]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/sfc/efx.c
sfc: Reject packets from the kernel TX queue during a loopback self-test
[mirror_ubuntu-bionic-kernel.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30
31#define EFX_MAX_MTU (9 * 1024)
32
33/* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38static struct workqueue_struct *refill_workqueue;
39
1ab00629
SH
40/* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44static struct workqueue_struct *reset_workqueue;
45
8ceee660
BH
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52/*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
dc8cfa55 58static int lro = true;
8ceee660
BH
59module_param(lro, int, 0644);
60MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62/*
63 * Use separate channels for TX and RX events
64 *
28b581ab
NT
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
8ceee660 67 *
28b581ab 68 * This is only used in MSI-X interrupt mode
8ceee660 69 */
28b581ab
NT
70static unsigned int separate_tx_channels;
71module_param(separate_tx_channels, uint, 0644);
72MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
8ceee660
BH
74
75/* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78static int napi_weight = 64;
79
80/* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84unsigned int efx_monitor_interval = 1 * HZ;
85
8ceee660
BH
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
84ae48fe
BH
132static int phy_flash_cfg;
133module_param(phy_flash_cfg, int, 0644);
134MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
8ceee660
BH
136/**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141static void efx_remove_channel(struct efx_channel *channel);
142static void efx_remove_port(struct efx_nic *efx);
143static void efx_fini_napi(struct efx_nic *efx);
144static void efx_fini_channels(struct efx_nic *efx);
145
146#define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
3c78708f 148 if (efx->state == STATE_RUNNING) \
8ceee660
BH
149 ASSERT_RTNL(); \
150 } while (0)
151
152/**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158/* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
4d566063 165static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 166{
42cbe2d7
BH
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
8ceee660 169
42cbe2d7 170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 171 !channel->enabled))
42cbe2d7 172 return 0;
8ceee660 173
42cbe2d7
BH
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
8ceee660
BH
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
8ceee660
BH
185 efx_rx_strategy(channel);
186
42cbe2d7 187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 188
42cbe2d7 189 return rx_packets;
8ceee660
BH
190}
191
192/* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198static inline void efx_channel_processed(struct efx_channel *channel)
199{
5b9e207c
BH
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
dc8cfa55 203 channel->work_pending = false;
5b9e207c
BH
204 smp_wmb();
205
8ceee660
BH
206 falcon_eventq_read_ack(channel);
207}
208
209/* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214static int efx_poll(struct napi_struct *napi, int budget)
215{
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
42cbe2d7 223 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
224
225 if (rx_packets < budget) {
226 /* There is no race here; although napi_disable() will
288379f0 227 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
228 * since efx_channel_processed() will have no effect if
229 * interrupts have already been disabled.
230 */
288379f0 231 napi_complete(napi);
8ceee660
BH
232 efx_channel_processed(channel);
233 }
234
235 return rx_packets;
236}
237
238/* Process the eventq of the specified channel immediately on this CPU
239 *
240 * Disable hardware generated interrupts, wait for any existing
241 * processing to finish, then directly poll (and ack ) the eventq.
242 * Finally reenable NAPI and interrupts.
243 *
244 * Since we are touching interrupts the caller should hold the suspend lock
245 */
246void efx_process_channel_now(struct efx_channel *channel)
247{
248 struct efx_nic *efx = channel->efx;
249
250 BUG_ON(!channel->used_flags);
251 BUG_ON(!channel->enabled);
252
253 /* Disable interrupts and wait for ISRs to complete */
254 falcon_disable_interrupts(efx);
255 if (efx->legacy_irq)
256 synchronize_irq(efx->legacy_irq);
64ee3120 257 if (channel->irq)
8ceee660
BH
258 synchronize_irq(channel->irq);
259
260 /* Wait for any NAPI processing to complete */
261 napi_disable(&channel->napi_str);
262
263 /* Poll the channel */
91ad757c 264 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
265
266 /* Ack the eventq. This may cause an interrupt to be generated
267 * when they are reenabled */
268 efx_channel_processed(channel);
269
270 napi_enable(&channel->napi_str);
271 falcon_enable_interrupts(efx);
272}
273
274/* Create event queue
275 * Event queue memory allocations are done only once. If the channel
276 * is reset, the memory buffer will be reused; this guards against
277 * errors during channel reset and also simplifies interrupt handling.
278 */
279static int efx_probe_eventq(struct efx_channel *channel)
280{
281 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
282
283 return falcon_probe_eventq(channel);
284}
285
286/* Prepare channel's event queue */
bc3c90a2 287static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
288{
289 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
290
291 channel->eventq_read_ptr = 0;
292
bc3c90a2 293 falcon_init_eventq(channel);
8ceee660
BH
294}
295
296static void efx_fini_eventq(struct efx_channel *channel)
297{
298 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
299
300 falcon_fini_eventq(channel);
301}
302
303static void efx_remove_eventq(struct efx_channel *channel)
304{
305 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
306
307 falcon_remove_eventq(channel);
308}
309
310/**************************************************************************
311 *
312 * Channel handling
313 *
314 *************************************************************************/
315
8ceee660
BH
316static int efx_probe_channel(struct efx_channel *channel)
317{
318 struct efx_tx_queue *tx_queue;
319 struct efx_rx_queue *rx_queue;
320 int rc;
321
322 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
323
324 rc = efx_probe_eventq(channel);
325 if (rc)
326 goto fail1;
327
328 efx_for_each_channel_tx_queue(tx_queue, channel) {
329 rc = efx_probe_tx_queue(tx_queue);
330 if (rc)
331 goto fail2;
332 }
333
334 efx_for_each_channel_rx_queue(rx_queue, channel) {
335 rc = efx_probe_rx_queue(rx_queue);
336 if (rc)
337 goto fail3;
338 }
339
340 channel->n_rx_frm_trunc = 0;
341
342 return 0;
343
344 fail3:
345 efx_for_each_channel_rx_queue(rx_queue, channel)
346 efx_remove_rx_queue(rx_queue);
347 fail2:
348 efx_for_each_channel_tx_queue(tx_queue, channel)
349 efx_remove_tx_queue(tx_queue);
350 fail1:
351 return rc;
352}
353
354
56536e9c
BH
355static void efx_set_channel_names(struct efx_nic *efx)
356{
357 struct efx_channel *channel;
358 const char *type = "";
359 int number;
360
361 efx_for_each_channel(channel, efx) {
362 number = channel->channel;
363 if (efx->n_channels > efx->n_rx_queues) {
364 if (channel->channel < efx->n_rx_queues) {
365 type = "-rx";
366 } else {
367 type = "-tx";
368 number -= efx->n_rx_queues;
369 }
370 }
371 snprintf(channel->name, sizeof(channel->name),
372 "%s%s-%d", efx->name, type, number);
373 }
374}
375
8ceee660
BH
376/* Channels are shutdown and reinitialised whilst the NIC is running
377 * to propagate configuration changes (mtu, checksum offload), or
378 * to clear hardware error conditions
379 */
bc3c90a2 380static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
381{
382 struct efx_tx_queue *tx_queue;
383 struct efx_rx_queue *rx_queue;
384 struct efx_channel *channel;
8ceee660 385
f7f13b0b
BH
386 /* Calculate the rx buffer allocation parameters required to
387 * support the current MTU, including padding for header
388 * alignment and overruns.
389 */
390 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
391 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
392 efx->type->rx_buffer_padding);
393 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
394
395 /* Initialise the channels */
396 efx_for_each_channel(channel, efx) {
397 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
398
bc3c90a2 399 efx_init_eventq(channel);
8ceee660 400
bc3c90a2
BH
401 efx_for_each_channel_tx_queue(tx_queue, channel)
402 efx_init_tx_queue(tx_queue);
8ceee660
BH
403
404 /* The rx buffer allocation strategy is MTU dependent */
405 efx_rx_strategy(channel);
406
bc3c90a2
BH
407 efx_for_each_channel_rx_queue(rx_queue, channel)
408 efx_init_rx_queue(rx_queue);
8ceee660
BH
409
410 WARN_ON(channel->rx_pkt != NULL);
411 efx_rx_strategy(channel);
412 }
8ceee660
BH
413}
414
415/* This enables event queue processing and packet transmission.
416 *
417 * Note that this function is not allowed to fail, since that would
418 * introduce too much complexity into the suspend/resume path.
