]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/sfc/rx.c
sfc: Recycle discarded rx buffers back onto the queue
[mirror_ubuntu-bionic-kernel.git] / drivers / net / sfc / rx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/socket.h>
12#include <linux/in.h>
5a0e3ad6 13#include <linux/slab.h>
8ceee660
BH
14#include <linux/ip.h>
15#include <linux/tcp.h>
16#include <linux/udp.h>
17#include <net/ip.h>
18#include <net/checksum.h>
19#include "net_driver.h"
8ceee660 20#include "efx.h"
744093c9 21#include "nic.h"
3273c2e8 22#include "selftest.h"
8ceee660
BH
23#include "workarounds.h"
24
25/* Number of RX descriptors pushed at once. */
26#define EFX_RX_BATCH 8
27
28/* Size of buffer allocated for skb header area. */
29#define EFX_SKB_HEADERS 64u
30
31/*
32 * rx_alloc_method - RX buffer allocation method
33 *
34 * This driver supports two methods for allocating and using RX buffers:
35 * each RX buffer may be backed by an skb or by an order-n page.
36 *
37 * When LRO is in use then the second method has a lower overhead,
38 * since we don't have to allocate then free skbs on reassembled frames.
39 *
40 * Values:
41 * - RX_ALLOC_METHOD_AUTO = 0
42 * - RX_ALLOC_METHOD_SKB = 1
43 * - RX_ALLOC_METHOD_PAGE = 2
44 *
45 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46 * controlled by the parameters below.
47 *
48 * - Since pushing and popping descriptors are separated by the rx_queue
49 * size, so the watermarks should be ~rxd_size.
50 * - The performance win by using page-based allocation for LRO is less
51 * than the performance hit of using page-based allocation of non-LRO,
52 * so the watermarks should reflect this.
53 *
54 * Per channel we maintain a single variable, updated by each channel:
55 *
56 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57 * RX_ALLOC_FACTOR_SKB)
58 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59 * limits the hysteresis), and update the allocation strategy:
60 *
61 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
63 */
c3c63365 64static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
8ceee660
BH
65
66#define RX_ALLOC_LEVEL_LRO 0x2000
67#define RX_ALLOC_LEVEL_MAX 0x3000
68#define RX_ALLOC_FACTOR_LRO 1
69#define RX_ALLOC_FACTOR_SKB (-2)
70
71/* This is the percentage fill level below which new RX descriptors
72 * will be added to the RX descriptor ring.
73 */
74static unsigned int rx_refill_threshold = 90;
75
76/* This is the percentage fill level to which an RX queue will be refilled
77 * when the "RX refill threshold" is reached.
78 */
79static unsigned int rx_refill_limit = 95;
80
81/*
82 * RX maximum head room required.
83 *
84 * This must be at least 1 to prevent overflow and at least 2 to allow
24455800
SH
85 * pipelined receives. Then a further 1 because efx_recycle_rx_buffer()
86 * might insert two buffers.
8ceee660 87 */
24455800 88#define EFX_RXD_HEAD_ROOM 3
8ceee660 89
55668611
BH
90static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
91{
92 /* Offset is always within one page, so we don't need to consider
93 * the page order.
94 */
184be0c2 95 return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
55668611
BH
96}
97static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
98{
99 return PAGE_SIZE << efx->rx_buffer_order;
100}
8ceee660 101
8ceee660 102/**
f7d6f379 103 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
8ceee660
BH
104 *
105 * @rx_queue: Efx RX queue
8ceee660 106 *
f7d6f379
SH
107 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
108 * struct efx_rx_buffer for each one. Return a negative error code or 0
109 * on success. May fail having only inserted fewer than EFX_RX_BATCH
110 * buffers.
