]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/sfc/tx.c
sfc: Allow for additional checksum offload features
[mirror_ubuntu-artful-kernel.git] / drivers / net / sfc / tx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
15#include <linux/if_ether.h>
16#include <linux/highmem.h>
17#include "net_driver.h"
8ceee660
BH
18#include "efx.h"
19#include "falcon.h"
20#include "workarounds.h"
21
22/*
23 * TX descriptor ring full threshold
24 *
25 * The tx_queue descriptor ring fill-level must fall below this value
26 * before we restart the netif queue
27 */
3ffeabdd 28#define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
8ceee660
BH
29
30/* We want to be able to nest calls to netif_stop_queue(), since each
31 * channel can have an individual stop on the queue.
32 */
33void efx_stop_queue(struct efx_nic *efx)
34{
35 spin_lock_bh(&efx->netif_stop_lock);
36 EFX_TRACE(efx, "stop TX queue\n");
37
38 atomic_inc(&efx->netif_stop_count);
39 netif_stop_queue(efx->net_dev);
40
41 spin_unlock_bh(&efx->netif_stop_lock);
42}
43
44/* Wake netif's TX queue
45 * We want to be able to nest calls to netif_stop_queue(), since each
46 * channel can have an individual stop on the queue.
47 */
4d566063 48void efx_wake_queue(struct efx_nic *efx)
8ceee660
BH
49{
50 local_bh_disable();
51 if (atomic_dec_and_lock(&efx->netif_stop_count,
52 &efx->netif_stop_lock)) {
53 EFX_TRACE(efx, "waking TX queue\n");
54 netif_wake_queue(efx->net_dev);
55 spin_unlock(&efx->netif_stop_lock);
56 }
57 local_bh_enable();
58}
59
4d566063
BH
60static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
61 struct efx_tx_buffer *buffer)
8ceee660
BH
62{
63 if (buffer->unmap_len) {
64 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
cc12dac2
BH
65 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
66 buffer->unmap_len);
8ceee660 67 if (buffer->unmap_single)
cc12dac2
BH
68 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
69 PCI_DMA_TODEVICE);
8ceee660 70 else
cc12dac2
BH
71 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
72 PCI_DMA_TODEVICE);
8ceee660 73 buffer->unmap_len = 0;
dc8cfa55 74 buffer->unmap_single = false;
8ceee660
BH
75 }
76
77 if (buffer->skb) {
78 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
79 buffer->skb = NULL;
80 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
81 "complete\n", tx_queue->queue, read_ptr);
82 }
83}
84
b9b39b62
BH
85/**
86 * struct efx_tso_header - a DMA mapped buffer for packet headers
87 * @next: Linked list of free ones.
88 * The list is protected by the TX queue lock.
89 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
90 * @dma_addr: The DMA address of the header below.
91 *
92 * This controls the memory used for a TSO header. Use TSOH_DATA()
93 * to find the packet header data. Use TSOH_SIZE() to calculate the
94 * total size required for a given packet header length. TSO headers
95 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
96 */
97struct efx_tso_header {
98 union {
99 struct efx_tso_header *next;
100 size_t unmap_len;
101 };
102 dma_addr_t dma_addr;
103};
104
105static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 106 struct sk_buff *skb);
b9b39b62
BH
107static void efx_fini_tso(struct efx_tx_queue *tx_queue);
108static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
109 struct efx_tso_header *tsoh);
110
4d566063
BH
111static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
112 struct efx_tx_buffer *buffer)
b9b39b62
BH
113{
114 if (buffer->tsoh) {
115 if (likely(!buffer->tsoh->unmap_len)) {
116 buffer->tsoh->next = tx_queue->tso_headers_free;
117 tx_queue->tso_headers_free = buffer->tsoh;
118 } else {
119 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
120 }
121 buffer->tsoh = NULL;
122 }
123}
124
8ceee660 125
63f19884
BH
126static inline unsigned
127efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
128{
129 /* Depending on the NIC revision, we can use descriptor
130 * lengths up to 8K or 8K-1. However, since PCI Express
131 * devices must split read requests at 4K boundaries, there is
132 * little benefit from using descriptors that cross those
133 * boundaries and we keep things simple by not doing so.
134 */
135 unsigned len = (~dma_addr & 0xfff) + 1;
136
137 /* Work around hardware bug for unaligned buffers. */
138 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
139 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
140
141 return len;
142}
143
8ceee660
BH
144/*
145 * Add a socket buffer to a TX queue
146 *
147 * This maps all fragments of a socket buffer for DMA and adds them to
148 * the TX queue. The queue's insert pointer will be incremented by
149 * the number of fragments in the socket buffer.
150 *
151 * If any DMA mapping fails, any mapped fragments will be unmapped,
152 * the queue's insert pointer will be restored to its original value.
153 *
497f5ba3
BH
154 * This function is split out from efx_hard_start_xmit to allow the
155 * loopback test to direct packets via specific TX queues.