419 */
420static void efx_start_channel(struct efx_channel *channel)
421{
422 struct efx_rx_queue *rx_queue;
423
424 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
425
426 if (!(channel->efx->net_dev->flags & IFF_UP))
427 netif_napi_add(channel->napi_dev, &channel->napi_str,
428 efx_poll, napi_weight);
429
5b9e207c
BH
430 /* The interrupt handler for this channel may set work_pending
431 * as soon as we enable it. Make sure it's cleared before
432 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
433 channel->work_pending = false;
434 channel->enabled = true;
5b9e207c 435 smp_wmb();
8ceee660
BH
436
437 napi_enable(&channel->napi_str);
438
439 /* Load up RX descriptors */
440 efx_for_each_channel_rx_queue(rx_queue, channel)
441 efx_fast_push_rx_descriptors(rx_queue);
442}
443
444/* This disables event queue processing and packet transmission.
445 * This function does not guarantee that all queue processing
446 * (e.g. RX refill) is complete.
447 */
448static void efx_stop_channel(struct efx_channel *channel)
449{
450 struct efx_rx_queue *rx_queue;
451
452 if (!channel->enabled)
453 return;
454
455 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
456
dc8cfa55 457 channel->enabled = false;
8ceee660
BH
458 napi_disable(&channel->napi_str);
459
460 /* Ensure that any worker threads have exited or will be no-ops */
461 efx_for_each_channel_rx_queue(rx_queue, channel) {
462 spin_lock_bh(&rx_queue->add_lock);
463 spin_unlock_bh(&rx_queue->add_lock);
464 }
465}
466
467static void efx_fini_channels(struct efx_nic *efx)
468{
469 struct efx_channel *channel;
470 struct efx_tx_queue *tx_queue;
471 struct efx_rx_queue *rx_queue;
6bc5d3a9 472 int rc;
8ceee660
BH
473
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
476
6bc5d3a9
BH
477 rc = falcon_flush_queues(efx);
478 if (rc)
479 EFX_ERR(efx, "failed to flush queues\n");
480 else
481 EFX_LOG(efx, "successfully flushed all queues\n");
482
8ceee660
BH
483 efx_for_each_channel(channel, efx) {
484 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
485
486 efx_for_each_channel_rx_queue(rx_queue, channel)
487 efx_fini_rx_queue(rx_queue);
488 efx_for_each_channel_tx_queue(tx_queue, channel)
489 efx_fini_tx_queue(tx_queue);
8ceee660
BH
490 efx_fini_eventq(channel);
491 }
492}
493
494static void efx_remove_channel(struct efx_channel *channel)
495{
496 struct efx_tx_queue *tx_queue;
497 struct efx_rx_queue *rx_queue;
498
499 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
500
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_remove_rx_queue(rx_queue);
503 efx_for_each_channel_tx_queue(tx_queue, channel)
504 efx_remove_tx_queue(tx_queue);
505 efx_remove_eventq(channel);
506
507 channel->used_flags = 0;
508}
509
510void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
511{
512 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
513}
514
515/**************************************************************************
516 *
517 * Port handling
518 *
519 **************************************************************************/
520
521/* This ensures that the kernel is kept informed (via
522 * netif_carrier_on/off) of the link status, and also maintains the
523 * link status's stop on the port's TX queue.
524 */
525static void efx_link_status_changed(struct efx_nic *efx)
526{
8ceee660
BH
527 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
528 * that no events are triggered between unregister_netdev() and the
529 * driver unloading. A more general condition is that NETDEV_CHANGE
530 * can only be generated between NETDEV_UP and NETDEV_DOWN */
531 if (!netif_running(efx->net_dev))
532 return;
533
8c8661e4
BH
534 if (efx->port_inhibited) {
535 netif_carrier_off(efx->net_dev);
536 return;
537 }
538
dc8cfa55 539 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
540 efx->n_link_state_changes++;
541
542 if (efx->link_up)
543 netif_carrier_on(efx->net_dev);
544 else
545 netif_carrier_off(efx->net_dev);
546 }
547
548 /* Status message for kernel log */
549 if (efx->link_up) {
f31a45d2
BH
550 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
551 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
552 efx->net_dev->mtu,
553 (efx->promiscuous ? " [PROMISC]" : ""));
554 } else {
555 EFX_INFO(efx, "link down\n");
556 }
557
558}
559
560/* This call reinitialises the MAC to pick up new PHY settings. The
561 * caller must hold the mac_lock */
8c8661e4 562void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
563{
564 WARN_ON(!mutex_is_locked(&efx->mac_lock));
565
566 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
567 raw_smp_processor_id());
568
a816f75a
BH
569 /* Serialise the promiscuous flag with efx_set_multicast_list. */
570 if (efx_dev_registered(efx)) {
571 netif_addr_lock_bh(efx->net_dev);
572 netif_addr_unlock_bh(efx->net_dev);
573 }
574
177dfcd8
BH
575 falcon_deconfigure_mac_wrapper(efx);
576
577 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
578 if (LOOPBACK_INTERNAL(efx))
579 efx->phy_mode |= PHY_MODE_TX_DISABLED;
580 else
581 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
582 efx->phy_op->reconfigure(efx);
583
584 if (falcon_switch_mac(efx))
585 goto fail;
586
587 efx->mac_op->reconfigure(efx);
8ceee660
BH
588
589 /* Inform kernel of loss/gain of carrier */
590 efx_link_status_changed(efx);
177dfcd8
BH
591 return;
592
593fail:
594 EFX_ERR(efx, "failed to reconfigure MAC\n");
595 efx->phy_op->fini(efx);
596 efx->port_initialized = false;
8ceee660
BH
597}
598
599/* Reinitialise the MAC to pick up new PHY settings, even if the port is
600 * disabled. */
601void efx_reconfigure_port(struct efx_nic *efx)
602{
603 EFX_ASSERT_RESET_SERIALISED(efx);
604
605 mutex_lock(&efx->mac_lock);
606 __efx_reconfigure_port(efx);
607 mutex_unlock(&efx->mac_lock);
608}
609
610/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
611 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
612 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
766ca0fa 613static void efx_phy_work(struct work_struct *data)
8ceee660 614{
766ca0fa 615 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
8ceee660
BH
616
617 mutex_lock(&efx->mac_lock);
618 if (efx->port_enabled)
619 __efx_reconfigure_port(efx);
620 mutex_unlock(&efx->mac_lock);
621}
622
766ca0fa
BH
623static void efx_mac_work(struct work_struct *data)
624{
625 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
626
627 mutex_lock(&efx->mac_lock);
628 if (efx->port_enabled)
629 efx->mac_op->irq(efx);
630 mutex_unlock(&efx->mac_lock);
631}
632
8ceee660
BH
633static int efx_probe_port(struct efx_nic *efx)
634{
635 int rc;
636
637 EFX_LOG(efx, "create port\n");
638
639 /* Connect up MAC/PHY operations table and read MAC address */
640 rc = falcon_probe_port(efx);
641 if (rc)
642 goto err;
643
84ae48fe
BH
644 if (phy_flash_cfg)
645 efx->phy_mode = PHY_MODE_SPECIAL;
646
8ceee660
BH
647 /* Sanity check MAC address */
648 if (is_valid_ether_addr(efx->mac_address)) {
649 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
650 } else {
e174961c
JB
651 EFX_ERR(efx, "invalid MAC address %pM\n",
652 efx->mac_address);
8ceee660
BH
653 if (!allow_bad_hwaddr) {
654 rc = -EINVAL;
655 goto err;
656 }
657 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
658 EFX_INFO(efx, "using locally-generated MAC %pM\n",
659 efx->net_dev->dev_addr);
8ceee660
BH
660 }
661
662 return 0;
663
664 err:
665 efx_remove_port(efx);
666 return rc;
667}
668
669static int efx_init_port(struct efx_nic *efx)
670{
671 int rc;
672
673 EFX_LOG(efx, "init port\n");
674
177dfcd8 675 rc = efx->phy_op->init(efx);
8ceee660
BH
676 if (rc)
677 return rc;
177dfcd8 678 mutex_lock(&efx->mac_lock);
4b988280 679 efx->phy_op->reconfigure(efx);
177dfcd8
BH
680 rc = falcon_switch_mac(efx);
681 mutex_unlock(&efx->mac_lock);
682 if (rc)
683 goto fail;
684 efx->mac_op->reconfigure(efx);
8ceee660 685
dc8cfa55 686 efx->port_initialized = true;
1974cc20 687 efx_stats_enable(efx);
8ceee660 688 return 0;
177dfcd8
BH
689
690fail:
691 efx->phy_op->fini(efx);
692 return rc;
8ceee660
BH
693}
694
695/* Allow efx_reconfigure_port() to be scheduled, and close the window
696 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766ca0fa 697 * efx_phy_work()/efx_mac_work() may have been cancelled */
8ceee660
BH
698static void efx_start_port(struct efx_nic *efx)
699{
700 EFX_LOG(efx, "start port\n");
701 BUG_ON(efx->port_enabled);
702
703 mutex_lock(&efx->mac_lock);
dc8cfa55 704 efx->port_enabled = true;
8ceee660 705 __efx_reconfigure_port(efx);
766ca0fa 706 efx->mac_op->irq(efx);
8ceee660
BH
707 mutex_unlock(&efx->mac_lock);
708}
709
766ca0fa
BH
710/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
711 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
712 * and efx_mac_work may still be scheduled via NAPI processing until
713 * efx_flush_all() is called */
8ceee660
BH
714static void efx_stop_port(struct efx_nic *efx)
715{
716 EFX_LOG(efx, "stop port\n");
717
718 mutex_lock(&efx->mac_lock);
dc8cfa55 719 efx->port_enabled = false;
8ceee660
BH
720 mutex_unlock(&efx->mac_lock);
721
722 /* Serialise against efx_set_multicast_list() */
55668611 723 if (efx_dev_registered(efx)) {
b9e40857
DM
724 netif_addr_lock_bh(efx->net_dev);
725 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
726 }
727}
728
729static void efx_fini_port(struct efx_nic *efx)
730{
