]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/sk98lin/skge.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb
[mirror_ubuntu-artful-kernel.git] / drivers / net / sk98lin / skge.c
CommitLineData
1da177e4
LT
1/******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11/******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39/******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48/******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
1da177e4
LT
104 * "h/skrlmt.h"
105 *
106 ******************************************************************************/
107
108#include "h/skversion.h"
109
14c85021 110#include <linux/in.h>
1da177e4
LT
111#include <linux/module.h>
112#include <linux/moduleparam.h>
113#include <linux/init.h>
1e7f0bd8 114#include <linux/dma-mapping.h>
596f86a8 115#include <linux/ip.h>
1da177e4
LT
116
117#include "h/skdrv1st.h"
118#include "h/skdrv2nd.h"
119
120/*******************************************************************************
121 *
122 * Defines
123 *
124 ******************************************************************************/
125
126/* for debuging on x86 only */
127/* #define BREAKPOINT() asm(" int $3"); */
128
129/* use the transmit hw checksum driver functionality */
130#define USE_SK_TX_CHECKSUM
131
132/* use the receive hw checksum driver functionality */
133#define USE_SK_RX_CHECKSUM
134
135/* use the scatter-gather functionality with sendfile() */
136#define SK_ZEROCOPY
137
138/* use of a transmit complete interrupt */
139#define USE_TX_COMPLETE
140
141/*
142 * threshold for copying small receive frames
143 * set to 0 to avoid copying, set to 9001 to copy all frames
144 */
145#define SK_COPY_THRESHOLD 50
146
147/* number of adapters that can be configured via command line params */
148#define SK_MAX_CARD_PARAM 16
149
150
151
152/*
153 * use those defines for a compile-in version of the driver instead
154 * of command line parameters
155 */
156// #define LINK_SPEED_A {"Auto", }
157// #define LINK_SPEED_B {"Auto", }
158// #define AUTO_NEG_A {"Sense", }
159// #define AUTO_NEG_B {"Sense", }
160// #define DUP_CAP_A {"Both", }
161// #define DUP_CAP_B {"Both", }
162// #define FLOW_CTRL_A {"SymOrRem", }
163// #define FLOW_CTRL_B {"SymOrRem", }
164// #define ROLE_A {"Auto", }
165// #define ROLE_B {"Auto", }
166// #define PREF_PORT {"A", }
167// #define CON_TYPE {"Auto", }
168// #define RLMT_MODE {"CheckLinkState", }
169
170#define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
171#define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
172#define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
173
174
175/* Set blink mode*/
176#define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
177 SK_DUP_LED_NORMAL | \
178 SK_LED_LINK100_ON)
179
180
181/* Isr return value */
182#define SkIsrRetVar irqreturn_t
183#define SkIsrRetNone IRQ_NONE
184#define SkIsrRetHandled IRQ_HANDLED
185
186
187/*******************************************************************************
188 *
189 * Local Function Prototypes
190 *
191 ******************************************************************************/
192
193static void FreeResources(struct SK_NET_DEVICE *dev);
194static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
195static SK_BOOL BoardAllocMem(SK_AC *pAC);
196static void BoardFreeMem(SK_AC *pAC);
197static void BoardInitMem(SK_AC *pAC);
198static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
199static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
200static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
201static int SkGeOpen(struct SK_NET_DEVICE *dev);
202static int SkGeClose(struct SK_NET_DEVICE *dev);
203static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
204static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
205static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
206static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
207static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
208static void GetConfiguration(SK_AC*);
1da177e4
LT
209static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
210static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
211static void FillRxRing(SK_AC*, RX_PORT*);
212static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
213static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
214static void ClearAndStartRx(SK_AC*, int);
215static void ClearTxIrq(SK_AC*, int, int);
216static void ClearRxRing(SK_AC*, RX_PORT*);
217static void ClearTxRing(SK_AC*, TX_PORT*);
218static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
219static void PortReInitBmu(SK_AC*, int);
220static int SkGeIocMib(DEV_NET*, unsigned int, int);
221static int SkGeInitPCI(SK_AC *pAC);
222static void StartDrvCleanupTimer(SK_AC *pAC);
223static void StopDrvCleanupTimer(SK_AC *pAC);
224static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
225
226#ifdef SK_DIAG_SUPPORT
227static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
228static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
229static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
230#endif
231
232/*******************************************************************************
233 *
234 * Extern Function Prototypes
235 *
236 ******************************************************************************/
1da177e4
LT
237extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
238extern void SkDimDisplayModerationSettings(SK_AC *pAC);
239extern void SkDimStartModerationTimer(SK_AC *pAC);
240extern void SkDimModerate(SK_AC *pAC);
241extern void SkGeBlinkTimer(unsigned long data);
242
243#ifdef DEBUG
244static void DumpMsg(struct sk_buff*, char*);
245static void DumpData(char*, int);
246static void DumpLong(char*, int);
247#endif
248
249/* global variables *********************************************************/
250static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
251extern struct ethtool_ops SkGeEthtoolOps;
252
253/* local variables **********************************************************/
254static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
255static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
256
c8ebd3a3
AB
257/*****************************************************************************
258 *
259 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
260 *
261 * Description:
262 * This routine writes a 32 bit value to the pci configuration
263 * space.
264 *
265 * Returns:
266 * 0 - indicate everything worked ok.
267 * != 0 - error indication
268 */
269static inline int SkPciWriteCfgDWord(
270SK_AC *pAC, /* Adapter Control structure pointer */
271int PciAddr, /* PCI register address */
272SK_U32 Val) /* pointer to store the read value */
273{
274 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
275 return(0);
276} /* SkPciWriteCfgDWord */
277
1da177e4
LT
278/*****************************************************************************
279 *
280 * SkGeInitPCI - Init the PCI resources
281 *
282 * Description:
283 * This function initialize the PCI resources and IO
284 *
17fa6e2f
SH
285 * Returns:
286 * 0 - indicate everything worked ok.
287 * != 0 - error indication
1da177e4 288 */
17fa6e2f 289static __devinit int SkGeInitPCI(SK_AC *pAC)
1da177e4
LT
290{
291 struct SK_NET_DEVICE *dev = pAC->dev[0];
292 struct pci_dev *pdev = pAC->PciDev;
293 int retval;
294
1da177e4
LT
295 dev->mem_start = pci_resource_start (pdev, 0);
296 pci_set_master(pdev);
297
df22b8aa
SH
298 retval = pci_request_regions(pdev, "sk98lin");
299 if (retval)
300 goto out;
1da177e4
LT
301
302#ifdef SK_BIG_ENDIAN
303 /*
304 * On big endian machines, we use the adapter's aibility of
305 * reading the descriptors as big endian.
306 */
307 {
308 SK_U32 our2;
309 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
310 our2 |= PCI_REV_DESC;
311 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
312 }
313#endif
314
315 /*
316 * Remap the regs into kernel space.
317 */
318 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
df22b8aa
SH
319 if (!pAC->IoBase) {
320 retval = -EIO;
1da177e4
LT
321 goto out_release;
322 }
323
324 return 0;
325
326 out_release:
327 pci_release_regions(pdev);
df22b8aa 328 out:
1da177e4
LT
329 return retval;
330}
331
332
333/*****************************************************************************
334 *
335 * FreeResources - release resources allocated for adapter
336 *
337 * Description:
338 * This function releases the IRQ, unmaps the IO and
339 * frees the desriptor ring.
340 *
341 * Returns: N/A
342 *
343 */
344static void FreeResources(struct SK_NET_DEVICE *dev)
345{
346SK_U32 AllocFlag;
347DEV_NET *pNet;
348SK_AC *pAC;
349
350 pNet = netdev_priv(dev);
351 pAC = pNet->pAC;
352 AllocFlag = pAC->AllocFlag;
353 if (pAC->PciDev) {
354 pci_release_regions(pAC->PciDev);
355 }
356 if (AllocFlag & SK_ALLOC_IRQ) {
357 free_irq(dev->irq, dev);
358 }
359 if (pAC->IoBase) {
360 iounmap(pAC->IoBase);
361 }
362 if (pAC->pDescrMem) {
363 BoardFreeMem(pAC);
364 }
365
366} /* FreeResources */
367
368MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
369MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
370MODULE_LICENSE("GPL");
371
372#ifdef LINK_SPEED_A
373static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
374#else
375static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
376#endif
377
378#ifdef LINK_SPEED_B
379static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
380#else
381static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
382#endif
383
384#ifdef AUTO_NEG_A
385static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
386#else
387static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
388#endif
389
390#ifdef DUP_CAP_A
391static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
392#else
393static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
394#endif
395
396#ifdef FLOW_CTRL_A
397static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
398#else
399static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
400#endif
401
402#ifdef ROLE_A
403static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
404#else
405static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
406#endif
407
408#ifdef AUTO_NEG_B
409static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
410#else
411static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
412#endif
413
414#ifdef DUP_CAP_B
415static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
416#else
417static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
418#endif
419
420#ifdef FLOW_CTRL_B
421static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
422#else
423static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
424#endif
425
426#ifdef ROLE_B
427static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
428#else
429static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
430#endif
431
432#ifdef CON_TYPE
433static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
434#else
435static char *ConType[SK_MAX_CARD_PARAM] = {"", };
436#endif
437
438#ifdef PREF_PORT
439static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
440#else
441static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
442#endif
443
444#ifdef RLMT_MODE
445static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
446#else
447static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
448#endif
449
450static int IntsPerSec[SK_MAX_CARD_PARAM];
451static char *Moderation[SK_MAX_CARD_PARAM];
452static char *ModerationMask[SK_MAX_CARD_PARAM];
453static char *AutoSizing[SK_MAX_CARD_PARAM];
454static char *Stats[SK_MAX_CARD_PARAM];
455
456module_param_array(Speed_A, charp, NULL, 0);
457module_param_array(Speed_B, charp, NULL, 0);
458module_param_array(AutoNeg_A, charp, NULL, 0);
459module_param_array(AutoNeg_B, charp, NULL, 0);
460module_param_array(DupCap_A, charp, NULL, 0);
461module_param_array(DupCap_B, charp, NULL, 0);
462module_param_array(FlowCtrl_A, charp, NULL, 0);
463module_param_array(FlowCtrl_B, charp, NULL, 0);
464module_param_array(Role_A, charp, NULL, 0);
465module_param_array(Role_B, charp, NULL, 0);
466module_param_array(ConType, charp, NULL, 0);
467module_param_array(PrefPort, charp, NULL, 0);
468module_param_array(RlmtMode, charp, NULL, 0);
469/* used for interrupt moderation */
470module_param_array(IntsPerSec, int, NULL, 0);
471module_param_array(Moderation, charp, NULL, 0);
472module_param_array(Stats, charp, NULL, 0);
473module_param_array(ModerationMask, charp, NULL, 0);
474module_param_array(AutoSizing, charp, NULL, 0);
475
476/*****************************************************************************
477 *
478 * SkGeBoardInit - do level 0 and 1 initialization
479 *
480 * Description:
481 * This function prepares the board hardware for running. The desriptor
482 * ring is set up, the IRQ is allocated and the configuration settings
483 * are examined.
484 *
485 * Returns:
486 * 0, if everything is ok
487 * !=0, on error
488 */
17fa6e2f 489static int __devinit SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
1da177e4
LT
490{
491short i;
492unsigned long Flags;
493char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
494char *VerStr = VER_STRING;
495int Ret; /* return code of request_irq */
496SK_BOOL DualNet;
497
498 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
499 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
500 for (i=0; i<SK_MAX_MACS; i++) {
501 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
502 pAC->TxPort[i][0].PortIndex = i;
503 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
504 pAC->RxPort[i].PortIndex = i;
505 }
506
507 /* Initialize the mutexes */
508 for (i=0; i<SK_MAX_MACS; i++) {
509 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
510 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
511 }
512 spin_lock_init(&pAC->SlowPathLock);
513
514 /* setup phy_id blink timer */
515 pAC->BlinkTimer.function = SkGeBlinkTimer;
516 pAC->BlinkTimer.data = (unsigned long) dev;
517 init_timer(&pAC->BlinkTimer);
518
519 /* level 0 init common modules here */
520
521 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
522 /* Does a RESET on board ...*/
523 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
524 printk("HWInit (0) failed.\n");
525 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
16287557 526 return -EIO;
1da177e4
LT
527 }
528 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
529 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
530 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
531 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
532 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
533 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
534
535 pAC->BoardLevel = SK_INIT_DATA;
536 pAC->RxBufSize = ETH_BUF_SIZE;
537
538 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
539 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
540
541 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
542
543 /* level 1 init common modules here (HW init) */
544 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
545 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
546 printk("sk98lin: HWInit (1) failed.\n");
547 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
16287557 548 return -EIO;
1da177e4
LT
549 }
550 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
551 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
552 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
553 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
554 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
555 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
556
557 /* Set chipset type support */
558 pAC->ChipsetType = 0;
559 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
560 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
561 pAC->ChipsetType = 1;
562 }
563
564 GetConfiguration(pAC);
565 if (pAC->RlmtNets == 2) {
566 pAC->GIni.GIPortUsage = SK_MUL_LINK;
567 }
568
569 pAC->BoardLevel = SK_INIT_IO;
570 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
571
572 if (pAC->GIni.GIMacsFound == 2) {
8f7a17d1 573 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, "sk98lin", dev);
1da177e4
LT
574 } else if (pAC->GIni.GIMacsFound == 1) {
575 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
8f7a17d1 576 "sk98lin", dev);
1da177e4
LT
577 } else {
578 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
579 pAC->GIni.GIMacsFound);
16287557 580 return -EIO;
1da177e4
LT
581 }
582
583 if (Ret) {
584 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
585 dev->irq);
16287557 586 return Ret;
1da177e4
LT
587 }
588 pAC->AllocFlag |= SK_ALLOC_IRQ;
589
590 /* Alloc memory for this board (Mem for RxD/TxD) : */
591 if(!BoardAllocMem(pAC)) {
592 printk("No memory for descriptor rings.\n");
16287557 593 return -ENOMEM;
1da177e4
LT
594 }
595
1da177e4
LT
596 BoardInitMem(pAC);
597 /* tschilling: New common function with minimum size check. */
598 DualNet = SK_FALSE;
599 if (pAC->RlmtNets == 2) {
600 DualNet = SK_TRUE;
601 }
602
603 if (SkGeInitAssignRamToQueues(
604 pAC,
605 pAC->ActivePort,
606 DualNet)) {
607 BoardFreeMem(pAC);
608 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
16287557 609 return -EIO;
1da177e4
LT
610 }
611
612 return (0);
613} /* SkGeBoardInit */
614
615
616/*****************************************************************************
617 *
618 * BoardAllocMem - allocate the memory for the descriptor rings
619 *
620 * Description:
621 * This function allocates the memory for all descriptor rings.
622 * Each ring is aligned for the desriptor alignment and no ring
623 * has a 4 GByte boundary in it (because the upper 32 bit must
624 * be constant for all descriptiors in one rings).
625 *
626 * Returns:
627 * SK_TRUE, if all memory could be allocated
628 * SK_FALSE, if not
629 */
17fa6e2f 630static __devinit SK_BOOL BoardAllocMem(SK_AC *pAC)
1da177e4
LT
631{
632caddr_t pDescrMem; /* pointer to descriptor memory area */
633size_t AllocLength; /* length of complete descriptor area */
634int i; /* loop counter */
635unsigned long BusAddr;
636
637
638 /* rings plus one for alignment (do not cross 4 GB boundary) */
639 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
640#if (BITS_PER_LONG == 32)
641 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
642#else
643 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
644 + RX_RING_SIZE + 8;
645#endif
646
647 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
648 &pAC->pDescrMemDMA);
649
650 if (pDescrMem == NULL) {
651 return (SK_FALSE);
652 }
653 pAC->pDescrMem = pDescrMem;
654 BusAddr = (unsigned long) pAC->pDescrMemDMA;
655
656 /* Descriptors need 8 byte alignment, and this is ensured
657 * by pci_alloc_consistent.
658 */
659 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
660 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
661 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
662 i, (unsigned long) pDescrMem,
663 BusAddr));
664 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
665 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
666 pDescrMem += TX_RING_SIZE;
667 BusAddr += TX_RING_SIZE;
668
669 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
670 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
671 i, (unsigned long) pDescrMem,
672 (unsigned long)BusAddr));
673 pAC->RxPort[i].pRxDescrRing = pDescrMem;
674 pAC->RxPort[i].VRxDescrRing = BusAddr;
675 pDescrMem += RX_RING_SIZE;
676 BusAddr += RX_RING_SIZE;
677 } /* for */
678
679 return (SK_TRUE);
680} /* BoardAllocMem */
681
682
683/****************************************************************************
684 *
685 * BoardFreeMem - reverse of BoardAllocMem
686 *
687 * Description:
688 * Free all memory allocated in BoardAllocMem: adapter context,
689 * descriptor rings, locks.
690 *
691 * Returns: N/A
692 */
693static void BoardFreeMem(
694SK_AC *pAC)
695{
696size_t AllocLength; /* length of complete descriptor area */
697
698 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
699 ("BoardFreeMem\n"));
700#if (BITS_PER_LONG == 32)
701 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
702#else
703 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
704 + RX_RING_SIZE + 8;
705#endif
706
707 pci_free_consistent(pAC->PciDev, AllocLength,
708 pAC->pDescrMem, pAC->pDescrMemDMA);
709 pAC->pDescrMem = NULL;
710} /* BoardFreeMem */
711
712
713/*****************************************************************************
714 *
715 * BoardInitMem - initiate the descriptor rings
716 *
717 * Description:
718 * This function sets the descriptor rings up in memory.
719 * The adapter is initialized with the descriptor start addresses.
720 *
721 * Returns: N/A
722 */
17fa6e2f 723static __devinit void BoardInitMem(SK_AC *pAC)
1da177e4
LT
724{
725int i; /* loop counter */
726int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
727int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
728
729 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
730 ("BoardInitMem\n"));
731
732 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
733 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
734 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
735 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
736
737 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
738 SetupRing(
739 pAC,
740 pAC->TxPort[i][0].pTxDescrRing,
741 pAC->TxPort[i][0].VTxDescrRing,
742 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
743 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
744 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
745 &pAC->TxPort[i][0].TxdRingFree,
746 SK_TRUE);
747 SetupRing(
748 pAC,
749 pAC->RxPort[i].pRxDescrRing,
750 pAC->RxPort[i].VRxDescrRing,
751 &pAC->RxPort[i].pRxdRingHead,
752 &pAC->RxPort[i].pRxdRingTail,
753 &pAC->RxPort[i].pRxdRingPrev,
754 &pAC->RxPort[i].RxdRingFree,
755 SK_FALSE);
756 }
757} /* BoardInitMem */
758
759
760/*****************************************************************************
761 *
762 * SetupRing - create one descriptor ring
763 *
764 * Description:
765 * This function creates one descriptor ring in the given memory area.