156 *
8ceee660
BH
157 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
158 * You must hold netif_tx_lock() to call this function.
159 */
497f5ba3 160netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
8ceee660
BH
161{
162 struct efx_nic *efx = tx_queue->efx;
163 struct pci_dev *pci_dev = efx->pci_dev;
164 struct efx_tx_buffer *buffer;
165 skb_frag_t *fragment;
166 struct page *page;
167 int page_offset;
63f19884 168 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
8ceee660
BH
169 dma_addr_t dma_addr, unmap_addr = 0;
170 unsigned int dma_len;
dc8cfa55 171 bool unmap_single;
8ceee660 172 int q_space, i = 0;
61357325 173 netdev_tx_t rc = NETDEV_TX_OK;
8ceee660
BH
174
175 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
176
9bc183d7 177 if (skb_shinfo(skb)->gso_size)
b9b39b62
BH
178 return efx_enqueue_skb_tso(tx_queue, skb);
179
8ceee660
BH
180 /* Get size of the initial fragment */
181 len = skb_headlen(skb);
182
bb145a9e
BH
183 /* Pad if necessary */
184 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
185 EFX_BUG_ON_PARANOID(skb->data_len);
186 len = 32 + 1;
187 if (skb_pad(skb, len - skb->len))
188 return NETDEV_TX_OK;
189 }
190
8ceee660 191 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
3ffeabdd 192 q_space = EFX_TXQ_MASK - 1 - fill_level;
8ceee660
BH
193
194 /* Map for DMA. Use pci_map_single rather than pci_map_page
195 * since this is more efficient on machines with sparse
196 * memory.
197 */
dc8cfa55 198 unmap_single = true;
8ceee660
BH
199 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
200
201 /* Process all fragments */
202 while (1) {
8d8bb39b 203 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
8ceee660
BH
204 goto pci_err;
205
206 /* Store fields for marking in the per-fragment final
207 * descriptor */
208 unmap_len = len;
209 unmap_addr = dma_addr;
210
211 /* Add to TX queue, splitting across DMA boundaries */
212 do {
213 if (unlikely(q_space-- <= 0)) {
214 /* It might be that completions have
215 * happened since the xmit path last
216 * checked. Update the xmit path's
217 * copy of read_count.
218 */
219 ++tx_queue->stopped;
220 /* This memory barrier protects the
221 * change of stopped from the access
222 * of read_count. */
223 smp_mb();
224 tx_queue->old_read_count =
225 *(volatile unsigned *)
226 &tx_queue->read_count;
227 fill_level = (tx_queue->insert_count
228 - tx_queue->old_read_count);
3ffeabdd 229 q_space = EFX_TXQ_MASK - 1 - fill_level;
8ceee660
BH
230 if (unlikely(q_space-- <= 0))
231 goto stop;
232 smp_mb();
233 --tx_queue->stopped;
234 }
235
3ffeabdd 236 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
8ceee660 237 buffer = &tx_queue->buffer[insert_ptr];
b9b39b62
BH
238 efx_tsoh_free(tx_queue, buffer);
239 EFX_BUG_ON_PARANOID(buffer->tsoh);
8ceee660
BH
240 EFX_BUG_ON_PARANOID(buffer->skb);
241 EFX_BUG_ON_PARANOID(buffer->len);
dc8cfa55 242 EFX_BUG_ON_PARANOID(!buffer->continuation);
8ceee660
BH
243 EFX_BUG_ON_PARANOID(buffer->unmap_len);
244
63f19884
BH
245 dma_len = efx_max_tx_len(efx, dma_addr);
246 if (likely(dma_len >= len))
8ceee660
BH
247 dma_len = len;
248
8ceee660
BH
249 /* Fill out per descriptor fields */
250 buffer->len = dma_len;
251 buffer->dma_addr = dma_addr;
252 len -= dma_len;
253 dma_addr += dma_len;
254 ++tx_queue->insert_count;
255 } while (len);
256
257 /* Transfer ownership of the unmapping to the final buffer */
8ceee660
BH
258 buffer->unmap_single = unmap_single;
259 buffer->unmap_len = unmap_len;
260 unmap_len = 0;
261
262 /* Get address and size of next fragment */
263 if (i >= skb_shinfo(skb)->nr_frags)
264 break;
265 fragment = &skb_shinfo(skb)->frags[i];
266 len = fragment->size;
267 page = fragment->page;
268 page_offset = fragment->page_offset;
269 i++;
270 /* Map for DMA */
dc8cfa55 271 unmap_single = false;
8ceee660
BH
272 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
273 PCI_DMA_TODEVICE);
274 }
275
276 /* Transfer ownership of the skb to the final buffer */
277 buffer->skb = skb;
dc8cfa55 278 buffer->continuation = false;
8ceee660
BH
279
280 /* Pass off to hardware */
152b6a62 281 efx_nic_push_buffers(tx_queue);
8ceee660
BH
282
283 return NETDEV_TX_OK;
284
285 pci_err:
286 EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
287 "fragments for DMA\n", tx_queue->queue, skb->len,
288 skb_shinfo(skb)->nr_frags + 1);
289
290 /* Mark the packet as transmitted, and free the SKB ourselves */
9bc183d7 291 dev_kfree_skb_any(skb);
8ceee660
BH
292 goto unwind;
293
294 stop:
295 rc = NETDEV_TX_BUSY;
296
297 if (tx_queue->stopped == 1)
298 efx_stop_queue(efx);
299
300 unwind:
301 /* Work backwards until we hit the original insert pointer value */
302 while (tx_queue->insert_count != tx_queue->write_count) {
303 --tx_queue->insert_count;
3ffeabdd 304 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
8ceee660
BH
305 buffer = &tx_queue->buffer[insert_ptr];
306 efx_dequeue_buffer(tx_queue, buffer);
307 buffer->len = 0;
308 }
309
310 /* Free the fragment we were mid-way through pushing */
ecbd95c1
BH
311 if (unmap_len) {
312 if (unmap_single)
313 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
314 PCI_DMA_TODEVICE);
315 else
316 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
317 PCI_DMA_TODEVICE);
318 }
8ceee660
BH
319
320 return rc;
321}
322
323/* Remove packets from the TX queue
324 *
325 * This removes packets from the TX queue, up to and including the
326 * specified index.
