]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/via-rhine.c
Merge commit 'v2.6.31-rc8' into next
[mirror_ubuntu-jammy-kernel.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
32#define DRV_NAME "via-rhine"
e84df485
RL
33#define DRV_VERSION "1.4.3"
34#define DRV_RELDATE "2007-03-06"
1da177e4
LT
35
36
37/* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41static int max_interrupt_work = 20;
42
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
b47157f0
DM
45#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48static int rx_copybreak = 1518;
49#else
1da177e4 50static int rx_copybreak;
b47157f0 51#endif
1da177e4 52
b933b4d9
RL
53/* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55static int avoid_D3;
56
1da177e4
LT
57/*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64static const int multicast_filter_limit = 32;
65
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74#define TX_RING_SIZE 16
75#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 76#define RX_RING_SIZE 64
1da177e4
LT
77
78/* Operational parameters that usually are not changed. */
79
80/* Time in jiffies before concluding the transmitter is hung. */
81#define TX_TIMEOUT (2*HZ)
82
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#include <linux/module.h>
86#include <linux/moduleparam.h>
87#include <linux/kernel.h>
88#include <linux/string.h>
89#include <linux/timer.h>
90#include <linux/errno.h>
91#include <linux/ioport.h>
92#include <linux/slab.h>
93#include <linux/interrupt.h>
94#include <linux/pci.h>
1e7f0bd8 95#include <linux/dma-mapping.h>
1da177e4
LT
96#include <linux/netdevice.h>
97#include <linux/etherdevice.h>
98#include <linux/skbuff.h>
99#include <linux/init.h>
100#include <linux/delay.h>
101#include <linux/mii.h>
102#include <linux/ethtool.h>
103#include <linux/crc32.h>
104#include <linux/bitops.h>
105#include <asm/processor.h> /* Processor type for cache alignment. */
106#include <asm/io.h>
107#include <asm/irq.h>
108#include <asm/uaccess.h>
e84df485 109#include <linux/dmi.h>
1da177e4
LT
110
111/* These identify the driver base version and may not be removed. */
c8de1fce
SH
112static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
1da177e4
LT
115
116/* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118#ifdef CONFIG_VIA_RHINE_MMIO
119#define USE_MMIO
120#else
121#endif
122
123MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125MODULE_LICENSE("GPL");
126
127module_param(max_interrupt_work, int, 0);
128module_param(debug, int, 0);
129module_param(rx_copybreak, int, 0);
b933b4d9 130module_param(avoid_D3, bool, 0);
1da177e4
LT
131MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 134MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4
LT
135
136/*
137 Theory of Operation
138
139I. Board Compatibility
140
141This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142controller.
143
144II. Board-specific settings
145
146Boards with this chip are functional only in a bus-master PCI slot.
147
148Many operational settings are loaded from the EEPROM to the Config word at
149offset 0x78. For most of these settings, this driver assumes that they are
150correct.
151If this driver is compiled to use PCI memory space operations the EEPROM
152must be configured to enable memory ops.
153
154III. Driver operation
155
156IIIa. Ring buffers
157
158This driver uses two statically allocated fixed-size descriptor lists
159formed into rings by a branch from the final descriptor to the beginning of
160the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
161
162IIIb/c. Transmit/Receive Structure
163
164This driver attempts to use a zero-copy receive and transmit scheme.
165
166Alas, all data buffers are required to start on a 32 bit boundary, so
167the driver must often copy transmit packets into bounce buffers.
168
169The driver allocates full frame size skbuffs for the Rx ring buffers at
170open() time and passes the skb->data field to the chip as receive data
171buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172a fresh skbuff is allocated and the frame is copied to the new skbuff.
173When the incoming frame is larger, the skbuff is passed directly up the
174protocol stack. Buffers consumed this way are replaced by newly allocated
175skbuffs in the last phase of rhine_rx().
176
177The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178using a full-sized skbuff for small frames vs. the copying costs of larger
179frames. New boards are typically used in generously configured machines
180and the underfilled buffers have negligible impact compared to the benefit of
181a single allocation size, so the default value of zero results in never
182copying packets. When copying is done, the cost is usually mitigated by using
183a combined copy/checksum routine. Copying also preloads the cache, which is
184most useful with small frames.
185
186Since the VIA chips are only able to transfer data to buffers on 32 bit
187boundaries, the IP header at offset 14 in an ethernet frame isn't
188longword aligned for further processing. Copying these unaligned buffers
189has the beneficial effect of 16-byte aligning the IP header.
190
191IIId. Synchronization
192
193The driver runs as two independent, single-threaded flows of control. One
194is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
195netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
197
198The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
199netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200the ring is not available it stops the transmit queue by
201calling netif_stop_queue.
1da177e4
LT
202
203The interrupt handler has exclusive control over the Rx ring and records stats
204from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205empty by incrementing the dirty_tx mark. If at least half of the entries in
206the Rx ring are available the transmit queue is woken up if it was stopped.
207
208IV. Notes
209
210IVb. References
211
212Preliminary VT86C100A manual from http://www.via.com.tw/
213http://www.scyld.com/expert/100mbps.html
214http://www.scyld.com/expert/NWay.html
215ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
217
218
219IVc. Errata
220
221The VT86C100A manual is not reliable information.
222The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223in significant performance degradation for bounce buffer copies on transmit
224and unaligned IP headers on receive.
225The chip does not pad to minimum transmit length.
226
227*/
228
229
230/* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
234*/
235
236enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
251};
252
253enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
259};
260/*
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
264 */
265
266/* Beware of PCI posted writes */
267#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
268
46009c8b
JG
269static const struct pci_device_id rhine_pci_tbl[] = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
274 { } /* terminate list */
275};
276MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
277
278
279/* Offsets to the device registers. */
280enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
294};
295
296/* Bits in ConfigD */
297enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
300};
301
302#ifdef USE_MMIO
303/* Registers we check that mmio and reg are the same. */
304static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
306 0
307};
308#endif
309
310/* Bits in the interrupt status/mask registers. */
311enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
322};
323
324/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
331};
332
333/* The Rx and Tx buffer descriptors. */
334struct rx_desc {
53c03f5c
AV
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
1da177e4
LT
339};
340struct tx_desc {
53c03f5c
AV
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
1da177e4
LT
345};
346
347/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348#define TXDESC 0x00e08000
349
350enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
352};
353
354/* Bits in *_desc.*_status */
355enum desc_status_bits {
356 DescOwn=0x80000000
357};
358
359/* Bits in ChipCmd. */
360enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
365};
366
367struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
373
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
377
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
381
4be5de25 382 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
386
387 struct pci_dev *pdev;
388 long pioaddr;
bea3348e
SH
389 struct net_device *dev;
390 struct napi_struct napi;
1da177e4
LT
391 spinlock_t lock;
392
393 /* Frequently used values: keep some adjacent for cache effect. */
394 u32 quirks;
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
399 u8 wolopts;
400
401 u8 tx_thresh, rx_thresh;
402
403 struct mii_if_info mii_if;
404 void __iomem *base;
405};
406
407static int mdio_read(struct net_device *dev, int phy_id, int location);
408static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409static int rhine_open(struct net_device *dev);
410static void rhine_tx_timeout(struct net_device *dev);
411static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 412static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 413static void rhine_tx(struct net_device *dev);
633949a1 414static int rhine_rx(struct net_device *dev, int limit);
1da177e4
LT
415static void rhine_error(struct net_device *dev, int intr_status);
416static void rhine_set_rx_mode(struct net_device *dev);
417static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 419static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 420static int rhine_close(struct net_device *dev);
d18c3db5 421static void rhine_shutdown (struct pci_dev *pdev);
1da177e4
LT
422
423#define RHINE_WAIT_FOR(condition) do { \
424 int i=1024; \
425 while (!(condition) && --i) \
426 ; \
427 if (debug > 1 && i < 512) \
428 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
429 DRV_NAME, 1024-i, __func__, __LINE__); \
430} while(0)
431
432static inline u32 get_intr_status(struct net_device *dev)
433{
434 struct rhine_private *rp = netdev_priv(dev);
435 void __iomem *ioaddr = rp->base;
436 u32 intr_status;
437
438 intr_status = ioread16(ioaddr + IntrStatus);
439 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 if (rp->quirks & rqStatusWBRace)
441 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
442 return intr_status;
443}
444
445/*
446 * Get power related registers into sane state.
