]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/sfc/falcon.c
sfc: Eliminate indirect lookups of queue size constants
[mirror_ubuntu-focal-kernel.git] / drivers / net / sfc / falcon.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
37b5a603
BH
16#include <linux/i2c.h>
17#include <linux/i2c-algo-bit.h>
f31a45d2 18#include <linux/mii.h>
8ceee660
BH
19#include "net_driver.h"
20#include "bitfield.h"
21#include "efx.h"
22#include "mac.h"
8ceee660
BH
23#include "spi.h"
24#include "falcon.h"
3e6c4538 25#include "regs.h"
12d00cad 26#include "io.h"
8ceee660
BH
27#include "mdio_10g.h"
28#include "phy.h"
8ceee660
BH
29#include "workarounds.h"
30
31/* Falcon hardware control.
32 * Falcon is the internal codename for the SFC4000 controller that is
33 * present in SFE400X evaluation boards
34 */
35
36/**
37 * struct falcon_nic_data - Falcon NIC state
38 * @next_buffer_table: First available buffer table id
39 * @pci_dev2: The secondary PCI device if present
37b5a603 40 * @i2c_data: Operations and state for I2C bit-bashing algorithm
2c3c3d02
BH
41 * @int_error_count: Number of internal errors seen recently
42 * @int_error_expire: Time at which error count will be expired
8ceee660
BH
43 */
44struct falcon_nic_data {
45 unsigned next_buffer_table;
46 struct pci_dev *pci_dev2;
37b5a603 47 struct i2c_algo_bit_data i2c_data;
2c3c3d02
BH
48
49 unsigned int_error_count;
50 unsigned long int_error_expire;
8ceee660
BH
51};
52
53/**************************************************************************
54 *
55 * Configurable values
56 *
57 **************************************************************************
58 */
59
60static int disable_dma_stats;
61
62/* This is set to 16 for a good reason. In summary, if larger than
63 * 16, the descriptor cache holds more than a default socket
64 * buffer's worth of packets (for UDP we can only have at most one
65 * socket buffer's worth outstanding). This combined with the fact
66 * that we only get 1 TX event per descriptor cache means the NIC
67 * goes idle.
68 */
69#define TX_DC_ENTRIES 16
70#define TX_DC_ENTRIES_ORDER 0
71#define TX_DC_BASE 0x130000
72
73#define RX_DC_ENTRIES 64
74#define RX_DC_ENTRIES_ORDER 2
75#define RX_DC_BASE 0x100000
76
2f7f5730
BH
77static const unsigned int
78/* "Large" EEPROM device: Atmel AT25640 or similar
79 * 8 KB, 16-bit address, 32 B write block */
80large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
81 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
82 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
83/* Default flash device: Atmel AT25F1024
84 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
85default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
86 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
87 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
88 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
89 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
90
8ceee660
BH
91/* RX FIFO XOFF watermark
92 *
93 * When the amount of the RX FIFO increases used increases past this
94 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
95 * This also has an effect on RX/TX arbitration
96 */
97static int rx_xoff_thresh_bytes = -1;
98module_param(rx_xoff_thresh_bytes, int, 0644);
99MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
100
101/* RX FIFO XON watermark
102 *
103 * When the amount of the RX FIFO used decreases below this
104 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
105 * This also has an effect on RX/TX arbitration
106 */
107static int rx_xon_thresh_bytes = -1;
108module_param(rx_xon_thresh_bytes, int, 0644);
109MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
110
2c3c3d02
BH
111/* If FALCON_MAX_INT_ERRORS internal errors occur within
112 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
113 * disable it.
114 */
115#define FALCON_INT_ERROR_EXPIRE 3600
116#define FALCON_MAX_INT_ERRORS 5
8ceee660 117
6bc5d3a9
BH
118/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
119 */
120#define FALCON_FLUSH_INTERVAL 10
121#define FALCON_FLUSH_POLL_COUNT 100
8ceee660
BH
122
123/**************************************************************************
124 *
125 * Falcon constants
126 *
127 **************************************************************************
128 */
129
9bbd7d9a
BH
130/* DMA address mask */
131#define FALCON_DMA_MASK DMA_BIT_MASK(46)
8ceee660
BH
132
133/* TX DMA length mask (13-bit) */
134#define FALCON_TX_DMA_MASK (4096 - 1)
135
136/* Size and alignment of special buffers (4KB) */
137#define FALCON_BUF_SIZE 4096
138
139/* Dummy SRAM size code */
140#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
141
8ceee660 142#define FALCON_IS_DUAL_FUNC(efx) \
55668611 143 (falcon_rev(efx) < FALCON_REV_B0)
8ceee660
BH
144
145/**************************************************************************
146 *
147 * Falcon hardware access
148 *
149 **************************************************************************/
150
12d00cad
BH
151static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
152 unsigned int index)
153{
154 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
155 value, index);
156}
157
8ceee660
BH
158/* Read the current event from the event queue */
159static inline efx_qword_t *falcon_event(struct efx_channel *channel,
160 unsigned int index)
161{
162 return (((efx_qword_t *) (channel->eventq.addr)) + index);
163}
164
165/* See if an event is present
166 *
167 * We check both the high and low dword of the event for all ones. We
168 * wrote all ones when we cleared the event, and no valid event can
169 * have all ones in either its high or low dwords. This approach is
170 * robust against reordering.
171 *
172 * Note that using a single 64-bit comparison is incorrect; even
173 * though the CPU read will be atomic, the DMA write may not be.
174 */
175static inline int falcon_event_present(efx_qword_t *event)
176{
177 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
178 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
179}
180
181/**************************************************************************
182 *
183 * I2C bus - this is a bit-bashing interface using GPIO pins
184 * Note that it uses the output enables to tristate the outputs
185 * SDA is the data pin and SCL is the clock
186 *
187 **************************************************************************
188 */
37b5a603 189static void falcon_setsda(void *data, int state)
8ceee660 190{
37b5a603 191 struct efx_nic *efx = (struct efx_nic *)data;
8ceee660
BH
192 efx_oword_t reg;
193
12d00cad 194 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 195 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
12d00cad 196 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
8ceee660
BH
197}
198
37b5a603 199static void falcon_setscl(void *data, int state)
8ceee660 200{
37b5a603 201 struct efx_nic *efx = (struct efx_nic *)data;
8ceee660
BH
202 efx_oword_t reg;
203
12d00cad 204 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 205 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
12d00cad 206 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
37b5a603
BH
207}
208
209static int falcon_getsda(void *data)
210{
211 struct efx_nic *efx = (struct efx_nic *)data;
212 efx_oword_t reg;
213
12d00cad 214 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 215 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
8ceee660
BH
216}
217
37b5a603 218static int falcon_getscl(void *data)
8ceee660 219{
37b5a603 220 struct efx_nic *efx = (struct efx_nic *)data;
8ceee660
BH
221 efx_oword_t reg;
222
12d00cad 223 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 224 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
8ceee660
BH
225}
226
37b5a603
BH
227static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
228 .setsda = falcon_setsda,
229 .setscl = falcon_setscl,
8ceee660
BH
230 .getsda = falcon_getsda,
231 .getscl = falcon_getscl,
62c78329 232 .udelay = 5,
9dadae68
BH
233 /* Wait up to 50 ms for slave to let us pull SCL high */
234 .timeout = DIV_ROUND_UP(HZ, 20),
8ceee660
BH
235};
236
237/**************************************************************************
238 *
239 * Falcon special buffer handling
240 * Special buffers are used for event queues and the TX and RX
241 * descriptor rings.
242 *
243 *************************************************************************/
244
245/*
246 * Initialise a Falcon special buffer
247 *
248 * This will define a buffer (previously allocated via
249 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
250 * it to be used for event queues, descriptor rings etc.
251 */
bc3c90a2 252static void
8ceee660
BH
253falcon_init_special_buffer(struct efx_nic *efx,
254 struct efx_special_buffer *buffer)
255{
256 efx_qword_t buf_desc;
257 int index;
258 dma_addr_t dma_addr;
259 int i;
260
261 EFX_BUG_ON_PARANOID(!buffer->addr);
262
263 /* Write buffer descriptors to NIC */
264 for (i = 0; i < buffer->entries; i++) {
265 index = buffer->index + i;
266 dma_addr = buffer->dma_addr + (i * 4096);
267 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
268 index, (unsigned long long)dma_addr);
3e6c4538
BH
269 EFX_POPULATE_QWORD_3(buf_desc,
270 FRF_AZ_BUF_ADR_REGION, 0,
271 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
272 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
12d00cad 273 falcon_write_buf_tbl(efx, &buf_desc, index);
8ceee660 274 }
8ceee660
BH
275}
276
277/* Unmaps a buffer from Falcon and clears the buffer table entries */
278static void
279falcon_fini_special_buffer(struct efx_nic *efx,
280 struct efx_special_buffer *buffer)
281{
282 efx_oword_t buf_tbl_upd;
283 unsigned int start = buffer->index;
284 unsigned int end = (buffer->index + buffer->entries - 1);
285
286 if (!buffer->entries)
287 return;
288
289 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
290 buffer->index, buffer->index + buffer->entries - 1);
291
292 EFX_POPULATE_OWORD_4(buf_tbl_upd,
3e6c4538
BH
293 FRF_AZ_BUF_UPD_CMD, 0,
294 FRF_AZ_BUF_CLR_CMD, 1,
295 FRF_AZ_BUF_CLR_END_ID, end,
296 FRF_AZ_BUF_CLR_START_ID, start);
12d00cad 297 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
8ceee660
BH
298}
299
300/*
301 * Allocate a new Falcon special buffer
302 *
303 * This allocates memory for a new buffer, clears it and allocates a
304 * new buffer ID range. It does not write into Falcon's buffer table.
305 *
306 * This call will allocate 4KB buffers, since Falcon can't use 8KB
307 * buffers for event queues and descriptor rings.
308 */
309static int falcon_alloc_special_buffer(struct efx_nic *efx,
310 struct efx_special_buffer *buffer,
311 unsigned int len)
312{
313 struct falcon_nic_data *nic_data = efx->nic_data;
314
315 len = ALIGN(len, FALCON_BUF_SIZE);
316
317 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
318 &buffer->dma_addr);
319 if (!buffer->addr)
320 return -ENOMEM;
321 buffer->len = len;
322 buffer->entries = len / FALCON_BUF_SIZE;
323 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
324
325 /* All zeros is a potentially valid event so memset to 0xff */
326 memset(buffer->addr, 0xff, len);
327
328 /* Select new buffer ID */
329 buffer->index = nic_data->next_buffer_table;
330 nic_data->next_buffer_table += buffer->entries;
331
332 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
9c8976a1 333 "(virt %p phys %llx)\n", buffer->index,
8ceee660 334 buffer->index + buffer->entries - 1,
9c8976a1
JSR
335 (u64)buffer->dma_addr, len,
336 buffer->addr, (u64)virt_to_phys(buffer->addr));
8ceee660
BH
337
338 return 0;
339}
340
341static void falcon_free_special_buffer(struct efx_nic *efx,
342 struct efx_special_buffer *buffer)
343{
344 if (!buffer->addr)
345 return;
346
347 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
9c8976a1 348 "(virt %p phys %llx)\n", buffer->index,
8ceee660 349 buffer->index + buffer->entries - 1,
9c8976a1
JSR
350 (u64)buffer->dma_addr, buffer->len,
351 buffer->addr, (u64)virt_to_phys(buffer->addr));
8ceee660
BH
352
353 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
354 buffer->dma_addr);
355 buffer->addr = NULL;
356 buffer->entries = 0;
357}
358
359/**************************************************************************
360 *
361 * Falcon generic buffer handling
362 * These buffers are used for interrupt status and MAC stats
363 *
364 **************************************************************************/
365
366static int falcon_alloc_buffer(struct efx_nic *efx,
367 struct efx_buffer *buffer, unsigned int len)
368{
369 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
370 &buffer->dma_addr);
371 if (!buffer->addr)
372 return -ENOMEM;
373 buffer->len = len;
374 memset(buffer->addr, 0, len);
375 return 0;
376}
377
378static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
379{
380 if (buffer->addr) {
381 pci_free_consistent(efx->pci_dev, buffer->len,
382 buffer->addr, buffer->dma_addr);
383 buffer->addr = NULL;
384 }
385}
386
387/**************************************************************************
388 *
389 * Falcon TX path
390 *
391 **************************************************************************/
392
393/* Returns a pointer to the specified transmit descriptor in the TX
394 * descriptor queue belonging to the specified channel.
395 */
396static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
397 unsigned int index)
398{
399 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
400}
401
402/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
403static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
404{
405 unsigned write_ptr;
406 efx_dword_t reg;
407
3ffeabdd 408 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
3e6c4538 409 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
12d00cad
BH
410 efx_writed_page(tx_queue->efx, &reg,
411 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
8ceee660
BH
412}
413
414
415/* For each entry inserted into the software descriptor ring, create a
416 * descriptor in the hardware TX descriptor ring (in host memory), and
417 * write a doorbell.
