]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/smc91x.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-artful-kernel.git] / drivers / net / smc91x.h
CommitLineData
1da177e4
LT
1/*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, write to the Free Software
22 . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 .
24 . Information contained in this file was obtained from the LAN91C111
25 . manual from SMC. To get a copy, if you really want one, you can find
26 . information under www.smsc.com.
27 .
28 . Authors
29 . Erik Stahlman <erik@vt.edu>
30 . Daris A Nevil <dnevil@snmc.com>
31 . Nicolas Pitre <nico@cam.org>
32 .
33 ---------------------------------------------------------------------------*/
34#ifndef _SMC91X_H_
35#define _SMC91X_H_
36
37
38/*
39 * Define your architecture specific bus configuration parameters here.
40 */
41
42#if defined(CONFIG_ARCH_LUBBOCK)
43
44/* We can only do 16-bit reads and writes in the static memory space. */
45#define SMC_CAN_USE_8BIT 0
46#define SMC_CAN_USE_16BIT 1
47#define SMC_CAN_USE_32BIT 0
48#define SMC_NOWAIT 1
49
50/* The first two address lines aren't connected... */
51#define SMC_IO_SHIFT 2
52
53#define SMC_inw(a, r) readw((a) + (r))
54#define SMC_outw(v, a, r) writew(v, (a) + (r))
55#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
56#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
57
0851a284
WB
58#elif defined(CONFIG_BFIN)
59
60#define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH
c5760abd
JCR
61#define RPC_LSA_DEFAULT RPC_LED_100_10
62#define RPC_LSB_DEFAULT RPC_LED_TX_RX
0851a284
WB
63
64# if defined (CONFIG_BFIN561_EZKIT)
65#define SMC_CAN_USE_8BIT 0
66#define SMC_CAN_USE_16BIT 1
67#define SMC_CAN_USE_32BIT 1
68#define SMC_IO_SHIFT 0
69#define SMC_NOWAIT 1
70#define SMC_USE_BFIN_DMA 0
71
72
73#define SMC_inw(a, r) readw((a) + (r))
74#define SMC_outw(v, a, r) writew(v, (a) + (r))
75#define SMC_inl(a, r) readl((a) + (r))
76#define SMC_outl(v, a, r) writel(v, (a) + (r))
77#define SMC_outsl(a, r, p, l) outsl((unsigned long *)((a) + (r)), p, l)
78#define SMC_insl(a, r, p, l) insl ((unsigned long *)((a) + (r)), p, l)
79# else
80#define SMC_CAN_USE_8BIT 0
81#define SMC_CAN_USE_16BIT 1
82#define SMC_CAN_USE_32BIT 0
83#define SMC_IO_SHIFT 0
84#define SMC_NOWAIT 1
85#define SMC_USE_BFIN_DMA 0
86
87
88#define SMC_inw(a, r) readw((a) + (r))
89#define SMC_outw(v, a, r) writew(v, (a) + (r))
90#define SMC_outsw(a, r, p, l) outsw((unsigned long *)((a) + (r)), p, l)
91#define SMC_insw(a, r, p, l) insw ((unsigned long *)((a) + (r)), p, l)
92# endif
93/* check if the mac in reg is valid */
94#define SMC_GET_MAC_ADDR(addr) \
95 do { \
96 unsigned int __v; \
97 __v = SMC_inw(ioaddr, ADDR0_REG); \
98 addr[0] = __v; addr[1] = __v >> 8; \
99 __v = SMC_inw(ioaddr, ADDR1_REG); \
100 addr[2] = __v; addr[3] = __v >> 8; \
101 __v = SMC_inw(ioaddr, ADDR2_REG); \
102 addr[4] = __v; addr[5] = __v >> 8; \
103 if (*(u32 *)(&addr[0]) == 0xFFFFFFFF) { \
104 random_ether_addr(addr); \
105 } \
106 } while (0)
1da177e4
LT
107#elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6)
108
109/* We can only do 16-bit reads and writes in the static memory space. */
110#define SMC_CAN_USE_8BIT 0
111#define SMC_CAN_USE_16BIT 1
112#define SMC_CAN_USE_32BIT 0
113#define SMC_NOWAIT 1
114
115#define SMC_IO_SHIFT 0
116
117#define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r)))
118#define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v)
119#define SMC_insw(a, r, p, l) \
120 do { \
121 unsigned long __port = (a) + (r); \
122 u16 *__p = (u16 *)(p); \
123 int __l = (l); \
124 insw(__port, __p, __l); \
125 while (__l > 0) { \
126 *__p = swab16(*__p); \
127 __p++; \
128 __l--; \
129 } \
130 } while (0)
131#define SMC_outsw(a, r, p, l) \
132 do { \
133 unsigned long __port = (a) + (r); \
134 u16 *__p = (u16 *)(p); \
135 int __l = (l); \
136 while (__l > 0) { \
137 /* Believe it or not, the swab isn't needed. */ \
138 outw( /* swab16 */ (*__p++), __port); \
139 __l--; \
140 } \
141 } while (0)
9ded96f2 142#define SMC_IRQ_FLAGS (0)
1da177e4
LT
143
144#elif defined(CONFIG_SA1100_PLEB)
145/* We can only do 16-bit reads and writes in the static memory space. */
146#define SMC_CAN_USE_8BIT 1
147#define SMC_CAN_USE_16BIT 1
148#define SMC_CAN_USE_32BIT 0
149#define SMC_IO_SHIFT 0
150#define SMC_NOWAIT 1
151
1cf99be5
RK
152#define SMC_inb(a, r) readb((a) + (r))
153#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
154#define SMC_inw(a, r) readw((a) + (r))
155#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
156#define SMC_outb(v, a, r) writeb(v, (a) + (r))
157#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
158#define SMC_outw(v, a, r) writew(v, (a) + (r))
159#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
1da177e4 160
9ded96f2 161#define SMC_IRQ_FLAGS (0)
1da177e4
LT
162
163#elif defined(CONFIG_SA1100_ASSABET)
164
165#include <asm/arch/neponset.h>
166
167/* We can only do 8-bit reads and writes in the static memory space. */
168#define SMC_CAN_USE_8BIT 1
169#define SMC_CAN_USE_16BIT 0
170#define SMC_CAN_USE_32BIT 0
171#define SMC_NOWAIT 1
172
173/* The first two address lines aren't connected... */
174#define SMC_IO_SHIFT 2
175
176#define SMC_inb(a, r) readb((a) + (r))
177#define SMC_outb(v, a, r) writeb(v, (a) + (r))
178#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
179#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
180
b0348b90
LB
181#elif defined(CONFIG_MACH_LOGICPD_PXA270)
182
183#define SMC_CAN_USE_8BIT 0
184#define SMC_CAN_USE_16BIT 1
185#define SMC_CAN_USE_32BIT 0
186#define SMC_IO_SHIFT 0
187#define SMC_NOWAIT 1
b0348b90 188
b0348b90 189#define SMC_inw(a, r) readw((a) + (r))