327 */
4d566063
BH
328static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
329 unsigned int index)
8ceee660
BH
330{
331 struct efx_nic *efx = tx_queue->efx;
332 unsigned int stop_index, read_ptr;
8ceee660 333
3ffeabdd
BH
334 stop_index = (index + 1) & EFX_TXQ_MASK;
335 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
8ceee660
BH
336
337 while (read_ptr != stop_index) {
338 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
339 if (unlikely(buffer->len == 0)) {
340 EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
341 "completion id %x\n", tx_queue->queue,
342 read_ptr);
343 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
344 return;
345 }
346
347 efx_dequeue_buffer(tx_queue, buffer);
dc8cfa55 348 buffer->continuation = true;
8ceee660
BH
349 buffer->len = 0;
350
351 ++tx_queue->read_count;
3ffeabdd 352 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
8ceee660
BH
353 }
354}
355
8ceee660
BH
356/* Initiate a packet transmission. We use one channel per CPU
357 * (sharing when we have more CPUs than channels). On Falcon, the TX
358 * completion events will be directed back to the CPU that transmitted
359 * the packet, which should be cache-efficient.
360 *
361 * Context: non-blocking.
362 * Note that returning anything other than NETDEV_TX_OK will cause the
363 * OS to free the skb.
364 */
61357325
SH
365netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
366 struct net_device *net_dev)
8ceee660 367{
767e468c 368 struct efx_nic *efx = netdev_priv(net_dev);
60ac1065
BH
369 struct efx_tx_queue *tx_queue;
370
a7ef5933
BH
371 if (unlikely(efx->port_inhibited))
372 return NETDEV_TX_BUSY;
373
60ac1065
BH
374 if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
375 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
376 else
377 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];
378
497f5ba3 379 return efx_enqueue_skb(tx_queue, skb);
8ceee660
BH
380}
381
382void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
383{
384 unsigned fill_level;
385 struct efx_nic *efx = tx_queue->efx;
386
3ffeabdd 387 EFX_BUG_ON_PARANOID(index > EFX_TXQ_MASK);
8ceee660
BH
388
389 efx_dequeue_buffers(tx_queue, index);
390
391 /* See if we need to restart the netif queue. This barrier
392 * separates the update of read_count from the test of
393 * stopped. */
394 smp_mb();
32d76007 395 if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
8ceee660 396 fill_level = tx_queue->insert_count - tx_queue->read_count;
3ffeabdd 397 if (fill_level < EFX_TXQ_THRESHOLD) {
55668611 398 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
8ceee660
BH
399
400 /* Do this under netif_tx_lock(), to avoid racing
401 * with efx_xmit(). */
402 netif_tx_lock(efx->net_dev);
403 if (tx_queue->stopped) {
404 tx_queue->stopped = 0;
405 efx_wake_queue(efx);
406 }
407 netif_tx_unlock(efx->net_dev);
408 }
409 }
410}
411
412int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
413{
414 struct efx_nic *efx = tx_queue->efx;
415 unsigned int txq_size;
416 int i, rc;
417
418 EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
419
420 /* Allocate software ring */
3ffeabdd 421 txq_size = EFX_TXQ_SIZE * sizeof(*tx_queue->buffer);
8ceee660 422 tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
60ac1065
BH
423 if (!tx_queue->buffer)
424 return -ENOMEM;
3ffeabdd 425 for (i = 0; i <= EFX_TXQ_MASK; ++i)
dc8cfa55 426 tx_queue->buffer[i].continuation = true;
8ceee660
BH
427
428 /* Allocate hardware ring */
152b6a62 429 rc = efx_nic_probe_tx(tx_queue);
8ceee660 430 if (rc)
60ac1065 431 goto fail;
8ceee660
BH
432
433 return 0;
434
60ac1065 435 fail:
8ceee660
BH
436 kfree(tx_queue->buffer);
437 tx_queue->buffer = NULL;
8ceee660
BH
438 return rc;
439}
440
bc3c90a2 441void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
442{
443 EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
444
445 tx_queue->insert_count = 0;
446 tx_queue->write_count = 0;
