]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/smc91x.h
Blackfin SPI driver: fix bug SPI DMA incomplete transmission
[mirror_ubuntu-bionic-kernel.git] / drivers / net / smc91x.h
CommitLineData
1da177e4
LT
1/*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, write to the Free Software
22 . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 .
24 . Information contained in this file was obtained from the LAN91C111
25 . manual from SMC. To get a copy, if you really want one, you can find
26 . information under www.smsc.com.
27 .
28 . Authors
29 . Erik Stahlman <erik@vt.edu>
30 . Daris A Nevil <dnevil@snmc.com>
31 . Nicolas Pitre <nico@cam.org>
32 .
33 ---------------------------------------------------------------------------*/
34#ifndef _SMC91X_H_
35#define _SMC91X_H_
36
37
38/*
39 * Define your architecture specific bus configuration parameters here.
40 */
41
42#if defined(CONFIG_ARCH_LUBBOCK)
43
44/* We can only do 16-bit reads and writes in the static memory space. */
45#define SMC_CAN_USE_8BIT 0
46#define SMC_CAN_USE_16BIT 1
47#define SMC_CAN_USE_32BIT 0
48#define SMC_NOWAIT 1
49
50/* The first two address lines aren't connected... */
51#define SMC_IO_SHIFT 2
52
53#define SMC_inw(a, r) readw((a) + (r))
54#define SMC_outw(v, a, r) writew(v, (a) + (r))
55#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
56#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
57
0851a284
WB
58#elif defined(CONFIG_BFIN)
59
60#define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH
61
62# if defined (CONFIG_BFIN561_EZKIT)
63#define SMC_CAN_USE_8BIT 0
64#define SMC_CAN_USE_16BIT 1
65#define SMC_CAN_USE_32BIT 1
66#define SMC_IO_SHIFT 0
67#define SMC_NOWAIT 1
68#define SMC_USE_BFIN_DMA 0
69
70
71#define SMC_inw(a, r) readw((a) + (r))
72#define SMC_outw(v, a, r) writew(v, (a) + (r))
73#define SMC_inl(a, r) readl((a) + (r))
74#define SMC_outl(v, a, r) writel(v, (a) + (r))
75#define SMC_outsl(a, r, p, l) outsl((unsigned long *)((a) + (r)), p, l)
76#define SMC_insl(a, r, p, l) insl ((unsigned long *)((a) + (r)), p, l)
77# else
78#define SMC_CAN_USE_8BIT 0
79#define SMC_CAN_USE_16BIT 1
80#define SMC_CAN_USE_32BIT 0
81#define SMC_IO_SHIFT 0
82#define SMC_NOWAIT 1
83#define SMC_USE_BFIN_DMA 0
84
85
86#define SMC_inw(a, r) readw((a) + (r))
87#define SMC_outw(v, a, r) writew(v, (a) + (r))
88#define SMC_outsw(a, r, p, l) outsw((unsigned long *)((a) + (r)), p, l)
89#define SMC_insw(a, r, p, l) insw ((unsigned long *)((a) + (r)), p, l)
90# endif
91/* check if the mac in reg is valid */
92#define SMC_GET_MAC_ADDR(addr) \
93 do { \
94 unsigned int __v; \
95 __v = SMC_inw(ioaddr, ADDR0_REG); \
96 addr[0] = __v; addr[1] = __v >> 8; \
97 __v = SMC_inw(ioaddr, ADDR1_REG); \
98 addr[2] = __v; addr[3] = __v >> 8; \
99 __v = SMC_inw(ioaddr, ADDR2_REG); \
100 addr[4] = __v; addr[5] = __v >> 8; \
101 if (*(u32 *)(&addr[0]) == 0xFFFFFFFF) { \
102 random_ether_addr(addr); \
103 } \
104 } while (0)
1da177e4
LT
105#elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6)
106
107/* We can only do 16-bit reads and writes in the static memory space. */
108#define SMC_CAN_USE_8BIT 0
109#define SMC_CAN_USE_16BIT 1
110#define SMC_CAN_USE_32BIT 0
111#define SMC_NOWAIT 1
112
113#define SMC_IO_SHIFT 0
114
115#define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r)))
116#define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v)
117#define SMC_insw(a, r, p, l) \
118 do { \
119 unsigned long __port = (a) + (r); \
120 u16 *__p = (u16 *)(p); \
121 int __l = (l); \
122 insw(__port, __p, __l); \
123 while (__l > 0) { \
124 *__p = swab16(*__p); \
125 __p++; \
126 __l--; \
127 } \
128 } while (0)
129#define SMC_outsw(a, r, p, l) \
130 do { \
131 unsigned long __port = (a) + (r); \
132 u16 *__p = (u16 *)(p); \
133 int __l = (l); \
134 while (__l > 0) { \
135 /* Believe it or not, the swab isn't needed. */ \
136 outw( /* swab16 */ (*__p++), __port); \
137 __l--; \
138 } \
139 } while (0)
9ded96f2 140#define SMC_IRQ_FLAGS (0)
1da177e4
LT
141
142#elif defined(CONFIG_SA1100_PLEB)
143/* We can only do 16-bit reads and writes in the static memory space. */
144#define SMC_CAN_USE_8BIT 1
145#define SMC_CAN_USE_16BIT 1
146#define SMC_CAN_USE_32BIT 0
147#define SMC_IO_SHIFT 0
148#define SMC_NOWAIT 1
149
1cf99be5
RK
150#define SMC_inb(a, r) readb((a) + (r))
151#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
152#define SMC_inw(a, r) readw((a) + (r))
153#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
154#define SMC_outb(v, a, r) writeb(v, (a) + (r))
155#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
156#define SMC_outw(v, a, r) writew(v, (a) + (r))
157#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
1da177e4 158
9ded96f2 159#define SMC_IRQ_FLAGS (0)
1da177e4
LT
160
161#elif defined(CONFIG_SA1100_ASSABET)
162
163#include <asm/arch/neponset.h>
164
165/* We can only do 8-bit reads and writes in the static memory space. */
166#define SMC_CAN_USE_8BIT 1
167#define SMC_CAN_USE_16BIT 0
168#define SMC_CAN_USE_32BIT 0
169#define SMC_NOWAIT 1
170
171/* The first two address lines aren't connected... */
172#define SMC_IO_SHIFT 2
173
174#define SMC_inb(a, r) readb((a) + (r))
175#define SMC_outb(v, a, r) writeb(v, (a) + (r))
176#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
177#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
178
b0348b90
LB
179#elif defined(CONFIG_MACH_LOGICPD_PXA270)
180
181#define SMC_CAN_USE_8BIT 0
182#define SMC_CAN_USE_16BIT 1
183#define SMC_CAN_USE_32BIT 0
184#define SMC_IO_SHIFT 0
185#define SMC_NOWAIT 1
b0348b90 186
b0348b90 187#define SMC_inw(a, r) readw((a) + (r))
b0348b90 188#define SMC_outw(v, a, r) writew(v, (a) + (r))