b0348b90 190#define SMC_outw(v, a, r) writew(v, (a) + (r))
b0348b90
LB
191#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
192#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
193
1da177e4
LT
194#elif defined(CONFIG_ARCH_INNOKOM) || \
195 defined(CONFIG_MACH_MAINSTONE) || \
196 defined(CONFIG_ARCH_PXA_IDP) || \
197 defined(CONFIG_ARCH_RAMSES)
198
199#define SMC_CAN_USE_8BIT 1
200#define SMC_CAN_USE_16BIT 1
201#define SMC_CAN_USE_32BIT 1
202#define SMC_IO_SHIFT 0
203#define SMC_NOWAIT 1
204#define SMC_USE_PXA_DMA 1
205
206#define SMC_inb(a, r) readb((a) + (r))
207#define SMC_inw(a, r) readw((a) + (r))
208#define SMC_inl(a, r) readl((a) + (r))
209#define SMC_outb(v, a, r) writeb(v, (a) + (r))
210#define SMC_outl(v, a, r) writel(v, (a) + (r))
211#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
212#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
213
214/* We actually can't write halfwords properly if not word aligned */
215static inline void
eb1d6988 216SMC_outw(u16 val, void __iomem *ioaddr, int reg)
1da177e4
LT
217{
218 if (reg & 2) {
219 unsigned int v = val << 16;
220 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
221 writel(v, ioaddr + (reg & ~2));
222 } else {
223 writew(val, ioaddr + reg);
224 }
225}
226
227#elif defined(CONFIG_ARCH_OMAP)
228
229/* We can only do 16-bit reads and writes in the static memory space. */
230#define SMC_CAN_USE_8BIT 0
231#define SMC_CAN_USE_16BIT 1
232#define SMC_CAN_USE_32BIT 0
233#define SMC_IO_SHIFT 0
234#define SMC_NOWAIT 1
235
1da177e4
LT
236#define SMC_inw(a, r) readw((a) + (r))
237#define SMC_outw(v, a, r) writew(v, (a) + (r))
238#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
239#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
1da177e4 240
5f13e7ec
DB
241#include <asm/mach-types.h>
242#include <asm/arch/cpu.h>
243
9ded96f2 244#define SMC_IRQ_FLAGS (( \
5f13e7ec
DB
245 machine_is_omap_h2() \
246 || machine_is_omap_h3() \
f1b7c5f4 247 || machine_is_omap_h4() \
af44f5bf 248 || (machine_is_omap_innovator() && !cpu_is_omap1510()) \
1fb9df5d 249 ) ? IRQF_TRIGGER_FALLING : IRQF_TRIGGER_RISING)
5f13e7ec
DB
250
251
1da177e4
LT
252#elif defined(CONFIG_SH_SH4202_MICRODEV)
253
254#define SMC_CAN_USE_8BIT 0
255#define SMC_CAN_USE_16BIT 1
256#define SMC_CAN_USE_32BIT 0
257
258#define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
259#define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
260#define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
261#define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
262#define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
263#define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
264#define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
265#define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
266#define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
267#define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
268
9ded96f2 269#define SMC_IRQ_FLAGS (0)
1da177e4
LT
270
271#elif defined(CONFIG_ISA)
272
273#define SMC_CAN_USE_8BIT 1
274#define SMC_CAN_USE_16BIT 1
275#define SMC_CAN_USE_32BIT 0
276
277#define SMC_inb(a, r) inb((a) + (r))
278#define SMC_inw(a, r) inw((a) + (r))
279#define SMC_outb(v, a, r) outb(v, (a) + (r))
280#define SMC_outw(v, a, r) outw(v, (a) + (r))
281#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
282#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
283
5125ed91
NI
284#elif defined(CONFIG_SUPERH)
285
6026ee67 286#ifdef CONFIG_SOLUTION_ENGINE
18ad4e70 287#define SMC_IRQ_FLAGS (0)
5125ed91
NI
288#define SMC_CAN_USE_8BIT 0
289#define SMC_CAN_USE_16BIT 1
290#define SMC_CAN_USE_32BIT 0
291#define SMC_IO_SHIFT 0
292#define SMC_NOWAIT 1
293
5125ed91 294#define SMC_inw(a, r) inw((a) + (r))
5125ed91
NI
295#define SMC_outw(v, a, r) outw(v, (a) + (r))
296#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
297#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
298
299#else /* BOARDS */
300
301#define SMC_CAN_USE_8BIT 1
302#define SMC_CAN_USE_16BIT 1
092ed997 303#define SMC_CAN_USE_32BIT 0
5125ed91
NI
304
305#define SMC_inb(a, r) inb((a) + (r))
306#define SMC_inw(a, r) inw((a) + (r))
307#define SMC_outb(v, a, r) outb(v, (a) + (r))
308#define SMC_outw(v, a, r) outw(v, (a) + (r))
309#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
310#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
311
312#endif /* BOARDS */
313
1da177e4
LT
314#elif defined(CONFIG_M32R)
315
316#define SMC_CAN_USE_8BIT 0
317#define SMC_CAN_USE_16BIT 1
318#define SMC_CAN_USE_32BIT 0
319
59dc76a4 320#define SMC_inb(a, r) inb(((u32)a) + (r))
f3ac9fbf
HT
321#define SMC_inw(a, r) inw(((u32)a) + (r))
322#define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
323#define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
324#define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
325#define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
1da177e4 326
9ded96f2 327#define SMC_IRQ_FLAGS (0)
1da177e4
LT
328
329#define RPC_LSA_DEFAULT RPC_LED_TX_RX
330#define RPC_LSB_DEFAULT RPC_LED_100_10
331
d4adcffb
MS
332#elif defined(CONFIG_MACH_LPD79520) \
333 || defined(CONFIG_MACH_LPD7A400) \
334 || defined(CONFIG_MACH_LPD7A404)
1da177e4 335
d4adcffb
MS
336/* The LPD7X_IOBARRIER is necessary to overcome a mismatch between the
337 * way that the CPU handles chip selects and the way that the SMC chip
338 * expects the chip select to operate. Refer to
1da177e4 339 * Documentation/arm/Sharp-LH/IOBarrier for details. The read from
d4adcffb
MS
340 * IOBARRIER is a byte, in order that we read the least-common
341 * denominator. It would be wasteful to read 32 bits from an 8-bit
342 * accessible region.