766 * The head, tail and number of free descriptors in the ring are set.
767 *
768 * Returns:
769 * none
770 */
771static void SetupRing(
772SK_AC *pAC,
773void *pMemArea, /* a pointer to the memory area for the ring */
774uintptr_t VMemArea, /* the virtual bus address of the memory area */
775RXD **ppRingHead, /* address where the head should be written */
776RXD **ppRingTail, /* address where the tail should be written */
777RXD **ppRingPrev, /* address where the tail should be written */
778int *pRingFree, /* address where the # of free descr. goes */
779SK_BOOL IsTx) /* flag: is this a tx ring */
780{
781int i; /* loop counter */
782int DescrSize; /* the size of a descriptor rounded up to alignment*/
783int DescrNum; /* number of descriptors per ring */
784RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
785RXD *pNextDescr; /* pointer to the next descriptor */
786RXD *pPrevDescr; /* pointer to the previous descriptor */
787uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
788
789 if (IsTx == SK_TRUE) {
790 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
791 DESCR_ALIGN;
792 DescrNum = TX_RING_SIZE / DescrSize;
793 } else {
794 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
795 DESCR_ALIGN;
796 DescrNum = RX_RING_SIZE / DescrSize;
797 }
798
799 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
800 ("Descriptor size: %d Descriptor Number: %d\n",
801 DescrSize,DescrNum));
802
803 pDescr = (RXD*) pMemArea;
804 pPrevDescr = NULL;
805 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
806 VNextDescr = VMemArea + DescrSize;
807 for(i=0; i<DescrNum; i++) {
808 /* set the pointers right */
809 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
810 pDescr->pNextRxd = pNextDescr;
92f268e0 811 if (!IsTx) pDescr->TcpSumStarts = ETH_HLEN << 16 | ETH_HLEN;
1da177e4
LT
812
813 /* advance one step */
814 pPrevDescr = pDescr;
815 pDescr = pNextDescr;
816 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
817 VNextDescr += DescrSize;
818 }
819 pPrevDescr->pNextRxd = (RXD*) pMemArea;
820 pPrevDescr->VNextRxd = VMemArea;
821 pDescr = (RXD*) pMemArea;
822 *ppRingHead = (RXD*) pMemArea;
823 *ppRingTail = *ppRingHead;
824 *ppRingPrev = pPrevDescr;
825 *pRingFree = DescrNum;
826} /* SetupRing */
827
828
829/*****************************************************************************
830 *
831 * PortReInitBmu - re-initiate the descriptor rings for one port
832 *
833 * Description:
834 * This function reinitializes the descriptor rings of one port
835 * in memory. The port must be stopped before.
836 * The HW is initialized with the descriptor start addresses.
837 *
838 * Returns:
839 * none
840 */
841static void PortReInitBmu(
842SK_AC *pAC, /* pointer to adapter context */
843int PortIndex) /* index of the port for which to re-init */
844{
845 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
846 ("PortReInitBmu "));
847
848 /* set address of first descriptor of ring in BMU */
849 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
850 (uint32_t)(((caddr_t)
851 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
852 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
853 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
854 0xFFFFFFFF));
855 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
856 (uint32_t)(((caddr_t)
857 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
858 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
859 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
860 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
861 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
862 pAC->RxPort[PortIndex].pRxDescrRing +
863 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
864 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
865 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
866 pAC->RxPort[PortIndex].pRxDescrRing +
867 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
868} /* PortReInitBmu */
869
870
871/****************************************************************************
872 *
873 * SkGeIsr - handle adapter interrupts
874 *
875 * Description:
876 * The interrupt routine is called when the network adapter
877 * generates an interrupt. It may also be called if another device
878 * shares this interrupt vector with the driver.
879 *
880 * Returns: N/A
881 *
882 */
883static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
884{
885struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
886DEV_NET *pNet;
887SK_AC *pAC;
888SK_U32 IntSrc; /* interrupts source register contents */
889
890 pNet = netdev_priv(dev);
891 pAC = pNet->pAC;
892
893 /*
894 * Check and process if its our interrupt
895 */
896 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
897 if (IntSrc == 0) {
898 return SkIsrRetNone;
899 }
900
901 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
902#if 0 /* software irq currently not used */
903 if (IntSrc & IS_IRQ_SW) {
904 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
905 SK_DBGCAT_DRV_INT_SRC,
906 ("Software IRQ\n"));
907 }
908#endif
909 if (IntSrc & IS_R1_F) {
910 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
911 SK_DBGCAT_DRV_INT_SRC,
912 ("EOF RX1 IRQ\n"));
913 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
914 SK_PNMI_CNT_RX_INTR(pAC, 0);
915 }
916 if (IntSrc & IS_R2_F) {
917 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
918 SK_DBGCAT_DRV_INT_SRC,
919 ("EOF RX2 IRQ\n"));
920 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
921 SK_PNMI_CNT_RX_INTR(pAC, 1);
922 }
923#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
924 if (IntSrc & IS_XA1_F) {
925 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
926 SK_DBGCAT_DRV_INT_SRC,
927 ("EOF AS TX1 IRQ\n"));
928 SK_PNMI_CNT_TX_INTR(pAC, 0);
929 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
930 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
931 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
932 }
933 if (IntSrc & IS_XA2_F) {
934 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
935 SK_DBGCAT_DRV_INT_SRC,
936 ("EOF AS TX2 IRQ\n"));
937 SK_PNMI_CNT_TX_INTR(pAC, 1);
938 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
939 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
940 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
941 }
942#if 0 /* only if sync. queues used */
943 if (IntSrc & IS_XS1_F) {
944 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
945 SK_DBGCAT_DRV_INT_SRC,
946 ("EOF SY TX1 IRQ\n"));
947 SK_PNMI_CNT_TX_INTR(pAC, 1);
948 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
949 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
950 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
951 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
952 }
953 if (IntSrc & IS_XS2_F) {
954 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
955 SK_DBGCAT_DRV_INT_SRC,
956 ("EOF SY TX2 IRQ\n"));
957 SK_PNMI_CNT_TX_INTR(pAC, 1);
958 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
959 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
960 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
961 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
962 }
963#endif
964#endif
965
966 /* do all IO at once */
967 if (IntSrc & IS_R1_F)
968 ClearAndStartRx(pAC, 0);
969 if (IntSrc & IS_R2_F)
970 ClearAndStartRx(pAC, 1);
971#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
972 if (IntSrc & IS_XA1_F)
973 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
974 if (IntSrc & IS_XA2_F)
975 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
976#endif
977 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
978 } /* while (IntSrc & IRQ_MASK != 0) */
979
980 IntSrc &= pAC->GIni.GIValIrqMask;
981 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
982 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
983 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
984 pAC->CheckQueue = SK_FALSE;
985 spin_lock(&pAC->SlowPathLock);
986 if (IntSrc & SPECIAL_IRQS)
987 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
988
989 SkEventDispatcher(pAC, pAC->IoBase);
990 spin_unlock(&pAC->SlowPathLock);
991 }
992 /*
993 * do it all again is case we cleared an interrupt that
994 * came in after handling the ring (OUTs may be delayed
995 * in hardware buffers, but are through after IN)
996 *
997 * rroesler: has been commented out and shifted to
998 * SkGeDrvEvent(), because it is timer
999 * guarded now
1000 *
1001 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1002 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1003 */
1004
1005 if (pAC->CheckQueue) {
1006 pAC->CheckQueue = SK_FALSE;
1007 spin_lock(&pAC->SlowPathLock);
1008 SkEventDispatcher(pAC, pAC->IoBase);
1009 spin_unlock(&pAC->SlowPathLock);
1010 }
1011
1012 /* IRQ is processed - Enable IRQs again*/
1013 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1014
1015 return SkIsrRetHandled;
1016} /* SkGeIsr */
1017
1018
1019/****************************************************************************
1020 *
1021 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1022 *
1023 * Description:
1024 * The interrupt routine is called when the network adapter
1025 * generates an interrupt. It may also be called if another device
1026 * shares this interrupt vector with the driver.
1027 * This is the same as above, but handles only one port.
1028 *
1029 * Returns: N/A
1030 *
1031 */
1032static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1033{
1034struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1035DEV_NET *pNet;
1036SK_AC *pAC;
1037SK_U32 IntSrc; /* interrupts source register contents */
1038
1039 pNet = netdev_priv(dev);
1040 pAC = pNet->pAC;
1041
1042 /*
1043 * Check and process if its our interrupt
1044 */
1045 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1046 if (IntSrc == 0) {
1047 return SkIsrRetNone;
1048 }
1049
1050 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1051#if 0 /* software irq currently not used */
1052 if (IntSrc & IS_IRQ_SW) {
1053 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1054 SK_DBGCAT_DRV_INT_SRC,
1055 ("Software IRQ\n"));
1056 }
1057#endif
1058 if (IntSrc & IS_R1_F) {
1059 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1060 SK_DBGCAT_DRV_INT_SRC,
1061 ("EOF RX1 IRQ\n"));
1062 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1063 SK_PNMI_CNT_RX_INTR(pAC, 0);
1064 }
1065#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1066 if (IntSrc & IS_XA1_F) {
1067 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1068 SK_DBGCAT_DRV_INT_SRC,
1069 ("EOF AS TX1 IRQ\n"));
1070 SK_PNMI_CNT_TX_INTR(pAC, 0);
1071 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1072 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1073 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1074 }
1075#if 0 /* only if sync. queues used */
1076 if (IntSrc & IS_XS1_F) {
1077 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1078 SK_DBGCAT_DRV_INT_SRC,
1079 ("EOF SY TX1 IRQ\n"));
1080 SK_PNMI_CNT_TX_INTR(pAC, 0);
1081 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1082 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1083 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1084 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1085 }
1086#endif
1087#endif
1088
1089 /* do all IO at once */
1090 if (IntSrc & IS_R1_F)
1091 ClearAndStartRx(pAC, 0);
1092#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1093 if (IntSrc & IS_XA1_F)
1094 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1095#endif
1096 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1097 } /* while (IntSrc & IRQ_MASK != 0) */
1098
1099 IntSrc &= pAC->GIni.GIValIrqMask;
1100 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1101 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1102 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1103 pAC->CheckQueue = SK_FALSE;
1104 spin_lock(&pAC->SlowPathLock);
1105 if (IntSrc & SPECIAL_IRQS)
1106 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1107
1108 SkEventDispatcher(pAC, pAC->IoBase);
1109 spin_unlock(&pAC->SlowPathLock);
1110 }
1111 /*
1112 * do it all again is case we cleared an interrupt that
1113 * came in after handling the ring (OUTs may be delayed
1114 * in hardware buffers, but are through after IN)
1115 *
1116 * rroesler: has been commented out and shifted to
1117 * SkGeDrvEvent(), because it is timer
1118 * guarded now
1119 *
1120 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1121 */
1122
1123 /* IRQ is processed - Enable IRQs again*/
1124 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1125
1126 return SkIsrRetHandled;
1127} /* SkGeIsrOnePort */
1128
1129#ifdef CONFIG_NET_POLL_CONTROLLER
1130/****************************************************************************
1131 *
1132 * SkGePollController - polling receive, for netconsole
1133 *
1134 * Description:
1135 * Polling receive - used by netconsole and other diagnostic tools
1136 * to allow network i/o with interrupts disabled.
1137 *
1138 * Returns: N/A
1139 */
1140static void SkGePollController(struct net_device *dev)
1141{
1142 disable_irq(dev->irq);
1143 SkGeIsr(dev->irq, dev, NULL);
1144 enable_irq(dev->irq);
1145}
1146#endif
1147
1148/****************************************************************************
1149 *
1150 * SkGeOpen - handle start of initialized adapter
1151 *
1152 * Description:
1153 * This function starts the initialized adapter.
1154 * The board level variable is set and the adapter is
1155 * brought to full functionality.
1156 * The device flags are set for operation.
1157 * Do all necessary level 2 initialization, enable interrupts and
1158 * give start command to RLMT.
1159 *
1160 * Returns:
1161 * 0 on success
1162 * != 0 on error
1163 */
1164static int SkGeOpen(
1165struct SK_NET_DEVICE *dev)
1166{
1167 DEV_NET *pNet;
1168 SK_AC *pAC;
1169 unsigned long Flags; /* for spin lock */
1170 int i;
1171 SK_EVPARA EvPara; /* an event parameter union */
1172
1173 pNet = netdev_priv(dev);
1174 pAC = pNet->pAC;
1175
1176 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1177 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1178
1179#ifdef SK_DIAG_SUPPORT
1180 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1181 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1182 return (-1); /* still in use by diag; deny actions */
1183 }
1184 }
1185#endif
1186
1187 /* Set blink mode */
1188 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1189 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1190
1191 if (pAC->BoardLevel == SK_INIT_DATA) {
1192 /* level 1 init common modules here */
1193 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1194 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1195 return (-1);
1196 }
1197 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1198 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1199 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1200 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1201 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1202 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1203 pAC->BoardLevel = SK_INIT_IO;
1204 }
1205
1206 if (pAC->BoardLevel != SK_INIT_RUN) {
1207 /* tschilling: Level 2 init modules here, check return value. */
1208 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1209 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1210 return (-1);
1211 }
1212 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1213 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1214 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1215 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1216 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1217 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1218 pAC->BoardLevel = SK_INIT_RUN;
1219 }
1220
1221 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1222 /* Enable transmit descriptor polling. */
1223 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1224 FillRxRing(pAC, &pAC->RxPort[i]);
1225 }
1226 SkGeYellowLED(pAC, pAC->IoBase, 1);
1227
1228 StartDrvCleanupTimer(pAC);
1229 SkDimEnableModerationIfNeeded(pAC);
1230 SkDimDisplayModerationSettings(pAC);
1231
1232 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1233
1234 /* enable Interrupts */
1235 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1236 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1237
1238 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1239
1240 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1241 EvPara.Para32[0] = pAC->RlmtNets;
1242 EvPara.Para32[1] = -1;
1243 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1244 EvPara);
1245 EvPara.Para32[0] = pAC->RlmtMode;
1246 EvPara.Para32[1] = 0;
1247 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1248 EvPara);
1249 }
1250
1251 EvPara.Para32[0] = pNet->NetNr;
1252 EvPara.Para32[1] = -1;
1253 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1254 SkEventDispatcher(pAC, pAC->IoBase);
1255 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1256
1257 pAC->MaxPorts++;
1da177e4
LT
1258
1259
1260 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1261 ("SkGeOpen suceeded\n"));
1262
1263 return (0);
1264} /* SkGeOpen */
1265
1266
1267/****************************************************************************
1268 *
1269 * SkGeClose - Stop initialized adapter
1270 *
1271 * Description:
1272 * Close initialized adapter.
1273 *
1274 * Returns:
1275 * 0 - on success
1276 * error code - on error
1277 */
1278static int SkGeClose(
1279struct SK_NET_DEVICE *dev)
1280{
1281 DEV_NET *pNet;
1282 DEV_NET *newPtrNet;
1283 SK_AC *pAC;
1284
1285 unsigned long Flags; /* for spin lock */
1286 int i;
1287 int PortIdx;
1288 SK_EVPARA EvPara;
1289
1290 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1291 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1292
1293 pNet = netdev_priv(dev);
1294 pAC = pNet->pAC;
1295
1296#ifdef SK_DIAG_SUPPORT
1297 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1298 if (pAC->DiagFlowCtrl == SK_FALSE) {
1299 /*
1300 ** notify that the interface which has been closed
1301 ** by operator interaction must not be started up
1302 ** again when the DIAG has finished.
1303 */
1304 newPtrNet = netdev_priv(pAC->dev[0]);
1305 if (newPtrNet == pNet) {
1306 pAC->WasIfUp[0] = SK_FALSE;
1307 } else {
1308 pAC->WasIfUp[1] = SK_FALSE;
1309 }
1310 return 0; /* return to system everything is fine... */
1311 } else {
1312 pAC->DiagFlowCtrl = SK_FALSE;
1313 }
1314 }
1315#endif
1316
1317 netif_stop_queue(dev);
1318
1319 if (pAC->RlmtNets == 1)
1320 PortIdx = pAC->ActivePort;
1321 else
1322 PortIdx = pNet->NetNr;
1323
1324 StopDrvCleanupTimer(pAC);
1325
1326 /*
1327 * Clear multicast table, promiscuous mode ....
1328 */
1329 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1330 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1331 SK_PROM_MODE_NONE);
1332
1333 if (pAC->MaxPorts == 1) {
1334 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1335 /* disable interrupts */
1336 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1337 EvPara.Para32[0] = pNet->NetNr;
1338 EvPara.Para32[1] = -1;
1339 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1340 SkEventDispatcher(pAC, pAC->IoBase);
1341 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1342 /* stop the hardware */
1343 SkGeDeInit(pAC, pAC->IoBase);
1344 pAC->BoardLevel = SK_INIT_DATA;
1345 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1346 } else {
1347
1348 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1349 EvPara.Para32[0] = pNet->NetNr;
1350 EvPara.Para32[1] = -1;
1351 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1352 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1353 SkEventDispatcher(pAC, pAC->IoBase);
1354 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1355
1356 /* Stop port */
1357 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1358 [TX_PRIO_LOW].TxDesRingLock, Flags);
1359 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1360 SK_STOP_ALL, SK_HARD_RST);
1361 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1362 [TX_PRIO_LOW].TxDesRingLock, Flags);
1363 }
1364
1365 if (pAC->RlmtNets == 1) {
1366 /* clear all descriptor rings */
1367 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1368 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1369 ClearRxRing(pAC, &pAC->RxPort[i]);
1370 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1371 }
1372 } else {
1373 /* clear port descriptor rings */
1374 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1375 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1376 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1377 }
1378
1379 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1380 ("SkGeClose: done "));
1381
1382 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1383 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1384 sizeof(SK_PNMI_STRUCT_DATA));
1385
1386 pAC->MaxPorts--;
1da177e4
LT
1387
1388 return (0);
1389} /* SkGeClose */
1390
1391
1392/*****************************************************************************
1393 *
1394 * SkGeXmit - Linux frame transmit function
1395 *
1396 * Description:
1397 * The system calls this function to send frames onto the wire.
1398 * It puts the frame in the tx descriptor ring. If the ring is
1399 * full then, the 'tbusy' flag is set.
1400 *
1401 * Returns:
1402 * 0, if everything is ok
1403 * !=0, on error
1404 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1405 * allocated skb's) !!!
