]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/sk98lin/skge.c
[PATCH] e1000: fix for dhcp issue
[mirror_ubuntu-artful-kernel.git] / drivers / net / sk98lin / skge.c
CommitLineData
1da177e4
LT
1/******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11/******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39/******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48/******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skcsum.h"
105 * "h/skrlmt.h"
106 *
107 ******************************************************************************/
108
109#include "h/skversion.h"
110
111#include <linux/module.h>
112#include <linux/moduleparam.h>
113#include <linux/init.h>
114#include <linux/proc_fs.h>
1e7f0bd8 115#include <linux/dma-mapping.h>
1da177e4
LT
116
117#include "h/skdrv1st.h"
118#include "h/skdrv2nd.h"
119
120/*******************************************************************************
121 *
122 * Defines
123 *
124 ******************************************************************************/
125
126/* for debuging on x86 only */
127/* #define BREAKPOINT() asm(" int $3"); */
128
129/* use the transmit hw checksum driver functionality */
130#define USE_SK_TX_CHECKSUM
131
132/* use the receive hw checksum driver functionality */
133#define USE_SK_RX_CHECKSUM
134
135/* use the scatter-gather functionality with sendfile() */
136#define SK_ZEROCOPY
137
138/* use of a transmit complete interrupt */
139#define USE_TX_COMPLETE
140
141/*
142 * threshold for copying small receive frames
143 * set to 0 to avoid copying, set to 9001 to copy all frames
144 */
145#define SK_COPY_THRESHOLD 50
146
147/* number of adapters that can be configured via command line params */
148#define SK_MAX_CARD_PARAM 16
149
150
151
152/*
153 * use those defines for a compile-in version of the driver instead
154 * of command line parameters
155 */
156// #define LINK_SPEED_A {"Auto", }
157// #define LINK_SPEED_B {"Auto", }
158// #define AUTO_NEG_A {"Sense", }
159// #define AUTO_NEG_B {"Sense", }
160// #define DUP_CAP_A {"Both", }
161// #define DUP_CAP_B {"Both", }
162// #define FLOW_CTRL_A {"SymOrRem", }
163// #define FLOW_CTRL_B {"SymOrRem", }
164// #define ROLE_A {"Auto", }
165// #define ROLE_B {"Auto", }
166// #define PREF_PORT {"A", }
167// #define CON_TYPE {"Auto", }
168// #define RLMT_MODE {"CheckLinkState", }
169
170#define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
171#define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
172#define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
173
174
175/* Set blink mode*/
176#define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
177 SK_DUP_LED_NORMAL | \
178 SK_LED_LINK100_ON)
179
180
181/* Isr return value */
182#define SkIsrRetVar irqreturn_t
183#define SkIsrRetNone IRQ_NONE
184#define SkIsrRetHandled IRQ_HANDLED
185
186
187/*******************************************************************************
188 *
189 * Local Function Prototypes
190 *
191 ******************************************************************************/
192
193static void FreeResources(struct SK_NET_DEVICE *dev);
194static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
195static SK_BOOL BoardAllocMem(SK_AC *pAC);
196static void BoardFreeMem(SK_AC *pAC);
197static void BoardInitMem(SK_AC *pAC);
198static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
199static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
200static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
201static int SkGeOpen(struct SK_NET_DEVICE *dev);
202static int SkGeClose(struct SK_NET_DEVICE *dev);
203static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
204static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
205static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
206static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
207static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
208static void GetConfiguration(SK_AC*);
209static void ProductStr(SK_AC*);
210static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
211static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
212static void FillRxRing(SK_AC*, RX_PORT*);
213static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
214static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
215static void ClearAndStartRx(SK_AC*, int);
216static void ClearTxIrq(SK_AC*, int, int);
217static void ClearRxRing(SK_AC*, RX_PORT*);
218static void ClearTxRing(SK_AC*, TX_PORT*);
219static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
220static void PortReInitBmu(SK_AC*, int);
221static int SkGeIocMib(DEV_NET*, unsigned int, int);
222static int SkGeInitPCI(SK_AC *pAC);
223static void StartDrvCleanupTimer(SK_AC *pAC);
224static void StopDrvCleanupTimer(SK_AC *pAC);
225static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
226
227#ifdef SK_DIAG_SUPPORT
228static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
229static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
230static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
231#endif
232
233/*******************************************************************************
234 *
235 * Extern Function Prototypes
236 *
237 ******************************************************************************/
66600221 238static const char SKRootName[] = "net/sk98lin";
1da177e4
LT
239static struct proc_dir_entry *pSkRootDir;
240extern struct file_operations sk_proc_fops;
241
242static inline void SkGeProcCreate(struct net_device *dev)
243{
244 struct proc_dir_entry *pe;
245
246 if (pSkRootDir &&
247 (pe = create_proc_entry(dev->name, S_IRUGO, pSkRootDir))) {
248 pe->proc_fops = &sk_proc_fops;
249 pe->data = dev;
250 pe->owner = THIS_MODULE;
251 }
252}
253
254static inline void SkGeProcRemove(struct net_device *dev)
255{
256 if (pSkRootDir)
257 remove_proc_entry(dev->name, pSkRootDir);
258}
259
260extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
261extern void SkDimDisplayModerationSettings(SK_AC *pAC);
262extern void SkDimStartModerationTimer(SK_AC *pAC);
263extern void SkDimModerate(SK_AC *pAC);
264extern void SkGeBlinkTimer(unsigned long data);
265
266#ifdef DEBUG
267static void DumpMsg(struct sk_buff*, char*);
268static void DumpData(char*, int);
269static void DumpLong(char*, int);
270#endif
271
272/* global variables *********************************************************/
273static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
274extern struct ethtool_ops SkGeEthtoolOps;
275
276/* local variables **********************************************************/
277static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
278static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
279
280/*****************************************************************************
281 *
282 * SkGeInitPCI - Init the PCI resources
283 *
284 * Description:
285 * This function initialize the PCI resources and IO
286 *
287 * Returns: N/A
288 *
289 */
290int SkGeInitPCI(SK_AC *pAC)
291{
292 struct SK_NET_DEVICE *dev = pAC->dev[0];
293 struct pci_dev *pdev = pAC->PciDev;
294 int retval;
295
296 if (pci_enable_device(pdev) != 0) {
297 return 1;
298 }
299
300 dev->mem_start = pci_resource_start (pdev, 0);
301 pci_set_master(pdev);
302
303 if (pci_request_regions(pdev, pAC->Name) != 0) {
304 retval = 2;
305 goto out_disable;
306 }
307
308#ifdef SK_BIG_ENDIAN
309 /*
310 * On big endian machines, we use the adapter's aibility of
311 * reading the descriptors as big endian.
312 */
313 {
314 SK_U32 our2;
315 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
316 our2 |= PCI_REV_DESC;
317 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
318 }
319#endif
320
321 /*
322 * Remap the regs into kernel space.
323 */
324 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
325
326 if (!pAC->IoBase){
327 retval = 3;
328 goto out_release;
329 }
330
331 return 0;
332
333 out_release:
334 pci_release_regions(pdev);
335 out_disable:
336 pci_disable_device(pdev);
337 return retval;
338}
339
340
341/*****************************************************************************
342 *
343 * FreeResources - release resources allocated for adapter
344 *
345 * Description:
346 * This function releases the IRQ, unmaps the IO and
347 * frees the desriptor ring.
348 *
349 * Returns: N/A
350 *
351 */
352static void FreeResources(struct SK_NET_DEVICE *dev)
353{
354SK_U32 AllocFlag;
355DEV_NET *pNet;
356SK_AC *pAC;
357
358 pNet = netdev_priv(dev);
359 pAC = pNet->pAC;
360 AllocFlag = pAC->AllocFlag;
361 if (pAC->PciDev) {
362 pci_release_regions(pAC->PciDev);
363 }
364 if (AllocFlag & SK_ALLOC_IRQ) {
365 free_irq(dev->irq, dev);
366 }
367 if (pAC->IoBase) {
368 iounmap(pAC->IoBase);
369 }
370 if (pAC->pDescrMem) {
371 BoardFreeMem(pAC);
372 }
373
374} /* FreeResources */
375
376MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
377MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
378MODULE_LICENSE("GPL");
379
380#ifdef LINK_SPEED_A
381static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
382#else
383static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
384#endif
385
386#ifdef LINK_SPEED_B
387static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
388#else
389static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
390#endif
391
392#ifdef AUTO_NEG_A
393static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
394#else
395static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
396#endif
397
398#ifdef DUP_CAP_A
399static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
400#else
401static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
402#endif
403
404#ifdef FLOW_CTRL_A
405static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
406#else
407static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
408#endif
409
410#ifdef ROLE_A
411static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
412#else
413static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
414#endif
415
416#ifdef AUTO_NEG_B
417static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
418#else
419static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
420#endif
421
422#ifdef DUP_CAP_B
423static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
424#else
425static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
426#endif
427
428#ifdef FLOW_CTRL_B
429static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
430#else
431static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
432#endif
433
434#ifdef ROLE_B
435static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
436#else
437static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
438#endif
439
440#ifdef CON_TYPE
441static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
442#else
443static char *ConType[SK_MAX_CARD_PARAM] = {"", };
444#endif
445
446#ifdef PREF_PORT
447static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
448#else
449static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
450#endif
451
452#ifdef RLMT_MODE
453static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
454#else
455static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
456#endif
457
458static int IntsPerSec[SK_MAX_CARD_PARAM];
459static char *Moderation[SK_MAX_CARD_PARAM];
460static char *ModerationMask[SK_MAX_CARD_PARAM];
461static char *AutoSizing[SK_MAX_CARD_PARAM];
462static char *Stats[SK_MAX_CARD_PARAM];
463
464module_param_array(Speed_A, charp, NULL, 0);
465module_param_array(Speed_B, charp, NULL, 0);
466module_param_array(AutoNeg_A, charp, NULL, 0);
467module_param_array(AutoNeg_B, charp, NULL, 0);
468module_param_array(DupCap_A, charp, NULL, 0);
469module_param_array(DupCap_B, charp, NULL, 0);
470module_param_array(FlowCtrl_A, charp, NULL, 0);
471module_param_array(FlowCtrl_B, charp, NULL, 0);
472module_param_array(Role_A, charp, NULL, 0);
473module_param_array(Role_B, charp, NULL, 0);
474module_param_array(ConType, charp, NULL, 0);
475module_param_array(PrefPort, charp, NULL, 0);
476module_param_array(RlmtMode, charp, NULL, 0);
477/* used for interrupt moderation */
478module_param_array(IntsPerSec, int, NULL, 0);
479module_param_array(Moderation, charp, NULL, 0);
480module_param_array(Stats, charp, NULL, 0);
481module_param_array(ModerationMask, charp, NULL, 0);
482module_param_array(AutoSizing, charp, NULL, 0);
483
484/*****************************************************************************
485 *
486 * SkGeBoardInit - do level 0 and 1 initialization
487 *
488 * Description:
489 * This function prepares the board hardware for running. The desriptor
490 * ring is set up, the IRQ is allocated and the configuration settings
491 * are examined.
492 *
493 * Returns:
494 * 0, if everything is ok
495 * !=0, on error
496 */
497static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
498{
499short i;
500unsigned long Flags;
501char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
502char *VerStr = VER_STRING;
503int Ret; /* return code of request_irq */
504SK_BOOL DualNet;
505
506 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
507 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
508 for (i=0; i<SK_MAX_MACS; i++) {
509 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
510 pAC->TxPort[i][0].PortIndex = i;
511 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
512 pAC->RxPort[i].PortIndex = i;
513 }
514
515 /* Initialize the mutexes */
516 for (i=0; i<SK_MAX_MACS; i++) {
517 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
518 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
519 }
520 spin_lock_init(&pAC->SlowPathLock);
521
522 /* setup phy_id blink timer */
523 pAC->BlinkTimer.function = SkGeBlinkTimer;
524 pAC->BlinkTimer.data = (unsigned long) dev;
525 init_timer(&pAC->BlinkTimer);
526
527 /* level 0 init common modules here */
528
529 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
530 /* Does a RESET on board ...*/
531 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
532 printk("HWInit (0) failed.\n");
533 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
534 return(-EAGAIN);
535 }
536 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
537 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
538 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
539 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
540 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
541 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
542
543 pAC->BoardLevel = SK_INIT_DATA;
544 pAC->RxBufSize = ETH_BUF_SIZE;
545
546 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
547 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
548
549 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
550
551 /* level 1 init common modules here (HW init) */
552 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
553 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
554 printk("sk98lin: HWInit (1) failed.\n");
555 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
556 return(-EAGAIN);
557 }
558 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
559 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
560 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
561 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
562 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
563 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
564
565 /* Set chipset type support */
566 pAC->ChipsetType = 0;
567 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
568 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
569 pAC->ChipsetType = 1;
570 }
571
572 GetConfiguration(pAC);
573 if (pAC->RlmtNets == 2) {
574 pAC->GIni.GIPortUsage = SK_MUL_LINK;
575 }
576
577 pAC->BoardLevel = SK_INIT_IO;
578 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
579
580 if (pAC->GIni.GIMacsFound == 2) {
581 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
582 } else if (pAC->GIni.GIMacsFound == 1) {
583 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
584 pAC->Name, dev);
585 } else {
586 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
587 pAC->GIni.GIMacsFound);
588 return -EAGAIN;
589 }
590
591 if (Ret) {
592 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
593 dev->irq);
594 return -EAGAIN;
595 }
596 pAC->AllocFlag |= SK_ALLOC_IRQ;
597
598 /* Alloc memory for this board (Mem for RxD/TxD) : */
599 if(!BoardAllocMem(pAC)) {
600 printk("No memory for descriptor rings.\n");
601 return(-EAGAIN);
602 }
603
604 SkCsSetReceiveFlags(pAC,
605 SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
606 &pAC->CsOfs1, &pAC->CsOfs2, 0);
607 pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
608
609 BoardInitMem(pAC);
610 /* tschilling: New common function with minimum size check. */
611 DualNet = SK_FALSE;
612 if (pAC->RlmtNets == 2) {
613 DualNet = SK_TRUE;
614 }
615
616 if (SkGeInitAssignRamToQueues(
617 pAC,
618 pAC->ActivePort,
619 DualNet)) {
620 BoardFreeMem(pAC);
621 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
622 return(-EAGAIN);
623 }
624
625 return (0);
626} /* SkGeBoardInit */
627
628
629/*****************************************************************************
630 *
631 * BoardAllocMem - allocate the memory for the descriptor rings
632 *
633 * Description:
634 * This function allocates the memory for all descriptor rings.
635 * Each ring is aligned for the desriptor alignment and no ring
636 * has a 4 GByte boundary in it (because the upper 32 bit must
637 * be constant for all descriptiors in one rings).
638 *
639 * Returns:
640 * SK_TRUE, if all memory could be allocated
641 * SK_FALSE, if not
642 */
643static SK_BOOL BoardAllocMem(
644SK_AC *pAC)
645{
646caddr_t pDescrMem; /* pointer to descriptor memory area */
647size_t AllocLength; /* length of complete descriptor area */
648int i; /* loop counter */
649unsigned long BusAddr;
650
651
652 /* rings plus one for alignment (do not cross 4 GB boundary) */
653 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
654#if (BITS_PER_LONG == 32)
655 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
656#else
657 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
658 + RX_RING_SIZE + 8;
659#endif
660
661 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
662 &pAC->pDescrMemDMA);
663
664 if (pDescrMem == NULL) {
665 return (SK_FALSE);
666 }
667 pAC->pDescrMem = pDescrMem;
668 BusAddr = (unsigned long) pAC->pDescrMemDMA;
669
670 /* Descriptors need 8 byte alignment, and this is ensured
671 * by pci_alloc_consistent.
672 */
673 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
674 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
675 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
676 i, (unsigned long) pDescrMem,
677 BusAddr));
678 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
679 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
680 pDescrMem += TX_RING_SIZE;
681 BusAddr += TX_RING_SIZE;
682
683 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
684 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
685 i, (unsigned long) pDescrMem,
686 (unsigned long)BusAddr));
687 pAC->RxPort[i].pRxDescrRing = pDescrMem;
688 pAC->RxPort[i].VRxDescrRing = BusAddr;
689 pDescrMem += RX_RING_SIZE;
690 BusAddr += RX_RING_SIZE;
691 } /* for */
692
693 return (SK_TRUE);
694} /* BoardAllocMem */
695
696
697/****************************************************************************
698 *
699 * BoardFreeMem - reverse of BoardAllocMem
700 *
701 * Description:
702 * Free all memory allocated in BoardAllocMem: adapter context,
703 * descriptor rings, locks.
704 *
705 * Returns: N/A
706 */
707static void BoardFreeMem(
708SK_AC *pAC)
709{
710size_t AllocLength; /* length of complete descriptor area */
711
712 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
713 ("BoardFreeMem\n"));
714#if (BITS_PER_LONG == 32)
715 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
716#else
717 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
718 + RX_RING_SIZE + 8;
719#endif
720
721 pci_free_consistent(pAC->PciDev, AllocLength,
722 pAC->pDescrMem, pAC->pDescrMemDMA);
723 pAC->pDescrMem = NULL;
724} /* BoardFreeMem */
725
726
727/*****************************************************************************
728 *
729 * BoardInitMem - initiate the descriptor rings
730 *
731 * Description:
732 * This function sets the descriptor rings up in memory.
733 * The adapter is initialized with the descriptor start addresses.
734 *
735 * Returns: N/A
736 */
737static void BoardInitMem(
738SK_AC *pAC) /* pointer to adapter context */
739{
740int i; /* loop counter */
741int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
742int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
743
744 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
745 ("BoardInitMem\n"));
746
747 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
748 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
749 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
750 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
751
752 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
753 SetupRing(
754 pAC,
755 pAC->TxPort[i][0].pTxDescrRing,
756 pAC->TxPort[i][0].VTxDescrRing,
757 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
758 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
759 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
760 &pAC->TxPort[i][0].TxdRingFree,
761 SK_TRUE);
762 SetupRing(
763 pAC,
764 pAC->RxPort[i].pRxDescrRing,
765 pAC->RxPort[i].VRxDescrRing,
766 &pAC->RxPort[i].pRxdRingHead,
767 &pAC->RxPort[i].pRxdRingTail,
768 &pAC->RxPort[i].pRxdRingPrev,
769 &pAC->RxPort[i].RxdRingFree,
770 SK_FALSE);
771 }
772} /* BoardInitMem */
773
774
775/*****************************************************************************
776 *
777 * SetupRing - create one descriptor ring
778 *
779 * Description:
780 * This function creates one descriptor ring in the given memory area.
781 * The head, tail and number of free descriptors in the ring are set.