8ceee660 111 */
f7d6f379 112static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
8ceee660
BH
113{
114 struct efx_nic *efx = rx_queue->efx;
115 struct net_device *net_dev = efx->net_dev;
f7d6f379 116 struct efx_rx_buffer *rx_buf;
8ceee660 117 int skb_len = efx->rx_buffer_len;
f7d6f379 118 unsigned index, count;
8ceee660 119
f7d6f379
SH
120 for (count = 0; count < EFX_RX_BATCH; ++count) {
121 index = rx_queue->added_count & EFX_RXQ_MASK;
122 rx_buf = efx_rx_buffer(rx_queue, index);
8ceee660 123
f7d6f379
SH
124 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
125 if (unlikely(!rx_buf->skb))
126 return -ENOMEM;
127 rx_buf->page = NULL;
8ceee660 128
f7d6f379
SH
129 /* Adjust the SKB for padding and checksum */
130 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
131 rx_buf->len = skb_len - NET_IP_ALIGN;
132 rx_buf->data = (char *)rx_buf->skb->data;
133 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
134
135 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
136 rx_buf->data, rx_buf->len,
137 PCI_DMA_FROMDEVICE);
138 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
139 rx_buf->dma_addr))) {
140 dev_kfree_skb_any(rx_buf->skb);
141 rx_buf->skb = NULL;
142 return -EIO;
143 }
8ceee660 144
f7d6f379
SH
145 ++rx_queue->added_count;
146 ++rx_queue->alloc_skb_count;
8ceee660
BH
147 }
148
149 return 0;
150}
151
152/**
f7d6f379 153 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
8ceee660
BH
154 *
155 * @rx_queue: Efx RX queue
8ceee660 156 *
f7d6f379
SH
157 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
158 * and populates struct efx_rx_buffers for each one. Return a negative error
159 * code or 0 on success. If a single page can be split between two buffers,
160 * then the page will either be inserted fully, or not at at all.
8ceee660 161 */
f7d6f379 162static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
8ceee660
BH
163{
164 struct efx_nic *efx = rx_queue->efx;
f7d6f379
SH
165 struct efx_rx_buffer *rx_buf;
166 struct page *page;
167 char *page_addr;
168 dma_addr_t dma_addr;
169 unsigned index, count;
170
171 /* We can split a page between two buffers */
172 BUILD_BUG_ON(EFX_RX_BATCH & 1);
173
174 for (count = 0; count < EFX_RX_BATCH; ++count) {
175 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
176 efx->rx_buffer_order);
177 if (unlikely(page == NULL))
8ceee660 178 return -ENOMEM;
f7d6f379
SH
179 dma_addr = pci_map_page(efx->pci_dev, page, 0,
180 efx_rx_buf_size(efx),
8ceee660 181 PCI_DMA_FROMDEVICE);
8d8bb39b 182 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
f7d6f379 183 __free_pages(page, efx->rx_buffer_order);
8ceee660
BH
184 return -EIO;
185 }
f7d6f379
SH
186 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1));
187 page_addr = page_address(page) + EFX_PAGE_IP_ALIGN;
188 dma_addr += EFX_PAGE_IP_ALIGN;
189
190 split:
191 index = rx_queue->added_count & EFX_RXQ_MASK;
192 rx_buf = efx_rx_buffer(rx_queue, index);
193 rx_buf->dma_addr = dma_addr;
194 rx_buf->skb = NULL;
195 rx_buf->page = page;
196 rx_buf->data = page_addr;
197 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
198 ++rx_queue->added_count;
199 ++rx_queue->alloc_page_count;
200
201 if ((~count & 1) && (efx->rx_buffer_len < (PAGE_SIZE >> 1))) {
202 /* Use the second half of the page */
203 get_page(page);
204 dma_addr += (PAGE_SIZE >> 1);
205 page_addr += (PAGE_SIZE >> 1);
206 ++count;
207 goto split;
8ceee660
BH
208 }
209 }
210
8ceee660
BH
211 return 0;
212}
213
4d566063
BH
214static void efx_unmap_rx_buffer(struct efx_nic *efx,
215 struct efx_rx_buffer *rx_buf)
8ceee660
BH
216{
217 if (rx_buf->page) {
218 EFX_BUG_ON_PARANOID(rx_buf->skb);
f7d6f379
SH
219
220 /* Unmap the buffer if there's only one buffer per page(s),
221 * or this is the second half of a two buffer page. */
222 if (efx->rx_buffer_order != 0 ||
223 (efx_rx_buf_offset(rx_buf) & (PAGE_SIZE >> 1)) != 0) {
224 pci_unmap_page(efx->pci_dev,
225 rx_buf->dma_addr & ~(PAGE_SIZE - 1),
55668611
BH
226 efx_rx_buf_size(efx),
227 PCI_DMA_FROMDEVICE);
8ceee660
BH
228 }
229 } else if (likely(rx_buf->skb)) {
230 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
231 rx_buf->len, PCI_DMA_FROMDEVICE);
232 }
233}
234
4d566063
BH
235static void efx_free_rx_buffer(struct efx_nic *efx,
236 struct efx_rx_buffer *rx_buf)
8ceee660
BH
237{
238 if (rx_buf->page) {
239 __free_pages(rx_buf->page, efx->rx_buffer_order);
240 rx_buf->page = NULL;
241 } else if (likely(rx_buf->skb)) {
242 dev_kfree_skb_any(rx_buf->skb);
243 rx_buf->skb = NULL;
244 }
245}
246
4d566063
BH
247static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
248 struct efx_rx_buffer *rx_buf)
8ceee660
BH
249{
250 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
251 efx_free_rx_buffer(rx_queue->efx, rx_buf);
252}
253
24455800
SH
254/* Attempt to resurrect the other receive buffer that used to share this page,
255 * which had previously been passed up to the kernel and freed. */
256static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
257 struct efx_rx_buffer *rx_buf)
258{
259 struct efx_rx_buffer *new_buf;
260 unsigned index;
261
262 /* We could have recycled the 1st half, then refilled
263 * the queue, and now recycle the 2nd half.
