]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/sfc/falcon.c
sfc: Remove unused code for non-autoneg speed/duplex switching
[mirror_ubuntu-focal-kernel.git] / drivers / net / sfc / falcon.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
37b5a603
BH
16#include <linux/i2c.h>
17#include <linux/i2c-algo-bit.h>
f31a45d2 18#include <linux/mii.h>
8ceee660
BH
19#include "net_driver.h"
20#include "bitfield.h"
21#include "efx.h"
22#include "mac.h"
8ceee660
BH
23#include "spi.h"
24#include "falcon.h"
3e6c4538 25#include "regs.h"
12d00cad 26#include "io.h"
8ceee660
BH
27#include "mdio_10g.h"
28#include "phy.h"
8ceee660
BH
29#include "workarounds.h"
30
31/* Falcon hardware control.
32 * Falcon is the internal codename for the SFC4000 controller that is
33 * present in SFE400X evaluation boards
34 */
35
36/**
37 * struct falcon_nic_data - Falcon NIC state
8ceee660 38 * @pci_dev2: The secondary PCI device if present
37b5a603 39 * @i2c_data: Operations and state for I2C bit-bashing algorithm
8ceee660
BH
40 */
41struct falcon_nic_data {
8ceee660 42 struct pci_dev *pci_dev2;
37b5a603 43 struct i2c_algo_bit_data i2c_data;
8ceee660
BH
44};
45
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 **************************************************************************
51 */
52
53static int disable_dma_stats;
54
55/* This is set to 16 for a good reason. In summary, if larger than
56 * 16, the descriptor cache holds more than a default socket
57 * buffer's worth of packets (for UDP we can only have at most one
58 * socket buffer's worth outstanding). This combined with the fact
59 * that we only get 1 TX event per descriptor cache means the NIC
60 * goes idle.
61 */
62#define TX_DC_ENTRIES 16
63#define TX_DC_ENTRIES_ORDER 0
64#define TX_DC_BASE 0x130000
65
66#define RX_DC_ENTRIES 64
67#define RX_DC_ENTRIES_ORDER 2
68#define RX_DC_BASE 0x100000
69
2f7f5730
BH
70static const unsigned int
71/* "Large" EEPROM device: Atmel AT25640 or similar
72 * 8 KB, 16-bit address, 32 B write block */
73large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
74 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
75 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
76/* Default flash device: Atmel AT25F1024
77 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
78default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
79 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
80 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
81 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
82 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
83
8ceee660
BH
84/* RX FIFO XOFF watermark
85 *
86 * When the amount of the RX FIFO increases used increases past this
87 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
88 * This also has an effect on RX/TX arbitration
89 */
90static int rx_xoff_thresh_bytes = -1;
91module_param(rx_xoff_thresh_bytes, int, 0644);
92MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
93
94/* RX FIFO XON watermark
95 *
96 * When the amount of the RX FIFO used decreases below this
97 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
98 * This also has an effect on RX/TX arbitration
99 */
100static int rx_xon_thresh_bytes = -1;
101module_param(rx_xon_thresh_bytes, int, 0644);
102MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
103
2c3c3d02
BH
104/* If FALCON_MAX_INT_ERRORS internal errors occur within
105 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
106 * disable it.
107 */
108#define FALCON_INT_ERROR_EXPIRE 3600
109#define FALCON_MAX_INT_ERRORS 5
8ceee660 110
6bc5d3a9
BH
111/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
112 */
113#define FALCON_FLUSH_INTERVAL 10
114#define FALCON_FLUSH_POLL_COUNT 100
8ceee660
BH
115
116/**************************************************************************
117 *
118 * Falcon constants
119 *
120 **************************************************************************
121 */
122
8ceee660
BH
123/* Size and alignment of special buffers (4KB) */
124#define FALCON_BUF_SIZE 4096
125
126/* Dummy SRAM size code */
127#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
128
8ceee660 129#define FALCON_IS_DUAL_FUNC(efx) \
55668611 130 (falcon_rev(efx) < FALCON_REV_B0)
8ceee660
BH
131
132/**************************************************************************
133 *
134 * Falcon hardware access
135 *
136 **************************************************************************/
137
12d00cad
BH
138static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
139 unsigned int index)
140{
141 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
142 value, index);
143}
144
8ceee660
BH
145/* Read the current event from the event queue */
146static inline efx_qword_t *falcon_event(struct efx_channel *channel,
147 unsigned int index)
148{
149 return (((efx_qword_t *) (channel->eventq.addr)) + index);
150}
151
152/* See if an event is present
153 *
154 * We check both the high and low dword of the event for all ones. We
155 * wrote all ones when we cleared the event, and no valid event can
156 * have all ones in either its high or low dwords. This approach is
157 * robust against reordering.
158 *
159 * Note that using a single 64-bit comparison is incorrect; even
160 * though the CPU read will be atomic, the DMA write may not be.
161 */
162static inline int falcon_event_present(efx_qword_t *event)
163{
164 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
165 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
166}
167
168/**************************************************************************
169 *
170 * I2C bus - this is a bit-bashing interface using GPIO pins
171 * Note that it uses the output enables to tristate the outputs
172 * SDA is the data pin and SCL is the clock
173 *
174 **************************************************************************
175 */
37b5a603 176static void falcon_setsda(void *data, int state)
8ceee660 177{
37b5a603 178 struct efx_nic *efx = (struct efx_nic *)data;
8ceee660
BH
179 efx_oword_t reg;
180
12d00cad 181 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 182 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
12d00cad 183 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
8ceee660
BH
184}
185
37b5a603 186static void falcon_setscl(void *data, int state)
8ceee660 187{
37b5a603 188 struct efx_nic *efx = (struct efx_nic *)data;
8ceee660
BH
189 efx_oword_t reg;
190
12d00cad 191 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 192 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
12d00cad 193 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
37b5a603
BH
194}
195
196static int falcon_getsda(void *data)
197{
198 struct efx_nic *efx = (struct efx_nic *)data;
199 efx_oword_t reg;
200
12d00cad 201 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 202 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
8ceee660
BH
203}
204
37b5a603 205static int falcon_getscl(void *data)
8ceee660 206{
37b5a603 207 struct efx_nic *efx = (struct efx_nic *)data;
8ceee660
BH
208 efx_oword_t reg;
209
12d00cad 210 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
3e6c4538 211 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
8ceee660
BH
212}
213
37b5a603
BH
214static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
215 .setsda = falcon_setsda,
216 .setscl = falcon_setscl,
8ceee660
BH
217 .getsda = falcon_getsda,
218 .getscl = falcon_getscl,
62c78329 219 .udelay = 5,
9dadae68
BH
220 /* Wait up to 50 ms for slave to let us pull SCL high */
221 .timeout = DIV_ROUND_UP(HZ, 20),
8ceee660
BH
222};
223
224/**************************************************************************
225 *
226 * Falcon special buffer handling
227 * Special buffers are used for event queues and the TX and RX
228 * descriptor rings.
229 *
230 *************************************************************************/
231
232/*
233 * Initialise a Falcon special buffer
234 *
235 * This will define a buffer (previously allocated via
236 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
237 * it to be used for event queues, descriptor rings etc.
238 */
bc3c90a2 239static void
8ceee660
BH
240falcon_init_special_buffer(struct efx_nic *efx,
241 struct efx_special_buffer *buffer)
242{
243 efx_qword_t buf_desc;
244 int index;
245 dma_addr_t dma_addr;
246 int i;
247
248 EFX_BUG_ON_PARANOID(!buffer->addr);
249
250 /* Write buffer descriptors to NIC */
251 for (i = 0; i < buffer->entries; i++) {
252 index = buffer->index + i;
253 dma_addr = buffer->dma_addr + (i * 4096);
254 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
255 index, (unsigned long long)dma_addr);
3e6c4538
BH
256 EFX_POPULATE_QWORD_3(buf_desc,
257 FRF_AZ_BUF_ADR_REGION, 0,
258 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
259 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
12d00cad 260 falcon_write_buf_tbl(efx, &buf_desc, index);
8ceee660 261 }
8ceee660
BH
262}
263
264/* Unmaps a buffer from Falcon and clears the buffer table entries */
265static void
266falcon_fini_special_buffer(struct efx_nic *efx,
267 struct efx_special_buffer *buffer)
268{
269 efx_oword_t buf_tbl_upd;
270 unsigned int start = buffer->index;
271 unsigned int end = (buffer->index + buffer->entries - 1);
272
273 if (!buffer->entries)
274 return;
275
276 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
277 buffer->index, buffer->index + buffer->entries - 1);
278
279 EFX_POPULATE_OWORD_4(buf_tbl_upd,
3e6c4538
BH
280 FRF_AZ_BUF_UPD_CMD, 0,
281 FRF_AZ_BUF_CLR_CMD, 1,
282 FRF_AZ_BUF_CLR_END_ID, end,
283 FRF_AZ_BUF_CLR_START_ID, start);
12d00cad 284 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
8ceee660
BH
285}
286
287/*
288 * Allocate a new Falcon special buffer
289 *
290 * This allocates memory for a new buffer, clears it and allocates a
291 * new buffer ID range. It does not write into Falcon's buffer table.
292 *
293 * This call will allocate 4KB buffers, since Falcon can't use 8KB
294 * buffers for event queues and descriptor rings.
295 */
296static int falcon_alloc_special_buffer(struct efx_nic *efx,
297 struct efx_special_buffer *buffer,
298 unsigned int len)
299{
8ceee660
BH
300 len = ALIGN(len, FALCON_BUF_SIZE);
301
302 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
303 &buffer->dma_addr);
304 if (!buffer->addr)
305 return -ENOMEM;
306 buffer->len = len;
307 buffer->entries = len / FALCON_BUF_SIZE;
308 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
309
310 /* All zeros is a potentially valid event so memset to 0xff */
311 memset(buffer->addr, 0xff, len);
312
313 /* Select new buffer ID */
0484e0db
BH
314 buffer->index = efx->next_buffer_table;
315 efx->next_buffer_table += buffer->entries;
8ceee660
BH
316
317 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
9c8976a1 318 "(virt %p phys %llx)\n", buffer->index,
8ceee660 319 buffer->index + buffer->entries - 1,
9c8976a1
JSR
320 (u64)buffer->dma_addr, len,
321 buffer->addr, (u64)virt_to_phys(buffer->addr));
8ceee660
BH
322
323 return 0;
324}
325
326static void falcon_free_special_buffer(struct efx_nic *efx,
327 struct efx_special_buffer *buffer)
328{
329 if (!buffer->addr)
330 return;
331
332 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
9c8976a1 333 "(virt %p phys %llx)\n", buffer->index,
8ceee660 334 buffer->index + buffer->entries - 1,
9c8976a1
JSR
335 (u64)buffer->dma_addr, buffer->len,
336 buffer->addr, (u64)virt_to_phys(buffer->addr));
8ceee660
BH
337
338 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
339 buffer->dma_addr);
340 buffer->addr = NULL;
341 buffer->entries = 0;
342}
343
344/**************************************************************************
345 *
346 * Falcon generic buffer handling
347 * These buffers are used for interrupt status and MAC stats
348 *
349 **************************************************************************/
350
351static int falcon_alloc_buffer(struct efx_nic *efx,
352 struct efx_buffer *buffer, unsigned int len)
353{
354 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
355 &buffer->dma_addr);
356 if (!buffer->addr)
357 return -ENOMEM;
358 buffer->len = len;
359 memset(buffer->addr, 0, len);
360 return 0;
361}
362
363static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
364{
365 if (buffer->addr) {
366 pci_free_consistent(efx->pci_dev, buffer->len,
367 buffer->addr, buffer->dma_addr);
368 buffer->addr = NULL;
369 }
370}
371
372/**************************************************************************
373 *
374 * Falcon TX path
375 *
376 **************************************************************************/
377
378/* Returns a pointer to the specified transmit descriptor in the TX
379 * descriptor queue belonging to the specified channel.
380 */
381static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
382 unsigned int index)
383{
384 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
385}
386
387/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
388static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
389{
390 unsigned write_ptr;
391 efx_dword_t reg;
392
3ffeabdd 393 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
3e6c4538 394 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
12d00cad
BH
395 efx_writed_page(tx_queue->efx, &reg,
396 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
8ceee660
BH
397}
398
399
400/* For each entry inserted into the software descriptor ring, create a
401 * descriptor in the hardware TX descriptor ring (in host memory), and
402 * write a doorbell.
