")) {
3380 msleep(750);
3381 }
19a60522
SS
3382 msleep(250);
3383 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3384
19a60522
SS
3385 /* Restore the PCI state saved during initialization. */
3386 pci_restore_state(sp->pdev);
3387 pci_read_config_word(sp->pdev, 0x2, &val16);
3388 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3389 break;
3390 msleep(200);
3391 }
1da177e4 3392
19a60522
SS
3393 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3394 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3395 }
3396
3397 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3398
3399 s2io_init_pci(sp);
1da177e4 3400
20346722
K
3401 /* Set swapper to enable I/O register access */
3402 s2io_set_swapper(sp);
3403
cc6e7c44
RA
3404 /* Restore the MSIX table entries from local variables */
3405 restore_xmsi_data(sp);
3406
5e25b9dd 3407 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3408 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3409 /* Clear "detected parity error" bit */
303bcb4b 3410 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3411
303bcb4b
K
3412 /* Clearing PCIX Ecc status register */
3413 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3414
303bcb4b
K
3415 /* Clearing PCI_STATUS error reflected here */
3416 writeq(BIT(62), &bar0->txpic_int_reg);
3417 }
5e25b9dd 3418
20346722
K
3419 /* Reset device statistics maintained by OS */
3420 memset(&sp->stats, 0, sizeof (struct net_device_stats));
491976b2
SH
3421
3422 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3423 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3424 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3425 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3426 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3427 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3428 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3429 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3430 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3431 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3432 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3433 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3434 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3435 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3436 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3437 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3438 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3439 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3440 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3441
1da177e4
LT
3442 /* SXE-002: Configure link and activity LED to turn it off */
3443 subid = sp->pdev->subsystem_device;
541ae68f
K
3444 if (((subid & 0xFF) >= 0x07) &&
3445 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3446 val64 = readq(&bar0->gpio_control);
3447 val64 |= 0x0000800000000000ULL;
3448 writeq(val64, &bar0->gpio_control);
3449 val64 = 0x0411040400000000ULL;
509a2671 3450 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3451 }
3452
541ae68f
K
3453 /*
3454 * Clear spurious ECC interrupts that would have occured on
3455 * XFRAME II cards after reset.
3456 */
3457 if (sp->device_type == XFRAME_II_DEVICE) {
3458 val64 = readq(&bar0->pcc_err_reg);
3459 writeq(val64, &bar0->pcc_err_reg);
3460 }
3461
d8d70caf
SS
3462 /* restore the previously assigned mac address */
3463 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3464
1da177e4
LT
3465 sp->device_enabled_once = FALSE;
3466}
3467
3468/**
20346722
K
3469 * s2io_set_swapper - to set the swapper controle on the card
3470 * @sp : private member of the device structure,
1da177e4 3471 * pointer to the s2io_nic structure.
20346722 3472 * Description: Function to set the swapper control on the card
1da177e4
LT
3473 * correctly depending on the 'endianness' of the system.
3474 * Return value:
3475 * SUCCESS on success and FAILURE on failure.
3476 */
3477
1ee6dd77 3478static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3479{
3480 struct net_device *dev = sp->dev;
1ee6dd77 3481 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3482 u64 val64, valt, valr;
3483
20346722 3484 /*
1da177e4
LT
3485 * Set proper endian settings and verify the same by reading
3486 * the PIF Feed-back register.
3487 */
3488
3489 val64 = readq(&bar0->pif_rd_swapper_fb);
3490 if (val64 != 0x0123456789ABCDEFULL) {
3491 int i = 0;
3492 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3493 0x8100008181000081ULL, /* FE=1, SE=0 */
3494 0x4200004242000042ULL, /* FE=0, SE=1 */
3495 0}; /* FE=0, SE=0 */
3496
3497 while(i<4) {
3498 writeq(value[i], &bar0->swapper_ctrl);
3499 val64 = readq(&bar0->pif_rd_swapper_fb);
3500 if (val64 == 0x0123456789ABCDEFULL)
3501 break;
3502 i++;
3503 }
3504 if (i == 4) {
3505 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3506 dev->name);
3507 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3508 (unsigned long long) val64);
3509 return FAILURE;
3510 }
3511 valr = value[i];
3512 } else {
3513 valr = readq(&bar0->swapper_ctrl);
3514 }
3515
3516 valt = 0x0123456789ABCDEFULL;
3517 writeq(valt, &bar0->xmsi_address);
3518 val64 = readq(&bar0->xmsi_address);
3519
3520 if(val64 != valt) {
3521 int i = 0;
3522 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3523 0x0081810000818100ULL, /* FE=1, SE=0 */
3524 0x0042420000424200ULL, /* FE=0, SE=1 */
3525 0}; /* FE=0, SE=0 */
3526
3527 while(i<4) {
3528 writeq((value[i] | valr), &bar0->swapper_ctrl);
3529 writeq(valt, &bar0->xmsi_address);
3530 val64 = readq(&bar0->xmsi_address);
3531 if(val64 == valt)
3532 break;
3533 i++;
3534 }
3535 if(i == 4) {
20346722 3536 unsigned long long x = val64;
1da177e4 3537 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3538 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3539 return FAILURE;
3540 }
3541 }
3542 val64 = readq(&bar0->swapper_ctrl);
3543 val64 &= 0xFFFF000000000000ULL;
3544
3545#ifdef __BIG_ENDIAN
20346722
K
3546 /*
3547 * The device by default set to a big endian format, so a
1da177e4
LT
3548 * big endian driver need not set anything.
3549 */
3550 val64 |= (SWAPPER_CTRL_TXP_FE |
3551 SWAPPER_CTRL_TXP_SE |
3552 SWAPPER_CTRL_TXD_R_FE |
3553 SWAPPER_CTRL_TXD_W_FE |
3554 SWAPPER_CTRL_TXF_R_FE |
3555 SWAPPER_CTRL_RXD_R_FE |
3556 SWAPPER_CTRL_RXD_W_FE |
3557 SWAPPER_CTRL_RXF_W_FE |
3558 SWAPPER_CTRL_XMSI_FE |
1da177e4 3559 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3560 if (sp->intr_type == INTA)
cc6e7c44 3561 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3562 writeq(val64, &bar0->swapper_ctrl);
3563#else
20346722 3564 /*
1da177e4 3565 * Initially we enable all bits to make it accessible by the
20346722 3566 * driver, then we selectively enable only those bits that
1da177e4
LT
3567 * we want to set.
3568 */
3569 val64 |= (SWAPPER_CTRL_TXP_FE |
3570 SWAPPER_CTRL_TXP_SE |
3571 SWAPPER_CTRL_TXD_R_FE |
3572 SWAPPER_CTRL_TXD_R_SE |
3573 SWAPPER_CTRL_TXD_W_FE |
3574 SWAPPER_CTRL_TXD_W_SE |
3575 SWAPPER_CTRL_TXF_R_FE |
3576 SWAPPER_CTRL_RXD_R_FE |
3577 SWAPPER_CTRL_RXD_R_SE |
3578 SWAPPER_CTRL_RXD_W_FE |
3579 SWAPPER_CTRL_RXD_W_SE |
3580 SWAPPER_CTRL_RXF_W_FE |
3581 SWAPPER_CTRL_XMSI_FE |
1da177e4 3582 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3583 if (sp->intr_type == INTA)
3584 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3585 writeq(val64, &bar0->swapper_ctrl);
3586#endif
3587 val64 = readq(&bar0->swapper_ctrl);
3588
20346722
K
3589 /*
3590 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3591 * feedback register.
3592 */
3593 val64 = readq(&bar0->pif_rd_swapper_fb);
3594 if (val64 != 0x0123456789ABCDEFULL) {
3595 /* Endian settings are incorrect, calls for another dekko. */
3596 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3597 dev->name);
3598 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3599 (unsigned long long) val64);
3600 return FAILURE;
3601 }
3602
3603 return SUCCESS;
3604}
3605
1ee6dd77 3606static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3607{
1ee6dd77 3608 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3609 u64 val64;
3610 int ret = 0, cnt = 0;
3611
3612 do {
3613 val64 = readq(&bar0->xmsi_access);
3614 if (!(val64 & BIT(15)))
3615 break;
3616 mdelay(1);
3617 cnt++;
3618 } while(cnt < 5);
3619 if (cnt == 5) {
3620 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3621 ret = 1;
3622 }
3623
3624 return ret;
3625}
3626
1ee6dd77 3627static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3628{
1ee6dd77 3629 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3630 u64 val64;
3631 int i;
3632
75c30b13 3633 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3634 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3635 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3636 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3637 writeq(val64, &bar0->xmsi_access);
3638 if (wait_for_msix_trans(nic, i)) {
3639 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3640 continue;
3641 }
3642 }
3643}
3644
1ee6dd77 3645static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3646{
1ee6dd77 3647 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3648 u64 val64, addr, data;
3649 int i;
3650
3651 /* Store and display */
75c30b13 3652 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3653 val64 = (BIT(15) | vBIT(i, 26, 6));
3654 writeq(val64, &bar0->xmsi_access);
3655 if (wait_for_msix_trans(nic, i)) {
3656 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3657 continue;
3658 }
3659 addr = readq(&bar0->xmsi_address);
3660 data = readq(&bar0->xmsi_data);
3661 if (addr && data) {
3662 nic->msix_info[i].addr = addr;
3663 nic->msix_info[i].data = data;
3664 }
3665 }
3666}
3667
1ee6dd77 3668static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3669{
1ee6dd77 3670 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3671 u64 tx_mat, rx_mat;
3672 u16 msi_control; /* Temp variable */
3673 int ret, i, j, msix_indx = 1;
3674
3675 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3676 GFP_KERNEL);
3677 if (nic->entries == NULL) {
491976b2
SH
3678 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3679 __FUNCTION__);
c53d4945 3680 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3681 return -ENOMEM;
3682 }
491976b2
SH
3683 nic->mac_control.stats_info->sw_stat.mem_allocated
3684 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3685 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3686
3687 nic->s2io_entries =
3688 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3689 GFP_KERNEL);
3690 if (nic->s2io_entries == NULL) {
491976b2
SH
3691 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3692 __FUNCTION__);
c53d4945 3693 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3694 kfree(nic->entries);
491976b2
SH
3695 nic->mac_control.stats_info->sw_stat.mem_freed
3696 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3697 return -ENOMEM;
3698 }
491976b2
SH
3699 nic->mac_control.stats_info->sw_stat.mem_allocated
3700 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3701 memset(nic->s2io_entries, 0,
3702 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3703
3704 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3705 nic->entries[i].entry = i;
3706 nic->s2io_entries[i].entry = i;
3707 nic->s2io_entries[i].arg = NULL;
3708 nic->s2io_entries[i].in_use = 0;
3709 }
3710
3711 tx_mat = readq(&bar0->tx_mat0_n[0]);
3712 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3713 tx_mat |= TX_MAT_SET(i, msix_indx);
3714 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3715 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3716 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3717 }
3718 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3719
3720 if (!nic->config.bimodal) {
3721 rx_mat = readq(&bar0->rx_mat);
3722 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3723 rx_mat |= RX_MAT_SET(j, msix_indx);
491976b2
SH
3724 nic->s2io_entries[msix_indx].arg
3725 = &nic->mac_control.rings[j];
cc6e7c44
RA
3726 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3727 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3728 }
3729 writeq(rx_mat, &bar0->rx_mat);
3730 } else {
3731 tx_mat = readq(&bar0->tx_mat0_n[7]);
3732 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3733 tx_mat |= TX_MAT_SET(i, msix_indx);
491976b2
SH
3734 nic->s2io_entries[msix_indx].arg
3735 = &nic->mac_control.rings[j];
cc6e7c44
RA
3736 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3737 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3738 }
3739 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3740 }
3741
c92ca04b 3742 nic->avail_msix_vectors = 0;
cc6e7c44 3743 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3744 /* We fail init if error or we get less vectors than min required */
3745 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3746 nic->avail_msix_vectors = ret;
3747 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3748 }
cc6e7c44
RA
3749 if (ret) {
3750 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3751 kfree(nic->entries);
491976b2
SH
3752 nic->mac_control.stats_info->sw_stat.mem_freed
3753 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3754 kfree(nic->s2io_entries);
491976b2
SH
3755 nic->mac_control.stats_info->sw_stat.mem_freed
3756 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3757 nic->entries = NULL;
3758 nic->s2io_entries = NULL;
c92ca04b 3759 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3760 return -ENOMEM;
3761 }
c92ca04b
AR
3762 if (!nic->avail_msix_vectors)
3763 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3764
3765 /*
3766 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3767 * in the herc NIC. (Temp change, needs to be removed later)
3768 */
3769 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3770 msi_control |= 0x1; /* Enable MSI */
3771 pci_write_config_word(nic->pdev, 0x42, msi_control);
3772
3773 return 0;
3774}
3775
8abc4d5b
SS
3776/* Handle software interrupt used during MSI(X) test */
3777static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3778{
3779 struct s2io_nic *sp = dev_id;
3780
3781 sp->msi_detected = 1;
3782 wake_up(&sp->msi_wait);
3783
3784 return IRQ_HANDLED;
3785}
3786
3787/* Test interrupt path by forcing a a software IRQ */
3788static int __devinit s2io_test_msi(struct s2io_nic *sp)
3789{
3790 struct pci_dev *pdev = sp->pdev;
3791 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3792 int err;
3793 u64 val64, saved64;
3794
3795 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3796 sp->name, sp);
3797 if (err) {
3798 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3799 sp->dev->name, pci_name(pdev), pdev->irq);
3800 return err;
3801 }
3802
3803 init_waitqueue_head (&sp->msi_wait);
3804 sp->msi_detected = 0;
3805
3806 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3807 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3808 val64 |= SCHED_INT_CTRL_TIMER_EN;
3809 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3810 writeq(val64, &bar0->scheduled_int_ctrl);
3811
3812 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3813
3814 if (!sp->msi_detected) {
3815 /* MSI(X) test failed, go back to INTx mode */
3816 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3817 "using MSI(X) during test\n", sp->dev->name,
3818 pci_name(pdev));
3819
3820 err = -EOPNOTSUPP;
3821 }
3822
3823 free_irq(sp->entries[1].vector, sp);
3824
3825 writeq(saved64, &bar0->scheduled_int_ctrl);
3826
3827 return err;
3828}
1da177e4
LT
3829/* ********************************************************* *
3830 * Functions defined below concern the OS part of the driver *
3831 * ********************************************************* */
3832
20346722 3833/**
1da177e4
LT
3834 * s2io_open - open entry point of the driver
3835 * @dev : pointer to the device structure.
3836 * Description:
3837 * This function is the open entry point of the driver. It mainly calls a
3838 * function to allocate Rx buffers and inserts them into the buffer
20346722 3839 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3840 * Return value:
3841 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3842 * file on failure.
3843 */
3844
ac1f60db 3845static int s2io_open(struct net_device *dev)
1da177e4 3846{
1ee6dd77 3847 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3848 int err = 0;
3849
20346722
K
3850 /*
3851 * Make sure you have link off by default every time
1da177e4
LT
3852 * Nic is initialized
3853 */
3854 netif_carrier_off(dev);
0b1f7ebe 3855 sp->last_link_state = 0;
1da177e4 3856
bea3348e
SH
3857 napi_enable(&sp->napi);
3858
8abc4d5b
SS
3859 if (sp->intr_type == MSI_X) {
3860 int ret = s2io_enable_msi_x(sp);
3861
3862 if (!ret) {
3863 u16 msi_control;
3864
3865 ret = s2io_test_msi(sp);
3866
3867 /* rollback MSI-X, will re-enable during add_isr() */
3868 kfree(sp->entries);
3869 sp->mac_control.stats_info->sw_stat.mem_freed +=
3870 (MAX_REQUESTED_MSI_X *
3871 sizeof(struct msix_entry));
3872 kfree(sp->s2io_entries);
3873 sp->mac_control.stats_info->sw_stat.mem_freed +=
3874 (MAX_REQUESTED_MSI_X *
3875 sizeof(struct s2io_msix_entry));
3876 sp->entries = NULL;
3877 sp->s2io_entries = NULL;
3878
3879 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3880 msi_control &= 0xFFFE; /* Disable MSI */
3881 pci_write_config_word(sp->pdev, 0x42, msi_control);
3882
3883 pci_disable_msix(sp->pdev);
3884
3885 }
3886 if (ret) {
3887
3888 DBG_PRINT(ERR_DBG,
3889 "%s: MSI-X requested but failed to enable\n",
3890 dev->name);
3891 sp->intr_type = INTA;
3892 }
3893 }
3894
c77dd43e
SS
3895 /* NAPI doesn't work well with MSI(X) */
3896 if (sp->intr_type != INTA) {
3897 if(sp->config.napi)
3898 sp->config.napi = 0;
3899 }
3900
1da177e4 3901 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3902 err = s2io_card_up(sp);
3903 if (err) {
1da177e4
LT
3904 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3905 dev->name);
e6a8fee2 3906 goto hw_init_failed;
1da177e4
LT
3907 }
3908
3909 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3910 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3911 s2io_card_down(sp);
20346722 3912 err = -ENODEV;
e6a8fee2 3913 goto hw_init_failed;
1da177e4
LT
3914 }
3915
3916 netif_start_queue(dev);
3917 return 0;
20346722 3918
20346722 3919hw_init_failed:
bea3348e 3920 napi_disable(&sp->napi);
cc6e7c44 3921 if (sp->intr_type == MSI_X) {
491976b2 3922 if (sp->entries) {
cc6e7c44 3923 kfree(sp->entries);
491976b2
SH
3924 sp->mac_control.stats_info->sw_stat.mem_freed
3925 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3926 }
3927 if (sp->s2io_entries) {
cc6e7c44 3928 kfree(sp->s2io_entries);
491976b2
SH
3929 sp->mac_control.stats_info->sw_stat.mem_freed
3930 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3931 }
cc6e7c44 3932 }
20346722 3933 return err;
1da177e4
LT
3934}
3935
3936/**
3937 * s2io_close -close entry point of the driver
3938 * @dev : device pointer.