b0348b90
LB
189#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
190#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
191
1da177e4
LT
192#elif defined(CONFIG_ARCH_INNOKOM) || \
193 defined(CONFIG_MACH_MAINSTONE) || \
194 defined(CONFIG_ARCH_PXA_IDP) || \
195 defined(CONFIG_ARCH_RAMSES)
196
197#define SMC_CAN_USE_8BIT 1
198#define SMC_CAN_USE_16BIT 1
199#define SMC_CAN_USE_32BIT 1
200#define SMC_IO_SHIFT 0
201#define SMC_NOWAIT 1
202#define SMC_USE_PXA_DMA 1
203
204#define SMC_inb(a, r) readb((a) + (r))
205#define SMC_inw(a, r) readw((a) + (r))
206#define SMC_inl(a, r) readl((a) + (r))
207#define SMC_outb(v, a, r) writeb(v, (a) + (r))
208#define SMC_outl(v, a, r) writel(v, (a) + (r))
209#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
210#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
211
212/* We actually can't write halfwords properly if not word aligned */
213static inline void
eb1d6988 214SMC_outw(u16 val, void __iomem *ioaddr, int reg)
1da177e4
LT
215{
216 if (reg & 2) {
217 unsigned int v = val << 16;
218 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
219 writel(v, ioaddr + (reg & ~2));
220 } else {
221 writew(val, ioaddr + reg);
222 }
223}
224
225#elif defined(CONFIG_ARCH_OMAP)
226
227/* We can only do 16-bit reads and writes in the static memory space. */
228#define SMC_CAN_USE_8BIT 0
229#define SMC_CAN_USE_16BIT 1
230#define SMC_CAN_USE_32BIT 0
231#define SMC_IO_SHIFT 0
232#define SMC_NOWAIT 1
233
1da177e4
LT
234#define SMC_inw(a, r) readw((a) + (r))
235#define SMC_outw(v, a, r) writew(v, (a) + (r))
236#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
237#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
1da177e4 238
5f13e7ec
DB
239#include <asm/mach-types.h>
240#include <asm/arch/cpu.h>
241
9ded96f2 242#define SMC_IRQ_FLAGS (( \
5f13e7ec
DB
243 machine_is_omap_h2() \
244 || machine_is_omap_h3() \
f1b7c5f4 245 || machine_is_omap_h4() \
af44f5bf 246 || (machine_is_omap_innovator() && !cpu_is_omap1510()) \
1fb9df5d 247 ) ? IRQF_TRIGGER_FALLING : IRQF_TRIGGER_RISING)
5f13e7ec
DB
248
249
1da177e4
LT
250#elif defined(CONFIG_SH_SH4202_MICRODEV)
251
252#define SMC_CAN_USE_8BIT 0
253#define SMC_CAN_USE_16BIT 1
254#define SMC_CAN_USE_32BIT 0
255
256#define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
257#define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
258#define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
259#define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
260#define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
261#define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
262#define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
263#define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
264#define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
265#define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
266
9ded96f2 267#define SMC_IRQ_FLAGS (0)
1da177e4
LT
268
269#elif defined(CONFIG_ISA)
270
271#define SMC_CAN_USE_8BIT 1
272#define SMC_CAN_USE_16BIT 1
273#define SMC_CAN_USE_32BIT 0
274
275#define SMC_inb(a, r) inb((a) + (r))
276#define SMC_inw(a, r) inw((a) + (r))
277#define SMC_outb(v, a, r) outb(v, (a) + (r))
278#define SMC_outw(v, a, r) outw(v, (a) + (r))
279#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
280#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
281
5125ed91
NI
282#elif defined(CONFIG_SUPERH)
283
6026ee67 284#ifdef CONFIG_SOLUTION_ENGINE
5125ed91
NI
285#define SMC_CAN_USE_8BIT 0
286#define SMC_CAN_USE_16BIT 1
287#define SMC_CAN_USE_32BIT 0
288#define SMC_IO_SHIFT 0
289#define SMC_NOWAIT 1
290
5125ed91 291#define SMC_inw(a, r) inw((a) + (r))
5125ed91
NI
292#define SMC_outw(v, a, r) outw(v, (a) + (r))
293#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
294#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
295
296#else /* BOARDS */
297
298#define SMC_CAN_USE_8BIT 1
299#define SMC_CAN_USE_16BIT 1
300#define SMC_CAN_USE_32BIT 1
301
302#define SMC_inb(a, r) inb((a) + (r))
303#define SMC_inw(a, r) inw((a) + (r))
304#define SMC_outb(v, a, r) outb(v, (a) + (r))
305#define SMC_outw(v, a, r) outw(v, (a) + (r))
306#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
307#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
308
309#endif /* BOARDS */
310
311#define set_irq_type(irq, type) do {} while (0)
312
1da177e4
LT
313#elif defined(CONFIG_M32R)
314
315#define SMC_CAN_USE_8BIT 0
316#define SMC_CAN_USE_16BIT 1
317#define SMC_CAN_USE_32BIT 0
318
59dc76a4 319#define SMC_inb(a, r) inb(((u32)a) + (r))
f3ac9fbf
HT
320#define SMC_inw(a, r) inw(((u32)a) + (r))
321#define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
322#define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
323#define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
324#define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
1da177e4 325
9ded96f2 326#define SMC_IRQ_FLAGS (0)
1da177e4
LT
327
328#define RPC_LSA_DEFAULT RPC_LED_TX_RX
329#define RPC_LSB_DEFAULT RPC_LED_100_10
330
d4adcffb
MS
331#elif defined(CONFIG_MACH_LPD79520) \
332 || defined(CONFIG_MACH_LPD7A400) \
333 || defined(CONFIG_MACH_LPD7A404)
1da177e4 334
d4adcffb
MS
335/* The LPD7X_IOBARRIER is necessary to overcome a mismatch between the
336 * way that the CPU handles chip selects and the way that the SMC chip
337 * expects the chip select to operate. Refer to
1da177e4 338 * Documentation/arm/Sharp-LH/IOBarrier for details. The read from
d4adcffb
MS
339 * IOBARRIER is a byte, in order that we read the least-common
340 * denominator. It would be wasteful to read 32 bits from an 8-bit
341 * accessible region.