447 tx_queue->read_count = 0;
448 tx_queue->old_read_count = 0;
449 BUG_ON(tx_queue->stopped);
450
451 /* Set up TX descriptor ring */
152b6a62 452 efx_nic_init_tx(tx_queue);
8ceee660
BH
453}
454
455void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
456{
457 struct efx_tx_buffer *buffer;
458
459 if (!tx_queue->buffer)
460 return;
461
462 /* Free any buffers left in the ring */
463 while (tx_queue->read_count != tx_queue->write_count) {
3ffeabdd 464 buffer = &tx_queue->buffer[tx_queue->read_count & EFX_TXQ_MASK];
8ceee660 465 efx_dequeue_buffer(tx_queue, buffer);
dc8cfa55 466 buffer->continuation = true;
8ceee660
BH
467 buffer->len = 0;
468
469 ++tx_queue->read_count;
470 }
471}
472
473void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
474{
475 EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
476
477 /* Flush TX queue, remove descriptor ring */
152b6a62 478 efx_nic_fini_tx(tx_queue);
8ceee660
BH
479
480 efx_release_tx_buffers(tx_queue);
481
b9b39b62
BH
482 /* Free up TSO header cache */
483 efx_fini_tso(tx_queue);
484
8ceee660
BH
485 /* Release queue's stop on port, if any */
486 if (tx_queue->stopped) {
487 tx_queue->stopped = 0;
488 efx_wake_queue(tx_queue->efx);
489 }
490}
491
492void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
493{
494 EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
152b6a62 495 efx_nic_remove_tx(tx_queue);
8ceee660
BH
496
497 kfree(tx_queue->buffer);
498 tx_queue->buffer = NULL;
8ceee660
BH
499}
500
501
b9b39b62
BH
502/* Efx TCP segmentation acceleration.
503 *
504 * Why? Because by doing it here in the driver we can go significantly
505 * faster than the GSO.
506 *
507 * Requires TX checksum offload support.
508 */
509
510/* Number of bytes inserted at the start of a TSO header buffer,
511 * similar to NET_IP_ALIGN.
512 */
13e9ab11 513#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
b9b39b62
BH
514#define TSOH_OFFSET 0
515#else
516#define TSOH_OFFSET NET_IP_ALIGN
517#endif
518
519#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
520
521/* Total size of struct efx_tso_header, buffer and padding */
522#define TSOH_SIZE(hdr_len) \
523 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
524
525/* Size of blocks on free list. Larger blocks must be allocated from
526 * the heap.
527 */
528#define TSOH_STD_SIZE 128
529
530#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
531#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
532#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
533#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
534
535/**
536 * struct tso_state - TSO state for an SKB
23d9e60b 537 * @out_len: Remaining length in current segment
b9b39b62 538 * @seqnum: Current sequence number
23d9e60b 539 * @ipv4_id: Current IPv4 ID, host endian
b9b39b62 540 * @packet_space: Remaining space in current packet
23d9e60b
BH
541 * @dma_addr: DMA address of current position
542 * @in_len: Remaining length in current SKB fragment
543 * @unmap_len: Length of SKB fragment
544 * @unmap_addr: DMA address of SKB fragment
545 * @unmap_single: DMA single vs page mapping flag
546 * @header_len: Number of bytes of header
547 * @full_packet_size: Number of bytes to put in each outgoing segment
b9b39b62
BH
548 *
549 * The state used during segmentation. It is put into this data structure
550 * just to make it easy to pass into inline functions.
551 */
552struct tso_state {
23d9e60b
BH
553 /* Output position */
554 unsigned out_len;
b9b39b62 555 unsigned seqnum;
23d9e60b 556 unsigned ipv4_id;
b9b39b62
BH
557 unsigned packet_space;
558
23d9e60b
BH
559 /* Input position */
560 dma_addr_t dma_addr;
561 unsigned in_len;
562 unsigned unmap_len;
563 dma_addr_t unmap_addr;
564 bool unmap_single;
565
566 unsigned header_len;
567 int full_packet_size;
b9b39b62
BH
568};
569
570
571/*
572 * Verify that our various assumptions about sk_buffs and the conditions
573 * under which TSO will be attempted hold true.