1da177e4
LT
343 *
344 * There is no explicit protection against interrupts intervening
345 * between the writew and the IOBARRIER. In SMC ISR there is a
346 * preamble that performs an IOBARRIER in the extremely unlikely event
347 * that the driver interrupts itself between a writew to the chip an
348 * the IOBARRIER that follows *and* the cache is large enough that the
349 * first off-chip access while handing the interrupt is to the SMC
350 * chip. Other devices in the same address space as the SMC chip must
351 * be aware of the potential for trouble and perform a similar
352 * IOBARRIER on entry to their ISR.
353 */
354
355#include <asm/arch/constants.h> /* IOBARRIER_VIRT */
356
357#define SMC_CAN_USE_8BIT 0
358#define SMC_CAN_USE_16BIT 1
359#define SMC_CAN_USE_32BIT 0
360#define SMC_NOWAIT 0
d4adcffb 361#define LPD7X_IOBARRIER readb (IOBARRIER_VIRT)
1da177e4 362
d4adcffb
MS
363#define SMC_inw(a,r)\
364 ({ unsigned short v = readw ((void*) ((a) + (r))); LPD7X_IOBARRIER; v; })
365#define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7X_IOBARRIER; })
1da177e4 366
d4adcffb
MS
367#define SMC_insw LPD7_SMC_insw
368static inline void LPD7_SMC_insw (unsigned char* a, int r,
369 unsigned char* p, int l)
370{
371 unsigned short* ps = (unsigned short*) p;
372 while (l-- > 0) {
373 *ps++ = readw (a + r);
374 LPD7X_IOBARRIER;
375 }
376}
09779c6d 377
d4adcffb
MS
378#define SMC_outsw LPD7_SMC_outsw
379static inline void LPD7_SMC_outsw (unsigned char* a, int r,
380 unsigned char* p, int l)
1da177e4
LT
381{
382 unsigned short* ps = (unsigned short*) p;
383 while (l-- > 0) {
384 writew (*ps++, a + r);
d4adcffb 385 LPD7X_IOBARRIER;
1da177e4
LT
386 }
387}
388
d4adcffb 389#define SMC_INTERRUPT_PREAMBLE LPD7X_IOBARRIER
1da177e4
LT
390
391#define RPC_LSA_DEFAULT RPC_LED_TX_RX
392#define RPC_LSB_DEFAULT RPC_LED_100_10
393
55793455
PP
394#elif defined(CONFIG_SOC_AU1X00)
395
396#include <au1xxx.h>
397
398/* We can only do 16-bit reads and writes in the static memory space. */
399#define SMC_CAN_USE_8BIT 0
400#define SMC_CAN_USE_16BIT 1
401#define SMC_CAN_USE_32BIT 0
402#define SMC_IO_SHIFT 0
403#define SMC_NOWAIT 1
404
405#define SMC_inw(a, r) au_readw((unsigned long)((a) + (r)))
406#define SMC_insw(a, r, p, l) \
407 do { \
408 unsigned long _a = (unsigned long)((a) + (r)); \
409 int _l = (l); \
410 u16 *_p = (u16 *)(p); \
411 while (_l-- > 0) \
412 *_p++ = au_readw(_a); \
413 } while(0)
414#define SMC_outw(v, a, r) au_writew(v, (unsigned long)((a) + (r)))
415#define SMC_outsw(a, r, p, l) \
416 do { \
417 unsigned long _a = (unsigned long)((a) + (r)); \
418 int _l = (l); \
419 const u16 *_p = (const u16 *)(p); \
420 while (_l-- > 0) \
421 au_writew(*_p++ , _a); \
422 } while(0)
423
9ded96f2 424#define SMC_IRQ_FLAGS (0)
33fee56a
DS
425
426#elif defined(CONFIG_ARCH_VERSATILE)
427
428#define SMC_CAN_USE_8BIT 1
429#define SMC_CAN_USE_16BIT 1
430#define SMC_CAN_USE_32BIT 1
431#define SMC_NOWAIT 1
432
433#define SMC_inb(a, r) readb((a) + (r))
434#define SMC_inw(a, r) readw((a) + (r))
435#define SMC_inl(a, r) readl((a) + (r))
436#define SMC_outb(v, a, r) writeb(v, (a) + (r))
437#define SMC_outw(v, a, r) writew(v, (a) + (r))
438#define SMC_outl(v, a, r) writel(v, (a) + (r))
439#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
440#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
441
442#define SMC_IRQ_FLAGS (0)
55793455 443
1da177e4
LT
444#else
445
446#define SMC_CAN_USE_8BIT 1
447#define SMC_CAN_USE_16BIT 1
448#define SMC_CAN_USE_32BIT 1
449#define SMC_NOWAIT 1
450
451#define SMC_inb(a, r) readb((a) + (r))
452#define SMC_inw(a, r) readw((a) + (r))
453#define SMC_inl(a, r) readl((a) + (r))
454#define SMC_outb(v, a, r) writeb(v, (a) + (r))
455#define SMC_outw(v, a, r) writew(v, (a) + (r))
456#define SMC_outl(v, a, r) writel(v, (a) + (r))
457#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
458#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
459
460#define RPC_LSA_DEFAULT RPC_LED_100_10
461#define RPC_LSB_DEFAULT RPC_LED_TX_RX
462
463#endif
464
1da177e4
LT
465#ifdef SMC_USE_PXA_DMA
466/*
467 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
468 * always happening in irq context so no need to worry about races. TX is
469 * different and probably not worth it for that reason, and not as critical
470 * as RX which can overrun memory and lose packets.