1da177e4
LT
342 *
343 * There is no explicit protection against interrupts intervening
344 * between the writew and the IOBARRIER. In SMC ISR there is a
345 * preamble that performs an IOBARRIER in the extremely unlikely event
346 * that the driver interrupts itself between a writew to the chip an
347 * the IOBARRIER that follows *and* the cache is large enough that the
348 * first off-chip access while handing the interrupt is to the SMC
349 * chip. Other devices in the same address space as the SMC chip must
350 * be aware of the potential for trouble and perform a similar
351 * IOBARRIER on entry to their ISR.
352 */
353
354#include <asm/arch/constants.h> /* IOBARRIER_VIRT */
355
356#define SMC_CAN_USE_8BIT 0
357#define SMC_CAN_USE_16BIT 1
358#define SMC_CAN_USE_32BIT 0
359#define SMC_NOWAIT 0
d4adcffb 360#define LPD7X_IOBARRIER readb (IOBARRIER_VIRT)
1da177e4 361
d4adcffb
MS
362#define SMC_inw(a,r)\
363 ({ unsigned short v = readw ((void*) ((a) + (r))); LPD7X_IOBARRIER; v; })
364#define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7X_IOBARRIER; })
1da177e4 365
d4adcffb
MS
366#define SMC_insw LPD7_SMC_insw
367static inline void LPD7_SMC_insw (unsigned char* a, int r,
368 unsigned char* p, int l)
369{
370 unsigned short* ps = (unsigned short*) p;
371 while (l-- > 0) {
372 *ps++ = readw (a + r);
373 LPD7X_IOBARRIER;
374 }
375}
09779c6d 376
d4adcffb
MS
377#define SMC_outsw LPD7_SMC_outsw
378static inline void LPD7_SMC_outsw (unsigned char* a, int r,
379 unsigned char* p, int l)
1da177e4
LT
380{
381 unsigned short* ps = (unsigned short*) p;
382 while (l-- > 0) {
383 writew (*ps++, a + r);
d4adcffb 384 LPD7X_IOBARRIER;
1da177e4
LT
385 }
386}
387
d4adcffb 388#define SMC_INTERRUPT_PREAMBLE LPD7X_IOBARRIER
1da177e4
LT
389
390#define RPC_LSA_DEFAULT RPC_LED_TX_RX
391#define RPC_LSB_DEFAULT RPC_LED_100_10
392
55793455
PP
393#elif defined(CONFIG_SOC_AU1X00)
394
395#include <au1xxx.h>
396
397/* We can only do 16-bit reads and writes in the static memory space. */
398#define SMC_CAN_USE_8BIT 0
399#define SMC_CAN_USE_16BIT 1
400#define SMC_CAN_USE_32BIT 0
401#define SMC_IO_SHIFT 0
402#define SMC_NOWAIT 1
403
404#define SMC_inw(a, r) au_readw((unsigned long)((a) + (r)))
405#define SMC_insw(a, r, p, l) \
406 do { \
407 unsigned long _a = (unsigned long)((a) + (r)); \
408 int _l = (l); \
409 u16 *_p = (u16 *)(p); \
410 while (_l-- > 0) \
411 *_p++ = au_readw(_a); \
412 } while(0)
413#define SMC_outw(v, a, r) au_writew(v, (unsigned long)((a) + (r)))
414#define SMC_outsw(a, r, p, l) \
415 do { \
416 unsigned long _a = (unsigned long)((a) + (r)); \
417 int _l = (l); \
418 const u16 *_p = (const u16 *)(p); \
419 while (_l-- > 0) \
420 au_writew(*_p++ , _a); \
421 } while(0)
422
9ded96f2 423#define SMC_IRQ_FLAGS (0)
33fee56a
DS
424
425#elif defined(CONFIG_ARCH_VERSATILE)
426
427#define SMC_CAN_USE_8BIT 1
428#define SMC_CAN_USE_16BIT 1
429#define SMC_CAN_USE_32BIT 1
430#define SMC_NOWAIT 1
431
432#define SMC_inb(a, r) readb((a) + (r))
433#define SMC_inw(a, r) readw((a) + (r))
434#define SMC_inl(a, r) readl((a) + (r))
435#define SMC_outb(v, a, r) writeb(v, (a) + (r))
436#define SMC_outw(v, a, r) writew(v, (a) + (r))
437#define SMC_outl(v, a, r) writel(v, (a) + (r))
438#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
439#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
440
441#define SMC_IRQ_FLAGS (0)
55793455 442
1da177e4
LT
443#else
444
445#define SMC_CAN_USE_8BIT 1
446#define SMC_CAN_USE_16BIT 1
447#define SMC_CAN_USE_32BIT 1
448#define SMC_NOWAIT 1
449
450#define SMC_inb(a, r) readb((a) + (r))
451#define SMC_inw(a, r) readw((a) + (r))
452#define SMC_inl(a, r) readl((a) + (r))
453#define SMC_outb(v, a, r) writeb(v, (a) + (r))
454#define SMC_outw(v, a, r) writew(v, (a) + (r))
455#define SMC_outl(v, a, r) writel(v, (a) + (r))
456#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
457#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
458
459#define RPC_LSA_DEFAULT RPC_LED_100_10
460#define RPC_LSB_DEFAULT RPC_LED_TX_RX
461
462#endif
463
1da177e4
LT
464#ifdef SMC_USE_PXA_DMA
465/*
466 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
467 * always happening in irq context so no need to worry about races. TX is
468 * different and probably not worth it for that reason, and not as critical
469 * as RX which can overrun memory and lose packets.