782 *
783 * Returns:
784 * none
785 */
786static void SetupRing(
787SK_AC *pAC,
788void *pMemArea, /* a pointer to the memory area for the ring */
789uintptr_t VMemArea, /* the virtual bus address of the memory area */
790RXD **ppRingHead, /* address where the head should be written */
791RXD **ppRingTail, /* address where the tail should be written */
792RXD **ppRingPrev, /* address where the tail should be written */
793int *pRingFree, /* address where the # of free descr. goes */
794SK_BOOL IsTx) /* flag: is this a tx ring */
795{
796int i; /* loop counter */
797int DescrSize; /* the size of a descriptor rounded up to alignment*/
798int DescrNum; /* number of descriptors per ring */
799RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
800RXD *pNextDescr; /* pointer to the next descriptor */
801RXD *pPrevDescr; /* pointer to the previous descriptor */
802uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
803
804 if (IsTx == SK_TRUE) {
805 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
806 DESCR_ALIGN;
807 DescrNum = TX_RING_SIZE / DescrSize;
808 } else {
809 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
810 DESCR_ALIGN;
811 DescrNum = RX_RING_SIZE / DescrSize;
812 }
813
814 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
815 ("Descriptor size: %d Descriptor Number: %d\n",
816 DescrSize,DescrNum));
817
818 pDescr = (RXD*) pMemArea;
819 pPrevDescr = NULL;
820 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
821 VNextDescr = VMemArea + DescrSize;
822 for(i=0; i<DescrNum; i++) {
823 /* set the pointers right */
824 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
825 pDescr->pNextRxd = pNextDescr;
826 pDescr->TcpSumStarts = pAC->CsOfs;
827
828 /* advance one step */
829 pPrevDescr = pDescr;
830 pDescr = pNextDescr;
831 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
832 VNextDescr += DescrSize;
833 }
834 pPrevDescr->pNextRxd = (RXD*) pMemArea;
835 pPrevDescr->VNextRxd = VMemArea;
836 pDescr = (RXD*) pMemArea;
837 *ppRingHead = (RXD*) pMemArea;
838 *ppRingTail = *ppRingHead;
839 *ppRingPrev = pPrevDescr;
840 *pRingFree = DescrNum;
841} /* SetupRing */
842
843
844/*****************************************************************************
845 *
846 * PortReInitBmu - re-initiate the descriptor rings for one port
847 *
848 * Description:
849 * This function reinitializes the descriptor rings of one port
850 * in memory. The port must be stopped before.
851 * The HW is initialized with the descriptor start addresses.
852 *
853 * Returns:
854 * none
855 */
856static void PortReInitBmu(
857SK_AC *pAC, /* pointer to adapter context */
858int PortIndex) /* index of the port for which to re-init */
859{
860 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
861 ("PortReInitBmu "));
862
863 /* set address of first descriptor of ring in BMU */
864 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
865 (uint32_t)(((caddr_t)
866 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
867 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
868 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
869 0xFFFFFFFF));
870 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
871 (uint32_t)(((caddr_t)
872 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
873 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
874 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
875 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
876 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
877 pAC->RxPort[PortIndex].pRxDescrRing +
878 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
879 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
880 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
881 pAC->RxPort[PortIndex].pRxDescrRing +
882 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
883} /* PortReInitBmu */
884
885
886/****************************************************************************
887 *
888 * SkGeIsr - handle adapter interrupts
889 *
890 * Description:
891 * The interrupt routine is called when the network adapter
892 * generates an interrupt. It may also be called if another device
893 * shares this interrupt vector with the driver.
894 *
895 * Returns: N/A
896 *
897 */
898static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
899{
900struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
901DEV_NET *pNet;
902SK_AC *pAC;
903SK_U32 IntSrc; /* interrupts source register contents */
904
905 pNet = netdev_priv(dev);
906 pAC = pNet->pAC;
907
908 /*
909 * Check and process if its our interrupt
910 */
911 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
912 if (IntSrc == 0) {
913 return SkIsrRetNone;
914 }
915
916 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
917#if 0 /* software irq currently not used */
918 if (IntSrc & IS_IRQ_SW) {
919 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
920 SK_DBGCAT_DRV_INT_SRC,
921 ("Software IRQ\n"));
922 }
923#endif
924 if (IntSrc & IS_R1_F) {
925 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
926 SK_DBGCAT_DRV_INT_SRC,
927 ("EOF RX1 IRQ\n"));
928 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
929 SK_PNMI_CNT_RX_INTR(pAC, 0);
930 }
931 if (IntSrc & IS_R2_F) {
932 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
933 SK_DBGCAT_DRV_INT_SRC,
934 ("EOF RX2 IRQ\n"));
935 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
936 SK_PNMI_CNT_RX_INTR(pAC, 1);
937 }
938#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
939 if (IntSrc & IS_XA1_F) {
940 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
941 SK_DBGCAT_DRV_INT_SRC,
942 ("EOF AS TX1 IRQ\n"));
943 SK_PNMI_CNT_TX_INTR(pAC, 0);
944 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
945 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
946 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
947 }
948 if (IntSrc & IS_XA2_F) {
949 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
950 SK_DBGCAT_DRV_INT_SRC,
951 ("EOF AS TX2 IRQ\n"));
952 SK_PNMI_CNT_TX_INTR(pAC, 1);
953 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
954 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
955 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
956 }
957#if 0 /* only if sync. queues used */
958 if (IntSrc & IS_XS1_F) {
959 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
960 SK_DBGCAT_DRV_INT_SRC,
961 ("EOF SY TX1 IRQ\n"));
962 SK_PNMI_CNT_TX_INTR(pAC, 1);
963 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
964 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
965 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
966 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
967 }
968 if (IntSrc & IS_XS2_F) {
969 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
970 SK_DBGCAT_DRV_INT_SRC,
971 ("EOF SY TX2 IRQ\n"));
972 SK_PNMI_CNT_TX_INTR(pAC, 1);
973 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
974 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
975 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
976 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
977 }
978#endif
979#endif
980
981 /* do all IO at once */
982 if (IntSrc & IS_R1_F)
983 ClearAndStartRx(pAC, 0);
984 if (IntSrc & IS_R2_F)
985 ClearAndStartRx(pAC, 1);
986#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
987 if (IntSrc & IS_XA1_F)
988 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
989 if (IntSrc & IS_XA2_F)
990 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
991#endif
992 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
993 } /* while (IntSrc & IRQ_MASK != 0) */
994
995 IntSrc &= pAC->GIni.GIValIrqMask;
996 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
997 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
998 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
999 pAC->CheckQueue = SK_FALSE;
1000 spin_lock(&pAC->SlowPathLock);
1001 if (IntSrc & SPECIAL_IRQS)
1002 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1003
1004 SkEventDispatcher(pAC, pAC->IoBase);
1005 spin_unlock(&pAC->SlowPathLock);
1006 }
1007 /*
1008 * do it all again is case we cleared an interrupt that
1009 * came in after handling the ring (OUTs may be delayed
1010 * in hardware buffers, but are through after IN)
1011 *
1012 * rroesler: has been commented out and shifted to
1013 * SkGeDrvEvent(), because it is timer
1014 * guarded now
1015 *
1016 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1017 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1018 */
1019
1020 if (pAC->CheckQueue) {
1021 pAC->CheckQueue = SK_FALSE;
1022 spin_lock(&pAC->SlowPathLock);
1023 SkEventDispatcher(pAC, pAC->IoBase);
1024 spin_unlock(&pAC->SlowPathLock);
1025 }
1026
1027 /* IRQ is processed - Enable IRQs again*/
1028 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1029
1030 return SkIsrRetHandled;
1031} /* SkGeIsr */
1032
1033
1034/****************************************************************************
1035 *
1036 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1037 *
1038 * Description:
1039 * The interrupt routine is called when the network adapter
1040 * generates an interrupt. It may also be called if another device
1041 * shares this interrupt vector with the driver.
1042 * This is the same as above, but handles only one port.
1043 *
1044 * Returns: N/A
1045 *
1046 */
1047static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1048{
1049struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1050DEV_NET *pNet;
1051SK_AC *pAC;
1052SK_U32 IntSrc; /* interrupts source register contents */
1053
1054 pNet = netdev_priv(dev);
1055 pAC = pNet->pAC;
1056
1057 /*
1058 * Check and process if its our interrupt
1059 */
1060 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1061 if (IntSrc == 0) {
1062 return SkIsrRetNone;
1063 }
1064
1065 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1066#if 0 /* software irq currently not used */
1067 if (IntSrc & IS_IRQ_SW) {
1068 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1069 SK_DBGCAT_DRV_INT_SRC,
1070 ("Software IRQ\n"));
1071 }
1072#endif
1073 if (IntSrc & IS_R1_F) {
1074 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1075 SK_DBGCAT_DRV_INT_SRC,
1076 ("EOF RX1 IRQ\n"));
1077 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1078 SK_PNMI_CNT_RX_INTR(pAC, 0);
1079 }
1080#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1081 if (IntSrc & IS_XA1_F) {
1082 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1083 SK_DBGCAT_DRV_INT_SRC,
1084 ("EOF AS TX1 IRQ\n"));
1085 SK_PNMI_CNT_TX_INTR(pAC, 0);
1086 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1087 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1088 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1089 }
1090#if 0 /* only if sync. queues used */
1091 if (IntSrc & IS_XS1_F) {
1092 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1093 SK_DBGCAT_DRV_INT_SRC,
1094 ("EOF SY TX1 IRQ\n"));
1095 SK_PNMI_CNT_TX_INTR(pAC, 0);
1096 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1097 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1098 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1099 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1100 }
1101#endif
1102#endif
1103
1104 /* do all IO at once */
1105 if (IntSrc & IS_R1_F)
1106 ClearAndStartRx(pAC, 0);
1107#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1108 if (IntSrc & IS_XA1_F)
1109 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1110#endif
1111 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1112 } /* while (IntSrc & IRQ_MASK != 0) */
1113
1114 IntSrc &= pAC->GIni.GIValIrqMask;
1115 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1116 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1117 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1118 pAC->CheckQueue = SK_FALSE;
1119 spin_lock(&pAC->SlowPathLock);
1120 if (IntSrc & SPECIAL_IRQS)
1121 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1122
1123 SkEventDispatcher(pAC, pAC->IoBase);
1124 spin_unlock(&pAC->SlowPathLock);
1125 }
1126 /*
1127 * do it all again is case we cleared an interrupt that
1128 * came in after handling the ring (OUTs may be delayed
1129 * in hardware buffers, but are through after IN)
1130 *
1131 * rroesler: has been commented out and shifted to
1132 * SkGeDrvEvent(), because it is timer
1133 * guarded now
1134 *
1135 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1136 */
1137
1138 /* IRQ is processed - Enable IRQs again*/
1139 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1140
1141 return SkIsrRetHandled;
1142} /* SkGeIsrOnePort */
1143
1144#ifdef CONFIG_NET_POLL_CONTROLLER
1145/****************************************************************************
1146 *
1147 * SkGePollController - polling receive, for netconsole
1148 *
1149 * Description:
1150 * Polling receive - used by netconsole and other diagnostic tools
1151 * to allow network i/o with interrupts disabled.
1152 *
1153 * Returns: N/A
1154 */
1155static void SkGePollController(struct net_device *dev)
1156{
1157 disable_irq(dev->irq);
1158 SkGeIsr(dev->irq, dev, NULL);
1159 enable_irq(dev->irq);
1160}
1161#endif
1162
1163/****************************************************************************
1164 *
1165 * SkGeOpen - handle start of initialized adapter
1166 *
1167 * Description:
1168 * This function starts the initialized adapter.
1169 * The board level variable is set and the adapter is
1170 * brought to full functionality.
1171 * The device flags are set for operation.
1172 * Do all necessary level 2 initialization, enable interrupts and
1173 * give start command to RLMT.
1174 *
1175 * Returns:
1176 * 0 on success
1177 * != 0 on error
1178 */
1179static int SkGeOpen(
1180struct SK_NET_DEVICE *dev)
1181{
1182 DEV_NET *pNet;
1183 SK_AC *pAC;
1184 unsigned long Flags; /* for spin lock */
1185 int i;
1186 SK_EVPARA EvPara; /* an event parameter union */
1187
1188 pNet = netdev_priv(dev);
1189 pAC = pNet->pAC;
1190
1191 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1192 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1193
1194#ifdef SK_DIAG_SUPPORT
1195 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1196 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1197 return (-1); /* still in use by diag; deny actions */
1198 }
1199 }
1200#endif
1201
1202 /* Set blink mode */
1203 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1204 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1205
1206 if (pAC->BoardLevel == SK_INIT_DATA) {
1207 /* level 1 init common modules here */
1208 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1209 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1210 return (-1);
1211 }
1212 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1213 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1214 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1215 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1216 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1217 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1218 pAC->BoardLevel = SK_INIT_IO;
1219 }
1220
1221 if (pAC->BoardLevel != SK_INIT_RUN) {
1222 /* tschilling: Level 2 init modules here, check return value. */
1223 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1224 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1225 return (-1);
1226 }
1227 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1228 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1229 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1230 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1231 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1232 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1233 pAC->BoardLevel = SK_INIT_RUN;
1234 }
1235
1236 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1237 /* Enable transmit descriptor polling. */
1238 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1239 FillRxRing(pAC, &pAC->RxPort[i]);
1240 }
1241 SkGeYellowLED(pAC, pAC->IoBase, 1);
1242
1243 StartDrvCleanupTimer(pAC);
1244 SkDimEnableModerationIfNeeded(pAC);
1245 SkDimDisplayModerationSettings(pAC);
1246
1247 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1248
1249 /* enable Interrupts */
1250 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1251 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1252
1253 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1254
1255 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1256 EvPara.Para32[0] = pAC->RlmtNets;
1257 EvPara.Para32[1] = -1;
1258 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1259 EvPara);
1260 EvPara.Para32[0] = pAC->RlmtMode;
1261 EvPara.Para32[1] = 0;
1262 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1263 EvPara);
1264 }
1265
1266 EvPara.Para32[0] = pNet->NetNr;
1267 EvPara.Para32[1] = -1;
1268 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1269 SkEventDispatcher(pAC, pAC->IoBase);
1270 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1271
1272 pAC->MaxPorts++;
1273 pNet->Up = 1;
1274
1275
1276 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1277 ("SkGeOpen suceeded\n"));
1278
1279 return (0);
1280} /* SkGeOpen */
1281
1282
1283/****************************************************************************
1284 *
1285 * SkGeClose - Stop initialized adapter
1286 *
1287 * Description:
1288 * Close initialized adapter.
1289 *
1290 * Returns:
1291 * 0 - on success
1292 * error code - on error
1293 */
1294static int SkGeClose(
1295struct SK_NET_DEVICE *dev)
1296{
1297 DEV_NET *pNet;
1298 DEV_NET *newPtrNet;
1299 SK_AC *pAC;
1300
1301 unsigned long Flags; /* for spin lock */
1302 int i;
1303 int PortIdx;
1304 SK_EVPARA EvPara;
1305
1306 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1307 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1308
1309 pNet = netdev_priv(dev);
1310 pAC = pNet->pAC;
1311
1312#ifdef SK_DIAG_SUPPORT
1313 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1314 if (pAC->DiagFlowCtrl == SK_FALSE) {
1315 /*
1316 ** notify that the interface which has been closed
1317 ** by operator interaction must not be started up
1318 ** again when the DIAG has finished.
1319 */
1320 newPtrNet = netdev_priv(pAC->dev[0]);
1321 if (newPtrNet == pNet) {
1322 pAC->WasIfUp[0] = SK_FALSE;
1323 } else {
1324 pAC->WasIfUp[1] = SK_FALSE;
1325 }
1326 return 0; /* return to system everything is fine... */
1327 } else {
1328 pAC->DiagFlowCtrl = SK_FALSE;
1329 }
1330 }
1331#endif
1332
1333 netif_stop_queue(dev);
1334
1335 if (pAC->RlmtNets == 1)
1336 PortIdx = pAC->ActivePort;
1337 else
1338 PortIdx = pNet->NetNr;
1339
1340 StopDrvCleanupTimer(pAC);
1341
1342 /*
1343 * Clear multicast table, promiscuous mode ....
1344 */
1345 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1346 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1347 SK_PROM_MODE_NONE);
1348
1349 if (pAC->MaxPorts == 1) {
1350 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1351 /* disable interrupts */
1352 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1353 EvPara.Para32[0] = pNet->NetNr;
1354 EvPara.Para32[1] = -1;
1355 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1356 SkEventDispatcher(pAC, pAC->IoBase);
1357 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1358 /* stop the hardware */
1359 SkGeDeInit(pAC, pAC->IoBase);
1360 pAC->BoardLevel = SK_INIT_DATA;
1361 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1362 } else {
1363
1364 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1365 EvPara.Para32[0] = pNet->NetNr;
1366 EvPara.Para32[1] = -1;
1367 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1368 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1369 SkEventDispatcher(pAC, pAC->IoBase);
1370 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1371
1372 /* Stop port */
1373 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1374 [TX_PRIO_LOW].TxDesRingLock, Flags);
1375 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1376 SK_STOP_ALL, SK_HARD_RST);
1377 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1378 [TX_PRIO_LOW].TxDesRingLock, Flags);
1379 }
1380
1381 if (pAC->RlmtNets == 1) {
1382 /* clear all descriptor rings */
1383 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1384 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1385 ClearRxRing(pAC, &pAC->RxPort[i]);
1386 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1387 }
1388 } else {
1389 /* clear port descriptor rings */
1390 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1391 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1392 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1393 }
1394
1395 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1396 ("SkGeClose: done "));
1397
1398 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1399 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1400 sizeof(SK_PNMI_STRUCT_DATA));
1401
1402 pAC->MaxPorts--;
1403 pNet->Up = 0;
1404
1405 return (0);
1406} /* SkGeClose */
1407
1408
1409/*****************************************************************************
1410 *
1411 * SkGeXmit - Linux frame transmit function
1412 *
1413 * Description:
1414 * The system calls this function to send frames onto the wire.
1415 * It puts the frame in the tx descriptor ring. If the ring is
1416 * full then, the 'tbusy' flag is set.
1417 *
1418 * Returns:
1419 * 0, if everything is ok
1420 * !=0, on error
1421 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1422 * allocated skb's) !!!