471 */
472#include <linux/dma-mapping.h>
473#include <asm/dma.h>
474#include <asm/arch/pxa-regs.h>
475
476#ifdef SMC_insl
477#undef SMC_insl
478#define SMC_insl(a, r, p, l) \
479 smc_pxa_dma_insl(a, lp->physaddr, r, dev->dma, p, l)
480static inline void
eb1d6988 481smc_pxa_dma_insl(void __iomem *ioaddr, u_long physaddr, int reg, int dma,
1da177e4
LT
482 u_char *buf, int len)
483{
484 dma_addr_t dmabuf;
485
486 /* fallback if no DMA available */
487 if (dma == (unsigned char)-1) {
488 readsl(ioaddr + reg, buf, len);
489 return;
490 }
491
492 /* 64 bit alignment is required for memory to memory DMA */
493 if ((long)buf & 4) {
494 *((u32 *)buf) = SMC_inl(ioaddr, reg);
495 buf += 4;
496 len--;
497 }
498
499 len *= 4;
500 dmabuf = dma_map_single(NULL, buf, len, DMA_FROM_DEVICE);
501 DCSR(dma) = DCSR_NODESC;
502 DTADR(dma) = dmabuf;
503 DSADR(dma) = physaddr + reg;
504 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
505 DCMD_WIDTH4 | (DCMD_LENGTH & len));
506 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
507 while (!(DCSR(dma) & DCSR_STOPSTATE))
508 cpu_relax();
509 DCSR(dma) = 0;
510 dma_unmap_single(NULL, dmabuf, len, DMA_FROM_DEVICE);
511}
512#endif
513
514#ifdef SMC_insw
515#undef SMC_insw
516#define SMC_insw(a, r, p, l) \
517 smc_pxa_dma_insw(a, lp->physaddr, r, dev->dma, p, l)
518static inline void
eb1d6988 519smc_pxa_dma_insw(void __iomem *ioaddr, u_long physaddr, int reg, int dma,
1da177e4
LT
520 u_char *buf, int len)
521{
522 dma_addr_t dmabuf;
523
524 /* fallback if no DMA available */
525 if (dma == (unsigned char)-1) {
526 readsw(ioaddr + reg, buf, len);
527 return;
528 }
529
530 /* 64 bit alignment is required for memory to memory DMA */
531 while ((long)buf & 6) {
532 *((u16 *)buf) = SMC_inw(ioaddr, reg);
533 buf += 2;
534 len--;
535 }
536
537 len *= 2;
538 dmabuf = dma_map_single(NULL, buf, len, DMA_FROM_DEVICE);
539 DCSR(dma) = DCSR_NODESC;
540 DTADR(dma) = dmabuf;
541 DSADR(dma) = physaddr + reg;
542 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
543 DCMD_WIDTH2 | (DCMD_LENGTH & len));
544 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
545 while (!(DCSR(dma) & DCSR_STOPSTATE))
546 cpu_relax();
547 DCSR(dma) = 0;
548 dma_unmap_single(NULL, dmabuf, len, DMA_FROM_DEVICE);
549}
550#endif
551
552static void
7d12e780 553smc_pxa_dma_irq(int dma, void *dummy)
1da177e4
LT
554{
555 DCSR(dma) = 0;
556}
557#endif /* SMC_USE_PXA_DMA */
558
559
09779c6d
NP
560/*
561 * Everything a particular hardware setup needs should have been defined
562 * at this point. Add stubs for the undefined cases, mainly to avoid
563 * compilation warnings since they'll be optimized away, or to prevent buggy
564 * use of them.
565 */
566
567#if ! SMC_CAN_USE_32BIT
568#define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
569#define SMC_outl(x, ioaddr, reg) BUG()
570#define SMC_insl(a, r, p, l) BUG()
571#define SMC_outsl(a, r, p, l) BUG()
572#endif
573
574#if !defined(SMC_insl) || !defined(SMC_outsl)
575#define SMC_insl(a, r, p, l) BUG()
576#define SMC_outsl(a, r, p, l) BUG()
577#endif
578
579#if ! SMC_CAN_USE_16BIT
580
581/*
582 * Any 16-bit access is performed with two 8-bit accesses if the hardware
583 * can't do it directly. Most registers are 16-bit so those are mandatory.
584 */
585#define SMC_outw(x, ioaddr, reg) \
586 do { \
587 unsigned int __val16 = (x); \
588 SMC_outb( __val16, ioaddr, reg ); \
589 SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
590 } while (0)
591#define SMC_inw(ioaddr, reg) \
592 ({ \
593 unsigned int __val16; \
594 __val16 = SMC_inb( ioaddr, reg ); \
595 __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
596 __val16; \
597 })
598
599#define SMC_insw(a, r, p, l) BUG()
600#define SMC_outsw(a, r, p, l) BUG()
601
602#endif
603
604#if !defined(SMC_insw) || !defined(SMC_outsw)
605#define SMC_insw(a, r, p, l) BUG()
606#define SMC_outsw(a, r, p, l) BUG()
607#endif
608
609#if ! SMC_CAN_USE_8BIT
610#define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
611#define SMC_outb(x, ioaddr, reg) BUG()
612#define SMC_insb(a, r, p, l) BUG()
613#define SMC_outsb(a, r, p, l) BUG()
614#endif
615
616#if !defined(SMC_insb) || !defined(SMC_outsb)
617#define SMC_insb(a, r, p, l) BUG()
618#define SMC_outsb(a, r, p, l) BUG()
619#endif
620
621#ifndef SMC_CAN_USE_DATACS
622#define SMC_CAN_USE_DATACS 0
623#endif
624
1da177e4
LT
625#ifndef SMC_IO_SHIFT
626#define SMC_IO_SHIFT 0
627#endif
09779c6d
NP
628
629#ifndef SMC_IRQ_FLAGS
1fb9df5d 630#define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
09779c6d
NP
631#endif
632
633#ifndef SMC_INTERRUPT_PREAMBLE
634#define SMC_INTERRUPT_PREAMBLE
635#endif
636
637
638/* Because of bank switching, the LAN91x uses only 16 I/O ports */
1da177e4
LT
639#define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
640#define SMC_DATA_EXTENT (4)
641
642/*
643 . Bank Select Register:
644 .