731 EFX_LOG(efx, "shut down port\n");
732
733 if (!efx->port_initialized)
734 return;
735
1974cc20 736 efx_stats_disable(efx);
177dfcd8 737 efx->phy_op->fini(efx);
dc8cfa55 738 efx->port_initialized = false;
8ceee660 739
dc8cfa55 740 efx->link_up = false;
8ceee660
BH
741 efx_link_status_changed(efx);
742}
743
744static void efx_remove_port(struct efx_nic *efx)
745{
746 EFX_LOG(efx, "destroying port\n");
747
748 falcon_remove_port(efx);
749}
750
751/**************************************************************************
752 *
753 * NIC handling
754 *
755 **************************************************************************/
756
757/* This configures the PCI device to enable I/O and DMA. */
758static int efx_init_io(struct efx_nic *efx)
759{
760 struct pci_dev *pci_dev = efx->pci_dev;
761 dma_addr_t dma_mask = efx->type->max_dma_mask;
762 int rc;
763
764 EFX_LOG(efx, "initialising I/O\n");
765
766 rc = pci_enable_device(pci_dev);
767 if (rc) {
768 EFX_ERR(efx, "failed to enable PCI device\n");
769 goto fail1;
770 }
771
772 pci_set_master(pci_dev);
773
774 /* Set the PCI DMA mask. Try all possibilities from our
775 * genuine mask down to 32 bits, because some architectures
776 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
777 * masks event though they reject 46 bit masks.
778 */
779 while (dma_mask > 0x7fffffffUL) {
780 if (pci_dma_supported(pci_dev, dma_mask) &&
781 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
782 break;
783 dma_mask >>= 1;
784 }
785 if (rc) {
786 EFX_ERR(efx, "could not find a suitable DMA mask\n");
787 goto fail2;
788 }
789 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
790 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
791 if (rc) {
792 /* pci_set_consistent_dma_mask() is not *allowed* to
793 * fail with a mask that pci_set_dma_mask() accepted,
794 * but just in case...
795 */
796 EFX_ERR(efx, "failed to set consistent DMA mask\n");
797 goto fail2;
798 }
799
800 efx->membase_phys = pci_resource_start(efx->pci_dev,
801 efx->type->mem_bar);
802 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
803 if (rc) {
804 EFX_ERR(efx, "request for memory BAR failed\n");
805 rc = -EIO;
806 goto fail3;
807 }
808 efx->membase = ioremap_nocache(efx->membase_phys,
809 efx->type->mem_map_size);
810 if (!efx->membase) {
086ea356
BH
811 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
812 efx->type->mem_bar,
813 (unsigned long long)efx->membase_phys,
8ceee660
BH
814 efx->type->mem_map_size);
815 rc = -ENOMEM;
816 goto fail4;
817 }
086ea356
BH
818 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
819 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
820 efx->type->mem_map_size, efx->membase);
8ceee660
BH
821
822 return 0;
823
824 fail4:
e1074a0d 825 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 826 fail3:
2c118e0f 827 efx->membase_phys = 0;
8ceee660
BH
828 fail2:
829 pci_disable_device(efx->pci_dev);
830 fail1:
831 return rc;
832}
833
834static void efx_fini_io(struct efx_nic *efx)
835{
836 EFX_LOG(efx, "shutting down I/O\n");
837
838 if (efx->membase) {
839 iounmap(efx->membase);
840 efx->membase = NULL;
841 }
842
843 if (efx->membase_phys) {
844 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 845 efx->membase_phys = 0;
8ceee660
BH
846 }
847
848 pci_disable_device(efx->pci_dev);
849}
850
46123d04
BH
851/* Get number of RX queues wanted. Return number of online CPU
852 * packages in the expectation that an IRQ balancer will spread
853 * interrupts across them. */
854static int efx_wanted_rx_queues(void)
855{
856 cpumask_t core_mask;
857 int count;
858 int cpu;
859
860 cpus_clear(core_mask);
861 count = 0;
862 for_each_online_cpu(cpu) {
863 if (!cpu_isset(cpu, core_mask)) {
864 ++count;
865 cpus_or(core_mask, core_mask,
866 topology_core_siblings(cpu));
867 }
868 }
869
870 return count;
871}
872
873/* Probe the number and type of interrupts we are able to obtain, and
874 * the resulting numbers of channels and RX queues.
875 */
8ceee660
BH
876static void efx_probe_interrupts(struct efx_nic *efx)
877{
46123d04
BH
878 int max_channels =
879 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
880 int rc, i;
881
882 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
883 struct msix_entry xentries[EFX_MAX_CHANNELS];
884 int wanted_ints;
28b581ab 885 int rx_queues;
aa6ef27e 886
46123d04
BH
887 /* We want one RX queue and interrupt per CPU package
888 * (or as specified by the rss_cpus module parameter).
889 * We will need one channel per interrupt.
890 */
28b581ab
NT
891 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
892 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
893 wanted_ints = min(wanted_ints, max_channels);
8ceee660 894
28b581ab 895 for (i = 0; i < wanted_ints; i++)
8ceee660 896 xentries[i].entry = i;
28b581ab 897 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 898 if (rc > 0) {
28b581ab
NT
899 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
900 " available (%d < %d).\n", rc, wanted_ints);
901 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
902 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
903 wanted_ints = rc;
8ceee660 904 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 905 wanted_ints);
8ceee660
BH
906 }
907
908 if (rc == 0) {
28b581ab
NT
909 efx->n_rx_queues = min(rx_queues, wanted_ints);
910 efx->n_channels = wanted_ints;
911 for (i = 0; i < wanted_ints; i++)
8ceee660 912 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
913 } else {
914 /* Fall back to single channel MSI */
915 efx->interrupt_mode = EFX_INT_MODE_MSI;
916 EFX_ERR(efx, "could not enable MSI-X\n");
917 }
918 }
919
920 /* Try single interrupt MSI */
921 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 922 efx->n_rx_queues = 1;
28b581ab 923 efx->n_channels = 1;
8ceee660
BH
924 rc = pci_enable_msi(efx->pci_dev);
925 if (rc == 0) {
926 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
927 } else {
928 EFX_ERR(efx, "could not enable MSI\n");
929 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
930 }
931 }
932
933 /* Assume legacy interrupts */
934 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 935 efx->n_rx_queues = 1;
28b581ab 936 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
937 efx->legacy_irq = efx->pci_dev->irq;
938 }
939}
940
941static void efx_remove_interrupts(struct efx_nic *efx)
942{
943 struct efx_channel *channel;
944
945 /* Remove MSI/MSI-X interrupts */
64ee3120 946 efx_for_each_channel(channel, efx)
8ceee660
BH
947 channel->irq = 0;
948 pci_disable_msi(efx->pci_dev);
949 pci_disable_msix(efx->pci_dev);
950
951 /* Remove legacy interrupt */
952 efx->legacy_irq = 0;
953}
954
8831da7b 955static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
956{
957 struct efx_tx_queue *tx_queue;
958 struct efx_rx_queue *rx_queue;
8ceee660 959
60ac1065 960 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
961 if (separate_tx_channels)
962 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
963 else
964 tx_queue->channel = &efx->channel[0];
965 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
966 }
8ceee660 967
8831da7b
BH
968 efx_for_each_rx_queue(rx_queue, efx) {
969 rx_queue->channel = &efx->channel[rx_queue->queue];
970 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
971 }
972}
973
974static int efx_probe_nic(struct efx_nic *efx)
975{
976 int rc;
977
978 EFX_LOG(efx, "creating NIC\n");
979
980 /* Carry out hardware-type specific initialisation */
981 rc = falcon_probe_nic(efx);
982 if (rc)
983 return rc;
984
985 /* Determine the number of channels and RX queues by trying to hook
986 * in MSI-X interrupts. */
987 efx_probe_interrupts(efx);
988
8831da7b 989 efx_set_channels(efx);
8ceee660
BH
990
991 /* Initialise the interrupt moderation settings */
992 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
993
994 return 0;
995}
996
997static void efx_remove_nic(struct efx_nic *efx)
998{
999 EFX_LOG(efx, "destroying NIC\n");
1000
1001 efx_remove_interrupts(efx);
1002 falcon_remove_nic(efx);
1003}
1004
1005/**************************************************************************
1006 *
1007 * NIC startup/shutdown
1008 *
1009 *************************************************************************/
1010
1011static int efx_probe_all(struct efx_nic *efx)
1012{
1013 struct efx_channel *channel;
1014 int rc;
1015
1016 /* Create NIC */
1017 rc = efx_probe_nic(efx);
1018 if (rc) {
1019 EFX_ERR(efx, "failed to create NIC\n");
1020 goto fail1;
1021 }
1022
1023 /* Create port */
1024 rc = efx_probe_port(efx);
1025 if (rc) {
1026 EFX_ERR(efx, "failed to create port\n");
1027 goto fail2;
1028 }
1029
1030 /* Create channels */
1031 efx_for_each_channel(channel, efx) {
1032 rc = efx_probe_channel(channel);
1033 if (rc) {
1034 EFX_ERR(efx, "failed to create channel %d\n",
1035 channel->channel);
1036 goto fail3;
1037 }
1038 }
56536e9c 1039 efx_set_channel_names(efx);
8ceee660
BH
1040
1041 return 0;
1042
1043 fail3:
1044 efx_for_each_channel(channel, efx)
1045 efx_remove_channel(channel);
1046 efx_remove_port(efx);
1047 fail2:
1048 efx_remove_nic(efx);
1049 fail1:
1050 return rc;
1051}
1052
1053/* Called after previous invocation(s) of efx_stop_all, restarts the
1054 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1055 * and ensures that the port is scheduled to be reconfigured.