3939 * Description:
3940 * This is the stop entry point of the driver. It needs to undo exactly
3941 * whatever was done by the open entry point,thus it's usually referred to
3942 * as the close function.Among other things this function mainly stops the
3943 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3944 * Return value:
3945 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3946 * file on failure.
3947 */
3948
ac1f60db 3949static int s2io_close(struct net_device *dev)
1da177e4 3950{
1ee6dd77 3951 struct s2io_nic *sp = dev->priv;
cc6e7c44 3952
1da177e4 3953 netif_stop_queue(dev);
bea3348e 3954 napi_disable(&sp->napi);
1da177e4 3955 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3956 s2io_card_down(sp);
cc6e7c44 3957
1da177e4
LT
3958 return 0;
3959}
3960
3961/**
3962 * s2io_xmit - Tx entry point of te driver
3963 * @skb : the socket buffer containing the Tx data.
3964 * @dev : device pointer.
3965 * Description :
3966 * This function is the Tx entry point of the driver. S2IO NIC supports
3967 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3968 * NOTE: when device cant queue the pkt,just the trans_start variable will
3969 * not be upadted.
3970 * Return value:
3971 * 0 on success & 1 on failure.
3972 */
3973
ac1f60db 3974static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3975{
1ee6dd77 3976 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3977 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3978 register u64 val64;
1ee6dd77
RB
3979 struct TxD *txdp;
3980 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3981 unsigned long flags;
be3a6b02
K
3982 u16 vlan_tag = 0;
3983 int vlan_priority = 0;
1ee6dd77 3984 struct mac_info *mac_control;
1da177e4 3985 struct config_param *config;
75c30b13 3986 int offload_type;
491abf25 3987 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3988
3989 mac_control = &sp->mac_control;
3990 config = &sp->config;
3991
20346722 3992 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
3993
3994 if (unlikely(skb->len <= 0)) {
3995 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3996 dev_kfree_skb_any(skb);
3997 return 0;
3998}
3999
1da177e4 4000 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 4001 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 4002 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
4003 dev->name);
4004 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
4005 dev_kfree_skb(skb);
4006 return 0;
1da177e4
LT
4007 }
4008
4009 queue = 0;
be3a6b02
K
4010 /* Get Fifo number to Transmit based on vlan priority */
4011 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4012 vlan_tag = vlan_tx_tag_get(skb);
4013 vlan_priority = vlan_tag >> 13;
4014 queue = config->fifo_mapping[vlan_priority];
4015 }
4016
20346722
K
4017 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4018 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 4019 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
4020 list_virt_addr;
4021
4022 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 4023 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4024 if (txdp->Host_Control ||
4025 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4026 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
4027 netif_stop_queue(dev);
4028 dev_kfree_skb(skb);
4029 spin_unlock_irqrestore(&sp->tx_lock, flags);
4030 return 0;
4031 }
0b1f7ebe 4032
75c30b13 4033 offload_type = s2io_offload_type(skb);
75c30b13 4034 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4035 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4036 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4037 }
84fa7933 4038 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4039 txdp->Control_2 |=
4040 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4041 TXD_TX_CKO_UDP_EN);
4042 }
fed5eccd
AR
4043 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4044 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 4045 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 4046
be3a6b02
K
4047 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4048 txdp->Control_2 |= TXD_VLAN_ENABLE;
4049 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4050 }
4051
fed5eccd 4052 frg_len = skb->len - skb->data_len;
75c30b13 4053 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4054 int ufo_size;
4055
75c30b13 4056 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4057 ufo_size &= ~7;
4058 txdp->Control_1 |= TXD_UFO_EN;
4059 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4060 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4061#ifdef __BIG_ENDIAN
4062 sp->ufo_in_band_v[put_off] =
4063 (u64)skb_shinfo(skb)->ip6_frag_id;
4064#else
4065 sp->ufo_in_band_v[put_off] =
4066 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4067#endif
4068 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4069 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4070 sp->ufo_in_band_v,
4071 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
4072 if((txdp->Buffer_Pointer == 0) ||
4073 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4074 goto pci_map_failed;
fed5eccd 4075 txdp++;
fed5eccd 4076 }
1da177e4 4077
fed5eccd
AR
4078 txdp->Buffer_Pointer = pci_map_single
4079 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
4080 if((txdp->Buffer_Pointer == 0) ||
4081 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4082 goto pci_map_failed;
4083
fed5eccd
AR
4084 txdp->Host_Control = (unsigned long) skb;
4085 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4086 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4087 txdp->Control_1 |= TXD_UFO_EN;
4088
4089 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4090 /* For fragmented SKB. */
4091 for (i = 0; i < frg_cnt; i++) {
4092 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4093 /* A '0' length fragment will be ignored */
4094 if (!frag->size)
4095 continue;
1da177e4
LT
4096 txdp++;
4097 txdp->Buffer_Pointer = (u64) pci_map_page
4098 (sp->pdev, frag->page, frag->page_offset,
4099 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4100 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4101 if (offload_type == SKB_GSO_UDP)
fed5eccd 4102 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4103 }
4104 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4105
75c30b13 4106 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4107 frg_cnt++; /* as Txd0 was used for inband header */
4108
1da177e4 4109 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 4110 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
4111 writeq(val64, &tx_fifo->TxDL_Pointer);
4112
4113 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4114 TX_FIFO_LAST_LIST);
75c30b13 4115 if (offload_type)
fed5eccd 4116 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4117
1da177e4
LT
4118 writeq(val64, &tx_fifo->List_Control);
4119
303bcb4b
K
4120 mmiowb();
4121
1da177e4 4122 put_off++;
863c11a9
AR
4123 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4124 put_off = 0;
20346722 4125 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
4126
4127 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4128 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4129 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4130 DBG_PRINT(TX_DBG,
4131 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4132 put_off, get_off);
4133 netif_stop_queue(dev);
4134 }
491976b2 4135 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4
LT
4136 dev->trans_start = jiffies;
4137 spin_unlock_irqrestore(&sp->tx_lock, flags);
4138
491abf25
VP
4139 return 0;
4140pci_map_failed:
4141 stats->pci_map_fail_cnt++;
4142 netif_stop_queue(dev);
4143 stats->mem_freed += skb->truesize;
4144 dev_kfree_skb(skb);
4145 spin_unlock_irqrestore(&sp->tx_lock, flags);
1da177e4
LT
4146 return 0;
4147}
4148
25fff88e
K
4149static void
4150s2io_alarm_handle(unsigned long data)
4151{
1ee6dd77 4152 struct s2io_nic *sp = (struct s2io_nic *)data;
25fff88e
K
4153
4154 alarm_intr_handler(sp);
4155 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4156}
4157
1ee6dd77 4158static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4159{
4160 int rxb_size, level;
4161
4162 if (!sp->lro) {
4163 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4164 level = rx_buffer_level(sp, rxb_size, rng_n);
4165
4166 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4167 int ret;
4168 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4169 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4170 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
0c61ed5f 4171 DBG_PRINT(INFO_DBG, "Out of memory in %s",
75c30b13
AR
4172 __FUNCTION__);
4173 clear_bit(0, (&sp->tasklet_status));
4174 return -1;
4175 }
4176 clear_bit(0, (&sp->tasklet_status));
4177 } else if (level == LOW)
4178 tasklet_schedule(&sp->task);
4179
4180 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
0c61ed5f
RV
4181 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4182 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4183 }
4184 return 0;
4185}
4186
7d12e780 4187static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4188{
1ee6dd77
RB
4189 struct ring_info *ring = (struct ring_info *)dev_id;
4190 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4191
4192 atomic_inc(&sp->isr_cnt);
cc6e7c44 4193
75c30b13
AR
4194 rx_intr_handler(ring);
4195 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4196
cc6e7c44 4197 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4198 return IRQ_HANDLED;
4199}
4200
7d12e780 4201static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4202{
1ee6dd77
RB
4203 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4204 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4205
4206 atomic_inc(&sp->isr_cnt);
4207 tx_intr_handler(fifo);
4208 atomic_dec(&sp->isr_cnt);
4209 return IRQ_HANDLED;
4210}
1ee6dd77 4211static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4212{
1ee6dd77 4213 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4214 u64 val64;
4215
4216 val64 = readq(&bar0->pic_int_status);
4217 if (val64 & PIC_INT_GPIO) {
4218 val64 = readq(&bar0->gpio_int_reg);
4219 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4220 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4221 /*
4222 * This is unstable state so clear both up/down
4223 * interrupt and adapter to re-evaluate the link state.
4224 */
a371a07d
K
4225 val64 |= GPIO_INT_REG_LINK_DOWN;
4226 val64 |= GPIO_INT_REG_LINK_UP;
4227 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4228 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4229 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4230 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4231 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4232 }
c92ca04b
AR
4233 else if (val64 & GPIO_INT_REG_LINK_UP) {
4234 val64 = readq(&bar0->adapter_status);
c92ca04b 4235 /* Enable Adapter */
19a60522
SS
4236 val64 = readq(&bar0->adapter_control);
4237 val64 |= ADAPTER_CNTL_EN;
4238 writeq(val64, &bar0->adapter_control);
4239 val64 |= ADAPTER_LED_ON;
4240 writeq(val64, &bar0->adapter_control);
4241 if (!sp->device_enabled_once)
4242 sp->device_enabled_once = 1;
c92ca04b 4243
19a60522
SS
4244 s2io_link(sp, LINK_UP);
4245 /*
4246 * unmask link down interrupt and mask link-up
4247 * intr
4248 */
4249 val64 = readq(&bar0->gpio_int_mask);
4250 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4251 val64 |= GPIO_INT_MASK_LINK_UP;
4252 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4253
c92ca04b
AR
4254 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4255 val64 = readq(&bar0->adapter_status);
19a60522
SS
4256 s2io_link(sp, LINK_DOWN);
4257 /* Link is down so unmaks link up interrupt */
4258 val64 = readq(&bar0->gpio_int_mask);
4259 val64 &= ~GPIO_INT_MASK_LINK_UP;
4260 val64 |= GPIO_INT_MASK_LINK_DOWN;
4261 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4262
4263 /* turn off LED */
4264 val64 = readq(&bar0->adapter_control);
4265 val64 = val64 &(~ADAPTER_LED_ON);
4266 writeq(val64, &bar0->adapter_control);
a371a07d
K
4267 }
4268 }
c92ca04b 4269 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4270}
4271
1da177e4
LT
4272/**
4273 * s2io_isr - ISR handler of the device .
4274 * @irq: the irq of the device.
4275 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4276 * Description: This function is the ISR handler of the device. It
4277 * identifies the reason for the interrupt and calls the relevant
4278 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4279 * recv buffers, if their numbers are below the panic value which is
4280 * presently set to 25% of the original number of rcv buffers allocated.
4281 * Return value:
20346722 4282 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4283 * IRQ_NONE: will be returned if interrupt is not from our device
4284 */
7d12e780 4285static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4286{
4287 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4288 struct s2io_nic *sp = dev->priv;
4289 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4290 int i;
19a60522 4291 u64 reason = 0;
1ee6dd77 4292 struct mac_info *mac_control;
1da177e4
LT
4293 struct config_param *config;
4294
d796fdb7
LV
4295 /* Pretend we handled any irq's from a disconnected card */
4296 if (pci_channel_offline(sp->pdev))
4297 return IRQ_NONE;
4298
7ba013ac 4299 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4300 mac_control = &sp->mac_control;
4301 config = &sp->config;
4302
20346722 4303 /*
1da177e4
LT
4304 * Identify the cause for interrupt and call the appropriate
4305 * interrupt handler. Causes for the interrupt could be;
4306 * 1. Rx of packet.
4307 * 2. Tx complete.
4308 * 3. Link down.
20346722 4309 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4310 */
4311 reason = readq(&bar0->general_int_status);
4312
4313 if (!reason) {
19a60522
SS
4314 /* The interrupt was not raised by us. */
4315 atomic_dec(&sp->isr_cnt);
4316 return IRQ_NONE;
4317 }
4318 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4319 /* Disable device and get out */
7ba013ac 4320 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4321 return IRQ_NONE;
4322 }
5d3213cc 4323
db874e65
SS
4324 if (napi) {
4325 if (reason & GEN_INTR_RXTRAFFIC) {
bea3348e
SH
4326 if (likely (netif_rx_schedule_prep(dev, &sp->napi))) {
4327 __netif_rx_schedule(dev, &sp->napi);
19a60522 4328 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4329 }
19a60522
SS
4330 else
4331 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4332 }
4333 } else {
4334 /*
4335 * Rx handler is called by default, without checking for the
4336 * cause of interrupt.
4337 * rx_traffic_int reg is an R1 register, writing all 1's
4338 * will ensure that the actual interrupt causing bit get's
4339 * cleared and hence a read can be avoided.
4340 */
19a60522
SS
4341 if (reason & GEN_INTR_RXTRAFFIC)
4342 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4343
db874e65
SS
4344 for (i = 0; i < config->rx_ring_num; i++) {
4345 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4346 }
4347 }
1da177e4 4348
863c11a9
AR
4349 /*
4350 * tx_traffic_int reg is an R1 register, writing all 1's
4351 * will ensure that the actual interrupt causing bit get's
4352 * cleared and hence a read can be avoided.
4353 */
19a60522
SS
4354 if (reason & GEN_INTR_TXTRAFFIC)
4355 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4356
863c11a9
AR
4357 for (i = 0; i < config->tx_fifo_num; i++)
4358 tx_intr_handler(&mac_control->fifos[i]);
20346722 4359
a371a07d
K
4360 if (reason & GEN_INTR_TXPIC)
4361 s2io_txpic_intr_handle(sp);
20346722
K
4362 /*
4363 * If the Rx buffer count is below the panic threshold then
4364 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4365 * else schedule a tasklet to reallocate the buffers.
4366 */
db874e65
SS
4367 if (!napi) {
4368 for (i = 0; i < config->rx_ring_num; i++)
4369 s2io_chk_rx_buffers(sp, i);
4370 }
4371
4372 writeq(0, &bar0->general_int_mask);
4373 readl(&bar0->general_int_status);
4374
7ba013ac 4375 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4376 return IRQ_HANDLED;
4377}
4378
7ba013ac
K
4379/**
4380 * s2io_updt_stats -
4381 */
1ee6dd77 4382static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4383{
1ee6dd77 4384 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4385 u64 val64;
4386 int cnt = 0;
4387
4388 if (atomic_read(&sp->card_state) == CARD_UP) {
4389 /* Apprx 30us on a 133 MHz bus */
4390 val64 = SET_UPDT_CLICKS(10) |
4391 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4392 writeq(val64, &bar0->stat_cfg);
4393 do {
4394 udelay(100);
4395 val64 = readq(&bar0->stat_cfg);
4396 if (!(val64 & BIT(0)))
4397 break;
4398 cnt++;
4399 if (cnt == 5)
4400 break; /* Updt failed */
4401 } while(1);
363dc367 4402 }
7ba013ac
K
4403}
4404
1da177e4 4405/**
20346722 4406 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4407 * @dev : pointer to the device structure.
4408 * Description:
20346722 4409 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4410 * structure and returns a pointer to the same.
4411 * Return value:
4412 * pointer to the updated net_device_stats structure.
4413 */
4414
ac1f60db 4415static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4416{
1ee6dd77
RB
4417 struct s2io_nic *sp = dev->priv;
4418 struct mac_info *mac_control;
1da177e4
LT
4419 struct config_param *config;
4420
20346722 4421
1da177e4
LT
4422 mac_control = &sp->mac_control;
4423 config = &sp->config;
4424
7ba013ac
K
4425 /* Configure Stats for immediate updt */
4426 s2io_updt_stats(sp);
4427
4428 sp->stats.tx_packets =
4429 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4430 sp->stats.tx_errors =
4431 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4432 sp->stats.rx_errors =
ee705dba 4433 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4434 sp->stats.multicast =
4435 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4436 sp->stats.rx_length_errors =
ee705dba 4437 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4438
4439 return (&sp->stats);
4440}
4441
4442/**
4443 * s2io_set_multicast - entry point for multicast address enable/disable.
4444 * @dev : pointer to the device structure
4445 * Description:
20346722
K
4446 * This function is a driver entry point which gets called by the kernel
4447 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4448 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4449 * determine, if multicast address must be enabled or if promiscuous mode
4450 * is to be disabled etc.
4451 * Return value:
4452 * void.