403 */
404void falcon_push_buffers(struct efx_tx_queue *tx_queue)
405{
406
407 struct efx_tx_buffer *buffer;
408 efx_qword_t *txd;
409 unsigned write_ptr;
410
411 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
412
413 do {
3ffeabdd 414 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
8ceee660
BH
415 buffer = &tx_queue->buffer[write_ptr];
416 txd = falcon_tx_desc(tx_queue, write_ptr);
417 ++tx_queue->write_count;
418
419 /* Create TX descriptor ring entry */
3e6c4538
BH
420 EFX_POPULATE_QWORD_4(*txd,
421 FSF_AZ_TX_KER_CONT, buffer->continuation,
422 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
423 FSF_AZ_TX_KER_BUF_REGION, 0,
424 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
8ceee660
BH
425 } while (tx_queue->write_count != tx_queue->insert_count);
426
427 wmb(); /* Ensure descriptors are written before they are fetched */
428 falcon_notify_tx_desc(tx_queue);
429}
430
431/* Allocate hardware resources for a TX queue */
432int falcon_probe_tx(struct efx_tx_queue *tx_queue)
433{
434 struct efx_nic *efx = tx_queue->efx;
3ffeabdd
BH
435 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
436 EFX_TXQ_SIZE & EFX_TXQ_MASK);
8ceee660 437 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
3ffeabdd 438 EFX_TXQ_SIZE * sizeof(efx_qword_t));
8ceee660
BH
439}
440
bc3c90a2 441void falcon_init_tx(struct efx_tx_queue *tx_queue)
8ceee660
BH
442{
443 efx_oword_t tx_desc_ptr;
444 struct efx_nic *efx = tx_queue->efx;
8ceee660 445
6bc5d3a9
BH
446 tx_queue->flushed = false;
447
8ceee660 448 /* Pin TX descriptor ring */
bc3c90a2 449 falcon_init_special_buffer(efx, &tx_queue->txd);
8ceee660
BH
450
451 /* Push TX descriptor ring to card */
452 EFX_POPULATE_OWORD_10(tx_desc_ptr,
3e6c4538
BH
453 FRF_AZ_TX_DESCQ_EN, 1,
454 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
455 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
456 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
457 FRF_AZ_TX_DESCQ_EVQ_ID,
458 tx_queue->channel->channel,
459 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
460 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
3ffeabdd
BH
461 FRF_AZ_TX_DESCQ_SIZE,
462 __ffs(tx_queue->txd.entries),
3e6c4538
BH
463 FRF_AZ_TX_DESCQ_TYPE, 0,
464 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
8ceee660 465
55668611 466 if (falcon_rev(efx) >= FALCON_REV_B0) {
60ac1065 467 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
3e6c4538
BH
468 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
469 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
470 !csum);
8ceee660
BH
471 }
472
12d00cad
BH
473 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
474 tx_queue->queue);
8ceee660 475
55668611 476 if (falcon_rev(efx) < FALCON_REV_B0) {
8ceee660
BH
477 efx_oword_t reg;
478
60ac1065
BH
479 /* Only 128 bits in this register */
480 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
8ceee660 481
12d00cad 482 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
60ac1065 483 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
8ceee660
BH
484 clear_bit_le(tx_queue->queue, (void *)&reg);
485 else
486 set_bit_le(tx_queue->queue, (void *)&reg);
12d00cad 487 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
8ceee660 488 }
8ceee660
BH
489}
490
6bc5d3a9 491static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
492{
493 struct efx_nic *efx = tx_queue->efx;
8ceee660 494 efx_oword_t tx_flush_descq;
8ceee660
BH
495
496 /* Post a flush command */
497 EFX_POPULATE_OWORD_2(tx_flush_descq,
3e6c4538
BH
498 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
12d00cad 500 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
8ceee660
BH
501}
502
503void falcon_fini_tx(struct efx_tx_queue *tx_queue)
504{
505 struct efx_nic *efx = tx_queue->efx;
506 efx_oword_t tx_desc_ptr;
507
6bc5d3a9
BH
508 /* The queue should have been flushed */
509 WARN_ON(!tx_queue->flushed);
8ceee660
BH
510
511 /* Remove TX descriptor ring from card */
512 EFX_ZERO_OWORD(tx_desc_ptr);
12d00cad
BH
513 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514 tx_queue->queue);
8ceee660
BH
515
516 /* Unpin TX descriptor ring */
517 falcon_fini_special_buffer(efx, &tx_queue->txd);
518}
519
520/* Free buffers backing TX queue */
521void falcon_remove_tx(struct efx_tx_queue *tx_queue)
522{
523 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524}
525
526/**************************************************************************
527 *
528 * Falcon RX path
529 *
530 **************************************************************************/
531
532/* Returns a pointer to the specified descriptor in the RX descriptor queue */
533static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
534 unsigned int index)
535{
536 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
537}
538
539/* This creates an entry in the RX descriptor queue */
540static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
541 unsigned index)
542{
543 struct efx_rx_buffer *rx_buf;
544 efx_qword_t *rxd;
545
546 rxd = falcon_rx_desc(rx_queue, index);
547 rx_buf = efx_rx_buffer(rx_queue, index);
548 EFX_POPULATE_QWORD_3(*rxd,
3e6c4538 549 FSF_AZ_RX_KER_BUF_SIZE,
8ceee660
BH
550 rx_buf->len -
551 rx_queue->efx->type->rx_buffer_padding,
3e6c4538
BH
552 FSF_AZ_RX_KER_BUF_REGION, 0,
553 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
8ceee660
BH
554}
555
556/* This writes to the RX_DESC_WPTR register for the specified receive
557 * descriptor ring.
558 */
559void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
560{
561 efx_dword_t reg;
562 unsigned write_ptr;
563
564 while (rx_queue->notified_count != rx_queue->added_count) {
565 falcon_build_rx_desc(rx_queue,
566 rx_queue->notified_count &
3ffeabdd 567 EFX_RXQ_MASK);
8ceee660
BH
568 ++rx_queue->notified_count;
569 }
570
571 wmb();
3ffeabdd 572 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
3e6c4538 573 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
12d00cad
BH
574 efx_writed_page(rx_queue->efx, &reg,
575 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
8ceee660
BH
576}
577
578int falcon_probe_rx(struct efx_rx_queue *rx_queue)
579{
580 struct efx_nic *efx = rx_queue->efx;
3ffeabdd
BH
581 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
582 EFX_RXQ_SIZE & EFX_RXQ_MASK);
8ceee660 583 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
3ffeabdd 584 EFX_RXQ_SIZE * sizeof(efx_qword_t));
8ceee660
BH
585}
586
bc3c90a2 587void falcon_init_rx(struct efx_rx_queue *rx_queue)
8ceee660
BH
588{
589 efx_oword_t rx_desc_ptr;
590 struct efx_nic *efx = rx_queue->efx;
dc8cfa55
BH
591 bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
592 bool iscsi_digest_en = is_b0;
8ceee660
BH
593
594 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
595 rx_queue->queue, rx_queue->rxd.index,
596 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597
6bc5d3a9
BH
598 rx_queue->flushed = false;
599
8ceee660 600 /* Pin RX descriptor ring */
bc3c90a2 601 falcon_init_special_buffer(efx, &rx_queue->rxd);
8ceee660
BH
602
603 /* Push RX descriptor ring to card */
604 EFX_POPULATE_OWORD_10(rx_desc_ptr,
3e6c4538
BH
605 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
606 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
607 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
608 FRF_AZ_RX_DESCQ_EVQ_ID,
609 rx_queue->channel->channel,
610 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
611 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
3ffeabdd
BH
612 FRF_AZ_RX_DESCQ_SIZE,
613 __ffs(rx_queue->rxd.entries),
3e6c4538 614 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
8ceee660 615 /* For >=B0 this is scatter so disable */
3e6c4538
BH
616 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
617 FRF_AZ_RX_DESCQ_EN, 1);
12d00cad
BH
618 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
619 rx_queue->queue);
8ceee660
BH
620}
621
6bc5d3a9 622static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
8ceee660
BH
623{
624 struct efx_nic *efx = rx_queue->efx;
8ceee660
BH
625 efx_oword_t rx_flush_descq;
626
627 /* Post a flush command */
628 EFX_POPULATE_OWORD_2(rx_flush_descq,
3e6c4538
BH
629 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
630 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
12d00cad 631 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
8ceee660
BH
632}
633
634void falcon_fini_rx(struct efx_rx_queue *rx_queue)
635{
636 efx_oword_t rx_desc_ptr;
637 struct efx_nic *efx = rx_queue->efx;
8ceee660 638
6bc5d3a9
BH
639 /* The queue should already have been flushed */
640 WARN_ON(!rx_queue->flushed);
8ceee660
BH
641
642 /* Remove RX descriptor ring from card */
643 EFX_ZERO_OWORD(rx_desc_ptr);
12d00cad
BH
644 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
645 rx_queue->queue);
8ceee660
BH
646
647 /* Unpin RX descriptor ring */
648 falcon_fini_special_buffer(efx, &rx_queue->rxd);
649}
650
651/* Free buffers backing RX queue */
652void falcon_remove_rx(struct efx_rx_queue *rx_queue)
653{
654 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
655}
656
657/**************************************************************************
658 *
659 * Falcon event queue processing
660 * Event queues are processed by per-channel tasklets.
661 *
662 **************************************************************************/
663
664/* Update a channel's event queue's read pointer (RPTR) register
665 *
666 * This writes the EVQ_RPTR_REG register for the specified channel's
667 * event queue.
668 *
669 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
670 * whereas channel->eventq_read_ptr contains the index of the "next to
671 * read" event.
672 */
673void falcon_eventq_read_ack(struct efx_channel *channel)
674{
675 efx_dword_t reg;
676 struct efx_nic *efx = channel->efx;
677
3e6c4538 678 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
12d00cad 679 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
d3074025 680 channel->channel);
8ceee660
BH
681}
682
683/* Use HW to insert a SW defined event */
684void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
685{
686 efx_oword_t drv_ev_reg;
687
3e6c4538
BH
688 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
689 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
690 drv_ev_reg.u32[0] = event->u32[0];
691 drv_ev_reg.u32[1] = event->u32[1];
692 drv_ev_reg.u32[2] = 0;
693 drv_ev_reg.u32[3] = 0;
694 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
12d00cad 695 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
8ceee660
BH
696}
697
698/* Handle a transmit completion event
699 *
700 * Falcon batches TX completion events; the message we receive is of
701 * the form "complete all TX events up to this index".
702 */
4d566063
BH
703static void falcon_handle_tx_event(struct efx_channel *channel,
704 efx_qword_t *event)
8ceee660
BH
705{
706 unsigned int tx_ev_desc_ptr;
707 unsigned int tx_ev_q_label;
708 struct efx_tx_queue *tx_queue;
709 struct efx_nic *efx = channel->efx;
710
3e6c4538 711 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
8ceee660 712 /* Transmit completion */
3e6c4538
BH
713 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
714 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
8ceee660 715 tx_queue = &efx->tx_queue[tx_ev_q_label];
6fb70fd1
BH
716 channel->irq_mod_score +=
717 (tx_ev_desc_ptr - tx_queue->read_count) &
3ffeabdd 718 EFX_TXQ_MASK;
8ceee660 719 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
3e6c4538 720 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
8ceee660 721 /* Rewrite the FIFO write pointer */
3e6c4538 722 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
8ceee660
BH
723 tx_queue = &efx->tx_queue[tx_ev_q_label];
724
55668611 725 if (efx_dev_registered(efx))
8ceee660
BH
726 netif_tx_lock(efx->net_dev);
727 falcon_notify_tx_desc(tx_queue);
55668611 728 if (efx_dev_registered(efx))
8ceee660 729 netif_tx_unlock(efx->net_dev);
3e6c4538 730 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
8ceee660
BH
731 EFX_WORKAROUND_10727(efx)) {
732 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
733 } else {
734 EFX_ERR(efx, "channel %d unexpected TX event "
735 EFX_QWORD_FMT"\n", channel->channel,
736 EFX_QWORD_VAL(*event));
737 }
738}
739
8ceee660
BH
740/* Detect errors included in the rx_evt_pkt_ok bit. */
741static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
742 const efx_qword_t *event,
dc8cfa55
BH
743 bool *rx_ev_pkt_ok,
744 bool *discard)
8ceee660
BH
745{
746 struct efx_nic *efx = rx_queue->efx;
dc8cfa55
BH
747 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
748 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
749 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
750 bool rx_ev_other_err, rx_ev_pause_frm;
751 bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
752 unsigned rx_ev_pkt_type;
8ceee660 753
3e6c4538
BH
754 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
755 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
756 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
757 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
8ceee660 758 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
3e6c4538
BH
759 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
760 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
8ceee660 761 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
3e6c4538 762 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
8ceee660 763 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
3e6c4538
BH
764 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
765 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
766 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
55668611 767 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
3e6c4538
BH
768 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
769 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
8ceee660
BH
770
771 /* Every error apart from tobe_disc and pause_frm */
772 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
773 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
774 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
775
50050877
BH
776 /* Count errors that are not in MAC stats. Ignore expected
777 * checksum errors during self-test. */
8ceee660
BH
778 if (rx_ev_frm_trunc)
779 ++rx_queue->channel->n_rx_frm_trunc;
780 else if (rx_ev_tobe_disc)
781 ++rx_queue->channel->n_rx_tobe_disc;
50050877
BH
782 else if (!efx->loopback_selftest) {
783 if (rx_ev_ip_hdr_chksum_err)
784 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
785 else if (rx_ev_tcp_udp_chksum_err)
786 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
787 }
8ceee660
BH
788 if (rx_ev_ip_frag_err)
789 ++rx_queue->channel->n_rx_ip_frag_err;
790
791 /* The frame must be discarded if any of these are true. */
792 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
793 rx_ev_tobe_disc | rx_ev_pause_frm);
794
795 /* TOBE_DISC is expected on unicast mismatches; don't print out an
796 * error message. FRM_TRUNC indicates RXDP dropped the packet due
797 * to a FIFO overflow.
798 */
799#ifdef EFX_ENABLE_DEBUG
800 if (rx_ev_other_err) {
801 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
5b39fe30 802 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
8ceee660
BH
803 rx_queue->queue, EFX_QWORD_VAL(*event),
804 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
805 rx_ev_ip_hdr_chksum_err ?
806 " [IP_HDR_CHKSUM_ERR]" : "",
807 rx_ev_tcp_udp_chksum_err ?