1423 */
1424static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1425{
1426DEV_NET *pNet;
1427SK_AC *pAC;
1428int Rc; /* return code of XmitFrame */
1429
1430 pNet = netdev_priv(dev);
1431 pAC = pNet->pAC;
1432
1433 if ((!skb_shinfo(skb)->nr_frags) ||
1434 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1435 /* Don't activate scatter-gather and hardware checksum */
1436
1437 if (pAC->RlmtNets == 2)
1438 Rc = XmitFrame(
1439 pAC,
1440 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1441 skb);
1442 else
1443 Rc = XmitFrame(
1444 pAC,
1445 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1446 skb);
1447 } else {
1448 /* scatter-gather and hardware TCP checksumming anabled*/
1449 if (pAC->RlmtNets == 2)
1450 Rc = XmitFrameSG(
1451 pAC,
1452 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1453 skb);
1454 else
1455 Rc = XmitFrameSG(
1456 pAC,
1457 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1458 skb);
1459 }
1460
1461 /* Transmitter out of resources? */
1462 if (Rc <= 0) {
1463 netif_stop_queue(dev);
1464 }
1465
1466 /* If not taken, give buffer ownership back to the
1467 * queueing layer.
1468 */
1469 if (Rc < 0)
1470 return (1);
1471
1472 dev->trans_start = jiffies;
1473 return (0);
1474} /* SkGeXmit */
1475
1476
1477/*****************************************************************************
1478 *
1479 * XmitFrame - fill one socket buffer into the transmit ring
1480 *
1481 * Description:
1482 * This function puts a message into the transmit descriptor ring
1483 * if there is a descriptors left.
1484 * Linux skb's consist of only one continuous buffer.
1485 * The first step locks the ring. It is held locked
1486 * all time to avoid problems with SWITCH_../PORT_RESET.
1487 * Then the descriptoris allocated.
1488 * The second part is linking the buffer to the descriptor.
1489 * At the very last, the Control field of the descriptor
1490 * is made valid for the BMU and a start TX command is given
1491 * if necessary.
1492 *
1493 * Returns:
1494 * > 0 - on succes: the number of bytes in the message
1495 * = 0 - on resource shortage: this frame sent or dropped, now
1496 * the ring is full ( -> set tbusy)
1497 * < 0 - on failure: other problems ( -> return failure to upper layers)
1498 */
1499static int XmitFrame(
1500SK_AC *pAC, /* pointer to adapter context */
1501TX_PORT *pTxPort, /* pointer to struct of port to send to */
1502struct sk_buff *pMessage) /* pointer to send-message */
1503{
1504 TXD *pTxd; /* the rxd to fill */
1505 TXD *pOldTxd;
1506 unsigned long Flags;
1507 SK_U64 PhysAddr;
1508 int Protocol;
1509 int IpHeaderLength;
1510 int BytesSend = pMessage->len;
1511
1512 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1513
1514 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1515#ifndef USE_TX_COMPLETE
1516 FreeTxDescriptors(pAC, pTxPort);
1517#endif
1518 if (pTxPort->TxdRingFree == 0) {
1519 /*
1520 ** no enough free descriptors in ring at the moment.
1521 ** Maybe free'ing some old one help?
1522 */
1523 FreeTxDescriptors(pAC, pTxPort);
1524 if (pTxPort->TxdRingFree == 0) {
1525 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1526 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1527 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1528 SK_DBGCAT_DRV_TX_PROGRESS,
1529 ("XmitFrame failed\n"));
1530 /*
1531 ** the desired message can not be sent
1532 ** Because tbusy seems to be set, the message
1533 ** should not be freed here. It will be used
1534 ** by the scheduler of the ethernet handler
1535 */
1536 return (-1);
1537 }
1538 }
1539
1540 /*
1541 ** If the passed socket buffer is of smaller MTU-size than 60,
1542 ** copy everything into new buffer and fill all bytes between
1543 ** the original packet end and the new packet end of 60 with 0x00.
1544 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1545 */
1546 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1547 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1548 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1549 return 0;
1550 }
1551 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1552 }
1553
1554 /*
1555 ** advance head counter behind descriptor needed for this frame,
1556 ** so that needed descriptor is reserved from that on. The next
1557 ** action will be to add the passed buffer to the TX-descriptor
1558 */
1559 pTxd = pTxPort->pTxdRingHead;
1560 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1561 pTxPort->TxdRingFree--;
1562
1563#ifdef SK_DUMP_TX
1564 DumpMsg(pMessage, "XmitFrame");
1565#endif
1566
1567 /*
1568 ** First step is to map the data to be sent via the adapter onto
1569 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1570 ** and 2.6 need to use pci_map_page() for that mapping.
1571 */
1572 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1573 virt_to_page(pMessage->data),
1574 ((unsigned long) pMessage->data & ~PAGE_MASK),
1575 pMessage->len,
1576 PCI_DMA_TODEVICE);
1577 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1578 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1579 pTxd->pMBuf = pMessage;
1580
1581 if (pMessage->ip_summed == CHECKSUM_HW) {
1582 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1583 if ((Protocol == C_PROTO_ID_UDP) &&
1584 (pAC->GIni.GIChipRev == 0) &&
1585 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1586 pTxd->TBControl = BMU_TCP_CHECK;
1587 } else {
1588 pTxd->TBControl = BMU_UDP_CHECK;
1589 }
1590
1591 IpHeaderLength = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
1592 IpHeaderLength = (IpHeaderLength & 0xf) * 4;
1593 pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
1594 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1595 (Protocol == C_PROTO_ID_UDP ?
1596 C_OFFSET_UDPHEADER_UDPCS :
1597 C_OFFSET_TCPHEADER_TCPCS);
1598 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1599
1600 pTxd->TBControl |= BMU_OWN | BMU_STF |
1601 BMU_SW | BMU_EOF |
1602#ifdef USE_TX_COMPLETE
1603 BMU_IRQ_EOF |
1604#endif
1605 pMessage->len;
1606 } else {
1607 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1608 BMU_SW | BMU_EOF |
1609#ifdef USE_TX_COMPLETE
1610 BMU_IRQ_EOF |
1611#endif
1612 pMessage->len;
1613 }
1614
1615 /*
1616 ** If previous descriptor already done, give TX start cmd
1617 */
1618 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1619 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1620 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1621 }
1622
1623 /*
1624 ** after releasing the lock, the skb may immediately be free'd
1625 */
1626 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1627 if (pTxPort->TxdRingFree != 0) {
1628 return (BytesSend);
1629 } else {
1630 return (0);
1631 }
1632
1633} /* XmitFrame */
1634
1635/*****************************************************************************
1636 *
1637 * XmitFrameSG - fill one socket buffer into the transmit ring
1638 * (use SG and TCP/UDP hardware checksumming)
1639 *
1640 * Description:
1641 * This function puts a message into the transmit descriptor ring
1642 * if there is a descriptors left.
1643 *
1644 * Returns:
1645 * > 0 - on succes: the number of bytes in the message
1646 * = 0 - on resource shortage: this frame sent or dropped, now
1647 * the ring is full ( -> set tbusy)
1648 * < 0 - on failure: other problems ( -> return failure to upper layers)
1649 */
1650static int XmitFrameSG(
1651SK_AC *pAC, /* pointer to adapter context */
1652TX_PORT *pTxPort, /* pointer to struct of port to send to */
1653struct sk_buff *pMessage) /* pointer to send-message */
1654{
1655
1656 TXD *pTxd;
1657 TXD *pTxdFst;
1658 TXD *pTxdLst;
1659 int CurrFrag;
1660 int BytesSend;
1661 int IpHeaderLength;
1662 int Protocol;
1663 skb_frag_t *sk_frag;
1664 SK_U64 PhysAddr;
1665 unsigned long Flags;
1666
1667 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1668#ifndef USE_TX_COMPLETE
1669 FreeTxDescriptors(pAC, pTxPort);
1670#endif
1671 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1672 FreeTxDescriptors(pAC, pTxPort);
1673 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1674 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1675 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1676 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1677 SK_DBGCAT_DRV_TX_PROGRESS,
1678 ("XmitFrameSG failed - Ring full\n"));
1679 /* this message can not be sent now */
1680 return(-1);
1681 }
1682 }
1683
1684 pTxd = pTxPort->pTxdRingHead;
1685 pTxdFst = pTxd;
1686 pTxdLst = pTxd;
1687 BytesSend = 0;
1688 Protocol = 0;
1689
1690 /*
1691 ** Map the first fragment (header) into the DMA-space
1692 */
1693 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1694 virt_to_page(pMessage->data),
1695 ((unsigned long) pMessage->data & ~PAGE_MASK),
1696 skb_headlen(pMessage),
1697 PCI_DMA_TODEVICE);
1698
1699 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1700 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1701
1702 /*
1703 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1704 */
1705 if (pMessage->ip_summed == CHECKSUM_HW) {
1706 pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
1707 /*
1708 ** We have to use the opcode for tcp here, because the
1709 ** opcode for udp is not working in the hardware yet
1710 ** (Revision 2.0)
1711 */
1712 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1713 if ((Protocol == C_PROTO_ID_UDP) &&
1714 (pAC->GIni.GIChipRev == 0) &&
1715 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1716 pTxd->TBControl |= BMU_TCP_CHECK;
1717 } else {
1718 pTxd->TBControl |= BMU_UDP_CHECK;
1719 }
1720
1721 IpHeaderLength = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
1722 pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
1723 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1724 (Protocol == C_PROTO_ID_UDP ?
1725 C_OFFSET_UDPHEADER_UDPCS :
1726 C_OFFSET_TCPHEADER_TCPCS);
1727 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1728 } else {
1729 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
1730 skb_headlen(pMessage);
1731 }
1732
1733 pTxd = pTxd->pNextTxd;
1734 pTxPort->TxdRingFree--;
1735 BytesSend += skb_headlen(pMessage);
1736
1737 /*
1738 ** Browse over all SG fragments and map each of them into the DMA space
1739 */
1740 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1741 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1742 /*
1743 ** we already have the proper value in entry
1744 */
1745 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1746 sk_frag->page,
1747 sk_frag->page_offset,
1748 sk_frag->size,
1749 PCI_DMA_TODEVICE);
1750
1751 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1752 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1753 pTxd->pMBuf = pMessage;
1754
1755 /*
1756 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1757 */
1758 if (pMessage->ip_summed == CHECKSUM_HW) {
1759 pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
1760 /*
1761 ** We have to use the opcode for tcp here because the
1762 ** opcode for udp is not working in the hardware yet
1763 ** (revision 2.0)
1764 */
1765 if ((Protocol == C_PROTO_ID_UDP) &&
1766 (pAC->GIni.GIChipRev == 0) &&
1767 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1768 pTxd->TBControl |= BMU_TCP_CHECK;
1769 } else {
1770 pTxd->TBControl |= BMU_UDP_CHECK;
1771 }
1772 } else {
1773 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
1774 }
1775
1776 /*
1777 ** Do we have the last fragment?
1778 */
1779 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1780#ifdef USE_TX_COMPLETE
1781 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
1782#else
1783 pTxd->TBControl |= BMU_EOF | sk_frag->size;
1784#endif
1785 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1786
1787 } else {
1788 pTxd->TBControl |= sk_frag->size;
1789 }
1790 pTxdLst = pTxd;
1791 pTxd = pTxd->pNextTxd;
1792 pTxPort->TxdRingFree--;
1793 BytesSend += sk_frag->size;
1794 }
1795
1796 /*
1797 ** If previous descriptor already done, give TX start cmd
1798 */
1799 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1800 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1801 }
1802
1803 pTxPort->pTxdRingPrev = pTxdLst;
1804 pTxPort->pTxdRingHead = pTxd;
1805
1806 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1807
1808 if (pTxPort->TxdRingFree > 0) {
1809 return (BytesSend);
1810 } else {
1811 return (0);
1812 }
1813}
1814
1815/*****************************************************************************
1816 *
1817 * FreeTxDescriptors - release descriptors from the descriptor ring
1818 *
1819 * Description:
1820 * This function releases descriptors from a transmit ring if they
1821 * have been sent by the BMU.
1822 * If a descriptors is sent, it can be freed and the message can
1823 * be freed, too.
1824 * The SOFTWARE controllable bit is used to prevent running around a
1825 * completely free ring for ever. If this bit is no set in the
1826 * frame (by XmitFrame), this frame has never been sent or is
1827 * already freed.
1828 * The Tx descriptor ring lock must be held while calling this function !!!
1829 *
1830 * Returns:
1831 * none
1832 */
1833static void FreeTxDescriptors(
1834SK_AC *pAC, /* pointer to the adapter context */
1835TX_PORT *pTxPort) /* pointer to destination port structure */
1836{
1837TXD *pTxd; /* pointer to the checked descriptor */
1838TXD *pNewTail; /* pointer to 'end' of the ring */
1839SK_U32 Control; /* TBControl field of descriptor */
1840SK_U64 PhysAddr; /* address of DMA mapping */
1841
1842 pNewTail = pTxPort->pTxdRingTail;
1843 pTxd = pNewTail;
1844 /*
1845 ** loop forever; exits if BMU_SW bit not set in start frame
1846 ** or BMU_OWN bit set in any frame
1847 */
1848 while (1) {
1849 Control = pTxd->TBControl;
1850 if ((Control & BMU_SW) == 0) {
1851 /*
1852 ** software controllable bit is set in first
1853 ** fragment when given to BMU. Not set means that
1854 ** this fragment was never sent or is already
1855 ** freed ( -> ring completely free now).
1856 */
1857 pTxPort->pTxdRingTail = pTxd;
1858 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1859 return;
1860 }
1861 if (Control & BMU_OWN) {
1862 pTxPort->pTxdRingTail = pTxd;
1863 if (pTxPort->TxdRingFree > 0) {
1864 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1865 }
1866 return;
1867 }
1868
1869 /*
1870 ** release the DMA mapping, because until not unmapped
1871 ** this buffer is considered being under control of the
1872 ** adapter card!
1873 */
1874 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1875 PhysAddr |= (SK_U64) pTxd->VDataLow;
1876 pci_unmap_page(pAC->PciDev, PhysAddr,
1877 pTxd->pMBuf->len,
1878 PCI_DMA_TODEVICE);
1879
1880 if (Control & BMU_EOF)
1881 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1882
1883 pTxPort->TxdRingFree++;
1884 pTxd->TBControl &= ~BMU_SW;
1885 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1886 } /* while(forever) */
1887} /* FreeTxDescriptors */
1888
1889/*****************************************************************************
1890 *
1891 * FillRxRing - fill the receive ring with valid descriptors
1892 *
1893 * Description:
1894 * This function fills the receive ring descriptors with data
1895 * segments and makes them valid for the BMU.
1896 * The active ring is filled completely, if possible.
1897 * The non-active ring is filled only partial to save memory.
1898 *
1899 * Description of rx ring structure:
1900 * head - points to the descriptor which will be used next by the BMU
1901 * tail - points to the next descriptor to give to the BMU
1902 *
1903 * Returns: N/A
1904 */
1905static void FillRxRing(
1906SK_AC *pAC, /* pointer to the adapter context */
1907RX_PORT *pRxPort) /* ptr to port struct for which the ring
1908 should be filled */
1909{
1910unsigned long Flags;
1911
1912 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1913 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1914 if(!FillRxDescriptor(pAC, pRxPort))
1915 break;
1916 }
1917 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1918} /* FillRxRing */
1919
1920
1921/*****************************************************************************
1922 *
1923 * FillRxDescriptor - fill one buffer into the receive ring
1924 *
1925 * Description:
1926 * The function allocates a new receive buffer and
1927 * puts it into the next descriptor.
1928 *
1929 * Returns:
1930 * SK_TRUE - a buffer was added to the ring
1931 * SK_FALSE - a buffer could not be added
1932 */
1933static SK_BOOL FillRxDescriptor(
1934SK_AC *pAC, /* pointer to the adapter context struct */
1935RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1936{
1937struct sk_buff *pMsgBlock; /* pointer to a new message block */
1938RXD *pRxd; /* the rxd to fill */
1939SK_U16 Length; /* data fragment length */
1940SK_U64 PhysAddr; /* physical address of a rx buffer */
1941
1942 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1943 if (pMsgBlock == NULL) {
1944 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1945 SK_DBGCAT_DRV_ENTRY,
1946 ("%s: Allocation of rx buffer failed !\n",
1947 pAC->dev[pRxPort->PortIndex]->name));
1948 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1949 return(SK_FALSE);
1950 }
1951 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1952 /* skb allocated ok, so add buffer */
1953 pRxd = pRxPort->pRxdRingTail;
1954 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1955 pRxPort->RxdRingFree--;
1956 Length = pAC->RxBufSize;
1957 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1958 virt_to_page(pMsgBlock->data),
1959 ((unsigned long) pMsgBlock->data &
1960 ~PAGE_MASK),
1961 pAC->RxBufSize - 2,
1962 PCI_DMA_FROMDEVICE);
1963
1964 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1965 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1966 pRxd->pMBuf = pMsgBlock;
1967 pRxd->RBControl = BMU_OWN |
1968 BMU_STF |
1969 BMU_IRQ_EOF |
1970 BMU_TCP_CHECK |
1971 Length;
1972 return (SK_TRUE);
1973
1974} /* FillRxDescriptor */
1975
1976
1977/*****************************************************************************
1978 *
1979 * ReQueueRxBuffer - fill one buffer back into the receive ring
1980 *
1981 * Description:
1982 * Fill a given buffer back into the rx ring. The buffer
1983 * has been previously allocated and aligned, and its phys.
1984 * address calculated, so this is no more necessary.
1985 *
1986 * Returns: N/A
1987 */
1988static void ReQueueRxBuffer(
1989SK_AC *pAC, /* pointer to the adapter context struct */
1990RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1991struct sk_buff *pMsg, /* pointer to the buffer */
1992SK_U32 PhysHigh, /* phys address high dword */
1993SK_U32 PhysLow) /* phys address low dword */
1994{
1995RXD *pRxd; /* the rxd to fill */
1996SK_U16 Length; /* data fragment length */
1997
1998 pRxd = pRxPort->pRxdRingTail;
1999 pRxPort->pRxdRingTail = pRxd->pNextRxd;
2000 pRxPort->RxdRingFree--;
2001 Length = pAC->RxBufSize;
2002
2003 pRxd->VDataLow = PhysLow;
2004 pRxd->VDataHigh = PhysHigh;
2005 pRxd->pMBuf = pMsg;
2006 pRxd->RBControl = BMU_OWN |
2007 BMU_STF |
2008 BMU_IRQ_EOF |
2009 BMU_TCP_CHECK |
2010 Length;
2011 return;
2012} /* ReQueueRxBuffer */
2013
2014/*****************************************************************************
2015 *
2016 * ReceiveIrq - handle a receive IRQ
2017 *
2018 * Description:
2019 * This function is called when a receive IRQ is set.
2020 * It walks the receive descriptor ring and sends up all
2021 * frames that are complete.