470 */
471#include <linux/dma-mapping.h>
472#include <asm/dma.h>
473#include <asm/arch/pxa-regs.h>
474
475#ifdef SMC_insl
476#undef SMC_insl
477#define SMC_insl(a, r, p, l) \
478 smc_pxa_dma_insl(a, lp->physaddr, r, dev->dma, p, l)
479static inline void
eb1d6988 480smc_pxa_dma_insl(void __iomem *ioaddr, u_long physaddr, int reg, int dma,
1da177e4
LT
481 u_char *buf, int len)
482{
483 dma_addr_t dmabuf;
484
485 /* fallback if no DMA available */
486 if (dma == (unsigned char)-1) {
487 readsl(ioaddr + reg, buf, len);
488 return;
489 }
490
491 /* 64 bit alignment is required for memory to memory DMA */
492 if ((long)buf & 4) {
493 *((u32 *)buf) = SMC_inl(ioaddr, reg);
494 buf += 4;
495 len--;
496 }
497
498 len *= 4;
499 dmabuf = dma_map_single(NULL, buf, len, DMA_FROM_DEVICE);
500 DCSR(dma) = DCSR_NODESC;
501 DTADR(dma) = dmabuf;
502 DSADR(dma) = physaddr + reg;
503 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
504 DCMD_WIDTH4 | (DCMD_LENGTH & len));
505 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
506 while (!(DCSR(dma) & DCSR_STOPSTATE))
507 cpu_relax();
508 DCSR(dma) = 0;
509 dma_unmap_single(NULL, dmabuf, len, DMA_FROM_DEVICE);
510}
511#endif
512
513#ifdef SMC_insw
514#undef SMC_insw
515#define SMC_insw(a, r, p, l) \
516 smc_pxa_dma_insw(a, lp->physaddr, r, dev->dma, p, l)
517static inline void
eb1d6988 518smc_pxa_dma_insw(void __iomem *ioaddr, u_long physaddr, int reg, int dma,
1da177e4
LT
519 u_char *buf, int len)
520{
521 dma_addr_t dmabuf;
522
523 /* fallback if no DMA available */
524 if (dma == (unsigned char)-1) {
525 readsw(ioaddr + reg, buf, len);
526 return;
527 }
528
529 /* 64 bit alignment is required for memory to memory DMA */
530 while ((long)buf & 6) {
531 *((u16 *)buf) = SMC_inw(ioaddr, reg);
532 buf += 2;
533 len--;
534 }
535
536 len *= 2;
537 dmabuf = dma_map_single(NULL, buf, len, DMA_FROM_DEVICE);
538 DCSR(dma) = DCSR_NODESC;
539 DTADR(dma) = dmabuf;
540 DSADR(dma) = physaddr + reg;
541 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
542 DCMD_WIDTH2 | (DCMD_LENGTH & len));
543 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
544 while (!(DCSR(dma) & DCSR_STOPSTATE))
545 cpu_relax();
546 DCSR(dma) = 0;
547 dma_unmap_single(NULL, dmabuf, len, DMA_FROM_DEVICE);
548}
549#endif
550
551static void
7d12e780 552smc_pxa_dma_irq(int dma, void *dummy)
1da177e4
LT
553{
554 DCSR(dma) = 0;
555}
556#endif /* SMC_USE_PXA_DMA */
557
558
09779c6d
NP
559/*
560 * Everything a particular hardware setup needs should have been defined
561 * at this point. Add stubs for the undefined cases, mainly to avoid
562 * compilation warnings since they'll be optimized away, or to prevent buggy
563 * use of them.
564 */
565
566#if ! SMC_CAN_USE_32BIT
567#define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
568#define SMC_outl(x, ioaddr, reg) BUG()
569#define SMC_insl(a, r, p, l) BUG()
570#define SMC_outsl(a, r, p, l) BUG()
571#endif
572
573#if !defined(SMC_insl) || !defined(SMC_outsl)
574#define SMC_insl(a, r, p, l) BUG()
575#define SMC_outsl(a, r, p, l) BUG()
576#endif
577
578#if ! SMC_CAN_USE_16BIT
579
580/*
581 * Any 16-bit access is performed with two 8-bit accesses if the hardware
582 * can't do it directly. Most registers are 16-bit so those are mandatory.
583 */
584#define SMC_outw(x, ioaddr, reg) \
585 do { \
586 unsigned int __val16 = (x); \
587 SMC_outb( __val16, ioaddr, reg ); \
588 SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
589 } while (0)
590#define SMC_inw(ioaddr, reg) \
591 ({ \
592 unsigned int __val16; \
593 __val16 = SMC_inb( ioaddr, reg ); \
594 __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
595 __val16; \
596 })
597
598#define SMC_insw(a, r, p, l) BUG()
599#define SMC_outsw(a, r, p, l) BUG()
600
601#endif
602
603#if !defined(SMC_insw) || !defined(SMC_outsw)
604#define SMC_insw(a, r, p, l) BUG()
605#define SMC_outsw(a, r, p, l) BUG()
606#endif
607
608#if ! SMC_CAN_USE_8BIT
609#define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
610#define SMC_outb(x, ioaddr, reg) BUG()
611#define SMC_insb(a, r, p, l) BUG()
612#define SMC_outsb(a, r, p, l) BUG()
613#endif
614
615#if !defined(SMC_insb) || !defined(SMC_outsb)
616#define SMC_insb(a, r, p, l) BUG()
617#define SMC_outsb(a, r, p, l) BUG()
618#endif
619
620#ifndef SMC_CAN_USE_DATACS
621#define SMC_CAN_USE_DATACS 0
622#endif
623
1da177e4
LT
624#ifndef SMC_IO_SHIFT
625#define SMC_IO_SHIFT 0
626#endif
09779c6d
NP
627
628#ifndef SMC_IRQ_FLAGS
1fb9df5d 629#define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
09779c6d
NP
630#endif
631
632#ifndef SMC_INTERRUPT_PREAMBLE
633#define SMC_INTERRUPT_PREAMBLE
634#endif
635
636
637/* Because of bank switching, the LAN91x uses only 16 I/O ports */
1da177e4
LT
638#define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
639#define SMC_DATA_EXTENT (4)
640
641/*
642 . Bank Select Register:
643 .