1406 */
1407static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1408{
1409DEV_NET *pNet;
1410SK_AC *pAC;
1411int Rc; /* return code of XmitFrame */
1412
1413 pNet = netdev_priv(dev);
1414 pAC = pNet->pAC;
1415
1416 if ((!skb_shinfo(skb)->nr_frags) ||
1417 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1418 /* Don't activate scatter-gather and hardware checksum */
1419
1420 if (pAC->RlmtNets == 2)
1421 Rc = XmitFrame(
1422 pAC,
1423 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1424 skb);
1425 else
1426 Rc = XmitFrame(
1427 pAC,
1428 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1429 skb);
1430 } else {
1431 /* scatter-gather and hardware TCP checksumming anabled*/
1432 if (pAC->RlmtNets == 2)
1433 Rc = XmitFrameSG(
1434 pAC,
1435 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1436 skb);
1437 else
1438 Rc = XmitFrameSG(
1439 pAC,
1440 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1441 skb);
1442 }
1443
1444 /* Transmitter out of resources? */
1445 if (Rc <= 0) {
1446 netif_stop_queue(dev);
1447 }
1448
1449 /* If not taken, give buffer ownership back to the
1450 * queueing layer.
1451 */
1452 if (Rc < 0)
1453 return (1);
1454
1455 dev->trans_start = jiffies;
1456 return (0);
1457} /* SkGeXmit */
1458
1459
1460/*****************************************************************************
1461 *
1462 * XmitFrame - fill one socket buffer into the transmit ring
1463 *
1464 * Description:
1465 * This function puts a message into the transmit descriptor ring
1466 * if there is a descriptors left.
1467 * Linux skb's consist of only one continuous buffer.
1468 * The first step locks the ring. It is held locked
1469 * all time to avoid problems with SWITCH_../PORT_RESET.
1470 * Then the descriptoris allocated.
1471 * The second part is linking the buffer to the descriptor.
1472 * At the very last, the Control field of the descriptor
1473 * is made valid for the BMU and a start TX command is given
1474 * if necessary.
1475 *
1476 * Returns:
1477 * > 0 - on succes: the number of bytes in the message
1478 * = 0 - on resource shortage: this frame sent or dropped, now
1479 * the ring is full ( -> set tbusy)
1480 * < 0 - on failure: other problems ( -> return failure to upper layers)
1481 */
1482static int XmitFrame(
1483SK_AC *pAC, /* pointer to adapter context */
1484TX_PORT *pTxPort, /* pointer to struct of port to send to */
1485struct sk_buff *pMessage) /* pointer to send-message */
1486{
1487 TXD *pTxd; /* the rxd to fill */
1488 TXD *pOldTxd;
1489 unsigned long Flags;
1490 SK_U64 PhysAddr;
1da177e4
LT
1491 int BytesSend = pMessage->len;
1492
1493 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1494
1495 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1496#ifndef USE_TX_COMPLETE
1497 FreeTxDescriptors(pAC, pTxPort);
1498#endif
1499 if (pTxPort->TxdRingFree == 0) {
1500 /*
1501 ** no enough free descriptors in ring at the moment.
1502 ** Maybe free'ing some old one help?
1503 */
1504 FreeTxDescriptors(pAC, pTxPort);
1505 if (pTxPort->TxdRingFree == 0) {
1506 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1507 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1508 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1509 SK_DBGCAT_DRV_TX_PROGRESS,
1510 ("XmitFrame failed\n"));
1511 /*
1512 ** the desired message can not be sent
1513 ** Because tbusy seems to be set, the message
1514 ** should not be freed here. It will be used
1515 ** by the scheduler of the ethernet handler
1516 */
1517 return (-1);
1518 }
1519 }
1520
1521 /*
1522 ** If the passed socket buffer is of smaller MTU-size than 60,
1523 ** copy everything into new buffer and fill all bytes between
1524 ** the original packet end and the new packet end of 60 with 0x00.
1525 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1526 */
1527 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1528 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1529 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1530 return 0;
1531 }
1532 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1533 }
1534
1535 /*
1536 ** advance head counter behind descriptor needed for this frame,
1537 ** so that needed descriptor is reserved from that on. The next
1538 ** action will be to add the passed buffer to the TX-descriptor
1539 */
1540 pTxd = pTxPort->pTxdRingHead;
1541 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1542 pTxPort->TxdRingFree--;
1543
1544#ifdef SK_DUMP_TX
1545 DumpMsg(pMessage, "XmitFrame");
1546#endif
1547
1548 /*
1549 ** First step is to map the data to be sent via the adapter onto
1550 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1551 ** and 2.6 need to use pci_map_page() for that mapping.
1552 */
1553 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1554 virt_to_page(pMessage->data),
1555 ((unsigned long) pMessage->data & ~PAGE_MASK),
1556 pMessage->len,
1557 PCI_DMA_TODEVICE);
1558 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1559 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1560 pTxd->pMBuf = pMessage;
1561
1562 if (pMessage->ip_summed == CHECKSUM_HW) {
596f86a8
SH
1563 u16 hdrlen = pMessage->h.raw - pMessage->data;
1564 u16 offset = hdrlen + pMessage->csum;
1565
1566 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1da177e4
LT
1567 (pAC->GIni.GIChipRev == 0) &&
1568 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1569 pTxd->TBControl = BMU_TCP_CHECK;
1570 } else {
1571 pTxd->TBControl = BMU_UDP_CHECK;
1572 }
1573
596f86a8
SH
1574 pTxd->TcpSumOfs = 0;
1575 pTxd->TcpSumSt = hdrlen;
1576 pTxd->TcpSumWr = offset;
1da177e4
LT
1577
1578 pTxd->TBControl |= BMU_OWN | BMU_STF |
1579 BMU_SW | BMU_EOF |
1580#ifdef USE_TX_COMPLETE
1581 BMU_IRQ_EOF |
1582#endif
1583 pMessage->len;
1584 } else {
1585 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1586 BMU_SW | BMU_EOF |
1587#ifdef USE_TX_COMPLETE
1588 BMU_IRQ_EOF |
1589#endif
1590 pMessage->len;
1591 }
1592
1593 /*
1594 ** If previous descriptor already done, give TX start cmd
1595 */
1596 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1597 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1598 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1599 }
1600
1601 /*
1602 ** after releasing the lock, the skb may immediately be free'd
1603 */
1604 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1605 if (pTxPort->TxdRingFree != 0) {
1606 return (BytesSend);
1607 } else {
1608 return (0);
1609 }
1610
1611} /* XmitFrame */
1612
1613/*****************************************************************************
1614 *
1615 * XmitFrameSG - fill one socket buffer into the transmit ring
1616 * (use SG and TCP/UDP hardware checksumming)
1617 *
1618 * Description:
1619 * This function puts a message into the transmit descriptor ring
1620 * if there is a descriptors left.
1621 *
1622 * Returns:
1623 * > 0 - on succes: the number of bytes in the message
1624 * = 0 - on resource shortage: this frame sent or dropped, now
1625 * the ring is full ( -> set tbusy)
1626 * < 0 - on failure: other problems ( -> return failure to upper layers)
1627 */
1628static int XmitFrameSG(
1629SK_AC *pAC, /* pointer to adapter context */
1630TX_PORT *pTxPort, /* pointer to struct of port to send to */
1631struct sk_buff *pMessage) /* pointer to send-message */
1632{
1633
1634 TXD *pTxd;
1635 TXD *pTxdFst;
1636 TXD *pTxdLst;
1637 int CurrFrag;
1638 int BytesSend;
1da177e4
LT
1639 skb_frag_t *sk_frag;
1640 SK_U64 PhysAddr;
1641 unsigned long Flags;
596f86a8 1642 SK_U32 Control;
1da177e4
LT
1643
1644 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1645#ifndef USE_TX_COMPLETE
1646 FreeTxDescriptors(pAC, pTxPort);
1647#endif
1648 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1649 FreeTxDescriptors(pAC, pTxPort);
1650 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1651 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1652 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1653 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1654 SK_DBGCAT_DRV_TX_PROGRESS,
1655 ("XmitFrameSG failed - Ring full\n"));
1656 /* this message can not be sent now */
1657 return(-1);
1658 }
1659 }
1660
1661 pTxd = pTxPort->pTxdRingHead;
1662 pTxdFst = pTxd;
1663 pTxdLst = pTxd;
1664 BytesSend = 0;
1da177e4
LT
1665
1666 /*
1667 ** Map the first fragment (header) into the DMA-space
1668 */
1669 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1670 virt_to_page(pMessage->data),
1671 ((unsigned long) pMessage->data & ~PAGE_MASK),
1672 skb_headlen(pMessage),
1673 PCI_DMA_TODEVICE);
1674
1675 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1676 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1677
1678 /*
1679 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1680 */
1681 if (pMessage->ip_summed == CHECKSUM_HW) {
596f86a8
SH
1682 u16 hdrlen = pMessage->h.raw - pMessage->data;
1683 u16 offset = hdrlen + pMessage->csum;
1684
1685 Control = BMU_STFWD;
1686
1da177e4
LT
1687 /*
1688 ** We have to use the opcode for tcp here, because the
1689 ** opcode for udp is not working in the hardware yet
1690 ** (Revision 2.0)
1691 */
596f86a8 1692 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1da177e4
LT
1693 (pAC->GIni.GIChipRev == 0) &&
1694 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
596f86a8 1695 Control |= BMU_TCP_CHECK;
1da177e4 1696 } else {
596f86a8 1697 Control |= BMU_UDP_CHECK;
1da177e4
LT
1698 }
1699
596f86a8
SH
1700 pTxd->TcpSumOfs = 0;
1701 pTxd->TcpSumSt = hdrlen;
1702 pTxd->TcpSumWr = offset;
1703 } else
1704 Control = BMU_CHECK | BMU_SW;
1705
1706 pTxd->TBControl = BMU_STF | Control | skb_headlen(pMessage);
1da177e4
LT
1707
1708 pTxd = pTxd->pNextTxd;
1709 pTxPort->TxdRingFree--;
1710 BytesSend += skb_headlen(pMessage);
1711
1712 /*
1713 ** Browse over all SG fragments and map each of them into the DMA space
1714 */
1715 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1716 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1717 /*
1718 ** we already have the proper value in entry
1719 */
1720 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1721 sk_frag->page,
1722 sk_frag->page_offset,
1723 sk_frag->size,
1724 PCI_DMA_TODEVICE);
1725
1726 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1727 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1728 pTxd->pMBuf = pMessage;
1729
596f86a8 1730 pTxd->TBControl = Control | BMU_OWN | sk_frag->size;;
1da177e4
LT
1731
1732 /*
1733 ** Do we have the last fragment?
1734 */
1735 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1736#ifdef USE_TX_COMPLETE
596f86a8 1737 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF;
1da177e4 1738#else
596f86a8 1739 pTxd->TBControl |= BMU_EOF;
1da177e4
LT
1740#endif
1741 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1da177e4
LT
1742 }
1743 pTxdLst = pTxd;
1744 pTxd = pTxd->pNextTxd;
1745 pTxPort->TxdRingFree--;
1746 BytesSend += sk_frag->size;
1747 }
1748
1749 /*
1750 ** If previous descriptor already done, give TX start cmd
1751 */
1752 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1753 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1754 }
1755
1756 pTxPort->pTxdRingPrev = pTxdLst;
1757 pTxPort->pTxdRingHead = pTxd;
1758
1759 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1760
1761 if (pTxPort->TxdRingFree > 0) {
1762 return (BytesSend);
1763 } else {
1764 return (0);
1765 }
1766}
1767
1768/*****************************************************************************
1769 *
1770 * FreeTxDescriptors - release descriptors from the descriptor ring
1771 *
1772 * Description:
1773 * This function releases descriptors from a transmit ring if they
1774 * have been sent by the BMU.
1775 * If a descriptors is sent, it can be freed and the message can
1776 * be freed, too.
1777 * The SOFTWARE controllable bit is used to prevent running around a
1778 * completely free ring for ever. If this bit is no set in the
1779 * frame (by XmitFrame), this frame has never been sent or is
1780 * already freed.
1781 * The Tx descriptor ring lock must be held while calling this function !!!
1782 *
1783 * Returns:
1784 * none
1785 */
1786static void FreeTxDescriptors(
1787SK_AC *pAC, /* pointer to the adapter context */
1788TX_PORT *pTxPort) /* pointer to destination port structure */
1789{
1790TXD *pTxd; /* pointer to the checked descriptor */
1791TXD *pNewTail; /* pointer to 'end' of the ring */
1792SK_U32 Control; /* TBControl field of descriptor */
1793SK_U64 PhysAddr; /* address of DMA mapping */
1794
1795 pNewTail = pTxPort->pTxdRingTail;
1796 pTxd = pNewTail;
1797 /*
1798 ** loop forever; exits if BMU_SW bit not set in start frame
1799 ** or BMU_OWN bit set in any frame
1800 */
1801 while (1) {
1802 Control = pTxd->TBControl;
1803 if ((Control & BMU_SW) == 0) {
1804 /*
1805 ** software controllable bit is set in first
1806 ** fragment when given to BMU. Not set means that
1807 ** this fragment was never sent or is already
1808 ** freed ( -> ring completely free now).
1809 */
1810 pTxPort->pTxdRingTail = pTxd;
1811 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1812 return;
1813 }
1814 if (Control & BMU_OWN) {
1815 pTxPort->pTxdRingTail = pTxd;
1816 if (pTxPort->TxdRingFree > 0) {
1817 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1818 }
1819 return;
1820 }
1821
1822 /*
1823 ** release the DMA mapping, because until not unmapped
1824 ** this buffer is considered being under control of the
1825 ** adapter card!
1826 */
1827 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1828 PhysAddr |= (SK_U64) pTxd->VDataLow;
1829 pci_unmap_page(pAC->PciDev, PhysAddr,
1830 pTxd->pMBuf->len,
1831 PCI_DMA_TODEVICE);
1832
1833 if (Control & BMU_EOF)
1834 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1835
1836 pTxPort->TxdRingFree++;
1837 pTxd->TBControl &= ~BMU_SW;
1838 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1839 } /* while(forever) */
1840} /* FreeTxDescriptors */
1841
1842/*****************************************************************************
1843 *
1844 * FillRxRing - fill the receive ring with valid descriptors
1845 *
1846 * Description:
1847 * This function fills the receive ring descriptors with data
1848 * segments and makes them valid for the BMU.
1849 * The active ring is filled completely, if possible.
1850 * The non-active ring is filled only partial to save memory.
1851 *
1852 * Description of rx ring structure:
1853 * head - points to the descriptor which will be used next by the BMU
1854 * tail - points to the next descriptor to give to the BMU
1855 *
1856 * Returns: N/A
1857 */
1858static void FillRxRing(
1859SK_AC *pAC, /* pointer to the adapter context */
1860RX_PORT *pRxPort) /* ptr to port struct for which the ring
1861 should be filled */
1862{
1863unsigned long Flags;
1864
1865 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1866 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1867 if(!FillRxDescriptor(pAC, pRxPort))
1868 break;
1869 }
1870 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1871} /* FillRxRing */
1872
1873
1874/*****************************************************************************
1875 *
1876 * FillRxDescriptor - fill one buffer into the receive ring
1877 *
1878 * Description:
1879 * The function allocates a new receive buffer and
1880 * puts it into the next descriptor.
1881 *
1882 * Returns:
1883 * SK_TRUE - a buffer was added to the ring
1884 * SK_FALSE - a buffer could not be added
1885 */
1886static SK_BOOL FillRxDescriptor(
1887SK_AC *pAC, /* pointer to the adapter context struct */
1888RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1889{
1890struct sk_buff *pMsgBlock; /* pointer to a new message block */
1891RXD *pRxd; /* the rxd to fill */
1892SK_U16 Length; /* data fragment length */
1893SK_U64 PhysAddr; /* physical address of a rx buffer */
1894
1895 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1896 if (pMsgBlock == NULL) {
1897 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1898 SK_DBGCAT_DRV_ENTRY,
1899 ("%s: Allocation of rx buffer failed !\n",
1900 pAC->dev[pRxPort->PortIndex]->name));
1901 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1902 return(SK_FALSE);
1903 }
1904 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1905 /* skb allocated ok, so add buffer */
1906 pRxd = pRxPort->pRxdRingTail;
1907 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1908 pRxPort->RxdRingFree--;
1909 Length = pAC->RxBufSize;
1910 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1911 virt_to_page(pMsgBlock->data),
1912 ((unsigned long) pMsgBlock->data &
1913 ~PAGE_MASK),
1914 pAC->RxBufSize - 2,
1915 PCI_DMA_FROMDEVICE);
1916
1917 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1918 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1919 pRxd->pMBuf = pMsgBlock;
1920 pRxd->RBControl = BMU_OWN |
1921 BMU_STF |
1922 BMU_IRQ_EOF |
1923 BMU_TCP_CHECK |
1924 Length;
1925 return (SK_TRUE);
1926
1927} /* FillRxDescriptor */
1928
1929
1930/*****************************************************************************
1931 *
1932 * ReQueueRxBuffer - fill one buffer back into the receive ring
1933 *
1934 * Description:
1935 * Fill a given buffer back into the rx ring. The buffer
1936 * has been previously allocated and aligned, and its phys.
1937 * address calculated, so this is no more necessary.
1938 *
1939 * Returns: N/A
1940 */
1941static void ReQueueRxBuffer(
1942SK_AC *pAC, /* pointer to the adapter context struct */
1943RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1944struct sk_buff *pMsg, /* pointer to the buffer */
1945SK_U32 PhysHigh, /* phys address high dword */
1946SK_U32 PhysLow) /* phys address low dword */
1947{
1948RXD *pRxd; /* the rxd to fill */
1949SK_U16 Length; /* data fragment length */
1950
1951 pRxd = pRxPort->pRxdRingTail;
1952 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1953 pRxPort->RxdRingFree--;
1954 Length = pAC->RxBufSize;
1955
1956 pRxd->VDataLow = PhysLow;
1957 pRxd->VDataHigh = PhysHigh;
1958 pRxd->pMBuf = pMsg;
1959 pRxd->RBControl = BMU_OWN |
1960 BMU_STF |
1961 BMU_IRQ_EOF |
1962 BMU_TCP_CHECK |
1963 Length;
1964 return;
1965} /* ReQueueRxBuffer */
1966
1967/*****************************************************************************
1968 *
1969 * ReceiveIrq - handle a receive IRQ
1970 *
1971 * Description:
1972 * This function is called when a receive IRQ is set.
1973 * It walks the receive descriptor ring and sends up all
1974 * frames that are complete.