264 * EFX_RXD_HEAD_ROOM ensures that there is always room
265 * to reinsert two buffers (once). */
266 get_page(rx_buf->page);
267
268 index = rx_queue->added_count & EFX_RXQ_MASK;
269 new_buf = efx_rx_buffer(rx_queue, index);
270 new_buf->dma_addr = rx_buf->dma_addr - (PAGE_SIZE >> 1);
271 new_buf->skb = NULL;
272 new_buf->page = rx_buf->page;
273 new_buf->data = rx_buf->data - (PAGE_SIZE >> 1);
274 new_buf->len = rx_buf->len;
275 ++rx_queue->added_count;
276}
277
278/* Recycle the given rx buffer directly back into the rx_queue. There is
279 * always room to add this buffer, because we've just popped a buffer. */
280static void efx_recycle_rx_buffer(struct efx_channel *channel,
281 struct efx_rx_buffer *rx_buf)
282{
283 struct efx_nic *efx = channel->efx;
284 struct efx_rx_queue *rx_queue = &efx->rx_queue[channel->channel];
285 struct efx_rx_buffer *new_buf;
286 unsigned index;
287
288 if (rx_buf->page != NULL && efx->rx_buffer_len < (PAGE_SIZE >> 1)) {
289 if (efx_rx_buf_offset(rx_buf) & (PAGE_SIZE >> 1)) {
290 /* This is the 2nd half of a page split between two
291 * buffers, If page_count() is > 1 then the kernel
292 * is holding onto the previous buffer */
293 if (page_count(rx_buf->page) != 1) {
294 efx_fini_rx_buffer(rx_queue, rx_buf);
295 return;
296 }
297
298 efx_resurrect_rx_buffer(rx_queue, rx_buf);
299 } else {
300 /* Free the 1st buffer's reference on the page. If the
301 * 2nd buffer is also discarded, this buffer will be
302 * resurrected above */
303 put_page(rx_buf->page);
304 rx_buf->page = NULL;
305 return;
306 }
307 }
308
309 index = rx_queue->added_count & EFX_RXQ_MASK;
310 new_buf = efx_rx_buffer(rx_queue, index);
311
312 memcpy(new_buf, rx_buf, sizeof(*new_buf));
313 rx_buf->page = NULL;
314 rx_buf->skb = NULL;
315 ++rx_queue->added_count;
316}
317
8ceee660
BH
318/**
319 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
320 * @rx_queue: RX descriptor queue
8ceee660
BH
321 * This will aim to fill the RX descriptor queue up to
322 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
90d683af
SH
323 * memory to do so, a slow fill will be scheduled.
324 *
325 * The caller must provide serialisation (none is used here). In practise,
326 * this means this function must run from the NAPI handler, or be called
327 * when NAPI is disabled.