4453 */
4454
4455static void s2io_set_multicast(struct net_device *dev)
4456{
4457 int i, j, prev_cnt;
4458 struct dev_mc_list *mclist;
1ee6dd77
RB
4459 struct s2io_nic *sp = dev->priv;
4460 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4461 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4462 0xfeffffffffffULL;
4463 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4464 void __iomem *add;
4465
4466 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4467 /* Enable all Multicast addresses */
4468 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4469 &bar0->rmac_addr_data0_mem);
4470 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4471 &bar0->rmac_addr_data1_mem);
4472 val64 = RMAC_ADDR_CMD_MEM_WE |
4473 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4474 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4475 writeq(val64, &bar0->rmac_addr_cmd_mem);
4476 /* Wait till command completes */
c92ca04b 4477 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4478 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4479 S2IO_BIT_RESET);
1da177e4
LT
4480
4481 sp->m_cast_flg = 1;
4482 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4483 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4484 /* Disable all Multicast addresses */
4485 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4486 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4487 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4488 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4489 val64 = RMAC_ADDR_CMD_MEM_WE |
4490 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4491 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4492 writeq(val64, &bar0->rmac_addr_cmd_mem);
4493 /* Wait till command completes */
c92ca04b 4494 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4495 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4496 S2IO_BIT_RESET);
1da177e4
LT
4497
4498 sp->m_cast_flg = 0;
4499 sp->all_multi_pos = 0;
4500 }
4501
4502 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4503 /* Put the NIC into promiscuous mode */
4504 add = &bar0->mac_cfg;
4505 val64 = readq(&bar0->mac_cfg);
4506 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4507
4508 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4509 writel((u32) val64, add);
4510 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4511 writel((u32) (val64 >> 32), (add + 4));
4512
926930b2
SS
4513 if (vlan_tag_strip != 1) {
4514 val64 = readq(&bar0->rx_pa_cfg);
4515 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4516 writeq(val64, &bar0->rx_pa_cfg);
4517 vlan_strip_flag = 0;
4518 }
4519
1da177e4
LT
4520 val64 = readq(&bar0->mac_cfg);
4521 sp->promisc_flg = 1;
776bd20f 4522 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4523 dev->name);
4524 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4525 /* Remove the NIC from promiscuous mode */
4526 add = &bar0->mac_cfg;
4527 val64 = readq(&bar0->mac_cfg);
4528 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4529
4530 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4531 writel((u32) val64, add);
4532 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4533 writel((u32) (val64 >> 32), (add + 4));
4534
926930b2
SS
4535 if (vlan_tag_strip != 0) {
4536 val64 = readq(&bar0->rx_pa_cfg);
4537 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4538 writeq(val64, &bar0->rx_pa_cfg);
4539 vlan_strip_flag = 1;
4540 }
4541
1da177e4
LT
4542 val64 = readq(&bar0->mac_cfg);
4543 sp->promisc_flg = 0;
776bd20f 4544 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4545 dev->name);
4546 }
4547
4548 /* Update individual M_CAST address list */
4549 if ((!sp->m_cast_flg) && dev->mc_count) {
4550 if (dev->mc_count >
4551 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4552 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4553 dev->name);
4554 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4555 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4556 return;
4557 }
4558
4559 prev_cnt = sp->mc_addr_count;
4560 sp->mc_addr_count = dev->mc_count;
4561
4562 /* Clear out the previous list of Mc in the H/W. */
4563 for (i = 0; i < prev_cnt; i++) {
4564 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4565 &bar0->rmac_addr_data0_mem);
4566 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4567 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4568 val64 = RMAC_ADDR_CMD_MEM_WE |
4569 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4570 RMAC_ADDR_CMD_MEM_OFFSET
4571 (MAC_MC_ADDR_START_OFFSET + i);
4572 writeq(val64, &bar0->rmac_addr_cmd_mem);
4573
4574 /* Wait for command completes */
c92ca04b 4575 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4576 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4577 S2IO_BIT_RESET)) {
1da177e4
LT
4578 DBG_PRINT(ERR_DBG, "%s: Adding ",
4579 dev->name);
4580 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4581 return;
4582 }
4583 }
4584
4585 /* Create the new Rx filter list and update the same in H/W. */
4586 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4587 i++, mclist = mclist->next) {
4588 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4589 ETH_ALEN);
a7a80d5a 4590 mac_addr = 0;
1da177e4
LT
4591 for (j = 0; j < ETH_ALEN; j++) {
4592 mac_addr |= mclist->dmi_addr[j];
4593 mac_addr <<= 8;
4594 }
4595 mac_addr >>= 8;
4596 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4597 &bar0->rmac_addr_data0_mem);
4598 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4599 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4600 val64 = RMAC_ADDR_CMD_MEM_WE |
4601 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4602 RMAC_ADDR_CMD_MEM_OFFSET
4603 (i + MAC_MC_ADDR_START_OFFSET);
4604 writeq(val64, &bar0->rmac_addr_cmd_mem);
4605
4606 /* Wait for command completes */
c92ca04b 4607 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4608 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4609 S2IO_BIT_RESET)) {
1da177e4
LT
4610 DBG_PRINT(ERR_DBG, "%s: Adding ",
4611 dev->name);
4612 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4613 return;
4614 }
4615 }
4616 }
4617}
4618
4619/**
20346722 4620 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4621 * @dev : pointer to the device structure.
4622 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4623 * Description : This procedure will program the Xframe to receive
1da177e4 4624 * frames with new Mac Address
20346722 4625 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4626 * as defined in errno.h file on failure.
4627 */
4628
26df54bf 4629static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4630{
1ee6dd77
RB
4631 struct s2io_nic *sp = dev->priv;
4632 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4633 register u64 val64, mac_addr = 0;
4634 int i;
d8d70caf 4635 u64 old_mac_addr = 0;
1da177e4 4636
20346722 4637 /*
1da177e4
LT
4638 * Set the new MAC address as the new unicast filter and reflect this
4639 * change on the device address registered with the OS. It will be
20346722 4640 * at offset 0.
1da177e4
LT
4641 */
4642 for (i = 0; i < ETH_ALEN; i++) {
4643 mac_addr <<= 8;
4644 mac_addr |= addr[i];
d8d70caf
SS
4645 old_mac_addr <<= 8;
4646 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4647 }
4648
4649 if(0 == mac_addr)
4650 return SUCCESS;
4651
4652 /* Update the internal structure with this new mac address */
4653 if(mac_addr != old_mac_addr) {
4654 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4655 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4656 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4657 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4658 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4659 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4660 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
1da177e4
LT
4661 }
4662
4663 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4664 &bar0->rmac_addr_data0_mem);
4665
4666 val64 =
4667 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4668 RMAC_ADDR_CMD_MEM_OFFSET(0);
4669 writeq(val64, &bar0->rmac_addr_cmd_mem);
4670 /* Wait till command completes */
c92ca04b 4671 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 4672 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
1da177e4
LT
4673 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4674 return FAILURE;
4675 }
4676
4677 return SUCCESS;
4678}
4679
4680/**
20346722 4681 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4682 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4683 * @info: pointer to the structure with parameters given by ethtool to set
4684 * link information.
4685 * Description:
20346722 4686 * The function sets different link parameters provided by the user onto
1da177e4
LT
4687 * the NIC.
4688 * Return value:
4689 * 0 on success.
4690*/
4691
4692static int s2io_ethtool_sset(struct net_device *dev,
4693 struct ethtool_cmd *info)
4694{
1ee6dd77 4695 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4696 if ((info->autoneg == AUTONEG_ENABLE) ||
4697 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4698 return -EINVAL;
4699 else {
4700 s2io_close(sp->dev);
4701 s2io_open(sp->dev);
4702 }
4703
4704 return 0;
4705}
4706
4707/**
20346722 4708 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4709 * @sp : private member of the device structure, pointer to the
4710 * s2io_nic structure.
4711 * @info : pointer to the structure with parameters given by ethtool
4712 * to return link information.
4713 * Description:
4714 * Returns link specific information like speed, duplex etc.. to ethtool.
4715 * Return value :
4716 * return 0 on success.
4717 */
4718
4719static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4720{
1ee6dd77 4721 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4722 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4723 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4724 info->port = PORT_FIBRE;
4725 /* info->transceiver?? TODO */
4726
4727 if (netif_carrier_ok(sp->dev)) {
4728 info->speed = 10000;
4729 info->duplex = DUPLEX_FULL;
4730 } else {
4731 info->speed = -1;
4732 info->duplex = -1;
4733 }
4734
4735 info->autoneg = AUTONEG_DISABLE;
4736 return 0;
4737}
4738
4739/**
20346722
K
4740 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4741 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4742 * s2io_nic structure.
4743 * @info : pointer to the structure with parameters given by ethtool to
4744 * return driver information.
4745 * Description:
4746 * Returns driver specefic information like name, version etc.. to ethtool.
4747 * Return value:
4748 * void
4749 */
4750
4751static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4752 struct ethtool_drvinfo *info)
4753{
1ee6dd77 4754 struct s2io_nic *sp = dev->priv;
1da177e4 4755
dbc2309d
JL
4756 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4757 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4758 strncpy(info->fw_version, "", sizeof(info->fw_version));
4759 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4760 info->regdump_len = XENA_REG_SPACE;
4761 info->eedump_len = XENA_EEPROM_SPACE;
4762 info->testinfo_len = S2IO_TEST_LEN;
fa1f0cb3
SS
4763
4764 if (sp->device_type == XFRAME_I_DEVICE)
4765 info->n_stats = XFRAME_I_STAT_LEN;
4766 else
4767 info->n_stats = XFRAME_II_STAT_LEN;
1da177e4
LT
4768}
4769
4770/**
4771 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4772 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4773 * s2io_nic structure.
20346722 4774 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4775 * dumping the registers.
4776 * @reg_space: The input argumnet into which all the registers are dumped.
4777 * Description:
4778 * Dumps the entire register space of xFrame NIC into the user given
4779 * buffer area.
4780 * Return value :
4781 * void .
4782*/
4783
4784static void s2io_ethtool_gregs(struct net_device *dev,
4785 struct ethtool_regs *regs, void *space)
4786{
4787 int i;
4788 u64 reg;
4789 u8 *reg_space = (u8 *) space;
1ee6dd77 4790 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4791
4792 regs->len = XENA_REG_SPACE;
4793 regs->version = sp->pdev->subsystem_device;
4794
4795 for (i = 0; i < regs->len; i += 8) {
4796 reg = readq(sp->bar0 + i);
4797 memcpy((reg_space + i), &reg, 8);
4798 }
4799}
4800
4801/**
4802 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4803 * @data : address of the private member of the device structure, which
1da177e4 4804 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4805 * Description: This is actually the timer function that alternates the
4806 * adapter LED bit of the adapter control bit to set/reset every time on
4807 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4808 * once every second.
4809*/
4810static void s2io_phy_id(unsigned long data)
4811{
1ee6dd77
RB
4812 struct s2io_nic *sp = (struct s2io_nic *) data;
4813 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4814 u64 val64 = 0;
4815 u16 subid;
4816
4817 subid = sp->pdev->subsystem_device;
541ae68f
K
4818 if ((sp->device_type == XFRAME_II_DEVICE) ||
4819 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4820 val64 = readq(&bar0->gpio_control);
4821 val64 ^= GPIO_CTRL_GPIO_0;
4822 writeq(val64, &bar0->gpio_control);
4823 } else {
4824 val64 = readq(&bar0->adapter_control);
4825 val64 ^= ADAPTER_LED_ON;
4826 writeq(val64, &bar0->adapter_control);
4827 }
4828
4829 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4830}
4831
4832/**
4833 * s2io_ethtool_idnic - To physically identify the nic on the system.
4834 * @sp : private member of the device structure, which is a pointer to the
4835 * s2io_nic structure.
20346722 4836 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4837 * ethtool.
4838 * Description: Used to physically identify the NIC on the system.
20346722 4839 * The Link LED will blink for a time specified by the user for
1da177e4 4840 * identification.
20346722 4841 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4842 * identification is possible only if it's link is up.
4843 * Return value:
4844 * int , returns 0 on success
4845 */
4846
4847static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4848{
4849 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
4850 struct s2io_nic *sp = dev->priv;
4851 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4852 u16 subid;
4853
4854 subid = sp->pdev->subsystem_device;
4855 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4856 if ((sp->device_type == XFRAME_I_DEVICE) &&
4857 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4858 val64 = readq(&bar0->adapter_control);
4859 if (!(val64 & ADAPTER_CNTL_EN)) {
4860 printk(KERN_ERR
4861 "Adapter Link down, cannot blink LED\n");
4862 return -EFAULT;
4863 }
4864 }
4865 if (sp->id_timer.function == NULL) {
4866 init_timer(&sp->id_timer);
4867 sp->id_timer.function = s2io_phy_id;
4868 sp->id_timer.data = (unsigned long) sp;
4869 }
4870 mod_timer(&sp->id_timer, jiffies);
4871 if (data)
20346722 4872 msleep_interruptible(data * HZ);
1da177e4 4873 else
20346722 4874 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4875 del_timer_sync(&sp->id_timer);
4876
541ae68f 4877 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4878 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4879 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4880 }
4881
4882 return 0;
4883}
4884
0cec35eb
SH
4885static void s2io_ethtool_gringparam(struct net_device *dev,
4886 struct ethtool_ringparam *ering)
4887{
4888 struct s2io_nic *sp = dev->priv;
4889 int i,tx_desc_count=0,rx_desc_count=0;
4890
4891 if (sp->rxd_mode == RXD_MODE_1)
4892 ering->rx_max_pending = MAX_RX_DESC_1;
4893 else if (sp->rxd_mode == RXD_MODE_3B)
4894 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
4895
4896 ering->tx_max_pending = MAX_TX_DESC;
b6627672 4897 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 4898 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
b6627672 4899
0cec35eb
SH
4900 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4901 ering->tx_pending = tx_desc_count;
4902 rx_desc_count = 0;
b6627672 4903 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 4904 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 4905
0cec35eb
SH
4906 ering->rx_pending = rx_desc_count;
4907
4908 ering->rx_mini_max_pending = 0;
4909 ering->rx_mini_pending = 0;
4910 if(sp->rxd_mode == RXD_MODE_1)
4911 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4912 else if (sp->rxd_mode == RXD_MODE_3B)
4913 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4914 ering->rx_jumbo_pending = rx_desc_count;
4915}
4916
1da177e4
LT
4917/**
4918 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4919 * @sp : private member of the device structure, which is a pointer to the
4920 * s2io_nic structure.
1da177e4
LT
4921 * @ep : pointer to the structure with pause parameters given by ethtool.
4922 * Description:
4923 * Returns the Pause frame generation and reception capability of the NIC.
4924 * Return value:
4925 * void
4926 */
4927static void s2io_ethtool_getpause_data(struct net_device *dev,
4928 struct ethtool_pauseparam *ep)
4929{
4930 u64 val64;
1ee6dd77
RB
4931 struct s2io_nic *sp = dev->priv;
4932 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4933
4934 val64 = readq(&bar0->rmac_pause_cfg);
4935 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4936 ep->tx_pause = TRUE;
4937 if (val64 & RMAC_PAUSE_RX_ENABLE)
4938 ep->rx_pause = TRUE;
4939 ep->autoneg = FALSE;
4940}
4941
4942/**
4943 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4944 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4945 * s2io_nic structure.
4946 * @ep : pointer to the structure with pause parameters given by ethtool.
4947 * Description:
4948 * It can be used to set or reset Pause frame generation or reception
4949 * support of the NIC.
4950 * Return value:
4951 * int, returns 0 on Success
4952 */
4953
4954static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4955 struct ethtool_pauseparam *ep)
1da177e4
LT
4956{
4957 u64 val64;
1ee6dd77
RB
4958 struct s2io_nic *sp = dev->priv;
4959 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4960
4961 val64 = readq(&bar0->rmac_pause_cfg);
4962 if (ep->tx_pause)
4963 val64 |= RMAC_PAUSE_GEN_ENABLE;
4964 else
4965 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4966 if (ep->rx_pause)
4967 val64 |= RMAC_PAUSE_RX_ENABLE;
4968 else
4969 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4970 writeq(val64, &bar0->rmac_pause_cfg);
4971 return 0;
4972}
4973
4974/**
4975 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4976 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4977 * s2io_nic structure.
4978 * @off : offset at which the data must be written
4979 * @data : Its an output parameter where the data read at the given
20346722 4980 * offset is stored.
1da177e4 4981 * Description:
20346722 4982 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4983 * read data.
4984 * NOTE: Will allow to read only part of the EEPROM visible through the
4985 * I2C bus.
4986 * Return value:
4987 * -1 on failure and 0 on success.
4988 */
4989
4990#define S2IO_DEV_ID 5
1ee6dd77 4991static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
4992{
4993 int ret = -1;
4994 u32 exit_cnt = 0;
4995 u64 val64;
1ee6dd77 4996 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4997
ad4ebed0 4998 if (sp->device_type == XFRAME_I_DEVICE) {
4999 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5000 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5001 I2C_CONTROL_CNTL_START;
5002 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5003
ad4ebed0 5004 while (exit_cnt < 5) {
5005 val64 = readq(&bar0->i2c_control);
5006 if (I2C_CONTROL_CNTL_END(val64)) {
5007 *data = I2C_CONTROL_GET_DATA(val64);
5008 ret = 0;
5009 break;
5010 }
5011 msleep(50);
5012 exit_cnt++;
1da177e4 5013 }
1da177e4
LT
5014 }
5015
ad4ebed0 5016 if (sp->device_type == XFRAME_II_DEVICE) {
5017 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5018 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5019 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5020 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5021 val64 |= SPI_CONTROL_REQ;
5022 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5023 while (exit_cnt < 5) {
5024 val64 = readq(&bar0->spi_control);
5025 if (val64 & SPI_CONTROL_NACK) {
5026 ret = 1;
5027 break;
5028 } else if (val64 & SPI_CONTROL_DONE) {
5029 *data = readq(&bar0->spi_data);
5030 *data &= 0xffffff;
5031 ret = 0;
5032 break;
5033 }
5034 msleep(50);
5035 exit_cnt++;
5036 }
5037 }
1da177e4
LT
5038 return ret;
5039}
5040
5041/**
5042 * write_eeprom - actually writes the relevant part of the data value.
5043 * @sp : private member of the device structure, which is a pointer to the
5044 * s2io_nic structure.
5045 * @off : offset at which the data must be written
5046 * @data : The data that is to be written
20346722 5047 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5048 * the Eeprom. (max of 3)
5049 * Description:
5050 * Actually writes the relevant part of the data value into the Eeprom
5051 * through the I2C bus.
5052 * Return value:
5053 * 0 on success, -1 on failure.