1975 *
1976 * Returns: N/A
1977 */
1978static void ReceiveIrq(
1979 SK_AC *pAC, /* pointer to adapter context */
1980 RX_PORT *pRxPort, /* pointer to receive port struct */
1981 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
1982{
1983RXD *pRxd; /* pointer to receive descriptors */
1984SK_U32 Control; /* control field of descriptor */
1985struct sk_buff *pMsg; /* pointer to message holding frame */
1986struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
1987int FrameLength; /* total length of received frame */
1da177e4
LT
1988SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
1989SK_EVPARA EvPara; /* an event parameter union */
1990unsigned long Flags; /* for spin lock */
1991int PortIndex = pRxPort->PortIndex;
1992unsigned int Offset;
1993unsigned int NumBytes;
1994unsigned int ForRlmt;
1995SK_BOOL IsBc;
1996SK_BOOL IsMc;
1997SK_BOOL IsBadFrame; /* Bad frame */
1998
1999SK_U32 FrameStat;
1da177e4
LT
2000SK_U64 PhysAddr;
2001
2002rx_start:
2003 /* do forever; exit if BMU_OWN found */
2004 for ( pRxd = pRxPort->pRxdRingHead ;
2005 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2006 pRxd = pRxd->pNextRxd,
2007 pRxPort->pRxdRingHead = pRxd,
2008 pRxPort->RxdRingFree ++) {
2009
2010 /*
2011 * For a better understanding of this loop
2012 * Go through every descriptor beginning at the head
2013 * Please note: the ring might be completely received so the OWN bit
2014 * set is not a good crirteria to leave that loop.
2015 * Therefore the RingFree counter is used.
2016 * On entry of this loop pRxd is a pointer to the Rxd that needs
2017 * to be checked next.
2018 */
2019
2020 Control = pRxd->RBControl;
2021
2022 /* check if this descriptor is ready */
2023 if ((Control & BMU_OWN) != 0) {
2024 /* this descriptor is not yet ready */
2025 /* This is the usual end of the loop */
2026 /* We don't need to start the ring again */
2027 FillRxRing(pAC, pRxPort);
2028 return;
2029 }
2030 pAC->DynIrqModInfo.NbrProcessedDescr++;
2031
2032 /* get length of frame and check it */
2033 FrameLength = Control & BMU_BBC;
2034 if (FrameLength > pAC->RxBufSize) {
2035 goto rx_failed;
2036 }
2037
2038 /* check for STF and EOF */
2039 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2040 goto rx_failed;
2041 }
2042
2043 /* here we have a complete frame in the ring */
2044 pMsg = pRxd->pMBuf;
2045
2046 FrameStat = pRxd->FrameStat;
2047
2048 /* check for frame length mismatch */
2049#define XMR_FS_LEN_SHIFT 18
2050#define GMR_FS_LEN_SHIFT 16
2051 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2052 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2053 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2054 SK_DBGCAT_DRV_RX_PROGRESS,
2055 ("skge: Frame length mismatch (%u/%u).\n",
2056 FrameLength,
2057 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2058 goto rx_failed;
2059 }
2060 }
2061 else {
2062 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2063 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2064 SK_DBGCAT_DRV_RX_PROGRESS,
2065 ("skge: Frame length mismatch (%u/%u).\n",
2066 FrameLength,
2067 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2068 goto rx_failed;
2069 }
2070 }
2071
2072 /* Set Rx Status */
2073 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2074 IsBc = (FrameStat & XMR_FS_BC) != 0;
2075 IsMc = (FrameStat & XMR_FS_MC) != 0;
2076 IsBadFrame = (FrameStat &
2077 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2078 } else {
2079 IsBc = (FrameStat & GMR_FS_BC) != 0;
2080 IsMc = (FrameStat & GMR_FS_MC) != 0;
2081 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2082 ((FrameStat & GMR_FS_RX_OK) == 0));
2083 }
2084
2085 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2086 ("Received frame of length %d on port %d\n",
2087 FrameLength, PortIndex));
2088 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2089 ("Number of free rx descriptors: %d\n",
2090 pRxPort->RxdRingFree));
2091/* DumpMsg(pMsg, "Rx"); */
2092
2093 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2094#if 0
2095 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2096#endif
2097 /* there is a receive error in this frame */
2098 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2099 SK_DBGCAT_DRV_RX_PROGRESS,
2100 ("skge: Error in received frame, dropped!\n"
2101 "Control: %x\nRxStat: %x\n",
2102 Control, FrameStat));
2103
2104 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2105 pRxd->VDataHigh, pRxd->VDataLow);
2106
2107 continue;
2108 }
2109
2110 /*
2111 * if short frame then copy data to reduce memory waste
2112 */
2113 if ((FrameLength < SK_COPY_THRESHOLD) &&
2114 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2115 /*
2116 * Short frame detected and allocation successfull
2117 */
2118 /* use new skb and copy data */
2119 skb_reserve(pNewMsg, 2);
2120 skb_put(pNewMsg, FrameLength);
2121 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2122 PhysAddr |= (SK_U64) pRxd->VDataLow;
2123
2124 pci_dma_sync_single_for_cpu(pAC->PciDev,
2125 (dma_addr_t) PhysAddr,
2126 FrameLength,
2127 PCI_DMA_FROMDEVICE);
596f86a8
SH
2128 memcpy(pNewMsg->data, pMsg, FrameLength);
2129
1da177e4
LT
2130 pci_dma_sync_single_for_device(pAC->PciDev,
2131 (dma_addr_t) PhysAddr,
2132 FrameLength,
2133 PCI_DMA_FROMDEVICE);
2134 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2135 pRxd->VDataHigh, pRxd->VDataLow);
2136
2137 pMsg = pNewMsg;
2138
2139 }
2140 else {
2141 /*
2142 * if large frame, or SKB allocation failed, pass
2143 * the SKB directly to the networking
2144 */
2145
2146 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2147 PhysAddr |= (SK_U64) pRxd->VDataLow;
2148
2149 /* release the DMA mapping */
2150 pci_unmap_single(pAC->PciDev,
2151 PhysAddr,
2152 pAC->RxBufSize - 2,
2153 PCI_DMA_FROMDEVICE);
2154
2155 /* set length in message */
2156 skb_put(pMsg, FrameLength);
596f86a8 2157 } /* frame > SK_COPY_TRESHOLD */
1da177e4
LT
2158
2159#ifdef USE_SK_RX_CHECKSUM
92f268e0 2160 pMsg->csum = pRxd->TcpSums & 0xffff;
596f86a8 2161 pMsg->ip_summed = CHECKSUM_HW;
1da177e4 2162#else
596f86a8 2163 pMsg->ip_summed = CHECKSUM_NONE;
1da177e4 2164#endif
596f86a8 2165
1da177e4
LT
2166 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2167 ForRlmt = SK_RLMT_RX_PROTOCOL;
2168#if 0
2169 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2170#endif
2171 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2172 IsBc, &Offset, &NumBytes);
2173 if (NumBytes != 0) {
2174#if 0
2175 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2176#endif
2177 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2178 &pMsg->data[Offset],
2179 IsBc, IsMc, &ForRlmt);
2180 }
2181 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2182 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2183 /* send up only frames from active port */
2184 if ((PortIndex == pAC->ActivePort) ||
2185 (pAC->RlmtNets == 2)) {
2186 /* frame for upper layer */
2187 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2188#ifdef xDEBUG
2189 DumpMsg(pMsg, "Rx");
2190#endif
2191 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2192 FrameLength, pRxPort->PortIndex);
2193
2194 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2195 pMsg->protocol = eth_type_trans(pMsg,
2196 pAC->dev[pRxPort->PortIndex]);
2197 netif_rx(pMsg);
2198 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2199 }
2200 else {
2201 /* drop frame */
2202 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2203 SK_DBGCAT_DRV_RX_PROGRESS,
2204 ("D"));
2205 DEV_KFREE_SKB(pMsg);
2206 }
2207
2208 } /* if not for rlmt */
2209 else {
2210 /* packet for rlmt */
2211 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2212 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2213 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2214 pAC->IoBase, FrameLength);
2215 if (pRlmtMbuf != NULL) {
2216 pRlmtMbuf->pNext = NULL;
2217 pRlmtMbuf->Length = FrameLength;
2218 pRlmtMbuf->PortIdx = PortIndex;
2219 EvPara.pParaPtr = pRlmtMbuf;
2220 memcpy((char*)(pRlmtMbuf->pData),
2221 (char*)(pMsg->data),
2222 FrameLength);
2223
2224 /* SlowPathLock needed? */
2225 if (SlowPathLock == SK_TRUE) {
2226 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2227 SkEventQueue(pAC, SKGE_RLMT,
2228 SK_RLMT_PACKET_RECEIVED,
2229 EvPara);
2230 pAC->CheckQueue = SK_TRUE;
2231 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2232 } else {
2233 SkEventQueue(pAC, SKGE_RLMT,
2234 SK_RLMT_PACKET_RECEIVED,
2235 EvPara);
2236 pAC->CheckQueue = SK_TRUE;
2237 }
2238
2239 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2240 SK_DBGCAT_DRV_RX_PROGRESS,
2241 ("Q"));
2242 }
2243 if ((pAC->dev[pRxPort->PortIndex]->flags &
2244 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2245 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2246 SK_RLMT_RX_PROTOCOL) {
2247 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2248 pMsg->protocol = eth_type_trans(pMsg,
2249 pAC->dev[pRxPort->PortIndex]);
2250 netif_rx(pMsg);
2251 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2252 }
2253 else {
2254 DEV_KFREE_SKB(pMsg);
2255 }
2256
2257 } /* if packet for rlmt */
2258 } /* for ... scanning the RXD ring */
2259
2260 /* RXD ring is empty -> fill and restart */
2261 FillRxRing(pAC, pRxPort);
2262 /* do not start if called from Close */
2263 if (pAC->BoardLevel > SK_INIT_DATA) {
2264 ClearAndStartRx(pAC, PortIndex);
2265 }
2266 return;
2267
2268rx_failed:
2269 /* remove error frame */
2270 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2271 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2272
2273 /* release the DMA mapping */
2274
2275 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2276 PhysAddr |= (SK_U64) pRxd->VDataLow;
2277 pci_unmap_page(pAC->PciDev,
2278 PhysAddr,
2279 pAC->RxBufSize - 2,
2280 PCI_DMA_FROMDEVICE);
2281 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2282 pRxd->pMBuf = NULL;
2283 pRxPort->RxdRingFree++;
2284 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2285 goto rx_start;
2286
2287} /* ReceiveIrq */
2288
2289
2290/*****************************************************************************
2291 *
2292 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2293 *
2294 * Description:
2295 * This function sends a start command and a clear interrupt
2296 * command for one receive queue to the BMU.
2297 *
2298 * Returns: N/A
2299 * none
2300 */
2301static void ClearAndStartRx(
2302SK_AC *pAC, /* pointer to the adapter context */
2303int PortIndex) /* index of the receive port (XMAC) */
2304{
2305 SK_OUT8(pAC->IoBase,
2306 RxQueueAddr[PortIndex]+Q_CSR,
2307 CSR_START | CSR_IRQ_CL_F);
2308} /* ClearAndStartRx */
2309
2310
2311/*****************************************************************************
2312 *
2313 * ClearTxIrq - give a clear transmit IRQ command to BMU
2314 *
2315 * Description:
2316 * This function sends a clear tx IRQ command for one
2317 * transmit queue to the BMU.
2318 *
2319 * Returns: N/A
2320 */
2321static void ClearTxIrq(
2322SK_AC *pAC, /* pointer to the adapter context */
2323int PortIndex, /* index of the transmit port (XMAC) */
2324int Prio) /* priority or normal queue */
2325{
2326 SK_OUT8(pAC->IoBase,
2327 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2328 CSR_IRQ_CL_F);
2329} /* ClearTxIrq */
2330
2331
2332/*****************************************************************************
2333 *
2334 * ClearRxRing - remove all buffers from the receive ring
2335 *
2336 * Description:
2337 * This function removes all receive buffers from the ring.
2338 * The receive BMU must be stopped before calling this function.
2339 *
2340 * Returns: N/A
2341 */
2342static void ClearRxRing(
2343SK_AC *pAC, /* pointer to adapter context */
2344RX_PORT *pRxPort) /* pointer to rx port struct */
2345{
2346RXD *pRxd; /* pointer to the current descriptor */
2347unsigned long Flags;
2348SK_U64 PhysAddr;
2349
2350 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2351 return;
2352 }
2353 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2354 pRxd = pRxPort->pRxdRingHead;
2355 do {
2356 if (pRxd->pMBuf != NULL) {
2357
2358 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2359 PhysAddr |= (SK_U64) pRxd->VDataLow;
2360 pci_unmap_page(pAC->PciDev,
2361 PhysAddr,
2362 pAC->RxBufSize - 2,
2363 PCI_DMA_FROMDEVICE);
2364 DEV_KFREE_SKB(pRxd->pMBuf);
2365 pRxd->pMBuf = NULL;
2366 }
2367 pRxd->RBControl &= BMU_OWN;
2368 pRxd = pRxd->pNextRxd;
2369 pRxPort->RxdRingFree++;
2370 } while (pRxd != pRxPort->pRxdRingTail);
2371 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2372 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2373} /* ClearRxRing */
2374
2375/*****************************************************************************
2376 *
2377 * ClearTxRing - remove all buffers from the transmit ring
2378 *
2379 * Description:
2380 * This function removes all transmit buffers from the ring.
2381 * The transmit BMU must be stopped before calling this function
2382 * and transmitting at the upper level must be disabled.
2383 * The BMU own bit of all descriptors is cleared, the rest is
2384 * done by calling FreeTxDescriptors.
2385 *
2386 * Returns: N/A
2387 */
2388static void ClearTxRing(
2389SK_AC *pAC, /* pointer to adapter context */
2390TX_PORT *pTxPort) /* pointer to tx prt struct */
2391{
2392TXD *pTxd; /* pointer to the current descriptor */
2393int i;
2394unsigned long Flags;
2395
2396 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2397 pTxd = pTxPort->pTxdRingHead;
2398 for (i=0; i<pAC->TxDescrPerRing; i++) {
2399 pTxd->TBControl &= ~BMU_OWN;
2400 pTxd = pTxd->pNextTxd;
2401 }
2402 FreeTxDescriptors(pAC, pTxPort);
2403 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2404} /* ClearTxRing */
2405
2406/*****************************************************************************
2407 *
2408 * SkGeSetMacAddr - Set the hardware MAC address
2409 *
2410 * Description:
2411 * This function sets the MAC address used by the adapter.
2412 *
2413 * Returns:
2414 * 0, if everything is ok
2415 * !=0, on error
2416 */
2417static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2418{
2419
2420DEV_NET *pNet = netdev_priv(dev);
2421SK_AC *pAC = pNet->pAC;
2422
2423struct sockaddr *addr = p;
2424unsigned long Flags;
2425
2426 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2427 ("SkGeSetMacAddr starts now...\n"));
2428 if(netif_running(dev))
2429 return -EBUSY;
2430
2431 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2432
2433 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2434
2435 if (pAC->RlmtNets == 2)
2436 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2437 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2438 else
2439 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2440 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2441
2442
2443
2444 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2445 return 0;
2446} /* SkGeSetMacAddr */
2447
2448
2449/*****************************************************************************
2450 *
2451 * SkGeSetRxMode - set receive mode
2452 *
2453 * Description:
2454 * This function sets the receive mode of an adapter. The adapter
2455 * supports promiscuous mode, allmulticast mode and a number of
2456 * multicast addresses. If more multicast addresses the available
2457 * are selected, a hash function in the hardware is used.
2458 *
2459 * Returns:
2460 * 0, if everything is ok
2461 * !=0, on error
2462 */
2463static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2464{
2465
2466DEV_NET *pNet;
2467SK_AC *pAC;
2468
2469struct dev_mc_list *pMcList;
2470int i;
2471int PortIdx;
2472unsigned long Flags;
2473
2474 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2475 ("SkGeSetRxMode starts now... "));
2476
2477 pNet = netdev_priv(dev);
2478 pAC = pNet->pAC;
2479 if (pAC->RlmtNets == 1)
2480 PortIdx = pAC->ActivePort;
2481 else
2482 PortIdx = pNet->NetNr;
2483
2484 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2485 if (dev->flags & IFF_PROMISC) {
2486 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2487 ("PROMISCUOUS mode\n"));
2488 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2489 SK_PROM_MODE_LLC);
2490 } else if (dev->flags & IFF_ALLMULTI) {
2491 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2492 ("ALLMULTI mode\n"));
2493 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2494 SK_PROM_MODE_ALL_MC);
2495 } else {
2496 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2497 SK_PROM_MODE_NONE);
2498 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2499
2500 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2501 ("Number of MC entries: %d ", dev->mc_count));
2502
2503 pMcList = dev->mc_list;
2504 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2505 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2506 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2507 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2508 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2509 pMcList->dmi_addr[0],
2510 pMcList->dmi_addr[1],
2511 pMcList->dmi_addr[2],
2512 pMcList->dmi_addr[3],
2513 pMcList->dmi_addr[4],
2514 pMcList->dmi_addr[5]));
2515 }
2516 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2517 }
2518 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2519
2520 return;
2521} /* SkGeSetRxMode */
2522
2523
2524/*****************************************************************************
2525 *
2526 * SkGeChangeMtu - set the MTU to another value
2527 *
2528 * Description:
2529 * This function sets is called whenever the MTU size is changed
2530 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2531 * ethernet MTU size, long frame support is activated.
2532 *
2533 * Returns:
2534 * 0, if everything is ok
2535 * !=0, on error
2536 */
2537static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2538{
2539DEV_NET *pNet;
8f7a17d1 2540struct net_device *pOtherDev;
1da177e4
LT
2541SK_AC *pAC;
2542unsigned long Flags;
2543int i;
2544SK_EVPARA EvPara;
2545
2546 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2547 ("SkGeChangeMtu starts now...\n"));
2548
2549 pNet = netdev_priv(dev);
2550 pAC = pNet->pAC;
2551
2552 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2553 return -EINVAL;
2554 }
2555
2556 if(pAC->BoardLevel != SK_INIT_RUN) {
2557 return -EINVAL;
2558 }
2559
2560#ifdef SK_DIAG_SUPPORT
2561 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2562 if (pAC->DiagFlowCtrl == SK_FALSE) {
2563 return -1; /* still in use, deny any actions of MTU */
2564 } else {
2565 pAC->DiagFlowCtrl = SK_FALSE;
2566 }
2567 }
2568#endif
2569
8f7a17d1
SH
2570 pOtherDev = pAC->dev[1 - pNet->NetNr];
2571
2572 if ( netif_running(pOtherDev) && (pOtherDev->mtu > 1500)
2573 && (NewMtu <= 1500))
2574 return 0;
1da177e4
LT
2575
2576 pAC->RxBufSize = NewMtu + 32;
2577 dev->mtu = NewMtu;
2578
2579 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2580 ("New MTU: %d\n", NewMtu));
2581
2582 /*
2583 ** Prevent any reconfiguration while changing the MTU
2584 ** by disabling any interrupts
2585 */
2586 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2587 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2588
2589 /*
2590 ** Notify RLMT that any ports are to be stopped
2591 */
2592 EvPara.Para32[0] = 0;
2593 EvPara.Para32[1] = -1;
2594 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2595 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2596 EvPara.Para32[0] = 1;
2597 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2598 } else {
2599 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2600 }
2601
2602 /*
2603 ** After calling the SkEventDispatcher(), RLMT is aware about
2604 ** the stopped ports -> configuration can take place!