8ceee660 328 */
90d683af 329void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
8ceee660 330{
f7d6f379
SH
331 struct efx_channel *channel = rx_queue->channel;
332 unsigned fill_level;
333 int space, rc = 0;
8ceee660 334
90d683af 335 /* Calculate current fill level, and exit if we don't need to fill */
8ceee660 336 fill_level = (rx_queue->added_count - rx_queue->removed_count);
3ffeabdd 337 EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
8ceee660 338 if (fill_level >= rx_queue->fast_fill_trigger)
24455800 339 goto out;
8ceee660
BH
340
341 /* Record minimum fill level */
b3475645 342 if (unlikely(fill_level < rx_queue->min_fill)) {
8ceee660
BH
343 if (fill_level)
344 rx_queue->min_fill = fill_level;
b3475645 345 }
8ceee660 346
8ceee660
BH
347 space = rx_queue->fast_fill_limit - fill_level;
348 if (space < EFX_RX_BATCH)
24455800 349 goto out;
8ceee660
BH
350
351 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
352 " level %d to level %d using %s allocation\n",
353 rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
f7d6f379 354 channel->rx_alloc_push_pages ? "page" : "skb");
8ceee660
BH
355
356 do {
f7d6f379
SH
357 if (channel->rx_alloc_push_pages)
358 rc = efx_init_rx_buffers_page(rx_queue);
359 else
360 rc = efx_init_rx_buffers_skb(rx_queue);
361 if (unlikely(rc)) {
362 /* Ensure that we don't leave the rx queue empty */
363 if (rx_queue->added_count == rx_queue->removed_count)
364 efx_schedule_slow_fill(rx_queue);
365 goto out;
8ceee660
BH
366 }
367 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
368
369 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
370 "to level %d\n", rx_queue->queue,
371 rx_queue->added_count - rx_queue->removed_count);
372
373 out:
24455800
SH
374 if (rx_queue->notified_count != rx_queue->added_count)
375 efx_nic_notify_rx_desc(rx_queue);
8ceee660
BH
376}
377
90d683af 378void efx_rx_slow_fill(unsigned long context)
8ceee660 379{
90d683af
SH
380 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
381 struct efx_channel *channel = rx_queue->channel;
8ceee660 382
90d683af
SH
383 /* Post an event to cause NAPI to run and refill the queue */
384 efx_nic_generate_fill_event(channel);
8ceee660 385 ++rx_queue->slow_fill_count;
8ceee660
BH
386}
387
4d566063
BH
388static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
389 struct efx_rx_buffer *rx_buf,
390 int len, bool *discard,
391 bool *leak_packet)
8ceee660
BH
392{
393 struct efx_nic *efx = rx_queue->efx;
394 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
395
396 if (likely(len <= max_len))
397 return;
398
399 /* The packet must be discarded, but this is only a fatal error
400 * if the caller indicated it was
401 */
dc8cfa55 402 *discard = true;
8ceee660
BH
403
404 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
405 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
406 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
407 rx_queue->queue, len, max_len,
408 efx->type->rx_buffer_padding);
409 /* If this buffer was skb-allocated, then the meta
410 * data at the end of the skb will be trashed. So
411 * we have no choice but to leak the fragment.
412 */
413 *leak_packet = (rx_buf->skb != NULL);
414 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
415 } else {
416 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
417 "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
418 }
419
420 rx_queue->channel->n_rx_overlength++;
421}
422
423/* Pass a received packet up through the generic LRO stack
424 *
425 * Handles driverlink veto, and passes the fragment up via
426 * the appropriate LRO method
427 */
4d566063 428static void efx_rx_packet_lro(struct efx_channel *channel,
345056af
BH
429 struct efx_rx_buffer *rx_buf,
430 bool checksummed)
8ceee660 431{
da3bc071 432 struct napi_struct *napi = &channel->napi_str;
18e1d2be 433 gro_result_t gro_result;
8ceee660
BH
434
435 /* Pass the skb/page into the LRO engine */
436 if (rx_buf->page) {
1241e951
BH
437 struct page *page = rx_buf->page;
438 struct sk_buff *skb;
8ceee660 439
1241e951
BH
440 EFX_BUG_ON_PARANOID(rx_buf->skb);
441 rx_buf->page = NULL;
442
443 skb = napi_get_frags(napi);