1056 * This function is safe to call multiple times when the NIC is in any
1057 * state. */
1058static void efx_start_all(struct efx_nic *efx)
1059{
1060 struct efx_channel *channel;
1061
1062 EFX_ASSERT_RESET_SERIALISED(efx);
1063
1064 /* Check that it is appropriate to restart the interface. All
1065 * of these flags are safe to read under just the rtnl lock */
1066 if (efx->port_enabled)
1067 return;
1068 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1069 return;
55668611 1070 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1071 return;
1072
1073 /* Mark the port as enabled so port reconfigurations can start, then
1074 * restart the transmit interface early so the watchdog timer stops */
1075 efx_start_port(efx);
dacccc74
SH
1076 if (efx_dev_registered(efx))
1077 efx_wake_queue(efx);
8ceee660
BH
1078
1079 efx_for_each_channel(channel, efx)
1080 efx_start_channel(channel);
1081
1082 falcon_enable_interrupts(efx);
1083
1084 /* Start hardware monitor if we're in RUNNING */
1085 if (efx->state == STATE_RUNNING)
1086 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1087 efx_monitor_interval);
1088}
1089
1090/* Flush all delayed work. Should only be called when no more delayed work
1091 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1092 * since we're holding the rtnl_lock at this point. */
1093static void efx_flush_all(struct efx_nic *efx)
1094{
1095 struct efx_rx_queue *rx_queue;
1096
1097 /* Make sure the hardware monitor is stopped */
1098 cancel_delayed_work_sync(&efx->monitor_work);
1099
1100 /* Ensure that all RX slow refills are complete. */
b3475645 1101 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1102 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1103
1104 /* Stop scheduled port reconfigurations */
766ca0fa
BH
1105 cancel_work_sync(&efx->mac_work);
1106 cancel_work_sync(&efx->phy_work);
8ceee660
BH
1107
1108}
1109
1110/* Quiesce hardware and software without bringing the link down.
1111 * Safe to call multiple times, when the nic and interface is in any
1112 * state. The caller is guaranteed to subsequently be in a position
1113 * to modify any hardware and software state they see fit without
1114 * taking locks. */
1115static void efx_stop_all(struct efx_nic *efx)
1116{
1117 struct efx_channel *channel;
1118
1119 EFX_ASSERT_RESET_SERIALISED(efx);
1120
1121 /* port_enabled can be read safely under the rtnl lock */
1122 if (!efx->port_enabled)
1123 return;
1124
1125 /* Disable interrupts and wait for ISR to complete */
1126 falcon_disable_interrupts(efx);
1127 if (efx->legacy_irq)
1128 synchronize_irq(efx->legacy_irq);
64ee3120 1129 efx_for_each_channel(channel, efx) {
8ceee660
BH
1130 if (channel->irq)
1131 synchronize_irq(channel->irq);
b3475645 1132 }
8ceee660
BH
1133
1134 /* Stop all NAPI processing and synchronous rx refills */
1135 efx_for_each_channel(channel, efx)
1136 efx_stop_channel(channel);
1137
1138 /* Stop all asynchronous port reconfigurations. Since all
1139 * event processing has already been stopped, there is no
1140 * window to loose phy events */
1141 efx_stop_port(efx);
1142
766ca0fa 1143 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
8ceee660
BH
1144 efx_flush_all(efx);
1145
1146 /* Isolate the MAC from the TX and RX engines, so that queue
1147 * flushes will complete in a timely fashion. */
8ceee660
BH
1148 falcon_drain_tx_fifo(efx);
1149
1150 /* Stop the kernel transmit interface late, so the watchdog
1151 * timer isn't ticking over the flush */
55668611 1152 if (efx_dev_registered(efx)) {
dacccc74 1153 efx_stop_queue(efx);
8ceee660
BH
1154 netif_tx_lock_bh(efx->net_dev);
1155 netif_tx_unlock_bh(efx->net_dev);
1156 }
1157}
1158
1159static void efx_remove_all(struct efx_nic *efx)
1160{
1161 struct efx_channel *channel;
1162
1163 efx_for_each_channel(channel, efx)
1164 efx_remove_channel(channel);
1165 efx_remove_port(efx);
1166 efx_remove_nic(efx);
1167}
1168
1169/* A convinience function to safely flush all the queues */
bc3c90a2 1170void efx_flush_queues(struct efx_nic *efx)
8ceee660 1171{
8ceee660
BH
1172 EFX_ASSERT_RESET_SERIALISED(efx);
1173
1174 efx_stop_all(efx);
1175
1176 efx_fini_channels(efx);
bc3c90a2 1177 efx_init_channels(efx);
8ceee660
BH
1178
1179 efx_start_all(efx);
8ceee660
BH
1180}
1181
1182/**************************************************************************
1183 *
1184 * Interrupt moderation
1185 *
1186 **************************************************************************/
1187
1188/* Set interrupt moderation parameters */
1189void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1190{
1191 struct efx_tx_queue *tx_queue;
1192 struct efx_rx_queue *rx_queue;
1193
1194 EFX_ASSERT_RESET_SERIALISED(efx);
1195
1196 efx_for_each_tx_queue(tx_queue, efx)
1197 tx_queue->channel->irq_moderation = tx_usecs;
1198
1199 efx_for_each_rx_queue(rx_queue, efx)
1200 rx_queue->channel->irq_moderation = rx_usecs;
1201}
1202
1203/**************************************************************************
1204 *
1205 * Hardware monitor
1206 *
1207 **************************************************************************/
1208
1209/* Run periodically off the general workqueue. Serialised against
1210 * efx_reconfigure_port via the mac_lock */
1211static void efx_monitor(struct work_struct *data)
1212{
1213 struct efx_nic *efx = container_of(data, struct efx_nic,
1214 monitor_work.work);
766ca0fa 1215 int rc;
8ceee660
BH
1216
1217 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1218 raw_smp_processor_id());
1219
8ceee660
BH
1220 /* If the mac_lock is already held then it is likely a port
1221 * reconfiguration is already in place, which will likely do
1222 * most of the work of check_hw() anyway. */
766ca0fa
BH
1223 if (!mutex_trylock(&efx->mac_lock))
1224 goto out_requeue;
1225 if (!efx->port_enabled)
1226 goto out_unlock;
1227 rc = efx->board_info.monitor(efx);
1228 if (rc) {
1229 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1230 (rc == -ERANGE) ? "reported fault" : "failed");
1231 efx->phy_mode |= PHY_MODE_LOW_POWER;
1232 falcon_sim_phy_event(efx);
8ceee660 1233 }
766ca0fa
BH
1234 efx->phy_op->poll(efx);
1235 efx->mac_op->poll(efx);
8ceee660 1236
766ca0fa 1237out_unlock:
8ceee660 1238 mutex_unlock(&efx->mac_lock);
766ca0fa 1239out_requeue:
8ceee660
BH
1240 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1241 efx_monitor_interval);
1242}
1243
1244/**************************************************************************
1245 *
1246 * ioctls
1247 *
1248 *************************************************************************/
1249
1250/* Net device ioctl
1251 * Context: process, rtnl_lock() held.
