]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/sfc/tx.c
sfc: Distinguish queue lookup from test for queue existence
[mirror_ubuntu-artful-kernel.git] / drivers / net / sfc / tx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
738a8f4b 15#include <linux/ipv6.h>
5a0e3ad6 16#include <linux/slab.h>
738a8f4b 17#include <net/ipv6.h>
8ceee660
BH
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
20#include "net_driver.h"
8ceee660 21#include "efx.h"
744093c9 22#include "nic.h"
8ceee660
BH
23#include "workarounds.h"
24
25/*
26 * TX descriptor ring full threshold
27 *
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
30 */
ecc910f5 31#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
8ceee660 32
4d566063
BH
33static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 struct efx_tx_buffer *buffer)
8ceee660
BH
35{
36 if (buffer->unmap_len) {
37 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
cc12dac2
BH
38 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39 buffer->unmap_len);
8ceee660 40 if (buffer->unmap_single)
cc12dac2
BH
41 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42 PCI_DMA_TODEVICE);
8ceee660 43 else
cc12dac2
BH
44 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45 PCI_DMA_TODEVICE);
8ceee660 46 buffer->unmap_len = 0;
dc8cfa55 47 buffer->unmap_single = false;
8ceee660
BH
48 }
49
50 if (buffer->skb) {
51 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52 buffer->skb = NULL;
62776d03
BH
53 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54 "TX queue %d transmission id %x complete\n",
55 tx_queue->queue, tx_queue->read_count);
8ceee660
BH
56 }
57}
58
b9b39b62
BH
59/**
60 * struct efx_tso_header - a DMA mapped buffer for packet headers
61 * @next: Linked list of free ones.
62 * The list is protected by the TX queue lock.
63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64 * @dma_addr: The DMA address of the header below.
65 *
66 * This controls the memory used for a TSO header. Use TSOH_DATA()
67 * to find the packet header data. Use TSOH_SIZE() to calculate the
68 * total size required for a given packet header length. TSO headers
69 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70 */
71struct efx_tso_header {
72 union {
73 struct efx_tso_header *next;
74 size_t unmap_len;
75 };
76 dma_addr_t dma_addr;
77};
78
79static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 80 struct sk_buff *skb);
b9b39b62
BH
81static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83 struct efx_tso_header *tsoh);
84
4d566063
BH
85static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86 struct efx_tx_buffer *buffer)
b9b39b62
BH
87{
88 if (buffer->tsoh) {
89 if (likely(!buffer->tsoh->unmap_len)) {
90 buffer->tsoh->next = tx_queue->tso_headers_free;
91 tx_queue->tso_headers_free = buffer->tsoh;
92 } else {
93 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94 }
95 buffer->tsoh = NULL;
96 }
97}
98
8ceee660 99
63f19884
BH
100static inline unsigned
101efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102{
103 /* Depending on the NIC revision, we can use descriptor
104 * lengths up to 8K or 8K-1. However, since PCI Express
105 * devices must split read requests at 4K boundaries, there is
106 * little benefit from using descriptors that cross those
107 * boundaries and we keep things simple by not doing so.
108 */
109 unsigned len = (~dma_addr & 0xfff) + 1;
110
111 /* Work around hardware bug for unaligned buffers. */
112 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115 return len;
116}
117
8ceee660
BH
118/*
119 * Add a socket buffer to a TX queue
120 *
121 * This maps all fragments of a socket buffer for DMA and adds them to
122 * the TX queue. The queue's insert pointer will be incremented by
123 * the number of fragments in the socket buffer.
124 *
125 * If any DMA mapping fails, any mapped fragments will be unmapped,
126 * the queue's insert pointer will be restored to its original value.
127 *
497f5ba3
BH
128 * This function is split out from efx_hard_start_xmit to allow the
129 * loopback test to direct packets via specific TX queues.
130 *
8ceee660
BH
131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132 * You must hold netif_tx_lock() to call this function.
133 */
497f5ba3 134netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
8ceee660
BH
135{
136 struct efx_nic *efx = tx_queue->efx;
137 struct pci_dev *pci_dev = efx->pci_dev;
138 struct efx_tx_buffer *buffer;
139 skb_frag_t *fragment;
140 struct page *page;
141 int page_offset;
63f19884 142 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
8ceee660
BH
143 dma_addr_t dma_addr, unmap_addr = 0;
144 unsigned int dma_len;
dc8cfa55 145 bool unmap_single;
8ceee660 146 int q_space, i = 0;
61357325 147 netdev_tx_t rc = NETDEV_TX_OK;
8ceee660
BH
148
149 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
150
9bc183d7 151 if (skb_shinfo(skb)->gso_size)
b9b39b62
BH
152 return efx_enqueue_skb_tso(tx_queue, skb);
153
8ceee660
BH
154 /* Get size of the initial fragment */
155 len = skb_headlen(skb);
156
bb145a9e
BH
157 /* Pad if necessary */
158 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
159 EFX_BUG_ON_PARANOID(skb->data_len);
160 len = 32 + 1;
161 if (skb_pad(skb, len - skb->len))
162 return NETDEV_TX_OK;
163 }
164
8ceee660 165 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
ecc910f5 166 q_space = efx->txq_entries - 1 - fill_level;
8ceee660
BH
167
168 /* Map for DMA. Use pci_map_single rather than pci_map_page
169 * since this is more efficient on machines with sparse
170 * memory.