645 . yyyy yyyy 0000 00xx
646 . xx = bank number
647 . yyyy yyyy = 0x33, for identification purposes.
648*/
649#define BANK_SELECT (14 << SMC_IO_SHIFT)
650
651
652// Transmit Control Register
653/* BANK 0 */
654#define TCR_REG SMC_REG(0x0000, 0)
655#define TCR_ENABLE 0x0001 // When 1 we can transmit
656#define TCR_LOOP 0x0002 // Controls output pin LBK
657#define TCR_FORCOL 0x0004 // When 1 will force a collision
658#define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
659#define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
660#define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
661#define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
662#define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
663#define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
664#define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
665
666#define TCR_CLEAR 0 /* do NOTHING */
667/* the default settings for the TCR register : */
668#define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
669
670
671// EPH Status Register
672/* BANK 0 */
673#define EPH_STATUS_REG SMC_REG(0x0002, 0)
674#define ES_TX_SUC 0x0001 // Last TX was successful
675#define ES_SNGL_COL 0x0002 // Single collision detected for last tx
676#define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
677#define ES_LTX_MULT 0x0008 // Last tx was a multicast
678#define ES_16COL 0x0010 // 16 Collisions Reached
679#define ES_SQET 0x0020 // Signal Quality Error Test
680#define ES_LTXBRD 0x0040 // Last tx was a broadcast
681#define ES_TXDEFR 0x0080 // Transmit Deferred
682#define ES_LATCOL 0x0200 // Late collision detected on last tx
683#define ES_LOSTCARR 0x0400 // Lost Carrier Sense
684#define ES_EXC_DEF 0x0800 // Excessive Deferral
685#define ES_CTR_ROL 0x1000 // Counter Roll Over indication
686#define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
687#define ES_TXUNRN 0x8000 // Tx Underrun
688
689
690// Receive Control Register
691/* BANK 0 */
692#define RCR_REG SMC_REG(0x0004, 0)
693#define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
694#define RCR_PRMS 0x0002 // Enable promiscuous mode
695#define RCR_ALMUL 0x0004 // When set accepts all multicast frames
696#define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
697#define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
698#define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
699#define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
700#define RCR_SOFTRST 0x8000 // resets the chip
701
702/* the normal settings for the RCR register : */
703#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
704#define RCR_CLEAR 0x0 // set it to a base state
705
706
707// Counter Register
708/* BANK 0 */
709#define COUNTER_REG SMC_REG(0x0006, 0)
710
711
712// Memory Information Register
713/* BANK 0 */
714#define MIR_REG SMC_REG(0x0008, 0)
715
716
717// Receive/Phy Control Register
718/* BANK 0 */
719#define RPC_REG SMC_REG(0x000A, 0)
720#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
721#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
722#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
723#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
724#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
725#define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
726#define RPC_LED_RES (0x01) // LED = Reserved
727#define RPC_LED_10 (0x02) // LED = 10Mbps link detect
728#define RPC_LED_FD (0x03) // LED = Full Duplex Mode
729#define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
730#define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
731#define RPC_LED_TX (0x06) // LED = TX packet occurred
732#define RPC_LED_RX (0x07) // LED = RX packet occurred
733
734#ifndef RPC_LSA_DEFAULT
735#define RPC_LSA_DEFAULT RPC_LED_100
736#endif
737#ifndef RPC_LSB_DEFAULT
738#define RPC_LSB_DEFAULT RPC_LED_FD
739#endif
740
741#define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
742
743
744/* Bank 0 0x0C is reserved */
745
746// Bank Select Register
747/* All Banks */
748#define BSR_REG 0x000E
749
750
751// Configuration Reg
752/* BANK 1 */
753#define CONFIG_REG SMC_REG(0x0000, 1)
754#define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
755#define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
756#define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
757#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
758
759// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
760#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
761
762
763// Base Address Register
764/* BANK 1 */
765#define BASE_REG SMC_REG(0x0002, 1)
766
767
768// Individual Address Registers
769/* BANK 1 */
770#define ADDR0_REG SMC_REG(0x0004, 1)
771#define ADDR1_REG SMC_REG(0x0006, 1)
772#define ADDR2_REG SMC_REG(0x0008, 1)
773
774
775// General Purpose Register
776/* BANK 1 */
777#define GP_REG SMC_REG(0x000A, 1)
778
779
780// Control Register
781/* BANK 1 */
782#define CTL_REG SMC_REG(0x000C, 1)
783#define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
784#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
785#define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
786#define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
787#define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
788#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
789#define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
790#define CTL_STORE 0x0001 // When set stores registers into EEPROM
791
792
793// MMU Command Register
794/* BANK 2 */
795#define MMU_CMD_REG SMC_REG(0x0000, 2)
796#define MC_BUSY 1 // When 1 the last release has not completed
797#define MC_NOP (0<<5) // No Op
798#define MC_ALLOC (1<<5) // OR with number of 256 byte packets
799#define MC_RESET (2<<5) // Reset MMU to initial state
800#define MC_REMOVE (3<<5) // Remove the current rx packet
801#define MC_RELEASE (4<<5) // Remove and release the current rx packet
802#define MC_FREEPKT (5<<5) // Release packet in PNR register
803#define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
804#define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
805
806
807// Packet Number Register
808/* BANK 2 */
809#define PN_REG SMC_REG(0x0002, 2)
810
811
812// Allocation Result Register
813/* BANK 2 */
814#define AR_REG SMC_REG(0x0003, 2)
815#define AR_FAILED 0x80 // Alocation Failed
816
817
818// TX FIFO Ports Register
819/* BANK 2 */