574 */
740847da 575static void efx_tso_check_safe(struct sk_buff *skb)
b9b39b62 576{
740847da
BH
577 __be16 protocol = skb->protocol;
578
b9b39b62 579 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
740847da
BH
580 protocol);
581 if (protocol == htons(ETH_P_8021Q)) {
582 /* Find the encapsulated protocol; reset network header
583 * and transport header based on that. */
584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
585 protocol = veh->h_vlan_encapsulated_proto;
586 skb_set_network_header(skb, sizeof(*veh));
587 if (protocol == htons(ETH_P_IP))
588 skb_set_transport_header(skb, sizeof(*veh) +
589 4 * ip_hdr(skb)->ihl);
590 }
591
592 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IP));
b9b39b62
BH
593 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
594 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
595 + (tcp_hdr(skb)->doff << 2u)) >
596 skb_headlen(skb));
597}
598
599
600/*
601 * Allocate a page worth of efx_tso_header structures, and string them
602 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
603 */
604static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
605{
606
607 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
608 struct efx_tso_header *tsoh;
609 dma_addr_t dma_addr;
610 u8 *base_kva, *kva;
611
612 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
613 if (base_kva == NULL) {
614 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
615 " headers\n");
616 return -ENOMEM;
617 }
618
619 /* pci_alloc_consistent() allocates pages. */
620 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
621
622 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
623 tsoh = (struct efx_tso_header *)kva;
624 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
625 tsoh->next = tx_queue->tso_headers_free;
626 tx_queue->tso_headers_free = tsoh;
627 }
628
629 return 0;
630}
631
632
633/* Free up a TSO header, and all others in the same page. */
634static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
635 struct efx_tso_header *tsoh,
636 struct pci_dev *pci_dev)
637{
638 struct efx_tso_header **p;
639 unsigned long base_kva;
640 dma_addr_t base_dma;
641
642 base_kva = (unsigned long)tsoh & PAGE_MASK;
643 base_dma = tsoh->dma_addr & PAGE_MASK;
644
645 p = &tx_queue->tso_headers_free;
b3475645 646 while (*p != NULL) {
b9b39b62
BH
647 if (((unsigned long)*p & PAGE_MASK) == base_kva)
648 *p = (*p)->next;
649 else
650 p = &(*p)->next;
b3475645 651 }
b9b39b62
BH
652
653 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
654}
655
656static struct efx_tso_header *
657efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
658{
659 struct efx_tso_header *tsoh;
660
661 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
662 if (unlikely(!tsoh))
663 return NULL;
664
665 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
666 TSOH_BUFFER(tsoh), header_len,
667 PCI_DMA_TODEVICE);
8d8bb39b
FT
668 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
669 tsoh->dma_addr))) {
b9b39b62
BH
670 kfree(tsoh);
671 return NULL;
672 }
673
674 tsoh->unmap_len = header_len;
675 return tsoh;
676}
677
678static void
679efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
680{
681 pci_unmap_single(tx_queue->efx->pci_dev,
682 tsoh->dma_addr, tsoh->unmap_len,
683 PCI_DMA_TODEVICE);
684 kfree(tsoh);
685}
686
687/**
688 * efx_tx_queue_insert - push descriptors onto the TX queue
689 * @tx_queue: Efx TX queue
690 * @dma_addr: DMA address of fragment
691 * @len: Length of fragment
ecbd95c1 692 * @final_buffer: The final buffer inserted into the queue
b9b39b62
BH
693 *
694 * Push descriptors onto the TX queue. Return 0 on success or 1 if
695 * @tx_queue full.
696 */
697static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
698 dma_addr_t dma_addr, unsigned len,
ecbd95c1 699 struct efx_tx_buffer **final_buffer)
b9b39b62
BH
700{
701 struct efx_tx_buffer *buffer;
702 struct efx_nic *efx = tx_queue->efx;
63f19884 703 unsigned dma_len, fill_level, insert_ptr;
b9b39b62
BH
704 int q_space;
705
706 EFX_BUG_ON_PARANOID(len <= 0);
707
708 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
709 /* -1 as there is no way to represent all descriptors used */
3ffeabdd 710 q_space = EFX_TXQ_MASK - 1 - fill_level;
b9b39b62
BH
711
712 while (1) {
713 if (unlikely(q_space-- <= 0)) {
714 /* It might be that completions have happened
715 * since the xmit path last checked. Update
716 * the xmit path's copy of read_count.