1252 */
1253static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1254{
767e468c 1255 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1256
1257 EFX_ASSERT_RESET_SERIALISED(efx);
1258
1259 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1260}
1261
1262/**************************************************************************
1263 *
1264 * NAPI interface
1265 *
1266 **************************************************************************/
1267
1268static int efx_init_napi(struct efx_nic *efx)
1269{
1270 struct efx_channel *channel;
8ceee660
BH
1271
1272 efx_for_each_channel(channel, efx) {
1273 channel->napi_dev = efx->net_dev;
8ceee660
BH
1274 }
1275 return 0;
8ceee660
BH
1276}
1277
1278static void efx_fini_napi(struct efx_nic *efx)
1279{
1280 struct efx_channel *channel;
1281
1282 efx_for_each_channel(channel, efx) {
8ceee660
BH
1283 channel->napi_dev = NULL;
1284 }
1285}
1286
1287/**************************************************************************
1288 *
1289 * Kernel netpoll interface
1290 *
1291 *************************************************************************/
1292
1293#ifdef CONFIG_NET_POLL_CONTROLLER
1294
1295/* Although in the common case interrupts will be disabled, this is not
1296 * guaranteed. However, all our work happens inside the NAPI callback,
1297 * so no locking is required.
1298 */
1299static void efx_netpoll(struct net_device *net_dev)
1300{
767e468c 1301 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1302 struct efx_channel *channel;
1303
64ee3120 1304 efx_for_each_channel(channel, efx)
8ceee660
BH
1305 efx_schedule_channel(channel);
1306}
1307
1308#endif
1309
1310/**************************************************************************
1311 *
1312 * Kernel net device interface
1313 *
1314 *************************************************************************/
1315
1316/* Context: process, rtnl_lock() held. */
1317static int efx_net_open(struct net_device *net_dev)
1318{
767e468c 1319 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1320 EFX_ASSERT_RESET_SERIALISED(efx);
1321
1322 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1323 raw_smp_processor_id());
1324
f4bd954e
BH
1325 if (efx->state == STATE_DISABLED)
1326 return -EIO;
f8b87c17
BH
1327 if (efx->phy_mode & PHY_MODE_SPECIAL)
1328 return -EBUSY;
1329
8ceee660
BH
1330 efx_start_all(efx);
1331 return 0;
1332}
1333
1334/* Context: process, rtnl_lock() held.
1335 * Note that the kernel will ignore our return code; this method
1336 * should really be a void.
1337 */
1338static int efx_net_stop(struct net_device *net_dev)
1339{
767e468c 1340 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1341
1342 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1343 raw_smp_processor_id());
1344
f4bd954e
BH
1345 if (efx->state != STATE_DISABLED) {
1346 /* Stop the device and flush all the channels */
1347 efx_stop_all(efx);
1348 efx_fini_channels(efx);
1349 efx_init_channels(efx);
1350 }
8ceee660
BH
1351
1352 return 0;
1353}
1354
1974cc20
BH
1355void efx_stats_disable(struct efx_nic *efx)
1356{
1357 spin_lock(&efx->stats_lock);
1358 ++efx->stats_disable_count;
1359 spin_unlock(&efx->stats_lock);
1360}
1361
1362void efx_stats_enable(struct efx_nic *efx)
1363{
1364 spin_lock(&efx->stats_lock);
1365 --efx->stats_disable_count;
1366 spin_unlock(&efx->stats_lock);
1367}
1368
5b9e207c 1369/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1370static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1371{
767e468c 1372 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1373 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1374 struct net_device_stats *stats = &net_dev->stats;
1375
5b9e207c 1376 /* Update stats if possible, but do not wait if another thread
1974cc20
BH
1377 * is updating them or if MAC stats fetches are temporarily
1378 * disabled; slightly stale stats are acceptable.
5b9e207c 1379 */
8ceee660
BH
1380 if (!spin_trylock(&efx->stats_lock))
1381 return stats;
1974cc20 1382 if (!efx->stats_disable_count) {
177dfcd8 1383 efx->mac_op->update_stats(efx);
8ceee660
BH
1384 falcon_update_nic_stats(efx);
1385 }
1386 spin_unlock(&efx->stats_lock);
1387
1388 stats->rx_packets = mac_stats->rx_packets;
1389 stats->tx_packets = mac_stats->tx_packets;
1390 stats->rx_bytes = mac_stats->rx_bytes;
1391 stats->tx_bytes = mac_stats->tx_bytes;
1392 stats->multicast = mac_stats->rx_multicast;
1393 stats->collisions = mac_stats->tx_collision;
1394 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1395 mac_stats->rx_length_error);
1396 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1397 stats->rx_crc_errors = mac_stats->rx_bad;
1398 stats->rx_frame_errors = mac_stats->rx_align_error;
1399 stats->rx_fifo_errors = mac_stats->rx_overflow;
1400 stats->rx_missed_errors = mac_stats->rx_missed;
1401 stats->tx_window_errors = mac_stats->tx_late_collision;
1402
1403 stats->rx_errors = (stats->rx_length_errors +
1404 stats->rx_over_errors +
1405 stats->rx_crc_errors +
1406 stats->rx_frame_errors +
1407 stats->rx_fifo_errors +
1408 stats->rx_missed_errors +
1409 mac_stats->rx_symbol_error);
1410 stats->tx_errors = (stats->tx_window_errors +
1411 mac_stats->tx_bad);
1412
1413 return stats;
1414}
1415
1416/* Context: netif_tx_lock held, BHs disabled. */
1417static void efx_watchdog(struct net_device *net_dev)
1418{
767e468c 1419 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1420
739bb23d
BH
1421 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1422 " resetting channels\n",
1423 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1424
739bb23d 1425 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1426}
1427
1428
1429/* Context: process, rtnl_lock() held. */
1430static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1431{
767e468c 1432 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1433 int rc = 0;
1434
1435 EFX_ASSERT_RESET_SERIALISED(efx);
1436
1437 if (new_mtu > EFX_MAX_MTU)
1438 return -EINVAL;
1439
1440 efx_stop_all(efx);
1441
1442 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1443
1444 efx_fini_channels(efx);
1445 net_dev->mtu = new_mtu;
bc3c90a2 1446 efx_init_channels(efx);
8ceee660
BH
1447
1448 efx_start_all(efx);
1449 return rc;
8ceee660
BH
1450}
1451
1452static int efx_set_mac_address(struct net_device *net_dev, void *data)
1453{
767e468c 1454 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1455 struct sockaddr *addr = data;
1456 char *new_addr = addr->sa_data;
1457
1458 EFX_ASSERT_RESET_SERIALISED(efx);
1459
1460 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1461 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1462 new_addr);
8ceee660
BH
1463 return -EINVAL;
1464 }
1465
1466 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1467
1468 /* Reconfigure the MAC */
1469 efx_reconfigure_port(efx);
1470
1471 return 0;
1472}
1473
a816f75a 1474/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1475static void efx_set_multicast_list(struct net_device *net_dev)
1476{
767e468c 1477 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1478 struct dev_mc_list *mc_list = net_dev->mc_list;
1479 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1480 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1481 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1482 u32 crc;
1483 int bit;
1484 int i;
1485
a816f75a 1486 efx->promiscuous = promiscuous;
8ceee660
BH
1487
1488 /* Build multicast hash table */
1489 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1490 memset(mc_hash, 0xff, sizeof(*mc_hash));
1491 } else {
1492 memset(mc_hash, 0x00, sizeof(*mc_hash));
1493 for (i = 0; i < net_dev->mc_count; i++) {
1494 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1495 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1496 set_bit_le(bit, mc_hash->byte);
1497 mc_list = mc_list->next;
1498 }
1499 }
1500
a816f75a
BH
1501 if (!efx->port_enabled)
1502 /* Delay pushing settings until efx_start_port() */
1503 return;
1504
1505 if (changed)
766ca0fa 1506 queue_work(efx->workqueue, &efx->phy_work);
a816f75a 1507
8ceee660
BH
1508 /* Create and activate new global multicast hash table */