820#define TXFIFO_REG SMC_REG(0x0004, 2)
821#define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
822
823// RX FIFO Ports Register
824/* BANK 2 */
825#define RXFIFO_REG SMC_REG(0x0005, 2)
826#define RXFIFO_REMPTY 0x80 // RX FIFO Empty
827
828#define FIFO_REG SMC_REG(0x0004, 2)
829
830// Pointer Register
831/* BANK 2 */
832#define PTR_REG SMC_REG(0x0006, 2)
833#define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
834#define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
835#define PTR_READ 0x2000 // When 1 the operation is a read
836
837
838// Data Register
839/* BANK 2 */
840#define DATA_REG SMC_REG(0x0008, 2)
841
842
843// Interrupt Status/Acknowledge Register
844/* BANK 2 */
845#define INT_REG SMC_REG(0x000C, 2)
846
847
848// Interrupt Mask Register
849/* BANK 2 */
850#define IM_REG SMC_REG(0x000D, 2)
851#define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
852#define IM_ERCV_INT 0x40 // Early Receive Interrupt
853#define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
854#define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
855#define IM_ALLOC_INT 0x08 // Set when allocation request is completed
856#define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
857#define IM_TX_INT 0x02 // Transmit Interrupt
858#define IM_RCV_INT 0x01 // Receive Interrupt
859
860
861// Multicast Table Registers
862/* BANK 3 */
863#define MCAST_REG1 SMC_REG(0x0000, 3)
864#define MCAST_REG2 SMC_REG(0x0002, 3)
865#define MCAST_REG3 SMC_REG(0x0004, 3)
866#define MCAST_REG4 SMC_REG(0x0006, 3)
867
868
869// Management Interface Register (MII)
870/* BANK 3 */
871#define MII_REG SMC_REG(0x0008, 3)
872#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
873#define MII_MDOE 0x0008 // MII Output Enable
874#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
875#define MII_MDI 0x0002 // MII Input, pin MDI
876#define MII_MDO 0x0001 // MII Output, pin MDO
877
878
879// Revision Register
880/* BANK 3 */
881/* ( hi: chip id low: rev # ) */
882#define REV_REG SMC_REG(0x000A, 3)
883
884
885// Early RCV Register
886/* BANK 3 */
887/* this is NOT on SMC9192 */
888#define ERCV_REG SMC_REG(0x000C, 3)
889#define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
890#define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
891
892
893// External Register
894/* BANK 7 */
895#define EXT_REG SMC_REG(0x0000, 7)
896
897
898#define CHIP_9192 3
899#define CHIP_9194 4
900#define CHIP_9195 5
901#define CHIP_9196 6
902#define CHIP_91100 7
903#define CHIP_91100FD 8
904#define CHIP_91111FD 9
905
906static const char * chip_ids[ 16 ] = {
907 NULL, NULL, NULL,
908 /* 3 */ "SMC91C90/91C92",
909 /* 4 */ "SMC91C94",
910 /* 5 */ "SMC91C95",
911 /* 6 */ "SMC91C96",
912 /* 7 */ "SMC91C100",
913 /* 8 */ "SMC91C100FD",
914 /* 9 */ "SMC91C11xFD",
915 NULL, NULL, NULL,
916 NULL, NULL, NULL};
917
918
1da177e4
LT
919/*
920 . Receive status bits
921*/
922#define RS_ALGNERR 0x8000
923#define RS_BRODCAST 0x4000
924#define RS_BADCRC 0x2000
925#define RS_ODDFRAME 0x1000
926#define RS_TOOLONG 0x0800
927#define RS_TOOSHORT 0x0400
928#define RS_MULTICAST 0x0001
929#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
930
931
932/*
933 * PHY IDs
934 * LAN83C183 == LAN91C111 Internal PHY
935 */
936#define PHY_LAN83C183 0x0016f840
937#define PHY_LAN83C180 0x02821c50
938
939/*
940 * PHY Register Addresses (LAN91C111 Internal PHY)
941 *
942 * Generic PHY registers can be found in <linux/mii.h>
943 *
944 * These phy registers are specific to our on-board phy.
945 */
946
947// PHY Configuration Register 1
948#define PHY_CFG1_REG 0x10
949#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
950#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
951#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
952#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
953#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
954#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
955#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
956#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
957#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
958#define PHY_CFG1_TLVL_MASK 0x003C
959#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
960
961
962// PHY Configuration Register 2
963#define PHY_CFG2_REG 0x11
964#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
965#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
966#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
967#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
968
969// PHY Status Output (and Interrupt status) Register
970#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
971#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
972#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
973#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
974#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
975#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
976#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
977#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
978#define PHY_INT_JAB 0x0100 // 1=Jabber detected
979#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
980#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
981
982// PHY Interrupt/Status Mask Register
983#define PHY_MASK_REG 0x13 // Interrupt Mask
984// Uses the same bit definitions as PHY_INT_REG
985
986
987/*
988 * SMC91C96 ethernet config and status registers.
989 * These are in the "attribute" space.
990 */
991#define ECOR 0x8000
992#define ECOR_RESET 0x80
993#define ECOR_LEVEL_IRQ 0x40
994#define ECOR_WR_ATTRIB 0x04
995#define ECOR_ENABLE 0x01
996
997#define ECSR 0x8002
998#define ECSR_IOIS8 0x20
999#define ECSR_PWRDWN 0x04
1000#define ECSR_INT 0x02
1001
1002#define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
1003
1004
1005/*
1006 * Macros to abstract register access according to the data bus
1007 * capabilities. Please use those and not the in/out primitives.
1008 * Note: the following macros do *not* select the bank -- this must
1009 * be done separately as needed in the main code. The SMC_REG() macro
1010 * only uses the bank argument for debugging purposes (when enabled).
09779c6d
NP
1011 *
1012 * Note: despite inline functions being safer, everything leading to this
1013 * should preferably be macros to let BUG() display the line number in
1014 * the core source code since we're interested in the top call site
1015 * not in any inline function location.