2605 */
2606 SkEventDispatcher(pAC, pAC->IoBase);
2607
2608 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2609 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2610 netif_stop_queue(pAC->dev[i]);
2611
2612 }
2613
2614 /*
2615 ** Depending on the desired MTU size change, a different number of
2616 ** RX buffers need to be allocated
2617 */
2618 if (NewMtu > 1500) {
2619 /*
2620 ** Use less rx buffers
2621 */
2622 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2623 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2624 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2625 (pAC->RxDescrPerRing / 4);
2626 } else {
2627 if (i == pAC->ActivePort) {
2628 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2629 (pAC->RxDescrPerRing / 4);
2630 } else {
2631 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2632 (pAC->RxDescrPerRing / 10);
2633 }
2634 }
2635 }
2636 } else {
2637 /*
2638 ** Use the normal amount of rx buffers
2639 */
2640 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2641 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2642 pAC->RxPort[i].RxFillLimit = 1;
2643 } else {
2644 if (i == pAC->ActivePort) {
2645 pAC->RxPort[i].RxFillLimit = 1;
2646 } else {
2647 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2648 (pAC->RxDescrPerRing / 4);
2649 }
2650 }
2651 }
2652 }
2653
2654 SkGeDeInit(pAC, pAC->IoBase);
2655
2656 /*
2657 ** enable/disable hardware support for long frames
2658 */
2659 if (NewMtu > 1500) {
2660// pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2661 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2662 } else {
2663 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2664 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2665 } else {
2666 pAC->GIni.GIPortUsage = SK_RED_LINK;
2667 }
2668 }
2669
2670 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2671 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2672 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2673 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2674 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2675 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2676 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2677
2678 /*
2679 ** tschilling:
2680 ** Speed and others are set back to default in level 1 init!
2681 */
2682 GetConfiguration(pAC);
2683
2684 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2685 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2686 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2687 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2688 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2689 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2690 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2691
2692 /*
2693 ** clear and reinit the rx rings here
2694 */
2695 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2696 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2697 ClearRxRing(pAC, &pAC->RxPort[i]);
2698 FillRxRing(pAC, &pAC->RxPort[i]);
2699
2700 /*
2701 ** Enable transmit descriptor polling
2702 */
2703 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2704 FillRxRing(pAC, &pAC->RxPort[i]);
2705 };
2706
2707 SkGeYellowLED(pAC, pAC->IoBase, 1);
2708 SkDimEnableModerationIfNeeded(pAC);
2709 SkDimDisplayModerationSettings(pAC);
2710
2711 netif_start_queue(pAC->dev[pNet->PortNr]);
2712 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2713 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2714 }
2715
2716 /*
2717 ** Enable Interrupts again
2718 */
2719 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2720 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2721
2722 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2723 SkEventDispatcher(pAC, pAC->IoBase);
2724
2725 /*
2726 ** Notify RLMT about the changing and restarting one (or more) ports
2727 */
2728 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2729 EvPara.Para32[0] = pAC->RlmtNets;
2730 EvPara.Para32[1] = -1;
2731 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2732 EvPara.Para32[0] = pNet->PortNr;
2733 EvPara.Para32[1] = -1;
2734 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2735
8f7a17d1
SH
2736 if (netif_running(pOtherDev)) {
2737 DEV_NET *pOtherNet = netdev_priv(pOtherDev);
1da177e4
LT
2738 EvPara.Para32[0] = pOtherNet->PortNr;
2739 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2740 }
2741 } else {
2742 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2743 }
2744
2745 SkEventDispatcher(pAC, pAC->IoBase);
2746 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2747
2748 /*
2749 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2750 ** seems as if upper layers have a problem to handle a successful
2751 ** return value of '0'. If such a zero is returned, the complete
2752 ** system hangs for several minutes (!), which is in acceptable.
2753 **
2754 ** Currently it is not clear, what the exact reason for this problem
2755 ** is. The implemented workaround for 2.5 is to return the desired
2756 ** new MTU size if all needed changes for the new MTU size where
2757 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2758 ** which indicates the successful change of the mtu-size.
2759 */
2760 return NewMtu;
2761
2762} /* SkGeChangeMtu */
2763
2764
2765/*****************************************************************************
2766 *
2767 * SkGeStats - return ethernet device statistics
2768 *
2769 * Description:
2770 * This function return statistic data about the ethernet device
2771 * to the operating system.
2772 *
2773 * Returns:
2774 * pointer to the statistic structure.
2775 */
2776static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2777{
2778DEV_NET *pNet = netdev_priv(dev);
2779SK_AC *pAC = pNet->pAC;
2780SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2781SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2782SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2783unsigned int Size; /* size of pnmi struct */
2784unsigned long Flags; /* for spin lock */
2785
2786 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2787 ("SkGeStats starts now...\n"));
2788 pPnmiStruct = &pAC->PnmiStruct;
2789
2790#ifdef SK_DIAG_SUPPORT
2791 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2792 (pAC->BoardLevel == SK_INIT_RUN)) {
2793#endif
2794 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2795 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2796 Size = SK_PNMI_STRUCT_SIZE;
2797 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2798 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2799#ifdef SK_DIAG_SUPPORT
2800 }
2801#endif
2802
2803 pPnmiStat = &pPnmiStruct->Stat[0];
2804 pPnmiConf = &pPnmiStruct->Conf[0];
2805
2806 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2807 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2808 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2809 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2810
8f7a17d1 2811 if (dev->mtu <= 1500) {
1da177e4
LT
2812 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2813 } else {
2814 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2815 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2816 }
2817
2818
2819 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2820 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2821
2822 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2823 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2824 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2825 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2826 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2827
2828 /* detailed rx_errors: */
2829 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2830 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2831 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2832 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2833 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2834 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2835
2836 /* detailed tx_errors */
2837 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2838 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2839 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2840 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2841 pAC->stats.tx_window_errors = (SK_U32) 0;
2842
2843 return(&pAC->stats);
2844} /* SkGeStats */
2845
2846
2847/*****************************************************************************
2848 *
2849 * SkGeIoctl - IO-control function
2850 *
2851 * Description:
2852 * This function is called if an ioctl is issued on the device.
2853 * There are three subfunction for reading, writing and test-writing
2854 * the private MIB data structure (usefull for SysKonnect-internal tools).
2855 *
2856 * Returns:
2857 * 0, if everything is ok
2858 * !=0, on error
2859 */
2860static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2861{
2862DEV_NET *pNet;
2863SK_AC *pAC;
2864void *pMemBuf;
2865struct pci_dev *pdev = NULL;
2866SK_GE_IOCTL Ioctl;
2867unsigned int Err = 0;
2868int Size = 0;
2869int Ret = 0;
2870unsigned int Length = 0;
2871int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2872
2873 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2874 ("SkGeIoctl starts now...\n"));
2875
2876 pNet = netdev_priv(dev);
2877 pAC = pNet->pAC;
2878
2879 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2880 return -EFAULT;
2881 }
2882
2883 switch(cmd) {
2884 case SK_IOCTL_SETMIB:
2885 case SK_IOCTL_PRESETMIB:
2886 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2887 case SK_IOCTL_GETMIB:
2888 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2889 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2890 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2891 return -EFAULT;
2892 }
2893 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2894 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2895 Ioctl.Len<Size? Ioctl.Len : Size)) {
2896 return -EFAULT;
2897 }
2898 Ioctl.Len = Size;
2899 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2900 return -EFAULT;
2901 }
2902 break;
2903 case SK_IOCTL_GEN:
2904 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2905 Length = Ioctl.Len;
2906 } else {
2907 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2908 }
2909 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2910 return -ENOMEM;
2911 }
2912 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2913 Err = -EFAULT;
2914 goto fault_gen;
2915 }
2916 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
2917 Err = -EFAULT;
2918 goto fault_gen;
2919 }
2920 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2921 Err = -EFAULT;
2922 goto fault_gen;
2923 }
2924 Ioctl.Len = Length;
2925 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2926 Err = -EFAULT;
2927 goto fault_gen;
2928 }
2929fault_gen:
2930 kfree(pMemBuf); /* cleanup everything */
2931 break;
2932#ifdef SK_DIAG_SUPPORT
2933 case SK_IOCTL_DIAG:
2934 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2935 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2936 Length = Ioctl.Len;
2937 } else {
2938 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2939 }
2940 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2941 return -ENOMEM;
2942 }
2943 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2944 Err = -EFAULT;
2945 goto fault_diag;
2946 }
2947 pdev = pAC->PciDev;
2948 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
2949 /*
2950 ** While coding this new IOCTL interface, only a few lines of code
2951 ** are to to be added. Therefore no dedicated function has been
2952 ** added. If more functionality is added, a separate function
2953 ** should be used...
2954 */
2955 * ((SK_U32 *)pMemBuf) = 0;
2956 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
2957 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
2958 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2959 Err = -EFAULT;
2960 goto fault_diag;
2961 }
2962 Ioctl.Len = Length;
2963 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2964 Err = -EFAULT;
2965 goto fault_diag;
2966 }
2967fault_diag:
2968 kfree(pMemBuf); /* cleanup everything */
2969 break;
2970#endif
2971 default:
2972 Err = -EOPNOTSUPP;
2973 }
2974
2975 return(Err);
2976
2977} /* SkGeIoctl */
2978
2979
2980/*****************************************************************************
2981 *
2982 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
2983 *
2984 * Description:
2985 * This function reads/writes the MIB data using PNMI (Private Network
2986 * Management Interface).
2987 * The destination for the data must be provided with the
2988 * ioctl call and is given to the driver in the form of
2989 * a user space address.
2990 * Copying from the user-provided data area into kernel messages
2991 * and back is done by copy_from_user and copy_to_user calls in
2992 * SkGeIoctl.
2993 *
2994 * Returns:
2995 * returned size from PNMI call
2996 */
2997static int SkGeIocMib(
2998DEV_NET *pNet, /* pointer to the adapter context */
2999unsigned int Size, /* length of ioctl data */
3000int mode) /* flag for set/preset */
3001{
3002unsigned long Flags; /* for spin lock */
3003SK_AC *pAC;
3004
3005 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3006 ("SkGeIocMib starts now...\n"));
3007 pAC = pNet->pAC;
3008 /* access MIB */
3009 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3010 switch(mode) {
3011 case SK_IOCTL_GETMIB:
3012 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3013 pNet->NetNr);
3014 break;
3015 case SK_IOCTL_PRESETMIB:
3016 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3017 pNet->NetNr);
3018 break;
3019 case SK_IOCTL_SETMIB:
3020 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3021 pNet->NetNr);
3022 break;
3023 default:
3024 break;
3025 }
3026 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3027 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3028 ("MIB data access succeeded\n"));
3029 return (Size);
3030} /* SkGeIocMib */
3031
3032
3033/*****************************************************************************
3034 *
3035 * GetConfiguration - read configuration information
3036 *
3037 * Description:
3038 * This function reads per-adapter configuration information from
3039 * the options provided on the command line.
3040 *
3041 * Returns:
3042 * none
3043 */
3044static void GetConfiguration(
3045SK_AC *pAC) /* pointer to the adapter context structure */
3046{
3047SK_I32 Port; /* preferred port */
3048SK_BOOL AutoSet;
3049SK_BOOL DupSet;
3050int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3051int AutoNeg = 1; /* autoneg off (0) or on (1) */
3052int DuplexCap = 0; /* 0=both,1=full,2=half */
3053int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3054int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3055
3056SK_BOOL IsConTypeDefined = SK_TRUE;
3057SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3058SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3059SK_BOOL IsRoleDefined = SK_TRUE;
3060SK_BOOL IsModeDefined = SK_TRUE;
3061/*
3062 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3063 * parameter. The mapping is described by this table:
3064 * DuplexCap -> | both | full | half |
3065 * AutoNeg | | | |
3066 * -----------------------------------------------------------------
3067 * Off | illegal | Full | Half |
3068 * -----------------------------------------------------------------
3069 * On | AutoBoth | AutoFull | AutoHalf |
3070 * -----------------------------------------------------------------
3071 * Sense | AutoSense | AutoSense | AutoSense |
3072 */
3073int Capabilities[3][3] =
3074 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3075 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3076 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3077
3078#define DC_BOTH 0
3079#define DC_FULL 1
3080#define DC_HALF 2
3081#define AN_OFF 0
3082#define AN_ON 1
3083#define AN_SENS 2
3084#define M_CurrPort pAC->GIni.GP[Port]
3085
3086
3087 /*
3088 ** Set the default values first for both ports!
3089 */
3090 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3091 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3092 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3093 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3094 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3095 }
3096
3097 /*
3098 ** Check merged parameter ConType. If it has not been used,
3099 ** verify any other parameter (e.g. AutoNeg) and use default values.
3100 **
3101 ** Stating both ConType and other lowlevel link parameters is also
3102 ** possible. If this is the case, the passed ConType-parameter is
3103 ** overwritten by the lowlevel link parameter.
3104 **
3105 ** The following settings are used for a merged ConType-parameter:
3106 **
3107 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3108 ** ------- ------ ------- -------- ---------- -----
3109 ** Auto Both On SymOrRem Auto Auto
3110 ** 100FD Full Off None <ignored> 100
3111 ** 100HD Half Off None <ignored> 100
3112 ** 10FD Full Off None <ignored> 10
3113 ** 10HD Half Off None <ignored> 10
3114 **
3115 ** This ConType parameter is used for all ports of the adapter!
3116 */
3117 if ( (ConType != NULL) &&
3118 (pAC->Index < SK_MAX_CARD_PARAM) &&
3119 (ConType[pAC->Index] != NULL) ) {
3120
3121 /* Check chipset family */
3122 if ((!pAC->ChipsetType) &&
3123 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3124 (strcmp(ConType[pAC->Index],"")!=0)) {
3125 /* Set the speed parameter back */
3126 printk("sk98lin: Illegal value \"%s\" "
3127 "for ConType."
3128 " Using Auto.\n",
3129 ConType[pAC->Index]);
3130
3131 sprintf(ConType[pAC->Index], "Auto");
3132 }
3133
3134 if (strcmp(ConType[pAC->Index],"")==0) {
3135 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3136 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3137 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3138 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3139 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3140 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3141 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3142 }
3143 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3144 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3145 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3146 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3147 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3148 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3149 }
3150 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3151 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3152 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3153 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3154 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3155 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3156 }
3157 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3158 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3159 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3160 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3161 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3162 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3163 }
3164 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3165 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3166 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3167 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3168 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3169 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3170 }
3171 } else {
3172 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3173 ConType[pAC->Index]);
3174 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3175 }
3176 } else {
3177 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3178 }
3179
3180 /*
3181 ** Parse any parameter settings for port A:
3182 ** a) any LinkSpeed stated?
3183 */
3184 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3185 Speed_A[pAC->Index] != NULL) {
3186 if (strcmp(Speed_A[pAC->Index],"")==0) {
3187 IsLinkSpeedDefined = SK_FALSE;
3188 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3189 LinkSpeed = SK_LSPEED_AUTO;
3190 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3191 LinkSpeed = SK_LSPEED_10MBPS;
3192 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3193 LinkSpeed = SK_LSPEED_100MBPS;
3194 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3195 LinkSpeed = SK_LSPEED_1000MBPS;
3196 } else {
3197 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3198 Speed_A[pAC->Index]);
3199 IsLinkSpeedDefined = SK_FALSE;
3200 }
3201 } else {
3202 IsLinkSpeedDefined = SK_FALSE;
3203 }
3204
3205 /*
3206 ** Check speed parameter:
3207 ** Only copper type adapter and GE V2 cards
3208 */
3209 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3210 ((LinkSpeed != SK_LSPEED_AUTO) &&
3211 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3212 printk("sk98lin: Illegal value for Speed_A. "
3213 "Not a copper card or GE V2 card\n Using "
3214 "speed 1000\n");
3215 LinkSpeed = SK_LSPEED_1000MBPS;
3216 }
3217
3218 /*
3219 ** Decide whether to set new config value if somethig valid has
3220 ** been received.
3221 */
3222 if (IsLinkSpeedDefined) {
3223 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3224 }
3225
3226 /*
3227 ** b) Any Autonegotiation and DuplexCapabilities set?
3228 ** Please note that both belong together...
3229 */
3230 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3231 AutoSet = SK_FALSE;
3232 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3233 AutoNeg_A[pAC->Index] != NULL) {
3234 AutoSet = SK_TRUE;
3235 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3236 AutoSet = SK_FALSE;
3237 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3238 AutoNeg = AN_ON;
3239 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3240 AutoNeg = AN_OFF;
3241 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3242 AutoNeg = AN_SENS;
3243 } else {
3244 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3245 AutoNeg_A[pAC->Index]);
3246 }
3247 }
3248
3249 DuplexCap = DC_BOTH;
3250 DupSet = SK_FALSE;
3251 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3252 DupCap_A[pAC->Index] != NULL) {
3253 DupSet = SK_TRUE;
3254 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3255 DupSet = SK_FALSE;
3256 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3257 DuplexCap = DC_BOTH;
3258 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3259 DuplexCap = DC_FULL;
3260 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3261 DuplexCap = DC_HALF;
3262 } else {
3263 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3264 DupCap_A[pAC->Index]);
3265 }
3266 }
3267
3268 /*
3269 ** Check for illegal combinations
3270 */
3271 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3272 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3273 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3274 (pAC->ChipsetType)) {
3275 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3276 " Using Full Duplex.\n");
3277 DuplexCap = DC_FULL;
3278 }
3279
3280 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3281 printk("sk98lin, Port A: DuplexCapabilities"
3282 " ignored using Sense mode\n");
3283 }
3284
3285 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3286 printk("sk98lin: Port A: Illegal combination"
3287 " of values AutoNeg. and DuplexCap.\n Using "
3288 "Full Duplex\n");
3289 DuplexCap = DC_FULL;
3290 }
3291
3292 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3293 DuplexCap = DC_FULL;
3294 }
3295
3296 if (!AutoSet && DupSet) {
3297 printk("sk98lin: Port A: Duplex setting not"
3298 " possible in\n default AutoNegotiation mode"
3299 " (Sense).\n Using AutoNegotiation On\n");
3300 AutoNeg = AN_ON;
3301 }
3302
3303 /*
3304 ** set the desired mode
3305 */
3306 if (AutoSet || DupSet) {
3307 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3308 }
3309
3310 /*
3311 ** c) Any Flowcontrol-parameter set?