5054 */
5055
1ee6dd77 5056static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5057{
5058 int exit_cnt = 0, ret = -1;
5059 u64 val64;
1ee6dd77 5060 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5061
ad4ebed0 5062 if (sp->device_type == XFRAME_I_DEVICE) {
5063 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5064 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5065 I2C_CONTROL_CNTL_START;
5066 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5067
5068 while (exit_cnt < 5) {
5069 val64 = readq(&bar0->i2c_control);
5070 if (I2C_CONTROL_CNTL_END(val64)) {
5071 if (!(val64 & I2C_CONTROL_NACK))
5072 ret = 0;
5073 break;
5074 }
5075 msleep(50);
5076 exit_cnt++;
5077 }
5078 }
1da177e4 5079
ad4ebed0 5080 if (sp->device_type == XFRAME_II_DEVICE) {
5081 int write_cnt = (cnt == 8) ? 0 : cnt;
5082 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5083
5084 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5085 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5086 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5087 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5088 val64 |= SPI_CONTROL_REQ;
5089 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5090 while (exit_cnt < 5) {
5091 val64 = readq(&bar0->spi_control);
5092 if (val64 & SPI_CONTROL_NACK) {
5093 ret = 1;
5094 break;
5095 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5096 ret = 0;
ad4ebed0 5097 break;
5098 }
5099 msleep(50);
5100 exit_cnt++;
1da177e4 5101 }
1da177e4 5102 }
1da177e4
LT
5103 return ret;
5104}
1ee6dd77 5105static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5106{
b41477f3
AR
5107 u8 *vpd_data;
5108 u8 data;
9dc737a7
AR
5109 int i=0, cnt, fail = 0;
5110 int vpd_addr = 0x80;
5111
5112 if (nic->device_type == XFRAME_II_DEVICE) {
5113 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5114 vpd_addr = 0x80;
5115 }
5116 else {
5117 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5118 vpd_addr = 0x50;
5119 }
19a60522 5120 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5121
b41477f3 5122 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5123 if (!vpd_data) {
5124 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5125 return;
c53d4945 5126 }
491976b2 5127 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5128
9dc737a7
AR
5129 for (i = 0; i < 256; i +=4 ) {
5130 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5131 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5132 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5133 for (cnt = 0; cnt <5; cnt++) {
5134 msleep(2);
5135 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5136 if (data == 0x80)
5137 break;
5138 }
5139 if (cnt >= 5) {
5140 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5141 fail = 1;
5142 break;
5143 }
5144 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5145 (u32 *)&vpd_data[i]);
5146 }
19a60522
SS
5147
5148 if(!fail) {
5149 /* read serial number of adapter */
5150 for (cnt = 0; cnt < 256; cnt++) {
5151 if ((vpd_data[cnt] == 'S') &&
5152 (vpd_data[cnt+1] == 'N') &&
5153 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5154 memset(nic->serial_num, 0, VPD_STRING_LEN);
5155 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5156 vpd_data[cnt+2]);
5157 break;
5158 }
5159 }
5160 }
5161
5162 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5163 memset(nic->product_name, 0, vpd_data[1]);
5164 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5165 }
b41477f3 5166 kfree(vpd_data);
491976b2 5167 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5168}
5169
1da177e4
LT
5170/**
5171 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5172 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5173 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5174 * containing all relevant information.
5175 * @data_buf : user defined value to be written into Eeprom.
5176 * Description: Reads the values stored in the Eeprom at given offset
5177 * for a given length. Stores these values int the input argument data
5178 * buffer 'data_buf' and returns these to the caller (ethtool.)
5179 * Return value:
5180 * int 0 on success
5181 */
5182
5183static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5184 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5185{
ad4ebed0 5186 u32 i, valid;
5187 u64 data;
1ee6dd77 5188 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5189
5190 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5191
5192 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5193 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5194
5195 for (i = 0; i < eeprom->len; i += 4) {
5196 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5197 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5198 return -EFAULT;
5199 }
5200 valid = INV(data);
5201 memcpy((data_buf + i), &valid, 4);
5202 }
5203 return 0;
5204}
5205
5206/**
5207 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5208 * @sp : private member of the device structure, which is a pointer to the
5209 * s2io_nic structure.
20346722 5210 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5211 * containing all relevant information.
5212 * @data_buf ; user defined value to be written into Eeprom.
5213 * Description:
5214 * Tries to write the user provided value in the Eeprom, at the offset
5215 * given by the user.
5216 * Return value:
5217 * 0 on success, -EFAULT on failure.
5218 */
5219
5220static int s2io_ethtool_seeprom(struct net_device *dev,
5221 struct ethtool_eeprom *eeprom,
5222 u8 * data_buf)
5223{
5224 int len = eeprom->len, cnt = 0;
ad4ebed0 5225 u64 valid = 0, data;
1ee6dd77 5226 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5227
5228 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5229 DBG_PRINT(ERR_DBG,
5230 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5231 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5232 eeprom->magic);
5233 return -EFAULT;
5234 }
5235
5236 while (len) {
5237 data = (u32) data_buf[cnt] & 0x000000FF;
5238 if (data) {
5239 valid = (u32) (data << 24);
5240 } else
5241 valid = data;
5242
5243 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5244 DBG_PRINT(ERR_DBG,
5245 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5246 DBG_PRINT(ERR_DBG,
5247 "write into the specified offset\n");
5248 return -EFAULT;
5249 }
5250 cnt++;
5251 len--;
5252 }
5253
5254 return 0;
5255}
5256
5257/**
20346722
K
5258 * s2io_register_test - reads and writes into all clock domains.
5259 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5260 * s2io_nic structure.
5261 * @data : variable that returns the result of each of the test conducted b
5262 * by the driver.
5263 * Description:
5264 * Read and write into all clock domains. The NIC has 3 clock domains,
5265 * see that registers in all the three regions are accessible.
5266 * Return value:
5267 * 0 on success.
5268 */
5269
1ee6dd77 5270static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5271{
1ee6dd77 5272 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5273 u64 val64 = 0, exp_val;
1da177e4
LT
5274 int fail = 0;
5275
20346722
K
5276 val64 = readq(&bar0->pif_rd_swapper_fb);
5277 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5278 fail = 1;
5279 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5280 }
5281
5282 val64 = readq(&bar0->rmac_pause_cfg);
5283 if (val64 != 0xc000ffff00000000ULL) {
5284 fail = 1;
5285 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5286 }
5287
5288 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5289 if (sp->device_type == XFRAME_II_DEVICE)
5290 exp_val = 0x0404040404040404ULL;
5291 else
5292 exp_val = 0x0808080808080808ULL;
5293 if (val64 != exp_val) {
1da177e4
LT
5294 fail = 1;
5295 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5296 }
5297
5298 val64 = readq(&bar0->xgxs_efifo_cfg);
5299 if (val64 != 0x000000001923141EULL) {
5300 fail = 1;
5301 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5302 }
5303
5304 val64 = 0x5A5A5A5A5A5A5A5AULL;
5305 writeq(val64, &bar0->xmsi_data);
5306 val64 = readq(&bar0->xmsi_data);
5307 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5308 fail = 1;
5309 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5310 }
5311
5312 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5313 writeq(val64, &bar0->xmsi_data);
5314 val64 = readq(&bar0->xmsi_data);
5315 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5316 fail = 1;
5317 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5318 }
5319
5320 *data = fail;
ad4ebed0 5321 return fail;
1da177e4
LT
5322}
5323
5324/**
20346722 5325 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5326 * @sp : private member of the device structure, which is a pointer to the
5327 * s2io_nic structure.
5328 * @data:variable that returns the result of each of the test conducted by
5329 * the driver.
5330 * Description:
20346722 5331 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5332 * register.
5333 * Return value:
5334 * 0 on success.
5335 */
5336
1ee6dd77 5337static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5338{
5339 int fail = 0;
ad4ebed0 5340 u64 ret_data, org_4F0, org_7F0;
5341 u8 saved_4F0 = 0, saved_7F0 = 0;
5342 struct net_device *dev = sp->dev;
1da177e4
LT
5343
5344 /* Test Write Error at offset 0 */
ad4ebed0 5345 /* Note that SPI interface allows write access to all areas
5346 * of EEPROM. Hence doing all negative testing only for Xframe I.
5347 */
5348 if (sp->device_type == XFRAME_I_DEVICE)
5349 if (!write_eeprom(sp, 0, 0, 3))
5350 fail = 1;
5351
5352 /* Save current values at offsets 0x4F0 and 0x7F0 */
5353 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5354 saved_4F0 = 1;
5355 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5356 saved_7F0 = 1;
1da177e4
LT
5357
5358 /* Test Write at offset 4f0 */
ad4ebed0 5359 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5360 fail = 1;
5361 if (read_eeprom(sp, 0x4F0, &ret_data))
5362 fail = 1;
5363
ad4ebed0 5364 if (ret_data != 0x012345) {
26b7625c
AM
5365 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5366 "Data written %llx Data read %llx\n",
5367 dev->name, (unsigned long long)0x12345,
5368 (unsigned long long)ret_data);
1da177e4 5369 fail = 1;
ad4ebed0 5370 }
1da177e4
LT
5371
5372 /* Reset the EEPROM data go FFFF */
ad4ebed0 5373 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5374
5375 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5376 if (sp->device_type == XFRAME_I_DEVICE)
5377 if (!write_eeprom(sp, 0x07C, 0, 3))
5378 fail = 1;
1da177e4 5379
ad4ebed0 5380 /* Test Write Request at offset 0x7f0 */
5381 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5382 fail = 1;
ad4ebed0 5383 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5384 fail = 1;
5385
ad4ebed0 5386 if (ret_data != 0x012345) {
26b7625c
AM
5387 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5388 "Data written %llx Data read %llx\n",
5389 dev->name, (unsigned long long)0x12345,
5390 (unsigned long long)ret_data);
1da177e4 5391 fail = 1;
ad4ebed0 5392 }
1da177e4
LT
5393
5394 /* Reset the EEPROM data go FFFF */
ad4ebed0 5395 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5396
ad4ebed0 5397 if (sp->device_type == XFRAME_I_DEVICE) {
5398 /* Test Write Error at offset 0x80 */
5399 if (!write_eeprom(sp, 0x080, 0, 3))
5400 fail = 1;
1da177e4 5401
ad4ebed0 5402 /* Test Write Error at offset 0xfc */
5403 if (!write_eeprom(sp, 0x0FC, 0, 3))
5404 fail = 1;
1da177e4 5405
ad4ebed0 5406 /* Test Write Error at offset 0x100 */
5407 if (!write_eeprom(sp, 0x100, 0, 3))
5408 fail = 1;
1da177e4 5409
ad4ebed0 5410 /* Test Write Error at offset 4ec */
5411 if (!write_eeprom(sp, 0x4EC, 0, 3))
5412 fail = 1;
5413 }
5414
5415 /* Restore values at offsets 0x4F0 and 0x7F0 */
5416 if (saved_4F0)
5417 write_eeprom(sp, 0x4F0, org_4F0, 3);
5418 if (saved_7F0)
5419 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5420
5421 *data = fail;
ad4ebed0 5422 return fail;
1da177e4
LT
5423}
5424
5425/**
5426 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5427 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5428 * s2io_nic structure.
20346722 5429 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5430 * the driver.
5431 * Description:
5432 * This invokes the MemBist test of the card. We give around
5433 * 2 secs time for the Test to complete. If it's still not complete
20346722 5434 * within this peiod, we consider that the test failed.
1da177e4
LT
5435 * Return value:
5436 * 0 on success and -1 on failure.
5437 */
5438
1ee6dd77 5439static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5440{
5441 u8 bist = 0;
5442 int cnt = 0, ret = -1;
5443
5444 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5445 bist |= PCI_BIST_START;
5446 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5447
5448 while (cnt < 20) {
5449 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5450 if (!(bist & PCI_BIST_START)) {
5451 *data = (bist & PCI_BIST_CODE_MASK);
5452 ret = 0;
5453 break;
5454 }
5455 msleep(100);
5456 cnt++;
5457 }
5458
5459 return ret;
5460}
5461
5462/**
20346722
K
5463 * s2io-link_test - verifies the link state of the nic
5464 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5465 * s2io_nic structure.
5466 * @data: variable that returns the result of each of the test conducted by
5467 * the driver.
5468 * Description:
20346722 5469 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5470 * argument 'data' appropriately.
5471 * Return value:
5472 * 0 on success.
5473 */
5474
1ee6dd77 5475static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5476{
1ee6dd77 5477 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5478 u64 val64;
5479
5480 val64 = readq(&bar0->adapter_status);
c92ca04b 5481 if(!(LINK_IS_UP(val64)))
1da177e4 5482 *data = 1;
c92ca04b
AR
5483 else
5484 *data = 0;
1da177e4 5485
b41477f3 5486 return *data;
1da177e4
LT
5487}
5488
5489/**
20346722
K
5490 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5491 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5492 * s2io_nic structure.
20346722 5493 * @data - variable that returns the result of each of the test
1da177e4
LT
5494 * conducted by the driver.
5495 * Description:
20346722 5496 * This is one of the offline test that tests the read and write
1da177e4
LT
5497 * access to the RldRam chip on the NIC.
5498 * Return value:
5499 * 0 on success.
5500 */
5501
1ee6dd77 5502static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5503{
1ee6dd77 5504 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5505 u64 val64;
ad4ebed0 5506 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5507
5508 val64 = readq(&bar0->adapter_control);
5509 val64 &= ~ADAPTER_ECC_EN;
5510 writeq(val64, &bar0->adapter_control);
5511
5512 val64 = readq(&bar0->mc_rldram_test_ctrl);
5513 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5514 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5515
5516 val64 = readq(&bar0->mc_rldram_mrs);
5517 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5518 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5519
5520 val64 |= MC_RLDRAM_MRS_ENABLE;
5521 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5522
5523 while (iteration < 2) {
5524 val64 = 0x55555555aaaa0000ULL;
5525 if (iteration == 1) {
5526 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5527 }
5528 writeq(val64, &bar0->mc_rldram_test_d0);
5529
5530 val64 = 0xaaaa5a5555550000ULL;
5531 if (iteration == 1) {
5532 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5533 }
5534 writeq(val64, &bar0->mc_rldram_test_d1);
5535
5536 val64 = 0x55aaaaaaaa5a0000ULL;
5537 if (iteration == 1) {
5538 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5539 }
5540 writeq(val64, &bar0->mc_rldram_test_d2);
5541
ad4ebed0 5542 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5543 writeq(val64, &bar0->mc_rldram_test_add);
5544
ad4ebed0 5545 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5546 MC_RLDRAM_TEST_GO;
5547 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5548
5549 for (cnt = 0; cnt < 5; cnt++) {
5550 val64 = readq(&bar0->mc_rldram_test_ctrl);
5551 if (val64 & MC_RLDRAM_TEST_DONE)
5552 break;
5553 msleep(200);
5554 }
5555
5556 if (cnt == 5)
5557 break;
5558
ad4ebed0 5559 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5560 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5561
5562 for (cnt = 0; cnt < 5; cnt++) {
5563 val64 = readq(&bar0->mc_rldram_test_ctrl);
5564 if (val64 & MC_RLDRAM_TEST_DONE)
5565 break;
5566 msleep(500);
5567 }
5568
5569 if (cnt == 5)
5570 break;
5571
5572 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5573 if (!(val64 & MC_RLDRAM_TEST_PASS))
5574 test_fail = 1;
1da177e4
LT
5575
5576 iteration++;
5577 }
5578
ad4ebed0 5579 *data = test_fail;
1da177e4 5580
ad4ebed0 5581 /* Bring the adapter out of test mode */
5582 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5583
5584 return test_fail;
1da177e4
LT
5585}
5586
5587/**
5588 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5589 * @sp : private member of the device structure, which is a pointer to the
5590 * s2io_nic structure.
5591 * @ethtest : pointer to a ethtool command specific structure that will be
5592 * returned to the user.
20346722 5593 * @data : variable that returns the result of each of the test
1da177e4
LT
5594 * conducted by the driver.
5595 * Description:
5596 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5597 * the health of the card.