171 */
dc8cfa55 172 unmap_single = true;
8ceee660
BH
173 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
174
175 /* Process all fragments */
176 while (1) {
8d8bb39b 177 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
8ceee660
BH
178 goto pci_err;
179
180 /* Store fields for marking in the per-fragment final
181 * descriptor */
182 unmap_len = len;
183 unmap_addr = dma_addr;
184
185 /* Add to TX queue, splitting across DMA boundaries */
186 do {
187 if (unlikely(q_space-- <= 0)) {
188 /* It might be that completions have
189 * happened since the xmit path last
190 * checked. Update the xmit path's
191 * copy of read_count.
192 */
c04bfc6b 193 netif_tx_stop_queue(tx_queue->core_txq);
8ceee660 194 /* This memory barrier protects the
c04bfc6b 195 * change of queue state from the access
8ceee660
BH
196 * of read_count. */
197 smp_mb();
198 tx_queue->old_read_count =
51c56f40 199 ACCESS_ONCE(tx_queue->read_count);
8ceee660
BH
200 fill_level = (tx_queue->insert_count
201 - tx_queue->old_read_count);
ecc910f5 202 q_space = efx->txq_entries - 1 - fill_level;
c04bfc6b
BH
203 if (unlikely(q_space-- <= 0)) {
204 rc = NETDEV_TX_BUSY;
205 goto unwind;
206 }
8ceee660 207 smp_mb();
c04bfc6b 208 netif_tx_start_queue(tx_queue->core_txq);
8ceee660
BH
209 }
210
ecc910f5 211 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
8ceee660 212 buffer = &tx_queue->buffer[insert_ptr];
b9b39b62
BH
213 efx_tsoh_free(tx_queue, buffer);
214 EFX_BUG_ON_PARANOID(buffer->tsoh);
8ceee660
BH
215 EFX_BUG_ON_PARANOID(buffer->skb);
216 EFX_BUG_ON_PARANOID(buffer->len);
dc8cfa55 217 EFX_BUG_ON_PARANOID(!buffer->continuation);
8ceee660
BH
218 EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
63f19884
BH
220 dma_len = efx_max_tx_len(efx, dma_addr);
221 if (likely(dma_len >= len))
8ceee660
BH
222 dma_len = len;
223
8ceee660
BH
224 /* Fill out per descriptor fields */
225 buffer->len = dma_len;
226 buffer->dma_addr = dma_addr;
227 len -= dma_len;
228 dma_addr += dma_len;
229 ++tx_queue->insert_count;
230 } while (len);
231
232 /* Transfer ownership of the unmapping to the final buffer */
8ceee660
BH
233 buffer->unmap_single = unmap_single;
234 buffer->unmap_len = unmap_len;
235 unmap_len = 0;
236
237 /* Get address and size of next fragment */
238 if (i >= skb_shinfo(skb)->nr_frags)
239 break;
240 fragment = &skb_shinfo(skb)->frags[i];
241 len = fragment->size;
242 page = fragment->page;
243 page_offset = fragment->page_offset;
244 i++;
245 /* Map for DMA */
dc8cfa55 246 unmap_single = false;
8ceee660
BH
247 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
248 PCI_DMA_TODEVICE);
249 }
250
251 /* Transfer ownership of the skb to the final buffer */
252 buffer->skb = skb;
dc8cfa55 253 buffer->continuation = false;
8ceee660
BH
254
255 /* Pass off to hardware */
152b6a62 256 efx_nic_push_buffers(tx_queue);
8ceee660
BH
257
258 return NETDEV_TX_OK;
259
260 pci_err:
62776d03
BH
261 netif_err(efx, tx_err, efx->net_dev,
262 " TX queue %d could not map skb with %d bytes %d "
263 "fragments for DMA\n", tx_queue->queue, skb->len,
264 skb_shinfo(skb)->nr_frags + 1);
8ceee660
BH
265
266 /* Mark the packet as transmitted, and free the SKB ourselves */
9bc183d7 267 dev_kfree_skb_any(skb);
8ceee660
BH
268
269 unwind:
270 /* Work backwards until we hit the original insert pointer value */
271 while (tx_queue->insert_count != tx_queue->write_count) {
272 --tx_queue->insert_count;
ecc910f5 273 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
8ceee660
BH
274 buffer = &tx_queue->buffer[insert_ptr];
275 efx_dequeue_buffer(tx_queue, buffer);
276 buffer->len = 0;
277 }
278
279 /* Free the fragment we were mid-way through pushing */
ecbd95c1
BH
280 if (unmap_len) {
281 if (unmap_single)
282 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
283 PCI_DMA_TODEVICE);
284 else
285 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
286 PCI_DMA_TODEVICE);
287 }
8ceee660
BH
288
289 return rc;
290}
291
292/* Remove packets from the TX queue
293 *
294 * This removes packets from the TX queue, up to and including the
295 * specified index.