418 */
419void falcon_push_buffers(struct efx_tx_queue *tx_queue)
420{
421
422 struct efx_tx_buffer *buffer;
423 efx_qword_t *txd;
424 unsigned write_ptr;
425
426 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
427
428 do {
3ffeabdd 429 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
8ceee660
BH
430 buffer = &tx_queue->buffer[write_ptr];
431 txd = falcon_tx_desc(tx_queue, write_ptr);
432 ++tx_queue->write_count;
433
434 /* Create TX descriptor ring entry */
3e6c4538
BH
435 EFX_POPULATE_QWORD_4(*txd,
436 FSF_AZ_TX_KER_CONT, buffer->continuation,
437 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
438 FSF_AZ_TX_KER_BUF_REGION, 0,
439 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
8ceee660
BH
440 } while (tx_queue->write_count != tx_queue->insert_count);
441
442 wmb(); /* Ensure descriptors are written before they are fetched */
443 falcon_notify_tx_desc(tx_queue);
444}
445
446/* Allocate hardware resources for a TX queue */
447int falcon_probe_tx(struct efx_tx_queue *tx_queue)
448{
449 struct efx_nic *efx = tx_queue->efx;
3ffeabdd
BH
450 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
451 EFX_TXQ_SIZE & EFX_TXQ_MASK);
8ceee660 452 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
3ffeabdd 453 EFX_TXQ_SIZE * sizeof(efx_qword_t));
8ceee660
BH
454}
455
bc3c90a2 456void falcon_init_tx(struct efx_tx_queue *tx_queue)
8ceee660
BH
457{
458 efx_oword_t tx_desc_ptr;
459 struct efx_nic *efx = tx_queue->efx;
8ceee660 460
6bc5d3a9
BH
461 tx_queue->flushed = false;
462
8ceee660 463 /* Pin TX descriptor ring */
bc3c90a2 464 falcon_init_special_buffer(efx, &tx_queue->txd);
8ceee660
BH
465
466 /* Push TX descriptor ring to card */
467 EFX_POPULATE_OWORD_10(tx_desc_ptr,
3e6c4538
BH
468 FRF_AZ_TX_DESCQ_EN, 1,
469 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
470 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
471 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
472 FRF_AZ_TX_DESCQ_EVQ_ID,
473 tx_queue->channel->channel,
474 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
475 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
3ffeabdd
BH
476 FRF_AZ_TX_DESCQ_SIZE,
477 __ffs(tx_queue->txd.entries),
3e6c4538
BH
478 FRF_AZ_TX_DESCQ_TYPE, 0,
479 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
8ceee660 480
55668611 481 if (falcon_rev(efx) >= FALCON_REV_B0) {
60ac1065 482 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
3e6c4538
BH
483 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
484 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
485 !csum);
8ceee660
BH
486 }
487
12d00cad
BH
488 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
489 tx_queue->queue);
8ceee660 490
55668611 491 if (falcon_rev(efx) < FALCON_REV_B0) {
8ceee660
BH
492 efx_oword_t reg;
493
60ac1065
BH
494 /* Only 128 bits in this register */
495 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
8ceee660 496
12d00cad 497 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
60ac1065 498 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
8ceee660
BH
499 clear_bit_le(tx_queue->queue, (void *)&reg);
500 else
501 set_bit_le(tx_queue->queue, (void *)&reg);
12d00cad 502 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
8ceee660 503 }
8ceee660
BH
504}
505
6bc5d3a9 506static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
507{
508 struct efx_nic *efx = tx_queue->efx;
8ceee660 509 efx_oword_t tx_flush_descq;
8ceee660
BH
510
511 /* Post a flush command */
512 EFX_POPULATE_OWORD_2(tx_flush_descq,
3e6c4538
BH
513 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
514 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
12d00cad 515 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
8ceee660
BH
516}
517
518void falcon_fini_tx(struct efx_tx_queue *tx_queue)
519{
520 struct efx_nic *efx = tx_queue->efx;
521 efx_oword_t tx_desc_ptr;
522
6bc5d3a9
BH
523 /* The queue should have been flushed */
524 WARN_ON(!tx_queue->flushed);
8ceee660
BH
525
526 /* Remove TX descriptor ring from card */
527 EFX_ZERO_OWORD(tx_desc_ptr);
12d00cad
BH
528 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
529 tx_queue->queue);
8ceee660
BH
530
531 /* Unpin TX descriptor ring */
532 falcon_fini_special_buffer(efx, &tx_queue->txd);
533}
534
535/* Free buffers backing TX queue */
536void falcon_remove_tx(struct efx_tx_queue *tx_queue)
537{
538 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
539}
540
541/**************************************************************************
542 *
543 * Falcon RX path
544 *
545 **************************************************************************/
546
547/* Returns a pointer to the specified descriptor in the RX descriptor queue */
548static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
549 unsigned int index)
550{
551 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
552}
553
554/* This creates an entry in the RX descriptor queue */
555static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
556 unsigned index)
557{
558 struct efx_rx_buffer *rx_buf;
559 efx_qword_t *rxd;
560
561 rxd = falcon_rx_desc(rx_queue, index);
562 rx_buf = efx_rx_buffer(rx_queue, index);
563 EFX_POPULATE_QWORD_3(*rxd,
3e6c4538 564 FSF_AZ_RX_KER_BUF_SIZE,
8ceee660
BH
565 rx_buf->len -
566 rx_queue->efx->type->rx_buffer_padding,
3e6c4538
BH
567 FSF_AZ_RX_KER_BUF_REGION, 0,
568 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
8ceee660
BH
569}
570
571/* This writes to the RX_DESC_WPTR register for the specified receive
572 * descriptor ring.
573 */
574void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
575{
576 efx_dword_t reg;
577 unsigned write_ptr;
578
579 while (rx_queue->notified_count != rx_queue->added_count) {
580 falcon_build_rx_desc(rx_queue,
581 rx_queue->notified_count &
3ffeabdd 582 EFX_RXQ_MASK);
8ceee660
BH
583 ++rx_queue->notified_count;
584 }
585
586 wmb();
3ffeabdd 587 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
3e6c4538 588 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
12d00cad
BH
589 efx_writed_page(rx_queue->efx, &reg,
590 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
8ceee660
BH
591}
592
593int falcon_probe_rx(struct efx_rx_queue *rx_queue)
594{
595 struct efx_nic *efx = rx_queue->efx;
3ffeabdd
BH
596 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
597 EFX_RXQ_SIZE & EFX_RXQ_MASK);
8ceee660 598 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
3ffeabdd 599 EFX_RXQ_SIZE * sizeof(efx_qword_t));
8ceee660
BH
600}
601
bc3c90a2 602void falcon_init_rx(struct efx_rx_queue *rx_queue)
8ceee660
BH
603{
604 efx_oword_t rx_desc_ptr;
605 struct efx_nic *efx = rx_queue->efx;
dc8cfa55
BH
606 bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
607 bool iscsi_digest_en = is_b0;
8ceee660
BH
608
609 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
610 rx_queue->queue, rx_queue->rxd.index,
611 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
612
6bc5d3a9
BH
613 rx_queue->flushed = false;
614
8ceee660 615 /* Pin RX descriptor ring */
bc3c90a2 616 falcon_init_special_buffer(efx, &rx_queue->rxd);
8ceee660
BH
617
618 /* Push RX descriptor ring to card */
619 EFX_POPULATE_OWORD_10(rx_desc_ptr,
3e6c4538
BH
620 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
621 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
622 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
623 FRF_AZ_RX_DESCQ_EVQ_ID,
624 rx_queue->channel->channel,
625 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
626 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
3ffeabdd
BH
627 FRF_AZ_RX_DESCQ_SIZE,
628 __ffs(rx_queue->rxd.entries),
3e6c4538 629 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
8ceee660 630 /* For >=B0 this is scatter so disable */
3e6c4538
BH
631 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
632 FRF_AZ_RX_DESCQ_EN, 1);
12d00cad
BH
633 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
634 rx_queue->queue);
8ceee660
BH
635}
636
6bc5d3a9 637static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
8ceee660
BH
638{
639 struct efx_nic *efx = rx_queue->efx;
8ceee660
BH
640 efx_oword_t rx_flush_descq;
641
642 /* Post a flush command */
643 EFX_POPULATE_OWORD_2(rx_flush_descq,
3e6c4538
BH
644 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
645 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
12d00cad 646 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
8ceee660
BH
647}
648
649void falcon_fini_rx(struct efx_rx_queue *rx_queue)
650{
651 efx_oword_t rx_desc_ptr;
652 struct efx_nic *efx = rx_queue->efx;
8ceee660 653
6bc5d3a9
BH
654 /* The queue should already have been flushed */
655 WARN_ON(!rx_queue->flushed);
8ceee660
BH
656
657 /* Remove RX descriptor ring from card */
658 EFX_ZERO_OWORD(rx_desc_ptr);
12d00cad
BH
659 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
660 rx_queue->queue);
8ceee660
BH
661
662 /* Unpin RX descriptor ring */
663 falcon_fini_special_buffer(efx, &rx_queue->rxd);
664}
665
666/* Free buffers backing RX queue */
667void falcon_remove_rx(struct efx_rx_queue *rx_queue)
668{
669 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
670}
671
672/**************************************************************************
673 *
674 * Falcon event queue processing
675 * Event queues are processed by per-channel tasklets.
676 *
677 **************************************************************************/
678
679/* Update a channel's event queue's read pointer (RPTR) register
680 *
681 * This writes the EVQ_RPTR_REG register for the specified channel's
682 * event queue.
683 *
684 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
685 * whereas channel->eventq_read_ptr contains the index of the "next to
686 * read" event.
687 */
688void falcon_eventq_read_ack(struct efx_channel *channel)
689{
690 efx_dword_t reg;
691 struct efx_nic *efx = channel->efx;
692
3e6c4538 693 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
12d00cad 694 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
d3074025 695 channel->channel);
8ceee660
BH
696}
697
698/* Use HW to insert a SW defined event */
699void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
700{
701 efx_oword_t drv_ev_reg;
702
3e6c4538
BH
703 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
704 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
705 drv_ev_reg.u32[0] = event->u32[0];
706 drv_ev_reg.u32[1] = event->u32[1];
707 drv_ev_reg.u32[2] = 0;
708 drv_ev_reg.u32[3] = 0;
709 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
12d00cad 710 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
8ceee660
BH
711}
712
713/* Handle a transmit completion event
714 *
715 * Falcon batches TX completion events; the message we receive is of
716 * the form "complete all TX events up to this index".
717 */
4d566063
BH
718static void falcon_handle_tx_event(struct efx_channel *channel,
719 efx_qword_t *event)
8ceee660
BH
720{
721 unsigned int tx_ev_desc_ptr;
722 unsigned int tx_ev_q_label;
723 struct efx_tx_queue *tx_queue;
724 struct efx_nic *efx = channel->efx;
725
3e6c4538 726 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
8ceee660 727 /* Transmit completion */
3e6c4538
BH
728 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
729 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
8ceee660 730 tx_queue = &efx->tx_queue[tx_ev_q_label];
6fb70fd1
BH
731 channel->irq_mod_score +=
732 (tx_ev_desc_ptr - tx_queue->read_count) &
3ffeabdd 733 EFX_TXQ_MASK;
8ceee660 734 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
3e6c4538 735 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
8ceee660 736 /* Rewrite the FIFO write pointer */
3e6c4538 737 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
8ceee660
BH
738 tx_queue = &efx->tx_queue[tx_ev_q_label];
739
55668611 740 if (efx_dev_registered(efx))
8ceee660
BH
741 netif_tx_lock(efx->net_dev);
742 falcon_notify_tx_desc(tx_queue);
55668611 743 if (efx_dev_registered(efx))
8ceee660 744 netif_tx_unlock(efx->net_dev);
3e6c4538 745 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
8ceee660
BH
746 EFX_WORKAROUND_10727(efx)) {
747 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
748 } else {
749 EFX_ERR(efx, "channel %d unexpected TX event "
750 EFX_QWORD_FMT"\n", channel->channel,
751 EFX_QWORD_VAL(*event));
752 }
753}
754
8ceee660
BH
755/* Detect errors included in the rx_evt_pkt_ok bit. */
756static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
757 const efx_qword_t *event,
dc8cfa55
BH
758 bool *rx_ev_pkt_ok,
759 bool *discard)
8ceee660
BH
760{
761 struct efx_nic *efx = rx_queue->efx;
dc8cfa55
BH
762 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
763 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
764 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
765 bool rx_ev_other_err, rx_ev_pause_frm;
766 bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
767 unsigned rx_ev_pkt_type;
8ceee660 768
3e6c4538
BH
769 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
770 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
771 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
772 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
8ceee660 773 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
3e6c4538
BH
774 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
775 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
8ceee660 776 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
3e6c4538 777 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
8ceee660 778 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
3e6c4538
BH
779 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
780 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
781 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
55668611 782 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
3e6c4538
BH
783 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
784 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
8ceee660
BH
785
786 /* Every error apart from tobe_disc and pause_frm */
787 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
788 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
789 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
790
50050877
BH
791 /* Count errors that are not in MAC stats. Ignore expected
792 * checksum errors during self-test. */
8ceee660
BH
793 if (rx_ev_frm_trunc)
794 ++rx_queue->channel->n_rx_frm_trunc;
795 else if (rx_ev_tobe_disc)
796 ++rx_queue->channel->n_rx_tobe_disc;
50050877
BH
797 else if (!efx->loopback_selftest) {
798 if (rx_ev_ip_hdr_chksum_err)
799 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
800 else if (rx_ev_tcp_udp_chksum_err)
801 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
802 }
8ceee660
BH
803 if (rx_ev_ip_frag_err)
804 ++rx_queue->channel->n_rx_ip_frag_err;
805
806 /* The frame must be discarded if any of these are true. */
807 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
808 rx_ev_tobe_disc | rx_ev_pause_frm);
809
810 /* TOBE_DISC is expected on unicast mismatches; don't print out an
811 * error message. FRM_TRUNC indicates RXDP dropped the packet due
812 * to a FIFO overflow.
813 */
814#ifdef EFX_ENABLE_DEBUG
815 if (rx_ev_other_err) {
816 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
5b39fe30 817 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
8ceee660
BH
818 rx_queue->queue, EFX_QWORD_VAL(*event),
819 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
820 rx_ev_ip_hdr_chksum_err ?
821 " [IP_HDR_CHKSUM_ERR]" : "",
822 rx_ev_tcp_udp_chksum_err ?