2022 *
2023 * Returns: N/A
2024 */
2025static void ReceiveIrq(
2026 SK_AC *pAC, /* pointer to adapter context */
2027 RX_PORT *pRxPort, /* pointer to receive port struct */
2028 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
2029{
2030RXD *pRxd; /* pointer to receive descriptors */
2031SK_U32 Control; /* control field of descriptor */
2032struct sk_buff *pMsg; /* pointer to message holding frame */
2033struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
2034int FrameLength; /* total length of received frame */
2035int IpFrameLength;
2036SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
2037SK_EVPARA EvPara; /* an event parameter union */
2038unsigned long Flags; /* for spin lock */
2039int PortIndex = pRxPort->PortIndex;
2040unsigned int Offset;
2041unsigned int NumBytes;
2042unsigned int ForRlmt;
2043SK_BOOL IsBc;
2044SK_BOOL IsMc;
2045SK_BOOL IsBadFrame; /* Bad frame */
2046
2047SK_U32 FrameStat;
2048unsigned short Csum1;
2049unsigned short Csum2;
2050unsigned short Type;
2051int Result;
2052SK_U64 PhysAddr;
2053
2054rx_start:
2055 /* do forever; exit if BMU_OWN found */
2056 for ( pRxd = pRxPort->pRxdRingHead ;
2057 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2058 pRxd = pRxd->pNextRxd,
2059 pRxPort->pRxdRingHead = pRxd,
2060 pRxPort->RxdRingFree ++) {
2061
2062 /*
2063 * For a better understanding of this loop
2064 * Go through every descriptor beginning at the head
2065 * Please note: the ring might be completely received so the OWN bit
2066 * set is not a good crirteria to leave that loop.
2067 * Therefore the RingFree counter is used.
2068 * On entry of this loop pRxd is a pointer to the Rxd that needs
2069 * to be checked next.
2070 */
2071
2072 Control = pRxd->RBControl;
2073
2074 /* check if this descriptor is ready */
2075 if ((Control & BMU_OWN) != 0) {
2076 /* this descriptor is not yet ready */
2077 /* This is the usual end of the loop */
2078 /* We don't need to start the ring again */
2079 FillRxRing(pAC, pRxPort);
2080 return;
2081 }
2082 pAC->DynIrqModInfo.NbrProcessedDescr++;
2083
2084 /* get length of frame and check it */
2085 FrameLength = Control & BMU_BBC;
2086 if (FrameLength > pAC->RxBufSize) {
2087 goto rx_failed;
2088 }
2089
2090 /* check for STF and EOF */
2091 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2092 goto rx_failed;
2093 }
2094
2095 /* here we have a complete frame in the ring */
2096 pMsg = pRxd->pMBuf;
2097
2098 FrameStat = pRxd->FrameStat;
2099
2100 /* check for frame length mismatch */
2101#define XMR_FS_LEN_SHIFT 18
2102#define GMR_FS_LEN_SHIFT 16
2103 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2104 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2105 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2106 SK_DBGCAT_DRV_RX_PROGRESS,
2107 ("skge: Frame length mismatch (%u/%u).\n",
2108 FrameLength,
2109 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2110 goto rx_failed;
2111 }
2112 }
2113 else {
2114 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2115 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2116 SK_DBGCAT_DRV_RX_PROGRESS,
2117 ("skge: Frame length mismatch (%u/%u).\n",
2118 FrameLength,
2119 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2120 goto rx_failed;
2121 }
2122 }
2123
2124 /* Set Rx Status */
2125 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2126 IsBc = (FrameStat & XMR_FS_BC) != 0;
2127 IsMc = (FrameStat & XMR_FS_MC) != 0;
2128 IsBadFrame = (FrameStat &
2129 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2130 } else {
2131 IsBc = (FrameStat & GMR_FS_BC) != 0;
2132 IsMc = (FrameStat & GMR_FS_MC) != 0;
2133 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2134 ((FrameStat & GMR_FS_RX_OK) == 0));
2135 }
2136
2137 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2138 ("Received frame of length %d on port %d\n",
2139 FrameLength, PortIndex));
2140 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2141 ("Number of free rx descriptors: %d\n",
2142 pRxPort->RxdRingFree));
2143/* DumpMsg(pMsg, "Rx"); */
2144
2145 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2146#if 0
2147 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2148#endif
2149 /* there is a receive error in this frame */
2150 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2151 SK_DBGCAT_DRV_RX_PROGRESS,
2152 ("skge: Error in received frame, dropped!\n"
2153 "Control: %x\nRxStat: %x\n",
2154 Control, FrameStat));
2155
2156 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2157 pRxd->VDataHigh, pRxd->VDataLow);
2158
2159 continue;
2160 }
2161
2162 /*
2163 * if short frame then copy data to reduce memory waste
2164 */
2165 if ((FrameLength < SK_COPY_THRESHOLD) &&
2166 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2167 /*
2168 * Short frame detected and allocation successfull
2169 */
2170 /* use new skb and copy data */
2171 skb_reserve(pNewMsg, 2);
2172 skb_put(pNewMsg, FrameLength);
2173 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2174 PhysAddr |= (SK_U64) pRxd->VDataLow;
2175
2176 pci_dma_sync_single_for_cpu(pAC->PciDev,
2177 (dma_addr_t) PhysAddr,
2178 FrameLength,
2179 PCI_DMA_FROMDEVICE);
2180 eth_copy_and_sum(pNewMsg, pMsg->data,
2181 FrameLength, 0);
2182 pci_dma_sync_single_for_device(pAC->PciDev,
2183 (dma_addr_t) PhysAddr,
2184 FrameLength,
2185 PCI_DMA_FROMDEVICE);
2186 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2187 pRxd->VDataHigh, pRxd->VDataLow);
2188
2189 pMsg = pNewMsg;
2190
2191 }
2192 else {
2193 /*
2194 * if large frame, or SKB allocation failed, pass
2195 * the SKB directly to the networking
2196 */
2197
2198 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2199 PhysAddr |= (SK_U64) pRxd->VDataLow;
2200
2201 /* release the DMA mapping */
2202 pci_unmap_single(pAC->PciDev,
2203 PhysAddr,
2204 pAC->RxBufSize - 2,
2205 PCI_DMA_FROMDEVICE);
2206
2207 /* set length in message */
2208 skb_put(pMsg, FrameLength);
2209 /* hardware checksum */
2210 Type = ntohs(*((short*)&pMsg->data[12]));
2211
2212#ifdef USE_SK_RX_CHECKSUM
2213 if (Type == 0x800) {
2214 Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
2215 Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
2216 IpFrameLength = (int) ntohs((unsigned short)
2217 ((unsigned short *) pMsg->data)[8]);
2218
2219 /*
2220 * Test: If frame is padded, a check is not possible!
2221 * Frame not padded? Length difference must be 14 (0xe)!
2222 */
2223 if ((FrameLength - IpFrameLength) != 0xe) {
2224 /* Frame padded => TCP offload not possible! */
2225 pMsg->ip_summed = CHECKSUM_NONE;
2226 } else {
2227 /* Frame not padded => TCP offload! */
2228 if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
2229 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
2230 (pAC->ChipsetType)) {
2231 Result = SkCsGetReceiveInfo(pAC,
2232 &pMsg->data[14],
2233 Csum1, Csum2, pRxPort->PortIndex);
2234 if (Result ==
2235 SKCS_STATUS_IP_FRAGMENT ||
2236 Result ==
2237 SKCS_STATUS_IP_CSUM_OK ||
2238 Result ==
2239 SKCS_STATUS_TCP_CSUM_OK ||
2240 Result ==
2241 SKCS_STATUS_UDP_CSUM_OK) {
2242 pMsg->ip_summed =
2243 CHECKSUM_UNNECESSARY;
2244 }
2245 else if (Result ==
2246 SKCS_STATUS_TCP_CSUM_ERROR ||
2247 Result ==
2248 SKCS_STATUS_UDP_CSUM_ERROR ||
2249 Result ==
2250 SKCS_STATUS_IP_CSUM_ERROR_UDP ||
2251 Result ==
2252 SKCS_STATUS_IP_CSUM_ERROR_TCP ||
2253 Result ==
2254 SKCS_STATUS_IP_CSUM_ERROR ) {
2255 /* HW Checksum error */
2256 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2257 SK_DBGCAT_DRV_RX_PROGRESS,
2258 ("skge: CRC error. Frame dropped!\n"));
2259 goto rx_failed;
2260 } else {
2261 pMsg->ip_summed =
2262 CHECKSUM_NONE;
2263 }
2264 }/* checksumControl calculation valid */
2265 } /* Frame length check */
2266 } /* IP frame */
2267#else
2268 pMsg->ip_summed = CHECKSUM_NONE;
2269#endif
2270 } /* frame > SK_COPY_TRESHOLD */
2271
2272 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2273 ForRlmt = SK_RLMT_RX_PROTOCOL;
2274#if 0
2275 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2276#endif
2277 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2278 IsBc, &Offset, &NumBytes);
2279 if (NumBytes != 0) {
2280#if 0
2281 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2282#endif
2283 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2284 &pMsg->data[Offset],
2285 IsBc, IsMc, &ForRlmt);
2286 }
2287 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2288 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2289 /* send up only frames from active port */
2290 if ((PortIndex == pAC->ActivePort) ||
2291 (pAC->RlmtNets == 2)) {
2292 /* frame for upper layer */
2293 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2294#ifdef xDEBUG
2295 DumpMsg(pMsg, "Rx");
2296#endif
2297 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2298 FrameLength, pRxPort->PortIndex);
2299
2300 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2301 pMsg->protocol = eth_type_trans(pMsg,
2302 pAC->dev[pRxPort->PortIndex]);
2303 netif_rx(pMsg);
2304 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2305 }
2306 else {
2307 /* drop frame */
2308 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2309 SK_DBGCAT_DRV_RX_PROGRESS,
2310 ("D"));
2311 DEV_KFREE_SKB(pMsg);
2312 }
2313
2314 } /* if not for rlmt */
2315 else {
2316 /* packet for rlmt */
2317 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2318 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2319 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2320 pAC->IoBase, FrameLength);
2321 if (pRlmtMbuf != NULL) {
2322 pRlmtMbuf->pNext = NULL;
2323 pRlmtMbuf->Length = FrameLength;
2324 pRlmtMbuf->PortIdx = PortIndex;
2325 EvPara.pParaPtr = pRlmtMbuf;
2326 memcpy((char*)(pRlmtMbuf->pData),
2327 (char*)(pMsg->data),
2328 FrameLength);
2329
2330 /* SlowPathLock needed? */
2331 if (SlowPathLock == SK_TRUE) {
2332 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2333 SkEventQueue(pAC, SKGE_RLMT,
2334 SK_RLMT_PACKET_RECEIVED,
2335 EvPara);
2336 pAC->CheckQueue = SK_TRUE;
2337 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2338 } else {
2339 SkEventQueue(pAC, SKGE_RLMT,
2340 SK_RLMT_PACKET_RECEIVED,
2341 EvPara);
2342 pAC->CheckQueue = SK_TRUE;
2343 }
2344
2345 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2346 SK_DBGCAT_DRV_RX_PROGRESS,
2347 ("Q"));
2348 }
2349 if ((pAC->dev[pRxPort->PortIndex]->flags &
2350 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2351 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2352 SK_RLMT_RX_PROTOCOL) {
2353 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2354 pMsg->protocol = eth_type_trans(pMsg,
2355 pAC->dev[pRxPort->PortIndex]);
2356 netif_rx(pMsg);
2357 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2358 }
2359 else {
2360 DEV_KFREE_SKB(pMsg);
2361 }
2362
2363 } /* if packet for rlmt */
2364 } /* for ... scanning the RXD ring */
2365
2366 /* RXD ring is empty -> fill and restart */
2367 FillRxRing(pAC, pRxPort);
2368 /* do not start if called from Close */
2369 if (pAC->BoardLevel > SK_INIT_DATA) {
2370 ClearAndStartRx(pAC, PortIndex);
2371 }
2372 return;
2373
2374rx_failed:
2375 /* remove error frame */
2376 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2377 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2378
2379 /* release the DMA mapping */
2380
2381 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2382 PhysAddr |= (SK_U64) pRxd->VDataLow;
2383 pci_unmap_page(pAC->PciDev,
2384 PhysAddr,
2385 pAC->RxBufSize - 2,
2386 PCI_DMA_FROMDEVICE);
2387 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2388 pRxd->pMBuf = NULL;
2389 pRxPort->RxdRingFree++;
2390 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2391 goto rx_start;
2392
2393} /* ReceiveIrq */
2394
2395
2396/*****************************************************************************
2397 *
2398 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2399 *
2400 * Description:
2401 * This function sends a start command and a clear interrupt
2402 * command for one receive queue to the BMU.
2403 *
2404 * Returns: N/A
2405 * none
2406 */
2407static void ClearAndStartRx(
2408SK_AC *pAC, /* pointer to the adapter context */
2409int PortIndex) /* index of the receive port (XMAC) */
2410{
2411 SK_OUT8(pAC->IoBase,
2412 RxQueueAddr[PortIndex]+Q_CSR,
2413 CSR_START | CSR_IRQ_CL_F);
2414} /* ClearAndStartRx */
2415
2416
2417/*****************************************************************************
2418 *
2419 * ClearTxIrq - give a clear transmit IRQ command to BMU
2420 *
2421 * Description:
2422 * This function sends a clear tx IRQ command for one
2423 * transmit queue to the BMU.
2424 *
2425 * Returns: N/A
2426 */
2427static void ClearTxIrq(
2428SK_AC *pAC, /* pointer to the adapter context */
2429int PortIndex, /* index of the transmit port (XMAC) */
2430int Prio) /* priority or normal queue */
2431{
2432 SK_OUT8(pAC->IoBase,
2433 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2434 CSR_IRQ_CL_F);
2435} /* ClearTxIrq */
2436
2437
2438/*****************************************************************************
2439 *
2440 * ClearRxRing - remove all buffers from the receive ring
2441 *
2442 * Description:
2443 * This function removes all receive buffers from the ring.
2444 * The receive BMU must be stopped before calling this function.
2445 *
2446 * Returns: N/A
2447 */
2448static void ClearRxRing(
2449SK_AC *pAC, /* pointer to adapter context */
2450RX_PORT *pRxPort) /* pointer to rx port struct */
2451{
2452RXD *pRxd; /* pointer to the current descriptor */
2453unsigned long Flags;
2454SK_U64 PhysAddr;
2455
2456 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2457 return;
2458 }
2459 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2460 pRxd = pRxPort->pRxdRingHead;
2461 do {
2462 if (pRxd->pMBuf != NULL) {
2463
2464 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2465 PhysAddr |= (SK_U64) pRxd->VDataLow;
2466 pci_unmap_page(pAC->PciDev,
2467 PhysAddr,
2468 pAC->RxBufSize - 2,
2469 PCI_DMA_FROMDEVICE);
2470 DEV_KFREE_SKB(pRxd->pMBuf);
2471 pRxd->pMBuf = NULL;
2472 }
2473 pRxd->RBControl &= BMU_OWN;
2474 pRxd = pRxd->pNextRxd;
2475 pRxPort->RxdRingFree++;
2476 } while (pRxd != pRxPort->pRxdRingTail);
2477 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2478 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2479} /* ClearRxRing */
2480
2481/*****************************************************************************
2482 *
2483 * ClearTxRing - remove all buffers from the transmit ring
2484 *
2485 * Description:
2486 * This function removes all transmit buffers from the ring.
2487 * The transmit BMU must be stopped before calling this function
2488 * and transmitting at the upper level must be disabled.
2489 * The BMU own bit of all descriptors is cleared, the rest is
2490 * done by calling FreeTxDescriptors.
2491 *
2492 * Returns: N/A
2493 */
2494static void ClearTxRing(
2495SK_AC *pAC, /* pointer to adapter context */
2496TX_PORT *pTxPort) /* pointer to tx prt struct */
2497{
2498TXD *pTxd; /* pointer to the current descriptor */
2499int i;
2500unsigned long Flags;
2501
2502 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2503 pTxd = pTxPort->pTxdRingHead;
2504 for (i=0; i<pAC->TxDescrPerRing; i++) {
2505 pTxd->TBControl &= ~BMU_OWN;
2506 pTxd = pTxd->pNextTxd;
2507 }
2508 FreeTxDescriptors(pAC, pTxPort);
2509 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2510} /* ClearTxRing */
2511
2512/*****************************************************************************
2513 *
2514 * SkGeSetMacAddr - Set the hardware MAC address
2515 *
2516 * Description:
2517 * This function sets the MAC address used by the adapter.
2518 *
2519 * Returns:
2520 * 0, if everything is ok
2521 * !=0, on error
2522 */
2523static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2524{
2525
2526DEV_NET *pNet = netdev_priv(dev);
2527SK_AC *pAC = pNet->pAC;
2528
2529struct sockaddr *addr = p;
2530unsigned long Flags;
2531
2532 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2533 ("SkGeSetMacAddr starts now...\n"));
2534 if(netif_running(dev))
2535 return -EBUSY;
2536
2537 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2538
2539 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2540
2541 if (pAC->RlmtNets == 2)
2542 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2543 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2544 else
2545 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2546 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2547
2548
2549
2550 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2551 return 0;
2552} /* SkGeSetMacAddr */
2553
2554
2555/*****************************************************************************
2556 *
2557 * SkGeSetRxMode - set receive mode
2558 *
2559 * Description:
2560 * This function sets the receive mode of an adapter. The adapter
2561 * supports promiscuous mode, allmulticast mode and a number of
2562 * multicast addresses. If more multicast addresses the available
2563 * are selected, a hash function in the hardware is used.
2564 *
2565 * Returns:
2566 * 0, if everything is ok
2567 * !=0, on error
2568 */
2569static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2570{
2571
2572DEV_NET *pNet;
2573SK_AC *pAC;
2574
2575struct dev_mc_list *pMcList;
2576int i;
2577int PortIdx;
2578unsigned long Flags;
2579
2580 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2581 ("SkGeSetRxMode starts now... "));
2582
2583 pNet = netdev_priv(dev);
2584 pAC = pNet->pAC;
2585 if (pAC->RlmtNets == 1)
2586 PortIdx = pAC->ActivePort;
2587 else
2588 PortIdx = pNet->NetNr;
2589
2590 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2591 if (dev->flags & IFF_PROMISC) {
2592 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2593 ("PROMISCUOUS mode\n"));
2594 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2595 SK_PROM_MODE_LLC);
2596 } else if (dev->flags & IFF_ALLMULTI) {
2597 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2598 ("ALLMULTI mode\n"));
2599 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2600 SK_PROM_MODE_ALL_MC);
2601 } else {
2602 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2603 SK_PROM_MODE_NONE);
2604 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2605
2606 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2607 ("Number of MC entries: %d ", dev->mc_count));
2608
2609 pMcList = dev->mc_list;
2610 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2611 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2612 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2613 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2614 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2615 pMcList->dmi_addr[0],
2616 pMcList->dmi_addr[1],
2617 pMcList->dmi_addr[2],
2618 pMcList->dmi_addr[3],
2619 pMcList->dmi_addr[4],
2620 pMcList->dmi_addr[5]));
2621 }
2622 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2623 }
2624 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2625
2626 return;
2627} /* SkGeSetRxMode */
2628
2629
2630/*****************************************************************************
2631 *
2632 * SkGeChangeMtu - set the MTU to another value
2633 *
2634 * Description:
2635 * This function sets is called whenever the MTU size is changed
2636 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2637 * ethernet MTU size, long frame support is activated.