447 * Notify user about past WOL event.
448 */
449static void rhine_power_init(struct net_device *dev)
450{
451 struct rhine_private *rp = netdev_priv(dev);
452 void __iomem *ioaddr = rp->base;
453 u16 wolstat;
454
455 if (rp->quirks & rqWOL) {
456 /* Make sure chip is in power state D0 */
457 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
458
459 /* Disable "force PME-enable" */
460 iowrite8(0x80, ioaddr + WOLcgClr);
461
462 /* Clear power-event config bits (WOL) */
463 iowrite8(0xFF, ioaddr + WOLcrClr);
464 /* More recent cards can manage two additional patterns */
465 if (rp->quirks & rq6patterns)
466 iowrite8(0x03, ioaddr + WOLcrClr1);
467
468 /* Save power-event status bits */
469 wolstat = ioread8(ioaddr + PwrcsrSet);
470 if (rp->quirks & rq6patterns)
471 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
472
473 /* Clear power-event status bits */
474 iowrite8(0xFF, ioaddr + PwrcsrClr);
475 if (rp->quirks & rq6patterns)
476 iowrite8(0x03, ioaddr + PwrcsrClr1);
477
478 if (wolstat) {
479 char *reason;
480 switch (wolstat) {
481 case WOLmagic:
482 reason = "Magic packet";
483 break;
484 case WOLlnkon:
485 reason = "Link went up";
486 break;
487 case WOLlnkoff:
488 reason = "Link went down";
489 break;
490 case WOLucast:
491 reason = "Unicast packet";
492 break;
493 case WOLbmcast:
494 reason = "Multicast/broadcast packet";
495 break;
496 default:
497 reason = "Unknown";
498 }
499 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
500 DRV_NAME, reason);
501 }
502 }
503}
504
505static void rhine_chip_reset(struct net_device *dev)
506{
507 struct rhine_private *rp = netdev_priv(dev);
508 void __iomem *ioaddr = rp->base;
509
510 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
511 IOSYNC;
512
513 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 printk(KERN_INFO "%s: Reset not complete yet. "
515 "Trying harder.\n", DRV_NAME);
516
517 /* Force reset */
518 if (rp->quirks & rqForceReset)
519 iowrite8(0x40, ioaddr + MiscCmd);
520
521 /* Reset can take somewhat longer (rare) */
522 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
523 }
524
525 if (debug > 1)
526 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 "failed" : "succeeded");
529}
530
531#ifdef USE_MMIO
532static void enable_mmio(long pioaddr, u32 quirks)
533{
534 int n;
535 if (quirks & rqRhineI) {
536 /* More recent docs say that this bit is reserved ... */
537 n = inb(pioaddr + ConfigA) | 0x20;
538 outb(n, pioaddr + ConfigA);
539 } else {
540 n = inb(pioaddr + ConfigD) | 0x80;
541 outb(n, pioaddr + ConfigD);
542 }
543}
544#endif
545
546/*
547 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548 * (plus 0x6C for Rhine-I/II)
549 */
550static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
551{
552 struct rhine_private *rp = netdev_priv(dev);
553 void __iomem *ioaddr = rp->base;
554
555 outb(0x20, pioaddr + MACRegEEcsr);
556 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
557
558#ifdef USE_MMIO
559 /*
560 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 * it is not known if that still works with the "win98-reboot" problem.
563 */
564 enable_mmio(pioaddr, rp->quirks);
565#endif
566
567 /* Turn off EEPROM-controlled wake-up (magic packet) */
568 if (rp->quirks & rqWOL)
569 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
570
571}
572
573#ifdef CONFIG_NET_POLL_CONTROLLER
574static void rhine_poll(struct net_device *dev)
575{
576 disable_irq(dev->irq);
7d12e780 577 rhine_interrupt(dev->irq, (void *)dev);
1da177e4
LT
578 enable_irq(dev->irq);
579}
580#endif
581
bea3348e 582static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 583{
bea3348e
SH
584 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 struct net_device *dev = rp->dev;
633949a1 586 void __iomem *ioaddr = rp->base;
bea3348e 587 int work_done;
633949a1 588
bea3348e 589 work_done = rhine_rx(dev, budget);
633949a1 590
bea3348e 591 if (work_done < budget) {
288379f0 592 napi_complete(napi);
633949a1
RL
593
594 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 IntrTxDone | IntrTxError | IntrTxUnderrun |
597 IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 ioaddr + IntrEnable);
633949a1 599 }
bea3348e 600 return work_done;
633949a1 601}
633949a1 602
de4e7c88 603static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
604{
605 struct rhine_private *rp = netdev_priv(dev);
606
607 /* Reset the chip to erase previous misconfiguration. */
608 rhine_chip_reset(dev);
609
610 /* Rhine-I needs extra time to recuperate before EEPROM reload */
611 if (rp->quirks & rqRhineI)
612 msleep(5);
613
614 /* Reload EEPROM controlled bytes cleared by soft reset */
615 rhine_reload_eeprom(pioaddr, dev);
616}
617
5d1d07d8
SH
618static const struct net_device_ops rhine_netdev_ops = {
619 .ndo_open = rhine_open,
620 .ndo_stop = rhine_close,
621 .ndo_start_xmit = rhine_start_tx,
622 .ndo_get_stats = rhine_get_stats,
623 .ndo_set_multicast_list = rhine_set_rx_mode,
635ecaa7 624 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 625 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 626 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
627 .ndo_do_ioctl = netdev_ioctl,
628 .ndo_tx_timeout = rhine_tx_timeout,
629#ifdef CONFIG_NET_POLL_CONTROLLER
630 .ndo_poll_controller = rhine_poll,
631#endif
632};
633
1da177e4
LT
634static int __devinit rhine_init_one(struct pci_dev *pdev,
635 const struct pci_device_id *ent)
636{
637 struct net_device *dev;
638 struct rhine_private *rp;
639 int i, rc;
1da177e4
LT
640 u32 quirks;
641 long pioaddr;
642 long memaddr;
643 void __iomem *ioaddr;
644 int io_size, phy_id;
645 const char *name;
646#ifdef USE_MMIO
647 int bar = 1;
648#else
649 int bar = 0;
650#endif
651
652/* when built into the kernel, we only print version if device is found */
653#ifndef MODULE
654 static int printed_version;
655 if (!printed_version++)
656 printk(version);
657#endif
658
1da177e4
LT
659 io_size = 256;
660 phy_id = 0;
661 quirks = 0;
662 name = "Rhine";
44c10138 663 if (pdev->revision < VTunknown0) {
1da177e4
LT
664 quirks = rqRhineI;
665 io_size = 128;
666 }
44c10138 667 else if (pdev->revision >= VT6102) {
1da177e4 668 quirks = rqWOL | rqForceReset;
44c10138 669 if (pdev->revision < VT6105) {
1da177e4
LT
670 name = "Rhine II";
671 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
672 }
673 else {
674 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 675 if (pdev->revision >= VT6105_B0)
1da177e4 676 quirks |= rq6patterns;
44c10138 677 if (pdev->revision < VT6105M)
1da177e4
LT
678 name = "Rhine III";
679 else
680 name = "Rhine III (Management Adapter)";
681 }
682 }
683
684 rc = pci_enable_device(pdev);
685 if (rc)
686 goto err_out;
687
688 /* this should always be supported */