1509 falcon_set_multicast_hash(efx);
1510}
1511
c3ecb9f3
SH
1512static const struct net_device_ops efx_netdev_ops = {
1513 .ndo_open = efx_net_open,
1514 .ndo_stop = efx_net_stop,
1515 .ndo_get_stats = efx_net_stats,
1516 .ndo_tx_timeout = efx_watchdog,
1517 .ndo_start_xmit = efx_hard_start_xmit,
1518 .ndo_validate_addr = eth_validate_addr,
1519 .ndo_do_ioctl = efx_ioctl,
1520 .ndo_change_mtu = efx_change_mtu,
1521 .ndo_set_mac_address = efx_set_mac_address,
1522 .ndo_set_multicast_list = efx_set_multicast_list,
1523#ifdef CONFIG_NET_POLL_CONTROLLER
1524 .ndo_poll_controller = efx_netpoll,
1525#endif
1526};
1527
7dde596e
BH
1528static void efx_update_name(struct efx_nic *efx)
1529{
1530 strcpy(efx->name, efx->net_dev->name);
1531 efx_mtd_rename(efx);
1532 efx_set_channel_names(efx);
1533}
1534
8ceee660
BH
1535static int efx_netdev_event(struct notifier_block *this,
1536 unsigned long event, void *ptr)
1537{
d3208b5e 1538 struct net_device *net_dev = ptr;
8ceee660 1539
7dde596e
BH
1540 if (net_dev->netdev_ops == &efx_netdev_ops &&
1541 event == NETDEV_CHANGENAME)
1542 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1543
1544 return NOTIFY_DONE;
1545}
1546
1547static struct notifier_block efx_netdev_notifier = {
1548 .notifier_call = efx_netdev_event,
1549};
1550
06d5e193
BH
1551static ssize_t
1552show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1553{
1554 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1555 return sprintf(buf, "%d\n", efx->phy_type);
1556}
1557static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1558
8ceee660
BH
1559static int efx_register_netdev(struct efx_nic *efx)
1560{
1561 struct net_device *net_dev = efx->net_dev;
1562 int rc;
1563
1564 net_dev->watchdog_timeo = 5 * HZ;
1565 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1566 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1567 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1568 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1569
1570 /* Always start with carrier off; PHY events will detect the link */
1571 netif_carrier_off(efx->net_dev);
1572
1573 /* Clear MAC statistics */
177dfcd8 1574 efx->mac_op->update_stats(efx);
8ceee660
BH
1575 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1576
1577 rc = register_netdev(net_dev);
1578 if (rc) {
1579 EFX_ERR(efx, "could not register net dev\n");
1580 return rc;
1581 }
7dde596e
BH
1582
1583 rtnl_lock();
1584 efx_update_name(efx);
1585 rtnl_unlock();
8ceee660 1586
06d5e193
BH
1587 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1588 if (rc) {
1589 EFX_ERR(efx, "failed to init net dev attributes\n");
1590 goto fail_registered;
1591 }
1592
8ceee660 1593 return 0;
06d5e193
BH
1594
1595fail_registered:
1596 unregister_netdev(net_dev);
1597 return rc;
8ceee660
BH
1598}
1599
1600static void efx_unregister_netdev(struct efx_nic *efx)
1601{
1602 struct efx_tx_queue *tx_queue;
1603
1604 if (!efx->net_dev)
1605 return;
1606
767e468c 1607 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1608
1609 /* Free up any skbs still remaining. This has to happen before
1610 * we try to unregister the netdev as running their destructors
1611 * may be needed to get the device ref. count to 0. */
1612 efx_for_each_tx_queue(tx_queue, efx)
1613 efx_release_tx_buffers(tx_queue);
1614
55668611 1615 if (efx_dev_registered(efx)) {
8ceee660 1616 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1617 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1618 unregister_netdev(efx->net_dev);
1619 }
1620}
1621
1622/**************************************************************************
1623 *
1624 * Device reset and suspend
1625 *
1626 **************************************************************************/
1627
2467ca46
BH
1628/* Tears down the entire software state and most of the hardware state
1629 * before reset. */
4b988280
SH
1630void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1631 struct ethtool_cmd *ecmd)
8ceee660 1632{
8ceee660
BH
1633 EFX_ASSERT_RESET_SERIALISED(efx);
1634
1974cc20 1635 efx_stats_disable(efx);
2467ca46
BH
1636 efx_stop_all(efx);
1637 mutex_lock(&efx->mac_lock);
f4150724 1638 mutex_lock(&efx->spi_lock);
2467ca46 1639
177dfcd8 1640 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1641
1642 efx_fini_channels(efx);
4b988280
SH
1643 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1644 efx->phy_op->fini(efx);
8ceee660
BH
1645}
1646
2467ca46
BH
1647/* This function will always ensure that the locks acquired in
1648 * efx_reset_down() are released. A failure return code indicates
1649 * that we were unable to reinitialise the hardware, and the
1650 * driver should be disabled. If ok is false, then the rx and tx
1651 * engines are not restarted, pending a RESET_DISABLE. */
4b988280
SH
1652int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1653 struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1654{
1655 int rc;
1656
2467ca46 1657 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1658
2467ca46 1659 rc = falcon_init_nic(efx);
8ceee660 1660 if (rc) {
2467ca46
BH
1661 EFX_ERR(efx, "failed to initialise NIC\n");
1662 ok = false;
8ceee660
BH
1663 }
1664
4b988280
SH
1665 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1666 if (ok) {
1667 rc = efx->phy_op->init(efx);
1668 if (rc)
1669 ok = false;
1670 } else
1671 efx->port_initialized = false;
1672 }
1673
2467ca46
BH
1674 if (ok) {
1675 efx_init_channels(efx);
8ceee660 1676
177dfcd8 1677 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1678 EFX_ERR(efx, "could not restore PHY settings\n");
1679 }
1680
f4150724 1681 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1682 mutex_unlock(&efx->mac_lock);
1683
8c8661e4 1684 if (ok) {
2467ca46 1685 efx_start_all(efx);
1974cc20 1686 efx_stats_enable(efx);
8c8661e4 1687 }
8ceee660
BH
1688 return rc;
1689}
1690
1691/* Reset the NIC as transparently as possible. Do not reset the PHY
1692 * Note that the reset may fail, in which case the card will be left
1693 * in a most-probably-unusable state.
1694 *
1695 * This function will sleep. You cannot reset from within an atomic
1696 * state; use efx_schedule_reset() instead.
1697 *
1698 * Grabs the rtnl_lock.
1699 */
1700static int efx_reset(struct efx_nic *efx)
1701{
1702 struct ethtool_cmd ecmd;
1703 enum reset_type method = efx->reset_pending;
f4bd954e 1704 int rc = 0;
8ceee660
BH
1705
1706 /* Serialise with kernel interfaces */
1707 rtnl_lock();
1708
1709 /* If we're not RUNNING then don't reset. Leave the reset_pending
1710 * flag set so that efx_pci_probe_main will be retried */
1711 if (efx->state != STATE_RUNNING) {
1712 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
f4bd954e 1713 goto out_unlock;
8ceee660
BH
1714 }
1715
8ceee660
BH
1716 EFX_INFO(efx, "resetting (%d)\n", method);
1717
4b988280 1718 efx_reset_down(efx, method, &ecmd);
8ceee660
BH
1719
1720 rc = falcon_reset_hw(efx, method);
1721 if (rc) {
1722 EFX_ERR(efx, "failed to reset hardware\n");
f4bd954e 1723 goto out_disable;
8ceee660
BH
1724 }
1725
1726 /* Allow resets to be rescheduled. */
1727 efx->reset_pending = RESET_TYPE_NONE;
1728
1729 /* Reinitialise bus-mastering, which may have been turned off before
1730 * the reset was scheduled. This is still appropriate, even in the
1731 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1732 * can respond to requests. */
1733 pci_set_master(efx->pci_dev);
1734
8ceee660
BH
1735 /* Leave device stopped if necessary */
1736 if (method == RESET_TYPE_DISABLE) {
4b988280 1737 efx_reset_up(efx, method, &ecmd, false);
8ceee660 1738 rc = -EIO;
f4bd954e 1739 } else {
4b988280 1740 rc = efx_reset_up(efx, method, &ecmd, true);
8ceee660
BH
1741 }
1742
f4bd954e
BH
1743out_disable:
1744 if (rc) {
1745 EFX_ERR(efx, "has been disabled\n");
1746 efx->state = STATE_DISABLED;
1747 dev_close(efx->net_dev);
1748 } else {
1749 EFX_LOG(efx, "reset complete\n");
1750 }
8ceee660 1751
f4bd954e 1752out_unlock:
8ceee660 1753 rtnl_unlock();
8ceee660
BH
1754 return rc;
1755}
1756
1757/* The worker thread exists so that code that cannot sleep can
1758 * schedule a reset for later.