2638 *
2639 * Returns:
2640 * 0, if everything is ok
2641 * !=0, on error
2642 */
2643static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2644{
2645DEV_NET *pNet;
2646DEV_NET *pOtherNet;
2647SK_AC *pAC;
2648unsigned long Flags;
2649int i;
2650SK_EVPARA EvPara;
2651
2652 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2653 ("SkGeChangeMtu starts now...\n"));
2654
2655 pNet = netdev_priv(dev);
2656 pAC = pNet->pAC;
2657
2658 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2659 return -EINVAL;
2660 }
2661
2662 if(pAC->BoardLevel != SK_INIT_RUN) {
2663 return -EINVAL;
2664 }
2665
2666#ifdef SK_DIAG_SUPPORT
2667 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2668 if (pAC->DiagFlowCtrl == SK_FALSE) {
2669 return -1; /* still in use, deny any actions of MTU */
2670 } else {
2671 pAC->DiagFlowCtrl = SK_FALSE;
2672 }
2673 }
2674#endif
2675
2676 pNet->Mtu = NewMtu;
2677 pOtherNet = netdev_priv(pAC->dev[1 - pNet->NetNr]);
2678 if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
2679 return(0);
2680 }
2681
2682 pAC->RxBufSize = NewMtu + 32;
2683 dev->mtu = NewMtu;
2684
2685 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2686 ("New MTU: %d\n", NewMtu));
2687
2688 /*
2689 ** Prevent any reconfiguration while changing the MTU
2690 ** by disabling any interrupts
2691 */
2692 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2693 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2694
2695 /*
2696 ** Notify RLMT that any ports are to be stopped
2697 */
2698 EvPara.Para32[0] = 0;
2699 EvPara.Para32[1] = -1;
2700 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2701 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2702 EvPara.Para32[0] = 1;
2703 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2704 } else {
2705 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2706 }
2707
2708 /*
2709 ** After calling the SkEventDispatcher(), RLMT is aware about
2710 ** the stopped ports -> configuration can take place!
2711 */
2712 SkEventDispatcher(pAC, pAC->IoBase);
2713
2714 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2715 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2716 netif_stop_queue(pAC->dev[i]);
2717
2718 }
2719
2720 /*
2721 ** Depending on the desired MTU size change, a different number of
2722 ** RX buffers need to be allocated
2723 */
2724 if (NewMtu > 1500) {
2725 /*
2726 ** Use less rx buffers
2727 */
2728 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2729 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2730 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2731 (pAC->RxDescrPerRing / 4);
2732 } else {
2733 if (i == pAC->ActivePort) {
2734 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2735 (pAC->RxDescrPerRing / 4);
2736 } else {
2737 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2738 (pAC->RxDescrPerRing / 10);
2739 }
2740 }
2741 }
2742 } else {
2743 /*
2744 ** Use the normal amount of rx buffers
2745 */
2746 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2747 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2748 pAC->RxPort[i].RxFillLimit = 1;
2749 } else {
2750 if (i == pAC->ActivePort) {
2751 pAC->RxPort[i].RxFillLimit = 1;
2752 } else {
2753 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2754 (pAC->RxDescrPerRing / 4);
2755 }
2756 }
2757 }
2758 }
2759
2760 SkGeDeInit(pAC, pAC->IoBase);
2761
2762 /*
2763 ** enable/disable hardware support for long frames
2764 */
2765 if (NewMtu > 1500) {
2766// pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2767 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2768 } else {
2769 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2770 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2771 } else {
2772 pAC->GIni.GIPortUsage = SK_RED_LINK;
2773 }
2774 }
2775
2776 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2777 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2778 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2779 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2780 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2781 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2782 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2783
2784 /*
2785 ** tschilling:
2786 ** Speed and others are set back to default in level 1 init!
2787 */
2788 GetConfiguration(pAC);
2789
2790 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2791 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2792 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2793 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2794 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2795 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2796 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2797
2798 /*
2799 ** clear and reinit the rx rings here
2800 */
2801 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2802 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2803 ClearRxRing(pAC, &pAC->RxPort[i]);
2804 FillRxRing(pAC, &pAC->RxPort[i]);
2805
2806 /*
2807 ** Enable transmit descriptor polling
2808 */
2809 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2810 FillRxRing(pAC, &pAC->RxPort[i]);
2811 };
2812
2813 SkGeYellowLED(pAC, pAC->IoBase, 1);
2814 SkDimEnableModerationIfNeeded(pAC);
2815 SkDimDisplayModerationSettings(pAC);
2816
2817 netif_start_queue(pAC->dev[pNet->PortNr]);
2818 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2819 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2820 }
2821
2822 /*
2823 ** Enable Interrupts again
2824 */
2825 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2826 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2827
2828 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2829 SkEventDispatcher(pAC, pAC->IoBase);
2830
2831 /*
2832 ** Notify RLMT about the changing and restarting one (or more) ports
2833 */
2834 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2835 EvPara.Para32[0] = pAC->RlmtNets;
2836 EvPara.Para32[1] = -1;
2837 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2838 EvPara.Para32[0] = pNet->PortNr;
2839 EvPara.Para32[1] = -1;
2840 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2841
2842 if (pOtherNet->Up) {
2843 EvPara.Para32[0] = pOtherNet->PortNr;
2844 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2845 }
2846 } else {
2847 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2848 }
2849
2850 SkEventDispatcher(pAC, pAC->IoBase);
2851 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2852
2853 /*
2854 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2855 ** seems as if upper layers have a problem to handle a successful
2856 ** return value of '0'. If such a zero is returned, the complete
2857 ** system hangs for several minutes (!), which is in acceptable.
2858 **
2859 ** Currently it is not clear, what the exact reason for this problem
2860 ** is. The implemented workaround for 2.5 is to return the desired
2861 ** new MTU size if all needed changes for the new MTU size where
2862 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2863 ** which indicates the successful change of the mtu-size.
2864 */
2865 return NewMtu;
2866
2867} /* SkGeChangeMtu */
2868
2869
2870/*****************************************************************************
2871 *
2872 * SkGeStats - return ethernet device statistics
2873 *
2874 * Description:
2875 * This function return statistic data about the ethernet device
2876 * to the operating system.
2877 *
2878 * Returns:
2879 * pointer to the statistic structure.
2880 */
2881static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2882{
2883DEV_NET *pNet = netdev_priv(dev);
2884SK_AC *pAC = pNet->pAC;
2885SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2886SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2887SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2888unsigned int Size; /* size of pnmi struct */
2889unsigned long Flags; /* for spin lock */
2890
2891 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2892 ("SkGeStats starts now...\n"));
2893 pPnmiStruct = &pAC->PnmiStruct;
2894
2895#ifdef SK_DIAG_SUPPORT
2896 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2897 (pAC->BoardLevel == SK_INIT_RUN)) {
2898#endif
2899 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2900 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2901 Size = SK_PNMI_STRUCT_SIZE;
2902 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2903 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2904#ifdef SK_DIAG_SUPPORT
2905 }
2906#endif
2907
2908 pPnmiStat = &pPnmiStruct->Stat[0];
2909 pPnmiConf = &pPnmiStruct->Conf[0];
2910
2911 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2912 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2913 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2914 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2915
2916 if (pNet->Mtu <= 1500) {
2917 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2918 } else {
2919 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2920 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2921 }
2922
2923
2924 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2925 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2926
2927 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2928 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2929 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2930 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2931 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2932
2933 /* detailed rx_errors: */
2934 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2935 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2936 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2937 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2938 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2939 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2940
2941 /* detailed tx_errors */
2942 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2943 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2944 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2945 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2946 pAC->stats.tx_window_errors = (SK_U32) 0;
2947
2948 return(&pAC->stats);
2949} /* SkGeStats */
2950
2951
2952/*****************************************************************************
2953 *
2954 * SkGeIoctl - IO-control function
2955 *
2956 * Description:
2957 * This function is called if an ioctl is issued on the device.
2958 * There are three subfunction for reading, writing and test-writing
2959 * the private MIB data structure (usefull for SysKonnect-internal tools).
2960 *
2961 * Returns:
2962 * 0, if everything is ok
2963 * !=0, on error
2964 */
2965static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2966{
2967DEV_NET *pNet;
2968SK_AC *pAC;
2969void *pMemBuf;
2970struct pci_dev *pdev = NULL;
2971SK_GE_IOCTL Ioctl;
2972unsigned int Err = 0;
2973int Size = 0;
2974int Ret = 0;
2975unsigned int Length = 0;
2976int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2977
2978 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2979 ("SkGeIoctl starts now...\n"));
2980
2981 pNet = netdev_priv(dev);
2982 pAC = pNet->pAC;
2983
2984 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2985 return -EFAULT;
2986 }
2987
2988 switch(cmd) {
2989 case SK_IOCTL_SETMIB:
2990 case SK_IOCTL_PRESETMIB:
2991 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2992 case SK_IOCTL_GETMIB:
2993 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2994 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2995 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2996 return -EFAULT;
2997 }
2998 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2999 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
3000 Ioctl.Len<Size? Ioctl.Len : Size)) {
3001 return -EFAULT;
3002 }
3003 Ioctl.Len = Size;
3004 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3005 return -EFAULT;
3006 }
3007 break;
3008 case SK_IOCTL_GEN:
3009 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3010 Length = Ioctl.Len;
3011 } else {
3012 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3013 }
3014 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3015 return -ENOMEM;
3016 }
3017 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3018 Err = -EFAULT;
3019 goto fault_gen;
3020 }
3021 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
3022 Err = -EFAULT;
3023 goto fault_gen;
3024 }
3025 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3026 Err = -EFAULT;
3027 goto fault_gen;
3028 }
3029 Ioctl.Len = Length;
3030 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3031 Err = -EFAULT;
3032 goto fault_gen;
3033 }
3034fault_gen:
3035 kfree(pMemBuf); /* cleanup everything */
3036 break;
3037#ifdef SK_DIAG_SUPPORT
3038 case SK_IOCTL_DIAG:
3039 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3040 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3041 Length = Ioctl.Len;
3042 } else {
3043 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3044 }
3045 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3046 return -ENOMEM;
3047 }
3048 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3049 Err = -EFAULT;
3050 goto fault_diag;
3051 }
3052 pdev = pAC->PciDev;
3053 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
3054 /*
3055 ** While coding this new IOCTL interface, only a few lines of code
3056 ** are to to be added. Therefore no dedicated function has been
3057 ** added. If more functionality is added, a separate function
3058 ** should be used...
3059 */
3060 * ((SK_U32 *)pMemBuf) = 0;
3061 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3062 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
3063 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3064 Err = -EFAULT;
3065 goto fault_diag;
3066 }
3067 Ioctl.Len = Length;
3068 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3069 Err = -EFAULT;
3070 goto fault_diag;
3071 }
3072fault_diag:
3073 kfree(pMemBuf); /* cleanup everything */
3074 break;
3075#endif
3076 default:
3077 Err = -EOPNOTSUPP;
3078 }
3079
3080 return(Err);
3081
3082} /* SkGeIoctl */
3083
3084
3085/*****************************************************************************
3086 *
3087 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3088 *
3089 * Description:
3090 * This function reads/writes the MIB data using PNMI (Private Network
3091 * Management Interface).
3092 * The destination for the data must be provided with the
3093 * ioctl call and is given to the driver in the form of
3094 * a user space address.
3095 * Copying from the user-provided data area into kernel messages
3096 * and back is done by copy_from_user and copy_to_user calls in
3097 * SkGeIoctl.
3098 *
3099 * Returns:
3100 * returned size from PNMI call
3101 */
3102static int SkGeIocMib(
3103DEV_NET *pNet, /* pointer to the adapter context */
3104unsigned int Size, /* length of ioctl data */
3105int mode) /* flag for set/preset */
3106{
3107unsigned long Flags; /* for spin lock */
3108SK_AC *pAC;
3109
3110 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3111 ("SkGeIocMib starts now...\n"));
3112 pAC = pNet->pAC;
3113 /* access MIB */
3114 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3115 switch(mode) {
3116 case SK_IOCTL_GETMIB:
3117 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3118 pNet->NetNr);
3119 break;
3120 case SK_IOCTL_PRESETMIB:
3121 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3122 pNet->NetNr);
3123 break;
3124 case SK_IOCTL_SETMIB:
3125 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3126 pNet->NetNr);
3127 break;
3128 default:
3129 break;
3130 }
3131 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3132 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3133 ("MIB data access succeeded\n"));
3134 return (Size);
3135} /* SkGeIocMib */
3136
3137
3138/*****************************************************************************
3139 *
3140 * GetConfiguration - read configuration information
3141 *
3142 * Description:
3143 * This function reads per-adapter configuration information from
3144 * the options provided on the command line.
3145 *
3146 * Returns:
3147 * none
3148 */
3149static void GetConfiguration(
3150SK_AC *pAC) /* pointer to the adapter context structure */
3151{
3152SK_I32 Port; /* preferred port */
3153SK_BOOL AutoSet;
3154SK_BOOL DupSet;
3155int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3156int AutoNeg = 1; /* autoneg off (0) or on (1) */
3157int DuplexCap = 0; /* 0=both,1=full,2=half */
3158int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3159int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3160
3161SK_BOOL IsConTypeDefined = SK_TRUE;
3162SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3163SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3164SK_BOOL IsRoleDefined = SK_TRUE;
3165SK_BOOL IsModeDefined = SK_TRUE;
3166/*
3167 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3168 * parameter. The mapping is described by this table:
3169 * DuplexCap -> | both | full | half |
3170 * AutoNeg | | | |
3171 * -----------------------------------------------------------------
3172 * Off | illegal | Full | Half |
3173 * -----------------------------------------------------------------
3174 * On | AutoBoth | AutoFull | AutoHalf |
3175 * -----------------------------------------------------------------
3176 * Sense | AutoSense | AutoSense | AutoSense |
3177 */
3178int Capabilities[3][3] =
3179 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3180 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3181 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3182
3183#define DC_BOTH 0
3184#define DC_FULL 1
3185#define DC_HALF 2
3186#define AN_OFF 0
3187#define AN_ON 1
3188#define AN_SENS 2
3189#define M_CurrPort pAC->GIni.GP[Port]
3190
3191
3192 /*
3193 ** Set the default values first for both ports!
3194 */
3195 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3196 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3197 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3198 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3199 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3200 }
3201
3202 /*
3203 ** Check merged parameter ConType. If it has not been used,
3204 ** verify any other parameter (e.g. AutoNeg) and use default values.
3205 **
3206 ** Stating both ConType and other lowlevel link parameters is also
3207 ** possible. If this is the case, the passed ConType-parameter is
3208 ** overwritten by the lowlevel link parameter.
3209 **
3210 ** The following settings are used for a merged ConType-parameter:
3211 **
3212 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3213 ** ------- ------ ------- -------- ---------- -----
3214 ** Auto Both On SymOrRem Auto Auto
3215 ** 100FD Full Off None <ignored> 100
3216 ** 100HD Half Off None <ignored> 100
3217 ** 10FD Full Off None <ignored> 10
3218 ** 10HD Half Off None <ignored> 10
3219 **
3220 ** This ConType parameter is used for all ports of the adapter!
3221 */
3222 if ( (ConType != NULL) &&
3223 (pAC->Index < SK_MAX_CARD_PARAM) &&
3224 (ConType[pAC->Index] != NULL) ) {
3225
3226 /* Check chipset family */
3227 if ((!pAC->ChipsetType) &&
3228 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3229 (strcmp(ConType[pAC->Index],"")!=0)) {
3230 /* Set the speed parameter back */
3231 printk("sk98lin: Illegal value \"%s\" "
3232 "for ConType."
3233 " Using Auto.\n",
3234 ConType[pAC->Index]);
3235
3236 sprintf(ConType[pAC->Index], "Auto");
3237 }
3238
3239 if (strcmp(ConType[pAC->Index],"")==0) {
3240 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3241 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3242 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3243 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3244 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3245 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3246 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3247 }
3248 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3249 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3250 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3251 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3252 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3253 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3254 }
3255 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3256 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3257 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3258 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3259 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3260 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3261 }
3262 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3263 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3264 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3265 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3266 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3267 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3268 }
3269 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3270 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3271 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3272 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3273 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3274 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3275 }
3276 } else {
3277 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3278 ConType[pAC->Index]);
3279 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3280 }
3281 } else {
3282 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3283 }
3284
3285 /*
3286 ** Parse any parameter settings for port A:
3287 ** a) any LinkSpeed stated?
3288 */
3289 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3290 Speed_A[pAC->Index] != NULL) {
3291 if (strcmp(Speed_A[pAC->Index],"")==0) {
3292 IsLinkSpeedDefined = SK_FALSE;
3293 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3294 LinkSpeed = SK_LSPEED_AUTO;
3295 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3296 LinkSpeed = SK_LSPEED_10MBPS;
3297 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3298 LinkSpeed = SK_LSPEED_100MBPS;
3299 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3300 LinkSpeed = SK_LSPEED_1000MBPS;
3301 } else {
3302 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3303 Speed_A[pAC->Index]);
3304 IsLinkSpeedDefined = SK_FALSE;
3305 }
3306 } else {
3307 IsLinkSpeedDefined = SK_FALSE;
3308 }
3309
3310 /*
3311 ** Check speed parameter:
3312 ** Only copper type adapter and GE V2 cards
3313 */
3314 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3315 ((LinkSpeed != SK_LSPEED_AUTO) &&
3316 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3317 printk("sk98lin: Illegal value for Speed_A. "
3318 "Not a copper card or GE V2 card\n Using "
3319 "speed 1000\n");
3320 LinkSpeed = SK_LSPEED_1000MBPS;
3321 }
3322
3323 /*
3324 ** Decide whether to set new config value if somethig valid has
3325 ** been received.
3326 */
3327 if (IsLinkSpeedDefined) {
3328 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3329 }
3330
3331 /*
3332 ** b) Any Autonegotiation and DuplexCapabilities set?
3333 ** Please note that both belong together...