5598 * Return value:
5599 * void
5600 */
5601
5602static void s2io_ethtool_test(struct net_device *dev,
5603 struct ethtool_test *ethtest,
5604 uint64_t * data)
5605{
1ee6dd77 5606 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5607 int orig_state = netif_running(sp->dev);
5608
5609 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5610 /* Offline Tests. */
20346722 5611 if (orig_state)
1da177e4 5612 s2io_close(sp->dev);
1da177e4
LT
5613
5614 if (s2io_register_test(sp, &data[0]))
5615 ethtest->flags |= ETH_TEST_FL_FAILED;
5616
5617 s2io_reset(sp);
1da177e4
LT
5618
5619 if (s2io_rldram_test(sp, &data[3]))
5620 ethtest->flags |= ETH_TEST_FL_FAILED;
5621
5622 s2io_reset(sp);
1da177e4
LT
5623
5624 if (s2io_eeprom_test(sp, &data[1]))
5625 ethtest->flags |= ETH_TEST_FL_FAILED;
5626
5627 if (s2io_bist_test(sp, &data[4]))
5628 ethtest->flags |= ETH_TEST_FL_FAILED;
5629
5630 if (orig_state)
5631 s2io_open(sp->dev);
5632
5633 data[2] = 0;
5634 } else {
5635 /* Online Tests. */
5636 if (!orig_state) {
5637 DBG_PRINT(ERR_DBG,
5638 "%s: is not up, cannot run test\n",
5639 dev->name);
5640 data[0] = -1;
5641 data[1] = -1;
5642 data[2] = -1;
5643 data[3] = -1;
5644 data[4] = -1;
5645 }
5646
5647 if (s2io_link_test(sp, &data[2]))
5648 ethtest->flags |= ETH_TEST_FL_FAILED;
5649
5650 data[0] = 0;
5651 data[1] = 0;
5652 data[3] = 0;
5653 data[4] = 0;
5654 }
5655}
5656
5657static void s2io_get_ethtool_stats(struct net_device *dev,
5658 struct ethtool_stats *estats,
5659 u64 * tmp_stats)
5660{
5661 int i = 0;
1ee6dd77
RB
5662 struct s2io_nic *sp = dev->priv;
5663 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5664
7ba013ac 5665 s2io_updt_stats(sp);
541ae68f
K
5666 tmp_stats[i++] =
5667 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5668 le32_to_cpu(stat_info->tmac_frms);
5669 tmp_stats[i++] =
5670 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5671 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5672 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5673 tmp_stats[i++] =
5674 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5675 le32_to_cpu(stat_info->tmac_mcst_frms);
5676 tmp_stats[i++] =
5677 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5678 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5679 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5680 tmp_stats[i++] =
5681 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5682 le32_to_cpu(stat_info->tmac_ttl_octets);
5683 tmp_stats[i++] =
5684 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5685 le32_to_cpu(stat_info->tmac_ucst_frms);
5686 tmp_stats[i++] =
5687 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5688 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5689 tmp_stats[i++] =
5690 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5691 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5692 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5693 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5694 tmp_stats[i++] =
5695 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5696 le32_to_cpu(stat_info->tmac_vld_ip);
5697 tmp_stats[i++] =
5698 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5699 le32_to_cpu(stat_info->tmac_drop_ip);
5700 tmp_stats[i++] =
5701 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5702 le32_to_cpu(stat_info->tmac_icmp);
5703 tmp_stats[i++] =
5704 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5705 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5706 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5707 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5708 le32_to_cpu(stat_info->tmac_udp);
5709 tmp_stats[i++] =
5710 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5711 le32_to_cpu(stat_info->rmac_vld_frms);
5712 tmp_stats[i++] =
5713 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5714 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5715 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5716 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5717 tmp_stats[i++] =
5718 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5719 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5720 tmp_stats[i++] =
5721 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5722 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5723 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5724 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5725 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5726 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5727 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5728 tmp_stats[i++] =
5729 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5730 le32_to_cpu(stat_info->rmac_ttl_octets);
5731 tmp_stats[i++] =
5732 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5733 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5734 tmp_stats[i++] =
5735 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5736 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5737 tmp_stats[i++] =
5738 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5739 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5740 tmp_stats[i++] =
5741 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5742 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5743 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5744 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5745 tmp_stats[i++] =
5746 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5747 le32_to_cpu(stat_info->rmac_usized_frms);
5748 tmp_stats[i++] =
5749 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5750 le32_to_cpu(stat_info->rmac_osized_frms);
5751 tmp_stats[i++] =
5752 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5753 le32_to_cpu(stat_info->rmac_frag_frms);
5754 tmp_stats[i++] =
5755 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5756 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5757 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5758 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5759 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5760 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5761 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5762 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5763 tmp_stats[i++] =
5764 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5765 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5766 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5767 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5768 tmp_stats[i++] =
5769 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5770 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5771 tmp_stats[i++] =
5772 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5773 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5774 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5775 tmp_stats[i++] =
5776 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5777 le32_to_cpu(stat_info->rmac_udp);
5778 tmp_stats[i++] =
5779 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5780 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5781 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5782 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5783 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5784 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5785 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5786 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5787 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5788 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5789 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5790 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5791 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5792 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5793 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5794 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5795 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5796 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5797 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5798 tmp_stats[i++] =
5799 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5800 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5801 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5802 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5803 tmp_stats[i++] =
5804 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5805 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5806 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5807 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5808 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5809 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5810 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5811 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5812 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5813 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5814 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5815 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5816 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5817 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5818 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5819 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5820 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5821 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5822 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5823 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5824 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
5825
5826 /* Enhanced statistics exist only for Hercules */
5827 if(sp->device_type == XFRAME_II_DEVICE) {
5828 tmp_stats[i++] =
5829 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5830 tmp_stats[i++] =
5831 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5832 tmp_stats[i++] =
5833 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5834 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5835 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5836 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5837 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5838 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5839 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5840 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5841 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5842 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5843 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5844 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5845 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5846 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5847 }
5848
7ba013ac
K
5849 tmp_stats[i++] = 0;
5850 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5851 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5852 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5853 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5854 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5855 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5856 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5857 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5858 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5859 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5860 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5861 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5862 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5863 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5864 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5865 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5866 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5867 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5868 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5869 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5870 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5871 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5872 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5873 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5874 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5875 int count = 0;
6aa20a22 5876 /*
bd1034f0
AR
5877 * Since 64-bit divide does not work on all platforms,
5878 * do repeated subtraction.
5879 */
5880 while (tmp >= stat_info->sw_stat.num_aggregations) {
5881 tmp -= stat_info->sw_stat.num_aggregations;
5882 count++;
5883 }
5884 tmp_stats[i++] = count;
fe931395 5885 }
bd1034f0
AR
5886 else
5887 tmp_stats[i++] = 0;
c53d4945 5888 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 5889 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 5890 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
5891 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5892 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5893 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5894 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5895 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5896 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5897
5898 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5899 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5900 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5901 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5902 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5903
5904 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5905 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5906 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5907 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5908 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5909 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5910 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5911 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5912 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
1da177e4
LT
5913}
5914
ac1f60db 5915static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5916{
5917 return (XENA_REG_SPACE);
5918}
5919
5920
ac1f60db 5921static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 5922{
1ee6dd77 5923 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5924
5925 return (sp->rx_csum);
5926}
ac1f60db
AB
5927
5928static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 5929{
1ee6dd77 5930 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5931
5932 if (data)
5933 sp->rx_csum = 1;
5934 else
5935 sp->rx_csum = 0;
5936
5937 return 0;
5938}
ac1f60db
AB
5939
5940static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5941{
5942 return (XENA_EEPROM_SPACE);
5943}
5944
ac1f60db 5945static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5946{
5947 return (S2IO_TEST_LEN);
5948}
ac1f60db
AB
5949
5950static void s2io_ethtool_get_strings(struct net_device *dev,
5951 u32 stringset, u8 * data)
1da177e4 5952{
fa1f0cb3
SS
5953 int stat_size = 0;
5954 struct s2io_nic *sp = dev->priv;
5955
1da177e4
LT
5956 switch (stringset) {
5957 case ETH_SS_TEST:
5958 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5959 break;
5960 case ETH_SS_STATS:
fa1f0cb3
SS
5961 stat_size = sizeof(ethtool_xena_stats_keys);
5962 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5963 if(sp->device_type == XFRAME_II_DEVICE) {
5964 memcpy(data + stat_size,
5965 &ethtool_enhanced_stats_keys,
5966 sizeof(ethtool_enhanced_stats_keys));
5967 stat_size += sizeof(ethtool_enhanced_stats_keys);
5968 }
5969
5970 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5971 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
5972 }
5973}
1da177e4
LT
5974static int s2io_ethtool_get_stats_count(struct net_device *dev)
5975{
fa1f0cb3
SS
5976 struct s2io_nic *sp = dev->priv;
5977 int stat_count = 0;
5978 switch(sp->device_type) {
5979 case XFRAME_I_DEVICE:
5980 stat_count = XFRAME_I_STAT_LEN;
5981 break;
5982
5983 case XFRAME_II_DEVICE:
5984 stat_count = XFRAME_II_STAT_LEN;
5985 break;
5986 }
5987
5988 return stat_count;
1da177e4
LT
5989}
5990
ac1f60db 5991static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5992{
5993 if (data)
5994 dev->features |= NETIF_F_IP_CSUM;
5995 else
5996 dev->features &= ~NETIF_F_IP_CSUM;
5997
5998 return 0;
5999}
6000
75c30b13
AR
6001static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6002{
6003 return (dev->features & NETIF_F_TSO) != 0;
6004}
6005static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6006{
6007 if (data)
6008 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6009 else
6010 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6011
6012 return 0;
6013}
1da177e4 6014
7282d491 6015static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6016 .get_settings = s2io_ethtool_gset,
6017 .set_settings = s2io_ethtool_sset,
6018 .get_drvinfo = s2io_ethtool_gdrvinfo,
6019 .get_regs_len = s2io_ethtool_get_regs_len,
6020 .get_regs = s2io_ethtool_gregs,
6021 .get_link = ethtool_op_get_link,
6022 .get_eeprom_len = s2io_get_eeprom_len,
6023 .get_eeprom = s2io_ethtool_geeprom,
6024 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6025 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6026 .get_pauseparam = s2io_ethtool_getpause_data,
6027 .set_pauseparam = s2io_ethtool_setpause_data,
6028 .get_rx_csum = s2io_ethtool_get_rx_csum,
6029 .set_rx_csum = s2io_ethtool_set_rx_csum,
6030 .get_tx_csum = ethtool_op_get_tx_csum,
6031 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6032 .get_sg = ethtool_op_get_sg,
6033 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6034 .get_tso = s2io_ethtool_op_get_tso,
6035 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
6036 .get_ufo = ethtool_op_get_ufo,
6037 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6038 .self_test_count = s2io_ethtool_self_test_count,
6039 .self_test = s2io_ethtool_test,
6040 .get_strings = s2io_ethtool_get_strings,
6041 .phys_id = s2io_ethtool_idnic,
6042 .get_stats_count = s2io_ethtool_get_stats_count,
6043 .get_ethtool_stats = s2io_get_ethtool_stats
6044};
6045
6046/**
20346722 6047 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6048 * @dev : Device pointer.
6049 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6050 * a proprietary structure used to pass information to the driver.
6051 * @cmd : This is used to distinguish between the different commands that
6052 * can be passed to the IOCTL functions.
6053 * Description:
20346722
K
6054 * Currently there are no special functionality supported in IOCTL, hence
6055 * function always return EOPNOTSUPPORTED
1da177e4
LT
6056 */
6057
ac1f60db 6058static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6059{
6060 return -EOPNOTSUPP;
6061}
6062
6063/**
6064 * s2io_change_mtu - entry point to change MTU size for the device.
6065 * @dev : device pointer.
6066 * @new_mtu : the new MTU size for the device.
6067 * Description: A driver entry point to change MTU size for the device.
6068 * Before changing the MTU the device must be stopped.
6069 * Return value:
6070 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6071 * file on failure.
6072 */
6073
ac1f60db 6074static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6075{
1ee6dd77 6076 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6077
6078 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6079 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6080 dev->name);
6081 return -EPERM;
6082 }
6083
1da177e4 6084 dev->mtu = new_mtu;
d8892c6e 6085 if (netif_running(dev)) {
e6a8fee2 6086 s2io_card_down(sp);
d8892c6e
K
6087 netif_stop_queue(dev);
6088 if (s2io_card_up(sp)) {
6089 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6090 __FUNCTION__);
6091 }
6092 if (netif_queue_stopped(dev))
6093 netif_wake_queue(dev);
6094 } else { /* Device is down */
1ee6dd77 6095 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6096 u64 val64 = new_mtu;
6097
6098 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6099 }
1da177e4
LT
6100
6101 return 0;
6102}
6103
6104/**
6105 * s2io_tasklet - Bottom half of the ISR.
6106 * @dev_adr : address of the device structure in dma_addr_t format.
6107 * Description:
6108 * This is the tasklet or the bottom half of the ISR. This is
20346722 6109 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 6110 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 6111 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
6112 * replenish the Rx buffers in the Rx buffer descriptors.
6113 * Return value:
6114 * void.
6115 */
6116
6117static void s2io_tasklet(unsigned long dev_addr)
6118{
6119 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 6120 struct s2io_nic *sp = dev->priv;
1da177e4 6121 int i, ret;
1ee6dd77 6122 struct mac_info *mac_control;
1da177e4
LT
6123 struct config_param *config;
6124
6125 mac_control = &sp->mac_control;
6126 config = &sp->config;
6127
6128 if (!TASKLET_IN_USE) {
6129 for (i = 0; i < config->rx_ring_num; i++) {
6130 ret = fill_rx_buffers(sp, i);
6131 if (ret == -ENOMEM) {
0c61ed5f 6132 DBG_PRINT(INFO_DBG, "%s: Out of ",
1da177e4 6133 dev->name);
491976b2 6134 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
1da177e4
LT
6135 break;
6136 } else if (ret == -EFILL) {
0c61ed5f 6137 DBG_PRINT(INFO_DBG,
1da177e4
LT
6138 "%s: Rx Ring %d is full\n",
6139 dev->name, i);
6140 break;
6141 }
6142 }
6143 clear_bit(0, (&sp->tasklet_status));
6144 }
6145}
6146
6147/**
6148 * s2io_set_link - Set the LInk status
6149 * @data: long pointer to device private structue
6150 * Description: Sets the link status for the adapter
6151 */
6152
c4028958 6153static void s2io_set_link(struct work_struct *work)
1da177e4 6154{
1ee6dd77 6155 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6156 struct net_device *dev = nic->dev;
1ee6dd77 6157 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6158 register u64 val64;
6159 u16 subid;
6160
22747d6b
FR
6161 rtnl_lock();
6162
6163 if (!netif_running(dev))
6164 goto out_unlock;
6165
1da177e4
LT
6166 if (test_and_set_bit(0, &(nic->link_state))) {
6167 /* The card is being reset, no point doing anything */
22747d6b 6168 goto out_unlock;
1da177e4
LT
6169 }
6170
6171 subid = nic->pdev->subsystem_device;
a371a07d
K
6172 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6173 /*
6174 * Allow a small delay for the NICs self initiated
6175 * cleanup to complete.
6176 */
6177 msleep(100);
6178 }
1da177e4
LT
6179
6180 val64 = readq(&bar0->adapter_status);
19a60522
SS
6181 if (LINK_IS_UP(val64)) {
6182 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6183 if (verify_xena_quiescence(nic)) {
6184 val64 = readq(&bar0->adapter_control);
6185 val64 |= ADAPTER_CNTL_EN;
1da177e4 6186 writeq(val64, &bar0->adapter_control);
19a60522
SS
6187 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6188 nic->device_type, subid)) {
6189 val64 = readq(&bar0->gpio_control);
6190 val64 |= GPIO_CTRL_GPIO_0;
6191 writeq(val64, &bar0->gpio_control);
6192 val64 = readq(&bar0->gpio_control);
6193 } else {
6194 val64 |= ADAPTER_LED_ON;
6195 writeq(val64, &bar0->adapter_control);
a371a07d 6196 }
1da177e4 6197 nic->device_enabled_once = TRUE;
19a60522
SS
6198 } else {
6199 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6200 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6201 netif_stop_queue(dev);
1da177e4 6202 }
19a60522 6203 }
92c48799
SS
6204 val64 = readq(&bar0->adapter_control);
6205 val64 |= ADAPTER_LED_ON;
6206 writeq(val64, &bar0->adapter_control);
6207 s2io_link(nic, LINK_UP);
19a60522
SS
6208 } else {
6209 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6210 subid)) {
6211 val64 = readq(&bar0->gpio_control);
6212 val64 &= ~GPIO_CTRL_GPIO_0;
6213 writeq(val64, &bar0->gpio_control);
6214 val64 = readq(&bar0->gpio_control);
1da177e4 6215 }
92c48799
SS
6216 /* turn off LED */
6217 val64 = readq(&bar0->adapter_control);
6218 val64 = val64 &(~ADAPTER_LED_ON);
6219 writeq(val64, &bar0->adapter_control);
19a60522 6220 s2io_link(nic, LINK_DOWN);
1da177e4
LT
6221 }
6222 clear_bit(0, &(nic->link_state));
22747d6b
FR
6223
6224out_unlock:
d8d70caf 6225 rtnl_unlock();
1da177e4
LT
6226}
6227
1ee6dd77
RB
6228static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6229 struct buffAdd *ba,
6230 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6231 u64 *temp2, int size)
5d3213cc
AR
6232{
6233 struct net_device *dev = sp->dev;
491abf25 6234 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6235
6236 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6237 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6238 /* allocate skb */
6239 if (*skb) {
6240 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6241 /*
6242 * As Rx frame are not going to be processed,
6243 * using same mapped address for the Rxd
6244 * buffer pointer
6245 */
6d517a27 6246 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6247 } else {
6248 *skb = dev_alloc_skb(size);
6249 if (!(*skb)) {
0c61ed5f 6250 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6251 DBG_PRINT(INFO_DBG, "memory to allocate ");
6252 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6253 sp->mac_control.stats_info->sw_stat. \
6254 mem_alloc_fail_cnt++;
5d3213cc
AR
6255 return -ENOMEM ;
6256 }
491976b2
SH
6257 sp->mac_control.stats_info->sw_stat.mem_allocated
6258 += (*skb)->truesize;
5d3213cc
AR
6259 /* storing the mapped addr in a temp variable
6260 * such it will be used for next rxd whose
6261 * Host Control is NULL
6262 */
6d517a27 6263 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6264 pci_map_single( sp->pdev, (*skb)->data,
6265 size - NET_IP_ALIGN,
6266 PCI_DMA_FROMDEVICE);
491abf25
VP
6267 if( (rxdp1->Buffer0_ptr == 0) ||
6268 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6269 goto memalloc_failed;
6270 }
5d3213cc
AR
6271 rxdp->Host_Control = (unsigned long) (*skb);
6272 }
6273 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6274 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6275 /* Two buffer Mode */
6276 if (*skb) {
6d517a27
VP
6277 rxdp3->Buffer2_ptr = *temp2;
6278 rxdp3->Buffer0_ptr = *temp0;
6279 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6280 } else {
6281 *skb = dev_alloc_skb(size);
2ceaac75 6282 if (!(*skb)) {
c53d4945
SH
6283 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6284 DBG_PRINT(INFO_DBG, "memory to allocate ");
6285 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6286 sp->mac_control.stats_info->sw_stat. \
6287 mem_alloc_fail_cnt++;
2ceaac75
DR
6288 return -ENOMEM;
6289 }
491976b2
SH
6290 sp->mac_control.stats_info->sw_stat.mem_allocated
6291 += (*skb)->truesize;
6d517a27 6292 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6293 pci_map_single(sp->pdev, (*skb)->data,
6294 dev->mtu + 4,
6295 PCI_DMA_FROMDEVICE);
491abf25
VP
6296 if( (rxdp3->Buffer2_ptr == 0) ||
6297 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6298 goto memalloc_failed;
6299 }
6d517a27 6300 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6301 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6302 PCI_DMA_FROMDEVICE);
491abf25
VP
6303 if( (rxdp3->Buffer0_ptr == 0) ||
6304 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6305 pci_unmap_single (sp->pdev,
3e847423 6306 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6307 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6308 goto memalloc_failed;
6309 }
5d3213cc
AR
6310 rxdp->Host_Control = (unsigned long) (*skb);
6311
6312 /* Buffer-1 will be dummy buffer not used */
6d517a27 6313 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6314 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6315 PCI_DMA_FROMDEVICE);
491abf25
VP
6316 if( (rxdp3->Buffer1_ptr == 0) ||
6317 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6318 pci_unmap_single (sp->pdev,
3e847423
AV
6319 (dma_addr_t)rxdp3->Buffer0_ptr,
6320 BUF0_LEN, PCI_DMA_FROMDEVICE);
6321 pci_unmap_single (sp->pdev,
6322 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6323 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6324 goto memalloc_failed;
6325 }
5d3213cc
AR
6326 }
6327 }
6328 return 0;
491abf25
VP
6329 memalloc_failed:
6330 stats->pci_map_fail_cnt++;
6331 stats->mem_freed += (*skb)->truesize;
6332 dev_kfree_skb(*skb);
6333 return -ENOMEM;
5d3213cc 6334}
491abf25 6335
1ee6dd77
RB
6336static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6337 int size)
5d3213cc
AR
6338{
6339 struct net_device *dev = sp->dev;
6340 if (sp->rxd_mode == RXD_MODE_1) {
6341 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6342 } else if (sp->rxd_mode == RXD_MODE_3B) {
6343 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6344 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6345 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6346 }
6347}
6348
1ee6dd77 6349static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6350{
6351 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6352 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6353 struct config_param *config = &sp->config;
6354 struct net_device *dev = sp->dev;
1ee6dd77 6355 struct RxD_t *rxdp = NULL;
5d3213cc 6356 struct sk_buff *skb = NULL;
1ee6dd77 6357 struct buffAdd *ba = NULL;
5d3213cc
AR
6358 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6359
6360 /* Calculate the size based on ring mode */
6361 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6362 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6363 if (sp->rxd_mode == RXD_MODE_1)
6364 size += NET_IP_ALIGN;
6365 else if (sp->rxd_mode == RXD_MODE_3B)
6366 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6367
6368 for (i = 0; i < config->rx_ring_num; i++) {
6369 blk_cnt = config->rx_cfg[i].num_rxd /
6370 (rxd_count[sp->rxd_mode] +1);
6371
6372 for (j = 0; j < blk_cnt; j++) {
6373 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6374 rxdp = mac_control->rings[i].