3312 */
3313 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3314 FlowCtrl_A[pAC->Index] != NULL) {
3315 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3316 IsFlowCtrlDefined = SK_FALSE;
3317 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3318 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3319 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3320 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3321 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3322 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3323 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3324 FlowCtrl = SK_FLOW_MODE_NONE;
3325 } else {
3326 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3327 FlowCtrl_A[pAC->Index]);
3328 IsFlowCtrlDefined = SK_FALSE;
3329 }
3330 } else {
3331 IsFlowCtrlDefined = SK_FALSE;
3332 }
3333
3334 if (IsFlowCtrlDefined) {
3335 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3336 printk("sk98lin: Port A: FlowControl"
3337 " impossible without AutoNegotiation,"
3338 " disabled\n");
3339 FlowCtrl = SK_FLOW_MODE_NONE;
3340 }
3341 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3342 }
3343
3344 /*
3345 ** d) What is with the RoleParameter?
3346 */
3347 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3348 Role_A[pAC->Index] != NULL) {
3349 if (strcmp(Role_A[pAC->Index],"")==0) {
3350 IsRoleDefined = SK_FALSE;
3351 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3352 MSMode = SK_MS_MODE_AUTO;
3353 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3354 MSMode = SK_MS_MODE_MASTER;
3355 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3356 MSMode = SK_MS_MODE_SLAVE;
3357 } else {
3358 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3359 Role_A[pAC->Index]);
3360 IsRoleDefined = SK_FALSE;
3361 }
3362 } else {
3363 IsRoleDefined = SK_FALSE;
3364 }
3365
3366 if (IsRoleDefined == SK_TRUE) {
3367 pAC->GIni.GP[0].PMSMode = MSMode;
3368 }
3369
3370
3371
3372 /*
3373 ** Parse any parameter settings for port B:
3374 ** a) any LinkSpeed stated?
3375 */
3376 IsConTypeDefined = SK_TRUE;
3377 IsLinkSpeedDefined = SK_TRUE;
3378 IsFlowCtrlDefined = SK_TRUE;
3379 IsModeDefined = SK_TRUE;
3380
3381 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3382 Speed_B[pAC->Index] != NULL) {
3383 if (strcmp(Speed_B[pAC->Index],"")==0) {
3384 IsLinkSpeedDefined = SK_FALSE;
3385 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3386 LinkSpeed = SK_LSPEED_AUTO;
3387 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3388 LinkSpeed = SK_LSPEED_10MBPS;
3389 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3390 LinkSpeed = SK_LSPEED_100MBPS;
3391 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3392 LinkSpeed = SK_LSPEED_1000MBPS;
3393 } else {
3394 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3395 Speed_B[pAC->Index]);
3396 IsLinkSpeedDefined = SK_FALSE;
3397 }
3398 } else {
3399 IsLinkSpeedDefined = SK_FALSE;
3400 }
3401
3402 /*
3403 ** Check speed parameter:
3404 ** Only copper type adapter and GE V2 cards
3405 */
3406 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3407 ((LinkSpeed != SK_LSPEED_AUTO) &&
3408 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3409 printk("sk98lin: Illegal value for Speed_B. "
3410 "Not a copper card or GE V2 card\n Using "
3411 "speed 1000\n");
3412 LinkSpeed = SK_LSPEED_1000MBPS;
3413 }
3414
3415 /*
3416 ** Decide whether to set new config value if somethig valid has
3417 ** been received.
3418 */
3419 if (IsLinkSpeedDefined) {
3420 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3421 }
3422
3423 /*
3424 ** b) Any Autonegotiation and DuplexCapabilities set?
3425 ** Please note that both belong together...
3426 */
3427 AutoNeg = AN_SENS; /* default: do auto Sense */
3428 AutoSet = SK_FALSE;
3429 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3430 AutoNeg_B[pAC->Index] != NULL) {
3431 AutoSet = SK_TRUE;
3432 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3433 AutoSet = SK_FALSE;
3434 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3435 AutoNeg = AN_ON;
3436 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3437 AutoNeg = AN_OFF;
3438 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3439 AutoNeg = AN_SENS;
3440 } else {
3441 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3442 AutoNeg_B[pAC->Index]);
3443 }
3444 }
3445
3446 DuplexCap = DC_BOTH;
3447 DupSet = SK_FALSE;
3448 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3449 DupCap_B[pAC->Index] != NULL) {
3450 DupSet = SK_TRUE;
3451 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3452 DupSet = SK_FALSE;
3453 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3454 DuplexCap = DC_BOTH;
3455 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3456 DuplexCap = DC_FULL;
3457 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3458 DuplexCap = DC_HALF;
3459 } else {
3460 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3461 DupCap_B[pAC->Index]);
3462 }
3463 }
3464
3465
3466 /*
3467 ** Check for illegal combinations
3468 */
3469 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3470 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3471 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3472 (pAC->ChipsetType)) {
3473 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3474 " Using Full Duplex.\n");
3475 DuplexCap = DC_FULL;
3476 }
3477
3478 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3479 printk("sk98lin, Port B: DuplexCapabilities"
3480 " ignored using Sense mode\n");
3481 }
3482
3483 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3484 printk("sk98lin: Port B: Illegal combination"
3485 " of values AutoNeg. and DuplexCap.\n Using "
3486 "Full Duplex\n");
3487 DuplexCap = DC_FULL;
3488 }
3489
3490 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3491 DuplexCap = DC_FULL;
3492 }
3493
3494 if (!AutoSet && DupSet) {
3495 printk("sk98lin: Port B: Duplex setting not"
3496 " possible in\n default AutoNegotiation mode"
3497 " (Sense).\n Using AutoNegotiation On\n");
3498 AutoNeg = AN_ON;
3499 }
3500
3501 /*
3502 ** set the desired mode
3503 */
3504 if (AutoSet || DupSet) {
3505 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3506 }
3507
3508 /*
3509 ** c) Any FlowCtrl parameter set?
3510 */
3511 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3512 FlowCtrl_B[pAC->Index] != NULL) {
3513 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3514 IsFlowCtrlDefined = SK_FALSE;
3515 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3516 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3517 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3518 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3519 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3520 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3521 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3522 FlowCtrl = SK_FLOW_MODE_NONE;
3523 } else {
3524 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3525 FlowCtrl_B[pAC->Index]);
3526 IsFlowCtrlDefined = SK_FALSE;
3527 }
3528 } else {
3529 IsFlowCtrlDefined = SK_FALSE;
3530 }
3531
3532 if (IsFlowCtrlDefined) {
3533 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3534 printk("sk98lin: Port B: FlowControl"
3535 " impossible without AutoNegotiation,"
3536 " disabled\n");
3537 FlowCtrl = SK_FLOW_MODE_NONE;
3538 }
3539 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3540 }
3541
3542 /*
3543 ** d) What is the RoleParameter?
3544 */
3545 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3546 Role_B[pAC->Index] != NULL) {
3547 if (strcmp(Role_B[pAC->Index],"")==0) {
3548 IsRoleDefined = SK_FALSE;
3549 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3550 MSMode = SK_MS_MODE_AUTO;
3551 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3552 MSMode = SK_MS_MODE_MASTER;
3553 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3554 MSMode = SK_MS_MODE_SLAVE;
3555 } else {
3556 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3557 Role_B[pAC->Index]);
3558 IsRoleDefined = SK_FALSE;
3559 }
3560 } else {
3561 IsRoleDefined = SK_FALSE;
3562 }
3563
3564 if (IsRoleDefined) {
3565 pAC->GIni.GP[1].PMSMode = MSMode;
3566 }
3567
3568 /*
3569 ** Evaluate settings for both ports
3570 */
3571 pAC->ActivePort = 0;
3572 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3573 PrefPort[pAC->Index] != NULL) {
3574 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3575 pAC->ActivePort = 0;
3576 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3577 pAC->Rlmt.Net[0].PrefPort = 0;
3578 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3579 /*
3580 ** do not set ActivePort here, thus a port
3581 ** switch is issued after net up.
3582 */
3583 Port = 0;
3584 pAC->Rlmt.Net[0].Preference = Port;
3585 pAC->Rlmt.Net[0].PrefPort = Port;
3586 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3587 /*
3588 ** do not set ActivePort here, thus a port
3589 ** switch is issued after net up.
3590 */
3591 if (pAC->GIni.GIMacsFound == 1) {
3592 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3593 " Port B not available on single port adapters.\n");
3594
3595 pAC->ActivePort = 0;
3596 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3597 pAC->Rlmt.Net[0].PrefPort = 0;
3598 } else {
3599 Port = 1;
3600 pAC->Rlmt.Net[0].Preference = Port;
3601 pAC->Rlmt.Net[0].PrefPort = Port;
3602 }
3603 } else {
3604 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3605 PrefPort[pAC->Index]);
3606 }
3607 }
3608
3609 pAC->RlmtNets = 1;
3610
3611 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3612 RlmtMode[pAC->Index] != NULL) {
3613 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3614 pAC->RlmtMode = 0;
3615 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3616 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3617 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3618 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3619 SK_RLMT_CHECK_LOC_LINK;
3620 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3621 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3622 SK_RLMT_CHECK_LOC_LINK |
3623 SK_RLMT_CHECK_SEG;
3624 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3625 (pAC->GIni.GIMacsFound == 2)) {
3626 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3627 pAC->RlmtNets = 2;
3628 } else {
3629 printk("sk98lin: Illegal value \"%s\" for"
3630 " RlmtMode, using default\n",
3631 RlmtMode[pAC->Index]);
3632 pAC->RlmtMode = 0;
3633 }
3634 } else {
3635 pAC->RlmtMode = 0;
3636 }
3637
3638 /*
3639 ** Check the interrupt moderation parameters
3640 */
3641 if (Moderation[pAC->Index] != NULL) {
3642 if (strcmp(Moderation[pAC->Index], "") == 0) {
3643 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3644 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3645 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3646 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3647 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3648 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3649 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3650 } else {
3651 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3652 " Disable interrupt moderation.\n",
3653 Moderation[pAC->Index]);
3654 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3655 }
3656 } else {
3657 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3658 }
3659
3660 if (Stats[pAC->Index] != NULL) {
3661 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3662 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3663 } else {
3664 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3665 }
3666 } else {
3667 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3668 }
3669
3670 if (ModerationMask[pAC->Index] != NULL) {
3671 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3672 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3673 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3674 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3675 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3676 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3677 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3678 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3679 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3680 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3681 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3682 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3683 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3684 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3685 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3686 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3687 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3688 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3689 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3690 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3691 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3692 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3693 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3694 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3695 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3696 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3697 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3698 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3699 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3700 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3701 } else { /* some rubbish */
3702 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3703 }
3704 } else { /* operator has stated nothing */
3705 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3706 }
3707
3708 if (AutoSizing[pAC->Index] != NULL) {
3709 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3710 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3711 } else {
3712 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3713 }
3714 } else { /* operator has stated nothing */
3715 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3716 }
3717
3718 if (IntsPerSec[pAC->Index] != 0) {
3719 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3720 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3721 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3722 " Using default value of %i.\n",
3723 IntsPerSec[pAC->Index],
3724 C_INT_MOD_IPS_LOWER_RANGE,
3725 C_INT_MOD_IPS_UPPER_RANGE,
3726 C_INTS_PER_SEC_DEFAULT);
3727 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3728 } else {
3729 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3730 }
3731 } else {
3732 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3733 }
3734
3735 /*
3736 ** Evaluate upper and lower moderation threshold
3737 */
3738 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3739 pAC->DynIrqModInfo.MaxModIntsPerSec +
3740 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3741
3742 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3743 pAC->DynIrqModInfo.MaxModIntsPerSec -
3744 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3745
3746 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3747
3748
3749} /* GetConfiguration */
3750
3751
3752/*****************************************************************************
3753 *
3754 * ProductStr - return a adapter identification string from vpd
3755 *
3756 * Description:
3757 * This function reads the product name string from the vpd area
3758 * and puts it the field pAC->DeviceString.
3759 *
3760 * Returns: N/A
3761 */
8f7a17d1
SH
3762static inline int ProductStr(
3763 SK_AC *pAC, /* pointer to adapter context */
3764 char *DeviceStr, /* result string */
3765 int StrLen /* length of the string */
1da177e4
LT
3766)
3767{
1da177e4
LT
3768char Keyword[] = VPD_NAME; /* vpd productname identifier */
3769int ReturnCode; /* return code from vpd_read */
3770unsigned long Flags;
3771
3772 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
8f7a17d1 3773 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, DeviceStr, &StrLen);
1da177e4 3774 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
8f7a17d1
SH
3775
3776 return ReturnCode;
1da177e4
LT
3777} /* ProductStr */
3778
3779/*****************************************************************************
3780 *
3781 * StartDrvCleanupTimer - Start timer to check for descriptors which
3782 * might be placed in descriptor ring, but
3783 * havent been handled up to now
3784 *
3785 * Description:
3786 * This function requests a HW-timer fo the Yukon card. The actions to
3787 * perform when this timer expires, are located in the SkDrvEvent().
3788 *
3789 * Returns: N/A
3790 */
3791static void
3792StartDrvCleanupTimer(SK_AC *pAC) {
3793 SK_EVPARA EventParam; /* Event struct for timer event */
3794
3795 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3796 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3797 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3798 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3799 SKGE_DRV, SK_DRV_TIMER, EventParam);
3800}
3801
3802/*****************************************************************************
3803 *
3804 * StopDrvCleanupTimer - Stop timer to check for descriptors
3805 *
3806 * Description:
3807 * This function requests a HW-timer fo the Yukon card. The actions to
3808 * perform when this timer expires, are located in the SkDrvEvent().
3809 *
3810 * Returns: N/A
3811 */
3812static void
3813StopDrvCleanupTimer(SK_AC *pAC) {
3814 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3815 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3816}
3817
3818/****************************************************************************/
3819/* functions for common modules *********************************************/
3820/****************************************************************************/
3821
3822
3823/*****************************************************************************
3824 *
3825 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3826 *
3827 * Description:
3828 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3829 * is embedded into a socket buff data area.
3830 *
3831 * Context:
3832 * runtime
3833 *
3834 * Returns:
3835 * NULL or pointer to Mbuf.
3836 */
3837SK_MBUF *SkDrvAllocRlmtMbuf(
3838SK_AC *pAC, /* pointer to adapter context */
3839SK_IOC IoC, /* the IO-context */
3840unsigned BufferSize) /* size of the requested buffer */
3841{
3842SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3843struct sk_buff *pMsgBlock; /* pointer to a new message block */
3844
3845 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3846 if (pMsgBlock == NULL) {
3847 return (NULL);
3848 }
3849 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3850 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3851 pRlmtMbuf->pNext = NULL;
3852 pRlmtMbuf->pOs = pMsgBlock;
3853 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3854 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3855 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3856 return (pRlmtMbuf);
3857
3858} /* SkDrvAllocRlmtMbuf */
3859
3860
3861/*****************************************************************************
3862 *
3863 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3864 *
3865 * Description:
3866 * This routine frees one or more RLMT mbuf(s).
3867 *
3868 * Context:
3869 * runtime
3870 *
3871 * Returns:
3872 * Nothing
3873 */
3874void SkDrvFreeRlmtMbuf(
3875SK_AC *pAC, /* pointer to adapter context */
3876SK_IOC IoC, /* the IO-context */
3877SK_MBUF *pMbuf) /* size of the requested buffer */
3878{
3879SK_MBUF *pFreeMbuf;
3880SK_MBUF *pNextMbuf;
3881
3882 pFreeMbuf = pMbuf;
3883 do {
3884 pNextMbuf = pFreeMbuf->pNext;
3885 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3886 pFreeMbuf = pNextMbuf;
3887 } while ( pFreeMbuf != NULL );
3888} /* SkDrvFreeRlmtMbuf */
3889
3890
3891/*****************************************************************************
3892 *
3893 * SkOsGetTime - provide a time value
3894 *
3895 * Description:
3896 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
3897 * It is not used for absolute time, but only for time differences.
3898 *
3899 *
3900 * Returns:
3901 * Time value
3902 */
3903SK_U64 SkOsGetTime(SK_AC *pAC)
3904{
3905 SK_U64 PrivateJiffies;
3906 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
3907 return PrivateJiffies;
3908} /* SkOsGetTime */
3909
3910
3911/*****************************************************************************
3912 *
3913 * SkPciReadCfgDWord - read a 32 bit value from pci config space
3914 *
3915 * Description:
3916 * This routine reads a 32 bit value from the pci configuration
3917 * space.
3918 *
3919 * Returns:
3920 * 0 - indicate everything worked ok.
3921 * != 0 - error indication
3922 */
3923int SkPciReadCfgDWord(
3924SK_AC *pAC, /* Adapter Control structure pointer */
3925int PciAddr, /* PCI register address */
3926SK_U32 *pVal) /* pointer to store the read value */
3927{
3928 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
3929 return(0);
3930} /* SkPciReadCfgDWord */
3931
3932
3933/*****************************************************************************
3934 *
3935 * SkPciReadCfgWord - read a 16 bit value from pci config space
3936 *
3937 * Description:
3938 * This routine reads a 16 bit value from the pci configuration
3939 * space.
3940 *
3941 * Returns:
3942 * 0 - indicate everything worked ok.
3943 * != 0 - error indication
3944 */
3945int SkPciReadCfgWord(
3946SK_AC *pAC, /* Adapter Control structure pointer */
3947int PciAddr, /* PCI register address */
3948SK_U16 *pVal) /* pointer to store the read value */
3949{
3950 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
3951 return(0);
3952} /* SkPciReadCfgWord */
3953
3954
3955/*****************************************************************************
3956 *
3957 * SkPciReadCfgByte - read a 8 bit value from pci config space
3958 *
3959 * Description:
3960 * This routine reads a 8 bit value from the pci configuration
3961 * space.
3962 *
3963 * Returns:
3964 * 0 - indicate everything worked ok.
3965 * != 0 - error indication
3966 */
3967int SkPciReadCfgByte(
3968SK_AC *pAC, /* Adapter Control structure pointer */
3969int PciAddr, /* PCI register address */
3970SK_U8 *pVal) /* pointer to store the read value */
3971{
3972 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
3973 return(0);
3974} /* SkPciReadCfgByte */
3975
3976
1da177e4
LT
3977/*****************************************************************************
3978 *
3979 * SkPciWriteCfgWord - write a 16 bit value to pci config space
3980 *
3981 * Description:
3982 * This routine writes a 16 bit value to the pci configuration
3983 * space. The flag PciConfigUp indicates whether the config space
3984 * is accesible or must be set up first.
