]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/wan/farsync.c
[NETFILTER]: Revert nf_reset change
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wan / farsync.c
CommitLineData
1da177e4
LT
1/*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/version.h>
21#include <linux/pci.h>
22#include <linux/ioport.h>
23#include <linux/init.h>
24#include <linux/if.h>
25#include <linux/hdlc.h>
26#include <asm/io.h>
27#include <asm/uaccess.h>
28
29#include "farsync.h"
30
31/*
32 * Module info
33 */
34MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36MODULE_LICENSE("GPL");
37
38/* Driver configuration and global parameters
39 * ==========================================
40 */
41
42/* Number of ports (per card) and cards supported
43 */
44#define FST_MAX_PORTS 4
45#define FST_MAX_CARDS 32
46
47/* Default parameters for the link
48 */
49#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
50 * useful, the syncppp module forces
51 * this down assuming a slower line I
52 * guess.
53 */
54#define FST_TXQ_DEPTH 16 /* This one is for the buffering
55 * of frames on the way down to the card
56 * so that we can keep the card busy
57 * and maximise throughput
58 */
59#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
60 * network layer */
61#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
62 * control from network layer */
63#define FST_MAX_MTU 8000 /* Huge but possible */
64#define FST_DEF_MTU 1500 /* Common sane value */
65
66#define FST_TX_TIMEOUT (2*HZ)
67
68#ifdef ARPHRD_RAWHDLC
69#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70#else
71#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
72#endif
73
74/*
75 * Modules parameters and associated varaibles
76 */
77int fst_txq_low = FST_LOW_WATER_MARK;
78int fst_txq_high = FST_HIGH_WATER_MARK;
79int fst_max_reads = 7;
80int fst_excluded_cards = 0;
81int fst_excluded_list[FST_MAX_CARDS];
82
83module_param(fst_txq_low, int, 0);
84module_param(fst_txq_high, int, 0);
85module_param(fst_max_reads, int, 0);
86module_param(fst_excluded_cards, int, 0);
87module_param_array(fst_excluded_list, int, NULL, 0);
88
89/* Card shared memory layout
90 * =========================
91 */
92#pragma pack(1)
93
94/* This information is derived in part from the FarSite FarSync Smc.h
95 * file. Unfortunately various name clashes and the non-portability of the
96 * bit field declarations in that file have meant that I have chosen to
97 * recreate the information here.
98 *
99 * The SMC (Shared Memory Configuration) has a version number that is
100 * incremented every time there is a significant change. This number can
101 * be used to check that we have not got out of step with the firmware
102 * contained in the .CDE files.
103 */
104#define SMC_VERSION 24
105
106#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
107
108#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
109 * configuration structure */
110#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
111 * buffers */
112
113#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
114#define LEN_RX_BUFFER 8192
115
116#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
117#define LEN_SMALL_RX_BUFFER 256
118
119#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
120#define NUM_RX_BUFFER 8
121
122/* Interrupt retry time in milliseconds */
123#define INT_RETRY_TIME 2
124
125/* The Am186CH/CC processors support a SmartDMA mode using circular pools
126 * of buffer descriptors. The structure is almost identical to that used
127 * in the LANCE Ethernet controllers. Details available as PDF from the
128 * AMD web site: http://www.amd.com/products/epd/processors/\
129 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
130 */
131struct txdesc { /* Transmit descriptor */
132 volatile u16 ladr; /* Low order address of packet. This is a
133 * linear address in the Am186 memory space
134 */
135 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
136 * bits must be zero
137 */
138 volatile u8 bits; /* Status and config */
139 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
140 * Transmit terminal count interrupt enable in
141 * top bit.
142 */
143 u16 unused; /* Not used in Tx */
144};
145
146struct rxdesc { /* Receive descriptor */
147 volatile u16 ladr; /* Low order address of packet */
148 volatile u8 hadr; /* High order address */
149 volatile u8 bits; /* Status and config */
150 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
151 * Receive terminal count interrupt enable in
152 * top bit.