644 . yyyy yyyy 0000 00xx
645 . xx = bank number
646 . yyyy yyyy = 0x33, for identification purposes.
647*/
648#define BANK_SELECT (14 << SMC_IO_SHIFT)
649
650
651// Transmit Control Register
652/* BANK 0 */
653#define TCR_REG SMC_REG(0x0000, 0)
654#define TCR_ENABLE 0x0001 // When 1 we can transmit
655#define TCR_LOOP 0x0002 // Controls output pin LBK
656#define TCR_FORCOL 0x0004 // When 1 will force a collision
657#define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
658#define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
659#define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
660#define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
661#define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
662#define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
663#define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
664
665#define TCR_CLEAR 0 /* do NOTHING */
666/* the default settings for the TCR register : */
667#define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
668
669
670// EPH Status Register
671/* BANK 0 */
672#define EPH_STATUS_REG SMC_REG(0x0002, 0)
673#define ES_TX_SUC 0x0001 // Last TX was successful
674#define ES_SNGL_COL 0x0002 // Single collision detected for last tx
675#define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
676#define ES_LTX_MULT 0x0008 // Last tx was a multicast
677#define ES_16COL 0x0010 // 16 Collisions Reached
678#define ES_SQET 0x0020 // Signal Quality Error Test
679#define ES_LTXBRD 0x0040 // Last tx was a broadcast
680#define ES_TXDEFR 0x0080 // Transmit Deferred
681#define ES_LATCOL 0x0200 // Late collision detected on last tx
682#define ES_LOSTCARR 0x0400 // Lost Carrier Sense
683#define ES_EXC_DEF 0x0800 // Excessive Deferral
684#define ES_CTR_ROL 0x1000 // Counter Roll Over indication
685#define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
686#define ES_TXUNRN 0x8000 // Tx Underrun
687
688
689// Receive Control Register
690/* BANK 0 */
691#define RCR_REG SMC_REG(0x0004, 0)
692#define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
693#define RCR_PRMS 0x0002 // Enable promiscuous mode
694#define RCR_ALMUL 0x0004 // When set accepts all multicast frames
695#define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
696#define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
697#define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
698#define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
699#define RCR_SOFTRST 0x8000 // resets the chip
700
701/* the normal settings for the RCR register : */
702#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
703#define RCR_CLEAR 0x0 // set it to a base state
704
705
706// Counter Register
707/* BANK 0 */
708#define COUNTER_REG SMC_REG(0x0006, 0)
709
710
711// Memory Information Register
712/* BANK 0 */
713#define MIR_REG SMC_REG(0x0008, 0)
714
715
716// Receive/Phy Control Register
717/* BANK 0 */
718#define RPC_REG SMC_REG(0x000A, 0)
719#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
720#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
721#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
722#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
723#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
724#define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
725#define RPC_LED_RES (0x01) // LED = Reserved
726#define RPC_LED_10 (0x02) // LED = 10Mbps link detect
727#define RPC_LED_FD (0x03) // LED = Full Duplex Mode
728#define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
729#define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
730#define RPC_LED_TX (0x06) // LED = TX packet occurred
731#define RPC_LED_RX (0x07) // LED = RX packet occurred
732
733#ifndef RPC_LSA_DEFAULT
734#define RPC_LSA_DEFAULT RPC_LED_100
735#endif
736#ifndef RPC_LSB_DEFAULT
737#define RPC_LSB_DEFAULT RPC_LED_FD
738#endif
739
740#define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
741
742
743/* Bank 0 0x0C is reserved */
744
745// Bank Select Register
746/* All Banks */
747#define BSR_REG 0x000E
748
749
750// Configuration Reg
751/* BANK 1 */
752#define CONFIG_REG SMC_REG(0x0000, 1)
753#define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
754#define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
755#define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
756#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
757
758// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
759#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
760
761
762// Base Address Register
763/* BANK 1 */
764#define BASE_REG SMC_REG(0x0002, 1)
765
766
767// Individual Address Registers
768/* BANK 1 */
769#define ADDR0_REG SMC_REG(0x0004, 1)
770#define ADDR1_REG SMC_REG(0x0006, 1)
771#define ADDR2_REG SMC_REG(0x0008, 1)
772
773
774// General Purpose Register
775/* BANK 1 */
776#define GP_REG SMC_REG(0x000A, 1)
777
778
779// Control Register
780/* BANK 1 */
781#define CTL_REG SMC_REG(0x000C, 1)
782#define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
783#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
784#define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
785#define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
786#define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
787#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
788#define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
789#define CTL_STORE 0x0001 // When set stores registers into EEPROM
790
791
792// MMU Command Register
793/* BANK 2 */
794#define MMU_CMD_REG SMC_REG(0x0000, 2)
795#define MC_BUSY 1 // When 1 the last release has not completed
796#define MC_NOP (0<<5) // No Op
797#define MC_ALLOC (1<<5) // OR with number of 256 byte packets
798#define MC_RESET (2<<5) // Reset MMU to initial state
799#define MC_REMOVE (3<<5) // Remove the current rx packet
800#define MC_RELEASE (4<<5) // Remove and release the current rx packet
801#define MC_FREEPKT (5<<5) // Release packet in PNR register
802#define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
803#define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
804
805
806// Packet Number Register
807/* BANK 2 */
808#define PN_REG SMC_REG(0x0002, 2)
809
810
811// Allocation Result Register
812/* BANK 2 */
813#define AR_REG SMC_REG(0x0003, 2)
814#define AR_FAILED 0x80 // Alocation Failed
815
816
817// TX FIFO Ports Register
818/* BANK 2 */