823 " [TCP_UDP_CHKSUM_ERR]" : "",
824 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
825 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
826 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
827 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
5b39fe30 828 rx_ev_pause_frm ? " [PAUSE]" : "");
8ceee660
BH
829 }
830#endif
8ceee660
BH
831}
832
833/* Handle receive events that are not in-order. */
834static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
835 unsigned index)
836{
837 struct efx_nic *efx = rx_queue->efx;
838 unsigned expected, dropped;
839
3ffeabdd
BH
840 expected = rx_queue->removed_count & EFX_RXQ_MASK;
841 dropped = (index - expected) & EFX_RXQ_MASK;
8ceee660
BH
842 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
843 dropped, index, expected);
844
845 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
846 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
847}
848
849/* Handle a packet received event
850 *
851 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
852 * wrong destination address
853 * Also "is multicast" and "matches multicast filter" flags can be used to
854 * discard non-matching multicast packets.
855 */
42cbe2d7
BH
856static void falcon_handle_rx_event(struct efx_channel *channel,
857 const efx_qword_t *event)
8ceee660 858{
42cbe2d7 859 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
dc8cfa55 860 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
8ceee660 861 unsigned expected_ptr;
dc8cfa55 862 bool rx_ev_pkt_ok, discard = false, checksummed;
8ceee660
BH
863 struct efx_rx_queue *rx_queue;
864 struct efx_nic *efx = channel->efx;
865
866 /* Basic packet information */
3e6c4538
BH
867 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
868 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
869 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
870 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
871 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
872 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
873 channel->channel);
8ceee660 874
42cbe2d7 875 rx_queue = &efx->rx_queue[channel->channel];
8ceee660 876
3e6c4538 877 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
3ffeabdd 878 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
42cbe2d7 879 if (unlikely(rx_ev_desc_ptr != expected_ptr))
8ceee660 880 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
8ceee660
BH
881
882 if (likely(rx_ev_pkt_ok)) {
883 /* If packet is marked as OK and packet type is TCP/IPv4 or
884 * UDP/IPv4, then we can rely on the hardware checksum.
885 */
3e6c4538
BH
886 checksummed =
887 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
888 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP;
8ceee660
BH
889 } else {
890 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
5b39fe30 891 &discard);
dc8cfa55 892 checksummed = false;
8ceee660
BH
893 }
894
895 /* Detect multicast packets that didn't match the filter */
3e6c4538 896 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
8ceee660
BH
897 if (rx_ev_mcast_pkt) {
898 unsigned int rx_ev_mcast_hash_match =
3e6c4538 899 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
8ceee660
BH
900
901 if (unlikely(!rx_ev_mcast_hash_match))
dc8cfa55 902 discard = true;
8ceee660
BH
903 }
904
6fb70fd1
BH
905 channel->irq_mod_score += 2;
906
8ceee660
BH
907 /* Handle received packet */
908 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
909 checksummed, discard);
8ceee660
BH
910}
911
912/* Global events are basically PHY events */
913static void falcon_handle_global_event(struct efx_channel *channel,
914 efx_qword_t *event)
915{
916 struct efx_nic *efx = channel->efx;
766ca0fa 917 bool handled = false;
8ceee660 918
3e6c4538
BH
919 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
920 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
921 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
766ca0fa
BH
922 efx->phy_op->clear_interrupt(efx);
923 queue_work(efx->workqueue, &efx->phy_work);
924 handled = true;
925 }
8ceee660 926
55668611 927 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
3e6c4538 928 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
766ca0fa 929 queue_work(efx->workqueue, &efx->mac_work);
dc8cfa55 930 handled = true;
8ceee660
BH
931 }
932
56241ceb 933 if (falcon_rev(efx) <= FALCON_REV_A1 ?
3e6c4538
BH
934 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
935 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
8ceee660
BH
936 EFX_ERR(efx, "channel %d seen global RX_RESET "
937 "event. Resetting.\n", channel->channel);
938
939 atomic_inc(&efx->rx_reset);
940 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
941 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
dc8cfa55 942 handled = true;
8ceee660
BH
943 }
944
945 if (!handled)
946 EFX_ERR(efx, "channel %d unknown global event "
947 EFX_QWORD_FMT "\n", channel->channel,
948 EFX_QWORD_VAL(*event));
949}
950
951static void falcon_handle_driver_event(struct efx_channel *channel,
952 efx_qword_t *event)
953{
954 struct efx_nic *efx = channel->efx;
955 unsigned int ev_sub_code;
956 unsigned int ev_sub_data;
957
3e6c4538
BH
958 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
959 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
8ceee660
BH
960
961 switch (ev_sub_code) {
3e6c4538 962 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
8ceee660
BH
963 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
964 channel->channel, ev_sub_data);
965 break;
3e6c4538 966 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
8ceee660
BH
967 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
968 channel->channel, ev_sub_data);
969 break;
3e6c4538 970 case FSE_AZ_EVQ_INIT_DONE_EV:
8ceee660
BH
971 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
972 channel->channel, ev_sub_data);
973 break;
3e6c4538 974 case FSE_AZ_SRM_UPD_DONE_EV:
8ceee660
BH
975 EFX_TRACE(efx, "channel %d SRAM update done\n",
976 channel->channel);
977 break;
3e6c4538 978 case FSE_AZ_WAKE_UP_EV:
8ceee660
BH
979 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
980 channel->channel, ev_sub_data);
981 break;
3e6c4538 982 case FSE_AZ_TIMER_EV:
8ceee660
BH
983 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
984 channel->channel, ev_sub_data);
985 break;
3e6c4538 986 case FSE_AA_RX_RECOVER_EV:
8ceee660
BH
987 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
988 "Resetting.\n", channel->channel);
05e3ec04 989 atomic_inc(&efx->rx_reset);
8ceee660
BH
990 efx_schedule_reset(efx,
991 EFX_WORKAROUND_6555(efx) ?
992 RESET_TYPE_RX_RECOVERY :
993 RESET_TYPE_DISABLE);
994 break;
3e6c4538 995 case FSE_BZ_RX_DSC_ERROR_EV:
8ceee660
BH
996 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
997 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
998 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
999 break;
3e6c4538 1000 case FSE_BZ_TX_DSC_ERROR_EV:
8ceee660
BH
1001 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1002 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1003 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1004 break;
1005 default:
1006 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1007 "data %04x\n", channel->channel, ev_sub_code,
1008 ev_sub_data);
1009 break;
1010 }
1011}
1012
42cbe2d7 1013int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
8ceee660
BH
1014{
1015 unsigned int read_ptr;
1016 efx_qword_t event, *p_event;
1017 int ev_code;
42cbe2d7 1018 int rx_packets = 0;
8ceee660
BH
1019
1020 read_ptr = channel->eventq_read_ptr;
1021
1022 do {
1023 p_event = falcon_event(channel, read_ptr);
1024 event = *p_event;
1025
1026 if (!falcon_event_present(&event))
1027 /* End of events */
1028 break;
1029
1030 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1031 channel->channel, EFX_QWORD_VAL(event));
1032
1033 /* Clear this event by marking it all ones */
1034 EFX_SET_QWORD(*p_event);
1035
3e6c4538 1036 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
8ceee660
BH
1037
1038 switch (ev_code) {
3e6c4538 1039 case FSE_AZ_EV_CODE_RX_EV:
42cbe2d7
BH
1040 falcon_handle_rx_event(channel, &event);
1041 ++rx_packets;
8ceee660 1042 break;
3e6c4538 1043 case FSE_AZ_EV_CODE_TX_EV:
8ceee660
BH
1044 falcon_handle_tx_event(channel, &event);
1045 break;
3e6c4538
BH
1046 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1047 channel->eventq_magic = EFX_QWORD_FIELD(
1048 event, FSF_AZ_DRV_GEN_EV_MAGIC);
8ceee660
BH
1049 EFX_LOG(channel->efx, "channel %d received generated "
1050 "event "EFX_QWORD_FMT"\n", channel->channel,
1051 EFX_QWORD_VAL(event));
1052 break;
3e6c4538 1053 case FSE_AZ_EV_CODE_GLOBAL_EV:
8ceee660
BH
1054 falcon_handle_global_event(channel, &event);
1055 break;
3e6c4538 1056 case FSE_AZ_EV_CODE_DRIVER_EV:
8ceee660
BH
1057 falcon_handle_driver_event(channel, &event);
1058 break;
1059 default:
1060 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1061 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1062 ev_code, EFX_QWORD_VAL(event));
1063 }
1064
1065 /* Increment read pointer */
3ffeabdd 1066 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
8ceee660 1067
42cbe2d7 1068 } while (rx_packets < rx_quota);
8ceee660
BH
1069
1070 channel->eventq_read_ptr = read_ptr;
42cbe2d7 1071 return rx_packets;
8ceee660
BH
1072}
1073
1074void falcon_set_int_moderation(struct efx_channel *channel)
1075{
1076 efx_dword_t timer_cmd;
1077 struct efx_nic *efx = channel->efx;
1078
1079 /* Set timer register */
1080 if (channel->irq_moderation) {
1081 /* Round to resolution supported by hardware. The value we
1082 * program is based at 0. So actual interrupt moderation
1083 * achieved is ((x + 1) * res).
1084 */
6fb70fd1
BH
1085 channel->irq_moderation -= (channel->irq_moderation %
1086 FALCON_IRQ_MOD_RESOLUTION);
1087 if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION)
1088 channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION;
8ceee660 1089 EFX_POPULATE_DWORD_2(timer_cmd,
3e6c4538
BH
1090 FRF_AB_TC_TIMER_MODE,
1091 FFE_BB_TIMER_MODE_INT_HLDOFF,
1092 FRF_AB_TC_TIMER_VAL,
6fb70fd1
BH
1093 channel->irq_moderation /
1094 FALCON_IRQ_MOD_RESOLUTION - 1);
8ceee660
BH
1095 } else {
1096 EFX_POPULATE_DWORD_2(timer_cmd,
3e6c4538
BH
1097 FRF_AB_TC_TIMER_MODE,
1098 FFE_BB_TIMER_MODE_DIS,
1099 FRF_AB_TC_TIMER_VAL, 0);
8ceee660 1100 }
3e6c4538 1101 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
12d00cad
BH
1102 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1103 channel->channel);
8ceee660
BH
1104
1105}
1106
1107/* Allocate buffer table entries for event queue */
1108int falcon_probe_eventq(struct efx_channel *channel)
1109{
1110 struct efx_nic *efx = channel->efx;
3ffeabdd
BH
1111 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1112 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1113 return falcon_alloc_special_buffer(efx, &channel->eventq,
1114 EFX_EVQ_SIZE * sizeof(efx_qword_t));
8ceee660
BH
1115}
1116
bc3c90a2 1117void falcon_init_eventq(struct efx_channel *channel)
8ceee660
BH
1118{
1119 efx_oword_t evq_ptr;
1120 struct efx_nic *efx = channel->efx;
8ceee660
BH
1121
1122 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1123 channel->channel, channel->eventq.index,
1124 channel->eventq.index + channel->eventq.entries - 1);
1125
1126 /* Pin event queue buffer */
bc3c90a2 1127 falcon_init_special_buffer(efx, &channel->eventq);
8ceee660
BH
1128
1129 /* Fill event queue with all ones (i.e. empty events) */
1130 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1131
1132 /* Push event queue to card */
1133 EFX_POPULATE_OWORD_3(evq_ptr,
3e6c4538 1134 FRF_AZ_EVQ_EN, 1,
3ffeabdd 1135 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
3e6c4538 1136 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
12d00cad
BH
1137 efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1138 channel->channel);
8ceee660
BH
1139
1140 falcon_set_int_moderation(channel);
8ceee660
BH
1141}
1142
1143void falcon_fini_eventq(struct efx_channel *channel)
1144{
1145 efx_oword_t eventq_ptr;
1146 struct efx_nic *efx = channel->efx;
1147
1148 /* Remove event queue from card */
1149 EFX_ZERO_OWORD(eventq_ptr);
12d00cad
BH
1150 efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1151 channel->channel);
8ceee660
BH
1152
1153 /* Unpin event queue */
1154 falcon_fini_special_buffer(efx, &channel->eventq);
1155}
1156
1157/* Free buffers backing event queue */
1158void falcon_remove_eventq(struct efx_channel *channel)
1159{
1160 falcon_free_special_buffer(channel->efx, &channel->eventq);
1161}
1162
1163
1164/* Generates a test event on the event queue. A subsequent call to
1165 * process_eventq() should pick up the event and place the value of
1166 * "magic" into channel->eventq_magic;
1167 */
1168void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1169{
1170 efx_qword_t test_event;
1171
3e6c4538
BH
1172 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1173 FSE_AZ_EV_CODE_DRV_GEN_EV,
1174 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
8ceee660
BH
1175 falcon_generate_event(channel, &test_event);
1176}
1177
177dfcd8
BH
1178void falcon_sim_phy_event(struct efx_nic *efx)
1179{
1180 efx_qword_t phy_event;
1181
3e6c4538
BH
1182 EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1183 FSE_AZ_EV_CODE_GLOBAL_EV);
177dfcd8 1184 if (EFX_IS10G(efx))
3e6c4538 1185 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
177dfcd8 1186 else
3e6c4538 1187 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
177dfcd8
BH
1188
1189 falcon_generate_event(&efx->channel[0], &phy_event);
1190}
1191
6bc5d3a9
BH
1192/**************************************************************************
1193 *
1194 * Flush handling
1195 *
1196 **************************************************************************/
1197
1198
1199static void falcon_poll_flush_events(struct efx_nic *efx)
1200{
1201 struct efx_channel *channel = &efx->channel[0];
1202 struct efx_tx_queue *tx_queue;
1203 struct efx_rx_queue *rx_queue;
4720bc6c 1204 unsigned int read_ptr = channel->eventq_read_ptr;
3ffeabdd 1205 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
6bc5d3a9 1206
4720bc6c 1207 do {
6bc5d3a9
BH
1208 efx_qword_t *event = falcon_event(channel, read_ptr);
1209 int ev_code, ev_sub_code, ev_queue;
1210 bool ev_failed;
4720bc6c 1211
6bc5d3a9
BH
1212 if (!falcon_event_present(event))
1213 break;
1214
3e6c4538
BH
1215 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1216 ev_sub_code = EFX_QWORD_FIELD(*event,
1217 FSF_AZ_DRIVER_EV_SUBCODE);
1218 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1219 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
6bc5d3a9 1220 ev_queue = EFX_QWORD_FIELD(*event,
3e6c4538 1221 FSF_AZ_DRIVER_EV_SUBDATA);
6bc5d3a9
BH
1222 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1223 tx_queue = efx->tx_queue + ev_queue;
1224 tx_queue->flushed = true;
1225 }
3e6c4538
BH
1226 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1227 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1228 ev_queue = EFX_QWORD_FIELD(
1229 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1230 ev_failed = EFX_QWORD_FIELD(
1231 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
6bc5d3a9
BH
1232 if (ev_queue < efx->n_rx_queues) {
1233 rx_queue = efx->rx_queue + ev_queue;
1234
1235 /* retry the rx flush */
1236 if (ev_failed)
1237 falcon_flush_rx_queue(rx_queue);
1238 else
1239 rx_queue->flushed = true;
1240 }
6bc5d3a9
BH
1241 }
1242
3ffeabdd 1243 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
4720bc6c 1244 } while (read_ptr != end_ptr);
6bc5d3a9
BH
1245}
1246
1247/* Handle tx and rx flushes at the same time, since they run in
1248 * parallel in the hardware and there's no reason for us to
1249 * serialise them */
1250int falcon_flush_queues(struct efx_nic *efx)
1251{
1252 struct efx_rx_queue *rx_queue;
1253 struct efx_tx_queue *tx_queue;
1254 int i;
1255 bool outstanding;
1256
1257 /* Issue flush requests */
1258 efx_for_each_tx_queue(tx_queue, efx) {
1259 tx_queue->flushed = false;
1260 falcon_flush_tx_queue(tx_queue);
1261 }
1262 efx_for_each_rx_queue(rx_queue, efx) {
1263 rx_queue->flushed = false;
1264 falcon_flush_rx_queue(rx_queue);
1265 }
1266
1267 /* Poll the evq looking for flush completions. Since we're not pushing
1268 * any more rx or tx descriptors at this point, we're in no danger of
1269 * overflowing the evq whilst we wait */
1270 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1271 msleep(FALCON_FLUSH_INTERVAL);
1272 falcon_poll_flush_events(efx);
1273
1274 /* Check if every queue has been succesfully flushed */
1275 outstanding = false;
1276 efx_for_each_tx_queue(tx_queue, efx)
1277 outstanding |= !tx_queue->flushed;
1278 efx_for_each_rx_queue(rx_queue, efx)
1279 outstanding |= !rx_queue->flushed;
1280 if (!outstanding)
1281 return 0;
1282 }
1283
1284 /* Mark the queues as all flushed. We're going to return failure
1285 * leading to a reset, or fake up success anyway. "flushed" now
1286 * indicates that we tried to flush. */
1287 efx_for_each_tx_queue(tx_queue, efx) {
1288 if (!tx_queue->flushed)
1289 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1290 tx_queue->queue);
1291 tx_queue->flushed = true;
1292 }
1293 efx_for_each_rx_queue(rx_queue, efx) {
1294 if (!rx_queue->flushed)
1295 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1296 rx_queue->queue);
1297 rx_queue->flushed = true;
1298 }
1299
1300 if (EFX_WORKAROUND_7803(efx))
1301 return 0;
1302
1303 return -ETIMEDOUT;
1304}
8ceee660
BH
1305
1306/**************************************************************************
1307 *
1308 * Falcon hardware interrupts
1309 * The hardware interrupt handler does very little work; all the event
1310 * queue processing is carried out by per-channel tasklets.