153 */
154 volatile u16 mcnt; /* Message byte count (15 bits) */
155};
156
157/* Convert a length into the 15 bit 2's complement */
158/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
159/* Since we need to set the high bit to enable the completion interrupt this
160 * can be made a lot simpler
161 */
162#define cnv_bcnt(len) (-(len))
163
164/* Status and config bits for the above */
165#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
166#define TX_STP 0x02 /* Tx: start of packet */
167#define TX_ENP 0x01 /* Tx: end of packet */
168#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
169#define RX_FRAM 0x20 /* Rx: framing error */
170#define RX_OFLO 0x10 /* Rx: overflow error */
171#define RX_CRC 0x08 /* Rx: CRC error */
172#define RX_HBUF 0x04 /* Rx: buffer error */
173#define RX_STP 0x02 /* Rx: start of packet */
174#define RX_ENP 0x01 /* Rx: end of packet */
175
176/* Interrupts from the card are caused by various events which are presented
177 * in a circular buffer as several events may be processed on one physical int
178 */
179#define MAX_CIRBUFF 32
180
181struct cirbuff {
182 u8 rdindex; /* read, then increment and wrap */
183 u8 wrindex; /* write, then increment and wrap */
184 u8 evntbuff[MAX_CIRBUFF];
185};
186
187/* Interrupt event codes.
188 * Where appropriate the two low order bits indicate the port number
189 */
190#define CTLA_CHG 0x18 /* Control signal changed */
191#define CTLB_CHG 0x19
192#define CTLC_CHG 0x1A
193#define CTLD_CHG 0x1B
194
195#define INIT_CPLT 0x20 /* Initialisation complete */
196#define INIT_FAIL 0x21 /* Initialisation failed */
197
198#define ABTA_SENT 0x24 /* Abort sent */
199#define ABTB_SENT 0x25
200#define ABTC_SENT 0x26
201#define ABTD_SENT 0x27
202
203#define TXA_UNDF 0x28 /* Transmission underflow */
204#define TXB_UNDF 0x29
205#define TXC_UNDF 0x2A
206#define TXD_UNDF 0x2B
207
208#define F56_INT 0x2C
209#define M32_INT 0x2D
210
211#define TE1_ALMA 0x30
212
213/* Port physical configuration. See farsync.h for field values */
214struct port_cfg {
215 u16 lineInterface; /* Physical interface type */
216 u8 x25op; /* Unused at present */
217 u8 internalClock; /* 1 => internal clock, 0 => external */
218 u8 transparentMode; /* 1 => on, 0 => off */
219 u8 invertClock; /* 0 => normal, 1 => inverted */
220 u8 padBytes[6]; /* Padding */
221 u32 lineSpeed; /* Speed in bps */
222};
223
224/* TE1 port physical configuration */
225struct su_config {
226 u32 dataRate;
227 u8 clocking;
228 u8 framing;
229 u8 structure;
230 u8 interface;
231 u8 coding;
232 u8 lineBuildOut;
233 u8 equalizer;
234 u8 transparentMode;
235 u8 loopMode;
236 u8 range;
237 u8 txBufferMode;
238 u8 rxBufferMode;
239 u8 startingSlot;
240 u8 losThreshold;
241 u8 enableIdleCode;
242 u8 idleCode;
243 u8 spare[44];
244};
245
246/* TE1 Status */
247struct su_status {
248 u32 receiveBufferDelay;
249 u32 framingErrorCount;
250 u32 codeViolationCount;
251 u32 crcErrorCount;
252 u32 lineAttenuation;
253 u8 portStarted;
254 u8 lossOfSignal;
255 u8 receiveRemoteAlarm;
256 u8 alarmIndicationSignal;
257 u8 spare[40];
258};
259
260/* Finally sling all the above together into the shared memory structure.
261 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
262 * evolving under NT for some time so I guess we're stuck with it.
263 * The structure starts at offset SMC_BASE.
264 * See farsync.h for some field values.