819#define TXFIFO_REG SMC_REG(0x0004, 2)
820#define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
821
822// RX FIFO Ports Register
823/* BANK 2 */
824#define RXFIFO_REG SMC_REG(0x0005, 2)
825#define RXFIFO_REMPTY 0x80 // RX FIFO Empty
826
827#define FIFO_REG SMC_REG(0x0004, 2)
828
829// Pointer Register
830/* BANK 2 */
831#define PTR_REG SMC_REG(0x0006, 2)
832#define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
833#define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
834#define PTR_READ 0x2000 // When 1 the operation is a read
835
836
837// Data Register
838/* BANK 2 */
839#define DATA_REG SMC_REG(0x0008, 2)
840
841
842// Interrupt Status/Acknowledge Register
843/* BANK 2 */
844#define INT_REG SMC_REG(0x000C, 2)
845
846
847// Interrupt Mask Register
848/* BANK 2 */
849#define IM_REG SMC_REG(0x000D, 2)
850#define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
851#define IM_ERCV_INT 0x40 // Early Receive Interrupt
852#define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
853#define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
854#define IM_ALLOC_INT 0x08 // Set when allocation request is completed
855#define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
856#define IM_TX_INT 0x02 // Transmit Interrupt
857#define IM_RCV_INT 0x01 // Receive Interrupt
858
859
860// Multicast Table Registers
861/* BANK 3 */
862#define MCAST_REG1 SMC_REG(0x0000, 3)
863#define MCAST_REG2 SMC_REG(0x0002, 3)
864#define MCAST_REG3 SMC_REG(0x0004, 3)
865#define MCAST_REG4 SMC_REG(0x0006, 3)
866
867
868// Management Interface Register (MII)
869/* BANK 3 */
870#define MII_REG SMC_REG(0x0008, 3)
871#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
872#define MII_MDOE 0x0008 // MII Output Enable
873#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
874#define MII_MDI 0x0002 // MII Input, pin MDI
875#define MII_MDO 0x0001 // MII Output, pin MDO
876
877
878// Revision Register
879/* BANK 3 */
880/* ( hi: chip id low: rev # ) */
881#define REV_REG SMC_REG(0x000A, 3)
882
883
884// Early RCV Register
885/* BANK 3 */
886/* this is NOT on SMC9192 */
887#define ERCV_REG SMC_REG(0x000C, 3)
888#define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
889#define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
890
891
892// External Register
893/* BANK 7 */
894#define EXT_REG SMC_REG(0x0000, 7)
895
896
897#define CHIP_9192 3
898#define CHIP_9194 4
899#define CHIP_9195 5
900#define CHIP_9196 6
901#define CHIP_91100 7
902#define CHIP_91100FD 8
903#define CHIP_91111FD 9
904
905static const char * chip_ids[ 16 ] = {
906 NULL, NULL, NULL,
907 /* 3 */ "SMC91C90/91C92",
908 /* 4 */ "SMC91C94",
909 /* 5 */ "SMC91C95",
910 /* 6 */ "SMC91C96",
911 /* 7 */ "SMC91C100",
912 /* 8 */ "SMC91C100FD",
913 /* 9 */ "SMC91C11xFD",
914 NULL, NULL, NULL,
915 NULL, NULL, NULL};
916
917
1da177e4
LT
918/*
919 . Receive status bits
920*/
921#define RS_ALGNERR 0x8000
922#define RS_BRODCAST 0x4000
923#define RS_BADCRC 0x2000
924#define RS_ODDFRAME 0x1000
925#define RS_TOOLONG 0x0800
926#define RS_TOOSHORT 0x0400
927#define RS_MULTICAST 0x0001
928#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
929
930
931/*
932 * PHY IDs
933 * LAN83C183 == LAN91C111 Internal PHY
934 */
935#define PHY_LAN83C183 0x0016f840
936#define PHY_LAN83C180 0x02821c50
937
938/*
939 * PHY Register Addresses (LAN91C111 Internal PHY)
940 *
941 * Generic PHY registers can be found in <linux/mii.h>
942 *
943 * These phy registers are specific to our on-board phy.
944 */
945
946// PHY Configuration Register 1
947#define PHY_CFG1_REG 0x10
948#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
949#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
950#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
951#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
952#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
953#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
954#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
955#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
956#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
957#define PHY_CFG1_TLVL_MASK 0x003C
958#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
959
960
961// PHY Configuration Register 2
962#define PHY_CFG2_REG 0x11
963#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
964#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
965#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
966#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
967
968// PHY Status Output (and Interrupt status) Register
969#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
970#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
971#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
972#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
973#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
974#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
975#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
976#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
977#define PHY_INT_JAB 0x0100 // 1=Jabber detected
978#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
979#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
980
981// PHY Interrupt/Status Mask Register
982#define PHY_MASK_REG 0x13 // Interrupt Mask
983// Uses the same bit definitions as PHY_INT_REG
984
985
986/*
987 * SMC91C96 ethernet config and status registers.
988 * These are in the "attribute" space.
989 */
990#define ECOR 0x8000
991#define ECOR_RESET 0x80
992#define ECOR_LEVEL_IRQ 0x40
993#define ECOR_WR_ATTRIB 0x04
994#define ECOR_ENABLE 0x01
995
996#define ECSR 0x8002
997#define ECSR_IOIS8 0x20
998#define ECSR_PWRDWN 0x04
999#define ECSR_INT 0x02
1000
1001#define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
1002
1003
1004/*
1005 * Macros to abstract register access according to the data bus
1006 * capabilities. Please use those and not the in/out primitives.
1007 * Note: the following macros do *not* select the bank -- this must
1008 * be done separately as needed in the main code. The SMC_REG() macro
1009 * only uses the bank argument for debugging purposes (when enabled).
09779c6d
NP
1010 *
1011 * Note: despite inline functions being safer, everything leading to this
1012 * should preferably be macros to let BUG() display the line number in
1013 * the core source code since we're interested in the top call site
1014 * not in any inline function location.