808 " [TCP_UDP_CHKSUM_ERR]" : "",
809 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
810 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
811 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
812 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
5b39fe30 813 rx_ev_pause_frm ? " [PAUSE]" : "");
8ceee660
BH
814 }
815#endif
8ceee660
BH
816}
817
818/* Handle receive events that are not in-order. */
819static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
820 unsigned index)
821{
822 struct efx_nic *efx = rx_queue->efx;
823 unsigned expected, dropped;
824
3ffeabdd
BH
825 expected = rx_queue->removed_count & EFX_RXQ_MASK;
826 dropped = (index - expected) & EFX_RXQ_MASK;
8ceee660
BH
827 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
828 dropped, index, expected);
829
830 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
831 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
832}
833
834/* Handle a packet received event
835 *
836 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
837 * wrong destination address
838 * Also "is multicast" and "matches multicast filter" flags can be used to
839 * discard non-matching multicast packets.
840 */
42cbe2d7
BH
841static void falcon_handle_rx_event(struct efx_channel *channel,
842 const efx_qword_t *event)
8ceee660 843{
42cbe2d7 844 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
dc8cfa55 845 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
8ceee660 846 unsigned expected_ptr;
dc8cfa55 847 bool rx_ev_pkt_ok, discard = false, checksummed;
8ceee660
BH
848 struct efx_rx_queue *rx_queue;
849 struct efx_nic *efx = channel->efx;
850
851 /* Basic packet information */
3e6c4538
BH
852 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
853 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
854 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
855 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
856 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
857 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
858 channel->channel);
8ceee660 859
42cbe2d7 860 rx_queue = &efx->rx_queue[channel->channel];
8ceee660 861
3e6c4538 862 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
3ffeabdd 863 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
42cbe2d7 864 if (unlikely(rx_ev_desc_ptr != expected_ptr))
8ceee660 865 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
8ceee660
BH
866
867 if (likely(rx_ev_pkt_ok)) {
868 /* If packet is marked as OK and packet type is TCP/IPv4 or
869 * UDP/IPv4, then we can rely on the hardware checksum.
870 */
3e6c4538
BH
871 checksummed =
872 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
873 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP;
8ceee660
BH
874 } else {
875 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
5b39fe30 876 &discard);
dc8cfa55 877 checksummed = false;
8ceee660
BH
878 }
879
880 /* Detect multicast packets that didn't match the filter */
3e6c4538 881 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
8ceee660
BH
882 if (rx_ev_mcast_pkt) {
883 unsigned int rx_ev_mcast_hash_match =
3e6c4538 884 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
8ceee660
BH
885
886 if (unlikely(!rx_ev_mcast_hash_match))
dc8cfa55 887 discard = true;
8ceee660
BH
888 }
889
6fb70fd1
BH
890 channel->irq_mod_score += 2;
891
8ceee660
BH
892 /* Handle received packet */
893 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
894 checksummed, discard);
8ceee660
BH
895}
896
897/* Global events are basically PHY events */
898static void falcon_handle_global_event(struct efx_channel *channel,
899 efx_qword_t *event)
900{
901 struct efx_nic *efx = channel->efx;
766ca0fa 902 bool handled = false;
8ceee660 903
3e6c4538
BH
904 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
905 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
906 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
766ca0fa
BH
907 efx->phy_op->clear_interrupt(efx);
908 queue_work(efx->workqueue, &efx->phy_work);
909 handled = true;
910 }
8ceee660 911
55668611 912 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
3e6c4538 913 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
766ca0fa 914 queue_work(efx->workqueue, &efx->mac_work);
dc8cfa55 915 handled = true;
8ceee660
BH
916 }
917
56241ceb 918 if (falcon_rev(efx) <= FALCON_REV_A1 ?
3e6c4538
BH
919 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
920 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
8ceee660
BH
921 EFX_ERR(efx, "channel %d seen global RX_RESET "
922 "event. Resetting.\n", channel->channel);
923
924 atomic_inc(&efx->rx_reset);
925 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
926 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
dc8cfa55 927 handled = true;
8ceee660
BH
928 }
929
930 if (!handled)
931 EFX_ERR(efx, "channel %d unknown global event "
932 EFX_QWORD_FMT "\n", channel->channel,
933 EFX_QWORD_VAL(*event));
934}
935
936static void falcon_handle_driver_event(struct efx_channel *channel,
937 efx_qword_t *event)
938{
939 struct efx_nic *efx = channel->efx;
940 unsigned int ev_sub_code;
941 unsigned int ev_sub_data;
942
3e6c4538
BH
943 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
944 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
8ceee660
BH
945
946 switch (ev_sub_code) {
3e6c4538 947 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
8ceee660
BH
948 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
949 channel->channel, ev_sub_data);
950 break;
3e6c4538 951 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
8ceee660
BH
952 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
953 channel->channel, ev_sub_data);
954 break;
3e6c4538 955 case FSE_AZ_EVQ_INIT_DONE_EV:
8ceee660
BH
956 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
957 channel->channel, ev_sub_data);
958 break;
3e6c4538 959 case FSE_AZ_SRM_UPD_DONE_EV:
8ceee660
BH
960 EFX_TRACE(efx, "channel %d SRAM update done\n",
961 channel->channel);
962 break;
3e6c4538 963 case FSE_AZ_WAKE_UP_EV:
8ceee660
BH
964 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
965 channel->channel, ev_sub_data);
966 break;
3e6c4538 967 case FSE_AZ_TIMER_EV:
8ceee660
BH
968 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
969 channel->channel, ev_sub_data);
970 break;
3e6c4538 971 case FSE_AA_RX_RECOVER_EV:
8ceee660
BH
972 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
973 "Resetting.\n", channel->channel);
05e3ec04 974 atomic_inc(&efx->rx_reset);
8ceee660
BH
975 efx_schedule_reset(efx,
976 EFX_WORKAROUND_6555(efx) ?
977 RESET_TYPE_RX_RECOVERY :
978 RESET_TYPE_DISABLE);
979 break;
3e6c4538 980 case FSE_BZ_RX_DSC_ERROR_EV:
8ceee660
BH
981 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
982 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
983 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
984 break;
3e6c4538 985 case FSE_BZ_TX_DSC_ERROR_EV:
8ceee660
BH
986 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
987 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
988 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
989 break;
990 default:
991 EFX_TRACE(efx, "channel %d unknown driver event code %d "
992 "data %04x\n", channel->channel, ev_sub_code,
993 ev_sub_data);
994 break;
995 }
996}
997
42cbe2d7 998int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
8ceee660
BH
999{
1000 unsigned int read_ptr;
1001 efx_qword_t event, *p_event;
1002 int ev_code;
42cbe2d7 1003 int rx_packets = 0;
8ceee660
BH
1004
1005 read_ptr = channel->eventq_read_ptr;
1006
1007 do {
1008 p_event = falcon_event(channel, read_ptr);
1009 event = *p_event;
1010
1011 if (!falcon_event_present(&event))
1012 /* End of events */
1013 break;
1014
1015 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1016 channel->channel, EFX_QWORD_VAL(event));
1017
1018 /* Clear this event by marking it all ones */
1019 EFX_SET_QWORD(*p_event);
1020
3e6c4538 1021 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
8ceee660
BH
1022
1023 switch (ev_code) {
3e6c4538 1024 case FSE_AZ_EV_CODE_RX_EV:
42cbe2d7
BH
1025 falcon_handle_rx_event(channel, &event);
1026 ++rx_packets;
8ceee660 1027 break;
3e6c4538 1028 case FSE_AZ_EV_CODE_TX_EV:
8ceee660
BH
1029 falcon_handle_tx_event(channel, &event);
1030 break;
3e6c4538
BH
1031 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1032 channel->eventq_magic = EFX_QWORD_FIELD(
1033 event, FSF_AZ_DRV_GEN_EV_MAGIC);
8ceee660
BH
1034 EFX_LOG(channel->efx, "channel %d received generated "
1035 "event "EFX_QWORD_FMT"\n", channel->channel,
1036 EFX_QWORD_VAL(event));
1037 break;
3e6c4538 1038 case FSE_AZ_EV_CODE_GLOBAL_EV:
8ceee660
BH
1039 falcon_handle_global_event(channel, &event);
1040 break;
3e6c4538 1041 case FSE_AZ_EV_CODE_DRIVER_EV:
8ceee660
BH
1042 falcon_handle_driver_event(channel, &event);
1043 break;
1044 default:
1045 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1046 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1047 ev_code, EFX_QWORD_VAL(event));
1048 }
1049
1050 /* Increment read pointer */
3ffeabdd 1051 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
8ceee660 1052
42cbe2d7 1053 } while (rx_packets < rx_quota);
8ceee660
BH
1054
1055 channel->eventq_read_ptr = read_ptr;
42cbe2d7 1056 return rx_packets;
8ceee660
BH
1057}
1058
1059void falcon_set_int_moderation(struct efx_channel *channel)
1060{
1061 efx_dword_t timer_cmd;
1062 struct efx_nic *efx = channel->efx;
1063
1064 /* Set timer register */
1065 if (channel->irq_moderation) {
8ceee660 1066 EFX_POPULATE_DWORD_2(timer_cmd,
3e6c4538
BH
1067 FRF_AB_TC_TIMER_MODE,
1068 FFE_BB_TIMER_MODE_INT_HLDOFF,
1069 FRF_AB_TC_TIMER_VAL,
0d86ebd8 1070 channel->irq_moderation - 1);
8ceee660
BH
1071 } else {
1072 EFX_POPULATE_DWORD_2(timer_cmd,
3e6c4538
BH
1073 FRF_AB_TC_TIMER_MODE,
1074 FFE_BB_TIMER_MODE_DIS,
1075 FRF_AB_TC_TIMER_VAL, 0);
8ceee660 1076 }
3e6c4538 1077 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
12d00cad
BH
1078 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1079 channel->channel);
8ceee660
BH
1080
1081}
1082
1083/* Allocate buffer table entries for event queue */
1084int falcon_probe_eventq(struct efx_channel *channel)
1085{
1086 struct efx_nic *efx = channel->efx;
3ffeabdd
BH
1087 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1088 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1089 return falcon_alloc_special_buffer(efx, &channel->eventq,
1090 EFX_EVQ_SIZE * sizeof(efx_qword_t));
8ceee660
BH
1091}
1092
bc3c90a2 1093void falcon_init_eventq(struct efx_channel *channel)
8ceee660
BH
1094{
1095 efx_oword_t evq_ptr;
1096 struct efx_nic *efx = channel->efx;
8ceee660
BH
1097
1098 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1099 channel->channel, channel->eventq.index,
1100 channel->eventq.index + channel->eventq.entries - 1);
1101
1102 /* Pin event queue buffer */
bc3c90a2 1103 falcon_init_special_buffer(efx, &channel->eventq);
8ceee660
BH
1104
1105 /* Fill event queue with all ones (i.e. empty events) */
1106 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1107
1108 /* Push event queue to card */
1109 EFX_POPULATE_OWORD_3(evq_ptr,
3e6c4538 1110 FRF_AZ_EVQ_EN, 1,
3ffeabdd 1111 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
3e6c4538 1112 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
12d00cad
BH
1113 efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1114 channel->channel);
8ceee660
BH
1115
1116 falcon_set_int_moderation(channel);
8ceee660
BH
1117}
1118
1119void falcon_fini_eventq(struct efx_channel *channel)
1120{
1121 efx_oword_t eventq_ptr;
1122 struct efx_nic *efx = channel->efx;
1123
1124 /* Remove event queue from card */
1125 EFX_ZERO_OWORD(eventq_ptr);
12d00cad
BH
1126 efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1127 channel->channel);
8ceee660
BH
1128
1129 /* Unpin event queue */
1130 falcon_fini_special_buffer(efx, &channel->eventq);
1131}
1132
1133/* Free buffers backing event queue */
1134void falcon_remove_eventq(struct efx_channel *channel)
1135{
1136 falcon_free_special_buffer(channel->efx, &channel->eventq);
1137}
1138
1139
1140/* Generates a test event on the event queue. A subsequent call to
1141 * process_eventq() should pick up the event and place the value of
1142 * "magic" into channel->eventq_magic;
1143 */
1144void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1145{
1146 efx_qword_t test_event;
1147
3e6c4538
BH
1148 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1149 FSE_AZ_EV_CODE_DRV_GEN_EV,
1150 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
8ceee660
BH
1151 falcon_generate_event(channel, &test_event);
1152}
1153
177dfcd8
BH
1154void falcon_sim_phy_event(struct efx_nic *efx)
1155{
1156 efx_qword_t phy_event;
1157
3e6c4538
BH
1158 EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1159 FSE_AZ_EV_CODE_GLOBAL_EV);
177dfcd8 1160 if (EFX_IS10G(efx))
3e6c4538 1161 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
177dfcd8 1162 else
3e6c4538 1163 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
177dfcd8
BH
1164
1165 falcon_generate_event(&efx->channel[0], &phy_event);
1166}
1167
6bc5d3a9
BH
1168/**************************************************************************
1169 *
1170 * Flush handling
1171 *
1172 **************************************************************************/
1173
1174
1175static void falcon_poll_flush_events(struct efx_nic *efx)
1176{
1177 struct efx_channel *channel = &efx->channel[0];
1178 struct efx_tx_queue *tx_queue;
1179 struct efx_rx_queue *rx_queue;
4720bc6c 1180 unsigned int read_ptr = channel->eventq_read_ptr;
3ffeabdd 1181 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
6bc5d3a9 1182
4720bc6c 1183 do {
6bc5d3a9
BH
1184 efx_qword_t *event = falcon_event(channel, read_ptr);
1185 int ev_code, ev_sub_code, ev_queue;
1186 bool ev_failed;
4720bc6c 1187
6bc5d3a9
BH
1188 if (!falcon_event_present(event))
1189 break;
1190
3e6c4538
BH
1191 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1192 ev_sub_code = EFX_QWORD_FIELD(*event,
1193 FSF_AZ_DRIVER_EV_SUBCODE);
1194 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1195 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
6bc5d3a9 1196 ev_queue = EFX_QWORD_FIELD(*event,
3e6c4538 1197 FSF_AZ_DRIVER_EV_SUBDATA);
6bc5d3a9
BH
1198 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1199 tx_queue = efx->tx_queue + ev_queue;
1200 tx_queue->flushed = true;
1201 }
3e6c4538
BH
1202 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1203 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1204 ev_queue = EFX_QWORD_FIELD(
1205 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1206 ev_failed = EFX_QWORD_FIELD(
1207 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
6bc5d3a9
BH
1208 if (ev_queue < efx->n_rx_queues) {
1209 rx_queue = efx->rx_queue + ev_queue;
1210
1211 /* retry the rx flush */
1212 if (ev_failed)
1213 falcon_flush_rx_queue(rx_queue);
1214 else
1215 rx_queue->flushed = true;
1216 }
6bc5d3a9
BH
1217 }
1218
3ffeabdd 1219 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
4720bc6c 1220 } while (read_ptr != end_ptr);
6bc5d3a9
BH
1221}
1222
1223/* Handle tx and rx flushes at the same time, since they run in
1224 * parallel in the hardware and there's no reason for us to
1225 * serialise them */
1226int falcon_flush_queues(struct efx_nic *efx)
1227{
1228 struct efx_rx_queue *rx_queue;
1229 struct efx_tx_queue *tx_queue;
1230 int i;
1231 bool outstanding;
1232
1233 /* Issue flush requests */
1234 efx_for_each_tx_queue(tx_queue, efx) {
1235 tx_queue->flushed = false;
1236 falcon_flush_tx_queue(tx_queue);
1237 }
1238 efx_for_each_rx_queue(rx_queue, efx) {
1239 rx_queue->flushed = false;
1240 falcon_flush_rx_queue(rx_queue);
1241 }
1242
1243 /* Poll the evq looking for flush completions. Since we're not pushing
1244 * any more rx or tx descriptors at this point, we're in no danger of
1245 * overflowing the evq whilst we wait */
1246 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1247 msleep(FALCON_FLUSH_INTERVAL);
1248 falcon_poll_flush_events(efx);
1249
1250 /* Check if every queue has been succesfully flushed */
1251 outstanding = false;
1252 efx_for_each_tx_queue(tx_queue, efx)
1253 outstanding |= !tx_queue->flushed;
1254 efx_for_each_rx_queue(rx_queue, efx)
1255 outstanding |= !rx_queue->flushed;
1256 if (!outstanding)
1257 return 0;
1258 }
1259
1260 /* Mark the queues as all flushed. We're going to return failure
1261 * leading to a reset, or fake up success anyway. "flushed" now
1262 * indicates that we tried to flush. */
1263 efx_for_each_tx_queue(tx_queue, efx) {
1264 if (!tx_queue->flushed)
1265 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1266 tx_queue->queue);
1267 tx_queue->flushed = true;
1268 }
1269 efx_for_each_rx_queue(rx_queue, efx) {
1270 if (!rx_queue->flushed)
1271 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1272 rx_queue->queue);
1273 rx_queue->flushed = true;
1274 }
1275
1276 if (EFX_WORKAROUND_7803(efx))
1277 return 0;
1278
1279 return -ETIMEDOUT;
1280}
8ceee660
BH
1281
1282/**************************************************************************
1283 *
1284 * Falcon hardware interrupts
1285 * The hardware interrupt handler does very little work; all the event
1286 * queue processing is carried out by per-channel tasklets.