284901a9 689 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4
LT
690 if (rc) {
691 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
692 "the card!?\n");
693 goto err_out;
694 }
695
696 /* sanity check */
697 if ((pci_resource_len(pdev, 0) < io_size) ||
698 (pci_resource_len(pdev, 1) < io_size)) {
699 rc = -EIO;
700 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
701 goto err_out;
702 }
703
704 pioaddr = pci_resource_start(pdev, 0);
705 memaddr = pci_resource_start(pdev, 1);
706
707 pci_set_master(pdev);
708
709 dev = alloc_etherdev(sizeof(struct rhine_private));
710 if (!dev) {
711 rc = -ENOMEM;
712 printk(KERN_ERR "alloc_etherdev failed\n");
713 goto err_out;
714 }
1da177e4
LT
715 SET_NETDEV_DEV(dev, &pdev->dev);
716
717 rp = netdev_priv(dev);
bea3348e 718 rp->dev = dev;
1da177e4
LT
719 rp->quirks = quirks;
720 rp->pioaddr = pioaddr;
721 rp->pdev = pdev;
722
723 rc = pci_request_regions(pdev, DRV_NAME);
724 if (rc)
725 goto err_out_free_netdev;
726
727 ioaddr = pci_iomap(pdev, bar, io_size);
728 if (!ioaddr) {
729 rc = -EIO;
730 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
731 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
732 goto err_out_free_res;
733 }
734
735#ifdef USE_MMIO
736 enable_mmio(pioaddr, quirks);
737
738 /* Check that selected MMIO registers match the PIO ones */
739 i = 0;
740 while (mmio_verify_registers[i]) {
741 int reg = mmio_verify_registers[i++];
742 unsigned char a = inb(pioaddr+reg);
743 unsigned char b = readb(ioaddr+reg);
744 if (a != b) {
745 rc = -EIO;
746 printk(KERN_ERR "MMIO do not match PIO [%02x] "
747 "(%02x != %02x)\n", reg, a, b);
748 goto err_out_unmap;
749 }
750 }
751#endif /* USE_MMIO */
752
753 dev->base_addr = (unsigned long)ioaddr;
754 rp->base = ioaddr;
755
756 /* Get chip registers into a sane state */
757 rhine_power_init(dev);
758 rhine_hw_init(dev, pioaddr);
759
760 for (i = 0; i < 6; i++)
761 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
b81e8e1f 762 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 763
b81e8e1f 764 if (!is_valid_ether_addr(dev->perm_addr)) {
1da177e4
LT
765 rc = -EIO;
766 printk(KERN_ERR "Invalid MAC address\n");
767 goto err_out_unmap;
768 }
769
770 /* For Rhine-I/II, phy_id is loaded from EEPROM */
771 if (!phy_id)
772 phy_id = ioread8(ioaddr + 0x6C);
773
774 dev->irq = pdev->irq;
775
776 spin_lock_init(&rp->lock);
777 rp->mii_if.dev = dev;
778 rp->mii_if.mdio_read = mdio_read;
779 rp->mii_if.mdio_write = mdio_write;
780 rp->mii_if.phy_id_mask = 0x1f;
781 rp->mii_if.reg_num_mask = 0x1f;
782
783 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
784 dev->netdev_ops = &rhine_netdev_ops;
785 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 786 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 787
bea3348e 788 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 789
1da177e4
LT
790 if (rp->quirks & rqRhineI)
791 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
792
793 /* dev->name not defined before register_netdev()! */
794 rc = register_netdev(dev);
795 if (rc)
796 goto err_out_unmap;
797
e174961c 798 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
1da177e4
LT
799 dev->name, name,
800#ifdef USE_MMIO
0795af57 801 memaddr,
1da177e4 802#else
0795af57 803 (long)ioaddr,
1da177e4 804#endif
e174961c 805 dev->dev_addr, pdev->irq);
1da177e4
LT
806
807 pci_set_drvdata(pdev, dev);
808
809 {
810 u16 mii_cmd;
811 int mii_status = mdio_read(dev, phy_id, 1);
812 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
813 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
814 if (mii_status != 0xffff && mii_status != 0x0000) {
815 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
816 printk(KERN_INFO "%s: MII PHY found at address "
817 "%d, status 0x%4.4x advertising %4.4x "
818 "Link %4.4x.\n", dev->name, phy_id,
819 mii_status, rp->mii_if.advertising,
820 mdio_read(dev, phy_id, 5));
821
822 /* set IFF_RUNNING */
823 if (mii_status & BMSR_LSTATUS)
824 netif_carrier_on(dev);
825 else
826 netif_carrier_off(dev);
827
828 }
829 }
830 rp->mii_if.phy_id = phy_id;
b933b4d9
RL
831 if (debug > 1 && avoid_D3)
832 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
833 dev->name);
1da177e4
LT
834
835 return 0;
836
837err_out_unmap:
838 pci_iounmap(pdev, ioaddr);
839err_out_free_res:
840 pci_release_regions(pdev);
841err_out_free_netdev:
842 free_netdev(dev);
843err_out:
844 return rc;
845}
846
847static int alloc_ring(struct net_device* dev)
848{
849 struct rhine_private *rp = netdev_priv(dev);
850 void *ring;
851 dma_addr_t ring_dma;
852
853 ring = pci_alloc_consistent(rp->pdev,
854 RX_RING_SIZE * sizeof(struct rx_desc) +
855 TX_RING_SIZE * sizeof(struct tx_desc),
856 &ring_dma);
857 if (!ring) {
858 printk(KERN_ERR "Could not allocate DMA memory.\n");
859 return -ENOMEM;
860 }
861 if (rp->quirks & rqRhineI) {
862 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
863 PKT_BUF_SZ * TX_RING_SIZE,
864 &rp->tx_bufs_dma);
865 if (rp->tx_bufs == NULL) {
866 pci_free_consistent(rp->pdev,
867 RX_RING_SIZE * sizeof(struct rx_desc) +
868 TX_RING_SIZE * sizeof(struct tx_desc),
869 ring, ring_dma);
870 return -ENOMEM;
871 }
872 }
873
874 rp->rx_ring = ring;
875 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
876 rp->rx_ring_dma = ring_dma;
877 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
878
879 return 0;
880}
881
882static void free_ring(struct net_device* dev)
883{
884 struct rhine_private *rp = netdev_priv(dev);
885
886 pci_free_consistent(rp->pdev,
887 RX_RING_SIZE * sizeof(struct rx_desc) +
888 TX_RING_SIZE * sizeof(struct tx_desc),
889 rp->rx_ring, rp->rx_ring_dma);
890 rp->tx_ring = NULL;
891
892 if (rp->tx_bufs)
893 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
894 rp->tx_bufs, rp->tx_bufs_dma);
895
896 rp->tx_bufs = NULL;
897
898}
899
900static void alloc_rbufs(struct net_device *dev)
901{
902 struct rhine_private *rp = netdev_priv(dev);
903 dma_addr_t next;
904 int i;
905
906 rp->dirty_rx = rp->cur_rx = 0;
907
908 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
909 rp->rx_head_desc = &rp->rx_ring[0];
910 next = rp->rx_ring_dma;
911
912 /* Init the ring entries */
913 for (i = 0; i < RX_RING_SIZE; i++) {
914 rp->rx_ring[i].rx_status = 0;
915 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
916 next += sizeof(struct rx_desc);
917 rp->rx_ring[i].next_desc = cpu_to_le32(next);
918 rp->rx_skbuff[i] = NULL;
919 }
920 /* Mark the last entry as wrapping the ring. */
921 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
922
923 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
924 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 925 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