296 */
4d566063
BH
297static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
298 unsigned int index)
8ceee660
BH
299{
300 struct efx_nic *efx = tx_queue->efx;
301 unsigned int stop_index, read_ptr;
8ceee660 302
ecc910f5
SH
303 stop_index = (index + 1) & tx_queue->ptr_mask;
304 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
305
306 while (read_ptr != stop_index) {
307 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
308 if (unlikely(buffer->len == 0)) {
62776d03
BH
309 netif_err(efx, tx_err, efx->net_dev,
310 "TX queue %d spurious TX completion id %x\n",
311 tx_queue->queue, read_ptr);
8ceee660
BH
312 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
313 return;
314 }
315
316 efx_dequeue_buffer(tx_queue, buffer);
dc8cfa55 317 buffer->continuation = true;
8ceee660
BH
318 buffer->len = 0;
319
320 ++tx_queue->read_count;
ecc910f5 321 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
322 }
323}
324
8ceee660
BH
325/* Initiate a packet transmission. We use one channel per CPU
326 * (sharing when we have more CPUs than channels). On Falcon, the TX
327 * completion events will be directed back to the CPU that transmitted
328 * the packet, which should be cache-efficient.
329 *
330 * Context: non-blocking.
331 * Note that returning anything other than NETDEV_TX_OK will cause the
332 * OS to free the skb.
333 */
61357325
SH
334netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
335 struct net_device *net_dev)
8ceee660 336{
767e468c 337 struct efx_nic *efx = netdev_priv(net_dev);
60ac1065
BH
338 struct efx_tx_queue *tx_queue;
339
a7ef5933
BH
340 if (unlikely(efx->port_inhibited))
341 return NETDEV_TX_BUSY;
342
f7d12cdc
BH
343 tx_queue = efx_get_tx_queue(efx, skb_get_queue_mapping(skb),
344 skb->ip_summed == CHECKSUM_PARTIAL ?
345 EFX_TXQ_TYPE_OFFLOAD : 0);
60ac1065 346
497f5ba3 347 return efx_enqueue_skb(tx_queue, skb);
8ceee660
BH
348}
349
60031fcc
BH
350void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
351{
352 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
353 tx_queue->core_txq = netdev_get_tx_queue(
354 tx_queue->efx->net_dev, tx_queue->queue / EFX_TXQ_TYPES);
355}
356
8ceee660
BH
357void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
358{
359 unsigned fill_level;
360 struct efx_nic *efx = tx_queue->efx;
361
ecc910f5 362 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
8ceee660
BH
363
364 efx_dequeue_buffers(tx_queue, index);
365
366 /* See if we need to restart the netif queue. This barrier
c04bfc6b
BH
367 * separates the update of read_count from the test of the
368 * queue state. */
8ceee660 369 smp_mb();
c04bfc6b
BH
370 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
371 likely(efx->port_enabled)) {
8ceee660 372 fill_level = tx_queue->insert_count - tx_queue->read_count;
ecc910f5 373 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
55668611 374 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
c04bfc6b 375 netif_tx_wake_queue(tx_queue->core_txq);
8ceee660
BH
376 }
377 }
cd38557d
BH
378
379 /* Check whether the hardware queue is now empty */
380 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
381 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
382 if (tx_queue->read_count == tx_queue->old_write_count) {
383 smp_mb();
384 tx_queue->empty_read_count =
385 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
386 }
387 }
8ceee660
BH
388}
389
390int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
391{
392 struct efx_nic *efx = tx_queue->efx;
ecc910f5 393 unsigned int entries;
8ceee660
BH
394 int i, rc;
395
ecc910f5
SH
396 /* Create the smallest power-of-two aligned ring */
397 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
398 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
399 tx_queue->ptr_mask = entries - 1;
400
401 netif_dbg(efx, probe, efx->net_dev,
402 "creating TX queue %d size %#x mask %#x\n",
403 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
8ceee660
BH
404
405 /* Allocate software ring */
ecc910f5
SH
406 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
407 GFP_KERNEL);
60ac1065
BH
408 if (!tx_queue->buffer)
409 return -ENOMEM;
ecc910f5 410 for (i = 0; i <= tx_queue->ptr_mask; ++i)
dc8cfa55 411 tx_queue->buffer[i].continuation = true;
8ceee660
BH
412
413 /* Allocate hardware ring */
152b6a62 414 rc = efx_nic_probe_tx(tx_queue);
8ceee660 415 if (rc)
60ac1065 416 goto fail;
8ceee660
BH
417
418 return 0;
419
60ac1065 420 fail:
8ceee660
BH
421 kfree(tx_queue->buffer);
422 tx_queue->buffer = NULL;
8ceee660
BH
423 return rc;
424}
425