1287 *
1288 **************************************************************************/
1289
1290/* Enable/disable/generate Falcon interrupts */
1291static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1292 int force)
1293{
1294 efx_oword_t int_en_reg_ker;
1295
1296 EFX_POPULATE_OWORD_2(int_en_reg_ker,
3e6c4538
BH
1297 FRF_AZ_KER_INT_KER, force,
1298 FRF_AZ_DRV_INT_EN_KER, enabled);
12d00cad 1299 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
8ceee660
BH
1300}
1301
1302void falcon_enable_interrupts(struct efx_nic *efx)
1303{
1304 efx_oword_t int_adr_reg_ker;
1305 struct efx_channel *channel;
1306
1307 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1308 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1309
1310 /* Program address */
1311 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
3e6c4538
BH
1312 FRF_AZ_NORM_INT_VEC_DIS_KER,
1313 EFX_INT_MODE_USE_MSI(efx),
1314 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
12d00cad 1315 efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
8ceee660
BH
1316
1317 /* Enable interrupts */
1318 falcon_interrupts(efx, 1, 0);
1319
1320 /* Force processing of all the channels to get the EVQ RPTRs up to
1321 date */
64ee3120 1322 efx_for_each_channel(channel, efx)
8ceee660
BH
1323 efx_schedule_channel(channel);
1324}
1325
1326void falcon_disable_interrupts(struct efx_nic *efx)
1327{
1328 /* Disable interrupts */
1329 falcon_interrupts(efx, 0, 0);
1330}
1331
1332/* Generate a Falcon test interrupt
1333 * Interrupt must already have been enabled, otherwise nasty things
1334 * may happen.
1335 */
1336void falcon_generate_interrupt(struct efx_nic *efx)
1337{
1338 falcon_interrupts(efx, 1, 1);
1339}
1340
1341/* Acknowledge a legacy interrupt from Falcon
1342 *
1343 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1344 *
1345 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1346 * BIU. Interrupt acknowledge is read sensitive so must write instead
1347 * (then read to ensure the BIU collector is flushed)
1348 *
1349 * NB most hardware supports MSI interrupts
1350 */
1351static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1352{
1353 efx_dword_t reg;
1354
3e6c4538 1355 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
12d00cad
BH
1356 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1357 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
8ceee660
BH
1358}
1359
1360/* Process a fatal interrupt
1361 * Disable bus mastering ASAP and schedule a reset
1362 */
1363static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1364{
1365 struct falcon_nic_data *nic_data = efx->nic_data;
d3208b5e 1366 efx_oword_t *int_ker = efx->irq_status.addr;
8ceee660
BH
1367 efx_oword_t fatal_intr;
1368 int error, mem_perr;
8ceee660 1369
12d00cad 1370 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
3e6c4538 1371 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
8ceee660
BH
1372
1373 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1374 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1375 EFX_OWORD_VAL(fatal_intr),
1376 error ? "disabling bus mastering" : "no recognised error");
1377 if (error == 0)
1378 goto out;
1379
1380 /* If this is a memory parity error dump which blocks are offending */
3e6c4538 1381 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
8ceee660
BH
1382 if (mem_perr) {
1383 efx_oword_t reg;
12d00cad 1384 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
8ceee660
BH
1385 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1386 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1387 }
1388
0a62f1a6 1389 /* Disable both devices */
ef1bba28 1390 pci_clear_master(efx->pci_dev);
8ceee660 1391 if (FALCON_IS_DUAL_FUNC(efx))
ef1bba28 1392 pci_clear_master(nic_data->pci_dev2);
0a62f1a6 1393 falcon_disable_interrupts(efx);
8ceee660 1394
2c3c3d02 1395 /* Count errors and reset or disable the NIC accordingly */
0484e0db
BH
1396 if (efx->int_error_count == 0 ||
1397 time_after(jiffies, efx->int_error_expire)) {
1398 efx->int_error_count = 0;
1399 efx->int_error_expire =
2c3c3d02
BH
1400 jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1401 }
0484e0db 1402 if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
8ceee660
BH
1403 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1404 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1405 } else {
1406 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1407 "NIC will be disabled\n");
1408 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1409 }
1410out:
1411 return IRQ_HANDLED;
1412}
1413
1414/* Handle a legacy interrupt from Falcon
1415 * Acknowledges the interrupt and schedule event queue processing.
1416 */
1417static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1418{
d3208b5e
BH
1419 struct efx_nic *efx = dev_id;
1420 efx_oword_t *int_ker = efx->irq_status.addr;
a9de9a74 1421 irqreturn_t result = IRQ_NONE;
8ceee660
BH
1422 struct efx_channel *channel;
1423 efx_dword_t reg;
1424 u32 queues;
1425 int syserr;
1426
1427 /* Read the ISR which also ACKs the interrupts */
12d00cad 1428 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
8ceee660
BH
1429 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1430
1431 /* Check to see if we have a serious error condition */
3e6c4538 1432 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
8ceee660
BH
1433 if (unlikely(syserr))
1434 return falcon_fatal_interrupt(efx);
1435
8ceee660 1436 /* Schedule processing of any interrupting queues */
a9de9a74
BH
1437 efx_for_each_channel(channel, efx) {
1438 if ((queues & 1) ||
1439 falcon_event_present(
1440 falcon_event(channel, channel->eventq_read_ptr))) {
8ceee660 1441 efx_schedule_channel(channel);
a9de9a74
BH
1442 result = IRQ_HANDLED;
1443 }
8ceee660
BH
1444 queues >>= 1;
1445 }
1446
a9de9a74
BH
1447 if (result == IRQ_HANDLED) {
1448 efx->last_irq_cpu = raw_smp_processor_id();
1449 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1450 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1451 }
1452
1453 return result;
8ceee660
BH
1454}
1455
1456
1457static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1458{
d3208b5e
BH
1459 struct efx_nic *efx = dev_id;
1460 efx_oword_t *int_ker = efx->irq_status.addr;
8ceee660
BH
1461 struct efx_channel *channel;
1462 int syserr;
1463 int queues;
1464
1465 /* Check to see if this is our interrupt. If it isn't, we
1466 * exit without having touched the hardware.
1467 */
1468 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1469 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1470 raw_smp_processor_id());
1471 return IRQ_NONE;
1472 }
1473 efx->last_irq_cpu = raw_smp_processor_id();
1474 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1475 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1476
1477 /* Check to see if we have a serious error condition */
3e6c4538 1478 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
8ceee660
BH
1479 if (unlikely(syserr))
1480 return falcon_fatal_interrupt(efx);
1481
1482 /* Determine interrupting queues, clear interrupt status
1483 * register and acknowledge the device interrupt.
1484 */
1485 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1486 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1487 EFX_ZERO_OWORD(*int_ker);
1488 wmb(); /* Ensure the vector is cleared before interrupt ack */
1489 falcon_irq_ack_a1(efx);
1490
1491 /* Schedule processing of any interrupting queues */
1492 channel = &efx->channel[0];
1493 while (queues) {
1494 if (queues & 0x01)
1495 efx_schedule_channel(channel);
1496 channel++;
1497 queues >>= 1;
1498 }
1499
1500 return IRQ_HANDLED;
1501}
1502
1503/* Handle an MSI interrupt from Falcon
1504 *
1505 * Handle an MSI hardware interrupt. This routine schedules event
1506 * queue processing. No interrupt acknowledgement cycle is necessary.
1507 * Also, we never need to check that the interrupt is for us, since
1508 * MSI interrupts cannot be shared.
1509 */
1510static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1511{
d3208b5e 1512 struct efx_channel *channel = dev_id;
8ceee660 1513 struct efx_nic *efx = channel->efx;
d3208b5e 1514 efx_oword_t *int_ker = efx->irq_status.addr;
8ceee660
BH
1515 int syserr;
1516
1517 efx->last_irq_cpu = raw_smp_processor_id();
1518 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1519 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1520
1521 /* Check to see if we have a serious error condition */
1522 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1523 if (unlikely(syserr))
1524 return falcon_fatal_interrupt(efx);
1525
1526 /* Schedule processing of the channel */
1527 efx_schedule_channel(channel);
1528
1529 return IRQ_HANDLED;
1530}
1531
1532
1533/* Setup RSS indirection table.
1534 * This maps from the hash value of the packet to RXQ
1535 */
1536static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1537{
1538 int i = 0;
1539 unsigned long offset;
1540 efx_dword_t dword;
1541
55668611 1542 if (falcon_rev(efx) < FALCON_REV_B0)
8ceee660
BH
1543 return;
1544
3e6c4538
BH
1545 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1546 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
8ceee660 1547 offset += 0x10) {
3e6c4538 1548 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
8831da7b 1549 i % efx->n_rx_queues);
12d00cad 1550 efx_writed(efx, &dword, offset);
8ceee660
BH
1551 i++;
1552 }
1553}
1554
1555/* Hook interrupt handler(s)
1556 * Try MSI and then legacy interrupts.