717 */
718 ++tx_queue->stopped;
719 /* This memory barrier protects the change of
720 * stopped from the access of read_count. */
721 smp_mb();
722 tx_queue->old_read_count =
723 *(volatile unsigned *)&tx_queue->read_count;
724 fill_level = (tx_queue->insert_count
725 - tx_queue->old_read_count);
3ffeabdd 726 q_space = EFX_TXQ_MASK - 1 - fill_level;
ecbd95c1
BH
727 if (unlikely(q_space-- <= 0)) {
728 *final_buffer = NULL;
b9b39b62 729 return 1;
ecbd95c1 730 }
b9b39b62
BH
731 smp_mb();
732 --tx_queue->stopped;
733 }
734
3ffeabdd 735 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
b9b39b62
BH
736 buffer = &tx_queue->buffer[insert_ptr];
737 ++tx_queue->insert_count;
738
739 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
740 tx_queue->read_count >
3ffeabdd 741 EFX_TXQ_MASK);
b9b39b62
BH
742
743 efx_tsoh_free(tx_queue, buffer);
744 EFX_BUG_ON_PARANOID(buffer->len);
745 EFX_BUG_ON_PARANOID(buffer->unmap_len);
746 EFX_BUG_ON_PARANOID(buffer->skb);
dc8cfa55 747 EFX_BUG_ON_PARANOID(!buffer->continuation);
b9b39b62
BH
748 EFX_BUG_ON_PARANOID(buffer->tsoh);
749
750 buffer->dma_addr = dma_addr;
751
63f19884 752 dma_len = efx_max_tx_len(efx, dma_addr);
b9b39b62
BH
753
754 /* If there is enough space to send then do so */
755 if (dma_len >= len)
756 break;
757
758 buffer->len = dma_len; /* Don't set the other members */
759 dma_addr += dma_len;
760 len -= dma_len;
761 }
762
763 EFX_BUG_ON_PARANOID(!len);
764 buffer->len = len;
ecbd95c1 765 *final_buffer = buffer;
b9b39b62
BH
766 return 0;
767}
768
769
770/*
771 * Put a TSO header into the TX queue.
772 *
773 * This is special-cased because we know that it is small enough to fit in
774 * a single fragment, and we know it doesn't cross a page boundary. It
775 * also allows us to not worry about end-of-packet etc.
776 */
4d566063
BH
777static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
778 struct efx_tso_header *tsoh, unsigned len)
b9b39b62
BH
779{
780 struct efx_tx_buffer *buffer;
781
3ffeabdd 782 buffer = &tx_queue->buffer[tx_queue->insert_count & EFX_TXQ_MASK];
b9b39b62
BH
783 efx_tsoh_free(tx_queue, buffer);
784 EFX_BUG_ON_PARANOID(buffer->len);
785 EFX_BUG_ON_PARANOID(buffer->unmap_len);
786 EFX_BUG_ON_PARANOID(buffer->skb);
dc8cfa55 787 EFX_BUG_ON_PARANOID(!buffer->continuation);
b9b39b62
BH
788 EFX_BUG_ON_PARANOID(buffer->tsoh);
789 buffer->len = len;
790 buffer->dma_addr = tsoh->dma_addr;
791 buffer->tsoh = tsoh;
792
793 ++tx_queue->insert_count;
794}
795
796
797/* Remove descriptors put into a tx_queue. */
798static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
799{
800 struct efx_tx_buffer *buffer;
cc12dac2 801 dma_addr_t unmap_addr;
b9b39b62
BH
802
803 /* Work backwards until we hit the original insert pointer value */
804 while (tx_queue->insert_count != tx_queue->write_count) {
805 --tx_queue->insert_count;
806 buffer = &tx_queue->buffer[tx_queue->insert_count &
3ffeabdd 807 EFX_TXQ_MASK];
b9b39b62
BH
808 efx_tsoh_free(tx_queue, buffer);
809 EFX_BUG_ON_PARANOID(buffer->skb);
810 buffer->len = 0;
dc8cfa55 811 buffer->continuation = true;
b9b39b62 812 if (buffer->unmap_len) {
cc12dac2
BH
813 unmap_addr = (buffer->dma_addr + buffer->len -
814 buffer->unmap_len);
ecbd95c1
BH
815 if (buffer->unmap_single)
816 pci_unmap_single(tx_queue->efx->pci_dev,
cc12dac2 817 unmap_addr, buffer->unmap_len,
ecbd95c1
BH
818 PCI_DMA_TODEVICE);
819 else
820 pci_unmap_page(tx_queue->efx->pci_dev,
cc12dac2 821 unmap_addr, buffer->unmap_len,
ecbd95c1 822 PCI_DMA_TODEVICE);
b9b39b62
BH
823 buffer->unmap_len = 0;
824 }
825 }
826}
827
828
829/* Parse the SKB header and initialise state. */
4d566063 830static void tso_start(struct tso_state *st, const struct sk_buff *skb)
b9b39b62
BH
831{
832 /* All ethernet/IP/TCP headers combined size is TCP header size
833 * plus offset of TCP header relative to start of packet.