1311 *
1312 **************************************************************************/
1313
1314/* Enable/disable/generate Falcon interrupts */
1315static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1316 int force)
1317{
1318 efx_oword_t int_en_reg_ker;
1319
1320 EFX_POPULATE_OWORD_2(int_en_reg_ker,
3e6c4538
BH
1321 FRF_AZ_KER_INT_KER, force,
1322 FRF_AZ_DRV_INT_EN_KER, enabled);
12d00cad 1323 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
8ceee660
BH
1324}
1325
1326void falcon_enable_interrupts(struct efx_nic *efx)
1327{
1328 efx_oword_t int_adr_reg_ker;
1329 struct efx_channel *channel;
1330
1331 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1332 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1333
1334 /* Program address */
1335 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
3e6c4538
BH
1336 FRF_AZ_NORM_INT_VEC_DIS_KER,
1337 EFX_INT_MODE_USE_MSI(efx),
1338 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
12d00cad 1339 efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
8ceee660
BH
1340
1341 /* Enable interrupts */
1342 falcon_interrupts(efx, 1, 0);
1343
1344 /* Force processing of all the channels to get the EVQ RPTRs up to
1345 date */
64ee3120 1346 efx_for_each_channel(channel, efx)
8ceee660
BH
1347 efx_schedule_channel(channel);
1348}
1349
1350void falcon_disable_interrupts(struct efx_nic *efx)
1351{
1352 /* Disable interrupts */
1353 falcon_interrupts(efx, 0, 0);
1354}
1355
1356/* Generate a Falcon test interrupt
1357 * Interrupt must already have been enabled, otherwise nasty things
1358 * may happen.
1359 */
1360void falcon_generate_interrupt(struct efx_nic *efx)
1361{
1362 falcon_interrupts(efx, 1, 1);
1363}
1364
1365/* Acknowledge a legacy interrupt from Falcon
1366 *
1367 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1368 *
1369 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1370 * BIU. Interrupt acknowledge is read sensitive so must write instead
1371 * (then read to ensure the BIU collector is flushed)
1372 *
1373 * NB most hardware supports MSI interrupts
1374 */
1375static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1376{
1377 efx_dword_t reg;
1378
3e6c4538 1379 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
12d00cad
BH
1380 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1381 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
8ceee660
BH
1382}
1383
1384/* Process a fatal interrupt
1385 * Disable bus mastering ASAP and schedule a reset
1386 */
1387static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1388{
1389 struct falcon_nic_data *nic_data = efx->nic_data;
d3208b5e 1390 efx_oword_t *int_ker = efx->irq_status.addr;
8ceee660
BH
1391 efx_oword_t fatal_intr;
1392 int error, mem_perr;
8ceee660 1393
12d00cad 1394 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
3e6c4538 1395 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
8ceee660
BH
1396
1397 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1398 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1399 EFX_OWORD_VAL(fatal_intr),
1400 error ? "disabling bus mastering" : "no recognised error");
1401 if (error == 0)
1402 goto out;
1403
1404 /* If this is a memory parity error dump which blocks are offending */
3e6c4538 1405 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
8ceee660
BH
1406 if (mem_perr) {
1407 efx_oword_t reg;
12d00cad 1408 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
8ceee660
BH
1409 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1410 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1411 }
1412
0a62f1a6 1413 /* Disable both devices */
ef1bba28 1414 pci_clear_master(efx->pci_dev);
8ceee660 1415 if (FALCON_IS_DUAL_FUNC(efx))
ef1bba28 1416 pci_clear_master(nic_data->pci_dev2);
0a62f1a6 1417 falcon_disable_interrupts(efx);
8ceee660 1418
2c3c3d02
BH
1419 /* Count errors and reset or disable the NIC accordingly */
1420 if (nic_data->int_error_count == 0 ||
1421 time_after(jiffies, nic_data->int_error_expire)) {
1422 nic_data->int_error_count = 0;
1423 nic_data->int_error_expire =
1424 jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1425 }
1426 if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
8ceee660
BH
1427 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1428 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1429 } else {
1430 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1431 "NIC will be disabled\n");
1432 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1433 }
1434out:
1435 return IRQ_HANDLED;
1436}
1437
1438/* Handle a legacy interrupt from Falcon
1439 * Acknowledges the interrupt and schedule event queue processing.
1440 */
1441static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1442{
d3208b5e
BH
1443 struct efx_nic *efx = dev_id;
1444 efx_oword_t *int_ker = efx->irq_status.addr;
a9de9a74 1445 irqreturn_t result = IRQ_NONE;
8ceee660
BH
1446 struct efx_channel *channel;
1447 efx_dword_t reg;
1448 u32 queues;
1449 int syserr;
1450
1451 /* Read the ISR which also ACKs the interrupts */
12d00cad 1452 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
8ceee660
BH
1453 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1454
1455 /* Check to see if we have a serious error condition */
3e6c4538 1456 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
8ceee660
BH
1457 if (unlikely(syserr))
1458 return falcon_fatal_interrupt(efx);
1459
8ceee660 1460 /* Schedule processing of any interrupting queues */
a9de9a74
BH
1461 efx_for_each_channel(channel, efx) {
1462 if ((queues & 1) ||
1463 falcon_event_present(
1464 falcon_event(channel, channel->eventq_read_ptr))) {
8ceee660 1465 efx_schedule_channel(channel);
a9de9a74
BH
1466 result = IRQ_HANDLED;
1467 }
8ceee660
BH
1468 queues >>= 1;
1469 }
1470
a9de9a74
BH
1471 if (result == IRQ_HANDLED) {
1472 efx->last_irq_cpu = raw_smp_processor_id();
1473 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1474 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1475 }
1476
1477 return result;
8ceee660
BH
1478}
1479
1480
1481static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1482{
d3208b5e
BH
1483 struct efx_nic *efx = dev_id;
1484 efx_oword_t *int_ker = efx->irq_status.addr;
8ceee660
BH
1485 struct efx_channel *channel;
1486 int syserr;
1487 int queues;
1488
1489 /* Check to see if this is our interrupt. If it isn't, we
1490 * exit without having touched the hardware.
1491 */
1492 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1493 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1494 raw_smp_processor_id());
1495 return IRQ_NONE;
1496 }
1497 efx->last_irq_cpu = raw_smp_processor_id();
1498 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1499 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1500
1501 /* Check to see if we have a serious error condition */
3e6c4538 1502 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
8ceee660
BH
1503 if (unlikely(syserr))
1504 return falcon_fatal_interrupt(efx);
1505
1506 /* Determine interrupting queues, clear interrupt status
1507 * register and acknowledge the device interrupt.
1508 */
1509 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1510 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1511 EFX_ZERO_OWORD(*int_ker);
1512 wmb(); /* Ensure the vector is cleared before interrupt ack */
1513 falcon_irq_ack_a1(efx);
1514
1515 /* Schedule processing of any interrupting queues */
1516 channel = &efx->channel[0];
1517 while (queues) {
1518 if (queues & 0x01)
1519 efx_schedule_channel(channel);
1520 channel++;
1521 queues >>= 1;
1522 }
1523
1524 return IRQ_HANDLED;
1525}
1526
1527/* Handle an MSI interrupt from Falcon
1528 *
1529 * Handle an MSI hardware interrupt. This routine schedules event
1530 * queue processing. No interrupt acknowledgement cycle is necessary.
1531 * Also, we never need to check that the interrupt is for us, since
1532 * MSI interrupts cannot be shared.
1533 */
1534static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1535{
d3208b5e 1536 struct efx_channel *channel = dev_id;
8ceee660 1537 struct efx_nic *efx = channel->efx;
d3208b5e 1538 efx_oword_t *int_ker = efx->irq_status.addr;
8ceee660
BH
1539 int syserr;
1540
1541 efx->last_irq_cpu = raw_smp_processor_id();
1542 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1543 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1544
1545 /* Check to see if we have a serious error condition */
1546 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1547 if (unlikely(syserr))
1548 return falcon_fatal_interrupt(efx);
1549
1550 /* Schedule processing of the channel */
1551 efx_schedule_channel(channel);
1552
1553 return IRQ_HANDLED;
1554}
1555
1556
1557/* Setup RSS indirection table.
1558 * This maps from the hash value of the packet to RXQ
1559 */
1560static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1561{
1562 int i = 0;
1563 unsigned long offset;
1564 efx_dword_t dword;
1565
55668611 1566 if (falcon_rev(efx) < FALCON_REV_B0)
8ceee660
BH
1567 return;
1568
3e6c4538
BH
1569 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1570 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
8ceee660 1571 offset += 0x10) {
3e6c4538 1572 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
8831da7b 1573 i % efx->n_rx_queues);
12d00cad 1574 efx_writed(efx, &dword, offset);
8ceee660
BH
1575 i++;
1576 }
1577}
1578
1579/* Hook interrupt handler(s)
1580 * Try MSI and then legacy interrupts.