1da177e4
LT
1015 */
1016
1017#if SMC_DEBUG > 0
1018#define SMC_REG(reg, bank) \
1019 ({ \
1020 int __b = SMC_CURRENT_BANK(); \
1021 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
1022 printk( "%s: bank reg screwed (0x%04x)\n", \
1023 CARDNAME, __b ); \
1024 BUG(); \
1025 } \
1026 reg<<SMC_IO_SHIFT; \
1027 })
1028#else
1029#define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT)
1030#endif
1031
09779c6d
NP
1032/*
1033 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
1034 * aligned to a 32 bit boundary. I tell you that does exist!
1035 * Fortunately the affected register accesses can be easily worked around
1036 * since we can write zeroes to the preceeding 16 bits without adverse
1037 * effects and use a 32-bit access.
1038 *
1039 * Enforce it on any 32-bit capable setup for now.
1040 */
1041#define SMC_MUST_ALIGN_WRITE SMC_CAN_USE_32BIT
1042
1043#define SMC_GET_PN() \
1044 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, PN_REG)) \
1045 : (SMC_inw(ioaddr, PN_REG) & 0xFF) )
1046
1047#define SMC_SET_PN(x) \
1048 do { \
1049 if (SMC_MUST_ALIGN_WRITE) \
1050 SMC_outl((x)<<16, ioaddr, SMC_REG(0, 2)); \
1051 else if (SMC_CAN_USE_8BIT) \
1052 SMC_outb(x, ioaddr, PN_REG); \
1053 else \
1054 SMC_outw(x, ioaddr, PN_REG); \
1055 } while (0)
1056
1057#define SMC_GET_AR() \
1058 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, AR_REG)) \
1059 : (SMC_inw(ioaddr, PN_REG) >> 8) )
1060
1061#define SMC_GET_TXFIFO() \
1062 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, TXFIFO_REG)) \
1063 : (SMC_inw(ioaddr, TXFIFO_REG) & 0xFF) )
1064
1065#define SMC_GET_RXFIFO() \
1066 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, RXFIFO_REG)) \
1067 : (SMC_inw(ioaddr, TXFIFO_REG) >> 8) )
1068
1069#define SMC_GET_INT() \
1070 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, INT_REG)) \
1071 : (SMC_inw(ioaddr, INT_REG) & 0xFF) )
1072
1da177e4
LT
1073#define SMC_ACK_INT(x) \
1074 do { \
09779c6d
NP
1075 if (SMC_CAN_USE_8BIT) \
1076 SMC_outb(x, ioaddr, INT_REG); \
1077 else { \
1078 unsigned long __flags; \
1079 int __mask; \
1080 local_irq_save(__flags); \
1081 __mask = SMC_inw( ioaddr, INT_REG ) & ~0xff; \
1082 SMC_outw( __mask | (x), ioaddr, INT_REG ); \
1083 local_irq_restore(__flags); \
1084 } \
1085 } while (0)
1086
1087#define SMC_GET_INT_MASK() \
1088 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, IM_REG)) \
1089 : (SMC_inw( ioaddr, INT_REG ) >> 8) )
1090
1091#define SMC_SET_INT_MASK(x) \
1092 do { \
1093 if (SMC_CAN_USE_8BIT) \
1094 SMC_outb(x, ioaddr, IM_REG); \
1095 else \
1096 SMC_outw((x) << 8, ioaddr, INT_REG); \
1097 } while (0)
1098
1099#define SMC_CURRENT_BANK() SMC_inw(ioaddr, BANK_SELECT)
1100
1101#define SMC_SELECT_BANK(x) \
1102 do { \
1103 if (SMC_MUST_ALIGN_WRITE) \
1104 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
1105 else \
1106 SMC_outw(x, ioaddr, BANK_SELECT); \
1107 } while (0)
1108
1109#define SMC_GET_BASE() SMC_inw(ioaddr, BASE_REG)
1110
1111#define SMC_SET_BASE(x) SMC_outw(x, ioaddr, BASE_REG)
1112
1113#define SMC_GET_CONFIG() SMC_inw(ioaddr, CONFIG_REG)
1114
1115#define SMC_SET_CONFIG(x) SMC_outw(x, ioaddr, CONFIG_REG)
1116
1117#define SMC_GET_COUNTER() SMC_inw(ioaddr, COUNTER_REG)
1118
1119#define SMC_GET_CTL() SMC_inw(ioaddr, CTL_REG)
1120
1121#define SMC_SET_CTL(x) SMC_outw(x, ioaddr, CTL_REG)
1122
1123#define SMC_GET_MII() SMC_inw(ioaddr, MII_REG)
1124
1125#define SMC_SET_MII(x) SMC_outw(x, ioaddr, MII_REG)
1126
1127#define SMC_GET_MIR() SMC_inw(ioaddr, MIR_REG)
1128
1129#define SMC_SET_MIR(x) SMC_outw(x, ioaddr, MIR_REG)
1130
1131#define SMC_GET_MMU_CMD() SMC_inw(ioaddr, MMU_CMD_REG)
1132
1133#define SMC_SET_MMU_CMD(x) SMC_outw(x, ioaddr, MMU_CMD_REG)
1134
1135#define SMC_GET_FIFO() SMC_inw(ioaddr, FIFO_REG)
1136
1137#define SMC_GET_PTR() SMC_inw(ioaddr, PTR_REG)
1138
1139#define SMC_SET_PTR(x) \
1140 do { \
1141 if (SMC_MUST_ALIGN_WRITE) \
1142 SMC_outl((x)<<16, ioaddr, SMC_REG(4, 2)); \
1143 else \
1144 SMC_outw(x, ioaddr, PTR_REG); \
1da177e4 1145 } while (0)
1da177e4 1146
09779c6d
NP
1147#define SMC_GET_EPH_STATUS() SMC_inw(ioaddr, EPH_STATUS_REG)
1148
1149#define SMC_GET_RCR() SMC_inw(ioaddr, RCR_REG)
1150
1151#define SMC_SET_RCR(x) SMC_outw(x, ioaddr, RCR_REG)
1152
1153#define SMC_GET_REV() SMC_inw(ioaddr, REV_REG)