265 */
266struct fst_shared {
267 /* DMA descriptor rings */
268 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
269 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
270
271 /* Obsolete small buffers */
272 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
273 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
274
275 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
276 * 0xFF => halted
277 */
278
279 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
280 * set to 0xEE by host to acknowledge interrupt
281 */
282
283 u16 smcVersion; /* Must match SMC_VERSION */
284
285 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
286 * version, RR = revision and BB = build
287 */
288
289 u16 txa_done; /* Obsolete completion flags */
290 u16 rxa_done;
291 u16 txb_done;
292 u16 rxb_done;
293 u16 txc_done;
294 u16 rxc_done;
295 u16 txd_done;
296 u16 rxd_done;
297
298 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
299
300 struct cirbuff interruptEvent; /* interrupt causes */
301
302 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
303 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
304
305 struct port_cfg portConfig[FST_MAX_PORTS];
306
307 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
308
309 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
310
311 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
312 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
313
314 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
315 u16 cardMailbox[4]; /* Not used */
316
317 /* Number of times the card thinks the host has
318 * missed an interrupt by not acknowledging
319 * within 2mS (I guess NT has problems)
320 */
321 u32 interruptRetryCount;
322
323 /* Driver private data used as an ID. We'll not
324 * use this as I'd rather keep such things
325 * in main memory rather than on the PCI bus
326 */
327 u32 portHandle[FST_MAX_PORTS];
328
329 /* Count of Tx underflows for stats */
330 u32 transmitBufferUnderflow[FST_MAX_PORTS];
331
332 /* Debounced V.24 control input status */
333 u32 v24DebouncedSts[FST_MAX_PORTS];
334
335 /* Adapter debounce timers. Don't touch */
336 u32 ctsTimer[FST_MAX_PORTS];
337 u32 ctsTimerRun[FST_MAX_PORTS];
338 u32 dcdTimer[FST_MAX_PORTS];
339 u32 dcdTimerRun[FST_MAX_PORTS];
340
341 u32 numberOfPorts; /* Number of ports detected at startup */
342
343 u16 _reserved[64];
344
345 u16 cardMode; /* Bit-mask to enable features:
346 * Bit 0: 1 enables LED identify mode
347 */
348
349 u16 portScheduleOffset;
350
351 struct su_config suConfig; /* TE1 Bits */
352 struct su_status suStatus;
353
354 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
355 * the structure and marks the end of shared
356 * memory. Adapter code initializes it as
357 * END_SIG.
358 */
359};
360
361/* endOfSmcSignature value */
362#define END_SIG 0x12345678
363
364/* Mailbox values. (portMailbox) */
365#define NOP 0 /* No operation */
366#define ACK 1 /* Positive acknowledgement to PC driver */
367#define NAK 2 /* Negative acknowledgement to PC driver */
368#define STARTPORT 3 /* Start an HDLC port */
369#define STOPPORT 4 /* Stop an HDLC port */
370#define ABORTTX 5 /* Abort the transmitter for a port */
371#define SETV24O 6 /* Set V24 outputs */
372
373/* PLX Chip Register Offsets */
374#define CNTRL_9052 0x50 /* Control Register */
375#define CNTRL_9054 0x6c /* Control Register */
376
377#define INTCSR_9052 0x4c /* Interrupt control/status register */
378#define INTCSR_9054 0x68 /* Interrupt control/status register */
379
380/* 9054 DMA Registers */
381/*
382 * Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
384 */
385#define DMAMODE0 0x80
386#define DMAPADR0 0x84
387#define DMALADR0 0x88
388#define DMASIZ0 0x8c
389#define DMADPR0 0x90
390#define DMAMODE1 0x94
391#define DMAPADR1 0x98
392#define DMALADR1 0x9c
393#define DMASIZ1 0xa0
394#define DMADPR1 0xa4
395#define DMACSR0 0xa8
396#define DMACSR1 0xa9
397#define DMAARB 0xac
398#define DMATHR 0xb0
399#define DMADAC0 0xb4
400#define DMADAC1 0xb8
401#define DMAMARBR 0xac
402
403#define FST_MIN_DMA_LEN 64
404#define FST_RX_DMA_INT 0x01
405#define FST_TX_DMA_INT 0x02
406#define FST_CARD_INT 0x04
407
408/* Larger buffers are positioned in memory at offset BFM_BASE */
409struct buf_window {
410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412};
413
414/* Calculate offset of a buffer object within the shared memory window */
415#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
416
417#pragma pack()
418
419/* Device driver private information
420 * =================================
421 */
422/* Per port (line or channel) information
423 */
424struct fst_port_info {
425 struct net_device *dev; /* Device struct - must be first */
426 struct fst_card_info *card; /* Card we're associated with */
427 int index; /* Port index on the card */
428 int hwif; /* Line hardware (lineInterface copy) */
429 int run; /* Port is running */
430 int mode; /* Normal or FarSync raw */
431 int rxpos; /* Next Rx buffer to use */
432 int txpos; /* Next Tx buffer to use */