3334 */
3335 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3336 AutoSet = SK_FALSE;
3337 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3338 AutoNeg_A[pAC->Index] != NULL) {
3339 AutoSet = SK_TRUE;
3340 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3341 AutoSet = SK_FALSE;
3342 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3343 AutoNeg = AN_ON;
3344 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3345 AutoNeg = AN_OFF;
3346 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3347 AutoNeg = AN_SENS;
3348 } else {
3349 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3350 AutoNeg_A[pAC->Index]);
3351 }
3352 }
3353
3354 DuplexCap = DC_BOTH;
3355 DupSet = SK_FALSE;
3356 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3357 DupCap_A[pAC->Index] != NULL) {
3358 DupSet = SK_TRUE;
3359 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3360 DupSet = SK_FALSE;
3361 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3362 DuplexCap = DC_BOTH;
3363 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3364 DuplexCap = DC_FULL;
3365 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3366 DuplexCap = DC_HALF;
3367 } else {
3368 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3369 DupCap_A[pAC->Index]);
3370 }
3371 }
3372
3373 /*
3374 ** Check for illegal combinations
3375 */
3376 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3377 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3378 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3379 (pAC->ChipsetType)) {
3380 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3381 " Using Full Duplex.\n");
3382 DuplexCap = DC_FULL;
3383 }
3384
3385 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3386 printk("sk98lin, Port A: DuplexCapabilities"
3387 " ignored using Sense mode\n");
3388 }
3389
3390 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3391 printk("sk98lin: Port A: Illegal combination"
3392 " of values AutoNeg. and DuplexCap.\n Using "
3393 "Full Duplex\n");
3394 DuplexCap = DC_FULL;
3395 }
3396
3397 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3398 DuplexCap = DC_FULL;
3399 }
3400
3401 if (!AutoSet && DupSet) {
3402 printk("sk98lin: Port A: Duplex setting not"
3403 " possible in\n default AutoNegotiation mode"
3404 " (Sense).\n Using AutoNegotiation On\n");
3405 AutoNeg = AN_ON;
3406 }
3407
3408 /*
3409 ** set the desired mode
3410 */
3411 if (AutoSet || DupSet) {
3412 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3413 }
3414
3415 /*
3416 ** c) Any Flowcontrol-parameter set?
3417 */
3418 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3419 FlowCtrl_A[pAC->Index] != NULL) {
3420 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3421 IsFlowCtrlDefined = SK_FALSE;
3422 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3423 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3424 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3425 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3426 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3427 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3428 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3429 FlowCtrl = SK_FLOW_MODE_NONE;
3430 } else {
3431 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3432 FlowCtrl_A[pAC->Index]);
3433 IsFlowCtrlDefined = SK_FALSE;
3434 }
3435 } else {
3436 IsFlowCtrlDefined = SK_FALSE;
3437 }
3438
3439 if (IsFlowCtrlDefined) {
3440 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3441 printk("sk98lin: Port A: FlowControl"
3442 " impossible without AutoNegotiation,"
3443 " disabled\n");
3444 FlowCtrl = SK_FLOW_MODE_NONE;
3445 }
3446 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3447 }
3448
3449 /*
3450 ** d) What is with the RoleParameter?
3451 */
3452 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3453 Role_A[pAC->Index] != NULL) {
3454 if (strcmp(Role_A[pAC->Index],"")==0) {
3455 IsRoleDefined = SK_FALSE;
3456 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3457 MSMode = SK_MS_MODE_AUTO;
3458 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3459 MSMode = SK_MS_MODE_MASTER;
3460 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3461 MSMode = SK_MS_MODE_SLAVE;
3462 } else {
3463 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3464 Role_A[pAC->Index]);
3465 IsRoleDefined = SK_FALSE;
3466 }
3467 } else {
3468 IsRoleDefined = SK_FALSE;
3469 }
3470
3471 if (IsRoleDefined == SK_TRUE) {
3472 pAC->GIni.GP[0].PMSMode = MSMode;
3473 }
3474
3475
3476
3477 /*
3478 ** Parse any parameter settings for port B:
3479 ** a) any LinkSpeed stated?
3480 */
3481 IsConTypeDefined = SK_TRUE;
3482 IsLinkSpeedDefined = SK_TRUE;
3483 IsFlowCtrlDefined = SK_TRUE;
3484 IsModeDefined = SK_TRUE;
3485
3486 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3487 Speed_B[pAC->Index] != NULL) {
3488 if (strcmp(Speed_B[pAC->Index],"")==0) {
3489 IsLinkSpeedDefined = SK_FALSE;
3490 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3491 LinkSpeed = SK_LSPEED_AUTO;
3492 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3493 LinkSpeed = SK_LSPEED_10MBPS;
3494 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3495 LinkSpeed = SK_LSPEED_100MBPS;
3496 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3497 LinkSpeed = SK_LSPEED_1000MBPS;
3498 } else {
3499 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3500 Speed_B[pAC->Index]);
3501 IsLinkSpeedDefined = SK_FALSE;
3502 }
3503 } else {
3504 IsLinkSpeedDefined = SK_FALSE;
3505 }
3506
3507 /*
3508 ** Check speed parameter:
3509 ** Only copper type adapter and GE V2 cards
3510 */
3511 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3512 ((LinkSpeed != SK_LSPEED_AUTO) &&
3513 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3514 printk("sk98lin: Illegal value for Speed_B. "
3515 "Not a copper card or GE V2 card\n Using "
3516 "speed 1000\n");
3517 LinkSpeed = SK_LSPEED_1000MBPS;
3518 }
3519
3520 /*
3521 ** Decide whether to set new config value if somethig valid has
3522 ** been received.
3523 */
3524 if (IsLinkSpeedDefined) {
3525 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3526 }
3527
3528 /*
3529 ** b) Any Autonegotiation and DuplexCapabilities set?
3530 ** Please note that both belong together...
3531 */
3532 AutoNeg = AN_SENS; /* default: do auto Sense */
3533 AutoSet = SK_FALSE;
3534 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3535 AutoNeg_B[pAC->Index] != NULL) {
3536 AutoSet = SK_TRUE;
3537 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3538 AutoSet = SK_FALSE;
3539 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3540 AutoNeg = AN_ON;
3541 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3542 AutoNeg = AN_OFF;
3543 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3544 AutoNeg = AN_SENS;
3545 } else {
3546 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3547 AutoNeg_B[pAC->Index]);
3548 }
3549 }
3550
3551 DuplexCap = DC_BOTH;
3552 DupSet = SK_FALSE;
3553 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3554 DupCap_B[pAC->Index] != NULL) {
3555 DupSet = SK_TRUE;
3556 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3557 DupSet = SK_FALSE;
3558 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3559 DuplexCap = DC_BOTH;
3560 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3561 DuplexCap = DC_FULL;
3562 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3563 DuplexCap = DC_HALF;
3564 } else {
3565 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3566 DupCap_B[pAC->Index]);
3567 }
3568 }
3569
3570
3571 /*
3572 ** Check for illegal combinations
3573 */
3574 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3575 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3576 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3577 (pAC->ChipsetType)) {
3578 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3579 " Using Full Duplex.\n");
3580 DuplexCap = DC_FULL;
3581 }
3582
3583 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3584 printk("sk98lin, Port B: DuplexCapabilities"
3585 " ignored using Sense mode\n");
3586 }
3587
3588 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3589 printk("sk98lin: Port B: Illegal combination"
3590 " of values AutoNeg. and DuplexCap.\n Using "
3591 "Full Duplex\n");
3592 DuplexCap = DC_FULL;
3593 }
3594
3595 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3596 DuplexCap = DC_FULL;
3597 }
3598
3599 if (!AutoSet && DupSet) {
3600 printk("sk98lin: Port B: Duplex setting not"
3601 " possible in\n default AutoNegotiation mode"
3602 " (Sense).\n Using AutoNegotiation On\n");
3603 AutoNeg = AN_ON;
3604 }
3605
3606 /*
3607 ** set the desired mode
3608 */
3609 if (AutoSet || DupSet) {
3610 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3611 }
3612
3613 /*
3614 ** c) Any FlowCtrl parameter set?
3615 */
3616 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3617 FlowCtrl_B[pAC->Index] != NULL) {
3618 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3619 IsFlowCtrlDefined = SK_FALSE;
3620 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3621 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3622 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3623 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3624 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3625 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3626 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3627 FlowCtrl = SK_FLOW_MODE_NONE;
3628 } else {
3629 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3630 FlowCtrl_B[pAC->Index]);
3631 IsFlowCtrlDefined = SK_FALSE;
3632 }
3633 } else {
3634 IsFlowCtrlDefined = SK_FALSE;
3635 }
3636
3637 if (IsFlowCtrlDefined) {
3638 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3639 printk("sk98lin: Port B: FlowControl"
3640 " impossible without AutoNegotiation,"
3641 " disabled\n");
3642 FlowCtrl = SK_FLOW_MODE_NONE;
3643 }
3644 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3645 }
3646
3647 /*
3648 ** d) What is the RoleParameter?
3649 */
3650 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3651 Role_B[pAC->Index] != NULL) {
3652 if (strcmp(Role_B[pAC->Index],"")==0) {
3653 IsRoleDefined = SK_FALSE;
3654 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3655 MSMode = SK_MS_MODE_AUTO;
3656 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3657 MSMode = SK_MS_MODE_MASTER;
3658 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3659 MSMode = SK_MS_MODE_SLAVE;
3660 } else {
3661 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3662 Role_B[pAC->Index]);
3663 IsRoleDefined = SK_FALSE;
3664 }
3665 } else {
3666 IsRoleDefined = SK_FALSE;
3667 }
3668
3669 if (IsRoleDefined) {
3670 pAC->GIni.GP[1].PMSMode = MSMode;
3671 }
3672
3673 /*
3674 ** Evaluate settings for both ports
3675 */
3676 pAC->ActivePort = 0;
3677 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3678 PrefPort[pAC->Index] != NULL) {
3679 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3680 pAC->ActivePort = 0;
3681 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3682 pAC->Rlmt.Net[0].PrefPort = 0;
3683 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3684 /*
3685 ** do not set ActivePort here, thus a port
3686 ** switch is issued after net up.
3687 */
3688 Port = 0;
3689 pAC->Rlmt.Net[0].Preference = Port;
3690 pAC->Rlmt.Net[0].PrefPort = Port;
3691 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3692 /*
3693 ** do not set ActivePort here, thus a port
3694 ** switch is issued after net up.
3695 */
3696 if (pAC->GIni.GIMacsFound == 1) {
3697 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3698 " Port B not available on single port adapters.\n");
3699
3700 pAC->ActivePort = 0;
3701 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3702 pAC->Rlmt.Net[0].PrefPort = 0;
3703 } else {
3704 Port = 1;
3705 pAC->Rlmt.Net[0].Preference = Port;
3706 pAC->Rlmt.Net[0].PrefPort = Port;
3707 }
3708 } else {
3709 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3710 PrefPort[pAC->Index]);
3711 }
3712 }
3713
3714 pAC->RlmtNets = 1;
3715
3716 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3717 RlmtMode[pAC->Index] != NULL) {
3718 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3719 pAC->RlmtMode = 0;
3720 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3721 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3722 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3723 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3724 SK_RLMT_CHECK_LOC_LINK;
3725 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3726 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3727 SK_RLMT_CHECK_LOC_LINK |
3728 SK_RLMT_CHECK_SEG;
3729 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3730 (pAC->GIni.GIMacsFound == 2)) {
3731 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3732 pAC->RlmtNets = 2;
3733 } else {
3734 printk("sk98lin: Illegal value \"%s\" for"
3735 " RlmtMode, using default\n",
3736 RlmtMode[pAC->Index]);
3737 pAC->RlmtMode = 0;
3738 }
3739 } else {
3740 pAC->RlmtMode = 0;
3741 }
3742
3743 /*
3744 ** Check the interrupt moderation parameters
3745 */
3746 if (Moderation[pAC->Index] != NULL) {
3747 if (strcmp(Moderation[pAC->Index], "") == 0) {
3748 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3749 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3750 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3751 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3752 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3753 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3754 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3755 } else {
3756 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3757 " Disable interrupt moderation.\n",
3758 Moderation[pAC->Index]);
3759 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3760 }
3761 } else {
3762 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3763 }
3764
3765 if (Stats[pAC->Index] != NULL) {
3766 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3767 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3768 } else {
3769 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3770 }
3771 } else {
3772 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3773 }
3774
3775 if (ModerationMask[pAC->Index] != NULL) {
3776 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3777 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3778 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3779 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3780 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3781 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3782 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3783 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3784 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3785 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3786 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3787 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3788 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3789 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3790 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3791 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3792 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3793 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3794 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3795 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3796 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3797 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3798 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3799 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3800 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3801 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3802 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3803 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3804 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3805 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3806 } else { /* some rubbish */
3807 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3808 }
3809 } else { /* operator has stated nothing */
3810 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3811 }
3812
3813 if (AutoSizing[pAC->Index] != NULL) {
3814 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3815 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3816 } else {
3817 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3818 }
3819 } else { /* operator has stated nothing */
3820 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3821 }
3822
3823 if (IntsPerSec[pAC->Index] != 0) {
3824 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3825 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3826 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3827 " Using default value of %i.\n",
3828 IntsPerSec[pAC->Index],
3829 C_INT_MOD_IPS_LOWER_RANGE,
3830 C_INT_MOD_IPS_UPPER_RANGE,
3831 C_INTS_PER_SEC_DEFAULT);
3832 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3833 } else {
3834 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3835 }
3836 } else {
3837 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3838 }
3839
3840 /*
3841 ** Evaluate upper and lower moderation threshold
3842 */
3843 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3844 pAC->DynIrqModInfo.MaxModIntsPerSec +
3845 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3846
3847 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3848 pAC->DynIrqModInfo.MaxModIntsPerSec -
3849 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3850
3851 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3852
3853
3854} /* GetConfiguration */
3855
3856
3857/*****************************************************************************
3858 *
3859 * ProductStr - return a adapter identification string from vpd
3860 *
3861 * Description:
3862 * This function reads the product name string from the vpd area
3863 * and puts it the field pAC->DeviceString.
3864 *
3865 * Returns: N/A
3866 */
3867static void ProductStr(
3868SK_AC *pAC /* pointer to adapter context */
3869)
3870{
3871int StrLen = 80; /* length of the string, defined in SK_AC */
3872char Keyword[] = VPD_NAME; /* vpd productname identifier */
3873int ReturnCode; /* return code from vpd_read */
3874unsigned long Flags;
3875
3876 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3877 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
3878 &StrLen);
3879 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3880 if (ReturnCode != 0) {
3881 /* there was an error reading the vpd data */
3882 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
3883 ("Error reading VPD data: %d\n", ReturnCode));
3884 pAC->DeviceStr[0] = '\0';
3885 }
3886} /* ProductStr */
3887
3888/*****************************************************************************
3889 *
3890 * StartDrvCleanupTimer - Start timer to check for descriptors which
3891 * might be placed in descriptor ring, but
3892 * havent been handled up to now
3893 *
3894 * Description:
3895 * This function requests a HW-timer fo the Yukon card. The actions to
3896 * perform when this timer expires, are located in the SkDrvEvent().
3897 *
3898 * Returns: N/A
3899 */
3900static void
3901StartDrvCleanupTimer(SK_AC *pAC) {
3902 SK_EVPARA EventParam; /* Event struct for timer event */
3903
3904 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3905 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3906 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3907 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3908 SKGE_DRV, SK_DRV_TIMER, EventParam);
3909}
3910
3911/*****************************************************************************
3912 *
3913 * StopDrvCleanupTimer - Stop timer to check for descriptors
3914 *
3915 * Description:
3916 * This function requests a HW-timer fo the Yukon card. The actions to
3917 * perform when this timer expires, are located in the SkDrvEvent().
3918 *
3919 * Returns: N/A
3920 */
3921static void
3922StopDrvCleanupTimer(SK_AC *pAC) {
3923 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3924 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3925}
3926
3927/****************************************************************************/
3928/* functions for common modules *********************************************/
3929/****************************************************************************/
3930
3931
3932/*****************************************************************************
3933 *
3934 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3935 *
3936 * Description:
3937 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3938 * is embedded into a socket buff data area.
3939 *
3940 * Context:
3941 * runtime
3942 *
3943 * Returns:
3944 * NULL or pointer to Mbuf.
3945 */
3946SK_MBUF *SkDrvAllocRlmtMbuf(
3947SK_AC *pAC, /* pointer to adapter context */
3948SK_IOC IoC, /* the IO-context */
3949unsigned BufferSize) /* size of the requested buffer */
3950{
3951SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3952struct sk_buff *pMsgBlock; /* pointer to a new message block */
3953
3954 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3955 if (pMsgBlock == NULL) {
3956 return (NULL);
3957 }
3958 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3959 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3960 pRlmtMbuf->pNext = NULL;
3961 pRlmtMbuf->pOs = pMsgBlock;
3962 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3963 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3964 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3965 return (pRlmtMbuf);
3966
3967} /* SkDrvAllocRlmtMbuf */
3968
3969
3970/*****************************************************************************
3971 *
3972 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3973 *
3974 * Description:
3975 * This routine frees one or more RLMT mbuf(s).
3976 *
3977 * Context:
3978 * runtime
3979 *
3980 * Returns:
3981 * Nothing
3982 */
3983void SkDrvFreeRlmtMbuf(
3984SK_AC *pAC, /* pointer to adapter context */
3985SK_IOC IoC, /* the IO-context */
3986SK_MBUF *pMbuf) /* size of the requested buffer */
3987{
3988SK_MBUF *pFreeMbuf;
3989SK_MBUF *pNextMbuf;
3990
3991 pFreeMbuf = pMbuf;
3992 do {
3993 pNextMbuf = pFreeMbuf->pNext;
3994 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3995 pFreeMbuf = pNextMbuf;
3996 } while ( pFreeMbuf != NULL );
3997} /* SkDrvFreeRlmtMbuf */
3998
3999
4000/*****************************************************************************
4001 *
4002 * SkOsGetTime - provide a time value
4003 *
4004 * Description:
4005 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
4006 * It is not used for absolute time, but only for time differences.
4007 *
4008 *
4009 * Returns:
4010 * Time value
4011 */
4012SK_U64 SkOsGetTime(SK_AC *pAC)
4013{
4014 SK_U64 PrivateJiffies;
4015 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
4016 return PrivateJiffies;
4017} /* SkOsGetTime */
4018
4019
4020/*****************************************************************************
4021 *
4022 * SkPciReadCfgDWord - read a 32 bit value from pci config space
4023 *
4024 * Description:
4025 * This routine reads a 32 bit value from the pci configuration
4026 * space.
4027 *
4028 * Returns:
4029 * 0 - indicate everything worked ok.