926 rp->rx_skbuff[i] = skb;
927 if (skb == NULL)
928 break;
929 skb->dev = dev; /* Mark as being used by this device. */
930
931 rp->rx_skbuff_dma[i] =
689be439 932 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
933 PCI_DMA_FROMDEVICE);
934
935 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
936 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
937 }
938 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
939}
940
941static void free_rbufs(struct net_device* dev)
942{
943 struct rhine_private *rp = netdev_priv(dev);
944 int i;
945
946 /* Free all the skbuffs in the Rx queue. */
947 for (i = 0; i < RX_RING_SIZE; i++) {
948 rp->rx_ring[i].rx_status = 0;
949 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
950 if (rp->rx_skbuff[i]) {
951 pci_unmap_single(rp->pdev,
952 rp->rx_skbuff_dma[i],
953 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
954 dev_kfree_skb(rp->rx_skbuff[i]);
955 }
956 rp->rx_skbuff[i] = NULL;
957 }
958}
959
960static void alloc_tbufs(struct net_device* dev)
961{
962 struct rhine_private *rp = netdev_priv(dev);
963 dma_addr_t next;
964 int i;
965
966 rp->dirty_tx = rp->cur_tx = 0;
967 next = rp->tx_ring_dma;
968 for (i = 0; i < TX_RING_SIZE; i++) {
969 rp->tx_skbuff[i] = NULL;
970 rp->tx_ring[i].tx_status = 0;
971 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
972 next += sizeof(struct tx_desc);
973 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
974 if (rp->quirks & rqRhineI)
975 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
976 }
977 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
978
979}
980
981static void free_tbufs(struct net_device* dev)
982{
983 struct rhine_private *rp = netdev_priv(dev);
984 int i;
985
986 for (i = 0; i < TX_RING_SIZE; i++) {
987 rp->tx_ring[i].tx_status = 0;
988 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
989 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
990 if (rp->tx_skbuff[i]) {
991 if (rp->tx_skbuff_dma[i]) {
992 pci_unmap_single(rp->pdev,
993 rp->tx_skbuff_dma[i],
994 rp->tx_skbuff[i]->len,
995 PCI_DMA_TODEVICE);
996 }
997 dev_kfree_skb(rp->tx_skbuff[i]);
998 }
999 rp->tx_skbuff[i] = NULL;
1000 rp->tx_buf[i] = NULL;
1001 }
1002}
1003
1004static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1005{
1006 struct rhine_private *rp = netdev_priv(dev);
1007 void __iomem *ioaddr = rp->base;
1008
1009 mii_check_media(&rp->mii_if, debug, init_media);
1010
1011 if (rp->mii_if.full_duplex)
1012 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1013 ioaddr + ChipCmd1);
1014 else
1015 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1016 ioaddr + ChipCmd1);
00b428c2
RL
1017 if (debug > 1)
1018 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1019 rp->mii_if.force_media, netif_carrier_ok(dev));
1020}
1021
1022/* Called after status of force_media possibly changed */
0761be4f 1023static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1024{
1025 if (mii->force_media) {
1026 /* autoneg is off: Link is always assumed to be up */
1027 if (!netif_carrier_ok(mii->dev))
1028 netif_carrier_on(mii->dev);
1029 }
1030 else /* Let MMI library update carrier status */
1031 rhine_check_media(mii->dev, 0);
1032 if (debug > 1)
1033 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1034 mii->dev->name, mii->force_media,
1035 netif_carrier_ok(mii->dev));
1da177e4
LT
1036}
1037
1038static void init_registers(struct net_device *dev)
1039{
1040 struct rhine_private *rp = netdev_priv(dev);
1041 void __iomem *ioaddr = rp->base;
1042 int i;
1043
1044 for (i = 0; i < 6; i++)
1045 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1046
1047 /* Initialize other registers. */
1048 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1049 /* Configure initial FIFO thresholds. */
1050 iowrite8(0x20, ioaddr + TxConfig);
1051 rp->tx_thresh = 0x20;
1052 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1053
1054 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1055 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1056
1057 rhine_set_rx_mode(dev);
1058
bea3348e 1059 napi_enable(&rp->napi);
ab197668 1060
1da177e4
LT
1061 /* Enable interrupts by setting the interrupt mask. */
1062 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1063 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1064 IntrTxDone | IntrTxError | IntrTxUnderrun |
1065 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1066 ioaddr + IntrEnable);
1067
1068 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1069 ioaddr + ChipCmd);
1070 rhine_check_media(dev, 1);
1071}
1072
1073/* Enable MII link status auto-polling (required for IntrLinkChange) */
1074static void rhine_enable_linkmon(void __iomem *ioaddr)
1075{
1076 iowrite8(0, ioaddr + MIICmd);
1077 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1078 iowrite8(0x80, ioaddr + MIICmd);
1079
1080 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1081
1082 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1083}
1084
1085/* Disable MII link status auto-polling (required for MDIO access) */
1086static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1087{
1088 iowrite8(0, ioaddr + MIICmd);
1089
1090 if (quirks & rqRhineI) {
1091 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1092
38bb6b28
JL
1093 /* Can be called from ISR. Evil. */
1094 mdelay(1);
1da177e4
LT
1095
1096 /* 0x80 must be set immediately before turning it off */
1097 iowrite8(0x80, ioaddr + MIICmd);
1098
1099 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1100
1101 /* Heh. Now clear 0x80 again. */
1102 iowrite8(0, ioaddr + MIICmd);
1103 }
1104 else
1105 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1106}
1107
1108/* Read and write over the MII Management Data I/O (MDIO) interface. */
1109
1110static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1111{
1112 struct rhine_private *rp = netdev_priv(dev);
1113 void __iomem *ioaddr = rp->base;
1114 int result;
1115
1116 rhine_disable_linkmon(ioaddr, rp->quirks);
1117
1118 /* rhine_disable_linkmon already cleared MIICmd */
1119 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1120 iowrite8(regnum, ioaddr + MIIRegAddr);
1121 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1122 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1123 result = ioread16(ioaddr + MIIData);
1124
1125 rhine_enable_linkmon(ioaddr);
1126 return result;
1127}
1128
1129static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1130{
1131 struct rhine_private *rp = netdev_priv(dev);
1132 void __iomem *ioaddr = rp->base;
1133
1134 rhine_disable_linkmon(ioaddr, rp->quirks);
1135
1136 /* rhine_disable_linkmon already cleared MIICmd */
1137 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1138 iowrite8(regnum, ioaddr + MIIRegAddr);