bc3c90a2 426void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660 427{
62776d03
BH
428 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
429 "initialising TX queue %d\n", tx_queue->queue);
8ceee660
BH
430
431 tx_queue->insert_count = 0;
432 tx_queue->write_count = 0;
cd38557d 433 tx_queue->old_write_count = 0;
8ceee660
BH
434 tx_queue->read_count = 0;
435 tx_queue->old_read_count = 0;
cd38557d 436 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
8ceee660
BH
437
438 /* Set up TX descriptor ring */
152b6a62 439 efx_nic_init_tx(tx_queue);
8ceee660
BH
440}
441
442void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
443{
444 struct efx_tx_buffer *buffer;
445
446 if (!tx_queue->buffer)
447 return;
448
449 /* Free any buffers left in the ring */
450 while (tx_queue->read_count != tx_queue->write_count) {
ecc910f5 451 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
8ceee660 452 efx_dequeue_buffer(tx_queue, buffer);
dc8cfa55 453 buffer->continuation = true;
8ceee660
BH
454 buffer->len = 0;
455
456 ++tx_queue->read_count;
457 }
458}
459
460void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
461{
62776d03
BH
462 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
463 "shutting down TX queue %d\n", tx_queue->queue);
8ceee660
BH
464
465 /* Flush TX queue, remove descriptor ring */
152b6a62 466 efx_nic_fini_tx(tx_queue);
8ceee660
BH
467
468 efx_release_tx_buffers(tx_queue);
469
b9b39b62
BH
470 /* Free up TSO header cache */
471 efx_fini_tso(tx_queue);
8ceee660
BH
472}
473
474void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
475{
62776d03
BH
476 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
477 "destroying TX queue %d\n", tx_queue->queue);
152b6a62 478 efx_nic_remove_tx(tx_queue);
8ceee660
BH
479
480 kfree(tx_queue->buffer);
481 tx_queue->buffer = NULL;
8ceee660
BH
482}
483
484
b9b39b62
BH
485/* Efx TCP segmentation acceleration.
486 *
487 * Why? Because by doing it here in the driver we can go significantly
488 * faster than the GSO.
489 *
490 * Requires TX checksum offload support.
491 */
492
493/* Number of bytes inserted at the start of a TSO header buffer,
494 * similar to NET_IP_ALIGN.
495 */
13e9ab11 496#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
b9b39b62
BH
497#define TSOH_OFFSET 0
498#else
499#define TSOH_OFFSET NET_IP_ALIGN
500#endif
501
502#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
503
504/* Total size of struct efx_tso_header, buffer and padding */
505#define TSOH_SIZE(hdr_len) \
506 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
507
508/* Size of blocks on free list. Larger blocks must be allocated from
509 * the heap.
510 */
511#define TSOH_STD_SIZE 128
512
513#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
514#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
515#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
516#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
738a8f4b 517#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
b9b39b62
BH
518
519/**
520 * struct tso_state - TSO state for an SKB
23d9e60b 521 * @out_len: Remaining length in current segment
b9b39b62 522 * @seqnum: Current sequence number
23d9e60b 523 * @ipv4_id: Current IPv4 ID, host endian
b9b39b62 524 * @packet_space: Remaining space in current packet
23d9e60b
BH
525 * @dma_addr: DMA address of current position
526 * @in_len: Remaining length in current SKB fragment
527 * @unmap_len: Length of SKB fragment
528 * @unmap_addr: DMA address of SKB fragment
529 * @unmap_single: DMA single vs page mapping flag
738a8f4b 530 * @protocol: Network protocol (after any VLAN header)
23d9e60b
BH
531 * @header_len: Number of bytes of header
532 * @full_packet_size: Number of bytes to put in each outgoing segment
b9b39b62
BH
533 *
534 * The state used during segmentation. It is put into this data structure
535 * just to make it easy to pass into inline functions.
536 */
537struct tso_state {
23d9e60b
BH
538 /* Output position */
539 unsigned out_len;
b9b39b62 540 unsigned seqnum;
23d9e60b 541 unsigned ipv4_id;
b9b39b62
BH
542 unsigned packet_space;
543
23d9e60b
BH
544 /* Input position */
545 dma_addr_t dma_addr;
546 unsigned in_len;
547 unsigned unmap_len;
548 dma_addr_t unmap_addr;
549 bool unmap_single;
550
738a8f4b 551 __be16 protocol;
23d9e60b
BH
552 unsigned header_len;
553 int full_packet_size;
b9b39b62
BH
554};
555
556
557/*
558 * Verify that our various assumptions about sk_buffs and the conditions
738a8f4b 559 * under which TSO will be attempted hold true. Return the protocol number.