433 int txipos; /* Next Tx buffer to check for free */
434 int start; /* Indication of start/stop to network */
435 /*
436 * A sixteen entry transmit queue
437 */
438 int txqs; /* index to get next buffer to tx */
439 int txqe; /* index to queue next packet */
440 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
441 int rxqdepth;
442};
443
444/* Per card information
445 */
446struct fst_card_info {
447 char __iomem *mem; /* Card memory mapped to kernel space */
448 char __iomem *ctlmem; /* Control memory for PCI cards */
449 unsigned int phys_mem; /* Physical memory window address */
450 unsigned int phys_ctlmem; /* Physical control memory address */
451 unsigned int irq; /* Interrupt request line number */
452 unsigned int nports; /* Number of serial ports */
453 unsigned int type; /* Type index of card */
454 unsigned int state; /* State of card */
455 spinlock_t card_lock; /* Lock for SMP access */
456 unsigned short pci_conf; /* PCI card config in I/O space */
457 /* Per port info */
458 struct fst_port_info ports[FST_MAX_PORTS];
459 struct pci_dev *device; /* Information about the pci device */
460 int card_no; /* Inst of the card on the system */
461 int family; /* TxP or TxU */
462 int dmarx_in_progress;
463 int dmatx_in_progress;
464 unsigned long int_count;
465 unsigned long int_time_ave;
466 void *rx_dma_handle_host;
467 dma_addr_t rx_dma_handle_card;
468 void *tx_dma_handle_host;
469 dma_addr_t tx_dma_handle_card;
470 struct sk_buff *dma_skb_rx;
471 struct fst_port_info *dma_port_rx;
472 struct fst_port_info *dma_port_tx;
473 int dma_len_rx;
474 int dma_len_tx;
475 int dma_txpos;
476 int dma_rxpos;
477};
478
479/* Convert an HDLC device pointer into a port info pointer and similar */
480#define dev_to_port(D) (dev_to_hdlc(D)->priv)
481#define port_to_dev(P) ((P)->dev)
482
483
484/*
485 * Shared memory window access macros
486 *
487 * We have a nice memory based structure above, which could be directly
488 * mapped on i386 but might not work on other architectures unless we use
489 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
490 * physical offsets so we have to convert. The only saving grace is that
491 * this should all collapse back to a simple indirection eventually.
492 */
493#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
494
495#define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
496#define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
497#define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
498
499#define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
500#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
501#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
502
503/*
504 * Debug support
505 */
506#if FST_DEBUG
507
508static int fst_debug_mask = { FST_DEBUG };
509
510/* Most common debug activity is to print something if the corresponding bit
511 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
512 * support variable numbers of macro parameters. The inverted if prevents us
513 * eating someone else's else clause.
514 */
515#define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
516 ; \
517 else \
518 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
519
520#else
521#define dbg(X...) /* NOP */
522#endif
523
524/* Printing short cuts
525 */
526#define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
527#define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
528#define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
529
530/*
531 * PCI ID lookup table
532 */
533static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551
552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 {0,} /* End */
555};
556
557MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558
559/*
560 * Device Driver Work Queues
561 *
562 * So that we don't spend too much time processing events in the
563 * Interrupt Service routine, we will declare a work queue per Card
564 * and make the ISR schedule a task in the queue for later execution.
565 * In the 2.4 Kernel we used to use the immediate queue for BH's
566 * Now that they are gone, tasklets seem to be much better than work
567 * queues.
568 */
569
570static void do_bottom_half_tx(struct fst_card_info *card);
571static void do_bottom_half_rx(struct fst_card_info *card);
572static void fst_process_tx_work_q(unsigned long work_q);
573static void fst_process_int_work_q(unsigned long work_q);
574
575DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577
578struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579spinlock_t fst_work_q_lock;
580u64 fst_work_txq;
581u64 fst_work_intq;
582
583static void
584fst_q_work_item(u64 * queue, int card_index)
585{
586 unsigned long flags;
587 u64 mask;
588
589 /*
590 * Grab the queue exclusively
591 */
592 spin_lock_irqsave(&fst_work_q_lock, flags);
593
594 /*
595 * Making an entry in the queue is simply a matter of setting
596 * a bit for the card indicating that there is work to do in the
597 * bottom half for the card. Note the limitation of 64 cards.