1581 */
1582int falcon_init_interrupt(struct efx_nic *efx)
1583{
1584 struct efx_channel *channel;
1585 int rc;
1586
1587 if (!EFX_INT_MODE_USE_MSI(efx)) {
1588 irq_handler_t handler;
55668611 1589 if (falcon_rev(efx) >= FALCON_REV_B0)
8ceee660
BH
1590 handler = falcon_legacy_interrupt_b0;
1591 else
1592 handler = falcon_legacy_interrupt_a1;
1593
1594 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1595 efx->name, efx);
1596 if (rc) {
1597 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1598 efx->pci_dev->irq);
1599 goto fail1;
1600 }
1601 return 0;
1602 }
1603
1604 /* Hook MSI or MSI-X interrupt */
64ee3120 1605 efx_for_each_channel(channel, efx) {
8ceee660
BH
1606 rc = request_irq(channel->irq, falcon_msi_interrupt,
1607 IRQF_PROBE_SHARED, /* Not shared */
56536e9c 1608 channel->name, channel);
8ceee660
BH
1609 if (rc) {
1610 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1611 goto fail2;
1612 }
1613 }
1614
1615 return 0;
1616
1617 fail2:
64ee3120 1618 efx_for_each_channel(channel, efx)
8ceee660
BH
1619 free_irq(channel->irq, channel);
1620 fail1:
1621 return rc;
1622}
1623
1624void falcon_fini_interrupt(struct efx_nic *efx)
1625{
1626 struct efx_channel *channel;
1627 efx_oword_t reg;
1628
1629 /* Disable MSI/MSI-X interrupts */
64ee3120 1630 efx_for_each_channel(channel, efx) {
8ceee660
BH
1631 if (channel->irq)
1632 free_irq(channel->irq, channel);
b3475645 1633 }
8ceee660
BH
1634
1635 /* ACK legacy interrupt */
55668611 1636 if (falcon_rev(efx) >= FALCON_REV_B0)
12d00cad 1637 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
8ceee660
BH
1638 else
1639 falcon_irq_ack_a1(efx);
1640
1641 /* Disable legacy interrupt */
1642 if (efx->legacy_irq)
1643 free_irq(efx->legacy_irq, efx);
1644}
1645
1646/**************************************************************************
1647 *
1648 * EEPROM/flash
1649 *
1650 **************************************************************************
1651 */
1652
23d30f02 1653#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
8ceee660 1654
be4ea89c
BH
1655static int falcon_spi_poll(struct efx_nic *efx)
1656{
1657 efx_oword_t reg;
12d00cad 1658 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
3e6c4538 1659 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
be4ea89c
BH
1660}
1661
8ceee660
BH
1662/* Wait for SPI command completion */
1663static int falcon_spi_wait(struct efx_nic *efx)
1664{
be4ea89c
BH
1665 /* Most commands will finish quickly, so we start polling at
1666 * very short intervals. Sometimes the command may have to
1667 * wait for VPD or expansion ROM access outside of our
1668 * control, so we allow up to 100 ms. */
1669 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1670 int i;
1671
1672 for (i = 0; i < 10; i++) {
1673 if (!falcon_spi_poll(efx))
1674 return 0;
1675 udelay(10);
1676 }
8ceee660 1677
4a5b504d 1678 for (;;) {
be4ea89c 1679 if (!falcon_spi_poll(efx))
8ceee660 1680 return 0;
4a5b504d
BH
1681 if (time_after_eq(jiffies, timeout)) {
1682 EFX_ERR(efx, "timed out waiting for SPI\n");
1683 return -ETIMEDOUT;
1684 }
be4ea89c 1685 schedule_timeout_uninterruptible(1);
4a5b504d 1686 }
8ceee660
BH
1687}
1688
f4150724
BH
1689int falcon_spi_cmd(const struct efx_spi_device *spi,
1690 unsigned int command, int address,
23d30f02 1691 const void *in, void *out, size_t len)
8ceee660 1692{
4a5b504d
BH
1693 struct efx_nic *efx = spi->efx;
1694 bool addressed = (address >= 0);
1695 bool reading = (out != NULL);
8ceee660
BH
1696 efx_oword_t reg;
1697 int rc;
1698
4a5b504d
BH
1699 /* Input validation */
1700 if (len > FALCON_SPI_MAX_LEN)
1701 return -EINVAL;
f4150724 1702 BUG_ON(!mutex_is_locked(&efx->spi_lock));
8ceee660 1703
be4ea89c
BH
1704 /* Check that previous command is not still running */
1705 rc = falcon_spi_poll(efx);
8ceee660
BH
1706 if (rc)
1707 return rc;
1708
4a5b504d
BH
1709 /* Program address register, if we have an address */
1710 if (addressed) {
3e6c4538 1711 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
12d00cad 1712 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
4a5b504d
BH
1713 }
1714
1715 /* Program data register, if we have data */
1716 if (in != NULL) {
1717 memcpy(&reg, in, len);
12d00cad 1718 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
4a5b504d 1719 }
8ceee660 1720
4a5b504d 1721 /* Issue read/write command */
8ceee660 1722 EFX_POPULATE_OWORD_7(reg,
3e6c4538
BH
1723 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1724 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1725 FRF_AB_EE_SPI_HCMD_DABCNT, len,
1726 FRF_AB_EE_SPI_HCMD_READ, reading,
1727 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1728 FRF_AB_EE_SPI_HCMD_ADBCNT,
4a5b504d 1729 (addressed ? spi->addr_len : 0),
3e6c4538 1730 FRF_AB_EE_SPI_HCMD_ENC, command);
12d00cad 1731 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
8ceee660 1732
4a5b504d 1733 /* Wait for read/write to complete */
8ceee660
BH
1734 rc = falcon_spi_wait(efx);
1735 if (rc)
1736 return rc;
1737
1738 /* Read data */
4a5b504d 1739 if (out != NULL) {
12d00cad 1740 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
4a5b504d
BH
1741 memcpy(out, &reg, len);
1742 }
1743
8ceee660
BH
1744 return 0;
1745}
1746
23d30f02
BH
1747static size_t
1748falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
4a5b504d
BH
1749{
1750 return min(FALCON_SPI_MAX_LEN,
1751 (spi->block_size - (start & (spi->block_size - 1))));
1752}
1753
1754static inline u8
1755efx_spi_munge_command(const struct efx_spi_device *spi,
1756 const u8 command, const unsigned int address)
1757{
1758 return command | (((address >> 8) & spi->munge_address) << 3);
1759}
1760
be4ea89c
BH
1761/* Wait up to 10 ms for buffered write completion */
1762int falcon_spi_wait_write(const struct efx_spi_device *spi)
4a5b504d 1763{
be4ea89c
BH
1764 struct efx_nic *efx = spi->efx;
1765 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
4a5b504d 1766 u8 status;
be4ea89c 1767 int rc;
4a5b504d 1768
be4ea89c 1769 for (;;) {
4a5b504d
BH
1770 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1771 &status, sizeof(status));
1772 if (rc)
1773 return rc;
1774 if (!(status & SPI_STATUS_NRDY))
1775 return 0;
be4ea89c
BH
1776 if (time_after_eq(jiffies, timeout)) {
1777 EFX_ERR(efx, "SPI write timeout on device %d"
1778 " last status=0x%02x\n",
1779 spi->device_id, status);
1780 return -ETIMEDOUT;
1781 }
1782 schedule_timeout_uninterruptible(1);
4a5b504d 1783 }
4a5b504d
BH
1784}
1785
1786int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1787 size_t len, size_t *retlen, u8 *buffer)
1788{
23d30f02
BH
1789 size_t block_len, pos = 0;
1790 unsigned int command;
4a5b504d
BH
1791 int rc = 0;
1792
1793 while (pos < len) {
23d30f02 1794 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
4a5b504d
BH
1795
1796 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1797 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1798 buffer + pos, block_len);
1799 if (rc)
1800 break;
1801 pos += block_len;
1802
1803 /* Avoid locking up the system */
1804 cond_resched();
1805 if (signal_pending(current)) {
1806 rc = -EINTR;
1807 break;
1808 }
1809 }
1810
1811 if (retlen)
1812 *retlen = pos;
1813 return rc;
1814}
1815
1816int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1817 size_t len, size_t *retlen, const u8 *buffer)
1818{
1819 u8 verify_buffer[FALCON_SPI_MAX_LEN];
23d30f02
BH
1820 size_t block_len, pos = 0;
1821 unsigned int command;
4a5b504d
BH
1822 int rc = 0;
1823
1824 while (pos < len) {
1825 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1826 if (rc)
1827 break;
1828
23d30f02 1829 block_len = min(len - pos,
4a5b504d
BH
1830 falcon_spi_write_limit(spi, start + pos));
1831 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1832 rc = falcon_spi_cmd(spi, command, start + pos,
1833 buffer + pos, NULL, block_len);
1834 if (rc)
1835 break;
1836
be4ea89c 1837 rc = falcon_spi_wait_write(spi);
4a5b504d
BH
1838 if (rc)
1839 break;
1840
1841 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1842 rc = falcon_spi_cmd(spi, command, start + pos,
1843 NULL, verify_buffer, block_len);
1844 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1845 rc = -EIO;
1846 break;
1847 }
1848
1849 pos += block_len;
1850
1851 /* Avoid locking up the system */
1852 cond_resched();
1853 if (signal_pending(current)) {
1854 rc = -EINTR;
1855 break;
1856 }
1857 }
1858
1859 if (retlen)
1860 *retlen = pos;
1861 return rc;
1862}
1863
8ceee660
BH
1864/**************************************************************************
1865 *
1866 * MAC wrapper
1867 *
1868 **************************************************************************
1869 */
177dfcd8
BH
1870
1871static int falcon_reset_macs(struct efx_nic *efx)
8ceee660 1872{
177dfcd8 1873 efx_oword_t reg;
8ceee660
BH
1874 int count;
1875
177dfcd8
BH
1876 if (falcon_rev(efx) < FALCON_REV_B0) {
1877 /* It's not safe to use GLB_CTL_REG to reset the
1878 * macs, so instead use the internal MAC resets
1879 */
1880 if (!EFX_IS10G(efx)) {
3e6c4538 1881 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
12d00cad 1882 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
177dfcd8
BH
1883 udelay(1000);
1884
3e6c4538 1885 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
12d00cad 1886 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
177dfcd8
BH
1887 udelay(1000);
1888 return 0;
1889 } else {
3e6c4538 1890 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
12d00cad 1891 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
177dfcd8
BH
1892
1893 for (count = 0; count < 10000; count++) {
12d00cad 1894 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
3e6c4538
BH
1895 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1896 0)
177dfcd8
BH
1897 return 0;
1898 udelay(10);
1899 }
8ceee660 1900
177dfcd8
BH
1901 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1902 return -ETIMEDOUT;
1903 }
1904 }
8ceee660
BH
1905
1906 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1907 * the drain sequence with the statistics fetch */
1974cc20 1908 efx_stats_disable(efx);
8ceee660 1909
12d00cad 1910 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
3e6c4538 1911 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
12d00cad 1912 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
8ceee660 1913
12d00cad 1914 efx_reado(efx, &reg, FR_AB_GLB_CTL);
3e6c4538
BH
1915 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1916 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1917 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
12d00cad 1918 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
8ceee660
BH
1919
1920 count = 0;
1921 while (1) {
12d00cad 1922 efx_reado(efx, &reg, FR_AB_GLB_CTL);
3e6c4538
BH
1923 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1924 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1925 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
8ceee660
BH
1926 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1927 count);
1928 break;
1929 }
1930 if (count > 20) {
1931 EFX_ERR(efx, "MAC reset failed\n");
1932 break;
1933 }
1934 count++;
1935 udelay(10);
1936 }
1937
1974cc20 1938 efx_stats_enable(efx);
8ceee660
BH
1939
1940 /* If we've reset the EM block and the link is up, then
1941 * we'll have to kick the XAUI link so the PHY can recover */
177dfcd8 1942 if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
8ceee660 1943 falcon_reset_xaui(efx);
177dfcd8
BH
1944
1945 return 0;
1946}
1947
1948void falcon_drain_tx_fifo(struct efx_nic *efx)
1949{
1950 efx_oword_t reg;
1951
1952 if ((falcon_rev(efx) < FALCON_REV_B0) ||
1953 (efx->loopback_mode != LOOPBACK_NONE))
1954 return;
1955
12d00cad 1956 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
177dfcd8 1957 /* There is no point in draining more than once */
3e6c4538 1958 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
177dfcd8
BH
1959 return;
1960
1961 falcon_reset_macs(efx);
8ceee660
BH
1962}
1963
1964void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1965{
177dfcd8 1966 efx_oword_t reg;
8ceee660 1967
55668611 1968 if (falcon_rev(efx) < FALCON_REV_B0)
8ceee660
BH
1969 return;
1970
1971 /* Isolate the MAC -> RX */
12d00cad 1972 efx_reado(efx, &reg, FR_AZ_RX_CFG);
3e6c4538 1973 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
12d00cad 1974 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
8ceee660
BH
1975
1976 if (!efx->link_up)
1977 falcon_drain_tx_fifo(efx);
1978}
1979