1557 */
1558int falcon_init_interrupt(struct efx_nic *efx)
1559{
1560 struct efx_channel *channel;
1561 int rc;
1562
1563 if (!EFX_INT_MODE_USE_MSI(efx)) {
1564 irq_handler_t handler;
55668611 1565 if (falcon_rev(efx) >= FALCON_REV_B0)
8ceee660
BH
1566 handler = falcon_legacy_interrupt_b0;
1567 else
1568 handler = falcon_legacy_interrupt_a1;
1569
1570 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1571 efx->name, efx);
1572 if (rc) {
1573 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1574 efx->pci_dev->irq);
1575 goto fail1;
1576 }
1577 return 0;
1578 }
1579
1580 /* Hook MSI or MSI-X interrupt */
64ee3120 1581 efx_for_each_channel(channel, efx) {
8ceee660
BH
1582 rc = request_irq(channel->irq, falcon_msi_interrupt,
1583 IRQF_PROBE_SHARED, /* Not shared */
56536e9c 1584 channel->name, channel);
8ceee660
BH
1585 if (rc) {
1586 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1587 goto fail2;
1588 }
1589 }
1590
1591 return 0;
1592
1593 fail2:
64ee3120 1594 efx_for_each_channel(channel, efx)
8ceee660
BH
1595 free_irq(channel->irq, channel);
1596 fail1:
1597 return rc;
1598}
1599
1600void falcon_fini_interrupt(struct efx_nic *efx)
1601{
1602 struct efx_channel *channel;
1603 efx_oword_t reg;
1604
1605 /* Disable MSI/MSI-X interrupts */
64ee3120 1606 efx_for_each_channel(channel, efx) {
8ceee660
BH
1607 if (channel->irq)
1608 free_irq(channel->irq, channel);
b3475645 1609 }
8ceee660
BH
1610
1611 /* ACK legacy interrupt */
55668611 1612 if (falcon_rev(efx) >= FALCON_REV_B0)
12d00cad 1613 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
8ceee660
BH
1614 else
1615 falcon_irq_ack_a1(efx);
1616
1617 /* Disable legacy interrupt */
1618 if (efx->legacy_irq)
1619 free_irq(efx->legacy_irq, efx);
1620}
1621
1622/**************************************************************************
1623 *
1624 * EEPROM/flash
1625 *
1626 **************************************************************************
1627 */
1628
23d30f02 1629#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
8ceee660 1630
be4ea89c
BH
1631static int falcon_spi_poll(struct efx_nic *efx)
1632{
1633 efx_oword_t reg;
12d00cad 1634 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
3e6c4538 1635 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
be4ea89c
BH
1636}
1637
8ceee660
BH
1638/* Wait for SPI command completion */
1639static int falcon_spi_wait(struct efx_nic *efx)
1640{
be4ea89c
BH
1641 /* Most commands will finish quickly, so we start polling at
1642 * very short intervals. Sometimes the command may have to
1643 * wait for VPD or expansion ROM access outside of our
1644 * control, so we allow up to 100 ms. */
1645 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1646 int i;
1647
1648 for (i = 0; i < 10; i++) {
1649 if (!falcon_spi_poll(efx))
1650 return 0;
1651 udelay(10);
1652 }
8ceee660 1653
4a5b504d 1654 for (;;) {
be4ea89c 1655 if (!falcon_spi_poll(efx))
8ceee660 1656 return 0;
4a5b504d
BH
1657 if (time_after_eq(jiffies, timeout)) {
1658 EFX_ERR(efx, "timed out waiting for SPI\n");
1659 return -ETIMEDOUT;
1660 }
be4ea89c 1661 schedule_timeout_uninterruptible(1);
4a5b504d 1662 }
8ceee660
BH
1663}
1664
f4150724
BH
1665int falcon_spi_cmd(const struct efx_spi_device *spi,
1666 unsigned int command, int address,
23d30f02 1667 const void *in, void *out, size_t len)
8ceee660 1668{
4a5b504d
BH
1669 struct efx_nic *efx = spi->efx;
1670 bool addressed = (address >= 0);
1671 bool reading = (out != NULL);
8ceee660
BH
1672 efx_oword_t reg;
1673 int rc;
1674
4a5b504d
BH
1675 /* Input validation */
1676 if (len > FALCON_SPI_MAX_LEN)
1677 return -EINVAL;
f4150724 1678 BUG_ON(!mutex_is_locked(&efx->spi_lock));
8ceee660 1679
be4ea89c
BH
1680 /* Check that previous command is not still running */
1681 rc = falcon_spi_poll(efx);
8ceee660
BH
1682 if (rc)
1683 return rc;
1684
4a5b504d
BH
1685 /* Program address register, if we have an address */
1686 if (addressed) {
3e6c4538 1687 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
12d00cad 1688 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
4a5b504d
BH
1689 }
1690
1691 /* Program data register, if we have data */
1692 if (in != NULL) {
1693 memcpy(&reg, in, len);
12d00cad 1694 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
4a5b504d 1695 }
8ceee660 1696
4a5b504d 1697 /* Issue read/write command */
8ceee660 1698 EFX_POPULATE_OWORD_7(reg,
3e6c4538
BH
1699 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1700 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1701 FRF_AB_EE_SPI_HCMD_DABCNT, len,
1702 FRF_AB_EE_SPI_HCMD_READ, reading,
1703 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1704 FRF_AB_EE_SPI_HCMD_ADBCNT,
4a5b504d 1705 (addressed ? spi->addr_len : 0),
3e6c4538 1706 FRF_AB_EE_SPI_HCMD_ENC, command);
12d00cad 1707 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
8ceee660 1708
4a5b504d 1709 /* Wait for read/write to complete */
8ceee660
BH
1710 rc = falcon_spi_wait(efx);
1711 if (rc)
1712 return rc;
1713
1714 /* Read data */
4a5b504d 1715 if (out != NULL) {
12d00cad 1716 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
4a5b504d
BH
1717 memcpy(out, &reg, len);
1718 }
1719
8ceee660
BH
1720 return 0;
1721}
1722
23d30f02
BH
1723static size_t
1724falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
4a5b504d
BH
1725{
1726 return min(FALCON_SPI_MAX_LEN,
1727 (spi->block_size - (start & (spi->block_size - 1))));
1728}
1729
1730static inline u8
1731efx_spi_munge_command(const struct efx_spi_device *spi,
1732 const u8 command, const unsigned int address)
1733{
1734 return command | (((address >> 8) & spi->munge_address) << 3);
1735}
1736
be4ea89c
BH
1737/* Wait up to 10 ms for buffered write completion */
1738int falcon_spi_wait_write(const struct efx_spi_device *spi)
4a5b504d 1739{
be4ea89c
BH
1740 struct efx_nic *efx = spi->efx;
1741 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
4a5b504d 1742 u8 status;
be4ea89c 1743 int rc;
4a5b504d 1744
be4ea89c 1745 for (;;) {
4a5b504d
BH
1746 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1747 &status, sizeof(status));
1748 if (rc)
1749 return rc;
1750 if (!(status & SPI_STATUS_NRDY))
1751 return 0;
be4ea89c
BH
1752 if (time_after_eq(jiffies, timeout)) {
1753 EFX_ERR(efx, "SPI write timeout on device %d"
1754 " last status=0x%02x\n",
1755 spi->device_id, status);
1756 return -ETIMEDOUT;
1757 }
1758 schedule_timeout_uninterruptible(1);
4a5b504d 1759 }
4a5b504d
BH
1760}
1761
1762int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1763 size_t len, size_t *retlen, u8 *buffer)
1764{
23d30f02
BH
1765 size_t block_len, pos = 0;
1766 unsigned int command;
4a5b504d
BH
1767 int rc = 0;
1768
1769 while (pos < len) {
23d30f02 1770 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
4a5b504d
BH
1771
1772 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1773 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1774 buffer + pos, block_len);
1775 if (rc)
1776 break;
1777 pos += block_len;
1778
1779 /* Avoid locking up the system */
1780 cond_resched();
1781 if (signal_pending(current)) {
1782 rc = -EINTR;
1783 break;
1784 }
1785 }
1786
1787 if (retlen)
1788 *retlen = pos;
1789 return rc;
1790}
1791
1792int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1793 size_t len, size_t *retlen, const u8 *buffer)
1794{
1795 u8 verify_buffer[FALCON_SPI_MAX_LEN];
23d30f02
BH
1796 size_t block_len, pos = 0;
1797 unsigned int command;
4a5b504d
BH
1798 int rc = 0;
1799
1800 while (pos < len) {
1801 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1802 if (rc)
1803 break;
1804
23d30f02 1805 block_len = min(len - pos,
4a5b504d
BH
1806 falcon_spi_write_limit(spi, start + pos));
1807 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1808 rc = falcon_spi_cmd(spi, command, start + pos,
1809 buffer + pos, NULL, block_len);
1810 if (rc)
1811 break;
1812
be4ea89c 1813 rc = falcon_spi_wait_write(spi);
4a5b504d
BH
1814 if (rc)
1815 break;
1816
1817 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1818 rc = falcon_spi_cmd(spi, command, start + pos,
1819 NULL, verify_buffer, block_len);
1820 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1821 rc = -EIO;
1822 break;
1823 }
1824
1825 pos += block_len;
1826
1827 /* Avoid locking up the system */
1828 cond_resched();
1829 if (signal_pending(current)) {
1830 rc = -EINTR;
1831 break;
1832 }
1833 }
1834
1835 if (retlen)
1836 *retlen = pos;
1837 return rc;
1838}
1839
8ceee660
BH
1840/**************************************************************************
1841 *
1842 * MAC wrapper
1843 *
1844 **************************************************************************
1845 */
177dfcd8
BH
1846
1847static int falcon_reset_macs(struct efx_nic *efx)
8ceee660 1848{
177dfcd8 1849 efx_oword_t reg;
8ceee660
BH
1850 int count;
1851
177dfcd8
BH
1852 if (falcon_rev(efx) < FALCON_REV_B0) {
1853 /* It's not safe to use GLB_CTL_REG to reset the
1854 * macs, so instead use the internal MAC resets
1855 */
1856 if (!EFX_IS10G(efx)) {
3e6c4538 1857 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
12d00cad 1858 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
177dfcd8
BH
1859 udelay(1000);
1860
3e6c4538 1861 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
12d00cad 1862 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
177dfcd8
BH
1863 udelay(1000);
1864 return 0;
1865 } else {
3e6c4538 1866 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
12d00cad 1867 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
177dfcd8
BH
1868
1869 for (count = 0; count < 10000; count++) {
12d00cad 1870 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
3e6c4538
BH
1871 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1872 0)
177dfcd8
BH
1873 return 0;
1874 udelay(10);
1875 }
8ceee660 1876
177dfcd8
BH
1877 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1878 return -ETIMEDOUT;
1879 }
1880 }
8ceee660
BH
1881
1882 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1883 * the drain sequence with the statistics fetch */
1974cc20 1884 efx_stats_disable(efx);
8ceee660 1885
12d00cad 1886 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
3e6c4538 1887 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
12d00cad 1888 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
8ceee660 1889
12d00cad 1890 efx_reado(efx, &reg, FR_AB_GLB_CTL);
3e6c4538
BH
1891 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1892 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1893 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
12d00cad 1894 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
8ceee660
BH
1895
1896 count = 0;
1897 while (1) {
12d00cad 1898 efx_reado(efx, &reg, FR_AB_GLB_CTL);
3e6c4538
BH
1899 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1900 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1901 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
8ceee660
BH
1902 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1903 count);
1904 break;
1905 }
1906 if (count > 20) {
1907 EFX_ERR(efx, "MAC reset failed\n");
1908 break;
1909 }
1910 count++;
1911 udelay(10);
1912 }
1913
1974cc20 1914 efx_stats_enable(efx);
8ceee660
BH
1915
1916 /* If we've reset the EM block and the link is up, then
1917 * we'll have to kick the XAUI link so the PHY can recover */
177dfcd8 1918 if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
8ceee660 1919 falcon_reset_xaui(efx);
177dfcd8
BH
1920
1921 return 0;
1922}
1923
1924void falcon_drain_tx_fifo(struct efx_nic *efx)
1925{
1926 efx_oword_t reg;
1927
1928 if ((falcon_rev(efx) < FALCON_REV_B0) ||
1929 (efx->loopback_mode != LOOPBACK_NONE))
1930 return;
1931
12d00cad 1932 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
177dfcd8 1933 /* There is no point in draining more than once */
3e6c4538 1934 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
177dfcd8
BH
1935 return;
1936
1937 falcon_reset_macs(efx);
8ceee660
BH
1938}
1939
1940void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1941{
177dfcd8 1942 efx_oword_t reg;
8ceee660 1943
55668611 1944 if (falcon_rev(efx) < FALCON_REV_B0)
8ceee660
BH
1945 return;
1946
1947 /* Isolate the MAC -> RX */
12d00cad 1948 efx_reado(efx, &reg, FR_AZ_RX_CFG);
3e6c4538 1949 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
12d00cad 1950 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