76620aaf 444 if (!skb) {
1241e951
BH
445 put_page(page);
446 return;
76620aaf
HX
447 }
448
1241e951 449 skb_shinfo(skb)->frags[0].page = page;
76620aaf
HX
450 skb_shinfo(skb)->frags[0].page_offset =
451 efx_rx_buf_offset(rx_buf);
452 skb_shinfo(skb)->frags[0].size = rx_buf->len;
453 skb_shinfo(skb)->nr_frags = 1;
454
455 skb->len = rx_buf->len;
456 skb->data_len = rx_buf->len;
457 skb->truesize += rx_buf->len;
345056af
BH
458 skb->ip_summed =
459 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
8ceee660 460
3eadb7b0
BH
461 skb_record_rx_queue(skb, channel->channel);
462
18e1d2be 463 gro_result = napi_gro_frags(napi);
8ceee660 464 } else {
1241e951 465 struct sk_buff *skb = rx_buf->skb;
8ceee660 466
1241e951
BH
467 EFX_BUG_ON_PARANOID(!skb);
468 EFX_BUG_ON_PARANOID(!checksummed);
8ceee660 469 rx_buf->skb = NULL;
1241e951
BH
470
471 gro_result = napi_gro_receive(napi, skb);
8ceee660 472 }
18e1d2be
BH
473
474 if (gro_result == GRO_NORMAL) {
475 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
476 } else if (gro_result != GRO_DROP) {
477 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
478 channel->irq_mod_score += 2;
479 }
8ceee660
BH
480}
481
8ceee660 482void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
dc8cfa55 483 unsigned int len, bool checksummed, bool discard)
8ceee660
BH
484{
485 struct efx_nic *efx = rx_queue->efx;
24455800 486 struct efx_channel *channel = rx_queue->channel;
8ceee660 487 struct efx_rx_buffer *rx_buf;
dc8cfa55 488 bool leak_packet = false;
8ceee660
BH
489
490 rx_buf = efx_rx_buffer(rx_queue, index);
491 EFX_BUG_ON_PARANOID(!rx_buf->data);
492 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
493 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
494
495 /* This allows the refill path to post another buffer.
496 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
497 * isn't overwritten yet.
498 */
499 rx_queue->removed_count++;
500
501 /* Validate the length encoded in the event vs the descriptor pushed */
502 efx_rx_packet__check_len(rx_queue, rx_buf, len,
503 &discard, &leak_packet);
504
505 EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
506 rx_queue->queue, index,
507 (unsigned long long)rx_buf->dma_addr, len,
508 (checksummed ? " [SUMMED]" : ""),
509 (discard ? " [DISCARD]" : ""));
510
511 /* Discard packet, if instructed to do so */
512 if (unlikely(discard)) {
513 if (unlikely(leak_packet))
24455800 514 channel->n_skbuff_leaks++;
8ceee660 515 else
24455800
SH
516 efx_recycle_rx_buffer(channel, rx_buf);
517
518 /* Don't hold off the previous receive */
519 rx_buf = NULL;
520 goto out;
8ceee660
BH
521 }
522
523 /* Release card resources - assumes all RX buffers consumed in-order
524 * per RX queue
525 */
526 efx_unmap_rx_buffer(efx, rx_buf);
527
528 /* Prefetch nice and early so data will (hopefully) be in cache by
529 * the time we look at it.
530 */
531 prefetch(rx_buf->data);
532
533 /* Pipeline receives so that we give time for packet headers to be
534 * prefetched into cache.
535 */
536 rx_buf->len = len;
24455800 537out:
8ceee660
BH
538 if (rx_queue->channel->rx_pkt)
539 __efx_rx_packet(rx_queue->channel,
540 rx_queue->channel->rx_pkt,
541 rx_queue->channel->rx_pkt_csummed);
542 rx_queue->channel->rx_pkt = rx_buf;
543 rx_queue->channel->rx_pkt_csummed = checksummed;
544}
545
546/* Handle a received packet. Second half: Touches packet payload. */
547void __efx_rx_packet(struct efx_channel *channel,
dc8cfa55 548 struct efx_rx_buffer *rx_buf, bool checksummed)
8ceee660
BH
549{
550 struct efx_nic *efx = channel->efx;
551 struct sk_buff *skb;
8ceee660 552
3273c2e8
BH
553 /* If we're in loopback test, then pass the packet directly to the
554 * loopback layer, and free the rx_buf here
555 */
556 if (unlikely(efx->loopback_selftest)) {
557 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
558 efx_free_rx_buffer(efx, rx_buf);
d96d7dc9 559 return;
3273c2e8
BH
560 }
561
8ceee660
BH
562 if (rx_buf->skb) {
563 prefetch(skb_shinfo(rx_buf->skb));
564
565 skb_put(rx_buf->skb, rx_buf->len);
566
567 /* Move past the ethernet header. rx_buf->data still points
568 * at the ethernet header */