1980void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1981{
1982 efx_oword_t reg;
1983 int link_speed;
dc8cfa55 1984 bool tx_fc;
8ceee660 1985
f31a45d2
BH
1986 switch (efx->link_speed) {
1987 case 10000: link_speed = 3; break;
1988 case 1000: link_speed = 2; break;
1989 case 100: link_speed = 1; break;
1990 default: link_speed = 0; break;
1991 }
8ceee660
BH
1992 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1993 * as advertised. Disable to ensure packets are not
1994 * indefinitely held and TX queue can be flushed at any point
1995 * while the link is down. */
1996 EFX_POPULATE_OWORD_5(reg,
3e6c4538
BH
1997 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1998 FRF_AB_MAC_BCAD_ACPT, 1,
1999 FRF_AB_MAC_UC_PROM, efx->promiscuous,
2000 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
2001 FRF_AB_MAC_SPEED, link_speed);
8ceee660
BH
2002 /* On B0, MAC backpressure can be disabled and packets get
2003 * discarded. */
55668611 2004 if (falcon_rev(efx) >= FALCON_REV_B0) {
3e6c4538 2005 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
8ceee660
BH
2006 !efx->link_up);
2007 }
2008
12d00cad 2009 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
8ceee660
BH
2010
2011 /* Restore the multicast hash registers. */
2012 falcon_set_multicast_hash(efx);
2013
2014 /* Transmission of pause frames when RX crosses the threshold is
2015 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2016 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
04cc8cac 2017 tx_fc = !!(efx->link_fc & EFX_FC_TX);
12d00cad 2018 efx_reado(efx, &reg, FR_AZ_RX_CFG);
3e6c4538 2019 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
8ceee660
BH
2020
2021 /* Unisolate the MAC -> RX */
55668611 2022 if (falcon_rev(efx) >= FALCON_REV_B0)
3e6c4538 2023 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
12d00cad 2024 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
8ceee660
BH
2025}
2026
2027int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2028{
2029 efx_oword_t reg;
2030 u32 *dma_done;
2031 int i;
2032
2033 if (disable_dma_stats)
2034 return 0;
2035
2036 /* Statistics fetch will fail if the MAC is in TX drain */
55668611 2037 if (falcon_rev(efx) >= FALCON_REV_B0) {
8ceee660 2038 efx_oword_t temp;
12d00cad 2039 efx_reado(efx, &temp, FR_AB_MAC_CTRL);
3e6c4538 2040 if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
8ceee660
BH
2041 return 0;
2042 }
2043
2044 dma_done = (efx->stats_buffer.addr + done_offset);
2045 *dma_done = FALCON_STATS_NOT_DONE;
2046 wmb(); /* ensure done flag is clear */
2047
2048 /* Initiate DMA transfer of stats */
2049 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2050 FRF_AB_MAC_STAT_DMA_CMD, 1,
2051 FRF_AB_MAC_STAT_DMA_ADR,
8ceee660 2052 efx->stats_buffer.dma_addr);
12d00cad 2053 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
8ceee660
BH
2054
2055 /* Wait for transfer to complete */
2056 for (i = 0; i < 400; i++) {
1d0680fd
BH
2057 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2058 rmb(); /* Ensure the stats are valid. */
8ceee660 2059 return 0;
1d0680fd 2060 }
8ceee660
BH
2061 udelay(10);
2062 }
2063
2064 EFX_ERR(efx, "timed out waiting for statistics\n");
2065 return -ETIMEDOUT;
2066}
2067
2068/**************************************************************************
2069 *
2070 * PHY access via GMII
2071 *
2072 **************************************************************************
2073 */
2074
8ceee660
BH
2075/* Wait for GMII access to complete */
2076static int falcon_gmii_wait(struct efx_nic *efx)
2077{
2078 efx_dword_t md_stat;
2079 int count;
2080
177dfcd8
BH
2081 /* wait upto 50ms - taken max from datasheet */
2082 for (count = 0; count < 5000; count++) {
12d00cad 2083 efx_readd(efx, &md_stat, FR_AB_MD_STAT);
3e6c4538
BH
2084 if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2085 if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2086 EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
8ceee660
BH
2087 EFX_ERR(efx, "error from GMII access "
2088 EFX_DWORD_FMT"\n",
2089 EFX_DWORD_VAL(md_stat));
2090 return -EIO;
2091 }
2092 return 0;
2093 }
2094 udelay(10);
2095 }
2096 EFX_ERR(efx, "timed out waiting for GMII\n");
2097 return -ETIMEDOUT;
2098}
2099
68e7f45e
BH
2100/* Write an MDIO register of a PHY connected to Falcon. */
2101static int falcon_mdio_write(struct net_device *net_dev,
2102 int prtad, int devad, u16 addr, u16 value)
8ceee660 2103{
767e468c 2104 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2105 efx_oword_t reg;
68e7f45e 2106 int rc;
8ceee660 2107
68e7f45e
BH
2108 EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2109 prtad, devad, addr, value);
8ceee660
BH
2110
2111 spin_lock_bh(&efx->phy_lock);
2112
68e7f45e
BH
2113 /* Check MDIO not currently being accessed */
2114 rc = falcon_gmii_wait(efx);
2115 if (rc)
8ceee660
BH
2116 goto out;
2117
2118 /* Write the address/ID register */
3e6c4538 2119 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
12d00cad 2120 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
8ceee660 2121
3e6c4538
BH
2122 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2123 FRF_AB_MD_DEV_ADR, devad);
12d00cad 2124 efx_writeo(efx, &reg, FR_AB_MD_ID);
8ceee660
BH
2125
2126 /* Write data */
3e6c4538 2127 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
12d00cad 2128 efx_writeo(efx, &reg, FR_AB_MD_TXD);
8ceee660
BH
2129
2130 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2131 FRF_AB_MD_WRC, 1,
2132 FRF_AB_MD_GC, 0);
12d00cad 2133 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660
BH
2134
2135 /* Wait for data to be written */
68e7f45e
BH
2136 rc = falcon_gmii_wait(efx);
2137 if (rc) {
8ceee660
BH
2138 /* Abort the write operation */
2139 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2140 FRF_AB_MD_WRC, 0,
2141 FRF_AB_MD_GC, 1);
12d00cad 2142 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660
BH
2143 udelay(10);
2144 }
2145
2146 out:
2147 spin_unlock_bh(&efx->phy_lock);
68e7f45e 2148 return rc;
8ceee660
BH
2149}
2150
68e7f45e
BH
2151/* Read an MDIO register of a PHY connected to Falcon. */
2152static int falcon_mdio_read(struct net_device *net_dev,
2153 int prtad, int devad, u16 addr)
8ceee660 2154{
767e468c 2155 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2156 efx_oword_t reg;
68e7f45e 2157 int rc;
8ceee660
BH
2158
2159 spin_lock_bh(&efx->phy_lock);
2160
68e7f45e
BH
2161 /* Check MDIO not currently being accessed */
2162 rc = falcon_gmii_wait(efx);
2163 if (rc)
8ceee660
BH
2164 goto out;
2165
3e6c4538 2166 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
12d00cad 2167 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
8ceee660 2168
3e6c4538
BH
2169 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2170 FRF_AB_MD_DEV_ADR, devad);
12d00cad 2171 efx_writeo(efx, &reg, FR_AB_MD_ID);
8ceee660
BH
2172
2173 /* Request data to be read */
3e6c4538 2174 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
12d00cad 2175 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660
BH
2176
2177 /* Wait for data to become available */
68e7f45e
BH
2178 rc = falcon_gmii_wait(efx);
2179 if (rc == 0) {
12d00cad 2180 efx_reado(efx, &reg, FR_AB_MD_RXD);
3e6c4538 2181 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
68e7f45e
BH
2182 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2183 prtad, devad, addr, rc);
8ceee660
BH
2184 } else {
2185 /* Abort the read operation */
2186 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2187 FRF_AB_MD_RIC, 0,
2188 FRF_AB_MD_GC, 1);
12d00cad 2189 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660 2190
68e7f45e
BH
2191 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2192 prtad, devad, addr, rc);
8ceee660
BH
2193 }
2194
2195 out:
2196 spin_unlock_bh(&efx->phy_lock);
68e7f45e 2197 return rc;
8ceee660
BH
2198}
2199
2200static int falcon_probe_phy(struct efx_nic *efx)
2201{
2202 switch (efx->phy_type) {
e6fa2eb7
BH
2203 case PHY_TYPE_SFX7101:
2204 efx->phy_op = &falcon_sfx7101_phy_ops;
2205 break;
2206 case PHY_TYPE_SFT9001A:
2207 case PHY_TYPE_SFT9001B:
2208 efx->phy_op = &falcon_sft9001_phy_ops;
8ceee660 2209 break;
ab377358 2210 case PHY_TYPE_QT2022C2:
d2d2c373 2211 case PHY_TYPE_QT2025C:
8ceee660
BH
2212 efx->phy_op = &falcon_xfp_phy_ops;
2213 break;
2214 default:
2215 EFX_ERR(efx, "Unknown PHY type %d\n",
2216 efx->phy_type);
2217 return -1;
2218 }
3273c2e8 2219
177dfcd8
BH
2220 if (efx->phy_op->macs & EFX_XMAC)
2221 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2222 (1 << LOOPBACK_XGXS) |
2223 (1 << LOOPBACK_XAUI));
2224 if (efx->phy_op->macs & EFX_GMAC)
2225 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2226 efx->loopback_modes |= efx->phy_op->loopbacks;
2227
8ceee660
BH
2228 return 0;
2229}
2230
177dfcd8
BH
2231int falcon_switch_mac(struct efx_nic *efx)
2232{
2233 struct efx_mac_operations *old_mac_op = efx->mac_op;
2234 efx_oword_t nic_stat;
2235 unsigned strap_val;
1974cc20
BH
2236 int rc = 0;
2237
2238 /* Don't try to fetch MAC stats while we're switching MACs */
2239 efx_stats_disable(efx);
177dfcd8
BH
2240
2241 /* Internal loopbacks override the phy speed setting */
2242 if (efx->loopback_mode == LOOPBACK_GMAC) {
2243 efx->link_speed = 1000;
2244 efx->link_fd = true;
2245 } else if (LOOPBACK_INTERNAL(efx)) {
2246 efx->link_speed = 10000;
2247 efx->link_fd = true;
2248 }
2249
0cc12838 2250 WARN_ON(!mutex_is_locked(&efx->mac_lock));
177dfcd8
BH
2251 efx->mac_op = (EFX_IS10G(efx) ?
2252 &falcon_xmac_operations : &falcon_gmac_operations);
177dfcd8 2253
0cc12838
SH
2254 /* Always push the NIC_STAT_REG setting even if the mac hasn't
2255 * changed, because this function is run post online reset */
12d00cad 2256 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
177dfcd8
BH
2257 strap_val = EFX_IS10G(efx) ? 5 : 3;
2258 if (falcon_rev(efx) >= FALCON_REV_B0) {
3e6c4538
BH
2259 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2260 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
12d00cad 2261 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
177dfcd8
BH
2262 } else {
2263 /* Falcon A1 does not support 1G/10G speed switching
2264 * and must not be used with a PHY that does. */
3e6c4538
BH
2265 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2266 strap_val);
177dfcd8
BH
2267 }
2268
0cc12838 2269 if (old_mac_op == efx->mac_op)
1974cc20 2270 goto out;
177dfcd8
BH
2271
2272 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
0cc12838
SH
2273 /* Not all macs support a mac-level link state */
2274 efx->mac_up = true;
2275
1974cc20
BH
2276 rc = falcon_reset_macs(efx);
2277out:
2278 efx_stats_enable(efx);
2279 return rc;
177dfcd8
BH
2280}
2281
8ceee660
BH
2282/* This call is responsible for hooking in the MAC and PHY operations */
2283int falcon_probe_port(struct efx_nic *efx)
2284{
2285 int rc;
2286
2287 /* Hook in PHY operations table */
2288 rc = falcon_probe_phy(efx);
2289 if (rc)
2290 return rc;
2291
68e7f45e
BH
2292 /* Set up MDIO structure for PHY */
2293 efx->mdio.mmds = efx->phy_op->mmds;
2294 efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2295 efx->mdio.mdio_read = falcon_mdio_read;
2296 efx->mdio.mdio_write = falcon_mdio_write;
8ceee660
BH
2297
2298 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
55668611 2299 if (falcon_rev(efx) >= FALCON_REV_B0)
04cc8cac 2300 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
8ceee660 2301 else
04cc8cac 2302 efx->wanted_fc = EFX_FC_RX;
8ceee660
BH
2303
2304 /* Allocate buffer for stats */
2305 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2306 FALCON_MAC_STATS_SIZE);
2307 if (rc)
2308 return rc;
9c8976a1
JSR
2309 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2310 (u64)efx->stats_buffer.dma_addr,
8ceee660 2311 efx->stats_buffer.addr,
9c8976a1 2312 (u64)virt_to_phys(efx->stats_buffer.addr));
8ceee660
BH
2313
2314 return 0;
2315}
2316
2317void falcon_remove_port(struct efx_nic *efx)
2318{
2319 falcon_free_buffer(efx, &efx->stats_buffer);
2320}
2321
2322/**************************************************************************
2323 *
2324 * Multicast filtering
2325 *
2326 **************************************************************************
2327 */
2328
2329void falcon_set_multicast_hash(struct efx_nic *efx)
2330{
2331 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2332
2333 /* Broadcast packets go through the multicast hash filter.
2334 * ether_crc_le() of the broadcast address is 0xbe2612ff
2335 * so we always add bit 0xff to the mask.