8ceee660
BH
1951
1952 if (!efx->link_up)
1953 falcon_drain_tx_fifo(efx);
1954}
1955
1956void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1957{
1958 efx_oword_t reg;
1959 int link_speed;
dc8cfa55 1960 bool tx_fc;
8ceee660 1961
f31a45d2
BH
1962 switch (efx->link_speed) {
1963 case 10000: link_speed = 3; break;
1964 case 1000: link_speed = 2; break;
1965 case 100: link_speed = 1; break;
1966 default: link_speed = 0; break;
1967 }
8ceee660
BH
1968 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1969 * as advertised. Disable to ensure packets are not
1970 * indefinitely held and TX queue can be flushed at any point
1971 * while the link is down. */
1972 EFX_POPULATE_OWORD_5(reg,
3e6c4538
BH
1973 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1974 FRF_AB_MAC_BCAD_ACPT, 1,
1975 FRF_AB_MAC_UC_PROM, efx->promiscuous,
1976 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1977 FRF_AB_MAC_SPEED, link_speed);
8ceee660
BH
1978 /* On B0, MAC backpressure can be disabled and packets get
1979 * discarded. */
55668611 1980 if (falcon_rev(efx) >= FALCON_REV_B0) {
3e6c4538 1981 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
8ceee660
BH
1982 !efx->link_up);
1983 }
1984
12d00cad 1985 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
8ceee660
BH
1986
1987 /* Restore the multicast hash registers. */
1988 falcon_set_multicast_hash(efx);
1989
1990 /* Transmission of pause frames when RX crosses the threshold is
1991 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1992 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
04cc8cac 1993 tx_fc = !!(efx->link_fc & EFX_FC_TX);
12d00cad 1994 efx_reado(efx, &reg, FR_AZ_RX_CFG);
3e6c4538 1995 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
8ceee660
BH
1996
1997 /* Unisolate the MAC -> RX */
55668611 1998 if (falcon_rev(efx) >= FALCON_REV_B0)
3e6c4538 1999 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
12d00cad 2000 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
8ceee660
BH
2001}
2002
2003int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2004{
2005 efx_oword_t reg;
2006 u32 *dma_done;
2007 int i;
2008
2009 if (disable_dma_stats)
2010 return 0;
2011
2012 /* Statistics fetch will fail if the MAC is in TX drain */
55668611 2013 if (falcon_rev(efx) >= FALCON_REV_B0) {
8ceee660 2014 efx_oword_t temp;
12d00cad 2015 efx_reado(efx, &temp, FR_AB_MAC_CTRL);
3e6c4538 2016 if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
8ceee660
BH
2017 return 0;
2018 }
2019
2020 dma_done = (efx->stats_buffer.addr + done_offset);
2021 *dma_done = FALCON_STATS_NOT_DONE;
2022 wmb(); /* ensure done flag is clear */
2023
2024 /* Initiate DMA transfer of stats */
2025 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2026 FRF_AB_MAC_STAT_DMA_CMD, 1,
2027 FRF_AB_MAC_STAT_DMA_ADR,
8ceee660 2028 efx->stats_buffer.dma_addr);
12d00cad 2029 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
8ceee660
BH
2030
2031 /* Wait for transfer to complete */
2032 for (i = 0; i < 400; i++) {
1d0680fd
BH
2033 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2034 rmb(); /* Ensure the stats are valid. */
8ceee660 2035 return 0;
1d0680fd 2036 }
8ceee660
BH
2037 udelay(10);
2038 }
2039
2040 EFX_ERR(efx, "timed out waiting for statistics\n");
2041 return -ETIMEDOUT;
2042}
2043
2044/**************************************************************************
2045 *
2046 * PHY access via GMII
2047 *
2048 **************************************************************************
2049 */
2050
8ceee660
BH
2051/* Wait for GMII access to complete */
2052static int falcon_gmii_wait(struct efx_nic *efx)
2053{
2054 efx_dword_t md_stat;
2055 int count;
2056
177dfcd8
BH
2057 /* wait upto 50ms - taken max from datasheet */
2058 for (count = 0; count < 5000; count++) {
12d00cad 2059 efx_readd(efx, &md_stat, FR_AB_MD_STAT);
3e6c4538
BH
2060 if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2061 if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2062 EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
8ceee660
BH
2063 EFX_ERR(efx, "error from GMII access "
2064 EFX_DWORD_FMT"\n",
2065 EFX_DWORD_VAL(md_stat));
2066 return -EIO;
2067 }
2068 return 0;
2069 }
2070 udelay(10);
2071 }
2072 EFX_ERR(efx, "timed out waiting for GMII\n");
2073 return -ETIMEDOUT;
2074}
2075
68e7f45e
BH
2076/* Write an MDIO register of a PHY connected to Falcon. */
2077static int falcon_mdio_write(struct net_device *net_dev,
2078 int prtad, int devad, u16 addr, u16 value)
8ceee660 2079{
767e468c 2080 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2081 efx_oword_t reg;
68e7f45e 2082 int rc;
8ceee660 2083
68e7f45e
BH
2084 EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2085 prtad, devad, addr, value);
8ceee660
BH
2086
2087 spin_lock_bh(&efx->phy_lock);
2088
68e7f45e
BH
2089 /* Check MDIO not currently being accessed */
2090 rc = falcon_gmii_wait(efx);
2091 if (rc)
8ceee660
BH
2092 goto out;
2093
2094 /* Write the address/ID register */
3e6c4538 2095 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
12d00cad 2096 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
8ceee660 2097
3e6c4538
BH
2098 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2099 FRF_AB_MD_DEV_ADR, devad);
12d00cad 2100 efx_writeo(efx, &reg, FR_AB_MD_ID);
8ceee660
BH
2101
2102 /* Write data */
3e6c4538 2103 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
12d00cad 2104 efx_writeo(efx, &reg, FR_AB_MD_TXD);
8ceee660
BH
2105
2106 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2107 FRF_AB_MD_WRC, 1,
2108 FRF_AB_MD_GC, 0);
12d00cad 2109 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660
BH
2110
2111 /* Wait for data to be written */
68e7f45e
BH
2112 rc = falcon_gmii_wait(efx);
2113 if (rc) {
8ceee660
BH
2114 /* Abort the write operation */
2115 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2116 FRF_AB_MD_WRC, 0,
2117 FRF_AB_MD_GC, 1);
12d00cad 2118 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660
BH
2119 udelay(10);
2120 }
2121
2122 out:
2123 spin_unlock_bh(&efx->phy_lock);
68e7f45e 2124 return rc;
8ceee660
BH
2125}
2126
68e7f45e
BH
2127/* Read an MDIO register of a PHY connected to Falcon. */
2128static int falcon_mdio_read(struct net_device *net_dev,
2129 int prtad, int devad, u16 addr)
8ceee660 2130{
767e468c 2131 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2132 efx_oword_t reg;
68e7f45e 2133 int rc;
8ceee660
BH
2134
2135 spin_lock_bh(&efx->phy_lock);
2136
68e7f45e
BH
2137 /* Check MDIO not currently being accessed */
2138 rc = falcon_gmii_wait(efx);
2139 if (rc)
8ceee660
BH
2140 goto out;
2141
3e6c4538 2142 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
12d00cad 2143 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
8ceee660 2144
3e6c4538
BH
2145 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2146 FRF_AB_MD_DEV_ADR, devad);
12d00cad 2147 efx_writeo(efx, &reg, FR_AB_MD_ID);
8ceee660
BH
2148
2149 /* Request data to be read */
3e6c4538 2150 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
12d00cad 2151 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660
BH
2152
2153 /* Wait for data to become available */
68e7f45e
BH
2154 rc = falcon_gmii_wait(efx);
2155 if (rc == 0) {
12d00cad 2156 efx_reado(efx, &reg, FR_AB_MD_RXD);
3e6c4538 2157 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
68e7f45e
BH
2158 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2159 prtad, devad, addr, rc);
8ceee660
BH
2160 } else {
2161 /* Abort the read operation */
2162 EFX_POPULATE_OWORD_2(reg,
3e6c4538
BH
2163 FRF_AB_MD_RIC, 0,
2164 FRF_AB_MD_GC, 1);
12d00cad 2165 efx_writeo(efx, &reg, FR_AB_MD_CS);
8ceee660 2166
68e7f45e
BH
2167 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2168 prtad, devad, addr, rc);
8ceee660
BH
2169 }
2170
2171 out:
2172 spin_unlock_bh(&efx->phy_lock);
68e7f45e 2173 return rc;
8ceee660
BH
2174}
2175
177dfcd8
BH
2176int falcon_switch_mac(struct efx_nic *efx)
2177{
2178 struct efx_mac_operations *old_mac_op = efx->mac_op;
2179 efx_oword_t nic_stat;
2180 unsigned strap_val;
1974cc20
BH
2181 int rc = 0;
2182
2183 /* Don't try to fetch MAC stats while we're switching MACs */
2184 efx_stats_disable(efx);
177dfcd8
BH
2185
2186 /* Internal loopbacks override the phy speed setting */
2187 if (efx->loopback_mode == LOOPBACK_GMAC) {
2188 efx->link_speed = 1000;
2189 efx->link_fd = true;
2190 } else if (LOOPBACK_INTERNAL(efx)) {
2191 efx->link_speed = 10000;
2192 efx->link_fd = true;
2193 }
2194
0cc12838 2195 WARN_ON(!mutex_is_locked(&efx->mac_lock));
177dfcd8
BH
2196 efx->mac_op = (EFX_IS10G(efx) ?
2197 &falcon_xmac_operations : &falcon_gmac_operations);
177dfcd8 2198
0cc12838
SH
2199 /* Always push the NIC_STAT_REG setting even if the mac hasn't
2200 * changed, because this function is run post online reset */
12d00cad 2201 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
177dfcd8
BH
2202 strap_val = EFX_IS10G(efx) ? 5 : 3;
2203 if (falcon_rev(efx) >= FALCON_REV_B0) {
3e6c4538
BH
2204 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2205 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
12d00cad 2206 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
177dfcd8
BH
2207 } else {
2208 /* Falcon A1 does not support 1G/10G speed switching
2209 * and must not be used with a PHY that does. */
3e6c4538
BH
2210 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2211 strap_val);
177dfcd8
BH
2212 }
2213
0cc12838 2214 if (old_mac_op == efx->mac_op)
1974cc20 2215 goto out;
177dfcd8
BH
2216
2217 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
0cc12838
SH
2218 /* Not all macs support a mac-level link state */
2219 efx->mac_up = true;
2220
1974cc20
BH
2221 rc = falcon_reset_macs(efx);
2222out:
2223 efx_stats_enable(efx);
2224 return rc;
177dfcd8
BH
2225}
2226
8ceee660
BH
2227/* This call is responsible for hooking in the MAC and PHY operations */
2228int falcon_probe_port(struct efx_nic *efx)
2229{
2230 int rc;
2231
96c45726
BH
2232 switch (efx->phy_type) {
2233 case PHY_TYPE_SFX7101:
2234 efx->phy_op = &falcon_sfx7101_phy_ops;
2235 break;
2236 case PHY_TYPE_SFT9001A:
2237 case PHY_TYPE_SFT9001B:
2238 efx->phy_op = &falcon_sft9001_phy_ops;
2239 break;
2240 case PHY_TYPE_QT2022C2:
2241 case PHY_TYPE_QT2025C:
2242 efx->phy_op = &falcon_xfp_phy_ops;
2243 break;
2244 default:
2245 EFX_ERR(efx, "Unknown PHY type %d\n",
2246 efx->phy_type);
2247 return -ENODEV;
2248 }
2249
2250 if (efx->phy_op->macs & EFX_XMAC)
2251 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2252 (1 << LOOPBACK_XGXS) |
2253 (1 << LOOPBACK_XAUI));
2254 if (efx->phy_op->macs & EFX_GMAC)
2255 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2256 efx->loopback_modes |= efx->phy_op->loopbacks;
8ceee660 2257
68e7f45e
BH
2258 /* Set up MDIO structure for PHY */
2259 efx->mdio.mmds = efx->phy_op->mmds;
2260 efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2261 efx->mdio.mdio_read = falcon_mdio_read;
2262 efx->mdio.mdio_write = falcon_mdio_write;
8ceee660
BH
2263
2264 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
55668611 2265 if (falcon_rev(efx) >= FALCON_REV_B0)
04cc8cac 2266 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
8ceee660 2267 else
04cc8cac 2268 efx->wanted_fc = EFX_FC_RX;
8ceee660
BH
2269
2270 /* Allocate buffer for stats */
2271 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2272 FALCON_MAC_STATS_SIZE);
2273 if (rc)
2274 return rc;
9c8976a1
JSR
2275 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2276 (u64)efx->stats_buffer.dma_addr,
8ceee660 2277 efx->stats_buffer.addr,
9c8976a1 2278 (u64)virt_to_phys(efx->stats_buffer.addr));
8ceee660
BH
2279
2280 return 0;
2281}
2282
2283void falcon_remove_port(struct efx_nic *efx)
2284{
2285 falcon_free_buffer(efx, &efx->stats_buffer);
2286}
2287
2288/**************************************************************************
2289 *
2290 * Multicast filtering
2291 *
2292 **************************************************************************
2293 */
2294
2295void falcon_set_multicast_hash(struct efx_nic *efx)
2296{
2297 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2298
2299 /* Broadcast packets go through the multicast hash filter.
2300 * ether_crc_le() of the broadcast address is 0xbe2612ff
2301 * so we always add bit 0xff to the mask.