6375 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6376 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6377 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6378 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6379 &skb,(u64 *)&temp0_64,
6380 (u64 *)&temp1_64,
ac1f90d6
SS
6381 (u64 *)&temp2_64,
6382 size) == ENOMEM) {
6383 return 0;
6384 }
5d3213cc
AR
6385
6386 set_rxd_buffer_size(sp, rxdp, size);
6387 wmb();
6388 /* flip the Ownership bit to Hardware */
6389 rxdp->Control_1 |= RXD_OWN_XENA;
6390 }
6391 }
6392 }
6393 return 0;
6394
6395}
6396
1ee6dd77 6397static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6398{
e6a8fee2 6399 int ret = 0;
c92ca04b 6400 struct net_device *dev = sp->dev;
e6a8fee2 6401 int err = 0;
1da177e4 6402
eccb8628 6403 if (sp->intr_type == MSI_X)
e6a8fee2
AR
6404 ret = s2io_enable_msi_x(sp);
6405 if (ret) {
6406 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6407 sp->intr_type = INTA;
20346722 6408 }
1da177e4 6409
1ee6dd77 6410 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6411 store_xmsi_data(sp);
c92ca04b 6412
e6a8fee2 6413 /* After proper initialization of H/W, register ISR */
e6a8fee2 6414 if (sp->intr_type == MSI_X) {
fb6a825b 6415 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6416
e6a8fee2
AR
6417 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6418 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6419 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6420 dev->name, i);
6421 err = request_irq(sp->entries[i].vector,
6422 s2io_msix_fifo_handle, 0, sp->desc[i],
6423 sp->s2io_entries[i].arg);
fb6a825b
SS
6424 /* If either data or addr is zero print it */
6425 if(!(sp->msix_info[i].addr &&
6426 sp->msix_info[i].data)) {
6427 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6428 "Data:0x%lx\n",sp->desc[i],
6429 (unsigned long long)
6430 sp->msix_info[i].addr,
6431 (unsigned long)
6432 ntohl(sp->msix_info[i].data));
6433 } else {
6434 msix_tx_cnt++;
6435 }
e6a8fee2
AR
6436 } else {
6437 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6438 dev->name, i);
6439 err = request_irq(sp->entries[i].vector,
6440 s2io_msix_ring_handle, 0, sp->desc[i],
6441 sp->s2io_entries[i].arg);
fb6a825b
SS
6442 /* If either data or addr is zero print it */
6443 if(!(sp->msix_info[i].addr &&
6444 sp->msix_info[i].data)) {
6445 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6446 "Data:0x%lx\n",sp->desc[i],
6447 (unsigned long long)
6448 sp->msix_info[i].addr,
6449 (unsigned long)
6450 ntohl(sp->msix_info[i].data));
6451 } else {
6452 msix_rx_cnt++;
6453 }
c92ca04b 6454 }
e6a8fee2
AR
6455 if (err) {
6456 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6457 "failed\n", dev->name, i);
6458 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6459 return -1;
6460 }
6461 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6462 }
fb6a825b
SS
6463 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6464 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
e6a8fee2
AR
6465 }
6466 if (sp->intr_type == INTA) {
6467 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6468 sp->name, dev);
6469 if (err) {
6470 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6471 dev->name);
6472 return -1;
6473 }
6474 }
6475 return 0;
6476}
1ee6dd77 6477static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6478{
6479 int cnt = 0;
6480 struct net_device *dev = sp->dev;
c77dd43e 6481 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
e6a8fee2
AR
6482
6483 if (sp->intr_type == MSI_X) {
6484 int i;
6485 u16 msi_control;
6486
6487 for (i=1; (sp->s2io_entries[i].in_use ==
6488 MSIX_REGISTERED_SUCCESS); i++) {
6489 int vector = sp->entries[i].vector;
6490 void *arg = sp->s2io_entries[i].arg;
6491
6492 free_irq(vector, arg);
6493 }
c77dd43e
SS
6494
6495 kfree(sp->entries);
6496 stats->mem_freed +=
6497 (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
6498 kfree(sp->s2io_entries);
6499 stats->mem_freed +=
6500 (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
6501 sp->entries = NULL;
6502 sp->s2io_entries = NULL;
6503
e6a8fee2
AR
6504 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6505 msi_control &= 0xFFFE; /* Disable MSI */
6506 pci_write_config_word(sp->pdev, 0x42, msi_control);
6507
6508 pci_disable_msix(sp->pdev);
6509 } else {
6510 free_irq(sp->pdev->irq, dev);
c92ca04b
AR
6511 }
6512 /* Waiting till all Interrupt handlers are complete */
6513 cnt = 0;
6514 do {
6515 msleep(10);
6516 if (!atomic_read(&sp->isr_cnt))
6517 break;
6518 cnt++;
6519 } while(cnt < 5);
e6a8fee2
AR
6520}
6521
d796fdb7 6522static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
6523{
6524 int cnt = 0;
1ee6dd77 6525 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6526 unsigned long flags;
6527 register u64 val64 = 0;
6528
6529 del_timer_sync(&sp->alarm_timer);
6530 /* If s2io_set_link task is executing, wait till it completes. */
6531 while (test_and_set_bit(0, &(sp->link_state))) {
6532 msleep(50);
6533 }
6534 atomic_set(&sp->card_state, CARD_DOWN);
6535
6536 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
6537 if (do_io)
6538 stop_nic(sp);
e6a8fee2
AR
6539
6540 s2io_rem_isr(sp);
1da177e4
LT
6541
6542 /* Kill tasklet. */
6543 tasklet_kill(&sp->task);
6544
6545 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 6546 while(do_io) {
5d3213cc
AR
6547 /* As per the HW requirement we need to replenish the
6548 * receive buffer to avoid the ring bump. Since there is
6549 * no intention of processing the Rx frame at this pointwe are
6550 * just settting the ownership bit of rxd in Each Rx
6551 * ring to HW and set the appropriate buffer size
6552 * based on the ring mode
6553 */
6554 rxd_owner_bit_reset(sp);
6555
1da177e4 6556 val64 = readq(&bar0->adapter_status);
19a60522
SS
6557 if (verify_xena_quiescence(sp)) {
6558 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6559 break;
6560 }
6561
6562 msleep(50);
6563 cnt++;
6564 if (cnt == 10) {
6565 DBG_PRINT(ERR_DBG,
6566 "s2io_close:Device not Quiescent ");
6567 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6568 (unsigned long long) val64);
6569 break;
6570 }
d796fdb7
LV
6571 }
6572 if (do_io)
6573 s2io_reset(sp);
1da177e4 6574
7ba013ac
K
6575 spin_lock_irqsave(&sp->tx_lock, flags);
6576 /* Free all Tx buffers */
1da177e4 6577 free_tx_buffers(sp);
7ba013ac
K
6578 spin_unlock_irqrestore(&sp->tx_lock, flags);
6579
6580 /* Free all Rx buffers */
6581 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6582 free_rx_buffers(sp);
7ba013ac 6583 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6584
1da177e4
LT
6585 clear_bit(0, &(sp->link_state));
6586}
6587
d796fdb7
LV
6588static void s2io_card_down(struct s2io_nic * sp)
6589{
6590 do_s2io_card_down(sp, 1);
6591}
6592
1ee6dd77 6593static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6594{
cc6e7c44 6595 int i, ret = 0;
1ee6dd77 6596 struct mac_info *mac_control;
1da177e4
LT
6597 struct config_param *config;
6598 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6599 u16 interruptible;
1da177e4
LT
6600
6601 /* Initialize the H/W I/O registers */
6602 if (init_nic(sp) != 0) {
6603 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6604 dev->name);
e6a8fee2 6605 s2io_reset(sp);
1da177e4
LT
6606 return -ENODEV;
6607 }
6608
20346722
K
6609 /*
6610 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6611 * Rx ring and initializing buffers into 30 Rx blocks
6612 */
6613 mac_control = &sp->mac_control;
6614 config = &sp->config;
6615
6616 for (i = 0; i < config->rx_ring_num; i++) {
6617 if ((ret = fill_rx_buffers(sp, i))) {
6618 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6619 dev->name);
6620 s2io_reset(sp);
6621 free_rx_buffers(sp);
6622 return -ENOMEM;
6623 }
6624 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6625 atomic_read(&sp->rx_bufs_left[i]));
6626 }
19a60522
SS
6627 /* Maintain the state prior to the open */
6628 if (sp->promisc_flg)
6629 sp->promisc_flg = 0;
6630 if (sp->m_cast_flg) {
6631 sp->m_cast_flg = 0;
6632 sp->all_multi_pos= 0;
6633 }
1da177e4
LT
6634
6635 /* Setting its receive mode */
6636 s2io_set_multicast(dev);
6637
7d3d0439 6638 if (sp->lro) {
b41477f3 6639 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6640 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6641 /* Check if we can use(if specified) user provided value */
6642 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6643 sp->lro_max_aggr_per_sess = lro_max_pkts;
6644 }
6645
1da177e4
LT
6646 /* Enable Rx Traffic and interrupts on the NIC */
6647 if (start_nic(sp)) {
6648 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6649 s2io_reset(sp);
e6a8fee2
AR
6650 free_rx_buffers(sp);
6651 return -ENODEV;
6652 }
6653
6654 /* Add interrupt service routine */
6655 if (s2io_add_isr(sp) != 0) {
6656 if (sp->intr_type == MSI_X)
6657 s2io_rem_isr(sp);
6658 s2io_reset(sp);
1da177e4
LT
6659 free_rx_buffers(sp);
6660 return -ENODEV;
6661 }
6662
25fff88e
K
6663 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6664
e6a8fee2
AR
6665 /* Enable tasklet for the device */
6666 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6667
6668 /* Enable select interrupts */
6669 if (sp->intr_type != INTA)
6670 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6671 else {
6672 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6673 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6674 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6675 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6676 }
6677
6678
1da177e4
LT
6679 atomic_set(&sp->card_state, CARD_UP);
6680 return 0;
6681}
6682
20346722 6683/**
1da177e4
LT
6684 * s2io_restart_nic - Resets the NIC.
6685 * @data : long pointer to the device private structure
6686 * Description:
6687 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6688 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6689 * the run time of the watch dog routine which is run holding a
6690 * spin lock.
6691 */
6692
c4028958 6693static void s2io_restart_nic(struct work_struct *work)
1da177e4 6694{
1ee6dd77 6695 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6696 struct net_device *dev = sp->dev;
1da177e4 6697
22747d6b
FR
6698 rtnl_lock();
6699
6700 if (!netif_running(dev))
6701 goto out_unlock;
6702
e6a8fee2 6703 s2io_card_down(sp);
1da177e4
LT
6704 if (s2io_card_up(sp)) {
6705 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6706 dev->name);
6707 }
6708 netif_wake_queue(dev);
6709 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6710 dev->name);
22747d6b
FR
6711out_unlock:
6712 rtnl_unlock();
1da177e4
LT
6713}
6714
20346722
K
6715/**
6716 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6717 * @dev : Pointer to net device structure
6718 * Description:
6719 * This function is triggered if the Tx Queue is stopped
6720 * for a pre-defined amount of time when the Interface is still up.
6721 * If the Interface is jammed in such a situation, the hardware is
6722 * reset (by s2io_close) and restarted again (by s2io_open) to
6723 * overcome any problem that might have been caused in the hardware.
6724 * Return value:
6725 * void
6726 */
6727
6728static void s2io_tx_watchdog(struct net_device *dev)
6729{
1ee6dd77 6730 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6731
6732 if (netif_carrier_ok(dev)) {
c53d4945 6733 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 6734 schedule_work(&sp->rst_timer_task);
bd1034f0 6735 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6736 }
6737}
6738
6739/**
6740 * rx_osm_handler - To perform some OS related operations on SKB.
6741 * @sp: private member of the device structure,pointer to s2io_nic structure.
6742 * @skb : the socket buffer pointer.
6743 * @len : length of the packet
6744 * @cksum : FCS checksum of the frame.
6745 * @ring_no : the ring from which this RxD was extracted.
20346722 6746 * Description:
b41477f3 6747 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
6748 * some OS related operations on the SKB before passing it to the upper
6749 * layers. It mainly checks if the checksum is OK, if so adds it to the
6750 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6751 * to the upper layer. If the checksum is wrong, it increments the Rx
6752 * packet error count, frees the SKB and returns error.
6753 * Return value:
6754 * SUCCESS on success and -1 on failure.
6755 */
1ee6dd77 6756static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 6757{
1ee6dd77 6758 struct s2io_nic *sp = ring_data->nic;
1da177e4 6759 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6760 struct sk_buff *skb = (struct sk_buff *)
6761 ((unsigned long) rxdp->Host_Control);
6762 int ring_no = ring_data->ring_no;
1da177e4 6763 u16 l3_csum, l4_csum;
863c11a9 6764 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 6765 struct lro *lro;
f9046eb3 6766 u8 err_mask;
da6971d8 6767
20346722 6768 skb->dev = dev;
c92ca04b 6769
863c11a9 6770 if (err) {
bd1034f0
AR
6771 /* Check for parity error */
6772 if (err & 0x1) {
6773 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6774 }
f9046eb3
OH
6775 err_mask = err >> 48;
6776 switch(err_mask) {
491976b2
SH
6777 case 1:
6778 sp->mac_control.stats_info->sw_stat.
6779 rx_parity_err_cnt++;
6780 break;
6781
6782 case 2:
6783 sp->mac_control.stats_info->sw_stat.
6784 rx_abort_cnt++;
6785 break;
6786
6787 case 3:
6788 sp->mac_control.stats_info->sw_stat.
6789 rx_parity_abort_cnt++;
6790 break;
6791
6792 case 4:
6793 sp->mac_control.stats_info->sw_stat.
6794 rx_rda_fail_cnt++;
6795 break;
6796
6797 case 5:
6798 sp->mac_control.stats_info->sw_stat.
6799 rx_unkn_prot_cnt++;
6800 break;
6801
6802 case 6:
6803 sp->mac_control.stats_info->sw_stat.
6804 rx_fcs_err_cnt++;
6805 break;
bd1034f0 6806
491976b2
SH
6807 case 7:
6808 sp->mac_control.stats_info->sw_stat.
6809 rx_buf_size_err_cnt++;
6810 break;
6811
6812 case 8:
6813 sp->mac_control.stats_info->sw_stat.
6814 rx_rxd_corrupt_cnt++;
6815 break;
6816
6817 case 15:
6818 sp->mac_control.stats_info->sw_stat.
6819 rx_unkn_err_cnt++;
6820 break;
6821 }
863c11a9
AR
6822 /*
6823 * Drop the packet if bad transfer code. Exception being
6824 * 0x5, which could be due to unsupported IPv6 extension header.