3985 *
3986 * Returns:
3987 * 0 - indicate everything worked ok.
3988 * != 0 - error indication
3989 */
3990int SkPciWriteCfgWord(
3991SK_AC *pAC, /* Adapter Control structure pointer */
3992int PciAddr, /* PCI register address */
3993SK_U16 Val) /* pointer to store the read value */
3994{
3995 pci_write_config_word(pAC->PciDev, PciAddr, Val);
3996 return(0);
3997} /* SkPciWriteCfgWord */
3998
3999
4000/*****************************************************************************
4001 *
4002 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4003 *
4004 * Description:
4005 * This routine writes a 8 bit value to the pci configuration
4006 * space. The flag PciConfigUp indicates whether the config space
4007 * is accesible or must be set up first.
4008 *
4009 * Returns:
4010 * 0 - indicate everything worked ok.
4011 * != 0 - error indication
4012 */
4013int SkPciWriteCfgByte(
4014SK_AC *pAC, /* Adapter Control structure pointer */
4015int PciAddr, /* PCI register address */
4016SK_U8 Val) /* pointer to store the read value */
4017{
4018 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4019 return(0);
4020} /* SkPciWriteCfgByte */
4021
4022
4023/*****************************************************************************
4024 *
4025 * SkDrvEvent - handle driver events
4026 *
4027 * Description:
4028 * This function handles events from all modules directed to the driver
4029 *
4030 * Context:
4031 * Is called under protection of slow path lock.
4032 *
4033 * Returns:
4034 * 0 if everything ok
4035 * < 0 on error
4036 *
4037 */
4038int SkDrvEvent(
4039SK_AC *pAC, /* pointer to adapter context */
4040SK_IOC IoC, /* io-context */
4041SK_U32 Event, /* event-id */
4042SK_EVPARA Param) /* event-parameter */
4043{
4044SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4045struct sk_buff *pMsg; /* pointer to a message block */
4046int FromPort; /* the port from which we switch away */
4047int ToPort; /* the port we switch to */
4048SK_EVPARA NewPara; /* parameter for further events */
4049int Stat;
4050unsigned long Flags;
4051SK_BOOL DualNet;
4052
4053 switch (Event) {
4054 case SK_DRV_ADAP_FAIL:
4055 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4056 ("ADAPTER FAIL EVENT\n"));
4057 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4058 /* disable interrupts */
4059 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4060 /* cgoos */
4061 break;
4062 case SK_DRV_PORT_FAIL:
4063 FromPort = Param.Para32[0];
4064 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4065 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4066 if (FromPort == 0) {
4067 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4068 } else {
4069 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4070 }
4071 /* cgoos */
4072 break;
4073 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4074 /* action list 4 */
4075 FromPort = Param.Para32[0];
4076 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4077 ("PORT RESET EVENT, Port: %d ", FromPort));
4078 NewPara.Para64 = FromPort;
4079 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4080 spin_lock_irqsave(
4081 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4082 Flags);
4083
4084 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
7d17c1d6 4085 netif_carrier_off(pAC->dev[Param.Para32[0]]);
1da177e4
LT
4086 spin_unlock_irqrestore(
4087 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4088 Flags);
4089
4090 /* clear rx ring from received frames */
4091 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4092
4093 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4094 spin_lock_irqsave(
4095 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4096 Flags);
4097
4098 /* tschilling: Handling of return value inserted. */
4099 if (SkGeInitPort(pAC, IoC, FromPort)) {
4100 if (FromPort == 0) {
4101 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4102 } else {
4103 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4104 }
4105 }
4106 SkAddrMcUpdate(pAC,IoC, FromPort);
4107 PortReInitBmu(pAC, FromPort);
4108 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4109 ClearAndStartRx(pAC, FromPort);
4110 spin_unlock_irqrestore(
4111 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4112 Flags);
4113 break;
4114 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
09f5a214 4115 { struct net_device *dev = pAC->dev[Param.Para32[0]];
1da177e4
LT
4116 /* action list 5 */
4117 FromPort = Param.Para32[0];
4118 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4119 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4120 /* Mac update */
4121 SkAddrMcUpdate(pAC,IoC, FromPort);
4122
4123 if (DoPrintInterfaceChange) {
4124 printk("%s: network connection up using"
4125 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4126
4127 /* tschilling: Values changed according to LinkSpeedUsed. */
4128 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4129 if (Stat == SK_LSPEED_STAT_10MBPS) {
4130 printk(" speed: 10\n");
4131 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4132 printk(" speed: 100\n");
4133 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4134 printk(" speed: 1000\n");
4135 } else {
4136 printk(" speed: unknown\n");
4137 }
4138
4139
4140 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4141 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4142 Stat == SK_LMODE_STAT_AUTOFULL) {
4143 printk(" autonegotiation: yes\n");
4144 }
4145 else {
4146 printk(" autonegotiation: no\n");
4147 }
4148 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4149 Stat == SK_LMODE_STAT_HALF) {
4150 printk(" duplex mode: half\n");
4151 }
4152 else {
4153 printk(" duplex mode: full\n");
4154 }
4155 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4156 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4157 printk(" flowctrl: remote send\n");
4158 }
4159 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4160 printk(" flowctrl: local send\n");
4161 }
4162 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4163 printk(" flowctrl: symmetric\n");
4164 }
4165 else {
4166 printk(" flowctrl: none\n");
4167 }
4168
4169 /* tschilling: Check against CopperType now. */
4170 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4171 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4172 SK_LSPEED_STAT_1000MBPS)) {
4173 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4174 if (Stat == SK_MS_STAT_MASTER ) {
4175 printk(" role: master\n");
4176 }
4177 else if (Stat == SK_MS_STAT_SLAVE ) {
4178 printk(" role: slave\n");
4179 }
4180 else {
4181 printk(" role: ???\n");
4182 }
4183 }
4184
4185 /*
4186 Display dim (dynamic interrupt moderation)
4187 informations
4188 */
4189 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4190 printk(" irq moderation: static (%d ints/sec)\n",
4191 pAC->DynIrqModInfo.MaxModIntsPerSec);
4192 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4193 printk(" irq moderation: dynamic (%d ints/sec)\n",
4194 pAC->DynIrqModInfo.MaxModIntsPerSec);
4195 else
4196 printk(" irq moderation: disabled\n");
4197
4198
09f5a214
SH
4199 printk(" scatter-gather: %s\n",
4200 (dev->features & NETIF_F_SG) ? "enabled" : "disabled");
4201 printk(" tx-checksum: %s\n",
4202 (dev->features & NETIF_F_IP_CSUM) ? "enabled" : "disabled");
4203 printk(" rx-checksum: %s\n",
4204 pAC->RxPort[Param.Para32[0]].RxCsum ? "enabled" : "disabled");
1da177e4
LT
4205
4206 } else {
4207 DoPrintInterfaceChange = SK_TRUE;
4208 }
4209
4210 if ((Param.Para32[0] != pAC->ActivePort) &&
4211 (pAC->RlmtNets == 1)) {
4212 NewPara.Para32[0] = pAC->ActivePort;
4213 NewPara.Para32[1] = Param.Para32[0];
4214 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4215 NewPara);
4216 }
4217
4218 /* Inform the world that link protocol is up. */
09f5a214 4219 netif_carrier_on(dev);
1da177e4 4220 break;
09f5a214 4221 }
1da177e4
LT
4222 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4223 /* action list 7 */
4224 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4225 ("NET DOWN EVENT "));
4226 if (DoPrintInterfaceChange) {
4227 printk("%s: network connection down\n",
4228 pAC->dev[Param.Para32[1]]->name);
4229 } else {
4230 DoPrintInterfaceChange = SK_TRUE;
4231 }
7d17c1d6 4232 netif_carrier_off(pAC->dev[Param.Para32[1]]);
1da177e4
LT
4233 break;
4234 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4235 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4236 ("PORT SWITCH HARD "));
4237 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4238 /* action list 6 */
4239 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4240 'A'+Param.Para32[1]);
4241 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4242 FromPort = Param.Para32[0];
4243 ToPort = Param.Para32[1];
4244 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4245 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4246 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4247 NewPara.Para64 = FromPort;
4248 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4249 NewPara.Para64 = ToPort;
4250 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4251 spin_lock_irqsave(
4252 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4253 Flags);
4254 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4255 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4256 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4257 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4258 spin_unlock_irqrestore(
4259 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4260 Flags);
4261
4262 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4263 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4264
4265 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4266 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4267 spin_lock_irqsave(
4268 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4269 Flags);
4270 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4271 pAC->ActivePort = ToPort;
4272#if 0
4273 SetQueueSizes(pAC);
4274#else
4275 /* tschilling: New common function with minimum size check. */
4276 DualNet = SK_FALSE;
4277 if (pAC->RlmtNets == 2) {
4278 DualNet = SK_TRUE;
4279 }
4280
4281 if (SkGeInitAssignRamToQueues(
4282 pAC,
4283 pAC->ActivePort,
4284 DualNet)) {
4285 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4286 spin_unlock_irqrestore(
4287 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4288 Flags);
4289 printk("SkGeInitAssignRamToQueues failed.\n");
4290 break;
4291 }
4292#endif
4293 /* tschilling: Handling of return values inserted. */
4294 if (SkGeInitPort(pAC, IoC, FromPort) ||
4295 SkGeInitPort(pAC, IoC, ToPort)) {
4296 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4297 }
4298 if (Event == SK_DRV_SWITCH_SOFT) {
4299 SkMacRxTxEnable(pAC, IoC, FromPort);
4300 }
4301 SkMacRxTxEnable(pAC, IoC, ToPort);
4302 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4303 SkAddrMcUpdate(pAC, IoC, FromPort);
4304 SkAddrMcUpdate(pAC, IoC, ToPort);
4305 PortReInitBmu(pAC, FromPort);
4306 PortReInitBmu(pAC, ToPort);
4307 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4308 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4309 ClearAndStartRx(pAC, FromPort);
4310 ClearAndStartRx(pAC, ToPort);
4311 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4312 spin_unlock_irqrestore(
4313 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4314 Flags);
4315 break;
4316 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4317 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4318 ("RLS "));
4319 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4320 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4321 skb_put(pMsg, pRlmtMbuf->Length);
4322 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4323 pMsg) < 0)
4324
4325 DEV_KFREE_SKB_ANY(pMsg);
4326 break;
4327 case SK_DRV_TIMER:
4328 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4329 /*
4330 ** expiration of the moderation timer implies that
4331 ** dynamic moderation is to be applied
4332 */
4333 SkDimStartModerationTimer(pAC);
4334 SkDimModerate(pAC);
4335 if (pAC->DynIrqModInfo.DisplayStats) {
4336 SkDimDisplayModerationSettings(pAC);
4337 }
4338 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4339 /*
4340 ** check if we need to check for descriptors which
4341 ** haven't been handled the last millisecs
4342 */
4343 StartDrvCleanupTimer(pAC);
4344 if (pAC->GIni.GIMacsFound == 2) {
4345 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4346 }
4347 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4348 } else {
4349 printk("Expiration of unknown timer\n");
4350 }
4351 break;
4352 default:
4353 break;
4354 }
4355 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4356 ("END EVENT "));
4357
4358 return (0);
4359} /* SkDrvEvent */
4360
4361
4362/*****************************************************************************
4363 *
4364 * SkErrorLog - log errors
4365 *
4366 * Description:
4367 * This function logs errors to the system buffer and to the console
4368 *
4369 * Returns:
4370 * 0 if everything ok
4371 * < 0 on error
4372 *
4373 */
4374void SkErrorLog(
4375SK_AC *pAC,
4376int ErrClass,
4377int ErrNum,
4378char *pErrorMsg)
4379{
4380char ClassStr[80];
4381
4382 switch (ErrClass) {
4383 case SK_ERRCL_OTHER:
4384 strcpy(ClassStr, "Other error");
4385 break;
4386 case SK_ERRCL_CONFIG:
4387 strcpy(ClassStr, "Configuration error");
4388 break;
4389 case SK_ERRCL_INIT:
4390 strcpy(ClassStr, "Initialization error");
4391 break;
4392 case SK_ERRCL_NORES:
4393 strcpy(ClassStr, "Out of resources error");
4394 break;
4395 case SK_ERRCL_SW:
4396 strcpy(ClassStr, "internal Software error");
4397 break;
4398 case SK_ERRCL_HW:
4399 strcpy(ClassStr, "Hardware failure");
4400 break;
4401 case SK_ERRCL_COMM:
4402 strcpy(ClassStr, "Communication error");
4403 break;
4404 }
4405 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4406 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4407 ClassStr, ErrNum, pErrorMsg);
4408
4409} /* SkErrorLog */
4410
4411#ifdef SK_DIAG_SUPPORT
4412
4413/*****************************************************************************
4414 *
4415 * SkDrvEnterDiagMode - handles DIAG attach request
4416 *
4417 * Description:
4418 * Notify the kernel to NOT access the card any longer due to DIAG
4419 * Deinitialize the Card
4420 *
4421 * Returns:
4422 * int
4423 */
4424int SkDrvEnterDiagMode(
4425SK_AC *pAc) /* pointer to adapter context */
4426{
4427 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4428 SK_AC *pAC = pNet->pAC;
4429
4430 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4431 sizeof(SK_PNMI_STRUCT_DATA));
4432
4433 pAC->DiagModeActive = DIAG_ACTIVE;
4434 if (pAC->BoardLevel > SK_INIT_DATA) {
8f7a17d1 4435 if (netif_running(pAC->dev[0])) {
1da177e4
LT
4436 pAC->WasIfUp[0] = SK_TRUE;
4437 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4438 DoPrintInterfaceChange = SK_FALSE;
4439 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4440 } else {
4441 pAC->WasIfUp[0] = SK_FALSE;
4442 }
4443 if (pNet != netdev_priv(pAC->dev[1])) {
4444 pNet = netdev_priv(pAC->dev[1]);
8f7a17d1 4445 if (netif_running(pAC->dev[1])) {
1da177e4
LT
4446 pAC->WasIfUp[1] = SK_TRUE;
4447 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4448 DoPrintInterfaceChange = SK_FALSE;
4449 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4450 } else {
4451 pAC->WasIfUp[1] = SK_FALSE;
4452 }
4453 }
4454 pAC->BoardLevel = SK_INIT_DATA;
4455 }
4456 return(0);
4457}
4458
4459/*****************************************************************************
4460 *
4461 * SkDrvLeaveDiagMode - handles DIAG detach request
4462 *
4463 * Description:
4464 * Notify the kernel to may access the card again after use by DIAG
4465 * Initialize the Card
4466 *
4467 * Returns:
4468 * int
4469 */
4470int SkDrvLeaveDiagMode(
4471SK_AC *pAc) /* pointer to adapter control context */
4472{
4473 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4474 sizeof(SK_PNMI_STRUCT_DATA));
4475 pAc->DiagModeActive = DIAG_NOTACTIVE;
4476 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4477 if (pAc->WasIfUp[0] == SK_TRUE) {
4478 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4479 DoPrintInterfaceChange = SK_FALSE;
4480 SkDrvInitAdapter(pAc, 0); /* first device */
4481 }
4482 if (pAc->WasIfUp[1] == SK_TRUE) {
4483 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4484 DoPrintInterfaceChange = SK_FALSE;
4485 SkDrvInitAdapter(pAc, 1); /* second device */
4486 }
4487 return(0);
4488}
4489
4490/*****************************************************************************
4491 *
4492 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4493 *
4494 * Description:
4495 * This function parses the PCI slot name information string and will
4496 * retrieve the devcie number out of it. The slot_name maintianed by
4497 * linux is in the form of '02:0a.0', whereas the first two characters
4498 * represent the bus number in hex (in the sample above this is
4499 * pci bus 0x02) and the next two characters the device number (0x0a).
4500 *
4501 * Returns:
4502 * SK_U32: The device number from the PCI slot name
4503 */
4504
4505static SK_U32 ParseDeviceNbrFromSlotName(
4506const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4507{
4508 char *CurrCharPos = (char *) SlotName;
4509 int FirstNibble = -1;
4510 int SecondNibble = -1;
4511 SK_U32 Result = 0;
4512
4513 while (*CurrCharPos != '\0') {
4514 if (*CurrCharPos == ':') {
4515 while (*CurrCharPos != '.') {
4516 CurrCharPos++;
4517 if ( (*CurrCharPos >= '0') &&
4518 (*CurrCharPos <= '9')) {
4519 if (FirstNibble == -1) {
4520 /* dec. value for '0' */
4521 FirstNibble = *CurrCharPos - 48;
4522 } else {
4523 SecondNibble = *CurrCharPos - 48;
4524 }
4525 } else if ( (*CurrCharPos >= 'a') &&
4526 (*CurrCharPos <= 'f') ) {
4527 if (FirstNibble == -1) {
4528 FirstNibble = *CurrCharPos - 87;
4529 } else {
4530 SecondNibble = *CurrCharPos - 87;
4531 }
4532 } else {
4533 Result = 0;
4534 }
4535 }
4536
4537 Result = FirstNibble;
4538 Result = Result << 4; /* first nibble is higher one */
4539 Result = Result | SecondNibble;
4540 }
4541 CurrCharPos++; /* next character */
4542 }
4543 return (Result);
4544}
4545
4546/****************************************************************************
4547 *
4548 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4549 * called if Diag attaches to that card)
4550 *
4551 * Description:
4552 * Close initialized adapter.
4553 *
4554 * Returns:
4555 * 0 - on success
4556 * error code - on error
4557 */
4558static int SkDrvDeInitAdapter(
4559SK_AC *pAC, /* pointer to adapter context */
4560int devNbr) /* what device is to be handled */
4561{
4562 struct SK_NET_DEVICE *dev;
4563
4564 dev = pAC->dev[devNbr];
4565
4566 /* On Linux 2.6 the network driver does NOT mess with reference
4567 ** counts. The driver MUST be able to be unloaded at any time
4568 ** due to the possibility of hotplug.
4569 */
4570 if (SkGeClose(dev) != 0) {
4571 return (-1);
4572 }
4573 return (0);
4574
4575} /* SkDrvDeInitAdapter() */
4576
4577/****************************************************************************
4578 *
4579 * SkDrvInitAdapter - Initialize adapter (this function is only
4580 * called if Diag deattaches from that card)
4581 *
4582 * Description:
4583 * Close initialized adapter.