1154
1155#define SMC_GET_RPC() SMC_inw(ioaddr, RPC_REG)
1156
1157#define SMC_SET_RPC(x) \
1158 do { \
1159 if (SMC_MUST_ALIGN_WRITE) \
1160 SMC_outl((x)<<16, ioaddr, SMC_REG(8, 0)); \
1161 else \
1162 SMC_outw(x, ioaddr, RPC_REG); \
1163 } while (0)
1164
1165#define SMC_GET_TCR() SMC_inw(ioaddr, TCR_REG)
1166
1167#define SMC_SET_TCR(x) SMC_outw(x, ioaddr, TCR_REG)
1da177e4
LT
1168
1169#ifndef SMC_GET_MAC_ADDR
1170#define SMC_GET_MAC_ADDR(addr) \
1171 do { \
1172 unsigned int __v; \
1173 __v = SMC_inw( ioaddr, ADDR0_REG ); \
1174 addr[0] = __v; addr[1] = __v >> 8; \
1175 __v = SMC_inw( ioaddr, ADDR1_REG ); \
1176 addr[2] = __v; addr[3] = __v >> 8; \
1177 __v = SMC_inw( ioaddr, ADDR2_REG ); \
1178 addr[4] = __v; addr[5] = __v >> 8; \
1179 } while (0)
1180#endif
1181
1182#define SMC_SET_MAC_ADDR(addr) \
1183 do { \
1184 SMC_outw( addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG ); \
1185 SMC_outw( addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG ); \
1186 SMC_outw( addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG ); \
1187 } while (0)
1188
1189#define SMC_SET_MCAST(x) \
1190 do { \
1191 const unsigned char *mt = (x); \
1192 SMC_outw( mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1 ); \
1193 SMC_outw( mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2 ); \
1194 SMC_outw( mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3 ); \
1195 SMC_outw( mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4 ); \
1196 } while (0)
1197
1da177e4
LT
1198#define SMC_PUT_PKT_HDR(status, length) \
1199 do { \
09779c6d
NP
1200 if (SMC_CAN_USE_32BIT) \
1201 SMC_outl((status) | (length)<<16, ioaddr, DATA_REG); \
1202 else { \
1203 SMC_outw(status, ioaddr, DATA_REG); \
1204 SMC_outw(length, ioaddr, DATA_REG); \
1205 } \
1da177e4 1206 } while (0)
1da177e4 1207
09779c6d 1208#define SMC_GET_PKT_HDR(status, length) \
1da177e4 1209 do { \
09779c6d
NP
1210 if (SMC_CAN_USE_32BIT) { \
1211 unsigned int __val = SMC_inl(ioaddr, DATA_REG); \
1212 (status) = __val & 0xffff; \
1213 (length) = __val >> 16; \
1214 } else { \
1215 (status) = SMC_inw(ioaddr, DATA_REG); \
1216 (length) = SMC_inw(ioaddr, DATA_REG); \
1da177e4
LT
1217 } \
1218 } while (0)
1da177e4 1219
09779c6d 1220#define SMC_PUSH_DATA(p, l) \
1da177e4 1221 do { \
09779c6d
NP
1222 if (SMC_CAN_USE_32BIT) { \
1223 void *__ptr = (p); \
1224 int __len = (l); \
fbd81976 1225 void __iomem *__ioaddr = ioaddr; \
09779c6d
NP
1226 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1227 __len -= 2; \
1228 SMC_outw(*(u16 *)__ptr, ioaddr, DATA_REG); \
1229 __ptr += 2; \
1230 } \
1231 if (SMC_CAN_USE_DATACS && lp->datacs) \
1232 __ioaddr = lp->datacs; \
1233 SMC_outsl(__ioaddr, DATA_REG, __ptr, __len>>2); \
1234 if (__len & 2) { \
1235 __ptr += (__len & ~3); \
1236 SMC_outw(*((u16 *)__ptr), ioaddr, DATA_REG); \
1237 } \
1238 } else if (SMC_CAN_USE_16BIT) \
1239 SMC_outsw(ioaddr, DATA_REG, p, (l) >> 1); \
1240 else if (SMC_CAN_USE_8BIT) \
1241 SMC_outsb(ioaddr, DATA_REG, p, l); \
1da177e4 1242 } while (0)
1da177e4
LT
1243
1244#define SMC_PULL_DATA(p, l) \
09779c6d
NP
1245 do { \
1246 if (SMC_CAN_USE_32BIT) { \
1247 void *__ptr = (p); \
1248 int __len = (l); \
fbd81976 1249 void __iomem *__ioaddr = ioaddr; \
09779c6d
NP
1250 if ((unsigned long)__ptr & 2) { \
1251 /* \
1252 * We want 32bit alignment here. \
1253 * Since some buses perform a full \
1254 * 32bit fetch even for 16bit data \
1255 * we can't use SMC_inw() here. \
1256 * Back both source (on-chip) and \
1257 * destination pointers of 2 bytes. \
1258 * This is possible since the call to \
1259 * SMC_GET_PKT_HDR() already advanced \
1260 * the source pointer of 4 bytes, and \
1261 * the skb_reserve(skb, 2) advanced \
1262 * the destination pointer of 2 bytes. \
1263 */ \
1264 __ptr -= 2; \
1265 __len += 2; \
1266 SMC_SET_PTR(2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1267 } \
1268 if (SMC_CAN_USE_DATACS && lp->datacs) \
1269 __ioaddr = lp->datacs; \
1da177e4 1270 __len += 2; \
09779c6d
NP
1271 SMC_insl(__ioaddr, DATA_REG, __ptr, __len>>2); \
1272 } else if (SMC_CAN_USE_16BIT) \
1273 SMC_insw(ioaddr, DATA_REG, p, (l) >> 1); \
1274 else if (SMC_CAN_USE_8BIT) \
1275 SMC_insb(ioaddr, DATA_REG, p, l); \
1276 } while (0)
1da177e4
LT
1277
1278#endif /* _SMC91X_H_ */