1139 iowrite16(value, ioaddr + MIIData);
1140 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1141 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1142
1143 rhine_enable_linkmon(ioaddr);
1144}
1145
1146static int rhine_open(struct net_device *dev)
1147{
1148 struct rhine_private *rp = netdev_priv(dev);
1149 void __iomem *ioaddr = rp->base;
1150 int rc;
1151
1fb9df5d 1152 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1153 dev);
1154 if (rc)
1155 return rc;
1156
1157 if (debug > 1)
1158 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1159 dev->name, rp->pdev->irq);
1160
1161 rc = alloc_ring(dev);
1162 if (rc) {
1163 free_irq(rp->pdev->irq, dev);
1164 return rc;
1165 }
1166 alloc_rbufs(dev);
1167 alloc_tbufs(dev);
1168 rhine_chip_reset(dev);
1169 init_registers(dev);
1170 if (debug > 2)
1171 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1172 "MII status: %4.4x.\n",
1173 dev->name, ioread16(ioaddr + ChipCmd),
1174 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1175
1176 netif_start_queue(dev);
1177
1178 return 0;
1179}
1180
1181static void rhine_tx_timeout(struct net_device *dev)
1182{
1183 struct rhine_private *rp = netdev_priv(dev);
1184 void __iomem *ioaddr = rp->base;
1185
1186 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1187 "%4.4x, resetting...\n",
1188 dev->name, ioread16(ioaddr + IntrStatus),
1189 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1190
1191 /* protect against concurrent rx interrupts */
1192 disable_irq(rp->pdev->irq);
1193
bea3348e 1194 napi_disable(&rp->napi);
bea3348e 1195
1da177e4
LT
1196 spin_lock(&rp->lock);
1197
1198 /* clear all descriptors */
1199 free_tbufs(dev);
1200 free_rbufs(dev);
1201 alloc_tbufs(dev);
1202 alloc_rbufs(dev);
1203
1204 /* Reinitialize the hardware. */
1205 rhine_chip_reset(dev);
1206 init_registers(dev);
1207
1208 spin_unlock(&rp->lock);
1209 enable_irq(rp->pdev->irq);
1210
1211 dev->trans_start = jiffies;
553e2335 1212 dev->stats.tx_errors++;
1da177e4
LT
1213 netif_wake_queue(dev);
1214}
1215
1216static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1217{
1218 struct rhine_private *rp = netdev_priv(dev);
1219 void __iomem *ioaddr = rp->base;
1220 unsigned entry;
22580f89 1221 unsigned long flags;
1da177e4
LT
1222
1223 /* Caution: the write order is important here, set the field
1224 with the "ownership" bits last. */
1225
1226 /* Calculate the next Tx descriptor entry. */
1227 entry = rp->cur_tx % TX_RING_SIZE;
1228
5b057c6b
HX
1229 if (skb_padto(skb, ETH_ZLEN))
1230 return 0;
1da177e4
LT
1231
1232 rp->tx_skbuff[entry] = skb;
1233
1234 if ((rp->quirks & rqRhineI) &&
84fa7933 1235 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1236 /* Must use alignment buffer. */
1237 if (skb->len > PKT_BUF_SZ) {
1238 /* packet too long, drop it */
1239 dev_kfree_skb(skb);
1240 rp->tx_skbuff[entry] = NULL;
553e2335 1241 dev->stats.tx_dropped++;
1da177e4
LT
1242 return 0;
1243 }
3e0d167a
CB
1244
1245 /* Padding is not copied and so must be redone. */
1da177e4 1246 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1247 if (skb->len < ETH_ZLEN)
1248 memset(rp->tx_buf[entry] + skb->len, 0,
1249 ETH_ZLEN - skb->len);
1da177e4
LT
1250 rp->tx_skbuff_dma[entry] = 0;
1251 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1252 (rp->tx_buf[entry] -
1253 rp->tx_bufs));
1254 } else {
1255 rp->tx_skbuff_dma[entry] =
1256 pci_map_single(rp->pdev, skb->data, skb->len,
1257 PCI_DMA_TODEVICE);
1258 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1259 }
1260
1261 rp->tx_ring[entry].desc_length =
1262 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1263
1264 /* lock eth irq */
22580f89 1265 spin_lock_irqsave(&rp->lock, flags);
1da177e4
LT
1266 wmb();
1267 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1268 wmb();
1269
1270 rp->cur_tx++;
1271
1272 /* Non-x86 Todo: explicitly flush cache lines here. */
1273
1274 /* Wake the potentially-idle transmit channel */
1275 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1276 ioaddr + ChipCmd1);
1277 IOSYNC;
1278
1279 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1280 netif_stop_queue(dev);
1281
1282 dev->trans_start = jiffies;
1283
22580f89 1284 spin_unlock_irqrestore(&rp->lock, flags);
1da177e4
LT
1285
1286 if (debug > 4) {
1287 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1288 dev->name, rp->cur_tx-1, entry);
1289 }
1290 return 0;
1291}
1292
1293/* The interrupt handler does all of the Rx thread work and cleans up
1294 after the Tx thread. */
7d12e780 1295static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1296{
1297 struct net_device *dev = dev_instance;
1298 struct rhine_private *rp = netdev_priv(dev);
1299 void __iomem *ioaddr = rp->base;
1300 u32 intr_status;
1301 int boguscnt = max_interrupt_work;
1302 int handled = 0;
1303
1304 while ((intr_status = get_intr_status(dev))) {
1305 handled = 1;
1306
1307 /* Acknowledge all of the current interrupt sources ASAP. */
1308 if (intr_status & IntrTxDescRace)
1309 iowrite8(0x08, ioaddr + IntrStatus2);
1310 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1311 IOSYNC;
1312
1313 if (debug > 4)
1314 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1315 dev->name, intr_status);
1316
1317 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
633949a1 1318 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
633949a1
RL
1319 iowrite16(IntrTxAborted |
1320 IntrTxDone | IntrTxError | IntrTxUnderrun |
1321 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1322 ioaddr + IntrEnable);
1323
288379f0 1324 napi_schedule(&rp->napi);
633949a1 1325 }
1da177e4
LT
1326
1327 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1328 if (intr_status & IntrTxErrSummary) {
1329 /* Avoid scavenging before Tx engine turned off */
1330 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1331 if (debug > 2 &&
1332 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1333 printk(KERN_WARNING "%s: "
2450022a 1334 "rhine_interrupt() Tx engine "
1da177e4
LT
1335 "still on.\n", dev->name);
1336 }
1337 rhine_tx(dev);
1338 }
1339
1340 /* Abnormal error summary/uncommon events handlers. */
1341 if (intr_status & (IntrPCIErr | IntrLinkChange |
1342 IntrStatsMax | IntrTxError | IntrTxAborted |
1343 IntrTxUnderrun | IntrTxDescRace))
1344 rhine_error(dev, intr_status);
1345
1346 if (--boguscnt < 0) {
1347 printk(KERN_WARNING "%s: Too much work at interrupt, "
1348 "status=%#8.8x.\n",
1349 dev->name, intr_status);
1350 break;
1351 }
1352 }
1353
1354 if (debug > 3)
1355 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1356 dev->name, ioread16(ioaddr + IntrStatus));
1357 return IRQ_RETVAL(handled);
1358}
1359