1759 */
1760static void efx_reset_work(struct work_struct *data)
1761{
1762 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1763
1764 efx_reset(nic);
1765}
1766
1767void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1768{
1769 enum reset_type method;
1770
1771 if (efx->reset_pending != RESET_TYPE_NONE) {
1772 EFX_INFO(efx, "quenching already scheduled reset\n");
1773 return;
1774 }
1775
1776 switch (type) {
1777 case RESET_TYPE_INVISIBLE:
1778 case RESET_TYPE_ALL:
1779 case RESET_TYPE_WORLD:
1780 case RESET_TYPE_DISABLE:
1781 method = type;
1782 break;
1783 case RESET_TYPE_RX_RECOVERY:
1784 case RESET_TYPE_RX_DESC_FETCH:
1785 case RESET_TYPE_TX_DESC_FETCH:
1786 case RESET_TYPE_TX_SKIP:
1787 method = RESET_TYPE_INVISIBLE;
1788 break;
1789 default:
1790 method = RESET_TYPE_ALL;
1791 break;
1792 }
1793
1794 if (method != type)
1795 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1796 else
1797 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1798
1799 efx->reset_pending = method;
1800
1ab00629 1801 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1802}
1803
1804/**************************************************************************
1805 *
1806 * List of NICs we support
1807 *
1808 **************************************************************************/
1809
1810/* PCI device ID table */
1811static struct pci_device_id efx_pci_table[] __devinitdata = {
1812 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1813 .driver_data = (unsigned long) &falcon_a_nic_type},
1814 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1815 .driver_data = (unsigned long) &falcon_b_nic_type},
1816 {0} /* end of list */
1817};
1818
1819/**************************************************************************
1820 *
1821 * Dummy PHY/MAC/Board operations
1822 *
01aad7b6 1823 * Can be used for some unimplemented operations
8ceee660
BH
1824 * Needed so all function pointers are valid and do not have to be tested
1825 * before use
1826 *
1827 **************************************************************************/
1828int efx_port_dummy_op_int(struct efx_nic *efx)
1829{
1830 return 0;
1831}
1832void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1833void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660 1834
177dfcd8
BH
1835static struct efx_mac_operations efx_dummy_mac_operations = {
1836 .reconfigure = efx_port_dummy_op_void,
766ca0fa
BH
1837 .poll = efx_port_dummy_op_void,
1838 .irq = efx_port_dummy_op_void,
177dfcd8
BH
1839};
1840
8ceee660
BH
1841static struct efx_phy_operations efx_dummy_phy_operations = {
1842 .init = efx_port_dummy_op_int,
1843 .reconfigure = efx_port_dummy_op_void,
766ca0fa 1844 .poll = efx_port_dummy_op_void,
8ceee660
BH
1845 .fini = efx_port_dummy_op_void,
1846 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1847};
1848
8ceee660 1849static struct efx_board efx_dummy_board_info = {
01aad7b6 1850 .init = efx_port_dummy_op_int,
8129d217
BH
1851 .init_leds = efx_port_dummy_op_void,
1852 .set_id_led = efx_port_dummy_op_blink,
a17102b1 1853 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1854 .blink = efx_port_dummy_op_blink,
1855 .fini = efx_port_dummy_op_void,
8ceee660
BH
1856};
1857
1858/**************************************************************************
1859 *
1860 * Data housekeeping
1861 *
1862 **************************************************************************/
1863
1864/* This zeroes out and then fills in the invariants in a struct
1865 * efx_nic (including all sub-structures).
1866 */
1867static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1868 struct pci_dev *pci_dev, struct net_device *net_dev)
1869{
1870 struct efx_channel *channel;
1871 struct efx_tx_queue *tx_queue;
1872 struct efx_rx_queue *rx_queue;
1ab00629 1873 int i;
8ceee660
BH
1874
1875 /* Initialise common structures */
1876 memset(efx, 0, sizeof(*efx));
1877 spin_lock_init(&efx->biu_lock);
1878 spin_lock_init(&efx->phy_lock);
f4150724 1879 mutex_init(&efx->spi_lock);
8ceee660
BH
1880 INIT_WORK(&efx->reset_work, efx_reset_work);
1881 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1882 efx->pci_dev = pci_dev;
1883 efx->state = STATE_INIT;
1884 efx->reset_pending = RESET_TYPE_NONE;
1885 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1886 efx->board_info = efx_dummy_board_info;
1887
1888 efx->net_dev = net_dev;
dc8cfa55 1889 efx->rx_checksum_enabled = true;
8ceee660
BH
1890 spin_lock_init(&efx->netif_stop_lock);
1891 spin_lock_init(&efx->stats_lock);
1974cc20 1892 efx->stats_disable_count = 1;
8ceee660 1893 mutex_init(&efx->mac_lock);
177dfcd8 1894 efx->mac_op = &efx_dummy_mac_operations;
8ceee660
BH
1895 efx->phy_op = &efx_dummy_phy_operations;
1896 efx->mii.dev = net_dev;
766ca0fa
BH
1897 INIT_WORK(&efx->phy_work, efx_phy_work);
1898 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
1899 atomic_set(&efx->netif_stop_count, 1);
1900
1901 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1902 channel = &efx->channel[i];
1903 channel->efx = efx;
1904 channel->channel = i;
dc8cfa55 1905 channel->work_pending = false;
8ceee660 1906 }
60ac1065 1907 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1908 tx_queue = &efx->tx_queue[i];
1909 tx_queue->efx = efx;
1910 tx_queue->queue = i;
1911 tx_queue->buffer = NULL;
1912 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1913 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1914 }
1915 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1916 rx_queue = &efx->rx_queue[i];
1917 rx_queue->efx = efx;
1918 rx_queue->queue = i;
1919 rx_queue->channel = &efx->channel[0]; /* for safety */
1920 rx_queue->buffer = NULL;
1921 spin_lock_init(&rx_queue->add_lock);
1922 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1923 }
1924
1925 efx->type = type;
1926
1927 /* Sanity-check NIC type */
1928 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1929 (efx->type->txd_ring_mask + 1));
1930 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1931 (efx->type->rxd_ring_mask + 1));
1932 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1933 (efx->type->evq_size - 1));
1934 /* As close as we can get to guaranteeing that we don't overflow */
1935 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1936 (efx->type->txd_ring_mask + 1 +
1937 efx->type->rxd_ring_mask + 1));
1938 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1939
1940 /* Higher numbered interrupt modes are less capable! */
1941 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1942 interrupt_mode);
1943
6977dc63
BH
1944 /* Would be good to use the net_dev name, but we're too early */
1945 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1946 pci_name(pci_dev));
1947 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
1948 if (!efx->workqueue)
1949 return -ENOMEM;
8d9853d9 1950
8ceee660 1951 return 0;
8ceee660
BH
1952}
1953
1954static void efx_fini_struct(struct efx_nic *efx)
1955{
1956 if (efx->workqueue) {
1957 destroy_workqueue(efx->workqueue);
1958 efx->workqueue = NULL;
1959 }
1960}
1961
1962/**************************************************************************
1963 *
1964 * PCI interface
1965 *
1966 **************************************************************************/
1967
1968/* Main body of final NIC shutdown code
1969 * This is called only at module unload (or hotplug removal).
1970 */
1971static void efx_pci_remove_main(struct efx_nic *efx)
1972{
1973 EFX_ASSERT_RESET_SERIALISED(efx);
1974
1975 /* Skip everything if we never obtained a valid membase */
1976 if (!efx->membase)
1977 return;
1978
1979 efx_fini_channels(efx);
1980 efx_fini_port(efx);
1981
1982 /* Shutdown the board, then the NIC and board state */
37b5a603 1983 efx->board_info.fini(efx);
8ceee660
BH
1984 falcon_fini_interrupt(efx);
1985
1986 efx_fini_napi(efx);
1987 efx_remove_all(efx);
1988}
1989
1990/* Final NIC shutdown
1991 * This is called only at module unload (or hotplug removal).