2336 */
2337 set_bit_le(0xff, mc_hash->byte);
2338
12d00cad
BH
2339 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2340 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
8ceee660
BH
2341}
2342
8c8661e4
BH
2343
2344/**************************************************************************
2345 *
2346 * Falcon test code
2347 *
2348 **************************************************************************/
2349
2350int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2351{
2352 struct falcon_nvconfig *nvconfig;
2353 struct efx_spi_device *spi;
2354 void *region;
2355 int rc, magic_num, struct_ver;
2356 __le16 *word, *limit;
2357 u32 csum;
2358
2f7f5730
BH
2359 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2360 if (!spi)
2361 return -EINVAL;
2362
0a95f563 2363 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
8c8661e4
BH
2364 if (!region)
2365 return -ENOMEM;
3e6c4538 2366 nvconfig = region + FALCON_NVCONFIG_OFFSET;
8c8661e4 2367
f4150724 2368 mutex_lock(&efx->spi_lock);
0a95f563 2369 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
f4150724 2370 mutex_unlock(&efx->spi_lock);
8c8661e4
BH
2371 if (rc) {
2372 EFX_ERR(efx, "Failed to read %s\n",
2373 efx->spi_flash ? "flash" : "EEPROM");
2374 rc = -EIO;
2375 goto out;
2376 }
2377
2378 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2379 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2380
2381 rc = -EINVAL;
3e6c4538 2382 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
8c8661e4
BH
2383 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2384 goto out;
2385 }
2386 if (struct_ver < 2) {
2387 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2388 goto out;
2389 } else if (struct_ver < 4) {
2390 word = &nvconfig->board_magic_num;
2391 limit = (__le16 *) (nvconfig + 1);
2392 } else {
2393 word = region;
0a95f563 2394 limit = region + FALCON_NVCONFIG_END;
8c8661e4
BH
2395 }
2396 for (csum = 0; word < limit; ++word)
2397 csum += le16_to_cpu(*word);
2398
2399 if (~csum & 0xffff) {
2400 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2401 goto out;
2402 }
2403
2404 rc = 0;
2405 if (nvconfig_out)
2406 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2407
2408 out:
2409 kfree(region);
2410 return rc;
2411}
2412
2413/* Registers tested in the falcon register test */
2414static struct {
2415 unsigned address;
2416 efx_oword_t mask;
2417} efx_test_registers[] = {
3e6c4538 2418 { FR_AZ_ADR_REGION,
8c8661e4 2419 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
3e6c4538 2420 { FR_AZ_RX_CFG,
8c8661e4 2421 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
3e6c4538 2422 { FR_AZ_TX_CFG,
8c8661e4 2423 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2424 { FR_AZ_TX_RESERVED,
8c8661e4 2425 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
3e6c4538 2426 { FR_AB_MAC_CTRL,
8c8661e4 2427 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2428 { FR_AZ_SRM_TX_DC_CFG,
8c8661e4 2429 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2430 { FR_AZ_RX_DC_CFG,
8c8661e4 2431 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2432 { FR_AZ_RX_DC_PF_WM,
8c8661e4 2433 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2434 { FR_BZ_DP_CTRL,
8c8661e4 2435 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2436 { FR_AB_GM_CFG2,
177dfcd8 2437 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2438 { FR_AB_GMF_CFG0,
177dfcd8 2439 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2440 { FR_AB_XM_GLB_CFG,
8c8661e4 2441 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2442 { FR_AB_XM_TX_CFG,
8c8661e4 2443 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2444 { FR_AB_XM_RX_CFG,
8c8661e4 2445 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2446 { FR_AB_XM_RX_PARAM,
8c8661e4 2447 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2448 { FR_AB_XM_FC,
8c8661e4 2449 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2450 { FR_AB_XM_ADR_LO,
8c8661e4 2451 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2452 { FR_AB_XX_SD_CTL,
8c8661e4
BH
2453 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2454};
2455
2456static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2457 const efx_oword_t *mask)
2458{
2459 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2460 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2461}
2462
2463int falcon_test_registers(struct efx_nic *efx)
2464{
2465 unsigned address = 0, i, j;
2466 efx_oword_t mask, imask, original, reg, buf;
2467
2468 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2469 WARN_ON(!LOOPBACK_INTERNAL(efx));
2470
2471 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2472 address = efx_test_registers[i].address;
2473 mask = imask = efx_test_registers[i].mask;
2474 EFX_INVERT_OWORD(imask);
2475
12d00cad 2476 efx_reado(efx, &original, address);
8c8661e4
BH
2477
2478 /* bit sweep on and off */
2479 for (j = 0; j < 128; j++) {
2480 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2481 continue;
2482
2483 /* Test this testable bit can be set in isolation */
2484 EFX_AND_OWORD(reg, original, mask);
2485 EFX_SET_OWORD32(reg, j, j, 1);
2486
12d00cad
BH
2487 efx_writeo(efx, &reg, address);
2488 efx_reado(efx, &buf, address);
8c8661e4
BH
2489
2490 if (efx_masked_compare_oword(&reg, &buf, &mask))
2491 goto fail;
2492
2493 /* Test this testable bit can be cleared in isolation */
2494 EFX_OR_OWORD(reg, original, mask);
2495 EFX_SET_OWORD32(reg, j, j, 0);
2496
12d00cad
BH
2497 efx_writeo(efx, &reg, address);
2498 efx_reado(efx, &buf, address);
8c8661e4
BH
2499
2500 if (efx_masked_compare_oword(&reg, &buf, &mask))
2501 goto fail;
2502 }
2503
12d00cad 2504 efx_writeo(efx, &original, address);
8c8661e4
BH
2505 }
2506
2507 return 0;
2508
2509fail:
2510 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2511 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2512 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2513 return -EIO;
2514}
2515
8ceee660
BH
2516/**************************************************************************
2517 *
2518 * Device reset
2519 *
2520 **************************************************************************
2521 */
2522
2523/* Resets NIC to known state. This routine must be called in process
2524 * context and is allowed to sleep. */
2525int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2526{
2527 struct falcon_nic_data *nic_data = efx->nic_data;
2528 efx_oword_t glb_ctl_reg_ker;
2529 int rc;
2530
2531 EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2532
2533 /* Initiate device reset */
2534 if (method == RESET_TYPE_WORLD) {
2535 rc = pci_save_state(efx->pci_dev);
2536 if (rc) {
2537 EFX_ERR(efx, "failed to backup PCI state of primary "
2538 "function prior to hardware reset\n");
2539 goto fail1;
2540 }
2541 if (FALCON_IS_DUAL_FUNC(efx)) {
2542 rc = pci_save_state(nic_data->pci_dev2);
2543 if (rc) {
2544 EFX_ERR(efx, "failed to backup PCI state of "
2545 "secondary function prior to "
2546 "hardware reset\n");
2547 goto fail2;
2548 }
2549 }
2550
2551 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
3e6c4538
BH
2552 FRF_AB_EXT_PHY_RST_DUR,
2553 FFE_AB_EXT_PHY_RST_DUR_10240US,
2554 FRF_AB_SWRST, 1);
8ceee660 2555 } else {
8ceee660 2556 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
3e6c4538
BH
2557 /* exclude PHY from "invisible" reset */
2558 FRF_AB_EXT_PHY_RST_CTL,
2559 method == RESET_TYPE_INVISIBLE,
2560 /* exclude EEPROM/flash and PCIe */
2561 FRF_AB_PCIE_CORE_RST_CTL, 1,
2562 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2563 FRF_AB_PCIE_SD_RST_CTL, 1,
2564 FRF_AB_EE_RST_CTL, 1,
2565 FRF_AB_EXT_PHY_RST_DUR,
2566 FFE_AB_EXT_PHY_RST_DUR_10240US,
2567 FRF_AB_SWRST, 1);
2568 }
12d00cad 2569 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
8ceee660
BH
2570
2571 EFX_LOG(efx, "waiting for hardware reset\n");
2572 schedule_timeout_uninterruptible(HZ / 20);
2573
2574 /* Restore PCI configuration if needed */
2575 if (method == RESET_TYPE_WORLD) {
2576 if (FALCON_IS_DUAL_FUNC(efx)) {
2577 rc = pci_restore_state(nic_data->pci_dev2);
2578 if (rc) {
2579 EFX_ERR(efx, "failed to restore PCI config for "
2580 "the secondary function\n");
2581 goto fail3;
2582 }
2583 }
2584 rc = pci_restore_state(efx->pci_dev);
2585 if (rc) {
2586 EFX_ERR(efx, "failed to restore PCI config for the "
2587 "primary function\n");
2588 goto fail4;
2589 }
2590 EFX_LOG(efx, "successfully restored PCI config\n");
2591 }
2592
2593 /* Assert that reset complete */
12d00cad 2594 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
3e6c4538 2595 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
8ceee660
BH
2596 rc = -ETIMEDOUT;
2597 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2598 goto fail5;
2599 }
2600 EFX_LOG(efx, "hardware reset complete\n");
2601
2602 return 0;
2603
2604 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2605fail2:
2606fail3:
2607 pci_restore_state(efx->pci_dev);
2608fail1:
2609fail4:
2610fail5:
2611 return rc;
2612}
2613
2614/* Zeroes out the SRAM contents. This routine must be called in
2615 * process context and is allowed to sleep.
2616 */
2617static int falcon_reset_sram(struct efx_nic *efx)
2618{
2619 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2620 int count;
2621
2622 /* Set the SRAM wake/sleep GPIO appropriately. */
12d00cad 2623 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
3e6c4538
BH
2624 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2625 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
12d00cad 2626 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
8ceee660
BH
2627
2628 /* Initiate SRAM reset */
2629 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
3e6c4538
BH
2630 FRF_AZ_SRM_INIT_EN, 1,
2631 FRF_AZ_SRM_NB_SZ, 0);
12d00cad 2632 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
8ceee660
BH
2633
2634 /* Wait for SRAM reset to complete */
2635 count = 0;
2636 do {
2637 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2638
2639 /* SRAM reset is slow; expect around 16ms */
2640 schedule_timeout_uninterruptible(HZ / 50);
2641
2642 /* Check for reset complete */
12d00cad 2643 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
3e6c4538 2644 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
8ceee660
BH
2645 EFX_LOG(efx, "SRAM reset complete\n");
2646
2647 return 0;
2648 }
2649 } while (++count < 20); /* wait upto 0.4 sec */
2650
2651 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2652 return -ETIMEDOUT;
2653}
2654
4a5b504d
BH
2655static int falcon_spi_device_init(struct efx_nic *efx,
2656 struct efx_spi_device **spi_device_ret,
2657 unsigned int device_id, u32 device_type)
2658{
2659 struct efx_spi_device *spi_device;
2660
2661 if (device_type != 0) {
0c53d8c8 2662 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
4a5b504d
BH
2663 if (!spi_device)
2664 return -ENOMEM;
2665 spi_device->device_id = device_id;
2666 spi_device->size =
2667 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2668 spi_device->addr_len =
2669 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2670 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2671 spi_device->addr_len == 1);
f4150724
BH
2672 spi_device->erase_command =
2673 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2674 spi_device->erase_size =
2675 1 << SPI_DEV_TYPE_FIELD(device_type,
2676 SPI_DEV_TYPE_ERASE_SIZE);
4a5b504d
BH
2677 spi_device->block_size =
2678 1 << SPI_DEV_TYPE_FIELD(device_type,
2679 SPI_DEV_TYPE_BLOCK_SIZE);
2680
2681 spi_device->efx = efx;
2682 } else {
2683 spi_device = NULL;
2684 }
2685
2686 kfree(*spi_device_ret);
2687 *spi_device_ret = spi_device;
2688 return 0;
2689}
2690
2691
2692static void falcon_remove_spi_devices(struct efx_nic *efx)
2693{
2694 kfree(efx->spi_eeprom);
2695 efx->spi_eeprom = NULL;
2696 kfree(efx->spi_flash);
2697 efx->spi_flash = NULL;
2698}
2699
8ceee660
BH
2700/* Extract non-volatile configuration */
2701static int falcon_probe_nvconfig(struct efx_nic *efx)
2702{
2703 struct falcon_nvconfig *nvconfig;
8c8661e4 2704 int board_rev;
8ceee660
BH
2705 int rc;
2706
8ceee660 2707 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
4a5b504d
BH
2708 if (!nvconfig)
2709 return -ENOMEM;
8ceee660 2710
8c8661e4
BH
2711 rc = falcon_read_nvram(efx, nvconfig);
2712 if (rc == -EINVAL) {
2713 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
8ceee660 2714 efx->phy_type = PHY_TYPE_NONE;
68e7f45e 2715 efx->mdio.prtad = MDIO_PRTAD_NONE;
8ceee660 2716 board_rev = 0;
8c8661e4
BH
2717 rc = 0;
2718 } else if (rc) {
2719 goto fail1;
8ceee660
BH
2720 } else {
2721 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
4a5b504d 2722 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
8ceee660
BH
2723
2724 efx->phy_type = v2->port0_phy_type;
68e7f45e 2725 efx->mdio.prtad = v2->port0_phy_addr;
8ceee660 2726 board_rev = le16_to_cpu(v2->board_revision);
4a5b504d 2727
8c8661e4 2728 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
3e6c4538
BH
2729 rc = falcon_spi_device_init(
2730 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2731 le32_to_cpu(v3->spi_device_type
2732 [FFE_AB_SPI_DEVICE_FLASH]));
4a5b504d
BH
2733 if (rc)
2734 goto fail2;
3e6c4538
BH
2735 rc = falcon_spi_device_init(
2736 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2737 le32_to_cpu(v3->spi_device_type
2738 [FFE_AB_SPI_DEVICE_EEPROM]));
4a5b504d
BH
2739 if (rc)
2740 goto fail2;
2741 }
8ceee660
BH
2742 }
2743
8c8661e4
BH
2744 /* Read the MAC addresses */
2745 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2746
68e7f45e 2747 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
8ceee660 2748
3473a5b1 2749 falcon_probe_board(efx, board_rev);
8ceee660 2750
4a5b504d
BH
2751 kfree(nvconfig);
2752 return 0;
2753
2754 fail2:
2755 falcon_remove_spi_devices(efx);
2756 fail1:
8ceee660
BH
2757 kfree(nvconfig);
2758 return rc;
2759}
2760
2761/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2762 * count, port speed). Set workaround and feature flags accordingly.