1360/* This routine is logically part of the interrupt handler, but isolated
1361 for clarity. */
1362static void rhine_tx(struct net_device *dev)
1363{
1364 struct rhine_private *rp = netdev_priv(dev);
1365 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1366
1367 spin_lock(&rp->lock);
1368
1369 /* find and cleanup dirty tx descriptors */
1370 while (rp->dirty_tx != rp->cur_tx) {
1371 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1372 if (debug > 6)
ed4030d1 1373 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1da177e4
LT
1374 entry, txstatus);
1375 if (txstatus & DescOwn)
1376 break;
1377 if (txstatus & 0x8000) {
1378 if (debug > 1)
1379 printk(KERN_DEBUG "%s: Transmit error, "
1380 "Tx status %8.8x.\n",
1381 dev->name, txstatus);
553e2335
ED
1382 dev->stats.tx_errors++;
1383 if (txstatus & 0x0400)
1384 dev->stats.tx_carrier_errors++;
1385 if (txstatus & 0x0200)
1386 dev->stats.tx_window_errors++;
1387 if (txstatus & 0x0100)
1388 dev->stats.tx_aborted_errors++;
1389 if (txstatus & 0x0080)
1390 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1391 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1392 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1393 dev->stats.tx_fifo_errors++;
1da177e4
LT
1394 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1395 break; /* Keep the skb - we try again */
1396 }
1397 /* Transmitter restarted in 'abnormal' handler. */
1398 } else {
1399 if (rp->quirks & rqRhineI)
553e2335 1400 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1401 else
553e2335 1402 dev->stats.collisions += txstatus & 0x0F;
1da177e4
LT
1403 if (debug > 6)
1404 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1405 (txstatus >> 3) & 0xF,
1406 txstatus & 0xF);
553e2335
ED
1407 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1408 dev->stats.tx_packets++;
1da177e4
LT
1409 }
1410 /* Free the original skb. */
1411 if (rp->tx_skbuff_dma[entry]) {
1412 pci_unmap_single(rp->pdev,
1413 rp->tx_skbuff_dma[entry],
1414 rp->tx_skbuff[entry]->len,
1415 PCI_DMA_TODEVICE);
1416 }
1417 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1418 rp->tx_skbuff[entry] = NULL;
1419 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1420 }
1421 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1422 netif_wake_queue(dev);
1423
1424 spin_unlock(&rp->lock);
1425}
1426
633949a1
RL
1427/* Process up to limit frames from receive ring */
1428static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1429{
1430 struct rhine_private *rp = netdev_priv(dev);
633949a1 1431 int count;
1da177e4 1432 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4
LT
1433
1434 if (debug > 4) {
1435 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1436 dev->name, entry,
1437 le32_to_cpu(rp->rx_head_desc->rx_status));
1438 }
1439
1440 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1441 for (count = 0; count < limit; ++count) {
1da177e4
LT
1442 struct rx_desc *desc = rp->rx_head_desc;
1443 u32 desc_status = le32_to_cpu(desc->rx_status);
1444 int data_size = desc_status >> 16;
1445
633949a1
RL
1446 if (desc_status & DescOwn)
1447 break;
1448
1da177e4 1449 if (debug > 4)
ed4030d1 1450 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1da177e4 1451 desc_status);
633949a1 1452
1da177e4
LT
1453 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1454 if ((desc_status & RxWholePkt) != RxWholePkt) {
1455 printk(KERN_WARNING "%s: Oversized Ethernet "
1456 "frame spanned multiple buffers, entry "
1457 "%#x length %d status %8.8x!\n",
1458 dev->name, entry, data_size,
1459 desc_status);
1460 printk(KERN_WARNING "%s: Oversized Ethernet "
1461 "frame %p vs %p.\n", dev->name,
1462 rp->rx_head_desc, &rp->rx_ring[entry]);
553e2335 1463 dev->stats.rx_length_errors++;
1da177e4
LT
1464 } else if (desc_status & RxErr) {
1465 /* There was a error. */
1466 if (debug > 2)
ed4030d1 1467 printk(KERN_DEBUG "rhine_rx() Rx "
1da177e4
LT
1468 "error was %8.8x.\n",
1469 desc_status);
553e2335
ED
1470 dev->stats.rx_errors++;
1471 if (desc_status & 0x0030)
1472 dev->stats.rx_length_errors++;
1473 if (desc_status & 0x0048)
1474 dev->stats.rx_fifo_errors++;
1475 if (desc_status & 0x0004)
1476 dev->stats.rx_frame_errors++;
1da177e4
LT
1477 if (desc_status & 0x0002) {
1478 /* this can also be updated outside the interrupt handler */
1479 spin_lock(&rp->lock);
553e2335 1480 dev->stats.rx_crc_errors++;
1da177e4
LT
1481 spin_unlock(&rp->lock);
1482 }
1483 }
1484 } else {
1485 struct sk_buff *skb;
1486 /* Length should omit the CRC */
1487 int pkt_len = data_size - 4;
1488
1489 /* Check if the packet is long enough to accept without
1490 copying to a minimally-sized skbuff. */
1491 if (pkt_len < rx_copybreak &&
b26b555a
KL
1492 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1493 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1da177e4
LT
1494 pci_dma_sync_single_for_cpu(rp->pdev,
1495 rp->rx_skbuff_dma[entry],
1496 rp->rx_buf_sz,
1497 PCI_DMA_FROMDEVICE);
1498
8c7b7faa 1499 skb_copy_to_linear_data(skb,
689be439 1500 rp->rx_skbuff[entry]->data,
8c7b7faa 1501 pkt_len);
1da177e4
LT
1502 skb_put(skb, pkt_len);
1503 pci_dma_sync_single_for_device(rp->pdev,
1504 rp->rx_skbuff_dma[entry],
1505 rp->rx_buf_sz,
1506 PCI_DMA_FROMDEVICE);
1507 } else {
1508 skb = rp->rx_skbuff[entry];
1509 if (skb == NULL) {
1510 printk(KERN_ERR "%s: Inconsistent Rx "
1511 "descriptor chain.\n",
1512 dev->name);
1513 break;
1514 }
1515 rp->rx_skbuff[entry] = NULL;
1516 skb_put(skb, pkt_len);
1517 pci_unmap_single(rp->pdev,
1518 rp->rx_skbuff_dma[entry],
1519 rp->rx_buf_sz,
1520 PCI_DMA_FROMDEVICE);
1521 }
1522 skb->protocol = eth_type_trans(skb, dev);
633949a1 1523 netif_receive_skb(skb);
553e2335
ED
1524 dev->stats.rx_bytes += pkt_len;
1525 dev->stats.rx_packets++;
1da177e4
LT
1526 }
1527 entry = (++rp->cur_rx) % RX_RING_SIZE;
1528 rp->rx_head_desc = &rp->rx_ring[entry];
1529 }
1530
1531 /* Refill the Rx ring buffers. */
1532 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1533 struct sk_buff *skb;
1534 entry = rp->dirty_rx % RX_RING_SIZE;
1535 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1536 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1537 rp->rx_skbuff[entry] = skb;
1538 if (skb == NULL)
1539 break; /* Better luck next round. */
1540 skb->dev = dev; /* Mark as being used by this device. */
1541 rp->rx_skbuff_dma[entry] =
689be439 1542 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1543 rp->rx_buf_sz,
1544 PCI_DMA_FROMDEVICE);
1545 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1546 }
1547 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1548 }
633949a1
RL
1549
1550 return count;
1da177e4
LT
1551}
1552
1553/*
1554 * Clears the "tally counters" for CRC errors and missed frames(?).