2302 */
2303 set_bit_le(0xff, mc_hash->byte);
2304
12d00cad
BH
2305 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2306 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
8ceee660
BH
2307}
2308
8c8661e4
BH
2309
2310/**************************************************************************
2311 *
2312 * Falcon test code
2313 *
2314 **************************************************************************/
2315
2316int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2317{
2318 struct falcon_nvconfig *nvconfig;
2319 struct efx_spi_device *spi;
2320 void *region;
2321 int rc, magic_num, struct_ver;
2322 __le16 *word, *limit;
2323 u32 csum;
2324
2f7f5730
BH
2325 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2326 if (!spi)
2327 return -EINVAL;
2328
0a95f563 2329 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
8c8661e4
BH
2330 if (!region)
2331 return -ENOMEM;
3e6c4538 2332 nvconfig = region + FALCON_NVCONFIG_OFFSET;
8c8661e4 2333
f4150724 2334 mutex_lock(&efx->spi_lock);
0a95f563 2335 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
f4150724 2336 mutex_unlock(&efx->spi_lock);
8c8661e4
BH
2337 if (rc) {
2338 EFX_ERR(efx, "Failed to read %s\n",
2339 efx->spi_flash ? "flash" : "EEPROM");
2340 rc = -EIO;
2341 goto out;
2342 }
2343
2344 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2345 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2346
2347 rc = -EINVAL;
3e6c4538 2348 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
8c8661e4
BH
2349 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2350 goto out;
2351 }
2352 if (struct_ver < 2) {
2353 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2354 goto out;
2355 } else if (struct_ver < 4) {
2356 word = &nvconfig->board_magic_num;
2357 limit = (__le16 *) (nvconfig + 1);
2358 } else {
2359 word = region;
0a95f563 2360 limit = region + FALCON_NVCONFIG_END;
8c8661e4
BH
2361 }
2362 for (csum = 0; word < limit; ++word)
2363 csum += le16_to_cpu(*word);
2364
2365 if (~csum & 0xffff) {
2366 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2367 goto out;
2368 }
2369
2370 rc = 0;
2371 if (nvconfig_out)
2372 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2373
2374 out:
2375 kfree(region);
2376 return rc;
2377}
2378
2379/* Registers tested in the falcon register test */
2380static struct {
2381 unsigned address;
2382 efx_oword_t mask;
2383} efx_test_registers[] = {
3e6c4538 2384 { FR_AZ_ADR_REGION,
8c8661e4 2385 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
3e6c4538 2386 { FR_AZ_RX_CFG,
8c8661e4 2387 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
3e6c4538 2388 { FR_AZ_TX_CFG,
8c8661e4 2389 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2390 { FR_AZ_TX_RESERVED,
8c8661e4 2391 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
3e6c4538 2392 { FR_AB_MAC_CTRL,
8c8661e4 2393 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2394 { FR_AZ_SRM_TX_DC_CFG,
8c8661e4 2395 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2396 { FR_AZ_RX_DC_CFG,
8c8661e4 2397 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2398 { FR_AZ_RX_DC_PF_WM,
8c8661e4 2399 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2400 { FR_BZ_DP_CTRL,
8c8661e4 2401 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2402 { FR_AB_GM_CFG2,
177dfcd8 2403 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2404 { FR_AB_GMF_CFG0,
177dfcd8 2405 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2406 { FR_AB_XM_GLB_CFG,
8c8661e4 2407 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2408 { FR_AB_XM_TX_CFG,
8c8661e4 2409 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2410 { FR_AB_XM_RX_CFG,
8c8661e4 2411 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2412 { FR_AB_XM_RX_PARAM,
8c8661e4 2413 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2414 { FR_AB_XM_FC,
8c8661e4 2415 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2416 { FR_AB_XM_ADR_LO,
8c8661e4 2417 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
3e6c4538 2418 { FR_AB_XX_SD_CTL,
8c8661e4
BH
2419 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2420};
2421
2422static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2423 const efx_oword_t *mask)
2424{
2425 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2426 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2427}
2428
2429int falcon_test_registers(struct efx_nic *efx)
2430{
2431 unsigned address = 0, i, j;
2432 efx_oword_t mask, imask, original, reg, buf;
2433
2434 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2435 WARN_ON(!LOOPBACK_INTERNAL(efx));
2436
2437 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2438 address = efx_test_registers[i].address;
2439 mask = imask = efx_test_registers[i].mask;
2440 EFX_INVERT_OWORD(imask);
2441
12d00cad 2442 efx_reado(efx, &original, address);
8c8661e4
BH
2443
2444 /* bit sweep on and off */
2445 for (j = 0; j < 128; j++) {
2446 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2447 continue;
2448
2449 /* Test this testable bit can be set in isolation */
2450 EFX_AND_OWORD(reg, original, mask);
2451 EFX_SET_OWORD32(reg, j, j, 1);
2452
12d00cad
BH
2453 efx_writeo(efx, &reg, address);
2454 efx_reado(efx, &buf, address);
8c8661e4
BH
2455
2456 if (efx_masked_compare_oword(&reg, &buf, &mask))
2457 goto fail;
2458
2459 /* Test this testable bit can be cleared in isolation */
2460 EFX_OR_OWORD(reg, original, mask);
2461 EFX_SET_OWORD32(reg, j, j, 0);
2462
12d00cad
BH
2463 efx_writeo(efx, &reg, address);
2464 efx_reado(efx, &buf, address);
8c8661e4
BH
2465
2466 if (efx_masked_compare_oword(&reg, &buf, &mask))
2467 goto fail;
2468 }
2469
12d00cad 2470 efx_writeo(efx, &original, address);
8c8661e4
BH
2471 }
2472
2473 return 0;
2474
2475fail:
2476 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2477 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2478 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2479 return -EIO;
2480}
2481
8ceee660
BH
2482/**************************************************************************
2483 *
2484 * Device reset
2485 *
2486 **************************************************************************
2487 */
2488
2489/* Resets NIC to known state. This routine must be called in process
2490 * context and is allowed to sleep. */
2491int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2492{
2493 struct falcon_nic_data *nic_data = efx->nic_data;
2494 efx_oword_t glb_ctl_reg_ker;
2495 int rc;
2496
2497 EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2498
2499 /* Initiate device reset */
2500 if (method == RESET_TYPE_WORLD) {
2501 rc = pci_save_state(efx->pci_dev);
2502 if (rc) {
2503 EFX_ERR(efx, "failed to backup PCI state of primary "
2504 "function prior to hardware reset\n");
2505 goto fail1;
2506 }
2507 if (FALCON_IS_DUAL_FUNC(efx)) {
2508 rc = pci_save_state(nic_data->pci_dev2);
2509 if (rc) {
2510 EFX_ERR(efx, "failed to backup PCI state of "
2511 "secondary function prior to "
2512 "hardware reset\n");
2513 goto fail2;
2514 }
2515 }
2516
2517 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
3e6c4538
BH
2518 FRF_AB_EXT_PHY_RST_DUR,
2519 FFE_AB_EXT_PHY_RST_DUR_10240US,
2520 FRF_AB_SWRST, 1);
8ceee660 2521 } else {
8ceee660 2522 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
3e6c4538
BH
2523 /* exclude PHY from "invisible" reset */
2524 FRF_AB_EXT_PHY_RST_CTL,
2525 method == RESET_TYPE_INVISIBLE,
2526 /* exclude EEPROM/flash and PCIe */
2527 FRF_AB_PCIE_CORE_RST_CTL, 1,
2528 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2529 FRF_AB_PCIE_SD_RST_CTL, 1,
2530 FRF_AB_EE_RST_CTL, 1,
2531 FRF_AB_EXT_PHY_RST_DUR,
2532 FFE_AB_EXT_PHY_RST_DUR_10240US,
2533 FRF_AB_SWRST, 1);
2534 }
12d00cad 2535 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
8ceee660
BH
2536
2537 EFX_LOG(efx, "waiting for hardware reset\n");
2538 schedule_timeout_uninterruptible(HZ / 20);
2539
2540 /* Restore PCI configuration if needed */
2541 if (method == RESET_TYPE_WORLD) {
2542 if (FALCON_IS_DUAL_FUNC(efx)) {
2543 rc = pci_restore_state(nic_data->pci_dev2);
2544 if (rc) {
2545 EFX_ERR(efx, "failed to restore PCI config for "
2546 "the secondary function\n");
2547 goto fail3;
2548 }
2549 }
2550 rc = pci_restore_state(efx->pci_dev);
2551 if (rc) {
2552 EFX_ERR(efx, "failed to restore PCI config for the "
2553 "primary function\n");
2554 goto fail4;
2555 }
2556 EFX_LOG(efx, "successfully restored PCI config\n");
2557 }
2558
2559 /* Assert that reset complete */
12d00cad 2560 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
3e6c4538 2561 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
8ceee660
BH
2562 rc = -ETIMEDOUT;
2563 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2564 goto fail5;
2565 }
2566 EFX_LOG(efx, "hardware reset complete\n");
2567
2568 return 0;
2569
2570 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2571fail2:
2572fail3:
2573 pci_restore_state(efx->pci_dev);
2574fail1:
2575fail4:
2576fail5:
2577 return rc;
2578}
2579
2580/* Zeroes out the SRAM contents. This routine must be called in
2581 * process context and is allowed to sleep.
2582 */
2583static int falcon_reset_sram(struct efx_nic *efx)
2584{
2585 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2586 int count;
2587
2588 /* Set the SRAM wake/sleep GPIO appropriately. */
12d00cad 2589 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
3e6c4538
BH
2590 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2591 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
12d00cad 2592 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
8ceee660
BH
2593
2594 /* Initiate SRAM reset */
2595 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
3e6c4538
BH
2596 FRF_AZ_SRM_INIT_EN, 1,
2597 FRF_AZ_SRM_NB_SZ, 0);
12d00cad 2598 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
8ceee660
BH
2599
2600 /* Wait for SRAM reset to complete */
2601 count = 0;
2602 do {
2603 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2604
2605 /* SRAM reset is slow; expect around 16ms */
2606 schedule_timeout_uninterruptible(HZ / 50);
2607
2608 /* Check for reset complete */
12d00cad 2609 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
3e6c4538 2610 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
8ceee660
BH
2611 EFX_LOG(efx, "SRAM reset complete\n");
2612
2613 return 0;
2614 }
2615 } while (++count < 20); /* wait upto 0.4 sec */
2616
2617 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2618 return -ETIMEDOUT;
2619}
2620
4a5b504d
BH
2621static int falcon_spi_device_init(struct efx_nic *efx,
2622 struct efx_spi_device **spi_device_ret,
2623 unsigned int device_id, u32 device_type)
2624{
2625 struct efx_spi_device *spi_device;
2626
2627 if (device_type != 0) {
0c53d8c8 2628 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
4a5b504d
BH
2629 if (!spi_device)
2630 return -ENOMEM;
2631 spi_device->device_id = device_id;
2632 spi_device->size =
2633 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2634 spi_device->addr_len =
2635 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2636 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2637 spi_device->addr_len == 1);
f4150724
BH
2638 spi_device->erase_command =
2639 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2640 spi_device->erase_size =
2641 1 << SPI_DEV_TYPE_FIELD(device_type,
2642 SPI_DEV_TYPE_ERASE_SIZE);
4a5b504d
BH
2643 spi_device->block_size =
2644 1 << SPI_DEV_TYPE_FIELD(device_type,
2645 SPI_DEV_TYPE_BLOCK_SIZE);
2646
2647 spi_device->efx = efx;
2648 } else {
2649 spi_device = NULL;
2650 }
2651
2652 kfree(*spi_device_ret);
2653 *spi_device_ret = spi_device;
2654 return 0;
2655}
2656
2657
2658static void falcon_remove_spi_devices(struct efx_nic *efx)
2659{
2660 kfree(efx->spi_eeprom);
2661 efx->spi_eeprom = NULL;
2662 kfree(efx->spi_flash);
2663 efx->spi_flash = NULL;
2664}
2665
8ceee660
BH
2666/* Extract non-volatile configuration */
2667static int falcon_probe_nvconfig(struct efx_nic *efx)
2668{
2669 struct falcon_nvconfig *nvconfig;
8c8661e4 2670 int board_rev;
8ceee660
BH
2671 int rc;
2672
8ceee660 2673 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
4a5b504d
BH
2674 if (!nvconfig)
2675 return -ENOMEM;
8ceee660 2676
8c8661e4
BH
2677 rc = falcon_read_nvram(efx, nvconfig);
2678 if (rc == -EINVAL) {
2679 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
8ceee660 2680 efx->phy_type = PHY_TYPE_NONE;
68e7f45e 2681 efx->mdio.prtad = MDIO_PRTAD_NONE;
8ceee660 2682 board_rev = 0;
8c8661e4
BH
2683 rc = 0;
2684 } else if (rc) {
2685 goto fail1;
8ceee660
BH
2686 } else {
2687 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
4a5b504d 2688 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
8ceee660
BH
2689
2690 efx->phy_type = v2->port0_phy_type;
68e7f45e 2691 efx->mdio.prtad = v2->port0_phy_addr;
8ceee660 2692 board_rev = le16_to_cpu(v2->board_revision);
4a5b504d 2693
8c8661e4 2694 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
3e6c4538
BH
2695 rc = falcon_spi_device_init(
2696 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2697 le32_to_cpu(v3->spi_device_type
2698 [FFE_AB_SPI_DEVICE_FLASH]));
4a5b504d
BH
2699 if (rc)
2700 goto fail2;
3e6c4538
BH
2701 rc = falcon_spi_device_init(
2702 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2703 le32_to_cpu(v3->spi_device_type
2704 [FFE_AB_SPI_DEVICE_EEPROM]));
4a5b504d
BH
2705 if (rc)
2706 goto fail2;
2707 }
8ceee660
BH
2708 }
2709
8c8661e4
BH
2710 /* Read the MAC addresses */
2711 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2712
68e7f45e 2713 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
8ceee660 2714
3473a5b1 2715 falcon_probe_board(efx, board_rev);
8ceee660 2716
4a5b504d
BH
2717 kfree(nvconfig);
2718 return 0;
2719
2720 fail2:
2721 falcon_remove_spi_devices(efx);
2722 fail1:
8ceee660
BH
2723 kfree(nvconfig);
2724 return rc;
2725}
2726
2727/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2728 * count, port speed). Set workaround and feature flags accordingly.