b9b39b62 560 */
738a8f4b 561static __be16 efx_tso_check_protocol(struct sk_buff *skb)
b9b39b62 562{
740847da
BH
563 __be16 protocol = skb->protocol;
564
b9b39b62 565 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
740847da
BH
566 protocol);
567 if (protocol == htons(ETH_P_8021Q)) {
568 /* Find the encapsulated protocol; reset network header
569 * and transport header based on that. */
570 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
571 protocol = veh->h_vlan_encapsulated_proto;
572 skb_set_network_header(skb, sizeof(*veh));
573 if (protocol == htons(ETH_P_IP))
574 skb_set_transport_header(skb, sizeof(*veh) +
575 4 * ip_hdr(skb)->ihl);
738a8f4b
BH
576 else if (protocol == htons(ETH_P_IPV6))
577 skb_set_transport_header(skb, sizeof(*veh) +
578 sizeof(struct ipv6hdr));
740847da
BH
579 }
580
738a8f4b
BH
581 if (protocol == htons(ETH_P_IP)) {
582 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
583 } else {
584 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
585 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
586 }
b9b39b62
BH
587 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
588 + (tcp_hdr(skb)->doff << 2u)) >
589 skb_headlen(skb));
738a8f4b
BH
590
591 return protocol;
b9b39b62
BH
592}
593
594
595/*
596 * Allocate a page worth of efx_tso_header structures, and string them
597 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
598 */
599static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
600{
601
602 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
603 struct efx_tso_header *tsoh;
604 dma_addr_t dma_addr;
605 u8 *base_kva, *kva;
606
607 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
608 if (base_kva == NULL) {
62776d03
BH
609 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
610 "Unable to allocate page for TSO headers\n");
b9b39b62
BH
611 return -ENOMEM;
612 }
613
614 /* pci_alloc_consistent() allocates pages. */
615 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
616
617 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
618 tsoh = (struct efx_tso_header *)kva;
619 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
620 tsoh->next = tx_queue->tso_headers_free;
621 tx_queue->tso_headers_free = tsoh;
622 }
623
624 return 0;
625}
626
627
628/* Free up a TSO header, and all others in the same page. */
629static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
630 struct efx_tso_header *tsoh,
631 struct pci_dev *pci_dev)
632{
633 struct efx_tso_header **p;
634 unsigned long base_kva;
635 dma_addr_t base_dma;
636
637 base_kva = (unsigned long)tsoh & PAGE_MASK;
638 base_dma = tsoh->dma_addr & PAGE_MASK;
639
640 p = &tx_queue->tso_headers_free;
b3475645 641 while (*p != NULL) {
b9b39b62
BH
642 if (((unsigned long)*p & PAGE_MASK) == base_kva)
643 *p = (*p)->next;
644 else
645 p = &(*p)->next;
b3475645 646 }
b9b39b62
BH
647
648 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
649}
650
651static struct efx_tso_header *
652efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
653{
654 struct efx_tso_header *tsoh;
655
656 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
657 if (unlikely(!tsoh))
658 return NULL;
659
660 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
661 TSOH_BUFFER(tsoh), header_len,
662 PCI_DMA_TODEVICE);
8d8bb39b
FT
663 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
664 tsoh->dma_addr))) {
b9b39b62
BH
665 kfree(tsoh);
666 return NULL;
667 }
668
669 tsoh->unmap_len = header_len;
670 return tsoh;
671}
672
673static void
674efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
675{
676 pci_unmap_single(tx_queue->efx->pci_dev,
677 tsoh->dma_addr, tsoh->unmap_len,
678 PCI_DMA_TODEVICE);
679 kfree(tsoh);
680}
681
682/**
683 * efx_tx_queue_insert - push descriptors onto the TX queue
684 * @tx_queue: Efx TX queue
685 * @dma_addr: DMA address of fragment
686 * @len: Length of fragment
ecbd95c1 687 * @final_buffer: The final buffer inserted into the queue
b9b39b62
BH
688 *
689 * Push descriptors onto the TX queue. Return 0 on success or 1 if
690 * @tx_queue full.
691 */
692static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
693 dma_addr_t dma_addr, unsigned len,
ecbd95c1 694 struct efx_tx_buffer **final_buffer)
b9b39b62
BH
695{
696 struct efx_tx_buffer *buffer;
697 struct efx_nic *efx = tx_queue->efx;
63f19884 698 unsigned dma_len, fill_level, insert_ptr;
b9b39b62
BH
699 int q_space;
700
701 EFX_BUG_ON_PARANOID(len <= 0);
702
703 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
704 /* -1 as there is no way to represent all descriptors used */
ecc910f5 705 q_space = efx->txq_entries - 1 - fill_level;
b9b39b62
BH
706
707 while (1) {
708 if (unlikely(q_space-- <= 0)) {
709 /* It might be that completions have happened
710 * since the xmit path last checked. Update
711 * the xmit path's copy of read_count.