834 */
23d9e60b
BH
835 st->header_len = ((tcp_hdr(skb)->doff << 2u)
836 + PTR_DIFF(tcp_hdr(skb), skb->data));
837 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
b9b39b62 838
23d9e60b 839 st->ipv4_id = ntohs(ip_hdr(skb)->id);
b9b39b62
BH
840 st->seqnum = ntohl(tcp_hdr(skb)->seq);
841
842 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
843 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
844 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
845
23d9e60b
BH
846 st->packet_space = st->full_packet_size;
847 st->out_len = skb->len - st->header_len;
848 st->unmap_len = 0;
849 st->unmap_single = false;
b9b39b62
BH
850}
851
4d566063
BH
852static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
853 skb_frag_t *frag)
b9b39b62 854{
23d9e60b
BH
855 st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
856 frag->page_offset, frag->size,
857 PCI_DMA_TODEVICE);
858 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
859 st->unmap_single = false;
860 st->unmap_len = frag->size;
861 st->in_len = frag->size;
862 st->dma_addr = st->unmap_addr;
ecbd95c1
BH
863 return 0;
864 }
865 return -ENOMEM;
866}
867
4d566063
BH
868static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
869 const struct sk_buff *skb)
ecbd95c1 870{
23d9e60b 871 int hl = st->header_len;
ecbd95c1 872 int len = skb_headlen(skb) - hl;
b9b39b62 873
23d9e60b
BH
874 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
875 len, PCI_DMA_TODEVICE);
876 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
877 st->unmap_single = true;
878 st->unmap_len = len;
879 st->in_len = len;
880 st->dma_addr = st->unmap_addr;
b9b39b62
BH
881 return 0;
882 }
883 return -ENOMEM;
884}
885
886
887/**
888 * tso_fill_packet_with_fragment - form descriptors for the current fragment
889 * @tx_queue: Efx TX queue
890 * @skb: Socket buffer
891 * @st: TSO state
892 *
893 * Form descriptors for the current fragment, until we reach the end
894 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
895 * space in @tx_queue.
896 */
4d566063
BH
897static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
898 const struct sk_buff *skb,
899 struct tso_state *st)
b9b39b62 900{
ecbd95c1 901 struct efx_tx_buffer *buffer;
b9b39b62
BH
902 int n, end_of_packet, rc;
903
23d9e60b 904 if (st->in_len == 0)
b9b39b62
BH
905 return 0;
906 if (st->packet_space == 0)
907 return 0;
908
23d9e60b 909 EFX_BUG_ON_PARANOID(st->in_len <= 0);
b9b39b62
BH
910 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
911
23d9e60b 912 n = min(st->in_len, st->packet_space);
b9b39b62
BH
913
914 st->packet_space -= n;
23d9e60b
BH
915 st->out_len -= n;
916 st->in_len -= n;
b9b39b62 917
23d9e60b 918 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
ecbd95c1 919 if (likely(rc == 0)) {
23d9e60b 920 if (st->out_len == 0)
ecbd95c1
BH
921 /* Transfer ownership of the skb */
922 buffer->skb = skb;
b9b39b62 923
23d9e60b 924 end_of_packet = st->out_len == 0 || st->packet_space == 0;
ecbd95c1 925 buffer->continuation = !end_of_packet;
b9b39b62 926
23d9e60b 927 if (st->in_len == 0) {
ecbd95c1 928 /* Transfer ownership of the pci mapping */
23d9e60b
BH
929 buffer->unmap_len = st->unmap_len;
930 buffer->unmap_single = st->unmap_single;
931 st->unmap_len = 0;
ecbd95c1
BH
932 }
933 }
934
23d9e60b 935 st->dma_addr += n;
b9b39b62
BH
936 return rc;
937}
938
939
940/**
941 * tso_start_new_packet - generate a new header and prepare for the new packet
942 * @tx_queue: Efx TX queue
943 * @skb: Socket buffer
944 * @st: TSO state
945 *
946 * Generate a new header and prepare for the new packet. Return 0 on
947 * success, or -1 if failed to alloc header.
948 */
4d566063
BH
949static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
950 const struct sk_buff *skb,
951 struct tso_state *st)
b9b39b62
BH
952{
953 struct efx_tso_header *tsoh;
954 struct iphdr *tsoh_iph;
955 struct tcphdr *tsoh_th;
956 unsigned ip_length;
957 u8 *header;
958
959 /* Allocate a DMA-mapped header buffer. */
23d9e60b 960 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
b3475645 961 if (tx_queue->tso_headers_free == NULL) {
b9b39b62
BH
962 if (efx_tsoh_block_alloc(tx_queue))
963 return -1;
b3475645 964 }
b9b39b62
BH
965 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
966 tsoh = tx_queue->tso_headers_free;
967 tx_queue->tso_headers_free = tsoh->next;
968 tsoh->unmap_len = 0;
969 } else {
970 tx_queue->tso_long_headers++;
23d9e60b 971 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
b9b39b62
BH
972 if (unlikely(!tsoh))
973 return -1;
974 }
975
976 header = TSOH_BUFFER(tsoh);
977 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
978 tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));
979
980 /* Copy and update the headers. */
23d9e60b 981 memcpy(header, skb->data, st->header_len);
b9b39b62
BH
982
983 tsoh_th->seq = htonl(st->seqnum);
984 st->seqnum += skb_shinfo(skb)->gso_size;
23d9e60b 985 if (st->out_len > skb_shinfo(skb)->gso_size) {
b9b39b62 986 /* This packet will not finish the TSO burst. */
23d9e60b 987 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
b9b39b62
BH
988 tsoh_th->fin = 0;
989 tsoh_th->psh = 0;
990 } else {
991 /* This packet will be the last in the TSO burst. */
23d9e60b 992 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
b9b39b62
BH
993 tsoh_th->fin = tcp_hdr(skb)->fin;
994 tsoh_th->psh = tcp_hdr(skb)->psh;
995 }
996 tsoh_iph->tot_len = htons(ip_length);
997
998 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
23d9e60b
BH
999 tsoh_iph->id = htons(st->ipv4_id);
1000 st->ipv4_id++;
b9b39b62
BH
1001
1002 st->packet_space = skb_shinfo(skb)->gso_size;
1003 ++tx_queue->tso_packets;
1004
1005 /* Form a descriptor for this header. */
23d9e60b 1006 efx_tso_put_header(tx_queue, tsoh, st->header_len);
b9b39b62
BH
1007
1008 return 0;
1009}
1010
1011
1012/**
1013 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1014 * @tx_queue: Efx TX queue
1015 * @skb: Socket buffer
1016 *
1017 * Context: You must hold netif_tx_lock() to call this function.