1555 * It has been reported that some chips need a write of 0 to clear
1556 * these, for others the counters are set to 1 when written to and
1557 * instead cleared when read. So we clear them both ways ...
1558 */
1559static inline void clear_tally_counters(void __iomem *ioaddr)
1560{
1561 iowrite32(0, ioaddr + RxMissed);
1562 ioread16(ioaddr + RxCRCErrs);
1563 ioread16(ioaddr + RxMissed);
1564}
1565
1566static void rhine_restart_tx(struct net_device *dev) {
1567 struct rhine_private *rp = netdev_priv(dev);
1568 void __iomem *ioaddr = rp->base;
1569 int entry = rp->dirty_tx % TX_RING_SIZE;
1570 u32 intr_status;
1571
1572 /*
1573 * If new errors occured, we need to sort them out before doing Tx.
1574 * In that case the ISR will be back here RSN anyway.
1575 */
1576 intr_status = get_intr_status(dev);
1577
1578 if ((intr_status & IntrTxErrSummary) == 0) {
1579
1580 /* We know better than the chip where it should continue. */
1581 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1582 ioaddr + TxRingPtr);
1583
1584 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1585 ioaddr + ChipCmd);
1586 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1587 ioaddr + ChipCmd1);
1588 IOSYNC;
1589 }
1590 else {
1591 /* This should never happen */
1592 if (debug > 1)
1593 printk(KERN_WARNING "%s: rhine_restart_tx() "
1594 "Another error occured %8.8x.\n",
1595 dev->name, intr_status);
1596 }
1597
1598}
1599
1600static void rhine_error(struct net_device *dev, int intr_status)
1601{
1602 struct rhine_private *rp = netdev_priv(dev);
1603 void __iomem *ioaddr = rp->base;
1604
1605 spin_lock(&rp->lock);
1606
1607 if (intr_status & IntrLinkChange)
38bb6b28 1608 rhine_check_media(dev, 0);
1da177e4 1609 if (intr_status & IntrStatsMax) {
553e2335
ED
1610 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1611 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1612 clear_tally_counters(ioaddr);
1613 }
1614 if (intr_status & IntrTxAborted) {
1615 if (debug > 1)
1616 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1617 dev->name, intr_status);
1618 }
1619 if (intr_status & IntrTxUnderrun) {
1620 if (rp->tx_thresh < 0xE0)
1621 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1622 if (debug > 1)
1623 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1624 "threshold now %2.2x.\n",
1625 dev->name, rp->tx_thresh);
1626 }
1627 if (intr_status & IntrTxDescRace) {
1628 if (debug > 2)
1629 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1630 dev->name);
1631 }
1632 if ((intr_status & IntrTxError) &&
1633 (intr_status & (IntrTxAborted |
1634 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1635 if (rp->tx_thresh < 0xE0) {
1636 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1637 }
1638 if (debug > 1)
1639 printk(KERN_INFO "%s: Unspecified error. Tx "
1640 "threshold now %2.2x.\n",
1641 dev->name, rp->tx_thresh);
1642 }
1643 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1644 IntrTxError))
1645 rhine_restart_tx(dev);
1646
1647 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1648 IntrTxError | IntrTxAborted | IntrNormalSummary |
1649 IntrTxDescRace)) {
1650 if (debug > 1)
1651 printk(KERN_ERR "%s: Something Wicked happened! "
1652 "%8.8x.\n", dev->name, intr_status);
1653 }
1654
1655 spin_unlock(&rp->lock);
1656}
1657
1658static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1659{
1660 struct rhine_private *rp = netdev_priv(dev);
1661 void __iomem *ioaddr = rp->base;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(&rp->lock, flags);
553e2335
ED
1665 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1666 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1667 clear_tally_counters(ioaddr);
1668 spin_unlock_irqrestore(&rp->lock, flags);
1669
553e2335 1670 return &dev->stats;
1da177e4
LT
1671}
1672
1673static void rhine_set_rx_mode(struct net_device *dev)
1674{
1675 struct rhine_private *rp = netdev_priv(dev);
1676 void __iomem *ioaddr = rp->base;
1677 u32 mc_filter[2]; /* Multicast hash filter */
1678 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1679
1680 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1681 rx_mode = 0x1C;
1682 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1683 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1684 } else if ((dev->mc_count > multicast_filter_limit)
1685 || (dev->flags & IFF_ALLMULTI)) {
1686 /* Too many to match, or accept all multicasts. */
1687 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1688 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1689 rx_mode = 0x0C;
1690 } else {
1691 struct dev_mc_list *mclist;
1692 int i;
1693 memset(mc_filter, 0, sizeof(mc_filter));
1694 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1695 i++, mclist = mclist->next) {
1696 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1697
1698 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1699 }
1700 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1701 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1702 rx_mode = 0x0C;
1703 }
1704 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1705}
1706
1707static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1708{
1709 struct rhine_private *rp = netdev_priv(dev);
1710
1711 strcpy(info->driver, DRV_NAME);
1712 strcpy(info->version, DRV_VERSION);
1713 strcpy(info->bus_info, pci_name(rp->pdev));
1714}
1715
1716static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1717{
1718 struct rhine_private *rp = netdev_priv(dev);
1719 int rc;
1720
1721 spin_lock_irq(&rp->lock);
1722 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1723 spin_unlock_irq(&rp->lock);
1724
1725 return rc;
1726}
1727
1728static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1729{
1730 struct rhine_private *rp = netdev_priv(dev);
1731 int rc;
1732
1733 spin_lock_irq(&rp->lock);
1734 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1735 spin_unlock_irq(&rp->lock);
00b428c2 1736 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1737
1738 return rc;
1739}
1740
1741static int netdev_nway_reset(struct net_device *dev)
1742{
1743 struct rhine_private *rp = netdev_priv(dev);
1744
1745 return mii_nway_restart(&rp->mii_if);
1746}
1747
1748static u32 netdev_get_link(struct net_device *dev)
1749{
1750 struct rhine_private *rp = netdev_priv(dev);
1751
1752 return mii_link_ok(&rp->mii_if);
1753}
1754
1755static u32 netdev_get_msglevel(struct net_device *dev)
1756{
1757 return debug;
1758}
1759
1760static void netdev_set_msglevel(struct net_device *dev, u32 value)
1761{
1762 debug = value;
1763}
1764
1765static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1766{
1767 struct rhine_private *rp = netdev_priv(dev);
1768
1769 if (!(rp->quirks & rqWOL))
1770 return;
1771
1772 spin_lock_irq(&rp->lock);
1773 wol->supported = WAKE_PHY | WAKE_MAGIC |
1774 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1775 wol->wolopts = rp->wolopts;
1776 spin_unlock_irq(&rp->lock);
1777}
1778
1779static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1780{
1781 struct rhine_private *rp = netdev_priv(dev);
1782 u32 support = WAKE_PHY | WAKE_MAGIC |
1783 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1784