712 */
c04bfc6b 713 netif_tx_stop_queue(tx_queue->core_txq);
b9b39b62 714 /* This memory barrier protects the change of
c04bfc6b 715 * queue state from the access of read_count. */
b9b39b62
BH
716 smp_mb();
717 tx_queue->old_read_count =
51c56f40 718 ACCESS_ONCE(tx_queue->read_count);
b9b39b62
BH
719 fill_level = (tx_queue->insert_count
720 - tx_queue->old_read_count);
ecc910f5 721 q_space = efx->txq_entries - 1 - fill_level;
ecbd95c1
BH
722 if (unlikely(q_space-- <= 0)) {
723 *final_buffer = NULL;
b9b39b62 724 return 1;
ecbd95c1 725 }
b9b39b62 726 smp_mb();
c04bfc6b 727 netif_tx_start_queue(tx_queue->core_txq);
b9b39b62
BH
728 }
729
ecc910f5 730 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
b9b39b62
BH
731 buffer = &tx_queue->buffer[insert_ptr];
732 ++tx_queue->insert_count;
733
734 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
ecc910f5
SH
735 tx_queue->read_count >=
736 efx->txq_entries);
b9b39b62
BH
737
738 efx_tsoh_free(tx_queue, buffer);
739 EFX_BUG_ON_PARANOID(buffer->len);
740 EFX_BUG_ON_PARANOID(buffer->unmap_len);
741 EFX_BUG_ON_PARANOID(buffer->skb);
dc8cfa55 742 EFX_BUG_ON_PARANOID(!buffer->continuation);
b9b39b62
BH
743 EFX_BUG_ON_PARANOID(buffer->tsoh);
744
745 buffer->dma_addr = dma_addr;
746
63f19884 747 dma_len = efx_max_tx_len(efx, dma_addr);
b9b39b62
BH
748
749 /* If there is enough space to send then do so */
750 if (dma_len >= len)
751 break;
752
753 buffer->len = dma_len; /* Don't set the other members */
754 dma_addr += dma_len;
755 len -= dma_len;
756 }
757
758 EFX_BUG_ON_PARANOID(!len);
759 buffer->len = len;
ecbd95c1 760 *final_buffer = buffer;
b9b39b62
BH
761 return 0;
762}
763
764
765/*
766 * Put a TSO header into the TX queue.
767 *
768 * This is special-cased because we know that it is small enough to fit in
769 * a single fragment, and we know it doesn't cross a page boundary. It
770 * also allows us to not worry about end-of-packet etc.
771 */
4d566063
BH
772static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
773 struct efx_tso_header *tsoh, unsigned len)
b9b39b62
BH
774{
775 struct efx_tx_buffer *buffer;
776
ecc910f5 777 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
b9b39b62
BH
778 efx_tsoh_free(tx_queue, buffer);
779 EFX_BUG_ON_PARANOID(buffer->len);
780 EFX_BUG_ON_PARANOID(buffer->unmap_len);
781 EFX_BUG_ON_PARANOID(buffer->skb);
dc8cfa55 782 EFX_BUG_ON_PARANOID(!buffer->continuation);
b9b39b62
BH
783 EFX_BUG_ON_PARANOID(buffer->tsoh);
784 buffer->len = len;
785 buffer->dma_addr = tsoh->dma_addr;
786 buffer->tsoh = tsoh;
787
788 ++tx_queue->insert_count;
789}
790
791
792/* Remove descriptors put into a tx_queue. */
793static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
794{
795 struct efx_tx_buffer *buffer;
cc12dac2 796 dma_addr_t unmap_addr;
b9b39b62
BH
797
798 /* Work backwards until we hit the original insert pointer value */
799 while (tx_queue->insert_count != tx_queue->write_count) {
800 --tx_queue->insert_count;
801 buffer = &tx_queue->buffer[tx_queue->insert_count &
ecc910f5 802 tx_queue->ptr_mask];
b9b39b62
BH
803 efx_tsoh_free(tx_queue, buffer);
804 EFX_BUG_ON_PARANOID(buffer->skb);
b9b39b62 805 if (buffer->unmap_len) {
cc12dac2
BH
806 unmap_addr = (buffer->dma_addr + buffer->len -
807 buffer->unmap_len);
ecbd95c1
BH
808 if (buffer->unmap_single)
809 pci_unmap_single(tx_queue->efx->pci_dev,
cc12dac2 810 unmap_addr, buffer->unmap_len,
ecbd95c1
BH
811 PCI_DMA_TODEVICE);
812 else
813 pci_unmap_page(tx_queue->efx->pci_dev,
cc12dac2 814 unmap_addr, buffer->unmap_len,
ecbd95c1 815 PCI_DMA_TODEVICE);
b9b39b62
BH
816 buffer->unmap_len = 0;
817 }
a7ebd27a
NT
818 buffer->len = 0;
819 buffer->continuation = true;
b9b39b62
BH
820 }
821}
822
823
824/* Parse the SKB header and initialise state. */
4d566063 825static void tso_start(struct tso_state *st, const struct sk_buff *skb)
b9b39b62
BH
826{
827 /* All ethernet/IP/TCP headers combined size is TCP header size
828 * plus offset of TCP header relative to start of packet.