1992 */
1993static void efx_pci_remove(struct pci_dev *pci_dev)
1994{
1995 struct efx_nic *efx;
1996
1997 efx = pci_get_drvdata(pci_dev);
1998 if (!efx)
1999 return;
2000
2001 /* Mark the NIC as fini, then stop the interface */
2002 rtnl_lock();
2003 efx->state = STATE_FINI;
2004 dev_close(efx->net_dev);
2005
2006 /* Allow any queued efx_resets() to complete */
2007 rtnl_unlock();
2008
2009 if (efx->membase == NULL)
2010 goto out;
2011
2012 efx_unregister_netdev(efx);
2013
7dde596e
BH
2014 efx_mtd_remove(efx);
2015
8ceee660
BH
2016 /* Wait for any scheduled resets to complete. No more will be
2017 * scheduled from this point because efx_stop_all() has been
2018 * called, we are no longer registered with driverlink, and
2019 * the net_device's have been removed. */
1ab00629 2020 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2021
2022 efx_pci_remove_main(efx);
2023
2024out:
2025 efx_fini_io(efx);
2026 EFX_LOG(efx, "shutdown successful\n");
2027
2028 pci_set_drvdata(pci_dev, NULL);
2029 efx_fini_struct(efx);
2030 free_netdev(efx->net_dev);
2031};
2032
2033/* Main body of NIC initialisation
2034 * This is called at module load (or hotplug insertion, theoretically).
2035 */
2036static int efx_pci_probe_main(struct efx_nic *efx)
2037{
2038 int rc;
2039
2040 /* Do start-of-day initialisation */
2041 rc = efx_probe_all(efx);
2042 if (rc)
2043 goto fail1;
2044
2045 rc = efx_init_napi(efx);
2046 if (rc)
2047 goto fail2;
2048
2049 /* Initialise the board */
2050 rc = efx->board_info.init(efx);
2051 if (rc) {
2052 EFX_ERR(efx, "failed to initialise board\n");
2053 goto fail3;
2054 }
2055
2056 rc = falcon_init_nic(efx);
2057 if (rc) {
2058 EFX_ERR(efx, "failed to initialise NIC\n");
2059 goto fail4;
2060 }
2061
2062 rc = efx_init_port(efx);
2063 if (rc) {
2064 EFX_ERR(efx, "failed to initialise port\n");
2065 goto fail5;
2066 }
2067
bc3c90a2 2068 efx_init_channels(efx);
8ceee660
BH
2069
2070 rc = falcon_init_interrupt(efx);
2071 if (rc)
bc3c90a2 2072 goto fail6;
8ceee660
BH
2073
2074 return 0;
2075
8ceee660 2076 fail6:
bc3c90a2 2077 efx_fini_channels(efx);
8ceee660
BH
2078 efx_fini_port(efx);
2079 fail5:
2080 fail4:
a17102b1 2081 efx->board_info.fini(efx);
8ceee660
BH
2082 fail3:
2083 efx_fini_napi(efx);
2084 fail2:
2085 efx_remove_all(efx);
2086 fail1:
2087 return rc;
2088}
2089
2090/* NIC initialisation
2091 *
2092 * This is called at module load (or hotplug insertion,
2093 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2094 * sets up and registers the network devices with the kernel and hooks
2095 * the interrupt service routine. It does not prepare the device for
2096 * transmission; this is left to the first time one of the network
2097 * interfaces is brought up (i.e. efx_net_open).
2098 */
2099static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2100 const struct pci_device_id *entry)
2101{
2102 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2103 struct net_device *net_dev;
2104 struct efx_nic *efx;
2105 int i, rc;
2106
2107 /* Allocate and initialise a struct net_device and struct efx_nic */
2108 net_dev = alloc_etherdev(sizeof(*efx));
2109 if (!net_dev)
2110 return -ENOMEM;
b9b39b62
BH
2111 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2112 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660 2113 if (lro)
da3bc071 2114 net_dev->features |= NETIF_F_GRO;
28506563
BH
2115 /* Mask for features that also apply to VLAN devices */
2116 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2117 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2118 efx = netdev_priv(net_dev);
8ceee660
BH
2119 pci_set_drvdata(pci_dev, efx);
2120 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2121 if (rc)
2122 goto fail1;
2123
2124 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2125
2126 /* Set up basic I/O (BAR mappings etc) */
2127 rc = efx_init_io(efx);
2128 if (rc)
2129 goto fail2;
2130
2131 /* No serialisation is required with the reset path because
2132 * we're in STATE_INIT. */
2133 for (i = 0; i < 5; i++) {
2134 rc = efx_pci_probe_main(efx);
8ceee660
BH
2135
2136 /* Serialise against efx_reset(). No more resets will be
2137 * scheduled since efx_stop_all() has been called, and we
2138 * have not and never have been registered with either
2139 * the rtnetlink or driverlink layers. */
1ab00629 2140 cancel_work_sync(&efx->reset_work);
8ceee660 2141
fa402b2e
SH
2142 if (rc == 0) {
2143 if (efx->reset_pending != RESET_TYPE_NONE) {
2144 /* If there was a scheduled reset during
2145 * probe, the NIC is probably hosed anyway */
2146 efx_pci_remove_main(efx);
2147 rc = -EIO;
2148 } else {
2149 break;
2150 }
2151 }
2152
8ceee660
BH
2153 /* Retry if a recoverably reset event has been scheduled */
2154 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2155 (efx->reset_pending != RESET_TYPE_ALL))
2156 goto fail3;
2157
2158 efx->reset_pending = RESET_TYPE_NONE;
2159 }
2160
2161 if (rc) {
2162 EFX_ERR(efx, "Could not reset NIC\n");
2163 goto fail4;
2164 }
2165
2166 /* Switch to the running state before we expose the device to
2167 * the OS. This is to ensure that the initial gathering of
2168 * MAC stats succeeds. */
8ceee660 2169 efx->state = STATE_RUNNING;
7dde596e
BH
2170
2171 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2172
2173 rc = efx_register_netdev(efx);
2174 if (rc)
2175 goto fail5;
2176
2177 EFX_LOG(efx, "initialisation successful\n");
8ceee660
BH
2178 return 0;
2179
2180 fail5:
2181 efx_pci_remove_main(efx);
2182 fail4:
2183 fail3:
2184 efx_fini_io(efx);
2185 fail2:
2186 efx_fini_struct(efx);
2187 fail1:
2188 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2189 free_netdev(net_dev);
2190 return rc;
2191}
2192
2193static struct pci_driver efx_pci_driver = {
2194 .name = EFX_DRIVER_NAME,
2195 .id_table = efx_pci_table,
2196 .probe = efx_pci_probe,
2197 .remove = efx_pci_remove,
2198};
2199
2200/**************************************************************************
2201 *
2202 * Kernel module interface
2203 *
2204 *************************************************************************/
2205
2206module_param(interrupt_mode, uint, 0444);
2207MODULE_PARM_DESC(interrupt_mode,
2208 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2209
2210static int __init efx_init_module(void)
2211{
2212 int rc;
2213
2214 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2215
2216 rc = register_netdevice_notifier(&efx_netdev_notifier);
2217 if (rc)
2218 goto err_notifier;
2219
2220 refill_workqueue = create_workqueue("sfc_refill");
2221 if (!refill_workqueue) {
2222 rc = -ENOMEM;
2223 goto err_refill;
2224 }
1ab00629
SH
2225 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2226 if (!reset_workqueue) {
2227 rc = -ENOMEM;
2228 goto err_reset;
2229 }
8ceee660
BH
2230
2231 rc = pci_register_driver(&efx_pci_driver);
2232 if (rc < 0)
2233 goto err_pci;
2234
2235 return 0;
2236
2237 err_pci:
1ab00629
SH
2238 destroy_workqueue(reset_workqueue);
2239 err_reset:
8ceee660
BH
2240 destroy_workqueue(refill_workqueue);
2241 err_refill:
2242 unregister_netdevice_notifier(&efx_netdev_notifier);
2243 err_notifier:
2244 return rc;
2245}
2246
2247static void __exit efx_exit_module(void)
2248{
2249 printk(KERN_INFO "Solarflare NET driver unloading\n");
2250
2251 pci_unregister_driver(&efx_pci_driver);
1ab00629 2252 destroy_workqueue(reset_workqueue);
8ceee660
BH
2253 destroy_workqueue(refill_workqueue);
2254 unregister_netdevice_notifier(&efx_netdev_notifier);
2255
2256}
2257
2258module_init(efx_init_module);
2259module_exit(efx_exit_module);
2260
2261MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2262 "Solarflare Communications");
2263MODULE_DESCRIPTION("Solarflare Communications network driver");
2264MODULE_LICENSE("GPL");
2265MODULE_DEVICE_TABLE(pci, efx_pci_table);