4030 * != 0 - error indication
4031 */
4032int SkPciReadCfgDWord(
4033SK_AC *pAC, /* Adapter Control structure pointer */
4034int PciAddr, /* PCI register address */
4035SK_U32 *pVal) /* pointer to store the read value */
4036{
4037 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
4038 return(0);
4039} /* SkPciReadCfgDWord */
4040
4041
4042/*****************************************************************************
4043 *
4044 * SkPciReadCfgWord - read a 16 bit value from pci config space
4045 *
4046 * Description:
4047 * This routine reads a 16 bit value from the pci configuration
4048 * space.
4049 *
4050 * Returns:
4051 * 0 - indicate everything worked ok.
4052 * != 0 - error indication
4053 */
4054int SkPciReadCfgWord(
4055SK_AC *pAC, /* Adapter Control structure pointer */
4056int PciAddr, /* PCI register address */
4057SK_U16 *pVal) /* pointer to store the read value */
4058{
4059 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4060 return(0);
4061} /* SkPciReadCfgWord */
4062
4063
4064/*****************************************************************************
4065 *
4066 * SkPciReadCfgByte - read a 8 bit value from pci config space
4067 *
4068 * Description:
4069 * This routine reads a 8 bit value from the pci configuration
4070 * space.
4071 *
4072 * Returns:
4073 * 0 - indicate everything worked ok.
4074 * != 0 - error indication
4075 */
4076int SkPciReadCfgByte(
4077SK_AC *pAC, /* Adapter Control structure pointer */
4078int PciAddr, /* PCI register address */
4079SK_U8 *pVal) /* pointer to store the read value */
4080{
4081 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4082 return(0);
4083} /* SkPciReadCfgByte */
4084
4085
4086/*****************************************************************************
4087 *
4088 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
4089 *
4090 * Description:
4091 * This routine writes a 32 bit value to the pci configuration
4092 * space.
4093 *
4094 * Returns:
4095 * 0 - indicate everything worked ok.
4096 * != 0 - error indication
4097 */
4098int SkPciWriteCfgDWord(
4099SK_AC *pAC, /* Adapter Control structure pointer */
4100int PciAddr, /* PCI register address */
4101SK_U32 Val) /* pointer to store the read value */
4102{
4103 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
4104 return(0);
4105} /* SkPciWriteCfgDWord */
4106
4107
4108/*****************************************************************************
4109 *
4110 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4111 *
4112 * Description:
4113 * This routine writes a 16 bit value to the pci configuration
4114 * space. The flag PciConfigUp indicates whether the config space
4115 * is accesible or must be set up first.
4116 *
4117 * Returns:
4118 * 0 - indicate everything worked ok.
4119 * != 0 - error indication
4120 */
4121int SkPciWriteCfgWord(
4122SK_AC *pAC, /* Adapter Control structure pointer */
4123int PciAddr, /* PCI register address */
4124SK_U16 Val) /* pointer to store the read value */
4125{
4126 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4127 return(0);
4128} /* SkPciWriteCfgWord */
4129
4130
4131/*****************************************************************************
4132 *
4133 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4134 *
4135 * Description:
4136 * This routine writes a 8 bit value to the pci configuration
4137 * space. The flag PciConfigUp indicates whether the config space
4138 * is accesible or must be set up first.
4139 *
4140 * Returns:
4141 * 0 - indicate everything worked ok.
4142 * != 0 - error indication
4143 */
4144int SkPciWriteCfgByte(
4145SK_AC *pAC, /* Adapter Control structure pointer */
4146int PciAddr, /* PCI register address */
4147SK_U8 Val) /* pointer to store the read value */
4148{
4149 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4150 return(0);
4151} /* SkPciWriteCfgByte */
4152
4153
4154/*****************************************************************************
4155 *
4156 * SkDrvEvent - handle driver events
4157 *
4158 * Description:
4159 * This function handles events from all modules directed to the driver
4160 *
4161 * Context:
4162 * Is called under protection of slow path lock.
4163 *
4164 * Returns:
4165 * 0 if everything ok
4166 * < 0 on error
4167 *
4168 */
4169int SkDrvEvent(
4170SK_AC *pAC, /* pointer to adapter context */
4171SK_IOC IoC, /* io-context */
4172SK_U32 Event, /* event-id */
4173SK_EVPARA Param) /* event-parameter */
4174{
4175SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4176struct sk_buff *pMsg; /* pointer to a message block */
4177int FromPort; /* the port from which we switch away */
4178int ToPort; /* the port we switch to */
4179SK_EVPARA NewPara; /* parameter for further events */
4180int Stat;
4181unsigned long Flags;
4182SK_BOOL DualNet;
4183
4184 switch (Event) {
4185 case SK_DRV_ADAP_FAIL:
4186 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4187 ("ADAPTER FAIL EVENT\n"));
4188 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4189 /* disable interrupts */
4190 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4191 /* cgoos */
4192 break;
4193 case SK_DRV_PORT_FAIL:
4194 FromPort = Param.Para32[0];
4195 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4196 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4197 if (FromPort == 0) {
4198 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4199 } else {
4200 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4201 }
4202 /* cgoos */
4203 break;
4204 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4205 /* action list 4 */
4206 FromPort = Param.Para32[0];
4207 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4208 ("PORT RESET EVENT, Port: %d ", FromPort));
4209 NewPara.Para64 = FromPort;
4210 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4211 spin_lock_irqsave(
4212 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4213 Flags);
4214
4215 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
7d17c1d6 4216 netif_carrier_off(pAC->dev[Param.Para32[0]]);
1da177e4
LT
4217 spin_unlock_irqrestore(
4218 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4219 Flags);
4220
4221 /* clear rx ring from received frames */
4222 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4223
4224 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4225 spin_lock_irqsave(
4226 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4227 Flags);
4228
4229 /* tschilling: Handling of return value inserted. */
4230 if (SkGeInitPort(pAC, IoC, FromPort)) {
4231 if (FromPort == 0) {
4232 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4233 } else {
4234 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4235 }
4236 }
4237 SkAddrMcUpdate(pAC,IoC, FromPort);
4238 PortReInitBmu(pAC, FromPort);
4239 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4240 ClearAndStartRx(pAC, FromPort);
4241 spin_unlock_irqrestore(
4242 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4243 Flags);
4244 break;
4245 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4246 /* action list 5 */
4247 FromPort = Param.Para32[0];
4248 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4249 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4250 /* Mac update */
4251 SkAddrMcUpdate(pAC,IoC, FromPort);
4252
4253 if (DoPrintInterfaceChange) {
4254 printk("%s: network connection up using"
4255 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4256
4257 /* tschilling: Values changed according to LinkSpeedUsed. */
4258 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4259 if (Stat == SK_LSPEED_STAT_10MBPS) {
4260 printk(" speed: 10\n");
4261 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4262 printk(" speed: 100\n");
4263 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4264 printk(" speed: 1000\n");
4265 } else {
4266 printk(" speed: unknown\n");
4267 }
4268
4269
4270 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4271 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4272 Stat == SK_LMODE_STAT_AUTOFULL) {
4273 printk(" autonegotiation: yes\n");
4274 }
4275 else {
4276 printk(" autonegotiation: no\n");
4277 }
4278 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4279 Stat == SK_LMODE_STAT_HALF) {
4280 printk(" duplex mode: half\n");
4281 }
4282 else {
4283 printk(" duplex mode: full\n");
4284 }
4285 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4286 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4287 printk(" flowctrl: remote send\n");
4288 }
4289 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4290 printk(" flowctrl: local send\n");
4291 }
4292 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4293 printk(" flowctrl: symmetric\n");
4294 }
4295 else {
4296 printk(" flowctrl: none\n");
4297 }
4298
4299 /* tschilling: Check against CopperType now. */
4300 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4301 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4302 SK_LSPEED_STAT_1000MBPS)) {
4303 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4304 if (Stat == SK_MS_STAT_MASTER ) {
4305 printk(" role: master\n");
4306 }
4307 else if (Stat == SK_MS_STAT_SLAVE ) {
4308 printk(" role: slave\n");
4309 }
4310 else {
4311 printk(" role: ???\n");
4312 }
4313 }
4314
4315 /*
4316 Display dim (dynamic interrupt moderation)
4317 informations
4318 */
4319 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4320 printk(" irq moderation: static (%d ints/sec)\n",
4321 pAC->DynIrqModInfo.MaxModIntsPerSec);
4322 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4323 printk(" irq moderation: dynamic (%d ints/sec)\n",
4324 pAC->DynIrqModInfo.MaxModIntsPerSec);
4325 else
4326 printk(" irq moderation: disabled\n");
4327
4328
4329#ifdef SK_ZEROCOPY
4330 if (pAC->ChipsetType)
4331#ifdef USE_SK_TX_CHECKSUM
4332 printk(" scatter-gather: enabled\n");
4333#else
4334 printk(" tx-checksum: disabled\n");
4335#endif
4336 else
4337 printk(" scatter-gather: disabled\n");
4338#else
4339 printk(" scatter-gather: disabled\n");
4340#endif
4341
4342#ifndef USE_SK_RX_CHECKSUM
4343 printk(" rx-checksum: disabled\n");
4344#endif
4345
4346 } else {
4347 DoPrintInterfaceChange = SK_TRUE;
4348 }
4349
4350 if ((Param.Para32[0] != pAC->ActivePort) &&
4351 (pAC->RlmtNets == 1)) {
4352 NewPara.Para32[0] = pAC->ActivePort;
4353 NewPara.Para32[1] = Param.Para32[0];
4354 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4355 NewPara);
4356 }
4357
4358 /* Inform the world that link protocol is up. */
7d17c1d6 4359 netif_carrier_on(pAC->dev[Param.Para32[0]]);
1da177e4
LT
4360
4361 break;
4362 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4363 /* action list 7 */
4364 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4365 ("NET DOWN EVENT "));
4366 if (DoPrintInterfaceChange) {
4367 printk("%s: network connection down\n",
4368 pAC->dev[Param.Para32[1]]->name);
4369 } else {
4370 DoPrintInterfaceChange = SK_TRUE;
4371 }
7d17c1d6 4372 netif_carrier_off(pAC->dev[Param.Para32[1]]);
1da177e4
LT
4373 break;
4374 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4375 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4376 ("PORT SWITCH HARD "));
4377 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4378 /* action list 6 */
4379 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4380 'A'+Param.Para32[1]);
4381 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4382 FromPort = Param.Para32[0];
4383 ToPort = Param.Para32[1];
4384 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4385 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4386 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4387 NewPara.Para64 = FromPort;
4388 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4389 NewPara.Para64 = ToPort;
4390 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4391 spin_lock_irqsave(
4392 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4393 Flags);
4394 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4395 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4396 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4397 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4398 spin_unlock_irqrestore(
4399 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4400 Flags);
4401
4402 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4403 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4404
4405 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4406 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4407 spin_lock_irqsave(
4408 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4409 Flags);
4410 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4411 pAC->ActivePort = ToPort;
4412#if 0
4413 SetQueueSizes(pAC);
4414#else
4415 /* tschilling: New common function with minimum size check. */
4416 DualNet = SK_FALSE;
4417 if (pAC->RlmtNets == 2) {
4418 DualNet = SK_TRUE;
4419 }
4420
4421 if (SkGeInitAssignRamToQueues(
4422 pAC,
4423 pAC->ActivePort,
4424 DualNet)) {
4425 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4426 spin_unlock_irqrestore(
4427 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4428 Flags);
4429 printk("SkGeInitAssignRamToQueues failed.\n");
4430 break;
4431 }
4432#endif
4433 /* tschilling: Handling of return values inserted. */
4434 if (SkGeInitPort(pAC, IoC, FromPort) ||
4435 SkGeInitPort(pAC, IoC, ToPort)) {
4436 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4437 }
4438 if (Event == SK_DRV_SWITCH_SOFT) {
4439 SkMacRxTxEnable(pAC, IoC, FromPort);
4440 }
4441 SkMacRxTxEnable(pAC, IoC, ToPort);
4442 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4443 SkAddrMcUpdate(pAC, IoC, FromPort);
4444 SkAddrMcUpdate(pAC, IoC, ToPort);
4445 PortReInitBmu(pAC, FromPort);
4446 PortReInitBmu(pAC, ToPort);
4447 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4448 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4449 ClearAndStartRx(pAC, FromPort);
4450 ClearAndStartRx(pAC, ToPort);
4451 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4452 spin_unlock_irqrestore(
4453 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4454 Flags);
4455 break;
4456 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4457 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4458 ("RLS "));
4459 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4460 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4461 skb_put(pMsg, pRlmtMbuf->Length);
4462 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4463 pMsg) < 0)
4464
4465 DEV_KFREE_SKB_ANY(pMsg);
4466 break;
4467 case SK_DRV_TIMER:
4468 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4469 /*
4470 ** expiration of the moderation timer implies that
4471 ** dynamic moderation is to be applied
4472 */
4473 SkDimStartModerationTimer(pAC);
4474 SkDimModerate(pAC);
4475 if (pAC->DynIrqModInfo.DisplayStats) {
4476 SkDimDisplayModerationSettings(pAC);
4477 }
4478 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4479 /*
4480 ** check if we need to check for descriptors which
4481 ** haven't been handled the last millisecs
4482 */
4483 StartDrvCleanupTimer(pAC);
4484 if (pAC->GIni.GIMacsFound == 2) {
4485 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4486 }
4487 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4488 } else {
4489 printk("Expiration of unknown timer\n");
4490 }
4491 break;
4492 default:
4493 break;
4494 }
4495 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4496 ("END EVENT "));
4497
4498 return (0);
4499} /* SkDrvEvent */
4500
4501
4502/*****************************************************************************
4503 *
4504 * SkErrorLog - log errors
4505 *
4506 * Description:
4507 * This function logs errors to the system buffer and to the console
4508 *
4509 * Returns:
4510 * 0 if everything ok
4511 * < 0 on error
4512 *
4513 */
4514void SkErrorLog(
4515SK_AC *pAC,
4516int ErrClass,
4517int ErrNum,
4518char *pErrorMsg)
4519{
4520char ClassStr[80];
4521
4522 switch (ErrClass) {
4523 case SK_ERRCL_OTHER:
4524 strcpy(ClassStr, "Other error");
4525 break;
4526 case SK_ERRCL_CONFIG:
4527 strcpy(ClassStr, "Configuration error");
4528 break;
4529 case SK_ERRCL_INIT:
4530 strcpy(ClassStr, "Initialization error");
4531 break;
4532 case SK_ERRCL_NORES:
4533 strcpy(ClassStr, "Out of resources error");
4534 break;
4535 case SK_ERRCL_SW:
4536 strcpy(ClassStr, "internal Software error");
4537 break;
4538 case SK_ERRCL_HW:
4539 strcpy(ClassStr, "Hardware failure");
4540 break;
4541 case SK_ERRCL_COMM:
4542 strcpy(ClassStr, "Communication error");
4543 break;
4544 }
4545 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4546 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4547 ClassStr, ErrNum, pErrorMsg);
4548
4549} /* SkErrorLog */
4550
4551#ifdef SK_DIAG_SUPPORT
4552
4553/*****************************************************************************
4554 *
4555 * SkDrvEnterDiagMode - handles DIAG attach request
4556 *
4557 * Description:
4558 * Notify the kernel to NOT access the card any longer due to DIAG
4559 * Deinitialize the Card
4560 *
4561 * Returns:
4562 * int
4563 */
4564int SkDrvEnterDiagMode(
4565SK_AC *pAc) /* pointer to adapter context */
4566{
4567 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4568 SK_AC *pAC = pNet->pAC;
4569
4570 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4571 sizeof(SK_PNMI_STRUCT_DATA));
4572
4573 pAC->DiagModeActive = DIAG_ACTIVE;
4574 if (pAC->BoardLevel > SK_INIT_DATA) {
4575 if (pNet->Up) {
4576 pAC->WasIfUp[0] = SK_TRUE;
4577 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4578 DoPrintInterfaceChange = SK_FALSE;
4579 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4580 } else {
4581 pAC->WasIfUp[0] = SK_FALSE;
4582 }
4583 if (pNet != netdev_priv(pAC->dev[1])) {
4584 pNet = netdev_priv(pAC->dev[1]);
4585 if (pNet->Up) {
4586 pAC->WasIfUp[1] = SK_TRUE;
4587 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4588 DoPrintInterfaceChange = SK_FALSE;
4589 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4590 } else {
4591 pAC->WasIfUp[1] = SK_FALSE;
4592 }
4593 }
4594 pAC->BoardLevel = SK_INIT_DATA;
4595 }
4596 return(0);
4597}
4598
4599/*****************************************************************************
4600 *
4601 * SkDrvLeaveDiagMode - handles DIAG detach request
4602 *
4603 * Description:
4604 * Notify the kernel to may access the card again after use by DIAG
4605 * Initialize the Card
4606 *
4607 * Returns:
4608 * int
4609 */
4610int SkDrvLeaveDiagMode(
4611SK_AC *pAc) /* pointer to adapter control context */
4612{
4613 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4614 sizeof(SK_PNMI_STRUCT_DATA));
4615 pAc->DiagModeActive = DIAG_NOTACTIVE;
4616 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4617 if (pAc->WasIfUp[0] == SK_TRUE) {
4618 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4619 DoPrintInterfaceChange = SK_FALSE;
4620 SkDrvInitAdapter(pAc, 0); /* first device */
4621 }
4622 if (pAc->WasIfUp[1] == SK_TRUE) {
4623 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4624 DoPrintInterfaceChange = SK_FALSE;
4625 SkDrvInitAdapter(pAc, 1); /* second device */
4626 }
4627 return(0);
4628}
4629
4630/*****************************************************************************
4631 *
4632 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4633 *
4634 * Description:
4635 * This function parses the PCI slot name information string and will
4636 * retrieve the devcie number out of it. The slot_name maintianed by
4637 * linux is in the form of '02:0a.0', whereas the first two characters
4638 * represent the bus number in hex (in the sample above this is
4639 * pci bus 0x02) and the next two characters the device number (0x0a).