6825 * In this case, we let stack handle the packet.
6826 * Note that in this case, since checksum will be incorrect,
6827 * stack will validate the same.
6828 */
f9046eb3
OH
6829 if (err_mask != 0x5) {
6830 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6831 dev->name, err_mask);
863c11a9 6832 sp->stats.rx_crc_errors++;
491976b2
SH
6833 sp->mac_control.stats_info->sw_stat.mem_freed
6834 += skb->truesize;
863c11a9
AR
6835 dev_kfree_skb(skb);
6836 atomic_dec(&sp->rx_bufs_left[ring_no]);
6837 rxdp->Host_Control = 0;
6838 return 0;
6839 }
20346722 6840 }
1da177e4 6841
20346722 6842 /* Updating statistics */
573608e4 6843 sp->stats.rx_packets++;
20346722 6844 rxdp->Host_Control = 0;
da6971d8
AR
6845 if (sp->rxd_mode == RXD_MODE_1) {
6846 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6847
da6971d8
AR
6848 sp->stats.rx_bytes += len;
6849 skb_put(skb, len);
6850
6d517a27 6851 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
6852 int get_block = ring_data->rx_curr_get_info.block_index;
6853 int get_off = ring_data->rx_curr_get_info.offset;
6854 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6855 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6856 unsigned char *buff = skb_push(skb, buf0_len);
6857
1ee6dd77 6858 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
6859 sp->stats.rx_bytes += buf0_len + buf2_len;
6860 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 6861 skb_put(skb, buf2_len);
da6971d8 6862 }
20346722 6863
7d3d0439
RA
6864 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6865 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6866 (sp->rx_csum)) {
6867 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6868 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6869 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6870 /*
1da177e4
LT
6871 * NIC verifies if the Checksum of the received
6872 * frame is Ok or not and accordingly returns
6873 * a flag in the RxD.
6874 */
6875 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6876 if (sp->lro) {
6877 u32 tcp_len;
6878 u8 *tcp;
6879 int ret = 0;
6880
6881 ret = s2io_club_tcp_session(skb->data, &tcp,
6882 &tcp_len, &lro, rxdp, sp);
6883 switch (ret) {
6884 case 3: /* Begin anew */
6885 lro->parent = skb;
6886 goto aggregate;
6887 case 1: /* Aggregate */
6888 {
6889 lro_append_pkt(sp, lro,
6890 skb, tcp_len);
6891 goto aggregate;
6892 }
6893 case 4: /* Flush session */
6894 {
6895 lro_append_pkt(sp, lro,
6896 skb, tcp_len);
6897 queue_rx_frame(lro->parent);
6898 clear_lro_session(lro);
6899 sp->mac_control.stats_info->
6900 sw_stat.flush_max_pkts++;
6901 goto aggregate;
6902 }
6903 case 2: /* Flush both */
6904 lro->parent->data_len =
6905 lro->frags_len;
6906 sp->mac_control.stats_info->
6907 sw_stat.sending_both++;
6908 queue_rx_frame(lro->parent);
6909 clear_lro_session(lro);
6910 goto send_up;
6911 case 0: /* sessions exceeded */
c92ca04b
AR
6912 case -1: /* non-TCP or not
6913 * L2 aggregatable
6914 */
7d3d0439
RA
6915 case 5: /*
6916 * First pkt in session not
6917 * L3/L4 aggregatable
6918 */
6919 break;
6920 default:
6921 DBG_PRINT(ERR_DBG,
6922 "%s: Samadhana!!\n",
6923 __FUNCTION__);
6924 BUG();
6925 }
6926 }
1da177e4 6927 } else {
20346722
K
6928 /*
6929 * Packet with erroneous checksum, let the
1da177e4
LT
6930 * upper layers deal with it.
6931 */
6932 skb->ip_summed = CHECKSUM_NONE;
6933 }
6934 } else {
6935 skb->ip_summed = CHECKSUM_NONE;
6936 }
491976b2 6937 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439
RA
6938 if (!sp->lro) {
6939 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
6940 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6941 vlan_strip_flag)) {
7d3d0439 6942 /* Queueing the vlan frame to the upper layer */
db874e65
SS
6943 if (napi)
6944 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6945 RXD_GET_VLAN_TAG(rxdp->Control_2));
6946 else
6947 vlan_hwaccel_rx(skb, sp->vlgrp,
6948 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 6949 } else {
db874e65
SS
6950 if (napi)
6951 netif_receive_skb(skb);
6952 else
6953 netif_rx(skb);
7d3d0439 6954 }
7d3d0439
RA
6955 } else {
6956send_up:
6957 queue_rx_frame(skb);
6aa20a22 6958 }
1da177e4 6959 dev->last_rx = jiffies;
7d3d0439 6960aggregate:
1da177e4 6961 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6962 return SUCCESS;
6963}
6964
6965/**
6966 * s2io_link - stops/starts the Tx queue.
6967 * @sp : private member of the device structure, which is a pointer to the
6968 * s2io_nic structure.
6969 * @link : inidicates whether link is UP/DOWN.
6970 * Description:
6971 * This function stops/starts the Tx queue depending on whether the link
20346722
K
6972 * status of the NIC is is down or up. This is called by the Alarm
6973 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6974 * Return value:
6975 * void.
6976 */
6977
1ee6dd77 6978static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
6979{
6980 struct net_device *dev = (struct net_device *) sp->dev;
6981
6982 if (link != sp->last_link_state) {
6983 if (link == LINK_DOWN) {
6984 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6985 netif_carrier_off(dev);
491976b2
SH
6986 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
6987 sp->mac_control.stats_info->sw_stat.link_up_time =
6988 jiffies - sp->start_time;
6989 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
6990 } else {
6991 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2
SH
6992 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
6993 sp->mac_control.stats_info->sw_stat.link_down_time =
6994 jiffies - sp->start_time;
6995 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4
LT
6996 netif_carrier_on(dev);
6997 }
6998 }
6999 sp->last_link_state = link;
491976b2 7000 sp->start_time = jiffies;
1da177e4
LT
7001}
7002
20346722
K
7003/**
7004 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7005 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7006 * s2io_nic structure.
7007 * Description:
7008 * This function initializes a few of the PCI and PCI-X configuration registers
7009 * with recommended values.
7010 * Return value:
7011 * void
7012 */
7013
1ee6dd77 7014static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7015{
20346722 7016 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7017
7018 /* Enable Data Parity Error Recovery in PCI-X command register. */
7019 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7020 &(pcix_cmd));
1da177e4 7021 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7022 (pcix_cmd | 1));
1da177e4 7023 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7024 &(pcix_cmd));
1da177e4
LT
7025
7026 /* Set the PErr Response bit in PCI command register. */
7027 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7028 pci_write_config_word(sp->pdev, PCI_COMMAND,
7029 (pci_cmd | PCI_COMMAND_PARITY));
7030 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7031}
7032
9dc737a7
AR
7033static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7034{
7035 if ( tx_fifo_num > 8) {
7036 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7037 "supported\n");
7038 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7039 tx_fifo_num = 8;
7040 }
7041 if ( rx_ring_num > 8) {
7042 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7043 "supported\n");
7044 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7045 rx_ring_num = 8;
7046 }
db874e65
SS
7047 if (*dev_intr_type != INTA)
7048 napi = 0;
7049
9dc737a7
AR
7050#ifndef CONFIG_PCI_MSI
7051 if (*dev_intr_type != INTA) {
7052 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7053 "MSI/MSI-X. Defaulting to INTA\n");
7054 *dev_intr_type = INTA;
7055 }
7056#else
eccb8628 7057 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7058 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7059 "Defaulting to INTA\n");
7060 *dev_intr_type = INTA;
7061 }
7062#endif
7063 if ((*dev_intr_type == MSI_X) &&
7064 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7065 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7066 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7067 "Defaulting to INTA\n");
7068 *dev_intr_type = INTA;
7069 }
fb6a825b 7070
6d517a27 7071 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7072 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7073 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7074 rx_ring_mode = 1;
9dc737a7
AR
7075 }
7076 return SUCCESS;
7077}
7078
9fc93a41
SS
7079/**
7080 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7081 * or Traffic class respectively.
7082 * @nic: device peivate variable
7083 * Description: The function configures the receive steering to
7084 * desired receive ring.
7085 * Return Value: SUCCESS on success and
7086 * '-1' on failure (endian settings incorrect).
7087 */
7088static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7089{
7090 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7091 register u64 val64 = 0;
7092
7093 if (ds_codepoint > 63)
7094 return FAILURE;
7095
7096 val64 = RTS_DS_MEM_DATA(ring);
7097 writeq(val64, &bar0->rts_ds_mem_data);
7098
7099 val64 = RTS_DS_MEM_CTRL_WE |
7100 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7101 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7102
7103 writeq(val64, &bar0->rts_ds_mem_ctrl);
7104
7105 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7106 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7107 S2IO_BIT_RESET);
7108}
7109
1da177e4 7110/**
20346722 7111 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7112 * @pdev : structure containing the PCI related information of the device.
7113 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7114 * Description:
7115 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7116 * All OS related initialization including memory and device structure and
7117 * initlaization of the device private variable is done. Also the swapper
7118 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7119 * registers of the device.
7120 * Return value:
7121 * returns 0 on success and negative on failure.
7122 */
7123
7124static int __devinit
7125s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7126{
1ee6dd77 7127 struct s2io_nic *sp;
1da177e4 7128 struct net_device *dev;
1da177e4
LT
7129 int i, j, ret;
7130 int dma_flag = FALSE;
7131 u32 mac_up, mac_down;
7132 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7133 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7134 u16 subid;
1ee6dd77 7135 struct mac_info *mac_control;
1da177e4 7136 struct config_param *config;
541ae68f 7137 int mode;
cc6e7c44 7138 u8 dev_intr_type = intr_type;
1da177e4 7139
9dc737a7
AR
7140 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7141 return ret;
1da177e4
LT
7142
7143 if ((ret = pci_enable_device(pdev))) {
7144 DBG_PRINT(ERR_DBG,
7145 "s2io_init_nic: pci_enable_device failed\n");
7146 return ret;
7147 }
7148
1e7f0bd8 7149 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7150 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7151 dma_flag = TRUE;
1da177e4 7152 if (pci_set_consistent_dma_mask
1e7f0bd8 7153 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7154 DBG_PRINT(ERR_DBG,
7155 "Unable to obtain 64bit DMA for \
7156 consistent allocations\n");
7157 pci_disable_device(pdev);
7158 return -ENOMEM;
7159 }
1e7f0bd8 7160 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7161 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7162 } else {
7163 pci_disable_device(pdev);
7164 return -ENOMEM;
7165 }
eccb8628
VP
7166 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7167 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7168 pci_disable_device(pdev);
7169 return -ENODEV;
1da177e4
LT
7170 }
7171
1ee6dd77 7172 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7173 if (dev == NULL) {
7174 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7175 pci_disable_device(pdev);
7176 pci_release_regions(pdev);
7177 return -ENODEV;
7178 }
7179
7180 pci_set_master(pdev);
7181 pci_set_drvdata(pdev, dev);
7182 SET_MODULE_OWNER(dev);
7183 SET_NETDEV_DEV(dev, &pdev->dev);
7184
7185 /* Private member variable initialized to s2io NIC structure */
7186 sp = dev->priv;
1ee6dd77 7187 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7188 sp->dev = dev;
7189 sp->pdev = pdev;
1da177e4 7190 sp->high_dma_flag = dma_flag;
1da177e4 7191 sp->device_enabled_once = FALSE;
da6971d8
AR
7192 if (rx_ring_mode == 1)
7193 sp->rxd_mode = RXD_MODE_1;
7194 if (rx_ring_mode == 2)
7195 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7196
cc6e7c44 7197 sp->intr_type = dev_intr_type;
1da177e4 7198
541ae68f
K
7199 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7200 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7201 sp->device_type = XFRAME_II_DEVICE;
7202 else
7203 sp->device_type = XFRAME_I_DEVICE;
7204
7d3d0439 7205 sp->lro = lro;
6aa20a22 7206
1da177e4
LT
7207 /* Initialize some PCI/PCI-X fields of the NIC. */
7208 s2io_init_pci(sp);
7209
20346722 7210 /*
1da177e4 7211 * Setting the device configuration parameters.
20346722
K
7212 * Most of these parameters can be specified by the user during
7213 * module insertion as they are module loadable parameters. If
7214 * these parameters are not not specified during load time, they
1da177e4
LT
7215 * are initialized with default values.
7216 */
7217 mac_control = &sp->mac_control;
7218 config = &sp->config;
7219
7220 /* Tx side parameters. */
1da177e4
LT
7221 config->tx_fifo_num = tx_fifo_num;
7222 for (i = 0; i < MAX_TX_FIFOS; i++) {
7223 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7224 config->tx_cfg[i].fifo_priority = i;
7225 }
7226
20346722
K
7227 /* mapping the QoS priority to the configured fifos */
7228 for (i = 0; i < MAX_TX_FIFOS; i++)
7229 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7230
1da177e4
LT
7231 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7232 for (i = 0; i < config->tx_fifo_num; i++) {
7233 config->tx_cfg[i].f_no_snoop =
7234 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7235 if (config->tx_cfg[i].fifo_len < 65) {
7236 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7237 break;
7238 }
7239 }
fed5eccd
AR
7240 /* + 2 because one Txd for skb->data and one Txd for UFO */
7241 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7242
7243 /* Rx side parameters. */
1da177e4
LT
7244 config->rx_ring_num = rx_ring_num;
7245 for (i = 0; i < MAX_RX_RINGS; i++) {
7246 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7247 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7248 config->rx_cfg[i].ring_priority = i;
7249 }
7250
7251 for (i = 0; i < rx_ring_num; i++) {
7252 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7253 config->rx_cfg[i].f_no_snoop =
7254 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7255 }
7256
7257 /* Setting Mac Control parameters */
7258 mac_control->rmac_pause_time = rmac_pause_time;
7259 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7260 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7261
7262
7263 /* Initialize Ring buffer parameters. */
7264 for (i = 0; i < config->rx_ring_num; i++)
7265 atomic_set(&sp->rx_bufs_left[i], 0);
7266
7ba013ac
K
7267 /* Initialize the number of ISRs currently running */
7268 atomic_set(&sp->isr_cnt, 0);
7269
1da177e4
LT
7270 /* initialize the shared memory used by the NIC and the host */
7271 if (init_shared_mem(sp)) {
7272 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7273 dev->name);
1da177e4
LT
7274 ret = -ENOMEM;
7275 goto mem_alloc_failed;
7276 }
7277
7278 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7279 pci_resource_len(pdev, 0));
7280 if (!sp->bar0) {
19a60522 7281 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7282 dev->name);
7283 ret = -ENOMEM;
7284 goto bar0_remap_failed;
7285 }
7286
7287 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7288 pci_resource_len(pdev, 2));
7289 if (!sp->bar1) {
19a60522 7290 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7291 dev->name);
7292 ret = -ENOMEM;
7293 goto bar1_remap_failed;
7294 }
7295
7296 dev->irq = pdev->irq;
7297 dev->base_addr = (unsigned long) sp->bar0;
7298
7299 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7300 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7301 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7302 (sp->bar1 + (j * 0x00020000));
7303 }
7304
7305 /* Driver entry points */
7306 dev->open = &s2io_open;
7307 dev->stop = &s2io_close;
7308 dev->hard_start_xmit = &s2io_xmit;
7309 dev->get_stats = &s2io_get_stats;
7310 dev->set_multicast_list = &s2io_set_multicast;
7311 dev->do_ioctl = &s2io_ioctl;
7312 dev->change_mtu = &s2io_change_mtu;
7313 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7314 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7315 dev->vlan_rx_register = s2io_vlan_rx_register;
20346722 7316
1da177e4
LT
7317 /*
7318 * will use eth_mac_addr() for dev->set_mac_address
7319 * mac address will be set every time dev->open() is called
7320 */
bea3348e 7321 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
1da177e4 7322
612eff0e
BH
7323#ifdef CONFIG_NET_POLL_CONTROLLER
7324 dev->poll_controller = s2io_netpoll;
7325#endif
7326
1da177e4
LT
7327 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7328 if (sp->high_dma_flag == TRUE)
7329 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7330 dev->features |= NETIF_F_TSO;
f83ef8c0 7331 dev->features |= NETIF_F_TSO6;
db874e65 7332 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7333 dev->features |= NETIF_F_UFO;
7334 dev->features |= NETIF_F_HW_CSUM;
7335 }
1da177e4
LT
7336
7337 dev->tx_timeout = &s2io_tx_watchdog;
7338 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7339 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7340 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7341
e960fc5c 7342 pci_save_state(sp->pdev);
1da177e4
LT
7343
7344 /* Setting swapper control on the NIC, for proper reset operation */
7345 if (s2io_set_swapper(sp)) {
7346 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7347 dev->name);
7348 ret = -EAGAIN;
7349 goto set_swap_failed;
7350 }
7351
541ae68f
K
7352 /* Verify if the Herc works on the slot its placed into */
7353 if (sp->device_type & XFRAME_II_DEVICE) {
7354 mode = s2io_verify_pci_mode(sp);
7355 if (mode < 0) {
7356 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7357 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7358 ret = -EBADSLT;
7359 goto set_swap_failed;
7360 }
7361 }
7362
7363 /* Not needed for Herc */
7364 if (sp->device_type & XFRAME_I_DEVICE) {
7365 /*
7366 * Fix for all "FFs" MAC address problems observed on
7367 * Alpha platforms
7368 */
7369 fix_mac_address(sp);
7370 s2io_reset(sp);
7371 }
1da177e4
LT
7372
7373 /*
1da177e4
LT
7374 * MAC address initialization.
7375 * For now only one mac address will be read and used.