2763 */
2764static int falcon_probe_nic_variant(struct efx_nic *efx)
2765{
2766 efx_oword_t altera_build;
177dfcd8 2767 efx_oword_t nic_stat;
8ceee660 2768
12d00cad 2769 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
3e6c4538 2770 if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
8ceee660
BH
2771 EFX_ERR(efx, "Falcon FPGA not supported\n");
2772 return -ENODEV;
2773 }
2774
12d00cad 2775 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
177dfcd8 2776
55668611 2777 switch (falcon_rev(efx)) {
8ceee660
BH
2778 case FALCON_REV_A0:
2779 case 0xff:
2780 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2781 return -ENODEV;
2782
177dfcd8 2783 case FALCON_REV_A1:
3e6c4538 2784 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
8ceee660
BH
2785 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2786 return -ENODEV;
2787 }
8ceee660 2788 break;
8ceee660
BH
2789
2790 case FALCON_REV_B0:
2791 break;
2792
2793 default:
55668611 2794 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
8ceee660
BH
2795 return -ENODEV;
2796 }
2797
177dfcd8 2798 /* Initial assumed speed */
3e6c4538 2799 efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
177dfcd8 2800
8ceee660
BH
2801 return 0;
2802}
2803
4a5b504d
BH
2804/* Probe all SPI devices on the NIC */
2805static void falcon_probe_spi_devices(struct efx_nic *efx)
2806{
2807 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2f7f5730 2808 int boot_dev;
4a5b504d 2809
12d00cad
BH
2810 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2811 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2812 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
4a5b504d 2813
3e6c4538
BH
2814 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2815 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2816 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2f7f5730 2817 EFX_LOG(efx, "Booted from %s\n",
3e6c4538 2818 boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2f7f5730
BH
2819 } else {
2820 /* Disable VPD and set clock dividers to safe
2821 * values for initial programming. */
2822 boot_dev = -1;
2823 EFX_LOG(efx, "Booted from internal ASIC settings;"
2824 " setting SPI config\n");
3e6c4538 2825 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2f7f5730 2826 /* 125 MHz / 7 ~= 20 MHz */
3e6c4538 2827 FRF_AB_EE_SF_CLOCK_DIV, 7,
2f7f5730 2828 /* 125 MHz / 63 ~= 2 MHz */
3e6c4538 2829 FRF_AB_EE_EE_CLOCK_DIV, 63);
12d00cad 2830 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
4a5b504d
BH
2831 }
2832
3e6c4538
BH
2833 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2834 falcon_spi_device_init(efx, &efx->spi_flash,
2835 FFE_AB_SPI_DEVICE_FLASH,
2f7f5730 2836 default_flash_type);
3e6c4538
BH
2837 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2838 falcon_spi_device_init(efx, &efx->spi_eeprom,
2839 FFE_AB_SPI_DEVICE_EEPROM,
2f7f5730 2840 large_eeprom_type);
4a5b504d
BH
2841}
2842
8ceee660
BH
2843int falcon_probe_nic(struct efx_nic *efx)
2844{
2845 struct falcon_nic_data *nic_data;
2846 int rc;
2847
8ceee660
BH
2848 /* Allocate storage for hardware specific data */
2849 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
88c59425
BH
2850 if (!nic_data)
2851 return -ENOMEM;
5daab96d 2852 efx->nic_data = nic_data;
8ceee660
BH
2853
2854 /* Determine number of ports etc. */
2855 rc = falcon_probe_nic_variant(efx);
2856 if (rc)
2857 goto fail1;
2858
2859 /* Probe secondary function if expected */
2860 if (FALCON_IS_DUAL_FUNC(efx)) {
2861 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2862
2863 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2864 dev))) {
2865 if (dev->bus == efx->pci_dev->bus &&
2866 dev->devfn == efx->pci_dev->devfn + 1) {
2867 nic_data->pci_dev2 = dev;
2868 break;
2869 }
2870 }
2871 if (!nic_data->pci_dev2) {
2872 EFX_ERR(efx, "failed to find secondary function\n");
2873 rc = -ENODEV;
2874 goto fail2;
2875 }
2876 }
2877
2878 /* Now we can reset the NIC */
2879 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2880 if (rc) {
2881 EFX_ERR(efx, "failed to reset NIC\n");
2882 goto fail3;
2883 }
2884
2885 /* Allocate memory for INT_KER */
2886 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2887 if (rc)
2888 goto fail4;
2889 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2890
9c8976a1
JSR
2891 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2892 (u64)efx->irq_status.dma_addr,
2893 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
8ceee660 2894
4a5b504d
BH
2895 falcon_probe_spi_devices(efx);
2896
8ceee660
BH
2897 /* Read in the non-volatile configuration */
2898 rc = falcon_probe_nvconfig(efx);
2899 if (rc)
2900 goto fail5;
2901
37b5a603 2902 /* Initialise I2C adapter */
b4531938 2903 efx->i2c_adap.owner = THIS_MODULE;
37b5a603
BH
2904 nic_data->i2c_data = falcon_i2c_bit_operations;
2905 nic_data->i2c_data.data = efx;
b4531938 2906 efx->i2c_adap.algo_data = &nic_data->i2c_data;
37b5a603 2907 efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
9dadae68 2908 strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
37b5a603
BH
2909 rc = i2c_bit_add_bus(&efx->i2c_adap);
2910 if (rc)
2911 goto fail5;
2912
8ceee660
BH
2913 return 0;
2914
2915 fail5:
4a5b504d 2916 falcon_remove_spi_devices(efx);
8ceee660
BH
2917 falcon_free_buffer(efx, &efx->irq_status);
2918 fail4:
8ceee660
BH
2919 fail3:
2920 if (nic_data->pci_dev2) {
2921 pci_dev_put(nic_data->pci_dev2);
2922 nic_data->pci_dev2 = NULL;
2923 }
2924 fail2:
8ceee660
BH
2925 fail1:
2926 kfree(efx->nic_data);
2927 return rc;
2928}
2929
56241ceb
BH
2930static void falcon_init_rx_cfg(struct efx_nic *efx)
2931{
2932 /* Prior to Siena the RX DMA engine will split each frame at
2933 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2934 * be so large that that never happens. */
2935 const unsigned huge_buf_size = (3 * 4096) >> 5;
2936 /* RX control FIFO thresholds (32 entries) */
2937 const unsigned ctrl_xon_thr = 20;
2938 const unsigned ctrl_xoff_thr = 25;
2939 /* RX data FIFO thresholds (256-byte units; size varies) */
625b4514
BH
2940 int data_xon_thr = rx_xon_thresh_bytes >> 8;
2941 int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
56241ceb
BH
2942 efx_oword_t reg;
2943
12d00cad 2944 efx_reado(efx, &reg, FR_AZ_RX_CFG);
56241ceb 2945 if (falcon_rev(efx) <= FALCON_REV_A1) {
625b4514
BH
2946 /* Data FIFO size is 5.5K */
2947 if (data_xon_thr < 0)
2948 data_xon_thr = 512 >> 8;
2949 if (data_xoff_thr < 0)
2950 data_xoff_thr = 2048 >> 8;
3e6c4538
BH
2951 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2952 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2953 huge_buf_size);
2954 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2955 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2956 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2957 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
56241ceb 2958 } else {
625b4514
BH
2959 /* Data FIFO size is 80K; register fields moved */
2960 if (data_xon_thr < 0)
2961 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2962 if (data_xoff_thr < 0)
2963 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
3e6c4538
BH
2964 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2965 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2966 huge_buf_size);
2967 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2968 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2969 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2970 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2971 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
56241ceb 2972 }
12d00cad 2973 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
56241ceb
BH
2974}
2975
8ceee660
BH
2976/* This call performs hardware-specific global initialisation, such as
2977 * defining the descriptor cache sizes and number of RSS channels.
2978 * It does not set up any buffers, descriptor rings or event queues.
2979 */
2980int falcon_init_nic(struct efx_nic *efx)
2981{
8ceee660 2982 efx_oword_t temp;
8ceee660
BH
2983 int rc;
2984
8ceee660 2985 /* Use on-chip SRAM */
12d00cad 2986 efx_reado(efx, &temp, FR_AB_NIC_STAT);
3e6c4538 2987 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
12d00cad 2988 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
8ceee660 2989
6f158d5f
BH
2990 /* Set the source of the GMAC clock */
2991 if (falcon_rev(efx) == FALCON_REV_B0) {
12d00cad 2992 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3e6c4538 2993 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
12d00cad 2994 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
6f158d5f
BH
2995 }
2996
8ceee660
BH
2997 rc = falcon_reset_sram(efx);
2998 if (rc)
2999 return rc;
3000
3001 /* Set positions of descriptor caches in SRAM. */
3e6c4538 3002 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
12d00cad 3003 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3e6c4538 3004 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
12d00cad 3005 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
8ceee660
BH
3006
3007 /* Set TX descriptor cache size. */
3008 BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3e6c4538 3009 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
12d00cad 3010 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
8ceee660
BH
3011
3012 /* Set RX descriptor cache size. Set low watermark to size-8, as
3013 * this allows most efficient prefetching.
3014 */
3015 BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3e6c4538 3016 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
12d00cad 3017 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3e6c4538 3018 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
12d00cad 3019 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
8ceee660
BH
3020
3021 /* Clear the parity enables on the TX data fifos as
3022 * they produce false parity errors because of timing issues
3023 */
3024 if (EFX_WORKAROUND_5129(efx)) {
12d00cad 3025 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3e6c4538 3026 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
12d00cad 3027 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
8ceee660
BH
3028 }
3029
3030 /* Enable all the genuinely fatal interrupts. (They are still
3031 * masked by the overall interrupt mask, controlled by
3032 * falcon_interrupts()).
3033 *
3034 * Note: All other fatal interrupts are enabled
3035 */
3036 EFX_POPULATE_OWORD_3(temp,
3e6c4538
BH
3037 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3038 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3039 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
8ceee660 3040 EFX_INVERT_OWORD(temp);
12d00cad 3041 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
8ceee660 3042
8ceee660 3043 if (EFX_WORKAROUND_7244(efx)) {
12d00cad 3044 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3e6c4538
BH
3045 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3046 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3047 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3048 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
12d00cad 3049 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
8ceee660 3050 }
8ceee660
BH
3051
3052 falcon_setup_rss_indir_table(efx);
3053
3e6c4538 3054 /* XXX This is documented only for Falcon A0/A1 */
8ceee660
BH
3055 /* Setup RX. Wait for descriptor is broken and must
3056 * be disabled. RXDP recovery shouldn't be needed, but is.
3057 */
12d00cad 3058 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3e6c4538
BH
3059 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3060 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
8ceee660 3061 if (EFX_WORKAROUND_5583(efx))
3e6c4538 3062 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
12d00cad 3063 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
8ceee660
BH
3064
3065 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3066 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3067 */
12d00cad 3068 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3e6c4538
BH
3069 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3070 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3071 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3072 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3073 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
8ceee660 3074 /* Enable SW_EV to inherit in char driver - assume harmless here */
3e6c4538 3075 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
8ceee660 3076 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3e6c4538 3077 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
8ceee660 3078 /* Squash TX of packets of 16 bytes or less */
55668611 3079 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3e6c4538 3080 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
12d00cad 3081 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
8ceee660
BH
3082
3083 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3084 * descriptors (which is bad).
3085 */
12d00cad 3086 efx_reado(efx, &temp, FR_AZ_TX_CFG);
3e6c4538 3087 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
12d00cad 3088 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
8ceee660 3089
56241ceb 3090 falcon_init_rx_cfg(efx);
8ceee660
BH
3091
3092 /* Set destination of both TX and RX Flush events */
55668611 3093 if (falcon_rev(efx) >= FALCON_REV_B0) {
3e6c4538 3094 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
12d00cad 3095 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
8ceee660
BH
3096 }
3097
3098 return 0;
3099}
3100
3101void falcon_remove_nic(struct efx_nic *efx)
3102{
3103 struct falcon_nic_data *nic_data = efx->nic_data;
37b5a603
BH
3104 int rc;
3105
8c870379 3106 /* Remove I2C adapter and clear it in preparation for a retry */
37b5a603
BH
3107 rc = i2c_del_adapter(&efx->i2c_adap);
3108 BUG_ON(rc);
8c870379 3109 memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
8ceee660 3110
4a5b504d 3111 falcon_remove_spi_devices(efx);
8ceee660
BH
3112 falcon_free_buffer(efx, &efx->irq_status);
3113
91ad757c 3114 falcon_reset_hw(efx, RESET_TYPE_ALL);
8ceee660
BH
3115
3116 /* Release the second function after the reset */
3117 if (nic_data->pci_dev2) {
3118 pci_dev_put(nic_data->pci_dev2);
3119 nic_data->pci_dev2 = NULL;
3120 }
3121
3122 /* Tear down the private nic state */
3123 kfree(efx->nic_data);
3124 efx->nic_data = NULL;
3125}
3126
3127void falcon_update_nic_stats(struct efx_nic *efx)
3128{
3129 efx_oword_t cnt;
3130
12d00cad 3131 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3e6c4538
BH
3132 efx->n_rx_nodesc_drop_cnt +=
3133 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
8ceee660
BH
3134}
3135
3136/**************************************************************************
3137 *
3138 * Revision-dependent attributes used by efx.c
3139 *
3140 **************************************************************************
3141 */
3142
3143struct efx_nic_type falcon_a_nic_type = {
3144 .mem_bar = 2,
3145 .mem_map_size = 0x20000,
3e6c4538
BH
3146 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3147 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3148 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3149 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3150 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
8ceee660
BH
3151 .max_dma_mask = FALCON_DMA_MASK,
3152 .tx_dma_mask = FALCON_TX_DMA_MASK,
3153 .bug5391_mask = 0xf,
8ceee660
BH
3154 .rx_buffer_padding = 0x24,
3155 .max_interrupt_mode = EFX_INT_MODE_MSI,
3156 .phys_addr_channels = 4,
3157};
3158
3159struct efx_nic_type falcon_b_nic_type = {
3160 .mem_bar = 2,
3161 /* Map everything up to and including the RSS indirection
3162 * table. Don't map MSI-X table, MSI-X PBA since Linux
3163 * requires that they not be mapped. */
3e6c4538
BH
3164 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3165 FR_BZ_RX_INDIRECTION_TBL_STEP *
3166 FR_BZ_RX_INDIRECTION_TBL_ROWS),
3167 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3168 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3169 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3170 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3171 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
8ceee660
BH
3172 .max_dma_mask = FALCON_DMA_MASK,
3173 .tx_dma_mask = FALCON_TX_DMA_MASK,
3174 .bug5391_mask = 0,
8ceee660
BH
3175 .rx_buffer_padding = 0,
3176 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3177 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3178 * interrupt handler only supports 32
3179 * channels */
3180};
3181