4640 *
4641 * Returns:
4642 * SK_U32: The device number from the PCI slot name
4643 */
4644
4645static SK_U32 ParseDeviceNbrFromSlotName(
4646const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4647{
4648 char *CurrCharPos = (char *) SlotName;
4649 int FirstNibble = -1;
4650 int SecondNibble = -1;
4651 SK_U32 Result = 0;
4652
4653 while (*CurrCharPos != '\0') {
4654 if (*CurrCharPos == ':') {
4655 while (*CurrCharPos != '.') {
4656 CurrCharPos++;
4657 if ( (*CurrCharPos >= '0') &&
4658 (*CurrCharPos <= '9')) {
4659 if (FirstNibble == -1) {
4660 /* dec. value for '0' */
4661 FirstNibble = *CurrCharPos - 48;
4662 } else {
4663 SecondNibble = *CurrCharPos - 48;
4664 }
4665 } else if ( (*CurrCharPos >= 'a') &&
4666 (*CurrCharPos <= 'f') ) {
4667 if (FirstNibble == -1) {
4668 FirstNibble = *CurrCharPos - 87;
4669 } else {
4670 SecondNibble = *CurrCharPos - 87;
4671 }
4672 } else {
4673 Result = 0;
4674 }
4675 }
4676
4677 Result = FirstNibble;
4678 Result = Result << 4; /* first nibble is higher one */
4679 Result = Result | SecondNibble;
4680 }
4681 CurrCharPos++; /* next character */
4682 }
4683 return (Result);
4684}
4685
4686/****************************************************************************
4687 *
4688 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4689 * called if Diag attaches to that card)
4690 *
4691 * Description:
4692 * Close initialized adapter.
4693 *
4694 * Returns:
4695 * 0 - on success
4696 * error code - on error
4697 */
4698static int SkDrvDeInitAdapter(
4699SK_AC *pAC, /* pointer to adapter context */
4700int devNbr) /* what device is to be handled */
4701{
4702 struct SK_NET_DEVICE *dev;
4703
4704 dev = pAC->dev[devNbr];
4705
4706 /* On Linux 2.6 the network driver does NOT mess with reference
4707 ** counts. The driver MUST be able to be unloaded at any time
4708 ** due to the possibility of hotplug.
4709 */
4710 if (SkGeClose(dev) != 0) {
4711 return (-1);
4712 }
4713 return (0);
4714
4715} /* SkDrvDeInitAdapter() */
4716
4717/****************************************************************************
4718 *
4719 * SkDrvInitAdapter - Initialize adapter (this function is only
4720 * called if Diag deattaches from that card)
4721 *
4722 * Description:
4723 * Close initialized adapter.
4724 *
4725 * Returns:
4726 * 0 - on success
4727 * error code - on error
4728 */
4729static int SkDrvInitAdapter(
4730SK_AC *pAC, /* pointer to adapter context */
4731int devNbr) /* what device is to be handled */
4732{
4733 struct SK_NET_DEVICE *dev;
4734
4735 dev = pAC->dev[devNbr];
4736
4737 if (SkGeOpen(dev) != 0) {
4738 return (-1);
4739 }
4740
4741 /*
4742 ** Use correct MTU size and indicate to kernel TX queue can be started
4743 */
4744 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4745 return (-1);
4746 }
4747 return (0);
4748
4749} /* SkDrvInitAdapter */
4750
4751#endif
4752
4753#ifdef DEBUG
4754/****************************************************************************/
4755/* "debug only" section *****************************************************/
4756/****************************************************************************/
4757
4758
4759/*****************************************************************************
4760 *
4761 * DumpMsg - print a frame
4762 *
4763 * Description:
4764 * This function prints frames to the system logfile/to the console.
4765 *
4766 * Returns: N/A
4767 *
4768 */
4769static void DumpMsg(struct sk_buff *skb, char *str)
4770{
4771 int msglen;
4772
4773 if (skb == NULL) {
4774 printk("DumpMsg(): NULL-Message\n");
4775 return;
4776 }
4777
4778 if (skb->data == NULL) {
4779 printk("DumpMsg(): Message empty\n");
4780 return;
4781 }
4782
4783 msglen = skb->len;
4784 if (msglen > 64)
4785 msglen = 64;
4786
4787 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4788
4789 DumpData((char *)skb->data, msglen);
4790
4791 printk("------- End of message ---------\n");
4792} /* DumpMsg */
4793
4794
4795
4796/*****************************************************************************
4797 *
4798 * DumpData - print a data area
4799 *
4800 * Description:
4801 * This function prints a area of data to the system logfile/to the
4802 * console.
4803 *
4804 * Returns: N/A
4805 *
4806 */
4807static void DumpData(char *p, int size)
4808{
4809register int i;
4810int haddr, addr;
4811char hex_buffer[180];
4812char asc_buffer[180];
4813char HEXCHAR[] = "0123456789ABCDEF";
4814
4815 addr = 0;
4816 haddr = 0;
4817 hex_buffer[0] = 0;
4818 asc_buffer[0] = 0;
4819 for (i=0; i < size; ) {
4820 if (*p >= '0' && *p <='z')
4821 asc_buffer[addr] = *p;
4822 else
4823 asc_buffer[addr] = '.';
4824 addr++;
4825 asc_buffer[addr] = 0;
4826 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4827 haddr++;
4828 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4829 haddr++;
4830 hex_buffer[haddr] = ' ';
4831 haddr++;
4832 hex_buffer[haddr] = 0;
4833 p++;
4834 i++;
4835 if (i%16 == 0) {
4836 printk("%s %s\n", hex_buffer, asc_buffer);
4837 addr = 0;
4838 haddr = 0;
4839 }
4840 }
4841} /* DumpData */
4842
4843
4844/*****************************************************************************
4845 *
4846 * DumpLong - print a data area as long values
4847 *
4848 * Description:
4849 * This function prints a area of data to the system logfile/to the
4850 * console.
4851 *
4852 * Returns: N/A
4853 *
4854 */
4855static void DumpLong(char *pc, int size)
4856{
4857register int i;
4858int haddr, addr;
4859char hex_buffer[180];
4860char asc_buffer[180];
4861char HEXCHAR[] = "0123456789ABCDEF";
4862long *p;
4863int l;
4864
4865 addr = 0;
4866 haddr = 0;
4867 hex_buffer[0] = 0;
4868 asc_buffer[0] = 0;
4869 p = (long*) pc;
4870 for (i=0; i < size; ) {
4871 l = (long) *p;
4872 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4873 haddr++;
4874 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4875 haddr++;
4876 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4877 haddr++;
4878 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4879 haddr++;
4880 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4881 haddr++;
4882 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4883 haddr++;
4884 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4885 haddr++;
4886 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4887 haddr++;
4888 hex_buffer[haddr] = ' ';
4889 haddr++;
4890 hex_buffer[haddr] = 0;
4891 p++;
4892 i++;
4893 if (i%8 == 0) {
4894 printk("%4x %s\n", (i-8)*4, hex_buffer);
4895 haddr = 0;
4896 }
4897 }
4898 printk("------------------------\n");
4899} /* DumpLong */
4900
4901#endif
4902
4903static int __devinit skge_probe_one(struct pci_dev *pdev,
4904 const struct pci_device_id *ent)
4905{
4906 SK_AC *pAC;
4907 DEV_NET *pNet = NULL;
4908 struct net_device *dev = NULL;
4909 static int boards_found = 0;
4910 int error = -ENODEV;
4911
4912 if (pci_enable_device(pdev))
4913 goto out;
4914
4915 /* Configure DMA attributes. */
1e7f0bd8
DP
4916 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
4917 pci_set_dma_mask(pdev, DMA_32BIT_MASK))
1da177e4
LT
4918 goto out_disable_device;
4919
4920
4921 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
4922 printk(KERN_ERR "Unable to allocate etherdev "
4923 "structure!\n");
4924 goto out_disable_device;
4925 }
4926
4927 pNet = netdev_priv(dev);
4928 pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
4929 if (!pNet->pAC) {
4930 printk(KERN_ERR "Unable to allocate adapter "
4931 "structure!\n");
4932 goto out_free_netdev;
4933 }
4934
4935 memset(pNet->pAC, 0, sizeof(SK_AC));
4936 pAC = pNet->pAC;
4937 pAC->PciDev = pdev;
4938 pAC->PciDevId = pdev->device;
4939 pAC->dev[0] = dev;
4940 pAC->dev[1] = dev;
4941 sprintf(pAC->Name, "SysKonnect SK-98xx");
4942 pAC->CheckQueue = SK_FALSE;
4943
4944 pNet->Mtu = 1500;
4945 pNet->Up = 0;
4946 dev->irq = pdev->irq;
4947 error = SkGeInitPCI(pAC);
4948 if (error) {
4949 printk("SKGE: PCI setup failed: %i\n", error);
4950 goto out_free_netdev;
4951 }
4952
4953 SET_MODULE_OWNER(dev);
4954 dev->open = &SkGeOpen;
4955 dev->stop = &SkGeClose;
4956 dev->hard_start_xmit = &SkGeXmit;
4957 dev->get_stats = &SkGeStats;
4958 dev->set_multicast_list = &SkGeSetRxMode;
4959 dev->set_mac_address = &SkGeSetMacAddr;
4960 dev->do_ioctl = &SkGeIoctl;
4961 dev->change_mtu = &SkGeChangeMtu;
4962#ifdef CONFIG_NET_POLL_CONTROLLER
4963 dev->poll_controller = &SkGePollController;
4964#endif
1da177e4
LT
4965 SET_NETDEV_DEV(dev, &pdev->dev);
4966 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4967
4968#ifdef SK_ZEROCOPY
4969#ifdef USE_SK_TX_CHECKSUM
4970 if (pAC->ChipsetType) {
4971 /* Use only if yukon hardware */
4972 /* SK and ZEROCOPY - fly baby... */
4973 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4974 }
4975#endif
4976#endif
4977
4978 pAC->Index = boards_found++;
4979
4980 if (SkGeBoardInit(dev, pAC))
4981 goto out_free_netdev;
4982
4983 /* Register net device */
4984 if (register_netdev(dev)) {
4985 printk(KERN_ERR "SKGE: Could not register device.\n");
4986 goto out_free_resources;
4987 }
4988
4989 /* Print adapter specific string from vpd */
4990 ProductStr(pAC);
4991 printk("%s: %s\n", dev->name, pAC->DeviceStr);
4992
4993 /* Print configuration settings */
4994 printk(" PrefPort:%c RlmtMode:%s\n",
4995 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4996 (pAC->RlmtMode==0) ? "Check Link State" :
4997 ((pAC->RlmtMode==1) ? "Check Link State" :
4998 ((pAC->RlmtMode==3) ? "Check Local Port" :
4999 ((pAC->RlmtMode==7) ? "Check Segmentation" :
5000 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
5001
5002 SkGeYellowLED(pAC, pAC->IoBase, 1);
5003
5004
5005 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
5006
5007 SkGeProcCreate(dev);
5008
5009 pNet->PortNr = 0;
5010 pNet->NetNr = 0;
5011
5012 boards_found++;
5013
5014 /* More then one port found */
5015 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
5016 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
5017 printk(KERN_ERR "Unable to allocate etherdev "
5018 "structure!\n");
5019 goto out;
5020 }
5021
5022 pAC->dev[1] = dev;
5023 pNet = netdev_priv(dev);
5024 pNet->PortNr = 1;
5025 pNet->NetNr = 1;
5026 pNet->pAC = pAC;
5027 pNet->Mtu = 1500;
5028 pNet->Up = 0;
5029
5030 dev->open = &SkGeOpen;
5031 dev->stop = &SkGeClose;
5032 dev->hard_start_xmit = &SkGeXmit;
5033 dev->get_stats = &SkGeStats;
5034 dev->set_multicast_list = &SkGeSetRxMode;
5035 dev->set_mac_address = &SkGeSetMacAddr;
5036 dev->do_ioctl = &SkGeIoctl;
5037 dev->change_mtu = &SkGeChangeMtu;
1da177e4
LT
5038 SET_NETDEV_DEV(dev, &pdev->dev);
5039 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
5040
5041#ifdef SK_ZEROCOPY
5042#ifdef USE_SK_TX_CHECKSUM
5043 if (pAC->ChipsetType) {
5044 /* SG and ZEROCOPY - fly baby... */
5045 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
5046 }
5047#endif
5048#endif
5049
5050 if (register_netdev(dev)) {
5051 printk(KERN_ERR "SKGE: Could not register device.\n");
5052 free_netdev(dev);
5053 pAC->dev[1] = pAC->dev[0];
5054 } else {
5055 SkGeProcCreate(dev);
5056 memcpy(&dev->dev_addr,
5057 &pAC->Addr.Net[1].CurrentMacAddress, 6);
5058
5059 printk("%s: %s\n", dev->name, pAC->DeviceStr);
5060 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
5061 }
5062 }
5063
5064 /* Save the hardware revision */
5065 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
5066 (pAC->GIni.GIPciHwRev & 0x0F);
5067
5068 /* Set driver globals */
5069 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
5070 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
5071
5072 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
5073 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
5074
5075 pci_set_drvdata(pdev, dev);
5076 return 0;
5077
5078 out_free_resources:
5079 FreeResources(dev);
5080 out_free_netdev:
5081 free_netdev(dev);
5082 out_disable_device:
5083 pci_disable_device(pdev);
5084 out:
5085 return error;
5086}
5087
5088static void __devexit skge_remove_one(struct pci_dev *pdev)
5089{
5090 struct net_device *dev = pci_get_drvdata(pdev);
5091 DEV_NET *pNet = netdev_priv(dev);
5092 SK_AC *pAC = pNet->pAC;
5093 struct net_device *otherdev = pAC->dev[1];
5094
5095 SkGeProcRemove(dev);
5096 unregister_netdev(dev);
5097 if (otherdev != dev)
5098 SkGeProcRemove(otherdev);
5099
5100 SkGeYellowLED(pAC, pAC->IoBase, 0);
5101
5102 if (pAC->BoardLevel == SK_INIT_RUN) {
5103 SK_EVPARA EvPara;
5104 unsigned long Flags;
5105
5106 /* board is still alive */
5107 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5108 EvPara.Para32[0] = 0;
5109 EvPara.Para32[1] = -1;
5110 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5111 EvPara.Para32[0] = 1;
5112 EvPara.Para32[1] = -1;
5113 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5114 SkEventDispatcher(pAC, pAC->IoBase);
5115 /* disable interrupts */
5116 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5117 SkGeDeInit(pAC, pAC->IoBase);
5118 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5119 pAC->BoardLevel = SK_INIT_DATA;
5120 /* We do NOT check here, if IRQ was pending, of course*/
5121 }
5122
5123 if (pAC->BoardLevel == SK_INIT_IO) {
5124 /* board is still alive */
5125 SkGeDeInit(pAC, pAC->IoBase);
5126 pAC->BoardLevel = SK_INIT_DATA;
5127 }
5128
5129 FreeResources(dev);
5130 free_netdev(dev);
5131 if (otherdev != dev)
5132 free_netdev(otherdev);
5133 kfree(pAC);
5134}
5135
90158b83
RW
5136#ifdef CONFIG_PM
5137static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5138{
5139 struct net_device *dev = pci_get_drvdata(pdev);
5140 DEV_NET *pNet = netdev_priv(dev);
5141 SK_AC *pAC = pNet->pAC;
5142 struct net_device *otherdev = pAC->dev[1];
5143
035a4a4f
RW
5144 if (netif_running(dev)) {
5145 netif_carrier_off(dev);
90158b83
RW
5146 DoPrintInterfaceChange = SK_FALSE;
5147 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
035a4a4f 5148 netif_device_detach(dev);
90158b83
RW
5149 }
5150 if (otherdev != dev) {
035a4a4f
RW
5151 if (netif_running(otherdev)) {
5152 netif_carrier_off(otherdev);
90158b83
RW
5153 DoPrintInterfaceChange = SK_FALSE;
5154 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
035a4a4f 5155 netif_device_detach(otherdev);
90158b83
RW
5156 }
5157 }
5158
5159 pci_save_state(pdev);
5160 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5161 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5162 free_irq(dev->irq, dev);
5163 }
5164 pci_disable_device(pdev);
5165 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5166
5167 return 0;
5168}
5169
5170static int skge_resume(struct pci_dev *pdev)
5171{
5172 struct net_device *dev = pci_get_drvdata(pdev);
5173 DEV_NET *pNet = netdev_priv(dev);
5174 SK_AC *pAC = pNet->pAC;
035a4a4f
RW
5175 struct net_device *otherdev = pAC->dev[1];
5176 int ret;
90158b83
RW
5177
5178 pci_set_power_state(pdev, PCI_D0);
5179 pci_restore_state(pdev);
5180 pci_enable_device(pdev);
5181 pci_set_master(pdev);
5182 if (pAC->GIni.GIMacsFound == 2)
035a4a4f 5183 ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
90158b83 5184 else
035a4a4f
RW
5185 ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, pAC->Name, dev);
5186 if (ret) {
5187 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5188 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5189 dev->irq = 0;
5190 pci_disable_device(pdev);
5191 return -EBUSY;
5192 }
90158b83 5193
035a4a4f
RW
5194 netif_device_attach(dev);
5195 if (netif_running(dev)) {
90158b83
RW
5196 DoPrintInterfaceChange = SK_FALSE;
5197 SkDrvInitAdapter(pAC, 0); /* first device */
035a4a4f
RW
5198 }
5199 if (otherdev != dev) {
5200 netif_device_attach(otherdev);
5201 if (netif_running(otherdev)) {
5202 DoPrintInterfaceChange = SK_FALSE;
5203 SkDrvInitAdapter(pAC, 1); /* second device */
5204 }
90158b83
RW
5205 }
5206
5207 return 0;
5208}
3fef3fa2
AM
5209#else
5210#define skge_suspend NULL
5211#define skge_resume NULL
90158b83
RW
5212#endif
5213
1da177e4
LT
5214static struct pci_device_id skge_pci_tbl[] = {
5215 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5216 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5217 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5218 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
9734c3fc
SH
5219/* DLink card does not have valid VPD so this driver gags
5220 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5221 */
1da177e4 5222 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
1da177e4
LT
5223 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5224 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
9734c3fc 5225 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
1da177e4 5226 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
9734c3fc 5227 { 0 }
1da177e4
LT
5228};
5229
5230MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5231
5232static struct pci_driver skge_driver = {
5233 .name = "sk98lin",
5234 .id_table = skge_pci_tbl,
5235 .probe = skge_probe_one,
5236 .remove = __devexit_p(skge_remove_one),
90158b83
RW
5237 .suspend = skge_suspend,
5238 .resume = skge_resume,
1da177e4
LT
5239};
5240
5241static int __init skge_init(void)
5242{
5243 int error;
5244
66600221 5245 pSkRootDir = proc_mkdir(SKRootName, NULL);
1da177e4
LT
5246 if (pSkRootDir)
5247 pSkRootDir->owner = THIS_MODULE;
5248
5249 error = pci_register_driver(&skge_driver);
5250 if (error)
66600221 5251 remove_proc_entry(SKRootName, NULL);
1da177e4
LT
5252 return error;
5253}
5254
5255static void __exit skge_exit(void)
5256{
5257 pci_unregister_driver(&skge_driver);
66600221 5258 remove_proc_entry(SKRootName, NULL);
1da177e4
LT
5259
5260}
5261
5262module_init(skge_init);
5263module_exit(skge_exit);