829 */
23d9e60b
BH
830 st->header_len = ((tcp_hdr(skb)->doff << 2u)
831 + PTR_DIFF(tcp_hdr(skb), skb->data));
832 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
b9b39b62 833
738a8f4b
BH
834 if (st->protocol == htons(ETH_P_IP))
835 st->ipv4_id = ntohs(ip_hdr(skb)->id);
836 else
837 st->ipv4_id = 0;
b9b39b62
BH
838 st->seqnum = ntohl(tcp_hdr(skb)->seq);
839
840 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
841 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
842 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
843
23d9e60b
BH
844 st->packet_space = st->full_packet_size;
845 st->out_len = skb->len - st->header_len;
846 st->unmap_len = 0;
847 st->unmap_single = false;
b9b39b62
BH
848}
849
4d566063
BH
850static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
851 skb_frag_t *frag)
b9b39b62 852{
23d9e60b
BH
853 st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
854 frag->page_offset, frag->size,
855 PCI_DMA_TODEVICE);
856 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
857 st->unmap_single = false;
858 st->unmap_len = frag->size;
859 st->in_len = frag->size;
860 st->dma_addr = st->unmap_addr;
ecbd95c1
BH
861 return 0;
862 }
863 return -ENOMEM;
864}
865
4d566063
BH
866static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
867 const struct sk_buff *skb)
ecbd95c1 868{
23d9e60b 869 int hl = st->header_len;
ecbd95c1 870 int len = skb_headlen(skb) - hl;
b9b39b62 871
23d9e60b
BH
872 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
873 len, PCI_DMA_TODEVICE);
874 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
875 st->unmap_single = true;
876 st->unmap_len = len;
877 st->in_len = len;
878 st->dma_addr = st->unmap_addr;
b9b39b62
BH
879 return 0;
880 }
881 return -ENOMEM;
882}
883
884
885/**
886 * tso_fill_packet_with_fragment - form descriptors for the current fragment
887 * @tx_queue: Efx TX queue
888 * @skb: Socket buffer
889 * @st: TSO state
890 *
891 * Form descriptors for the current fragment, until we reach the end
892 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
893 * space in @tx_queue.
894 */
4d566063
BH
895static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
896 const struct sk_buff *skb,
897 struct tso_state *st)
b9b39b62 898{
ecbd95c1 899 struct efx_tx_buffer *buffer;
b9b39b62
BH
900 int n, end_of_packet, rc;
901
23d9e60b 902 if (st->in_len == 0)
b9b39b62
BH
903 return 0;
904 if (st->packet_space == 0)
905 return 0;
906
23d9e60b 907 EFX_BUG_ON_PARANOID(st->in_len <= 0);
b9b39b62
BH
908 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
909
23d9e60b 910 n = min(st->in_len, st->packet_space);
b9b39b62
BH
911
912 st->packet_space -= n;
23d9e60b
BH
913 st->out_len -= n;
914 st->in_len -= n;
b9b39b62 915
23d9e60b 916 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
ecbd95c1 917 if (likely(rc == 0)) {
23d9e60b 918 if (st->out_len == 0)
ecbd95c1
BH
919 /* Transfer ownership of the skb */
920 buffer->skb = skb;
b9b39b62 921
23d9e60b 922 end_of_packet = st->out_len == 0 || st->packet_space == 0;
ecbd95c1 923 buffer->continuation = !end_of_packet;
b9b39b62 924
23d9e60b 925 if (st->in_len == 0) {
ecbd95c1 926 /* Transfer ownership of the pci mapping */
23d9e60b
BH
927 buffer->unmap_len = st->unmap_len;
928 buffer->unmap_single = st->unmap_single;
929 st->unmap_len = 0;
ecbd95c1
BH
930 }
931 }
932
23d9e60b 933 st->dma_addr += n;
b9b39b62
BH
934 return rc;
935}
936
937
938/**
939 * tso_start_new_packet - generate a new header and prepare for the new packet
940 * @tx_queue: Efx TX queue
941 * @skb: Socket buffer
942 * @st: TSO state
943 *
944 * Generate a new header and prepare for the new packet. Return 0 on
945 * success, or -1 if failed to alloc header.
946 */
4d566063
BH
947static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
948 const struct sk_buff *skb,
949 struct tso_state *st)
b9b39b62
BH
950{
951 struct efx_tso_header *tsoh;
b9b39b62
BH
952 struct tcphdr *tsoh_th;
953 unsigned ip_length;
954 u8 *header;
955
956 /* Allocate a DMA-mapped header buffer. */
23d9e60b 957 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
b3475645 958 if (tx_queue->tso_headers_free == NULL) {
b9b39b62
BH
959 if (efx_tsoh_block_alloc(tx_queue))
960 return -1;
b3475645 961 }
b9b39b62
BH
962 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
963 tsoh = tx_queue->tso_headers_free;
964 tx_queue->tso_headers_free = tsoh->next;
965 tsoh->unmap_len = 0;
966 } else {
967 tx_queue->tso_long_headers++;
23d9e60b 968 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
b9b39b62
BH
969 if (unlikely(!tsoh))
970 return -1;
971 }
972
973 header = TSOH_BUFFER(tsoh);
974 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
b9b39b62
BH
975
976 /* Copy and update the headers. */
23d9e60b 977 memcpy(header, skb->data, st->header_len);
b9b39b62
BH
978
979 tsoh_th->seq = htonl(st->seqnum);
980 st->seqnum += skb_shinfo(skb)->gso_size;
23d9e60b 981 if (st->out_len > skb_shinfo(skb)->gso_size) {
b9b39b62 982 /* This packet will not finish the TSO burst. */
23d9e60b 983 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
b9b39b62
BH
984 tsoh_th->fin = 0;
985 tsoh_th->psh = 0;
986 } else {
987 /* This packet will be the last in the TSO burst. */
23d9e60b 988 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
b9b39b62
BH
989 tsoh_th->fin = tcp_hdr(skb)->fin;
990 tsoh_th->psh = tcp_hdr(skb)->psh;
991 }
b9b39b62 992
738a8f4b
BH
993 if (st->protocol == htons(ETH_P_IP)) {
994 struct iphdr *tsoh_iph =
995 (struct iphdr *)(header + SKB_IPV4_OFF(skb));
996
997 tsoh_iph->tot_len = htons(ip_length);
998
999 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1000 tsoh_iph->id = htons(st->ipv4_id);
1001 st->ipv4_id++;
1002 } else {
1003 struct ipv6hdr *tsoh_iph =
1004 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1005
1006 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1007 }
b9b39b62
BH
1008
1009 st->packet_space = skb_shinfo(skb)->gso_size;
1010 ++tx_queue->tso_packets;
1011
1012 /* Form a descriptor for this header. */
23d9e60b 1013 efx_tso_put_header(tx_queue, tsoh, st->header_len);
b9b39b62
BH
1014
1015 return 0;
1016}
1017
1018
1019/**
1020 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1021 * @tx_queue: Efx TX queue
1022 * @skb: Socket buffer
1023 *
1024 * Context: You must hold netif_tx_lock() to call this function.