1785 if (!(rp->quirks & rqWOL))
1786 return -EINVAL;
1787
1788 if (wol->wolopts & ~support)
1789 return -EINVAL;
1790
1791 spin_lock_irq(&rp->lock);
1792 rp->wolopts = wol->wolopts;
1793 spin_unlock_irq(&rp->lock);
1794
1795 return 0;
1796}
1797
7282d491 1798static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
1799 .get_drvinfo = netdev_get_drvinfo,
1800 .get_settings = netdev_get_settings,
1801 .set_settings = netdev_set_settings,
1802 .nway_reset = netdev_nway_reset,
1803 .get_link = netdev_get_link,
1804 .get_msglevel = netdev_get_msglevel,
1805 .set_msglevel = netdev_set_msglevel,
1806 .get_wol = rhine_get_wol,
1807 .set_wol = rhine_set_wol,
1da177e4
LT
1808};
1809
1810static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1811{
1812 struct rhine_private *rp = netdev_priv(dev);
1813 int rc;
1814
1815 if (!netif_running(dev))
1816 return -EINVAL;
1817
1818 spin_lock_irq(&rp->lock);
1819 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1820 spin_unlock_irq(&rp->lock);
00b428c2 1821 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1822
1823 return rc;
1824}
1825
1826static int rhine_close(struct net_device *dev)
1827{
1828 struct rhine_private *rp = netdev_priv(dev);
1829 void __iomem *ioaddr = rp->base;
1830
1831 spin_lock_irq(&rp->lock);
1832
1833 netif_stop_queue(dev);
bea3348e 1834 napi_disable(&rp->napi);
1da177e4
LT
1835
1836 if (debug > 1)
1837 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1838 "status was %4.4x.\n",
1839 dev->name, ioread16(ioaddr + ChipCmd));
1840
1841 /* Switch to loopback mode to avoid hardware races. */
1842 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1843
1844 /* Disable interrupts by clearing the interrupt mask. */
1845 iowrite16(0x0000, ioaddr + IntrEnable);
1846
1847 /* Stop the chip's Tx and Rx processes. */
1848 iowrite16(CmdStop, ioaddr + ChipCmd);
1849
1850 spin_unlock_irq(&rp->lock);
1851
1852 free_irq(rp->pdev->irq, dev);
1853 free_rbufs(dev);
1854 free_tbufs(dev);
1855 free_ring(dev);
1856
1857 return 0;
1858}
1859
1860
1861static void __devexit rhine_remove_one(struct pci_dev *pdev)
1862{
1863 struct net_device *dev = pci_get_drvdata(pdev);
1864 struct rhine_private *rp = netdev_priv(dev);
1865
1866 unregister_netdev(dev);
1867
1868 pci_iounmap(pdev, rp->base);
1869 pci_release_regions(pdev);
1870
1871 free_netdev(dev);
1872 pci_disable_device(pdev);
1873 pci_set_drvdata(pdev, NULL);
1874}
1875
d18c3db5 1876static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 1877{
1da177e4
LT
1878 struct net_device *dev = pci_get_drvdata(pdev);
1879 struct rhine_private *rp = netdev_priv(dev);
1880 void __iomem *ioaddr = rp->base;
1881
1882 if (!(rp->quirks & rqWOL))
1883 return; /* Nothing to do for non-WOL adapters */
1884
1885 rhine_power_init(dev);
1886
1887 /* Make sure we use pattern 0, 1 and not 4, 5 */
1888 if (rp->quirks & rq6patterns)
f11cf25e 1889 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4
LT
1890
1891 if (rp->wolopts & WAKE_MAGIC) {
1892 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1893 /*
1894 * Turn EEPROM-controlled wake-up back on -- some hardware may
1895 * not cooperate otherwise.
1896 */
1897 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1898 }
1899
1900 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1901 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1902
1903 if (rp->wolopts & WAKE_PHY)
1904 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1905
1906 if (rp->wolopts & WAKE_UCAST)
1907 iowrite8(WOLucast, ioaddr + WOLcrSet);
1908
1909 if (rp->wolopts) {
1910 /* Enable legacy WOL (for old motherboards) */
1911 iowrite8(0x01, ioaddr + PwcfgSet);
1912 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1913 }
1914
1915 /* Hit power state D3 (sleep) */
b933b4d9
RL
1916 if (!avoid_D3)
1917 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4
LT
1918
1919 /* TODO: Check use of pci_enable_wake() */
1920
1921}
1922
1923#ifdef CONFIG_PM
1924static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1925{
1926 struct net_device *dev = pci_get_drvdata(pdev);
1927 struct rhine_private *rp = netdev_priv(dev);
1928 unsigned long flags;
1929
1930 if (!netif_running(dev))
1931 return 0;
1932
bea3348e 1933 napi_disable(&rp->napi);
32b0f53e 1934
1da177e4
LT
1935 netif_device_detach(dev);
1936 pci_save_state(pdev);
1937
1938 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 1939 rhine_shutdown(pdev);
1da177e4
LT
1940 spin_unlock_irqrestore(&rp->lock, flags);
1941
1942 free_irq(dev->irq, dev);
1943 return 0;
1944}
1945
1946static int rhine_resume(struct pci_dev *pdev)
1947{
1948 struct net_device *dev = pci_get_drvdata(pdev);
1949 struct rhine_private *rp = netdev_priv(dev);
1950 unsigned long flags;
1951 int ret;
1952
1953 if (!netif_running(dev))
1954 return 0;
1955
1fb9df5d 1956 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1da177e4
LT
1957 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1958
1959 ret = pci_set_power_state(pdev, PCI_D0);
1960 if (debug > 1)
1961 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1962 dev->name, ret ? "failed" : "succeeded", ret);
1963
1964 pci_restore_state(pdev);
1965
1966 spin_lock_irqsave(&rp->lock, flags);
1967#ifdef USE_MMIO
1968 enable_mmio(rp->pioaddr, rp->quirks);
1969#endif
1970 rhine_power_init(dev);
1971 free_tbufs(dev);
1972 free_rbufs(dev);
1973 alloc_tbufs(dev);
1974 alloc_rbufs(dev);
1975 init_registers(dev);
1976 spin_unlock_irqrestore(&rp->lock, flags);
1977
1978 netif_device_attach(dev);
1979
1980 return 0;
1981}
1982#endif /* CONFIG_PM */
1983
1984static struct pci_driver rhine_driver = {
1985 .name = DRV_NAME,
1986 .id_table = rhine_pci_tbl,
1987 .probe = rhine_init_one,
1988 .remove = __devexit_p(rhine_remove_one),
1989#ifdef CONFIG_PM
1990 .suspend = rhine_suspend,
1991 .resume = rhine_resume,
1992#endif /* CONFIG_PM */
d18c3db5 1993 .shutdown = rhine_shutdown,
1da177e4
LT
1994};
1995
e84df485
RL
1996static struct dmi_system_id __initdata rhine_dmi_table[] = {
1997 {
1998 .ident = "EPIA-M",
1999 .matches = {
2000 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2001 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2002 },
2003 },
2004 {
2005 .ident = "KV7",
2006 .matches = {
2007 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2008 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2009 },
2010 },
2011 { NULL }
2012};
1da177e4
LT
2013
2014static int __init rhine_init(void)
2015{
2016/* when a module, this is printed whether or not devices are found in probe */
2017#ifdef MODULE
2018 printk(version);
2019#endif
e84df485
RL
2020 if (dmi_check_system(rhine_dmi_table)) {
2021 /* these BIOSes fail at PXE boot if chip is in D3 */
2022 avoid_D3 = 1;
2023 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2024 "enabled.\n",
2025 DRV_NAME);
2026 }
2027 else if (avoid_D3)
2028 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2029
29917620 2030 return pci_register_driver(&rhine_driver);
1da177e4
LT
2031}
2032
2033
2034static void __exit rhine_cleanup(void)
2035{
2036 pci_unregister_driver(&rhine_driver);
2037}
2038
2039
2040module_init(rhine_init);
2041module_exit(rhine_cleanup);