7376 */
7377 bar0 = sp->bar0;
7378 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7379 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7380 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7381 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7382 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7383 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7384 mac_down = (u32) tmp64;
7385 mac_up = (u32) (tmp64 >> 32);
7386
1da177e4
LT
7387 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7388 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7389 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7390 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7391 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7392 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7393
1da177e4
LT
7394 /* Set the factory defined MAC address initially */
7395 dev->addr_len = ETH_ALEN;
7396 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7397
c77dd43e
SS
7398 /* Store the values of the MSIX table in the s2io_nic structure */
7399 store_xmsi_data(sp);
b41477f3
AR
7400 /* reset Nic and bring it to known state */
7401 s2io_reset(sp);
7402
1da177e4 7403 /*
20346722 7404 * Initialize the tasklet status and link state flags
541ae68f 7405 * and the card state parameter
1da177e4
LT
7406 */
7407 atomic_set(&(sp->card_state), 0);
7408 sp->tasklet_status = 0;
7409 sp->link_state = 0;
7410
1da177e4
LT
7411 /* Initialize spinlocks */
7412 spin_lock_init(&sp->tx_lock);
db874e65
SS
7413
7414 if (!napi)
7415 spin_lock_init(&sp->put_lock);
7ba013ac 7416 spin_lock_init(&sp->rx_lock);
1da177e4 7417
20346722
K
7418 /*
7419 * SXE-002: Configure link and activity LED to init state
7420 * on driver load.
1da177e4
LT
7421 */
7422 subid = sp->pdev->subsystem_device;
7423 if ((subid & 0xFF) >= 0x07) {
7424 val64 = readq(&bar0->gpio_control);
7425 val64 |= 0x0000800000000000ULL;
7426 writeq(val64, &bar0->gpio_control);
7427 val64 = 0x0411040400000000ULL;
7428 writeq(val64, (void __iomem *) bar0 + 0x2700);
7429 val64 = readq(&bar0->gpio_control);
7430 }
7431
7432 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7433
7434 if (register_netdev(dev)) {
7435 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7436 ret = -ENODEV;
7437 goto register_failed;
7438 }
9dc737a7 7439 s2io_vpd_read(sp);
0c61ed5f 7440 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 7441 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 7442 sp->product_name, pdev->revision);
b41477f3
AR
7443 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7444 s2io_driver_version);
9dc737a7 7445 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7446 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f
K
7447 sp->def_mac_addr[0].mac_addr[0],
7448 sp->def_mac_addr[0].mac_addr[1],
7449 sp->def_mac_addr[0].mac_addr[2],
7450 sp->def_mac_addr[0].mac_addr[3],
7451 sp->def_mac_addr[0].mac_addr[4],
7452 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7453 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7454 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7455 mode = s2io_print_pci_mode(sp);
541ae68f 7456 if (mode < 0) {
9dc737a7 7457 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7458 ret = -EBADSLT;
9dc737a7 7459 unregister_netdev(dev);
541ae68f
K
7460 goto set_swap_failed;
7461 }
541ae68f 7462 }
9dc737a7
AR
7463 switch(sp->rxd_mode) {
7464 case RXD_MODE_1:
7465 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7466 dev->name);
7467 break;
7468 case RXD_MODE_3B:
7469 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7470 dev->name);
7471 break;
9dc737a7 7472 }
db874e65
SS
7473
7474 if (napi)
7475 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
9dc737a7
AR
7476 switch(sp->intr_type) {
7477 case INTA:
7478 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7479 break;
9dc737a7
AR
7480 case MSI_X:
7481 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7482 break;
7483 }
7d3d0439
RA
7484 if (sp->lro)
7485 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7486 dev->name);
db874e65
SS
7487 if (ufo)
7488 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7489 " enabled\n", dev->name);
7ba013ac 7490 /* Initialize device name */
9dc737a7 7491 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7492
b6e3f982
K
7493 /* Initialize bimodal Interrupts */
7494 sp->config.bimodal = bimodal;
7495 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7496 sp->config.bimodal = 0;
7497 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7498 dev->name);
7499 }
7500
20346722
K
7501 /*
7502 * Make Link state as off at this point, when the Link change
7503 * interrupt comes the state will be automatically changed to
1da177e4
LT
7504 * the right state.
7505 */
7506 netif_carrier_off(dev);
1da177e4
LT
7507
7508 return 0;
7509
7510 register_failed:
7511 set_swap_failed:
7512 iounmap(sp->bar1);
7513 bar1_remap_failed:
7514 iounmap(sp->bar0);
7515 bar0_remap_failed:
7516 mem_alloc_failed:
7517 free_shared_mem(sp);
7518 pci_disable_device(pdev);
eccb8628 7519 pci_release_regions(pdev);
1da177e4
LT
7520 pci_set_drvdata(pdev, NULL);
7521 free_netdev(dev);
7522
7523 return ret;
7524}
7525
7526/**
20346722 7527 * s2io_rem_nic - Free the PCI device
1da177e4 7528 * @pdev: structure containing the PCI related information of the device.
20346722 7529 * Description: This function is called by the Pci subsystem to release a
1da177e4 7530 * PCI device and free up all resource held up by the device. This could
20346722 7531 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7532 * from memory.
7533 */
7534
7535static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7536{
7537 struct net_device *dev =
7538 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7539 struct s2io_nic *sp;
1da177e4
LT
7540
7541 if (dev == NULL) {
7542 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7543 return;
7544 }
7545
22747d6b
FR
7546 flush_scheduled_work();
7547
1da177e4
LT
7548 sp = dev->priv;
7549 unregister_netdev(dev);
7550
7551 free_shared_mem(sp);
7552 iounmap(sp->bar0);
7553 iounmap(sp->bar1);
eccb8628 7554 pci_release_regions(pdev);
1da177e4 7555 pci_set_drvdata(pdev, NULL);
1da177e4 7556 free_netdev(dev);
19a60522 7557 pci_disable_device(pdev);
1da177e4
LT
7558}
7559
7560/**
7561 * s2io_starter - Entry point for the driver
7562 * Description: This function is the entry point for the driver. It verifies
7563 * the module loadable parameters and initializes PCI configuration space.
7564 */
7565
7566int __init s2io_starter(void)
7567{
29917620 7568 return pci_register_driver(&s2io_driver);
1da177e4
LT
7569}
7570
7571/**
20346722 7572 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7573 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7574 */
7575
372cc597 7576static __exit void s2io_closer(void)
1da177e4
LT
7577{
7578 pci_unregister_driver(&s2io_driver);
7579 DBG_PRINT(INIT_DBG, "cleanup done\n");
7580}
7581
7582module_init(s2io_starter);
7583module_exit(s2io_closer);
7d3d0439 7584
6aa20a22 7585static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7586 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7587{
7588 int ip_off;
7589 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7590
7591 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7592 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7593 __FUNCTION__);
7594 return -1;
7595 }
7596
7597 /* TODO:
7598 * By default the VLAN field in the MAC is stripped by the card, if this
7599 * feature is turned off in rx_pa_cfg register, then the ip_off field
7600 * has to be shifted by a further 2 bytes
7601 */
7602 switch (l2_type) {
7603 case 0: /* DIX type */
7604 case 4: /* DIX type with VLAN */
7605 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7606 break;
7607 /* LLC, SNAP etc are considered non-mergeable */
7608 default:
7609 return -1;
7610 }
7611
7612 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7613 ip_len = (u8)((*ip)->ihl);
7614 ip_len <<= 2;
7615 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7616
7617 return 0;
7618}
7619
1ee6dd77 7620static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7621 struct tcphdr *tcp)
7622{
7623 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7624 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7625 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7626 return -1;
7627 return 0;
7628}
7629
7630static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7631{
7632 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7633}
7634
1ee6dd77 7635static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7636 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7637{
7638 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7639 lro->l2h = l2h;
7640 lro->iph = ip;
7641 lro->tcph = tcp;
7642 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7643 lro->tcp_ack = ntohl(tcp->ack_seq);
7644 lro->sg_num = 1;
7645 lro->total_len = ntohs(ip->tot_len);
7646 lro->frags_len = 0;
6aa20a22 7647 /*
7d3d0439
RA
7648 * check if we saw TCP timestamp. Other consistency checks have
7649 * already been done.
7650 */
7651 if (tcp->doff == 8) {
7652 u32 *ptr;
7653 ptr = (u32 *)(tcp+1);
7654 lro->saw_ts = 1;
7655 lro->cur_tsval = *(ptr+1);
7656 lro->cur_tsecr = *(ptr+2);
7657 }
7658 lro->in_use = 1;
7659}
7660
1ee6dd77 7661static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7662{
7663 struct iphdr *ip = lro->iph;
7664 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7665 __sum16 nchk;
1ee6dd77 7666 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7667 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7668
7669 /* Update L3 header */
7670 ip->tot_len = htons(lro->total_len);
7671 ip->check = 0;
7672 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7673 ip->check = nchk;
7674
7675 /* Update L4 header */
7676 tcp->ack_seq = lro->tcp_ack;
7677 tcp->window = lro->window;
7678
7679 /* Update tsecr field if this session has timestamps enabled */
7680 if (lro->saw_ts) {
7681 u32 *ptr = (u32 *)(tcp + 1);
7682 *(ptr+2) = lro->cur_tsecr;
7683 }
7684
7685 /* Update counters required for calculation of
7686 * average no. of packets aggregated.
7687 */
7688 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7689 statinfo->sw_stat.num_aggregations++;
7690}
7691
1ee6dd77 7692static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7693 struct tcphdr *tcp, u32 l4_pyld)
7694{
7695 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7696 lro->total_len += l4_pyld;
7697 lro->frags_len += l4_pyld;
7698 lro->tcp_next_seq += l4_pyld;
7699 lro->sg_num++;
7700
7701 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7702 lro->tcp_ack = tcp->ack_seq;
7703 lro->window = tcp->window;
6aa20a22 7704
7d3d0439
RA
7705 if (lro->saw_ts) {
7706 u32 *ptr;
7707 /* Update tsecr and tsval from this packet */
7708 ptr = (u32 *) (tcp + 1);
6aa20a22 7709 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7710 lro->cur_tsecr = *(ptr + 2);
7711 }
7712}
7713
1ee6dd77 7714static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7715 struct tcphdr *tcp, u32 tcp_pyld_len)
7716{
7d3d0439
RA
7717 u8 *ptr;
7718
79dc1901
AM
7719 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7720
7d3d0439
RA
7721 if (!tcp_pyld_len) {
7722 /* Runt frame or a pure ack */
7723 return -1;
7724 }
7725
7726 if (ip->ihl != 5) /* IP has options */
7727 return -1;
7728
75c30b13
AR
7729 /* If we see CE codepoint in IP header, packet is not mergeable */
7730 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7731 return -1;
7732
7733 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7734 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7735 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7736 /*
7737 * Currently recognize only the ack control word and
7738 * any other control field being set would result in
7739 * flushing the LRO session
7740 */
7741 return -1;
7742 }
7743
6aa20a22 7744 /*
7d3d0439
RA
7745 * Allow only one TCP timestamp option. Don't aggregate if
7746 * any other options are detected.
7747 */
7748 if (tcp->doff != 5 && tcp->doff != 8)
7749 return -1;
7750
7751 if (tcp->doff == 8) {
6aa20a22 7752 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
7753 while (*ptr == TCPOPT_NOP)
7754 ptr++;
7755 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7756 return -1;
7757
7758 /* Ensure timestamp value increases monotonically */
7759 if (l_lro)
7760 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7761 return -1;
7762
7763 /* timestamp echo reply should be non-zero */
6aa20a22 7764 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
7765 return -1;
7766 }
7767
7768 return 0;
7769}
7770
7771static int
1ee6dd77
RB
7772s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7773 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
7774{
7775 struct iphdr *ip;
7776 struct tcphdr *tcph;
7777 int ret = 0, i;
7778
7779 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7780 rxdp))) {
7781 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7782 ip->saddr, ip->daddr);
7783 } else {
7784 return ret;
7785 }
7786
7787 tcph = (struct tcphdr *)*tcp;
7788 *tcp_len = get_l4_pyld_length(ip, tcph);
7789 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7790 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7791 if (l_lro->in_use) {
7792 if (check_for_socket_match(l_lro, ip, tcph))
7793 continue;
7794 /* Sock pair matched */
7795 *lro = l_lro;
7796
7797 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7798 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7799 "0x%x, actual 0x%x\n", __FUNCTION__,
7800 (*lro)->tcp_next_seq,
7801 ntohl(tcph->seq));
7802
7803 sp->mac_control.stats_info->
7804 sw_stat.outof_sequence_pkts++;
7805 ret = 2;
7806 break;
7807 }
7808
7809 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7810 ret = 1; /* Aggregate */
7811 else
7812 ret = 2; /* Flush both */
7813 break;
7814 }
7815 }
7816
7817 if (ret == 0) {
7818 /* Before searching for available LRO objects,
7819 * check if the pkt is L3/L4 aggregatable. If not
7820 * don't create new LRO session. Just send this
7821 * packet up.
7822 */
7823 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7824 return 5;
7825 }
7826
7827 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7828 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7829 if (!(l_lro->in_use)) {
7830 *lro = l_lro;
7831 ret = 3; /* Begin anew */
7832 break;
7833 }
7834 }
7835 }
7836
7837 if (ret == 0) { /* sessions exceeded */
7838 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7839 __FUNCTION__);
7840 *lro = NULL;
7841 return ret;
7842 }
7843
7844 switch (ret) {
7845 case 3:
7846 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7847 break;
7848 case 2:
7849 update_L3L4_header(sp, *lro);
7850 break;
7851 case 1:
7852 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7853 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7854 update_L3L4_header(sp, *lro);
7855 ret = 4; /* Flush the LRO */
7856 }
7857 break;
7858 default:
7859 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7860 __FUNCTION__);
7861 break;
7862 }
7863
7864 return ret;
7865}
7866
1ee6dd77 7867static void clear_lro_session(struct lro *lro)
7d3d0439 7868{
1ee6dd77 7869 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
7870
7871 memset(lro, 0, lro_struct_size);
7872}
7873
7874static void queue_rx_frame(struct sk_buff *skb)
7875{
7876 struct net_device *dev = skb->dev;
7877
7878 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
7879 if (napi)
7880 netif_receive_skb(skb);
7881 else
7882 netif_rx(skb);
7d3d0439
RA
7883}
7884
1ee6dd77
RB
7885static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7886 struct sk_buff *skb,
7d3d0439
RA
7887 u32 tcp_len)
7888{
75c30b13 7889 struct sk_buff *first = lro->parent;
7d3d0439
RA
7890
7891 first->len += tcp_len;
7892 first->data_len = lro->frags_len;
7893 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
7894 if (skb_shinfo(first)->frag_list)
7895 lro->last_frag->next = skb;
7d3d0439
RA
7896 else
7897 skb_shinfo(first)->frag_list = skb;
372cc597 7898 first->truesize += skb->truesize;
75c30b13 7899 lro->last_frag = skb;
7d3d0439
RA
7900 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7901 return;
7902}
d796fdb7
LV
7903
7904/**
7905 * s2io_io_error_detected - called when PCI error is detected
7906 * @pdev: Pointer to PCI device
8453d43f 7907 * @state: The current pci connection state
d796fdb7
LV
7908 *
7909 * This function is called after a PCI bus error affecting
7910 * this device has been detected.
7911 */
7912static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
7913 pci_channel_state_t state)
7914{
7915 struct net_device *netdev = pci_get_drvdata(pdev);
7916 struct s2io_nic *sp = netdev->priv;
7917
7918 netif_device_detach(netdev);
7919
7920 if (netif_running(netdev)) {
7921 /* Bring down the card, while avoiding PCI I/O */
7922 do_s2io_card_down(sp, 0);
d796fdb7
LV
7923 }
7924 pci_disable_device(pdev);
7925
7926 return PCI_ERS_RESULT_NEED_RESET;
7927}
7928
7929/**
7930 * s2io_io_slot_reset - called after the pci bus has been reset.
7931 * @pdev: Pointer to PCI device
7932 *
7933 * Restart the card from scratch, as if from a cold-boot.
7934 * At this point, the card has exprienced a hard reset,
7935 * followed by fixups by BIOS, and has its config space
7936 * set up identically to what it was at cold boot.
7937 */
7938static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
7939{
7940 struct net_device *netdev = pci_get_drvdata(pdev);
7941 struct s2io_nic *sp = netdev->priv;
7942
7943 if (pci_enable_device(pdev)) {
7944 printk(KERN_ERR "s2io: "
7945 "Cannot re-enable PCI device after reset.\n");
7946 return PCI_ERS_RESULT_DISCONNECT;
7947 }
7948
7949 pci_set_master(pdev);
7950 s2io_reset(sp);
7951
7952 return PCI_ERS_RESULT_RECOVERED;
7953}
7954
7955/**
7956 * s2io_io_resume - called when traffic can start flowing again.
7957 * @pdev: Pointer to PCI device
7958 *
7959 * This callback is called when the error recovery driver tells
7960 * us that its OK to resume normal operation.
7961 */
7962static void s2io_io_resume(struct pci_dev *pdev)
7963{
7964 struct net_device *netdev = pci_get_drvdata(pdev);
7965 struct s2io_nic *sp = netdev->priv;
7966
7967 if (netif_running(netdev)) {
7968 if (s2io_card_up(sp)) {
7969 printk(KERN_ERR "s2io: "
7970 "Can't bring device back up after reset.\n");
7971 return;
7972 }
7973
7974 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
7975 s2io_card_down(sp);
7976 printk(KERN_ERR "s2io: "
7977 "Can't resetore mac addr after reset.\n");
7978 return;
7979 }
7980 }
7981
7982 netif_device_attach(netdev);
7983 netif_wake_queue(netdev);
7984}