569 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
570 efx->net_dev);
3eadb7b0
BH
571
572 skb_record_rx_queue(rx_buf->skb, channel->channel);
8ceee660
BH
573 }
574
da3bc071 575 if (likely(checksummed || rx_buf->page)) {
345056af 576 efx_rx_packet_lro(channel, rx_buf, checksummed);
d96d7dc9 577 return;
8ceee660
BH
578 }
579
da3bc071
HX
580 /* We now own the SKB */
581 skb = rx_buf->skb;
582 rx_buf->skb = NULL;
8ceee660
BH
583 EFX_BUG_ON_PARANOID(!skb);
584
585 /* Set the SKB flags */
da3bc071 586 skb->ip_summed = CHECKSUM_NONE;
8ceee660
BH
587
588 /* Pass the packet up */
589 netif_receive_skb(skb);
590
591 /* Update allocation strategy method */
592 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
8ceee660
BH
593}
594
595void efx_rx_strategy(struct efx_channel *channel)
596{
597 enum efx_rx_alloc_method method = rx_alloc_method;
598
599 /* Only makes sense to use page based allocation if LRO is enabled */
da3bc071 600 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
8ceee660
BH
601 method = RX_ALLOC_METHOD_SKB;
602 } else if (method == RX_ALLOC_METHOD_AUTO) {
603 /* Constrain the rx_alloc_level */
604 if (channel->rx_alloc_level < 0)
605 channel->rx_alloc_level = 0;
606 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
607 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
608
609 /* Decide on the allocation method */
610 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
611 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
612 }
613
614 /* Push the option */
615 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
616}
617
618int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
619{
620 struct efx_nic *efx = rx_queue->efx;
621 unsigned int rxq_size;
622 int rc;
623
624 EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
625
626 /* Allocate RX buffers */
3ffeabdd 627 rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
8ceee660 628 rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
8831da7b
BH
629 if (!rx_queue->buffer)
630 return -ENOMEM;
8ceee660 631
152b6a62 632 rc = efx_nic_probe_rx(rx_queue);
8831da7b
BH
633 if (rc) {
634 kfree(rx_queue->buffer);
635 rx_queue->buffer = NULL;
636 }
8ceee660
BH
637 return rc;
638}
639
bc3c90a2 640void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
8ceee660 641{
8ceee660
BH
642 unsigned int max_fill, trigger, limit;
643
644 EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
645
646 /* Initialise ptr fields */
647 rx_queue->added_count = 0;
648 rx_queue->notified_count = 0;
649 rx_queue->removed_count = 0;
650 rx_queue->min_fill = -1U;
651 rx_queue->min_overfill = -1U;
652
653 /* Initialise limit fields */
3ffeabdd 654 max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
8ceee660
BH
655 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
656 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
657
658 rx_queue->max_fill = max_fill;
659 rx_queue->fast_fill_trigger = trigger;
660 rx_queue->fast_fill_limit = limit;
661
662 /* Set up RX descriptor ring */
152b6a62 663 efx_nic_init_rx(rx_queue);
8ceee660
BH
664}
665
666void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
667{
668 int i;
669 struct efx_rx_buffer *rx_buf;
670
671 EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
672
90d683af 673 del_timer_sync(&rx_queue->slow_fill);
152b6a62 674 efx_nic_fini_rx(rx_queue);
8ceee660
BH
675
676 /* Release RX buffers NB start at index 0 not current HW ptr */
677 if (rx_queue->buffer) {
3ffeabdd 678 for (i = 0; i <= EFX_RXQ_MASK; i++) {
8ceee660
BH
679 rx_buf = efx_rx_buffer(rx_queue, i);
680 efx_fini_rx_buffer(rx_queue, rx_buf);
681 }
682 }
8ceee660
BH
683}
684
685void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
686{
687 EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
688
152b6a62 689 efx_nic_remove_rx(rx_queue);
8ceee660
BH
690
691 kfree(rx_queue->buffer);
692 rx_queue->buffer = NULL;
8ceee660
BH
693}
694
8ceee660
BH
695
696module_param(rx_alloc_method, int, 0644);
697MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
698
699module_param(rx_refill_threshold, uint, 0444);
700MODULE_PARM_DESC(rx_refill_threshold,
701 "RX descriptor ring fast/slow fill threshold (%)");
702