1025 *
1026 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1027 * @skb was not enqueued. In all cases @skb is consumed. Return
1028 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1029 */
1030static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 1031 struct sk_buff *skb)
b9b39b62 1032{
ecbd95c1 1033 struct efx_nic *efx = tx_queue->efx;
b9b39b62
BH
1034 int frag_i, rc, rc2 = NETDEV_TX_OK;
1035 struct tso_state state;
b9b39b62 1036
738a8f4b
BH
1037 /* Find the packet protocol and sanity-check it */
1038 state.protocol = efx_tso_check_protocol(skb);
b9b39b62
BH
1039
1040 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1041
1042 tso_start(&state, skb);
1043
1044 /* Assume that skb header area contains exactly the headers, and
1045 * all payload is in the frag list.
1046 */
23d9e60b 1047 if (skb_headlen(skb) == state.header_len) {
b9b39b62
BH
1048 /* Grab the first payload fragment. */
1049 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1050 frag_i = 0;
ecbd95c1
BH
1051 rc = tso_get_fragment(&state, efx,
1052 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1053 if (rc)
1054 goto mem_err;
1055 } else {
ecbd95c1 1056 rc = tso_get_head_fragment(&state, efx, skb);
b9b39b62
BH
1057 if (rc)
1058 goto mem_err;
1059 frag_i = -1;
1060 }
1061
1062 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1063 goto mem_err;
1064
1065 while (1) {
1066 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
c04bfc6b
BH
1067 if (unlikely(rc)) {
1068 rc2 = NETDEV_TX_BUSY;
1069 goto unwind;
1070 }
b9b39b62
BH
1071
1072 /* Move onto the next fragment? */
23d9e60b 1073 if (state.in_len == 0) {
b9b39b62
BH
1074 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1075 /* End of payload reached. */
1076 break;
ecbd95c1
BH
1077 rc = tso_get_fragment(&state, efx,
1078 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1079 if (rc)
1080 goto mem_err;
1081 }
1082
1083 /* Start at new packet? */
1084 if (state.packet_space == 0 &&
1085 tso_start_new_packet(tx_queue, skb, &state) < 0)
1086 goto mem_err;
1087 }
1088
1089 /* Pass off to hardware */
152b6a62 1090 efx_nic_push_buffers(tx_queue);
b9b39b62
BH
1091
1092 tx_queue->tso_bursts++;
1093 return NETDEV_TX_OK;
1094
1095 mem_err:
62776d03
BH
1096 netif_err(efx, tx_err, efx->net_dev,
1097 "Out of memory for TSO headers, or PCI mapping error\n");
9bc183d7 1098 dev_kfree_skb_any(skb);
b9b39b62
BH
1099
1100 unwind:
5988b63a 1101 /* Free the DMA mapping we were in the process of writing out */
23d9e60b
BH
1102 if (state.unmap_len) {
1103 if (state.unmap_single)
1104 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1105 state.unmap_len, PCI_DMA_TODEVICE);
ecbd95c1 1106 else
23d9e60b
BH
1107 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1108 state.unmap_len, PCI_DMA_TODEVICE);
ecbd95c1 1109 }
5988b63a 1110
b9b39b62
BH
1111 efx_enqueue_unwind(tx_queue);
1112 return rc2;
1113}
1114
1115
1116/*
1117 * Free up all TSO datastructures associated with tx_queue. This
1118 * routine should be called only once the tx_queue is both empty and
1119 * will no longer be used.
1120 */
1121static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1122{
1123 unsigned i;
1124
b3475645 1125 if (tx_queue->buffer) {
ecc910f5 1126 for (i = 0; i <= tx_queue->ptr_mask; ++i)
b9b39b62 1127 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
b3475645 1128 }
b9b39b62
BH
1129
1130 while (tx_queue->tso_headers_free != NULL)
1131 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1132 tx_queue->efx->pci_dev);
1133}