1da177e4
LT
1016 */
1017
1018#if SMC_DEBUG > 0
1019#define SMC_REG(reg, bank) \
1020 ({ \
1021 int __b = SMC_CURRENT_BANK(); \
1022 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
1023 printk( "%s: bank reg screwed (0x%04x)\n", \
1024 CARDNAME, __b ); \
1025 BUG(); \
1026 } \
1027 reg<<SMC_IO_SHIFT; \
1028 })
1029#else
1030#define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT)
1031#endif
1032
09779c6d
NP
1033/*
1034 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
1035 * aligned to a 32 bit boundary. I tell you that does exist!
1036 * Fortunately the affected register accesses can be easily worked around
1037 * since we can write zeroes to the preceeding 16 bits without adverse
1038 * effects and use a 32-bit access.
1039 *
1040 * Enforce it on any 32-bit capable setup for now.
1041 */
1042#define SMC_MUST_ALIGN_WRITE SMC_CAN_USE_32BIT
1043
1044#define SMC_GET_PN() \
1045 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, PN_REG)) \
1046 : (SMC_inw(ioaddr, PN_REG) & 0xFF) )
1047
1048#define SMC_SET_PN(x) \
1049 do { \
1050 if (SMC_MUST_ALIGN_WRITE) \
1051 SMC_outl((x)<<16, ioaddr, SMC_REG(0, 2)); \
1052 else if (SMC_CAN_USE_8BIT) \
1053 SMC_outb(x, ioaddr, PN_REG); \
1054 else \
1055 SMC_outw(x, ioaddr, PN_REG); \
1056 } while (0)
1057
1058#define SMC_GET_AR() \
1059 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, AR_REG)) \
1060 : (SMC_inw(ioaddr, PN_REG) >> 8) )
1061
1062#define SMC_GET_TXFIFO() \
1063 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, TXFIFO_REG)) \
1064 : (SMC_inw(ioaddr, TXFIFO_REG) & 0xFF) )
1065
1066#define SMC_GET_RXFIFO() \
1067 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, RXFIFO_REG)) \
1068 : (SMC_inw(ioaddr, TXFIFO_REG) >> 8) )
1069
1070#define SMC_GET_INT() \
1071 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, INT_REG)) \
1072 : (SMC_inw(ioaddr, INT_REG) & 0xFF) )
1073
1da177e4
LT
1074#define SMC_ACK_INT(x) \
1075 do { \
09779c6d
NP
1076 if (SMC_CAN_USE_8BIT) \
1077 SMC_outb(x, ioaddr, INT_REG); \
1078 else { \
1079 unsigned long __flags; \
1080 int __mask; \
1081 local_irq_save(__flags); \
1082 __mask = SMC_inw( ioaddr, INT_REG ) & ~0xff; \
1083 SMC_outw( __mask | (x), ioaddr, INT_REG ); \
1084 local_irq_restore(__flags); \
1085 } \
1086 } while (0)
1087
1088#define SMC_GET_INT_MASK() \
1089 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, IM_REG)) \
1090 : (SMC_inw( ioaddr, INT_REG ) >> 8) )
1091
1092#define SMC_SET_INT_MASK(x) \
1093 do { \
1094 if (SMC_CAN_USE_8BIT) \
1095 SMC_outb(x, ioaddr, IM_REG); \
1096 else \
1097 SMC_outw((x) << 8, ioaddr, INT_REG); \
1098 } while (0)
1099
1100#define SMC_CURRENT_BANK() SMC_inw(ioaddr, BANK_SELECT)
1101
1102#define SMC_SELECT_BANK(x) \
1103 do { \
1104 if (SMC_MUST_ALIGN_WRITE) \
1105 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
1106 else \
1107 SMC_outw(x, ioaddr, BANK_SELECT); \
1108 } while (0)
1109
1110#define SMC_GET_BASE() SMC_inw(ioaddr, BASE_REG)
1111
1112#define SMC_SET_BASE(x) SMC_outw(x, ioaddr, BASE_REG)
1113
1114#define SMC_GET_CONFIG() SMC_inw(ioaddr, CONFIG_REG)
1115
1116#define SMC_SET_CONFIG(x) SMC_outw(x, ioaddr, CONFIG_REG)
1117
1118#define SMC_GET_COUNTER() SMC_inw(ioaddr, COUNTER_REG)
1119
1120#define SMC_GET_CTL() SMC_inw(ioaddr, CTL_REG)
1121
1122#define SMC_SET_CTL(x) SMC_outw(x, ioaddr, CTL_REG)
1123
1124#define SMC_GET_MII() SMC_inw(ioaddr, MII_REG)
1125
1126#define SMC_SET_MII(x) SMC_outw(x, ioaddr, MII_REG)
1127
1128#define SMC_GET_MIR() SMC_inw(ioaddr, MIR_REG)
1129
1130#define SMC_SET_MIR(x) SMC_outw(x, ioaddr, MIR_REG)
1131
1132#define SMC_GET_MMU_CMD() SMC_inw(ioaddr, MMU_CMD_REG)
1133
1134#define SMC_SET_MMU_CMD(x) SMC_outw(x, ioaddr, MMU_CMD_REG)
1135
1136#define SMC_GET_FIFO() SMC_inw(ioaddr, FIFO_REG)
1137
1138#define SMC_GET_PTR() SMC_inw(ioaddr, PTR_REG)
1139
1140#define SMC_SET_PTR(x) \
1141 do { \
1142 if (SMC_MUST_ALIGN_WRITE) \
1143 SMC_outl((x)<<16, ioaddr, SMC_REG(4, 2)); \
1144 else \
1145 SMC_outw(x, ioaddr, PTR_REG); \
1da177e4 1146 } while (0)
1da177e4 1147
09779c6d
NP
1148#define SMC_GET_EPH_STATUS() SMC_inw(ioaddr, EPH_STATUS_REG)
1149
1150#define SMC_GET_RCR() SMC_inw(ioaddr, RCR_REG)
1151
1152#define SMC_SET_RCR(x) SMC_outw(x, ioaddr, RCR_REG)
1153
1154#define SMC_GET_REV() SMC_inw(ioaddr, REV_REG)