4584 *
4585 * Returns:
4586 * 0 - on success
4587 * error code - on error
4588 */
4589static int SkDrvInitAdapter(
4590SK_AC *pAC, /* pointer to adapter context */
4591int devNbr) /* what device is to be handled */
4592{
4593 struct SK_NET_DEVICE *dev;
4594
4595 dev = pAC->dev[devNbr];
4596
4597 if (SkGeOpen(dev) != 0) {
4598 return (-1);
4599 }
4600
4601 /*
4602 ** Use correct MTU size and indicate to kernel TX queue can be started
4603 */
4604 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4605 return (-1);
4606 }
4607 return (0);
4608
4609} /* SkDrvInitAdapter */
4610
4611#endif
4612
4613#ifdef DEBUG
4614/****************************************************************************/
4615/* "debug only" section *****************************************************/
4616/****************************************************************************/
4617
4618
4619/*****************************************************************************
4620 *
4621 * DumpMsg - print a frame
4622 *
4623 * Description:
4624 * This function prints frames to the system logfile/to the console.
4625 *
4626 * Returns: N/A
4627 *
4628 */
4629static void DumpMsg(struct sk_buff *skb, char *str)
4630{
4631 int msglen;
4632
4633 if (skb == NULL) {
4634 printk("DumpMsg(): NULL-Message\n");
4635 return;
4636 }
4637
4638 if (skb->data == NULL) {
4639 printk("DumpMsg(): Message empty\n");
4640 return;
4641 }
4642
4643 msglen = skb->len;
4644 if (msglen > 64)
4645 msglen = 64;
4646
4647 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4648
4649 DumpData((char *)skb->data, msglen);
4650
4651 printk("------- End of message ---------\n");
4652} /* DumpMsg */
4653
4654
4655
4656/*****************************************************************************
4657 *
4658 * DumpData - print a data area
4659 *
4660 * Description:
4661 * This function prints a area of data to the system logfile/to the
4662 * console.
4663 *
4664 * Returns: N/A
4665 *
4666 */
4667static void DumpData(char *p, int size)
4668{
4669register int i;
4670int haddr, addr;
4671char hex_buffer[180];
4672char asc_buffer[180];
4673char HEXCHAR[] = "0123456789ABCDEF";
4674
4675 addr = 0;
4676 haddr = 0;
4677 hex_buffer[0] = 0;
4678 asc_buffer[0] = 0;
4679 for (i=0; i < size; ) {
4680 if (*p >= '0' && *p <='z')
4681 asc_buffer[addr] = *p;
4682 else
4683 asc_buffer[addr] = '.';
4684 addr++;
4685 asc_buffer[addr] = 0;
4686 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4687 haddr++;
4688 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4689 haddr++;
4690 hex_buffer[haddr] = ' ';
4691 haddr++;
4692 hex_buffer[haddr] = 0;
4693 p++;
4694 i++;
4695 if (i%16 == 0) {
4696 printk("%s %s\n", hex_buffer, asc_buffer);
4697 addr = 0;
4698 haddr = 0;
4699 }
4700 }
4701} /* DumpData */
4702
4703
4704/*****************************************************************************
4705 *
4706 * DumpLong - print a data area as long values
4707 *
4708 * Description:
4709 * This function prints a area of data to the system logfile/to the
4710 * console.
4711 *
4712 * Returns: N/A
4713 *
4714 */
4715static void DumpLong(char *pc, int size)
4716{
4717register int i;
4718int haddr, addr;
4719char hex_buffer[180];
4720char asc_buffer[180];
4721char HEXCHAR[] = "0123456789ABCDEF";
4722long *p;
4723int l;
4724
4725 addr = 0;
4726 haddr = 0;
4727 hex_buffer[0] = 0;
4728 asc_buffer[0] = 0;
4729 p = (long*) pc;
4730 for (i=0; i < size; ) {
4731 l = (long) *p;
4732 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4733 haddr++;
4734 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4735 haddr++;
4736 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4737 haddr++;
4738 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4739 haddr++;
4740 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4741 haddr++;
4742 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4743 haddr++;
4744 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4745 haddr++;
4746 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4747 haddr++;
4748 hex_buffer[haddr] = ' ';
4749 haddr++;
4750 hex_buffer[haddr] = 0;
4751 p++;
4752 i++;
4753 if (i%8 == 0) {
4754 printk("%4x %s\n", (i-8)*4, hex_buffer);
4755 haddr = 0;
4756 }
4757 }
4758 printk("------------------------\n");
4759} /* DumpLong */
4760
4761#endif
4762
4763static int __devinit skge_probe_one(struct pci_dev *pdev,
4764 const struct pci_device_id *ent)
4765{
4766 SK_AC *pAC;
4767 DEV_NET *pNet = NULL;
4768 struct net_device *dev = NULL;
4769 static int boards_found = 0;
4770 int error = -ENODEV;
bce7c95e 4771 int using_dac = 0;
8f7a17d1 4772 char DeviceStr[80];
1da177e4
LT
4773
4774 if (pci_enable_device(pdev))
4775 goto out;
4776
4777 /* Configure DMA attributes. */
bce7c95e
SH
4778 if (sizeof(dma_addr_t) > sizeof(u32) &&
4779 !(error = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
4780 using_dac = 1;
4781 error = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4782 if (error < 0) {
4783 printk(KERN_ERR "sk98lin %s unable to obtain 64 bit DMA "
4784 "for consistent allocations\n", pci_name(pdev));
4785 goto out_disable_device;
4786 }
4787 } else {
4788 error = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4789 if (error) {
4790 printk(KERN_ERR "sk98lin %s no usable DMA configuration\n",
4791 pci_name(pdev));
4792 goto out_disable_device;
4793 }
4794 }
1da177e4 4795
16287557
SH
4796 error = -ENOMEM;
4797 dev = alloc_etherdev(sizeof(DEV_NET));
4798 if (!dev) {
4799 printk(KERN_ERR "sk98lin: unable to allocate etherdev "
1da177e4
LT
4800 "structure!\n");
4801 goto out_disable_device;
4802 }
4803
4804 pNet = netdev_priv(dev);
26fc3549 4805 pNet->pAC = kzalloc(sizeof(SK_AC), GFP_KERNEL);
1da177e4 4806 if (!pNet->pAC) {
16287557 4807 printk(KERN_ERR "sk98lin: unable to allocate adapter "
1da177e4
LT
4808 "structure!\n");
4809 goto out_free_netdev;
4810 }
4811
1da177e4
LT
4812 pAC = pNet->pAC;
4813 pAC->PciDev = pdev;
8f7a17d1 4814
1da177e4
LT
4815 pAC->dev[0] = dev;
4816 pAC->dev[1] = dev;
1da177e4
LT
4817 pAC->CheckQueue = SK_FALSE;
4818
1da177e4 4819 dev->irq = pdev->irq;
16287557 4820
1da177e4
LT
4821 error = SkGeInitPCI(pAC);
4822 if (error) {
be0df20c 4823 printk(KERN_ERR "sk98lin: PCI setup failed: %i\n", error);
1da177e4
LT
4824 goto out_free_netdev;
4825 }
4826
4827 SET_MODULE_OWNER(dev);
4828 dev->open = &SkGeOpen;
4829 dev->stop = &SkGeClose;
4830 dev->hard_start_xmit = &SkGeXmit;
4831 dev->get_stats = &SkGeStats;
4832 dev->set_multicast_list = &SkGeSetRxMode;
4833 dev->set_mac_address = &SkGeSetMacAddr;
4834 dev->do_ioctl = &SkGeIoctl;
4835 dev->change_mtu = &SkGeChangeMtu;
4836#ifdef CONFIG_NET_POLL_CONTROLLER
4837 dev->poll_controller = &SkGePollController;
4838#endif
1da177e4
LT
4839 SET_NETDEV_DEV(dev, &pdev->dev);
4840 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4841
09f5a214 4842 /* Use only if yukon hardware */
1da177e4 4843 if (pAC->ChipsetType) {
09f5a214
SH
4844#ifdef USE_SK_TX_CHECKSUM
4845 dev->features |= NETIF_F_IP_CSUM;
1da177e4 4846#endif
09f5a214
SH
4847#ifdef SK_ZEROCOPY
4848 dev->features |= NETIF_F_SG;
1da177e4 4849#endif
09f5a214
SH
4850#ifdef USE_SK_RX_CHECKSUM
4851 pAC->RxPort[0].RxCsum = 1;
1da177e4 4852#endif
09f5a214 4853 }
1da177e4 4854
bce7c95e
SH
4855 if (using_dac)
4856 dev->features |= NETIF_F_HIGHDMA;
4857
1da177e4
LT
4858 pAC->Index = boards_found++;
4859
16287557
SH
4860 error = SkGeBoardInit(dev, pAC);
4861 if (error)
1da177e4
LT
4862 goto out_free_netdev;
4863
8f7a17d1
SH
4864 /* Read Adapter name from VPD */
4865 if (ProductStr(pAC, DeviceStr, sizeof(DeviceStr)) != 0) {
16287557 4866 error = -EIO;
8f7a17d1
SH
4867 printk(KERN_ERR "sk98lin: Could not read VPD data.\n");
4868 goto out_free_resources;
4869 }
4870
1da177e4 4871 /* Register net device */
16287557
SH
4872 error = register_netdev(dev);
4873 if (error) {
be0df20c 4874 printk(KERN_ERR "sk98lin: Could not register device.\n");
1da177e4
LT
4875 goto out_free_resources;
4876 }
4877
4878 /* Print adapter specific string from vpd */
8f7a17d1 4879 printk("%s: %s\n", dev->name, DeviceStr);
1da177e4
LT
4880
4881 /* Print configuration settings */
4882 printk(" PrefPort:%c RlmtMode:%s\n",
4883 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4884 (pAC->RlmtMode==0) ? "Check Link State" :
4885 ((pAC->RlmtMode==1) ? "Check Link State" :
4886 ((pAC->RlmtMode==3) ? "Check Local Port" :
4887 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4888 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
4889
4890 SkGeYellowLED(pAC, pAC->IoBase, 1);
4891
1da177e4 4892 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
4f4c8150 4893 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 4894
1da177e4
LT
4895 pNet->PortNr = 0;
4896 pNet->NetNr = 0;
4897
4898 boards_found++;
4899
decf67aa
SH
4900 pci_set_drvdata(pdev, dev);
4901
1da177e4
LT
4902 /* More then one port found */
4903 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
decf67aa
SH
4904 dev = alloc_etherdev(sizeof(DEV_NET));
4905 if (!dev) {
4906 printk(KERN_ERR "sk98lin: unable to allocate etherdev "
1da177e4 4907 "structure!\n");
decf67aa 4908 goto single_port;
1da177e4
LT
4909 }
4910
1da177e4
LT
4911 pNet = netdev_priv(dev);
4912 pNet->PortNr = 1;
4913 pNet->NetNr = 1;
4914 pNet->pAC = pAC;
1da177e4
LT
4915
4916 dev->open = &SkGeOpen;
4917 dev->stop = &SkGeClose;
4918 dev->hard_start_xmit = &SkGeXmit;
4919 dev->get_stats = &SkGeStats;
4920 dev->set_multicast_list = &SkGeSetRxMode;
4921 dev->set_mac_address = &SkGeSetMacAddr;
4922 dev->do_ioctl = &SkGeIoctl;
4923 dev->change_mtu = &SkGeChangeMtu;
1da177e4
LT
4924 SET_NETDEV_DEV(dev, &pdev->dev);
4925 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4926
1da177e4 4927 if (pAC->ChipsetType) {
09f5a214
SH
4928#ifdef USE_SK_TX_CHECKSUM
4929 dev->features |= NETIF_F_IP_CSUM;
1da177e4 4930#endif
09f5a214
SH
4931#ifdef SK_ZEROCOPY
4932 dev->features |= NETIF_F_SG;
1da177e4 4933#endif
09f5a214
SH
4934#ifdef USE_SK_RX_CHECKSUM
4935 pAC->RxPort[1].RxCsum = 1;
1da177e4 4936#endif
09f5a214 4937 }
1da177e4 4938
bce7c95e
SH
4939 if (using_dac)
4940 dev->features |= NETIF_F_HIGHDMA;
4941
decf67aa
SH
4942 error = register_netdev(dev);
4943 if (error) {
4944 printk(KERN_ERR "sk98lin: Could not register device"
4945 " for second port. (%d)\n", error);
1da177e4 4946 free_netdev(dev);
decf67aa 4947 goto single_port;
1da177e4 4948 }
decf67aa
SH
4949
4950 pAC->dev[1] = dev;
4951 memcpy(&dev->dev_addr,
4952 &pAC->Addr.Net[1].CurrentMacAddress, 6);
4953 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4954
4955 printk("%s: %s\n", dev->name, DeviceStr);
4956 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
1da177e4
LT
4957 }
4958
decf67aa
SH
4959single_port:
4960
1da177e4
LT
4961 /* Save the hardware revision */
4962 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
4963 (pAC->GIni.GIPciHwRev & 0x0F);
4964
4965 /* Set driver globals */
4966 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
4967 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
4968
4969 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
4970 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
4971
1da177e4
LT
4972 return 0;
4973
4974 out_free_resources:
4975 FreeResources(dev);
4976 out_free_netdev:
4977 free_netdev(dev);
4978 out_disable_device:
4979 pci_disable_device(pdev);
4980 out:
4981 return error;
4982}
4983
4984static void __devexit skge_remove_one(struct pci_dev *pdev)
4985{
4986 struct net_device *dev = pci_get_drvdata(pdev);
4987 DEV_NET *pNet = netdev_priv(dev);
4988 SK_AC *pAC = pNet->pAC;
4989 struct net_device *otherdev = pAC->dev[1];
4990
1da177e4 4991 unregister_netdev(dev);
1da177e4
LT
4992
4993 SkGeYellowLED(pAC, pAC->IoBase, 0);
4994
4995 if (pAC->BoardLevel == SK_INIT_RUN) {
4996 SK_EVPARA EvPara;
4997 unsigned long Flags;
4998
4999 /* board is still alive */
5000 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5001 EvPara.Para32[0] = 0;
5002 EvPara.Para32[1] = -1;
5003 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5004 EvPara.Para32[0] = 1;
5005 EvPara.Para32[1] = -1;
5006 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5007 SkEventDispatcher(pAC, pAC->IoBase);
5008 /* disable interrupts */
5009 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5010 SkGeDeInit(pAC, pAC->IoBase);
5011 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5012 pAC->BoardLevel = SK_INIT_DATA;
5013 /* We do NOT check here, if IRQ was pending, of course*/
5014 }
5015
5016 if (pAC->BoardLevel == SK_INIT_IO) {
5017 /* board is still alive */
5018 SkGeDeInit(pAC, pAC->IoBase);
5019 pAC->BoardLevel = SK_INIT_DATA;
5020 }
5021
5022 FreeResources(dev);
5023 free_netdev(dev);
5024 if (otherdev != dev)
5025 free_netdev(otherdev);
5026 kfree(pAC);
5027}
5028
90158b83
RW
5029#ifdef CONFIG_PM
5030static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5031{
5032 struct net_device *dev = pci_get_drvdata(pdev);
5033 DEV_NET *pNet = netdev_priv(dev);
5034 SK_AC *pAC = pNet->pAC;
5035 struct net_device *otherdev = pAC->dev[1];
5036
035a4a4f
RW
5037 if (netif_running(dev)) {
5038 netif_carrier_off(dev);
90158b83
RW
5039 DoPrintInterfaceChange = SK_FALSE;
5040 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
035a4a4f 5041 netif_device_detach(dev);
90158b83
RW
5042 }
5043 if (otherdev != dev) {
035a4a4f
RW
5044 if (netif_running(otherdev)) {
5045 netif_carrier_off(otherdev);
90158b83
RW
5046 DoPrintInterfaceChange = SK_FALSE;
5047 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
035a4a4f 5048 netif_device_detach(otherdev);
90158b83
RW
5049 }
5050 }
5051
5052 pci_save_state(pdev);
5053 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5054 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5055 free_irq(dev->irq, dev);
5056 }
5057 pci_disable_device(pdev);
5058 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5059
5060 return 0;
5061}
5062
5063static int skge_resume(struct pci_dev *pdev)
5064{
5065 struct net_device *dev = pci_get_drvdata(pdev);
5066 DEV_NET *pNet = netdev_priv(dev);
5067 SK_AC *pAC = pNet->pAC;
035a4a4f
RW
5068 struct net_device *otherdev = pAC->dev[1];
5069 int ret;
90158b83
RW
5070
5071 pci_set_power_state(pdev, PCI_D0);
5072 pci_restore_state(pdev);
5073 pci_enable_device(pdev);
5074 pci_set_master(pdev);
5075 if (pAC->GIni.GIMacsFound == 2)
8f7a17d1 5076 ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, "sk98lin", dev);
90158b83 5077 else
8f7a17d1 5078 ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, "sk98lin", dev);
035a4a4f
RW
5079 if (ret) {
5080 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5081 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5082 dev->irq = 0;
5083 pci_disable_device(pdev);
5084 return -EBUSY;
5085 }
90158b83 5086
035a4a4f
RW
5087 netif_device_attach(dev);
5088 if (netif_running(dev)) {
90158b83
RW
5089 DoPrintInterfaceChange = SK_FALSE;
5090 SkDrvInitAdapter(pAC, 0); /* first device */
035a4a4f
RW
5091 }
5092 if (otherdev != dev) {
5093 netif_device_attach(otherdev);
5094 if (netif_running(otherdev)) {
5095 DoPrintInterfaceChange = SK_FALSE;
5096 SkDrvInitAdapter(pAC, 1); /* second device */
5097 }
90158b83
RW
5098 }
5099
5100 return 0;
5101}
3fef3fa2
AM
5102#else
5103#define skge_suspend NULL
5104#define skge_resume NULL
90158b83
RW
5105#endif
5106
1da177e4
LT
5107static struct pci_device_id skge_pci_tbl[] = {
5108 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5109 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5110 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5111 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
9734c3fc
SH
5112/* DLink card does not have valid VPD so this driver gags
5113 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5114 */
1da177e4 5115 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
1da177e4
LT
5116 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5117 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
9734c3fc 5118 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
1da177e4 5119 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
9734c3fc 5120 { 0 }
1da177e4
LT
5121};
5122
5123MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5124
5125static struct pci_driver skge_driver = {
5126 .name = "sk98lin",
5127 .id_table = skge_pci_tbl,
5128 .probe = skge_probe_one,
5129 .remove = __devexit_p(skge_remove_one),
90158b83
RW
5130 .suspend = skge_suspend,
5131 .resume = skge_resume,
1da177e4
LT
5132};
5133
5134static int __init skge_init(void)
5135{
35b8fcab 5136 return pci_module_init(&skge_driver);
1da177e4
LT
5137}
5138
5139static void __exit skge_exit(void)
5140{
5141 pci_unregister_driver(&skge_driver);
1da177e4
LT
5142}
5143
5144module_init(skge_init);
5145module_exit(skge_exit);