2729 */
2730static int falcon_probe_nic_variant(struct efx_nic *efx)
2731{
2732 efx_oword_t altera_build;
177dfcd8 2733 efx_oword_t nic_stat;
8ceee660 2734
12d00cad 2735 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
3e6c4538 2736 if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
8ceee660
BH
2737 EFX_ERR(efx, "Falcon FPGA not supported\n");
2738 return -ENODEV;
2739 }
2740
12d00cad 2741 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
177dfcd8 2742
55668611 2743 switch (falcon_rev(efx)) {
8ceee660
BH
2744 case FALCON_REV_A0:
2745 case 0xff:
2746 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2747 return -ENODEV;
2748
177dfcd8 2749 case FALCON_REV_A1:
3e6c4538 2750 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
8ceee660
BH
2751 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2752 return -ENODEV;
2753 }
8ceee660 2754 break;
8ceee660
BH
2755
2756 case FALCON_REV_B0:
2757 break;
2758
2759 default:
55668611 2760 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
8ceee660
BH
2761 return -ENODEV;
2762 }
2763
177dfcd8 2764 /* Initial assumed speed */
3e6c4538 2765 efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
177dfcd8 2766
8ceee660
BH
2767 return 0;
2768}
2769
4a5b504d
BH
2770/* Probe all SPI devices on the NIC */
2771static void falcon_probe_spi_devices(struct efx_nic *efx)
2772{
2773 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2f7f5730 2774 int boot_dev;
4a5b504d 2775
12d00cad
BH
2776 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2777 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2778 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
4a5b504d 2779
3e6c4538
BH
2780 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2781 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2782 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2f7f5730 2783 EFX_LOG(efx, "Booted from %s\n",
3e6c4538 2784 boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2f7f5730
BH
2785 } else {
2786 /* Disable VPD and set clock dividers to safe
2787 * values for initial programming. */
2788 boot_dev = -1;
2789 EFX_LOG(efx, "Booted from internal ASIC settings;"
2790 " setting SPI config\n");
3e6c4538 2791 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2f7f5730 2792 /* 125 MHz / 7 ~= 20 MHz */
3e6c4538 2793 FRF_AB_EE_SF_CLOCK_DIV, 7,
2f7f5730 2794 /* 125 MHz / 63 ~= 2 MHz */
3e6c4538 2795 FRF_AB_EE_EE_CLOCK_DIV, 63);
12d00cad 2796 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
4a5b504d
BH
2797 }
2798
3e6c4538
BH
2799 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2800 falcon_spi_device_init(efx, &efx->spi_flash,
2801 FFE_AB_SPI_DEVICE_FLASH,
2f7f5730 2802 default_flash_type);
3e6c4538
BH
2803 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2804 falcon_spi_device_init(efx, &efx->spi_eeprom,
2805 FFE_AB_SPI_DEVICE_EEPROM,
2f7f5730 2806 large_eeprom_type);
4a5b504d
BH
2807}
2808
8ceee660
BH
2809int falcon_probe_nic(struct efx_nic *efx)
2810{
2811 struct falcon_nic_data *nic_data;
2812 int rc;
2813
8ceee660
BH
2814 /* Allocate storage for hardware specific data */
2815 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
88c59425
BH
2816 if (!nic_data)
2817 return -ENOMEM;
5daab96d 2818 efx->nic_data = nic_data;
8ceee660
BH
2819
2820 /* Determine number of ports etc. */
2821 rc = falcon_probe_nic_variant(efx);
2822 if (rc)
2823 goto fail1;
2824
2825 /* Probe secondary function if expected */
2826 if (FALCON_IS_DUAL_FUNC(efx)) {
2827 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2828
2829 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2830 dev))) {
2831 if (dev->bus == efx->pci_dev->bus &&
2832 dev->devfn == efx->pci_dev->devfn + 1) {
2833 nic_data->pci_dev2 = dev;
2834 break;
2835 }
2836 }
2837 if (!nic_data->pci_dev2) {
2838 EFX_ERR(efx, "failed to find secondary function\n");
2839 rc = -ENODEV;
2840 goto fail2;
2841 }
2842 }
2843
2844 /* Now we can reset the NIC */
2845 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2846 if (rc) {
2847 EFX_ERR(efx, "failed to reset NIC\n");
2848 goto fail3;
2849 }
2850
2851 /* Allocate memory for INT_KER */
2852 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2853 if (rc)
2854 goto fail4;
2855 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2856
9c8976a1
JSR
2857 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2858 (u64)efx->irq_status.dma_addr,
2859 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
8ceee660 2860
4a5b504d
BH
2861 falcon_probe_spi_devices(efx);
2862
8ceee660
BH
2863 /* Read in the non-volatile configuration */
2864 rc = falcon_probe_nvconfig(efx);
2865 if (rc)
2866 goto fail5;
2867
37b5a603 2868 /* Initialise I2C adapter */
b4531938 2869 efx->i2c_adap.owner = THIS_MODULE;
37b5a603
BH
2870 nic_data->i2c_data = falcon_i2c_bit_operations;
2871 nic_data->i2c_data.data = efx;
b4531938 2872 efx->i2c_adap.algo_data = &nic_data->i2c_data;
37b5a603 2873 efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
9dadae68 2874 strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
37b5a603
BH
2875 rc = i2c_bit_add_bus(&efx->i2c_adap);
2876 if (rc)
2877 goto fail5;
2878
8ceee660
BH
2879 return 0;
2880
2881 fail5:
4a5b504d 2882 falcon_remove_spi_devices(efx);
8ceee660
BH
2883 falcon_free_buffer(efx, &efx->irq_status);
2884 fail4:
8ceee660
BH
2885 fail3:
2886 if (nic_data->pci_dev2) {
2887 pci_dev_put(nic_data->pci_dev2);
2888 nic_data->pci_dev2 = NULL;
2889 }
2890 fail2:
8ceee660
BH
2891 fail1:
2892 kfree(efx->nic_data);
2893 return rc;
2894}
2895
56241ceb
BH
2896static void falcon_init_rx_cfg(struct efx_nic *efx)
2897{
2898 /* Prior to Siena the RX DMA engine will split each frame at
2899 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2900 * be so large that that never happens. */
2901 const unsigned huge_buf_size = (3 * 4096) >> 5;
2902 /* RX control FIFO thresholds (32 entries) */
2903 const unsigned ctrl_xon_thr = 20;
2904 const unsigned ctrl_xoff_thr = 25;
2905 /* RX data FIFO thresholds (256-byte units; size varies) */
625b4514
BH
2906 int data_xon_thr = rx_xon_thresh_bytes >> 8;
2907 int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
56241ceb
BH
2908 efx_oword_t reg;
2909
12d00cad 2910 efx_reado(efx, &reg, FR_AZ_RX_CFG);
56241ceb 2911 if (falcon_rev(efx) <= FALCON_REV_A1) {
625b4514
BH
2912 /* Data FIFO size is 5.5K */
2913 if (data_xon_thr < 0)
2914 data_xon_thr = 512 >> 8;
2915 if (data_xoff_thr < 0)
2916 data_xoff_thr = 2048 >> 8;
3e6c4538
BH
2917 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2918 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2919 huge_buf_size);
2920 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2921 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2922 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2923 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
56241ceb 2924 } else {
625b4514
BH
2925 /* Data FIFO size is 80K; register fields moved */
2926 if (data_xon_thr < 0)
2927 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2928 if (data_xoff_thr < 0)
2929 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
3e6c4538
BH
2930 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2931 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2932 huge_buf_size);
2933 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2934 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2935 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2936 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2937 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
56241ceb 2938 }
12d00cad 2939 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
56241ceb
BH
2940}
2941
8ceee660
BH
2942/* This call performs hardware-specific global initialisation, such as
2943 * defining the descriptor cache sizes and number of RSS channels.
2944 * It does not set up any buffers, descriptor rings or event queues.
2945 */
2946int falcon_init_nic(struct efx_nic *efx)
2947{
8ceee660 2948 efx_oword_t temp;
8ceee660
BH
2949 int rc;
2950
8ceee660 2951 /* Use on-chip SRAM */
12d00cad 2952 efx_reado(efx, &temp, FR_AB_NIC_STAT);
3e6c4538 2953 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
12d00cad 2954 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
8ceee660 2955
6f158d5f
BH
2956 /* Set the source of the GMAC clock */
2957 if (falcon_rev(efx) == FALCON_REV_B0) {
12d00cad 2958 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3e6c4538 2959 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
12d00cad 2960 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
6f158d5f
BH
2961 }
2962
8ceee660
BH
2963 rc = falcon_reset_sram(efx);
2964 if (rc)
2965 return rc;
2966
2967 /* Set positions of descriptor caches in SRAM. */
3e6c4538 2968 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
12d00cad 2969 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3e6c4538 2970 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
12d00cad 2971 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
8ceee660
BH
2972
2973 /* Set TX descriptor cache size. */
2974 BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3e6c4538 2975 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
12d00cad 2976 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
8ceee660
BH
2977
2978 /* Set RX descriptor cache size. Set low watermark to size-8, as
2979 * this allows most efficient prefetching.
2980 */
2981 BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3e6c4538 2982 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
12d00cad 2983 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3e6c4538 2984 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
12d00cad 2985 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
8ceee660
BH
2986
2987 /* Clear the parity enables on the TX data fifos as
2988 * they produce false parity errors because of timing issues
2989 */
2990 if (EFX_WORKAROUND_5129(efx)) {
12d00cad 2991 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3e6c4538 2992 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
12d00cad 2993 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
8ceee660
BH
2994 }
2995
2996 /* Enable all the genuinely fatal interrupts. (They are still
2997 * masked by the overall interrupt mask, controlled by
2998 * falcon_interrupts()).
2999 *
3000 * Note: All other fatal interrupts are enabled
3001 */
3002 EFX_POPULATE_OWORD_3(temp,
3e6c4538
BH
3003 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3004 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3005 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
8ceee660 3006 EFX_INVERT_OWORD(temp);
12d00cad 3007 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
8ceee660 3008
8ceee660 3009 if (EFX_WORKAROUND_7244(efx)) {
12d00cad 3010 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3e6c4538
BH
3011 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3012 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3013 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3014 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
12d00cad 3015 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
8ceee660 3016 }
8ceee660
BH
3017
3018 falcon_setup_rss_indir_table(efx);
3019
3e6c4538 3020 /* XXX This is documented only for Falcon A0/A1 */
8ceee660
BH
3021 /* Setup RX. Wait for descriptor is broken and must
3022 * be disabled. RXDP recovery shouldn't be needed, but is.
3023 */
12d00cad 3024 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3e6c4538
BH
3025 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3026 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
8ceee660 3027 if (EFX_WORKAROUND_5583(efx))
3e6c4538 3028 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
12d00cad 3029 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
8ceee660
BH
3030
3031 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3032 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3033 */
12d00cad 3034 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3e6c4538
BH
3035 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3036 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3037 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3038 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3039 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
8ceee660 3040 /* Enable SW_EV to inherit in char driver - assume harmless here */
3e6c4538 3041 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
8ceee660 3042 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3e6c4538 3043 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
8ceee660 3044 /* Squash TX of packets of 16 bytes or less */
55668611 3045 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3e6c4538 3046 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
12d00cad 3047 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
8ceee660
BH
3048
3049 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3050 * descriptors (which is bad).
3051 */
12d00cad 3052 efx_reado(efx, &temp, FR_AZ_TX_CFG);
3e6c4538 3053 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
12d00cad 3054 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
8ceee660 3055
56241ceb 3056 falcon_init_rx_cfg(efx);
8ceee660
BH
3057
3058 /* Set destination of both TX and RX Flush events */
55668611 3059 if (falcon_rev(efx) >= FALCON_REV_B0) {
3e6c4538 3060 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
12d00cad 3061 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
8ceee660
BH
3062 }
3063
3064 return 0;
3065}
3066
3067void falcon_remove_nic(struct efx_nic *efx)
3068{
3069 struct falcon_nic_data *nic_data = efx->nic_data;
37b5a603
BH
3070 int rc;
3071
8c870379 3072 /* Remove I2C adapter and clear it in preparation for a retry */
37b5a603
BH
3073 rc = i2c_del_adapter(&efx->i2c_adap);
3074 BUG_ON(rc);
8c870379 3075 memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
8ceee660 3076
4a5b504d 3077 falcon_remove_spi_devices(efx);
8ceee660
BH
3078 falcon_free_buffer(efx, &efx->irq_status);
3079
91ad757c 3080 falcon_reset_hw(efx, RESET_TYPE_ALL);
8ceee660
BH
3081
3082 /* Release the second function after the reset */
3083 if (nic_data->pci_dev2) {
3084 pci_dev_put(nic_data->pci_dev2);
3085 nic_data->pci_dev2 = NULL;
3086 }
3087
3088 /* Tear down the private nic state */
3089 kfree(efx->nic_data);
3090 efx->nic_data = NULL;
3091}
3092
3093void falcon_update_nic_stats(struct efx_nic *efx)
3094{
3095 efx_oword_t cnt;
3096
12d00cad 3097 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3e6c4538
BH
3098 efx->n_rx_nodesc_drop_cnt +=
3099 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
8ceee660
BH
3100}
3101
3102/**************************************************************************
3103 *
3104 * Revision-dependent attributes used by efx.c
3105 *
3106 **************************************************************************
3107 */
3108
3109struct efx_nic_type falcon_a_nic_type = {
8ceee660 3110 .mem_map_size = 0x20000,
3e6c4538
BH
3111 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3112 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3113 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3114 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3115 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
6d51d307 3116 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
8ceee660
BH
3117 .rx_buffer_padding = 0x24,
3118 .max_interrupt_mode = EFX_INT_MODE_MSI,
3119 .phys_addr_channels = 4,
3120};
3121
3122struct efx_nic_type falcon_b_nic_type = {
8ceee660
BH
3123 /* Map everything up to and including the RSS indirection
3124 * table. Don't map MSI-X table, MSI-X PBA since Linux
3125 * requires that they not be mapped. */
3e6c4538
BH
3126 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3127 FR_BZ_RX_INDIRECTION_TBL_STEP *
3128 FR_BZ_RX_INDIRECTION_TBL_ROWS),
3129 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3130 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3131 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3132 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3133 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
6d51d307 3134 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
8ceee660
BH
3135 .rx_buffer_padding = 0,
3136 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3137 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3138 * interrupt handler only supports 32
3139 * channels */
3140};
3141