1155
1156#define SMC_GET_RPC() SMC_inw(ioaddr, RPC_REG)
1157
1158#define SMC_SET_RPC(x) \
1159 do { \
1160 if (SMC_MUST_ALIGN_WRITE) \
1161 SMC_outl((x)<<16, ioaddr, SMC_REG(8, 0)); \
1162 else \
1163 SMC_outw(x, ioaddr, RPC_REG); \
1164 } while (0)
1165
1166#define SMC_GET_TCR() SMC_inw(ioaddr, TCR_REG)
1167
1168#define SMC_SET_TCR(x) SMC_outw(x, ioaddr, TCR_REG)
1da177e4
LT
1169
1170#ifndef SMC_GET_MAC_ADDR
1171#define SMC_GET_MAC_ADDR(addr) \
1172 do { \
1173 unsigned int __v; \
1174 __v = SMC_inw( ioaddr, ADDR0_REG ); \
1175 addr[0] = __v; addr[1] = __v >> 8; \
1176 __v = SMC_inw( ioaddr, ADDR1_REG ); \
1177 addr[2] = __v; addr[3] = __v >> 8; \
1178 __v = SMC_inw( ioaddr, ADDR2_REG ); \
1179 addr[4] = __v; addr[5] = __v >> 8; \
1180 } while (0)
1181#endif
1182
1183#define SMC_SET_MAC_ADDR(addr) \
1184 do { \
1185 SMC_outw( addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG ); \
1186 SMC_outw( addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG ); \
1187 SMC_outw( addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG ); \
1188 } while (0)
1189
1190#define SMC_SET_MCAST(x) \
1191 do { \
1192 const unsigned char *mt = (x); \
1193 SMC_outw( mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1 ); \
1194 SMC_outw( mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2 ); \
1195 SMC_outw( mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3 ); \
1196 SMC_outw( mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4 ); \
1197 } while (0)
1198
1da177e4
LT
1199#define SMC_PUT_PKT_HDR(status, length) \
1200 do { \
09779c6d
NP
1201 if (SMC_CAN_USE_32BIT) \
1202 SMC_outl((status) | (length)<<16, ioaddr, DATA_REG); \
1203 else { \
1204 SMC_outw(status, ioaddr, DATA_REG); \
1205 SMC_outw(length, ioaddr, DATA_REG); \
1206 } \
1da177e4 1207 } while (0)
1da177e4 1208
09779c6d 1209#define SMC_GET_PKT_HDR(status, length) \
1da177e4 1210 do { \
09779c6d
NP
1211 if (SMC_CAN_USE_32BIT) { \
1212 unsigned int __val = SMC_inl(ioaddr, DATA_REG); \
1213 (status) = __val & 0xffff; \
1214 (length) = __val >> 16; \
1215 } else { \
1216 (status) = SMC_inw(ioaddr, DATA_REG); \
1217 (length) = SMC_inw(ioaddr, DATA_REG); \
1da177e4
LT
1218 } \
1219 } while (0)
1da177e4 1220
09779c6d 1221#define SMC_PUSH_DATA(p, l) \
1da177e4 1222 do { \
09779c6d
NP
1223 if (SMC_CAN_USE_32BIT) { \
1224 void *__ptr = (p); \
1225 int __len = (l); \
fbd81976 1226 void __iomem *__ioaddr = ioaddr; \
09779c6d
NP
1227 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1228 __len -= 2; \
1229 SMC_outw(*(u16 *)__ptr, ioaddr, DATA_REG); \
1230 __ptr += 2; \
1231 } \
1232 if (SMC_CAN_USE_DATACS && lp->datacs) \
1233 __ioaddr = lp->datacs; \
1234 SMC_outsl(__ioaddr, DATA_REG, __ptr, __len>>2); \
1235 if (__len & 2) { \
1236 __ptr += (__len & ~3); \
1237 SMC_outw(*((u16 *)__ptr), ioaddr, DATA_REG); \
1238 } \
1239 } else if (SMC_CAN_USE_16BIT) \
1240 SMC_outsw(ioaddr, DATA_REG, p, (l) >> 1); \
1241 else if (SMC_CAN_USE_8BIT) \
1242 SMC_outsb(ioaddr, DATA_REG, p, l); \
1da177e4 1243 } while (0)
1da177e4
LT
1244
1245#define SMC_PULL_DATA(p, l) \
09779c6d
NP
1246 do { \
1247 if (SMC_CAN_USE_32BIT) { \
1248 void *__ptr = (p); \
1249 int __len = (l); \
fbd81976 1250 void __iomem *__ioaddr = ioaddr; \
09779c6d
NP
1251 if ((unsigned long)__ptr & 2) { \
1252 /* \
1253 * We want 32bit alignment here. \
1254 * Since some buses perform a full \
1255 * 32bit fetch even for 16bit data \
1256 * we can't use SMC_inw() here. \
1257 * Back both source (on-chip) and \
1258 * destination pointers of 2 bytes. \
1259 * This is possible since the call to \
1260 * SMC_GET_PKT_HDR() already advanced \
1261 * the source pointer of 4 bytes, and \
1262 * the skb_reserve(skb, 2) advanced \
1263 * the destination pointer of 2 bytes. \
1264 */ \
1265 __ptr -= 2; \
1266 __len += 2; \
1267 SMC_SET_PTR(2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1268 } \
1269 if (SMC_CAN_USE_DATACS && lp->datacs) \
1270 __ioaddr = lp->datacs; \
1da177e4 1271 __len += 2; \
09779c6d
NP
1272 SMC_insl(__ioaddr, DATA_REG, __ptr, __len>>2); \
1273 } else if (SMC_CAN_USE_16BIT) \
1274 SMC_insw(ioaddr, DATA_REG, p, (l) >> 1); \
1275 else if (SMC_CAN_USE_8BIT) \
1276 SMC_insb(ioaddr, DATA_REG, p, l); \
1277 } while (0)
1da177e4
LT
1278
1279#endif /* _SMC91X_H_ */