1018 *
1019 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1020 * @skb was not enqueued. In all cases @skb is consumed. Return
1021 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1022 */
1023static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 1024 struct sk_buff *skb)
b9b39b62 1025{
ecbd95c1 1026 struct efx_nic *efx = tx_queue->efx;
b9b39b62
BH
1027 int frag_i, rc, rc2 = NETDEV_TX_OK;
1028 struct tso_state state;
b9b39b62
BH
1029
1030 /* Verify TSO is safe - these checks should never fail. */
1031 efx_tso_check_safe(skb);
1032
1033 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1034
1035 tso_start(&state, skb);
1036
1037 /* Assume that skb header area contains exactly the headers, and
1038 * all payload is in the frag list.
1039 */
23d9e60b 1040 if (skb_headlen(skb) == state.header_len) {
b9b39b62
BH
1041 /* Grab the first payload fragment. */
1042 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1043 frag_i = 0;
ecbd95c1
BH
1044 rc = tso_get_fragment(&state, efx,
1045 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1046 if (rc)
1047 goto mem_err;
1048 } else {
ecbd95c1 1049 rc = tso_get_head_fragment(&state, efx, skb);
b9b39b62
BH
1050 if (rc)
1051 goto mem_err;
1052 frag_i = -1;
1053 }
1054
1055 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1056 goto mem_err;
1057
1058 while (1) {
1059 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1060 if (unlikely(rc))
1061 goto stop;
1062
1063 /* Move onto the next fragment? */
23d9e60b 1064 if (state.in_len == 0) {
b9b39b62
BH
1065 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1066 /* End of payload reached. */
1067 break;
ecbd95c1
BH
1068 rc = tso_get_fragment(&state, efx,
1069 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1070 if (rc)
1071 goto mem_err;
1072 }
1073
1074 /* Start at new packet? */
1075 if (state.packet_space == 0 &&
1076 tso_start_new_packet(tx_queue, skb, &state) < 0)
1077 goto mem_err;
1078 }
1079
1080 /* Pass off to hardware */
152b6a62 1081 efx_nic_push_buffers(tx_queue);
b9b39b62
BH
1082
1083 tx_queue->tso_bursts++;
1084 return NETDEV_TX_OK;
1085
1086 mem_err:
ecbd95c1 1087 EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
9bc183d7 1088 dev_kfree_skb_any(skb);
b9b39b62
BH
1089 goto unwind;
1090
1091 stop:
1092 rc2 = NETDEV_TX_BUSY;
1093
1094 /* Stop the queue if it wasn't stopped before. */
1095 if (tx_queue->stopped == 1)
ecbd95c1 1096 efx_stop_queue(efx);
b9b39b62
BH
1097
1098 unwind:
5988b63a 1099 /* Free the DMA mapping we were in the process of writing out */
23d9e60b
BH
1100 if (state.unmap_len) {
1101 if (state.unmap_single)
1102 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1103 state.unmap_len, PCI_DMA_TODEVICE);
ecbd95c1 1104 else
23d9e60b
BH
1105 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1106 state.unmap_len, PCI_DMA_TODEVICE);
ecbd95c1 1107 }
5988b63a 1108
b9b39b62
BH
1109 efx_enqueue_unwind(tx_queue);
1110 return rc2;
1111}
1112
1113
1114/*
1115 * Free up all TSO datastructures associated with tx_queue. This
1116 * routine should be called only once the tx_queue is both empty and
1117 * will no longer be used.
1118 */
1119static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1120{
1121 unsigned i;
1122
b3475645 1123 if (tx_queue->buffer) {
3ffeabdd 1124 for (i = 0; i <= EFX_TXQ_MASK; ++i)
b9b39b62 1125 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
b3475645 1126 }
b9b39b62
BH
1127
1128 while (tx_queue->tso_headers_free != NULL)
1129 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1130 tx_queue->efx->pci_dev);
1131}