598 * That ought to be enough
599 */
600 mask = 1 << card_index;
601 *queue |= mask;
602 spin_unlock_irqrestore(&fst_work_q_lock, flags);
603}
604
605static void
606fst_process_tx_work_q(unsigned long /*void **/work_q)
607{
608 unsigned long flags;
609 u64 work_txq;
610 int i;
611
612 /*
613 * Grab the queue exclusively
614 */
615 dbg(DBG_TX, "fst_process_tx_work_q\n");
616 spin_lock_irqsave(&fst_work_q_lock, flags);
617 work_txq = fst_work_txq;
618 fst_work_txq = 0;
619 spin_unlock_irqrestore(&fst_work_q_lock, flags);
620
621 /*
622 * Call the bottom half for each card with work waiting
623 */
624 for (i = 0; i < FST_MAX_CARDS; i++) {
625 if (work_txq & 0x01) {
626 if (fst_card_array[i] != NULL) {
627 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 do_bottom_half_tx(fst_card_array[i]);
629 }
630 }
631 work_txq = work_txq >> 1;
632 }
633}
634
635static void
636fst_process_int_work_q(unsigned long /*void **/work_q)
637{
638 unsigned long flags;
639 u64 work_intq;
640 int i;
641
642 /*
643 * Grab the queue exclusively
644 */
645 dbg(DBG_INTR, "fst_process_int_work_q\n");
646 spin_lock_irqsave(&fst_work_q_lock, flags);
647 work_intq = fst_work_intq;
648 fst_work_intq = 0;
649 spin_unlock_irqrestore(&fst_work_q_lock, flags);
650
651 /*
652 * Call the bottom half for each card with work waiting
653 */
654 for (i = 0; i < FST_MAX_CARDS; i++) {
655 if (work_intq & 0x01) {
656 if (fst_card_array[i] != NULL) {
657 dbg(DBG_INTR,
658 "Calling rx & tx bh for card %d\n", i);
659 do_bottom_half_rx(fst_card_array[i]);
660 do_bottom_half_tx(fst_card_array[i]);
661 }
662 }
663 work_intq = work_intq >> 1;
664 }
665}
666
667/* Card control functions
668 * ======================
669 */
670/* Place the processor in reset state
671 *
672 * Used to be a simple write to card control space but a glitch in the latest
673 * AMD Am186CH processor means that we now have to do it by asserting and de-
674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675 * at offset 9052_CNTRL. Note the updates for the TXU.
676 */
677static inline void
678fst_cpureset(struct fst_card_info *card)
679{
680 unsigned char interrupt_line_register;
681 unsigned long j = jiffies + 1;
682 unsigned int regval;
683
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
689 }
690 /*
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
693 */
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 /*
697 * We are delaying here to allow the 9054 to reset itself
698 */
699 j = jiffies + 1;
700 while (jiffies < j)
701 /* Do nothing */ ;
702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703 /*
704 * We are delaying here to allow the 9054 to reload its eeprom
705 */
706 j = jiffies + 1;
707 while (jiffies < j)
708 /* Do nothing */ ;
709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710
711 if (pci_write_config_byte
712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 dbg(DBG_ASS,
714 "Error in writing interrupt line register\n");
715 }
716
717 } else {
718 regval = inl(card->pci_conf + CNTRL_9052);
719
720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722 }
723}
724
725/* Release the processor from reset
726 */
727static inline void
728fst_cpurelease(struct fst_card_info *card)
729{
730 if (card->family == FST_FAMILY_TXU) {
731 /*
732 * Force posted writes to complete
733 */
734 (void) readb(card->mem);
735
736 /*
737 * Release LRESET DO = 1
738 * Then release Local Hold, DO = 1
739 */
740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 } else {
743 (void) readb(card->ctlmem);
744 }
745}
746
747/* Clear the cards interrupt flag
748 */
749static inline void
750fst_clear_intr(struct fst_card_info *card)
751{
752 if (card->family == FST_FAMILY_TXU) {
753 (void) readb(card->ctlmem);
754 } else {
755 /* Poke the appropriate PLX chip register (same as enabling interrupts)
756 */
757 outw(0x0543, card->pci_conf + INTCSR_9052);
758 }
759}
760
761/* Enable card interrupts
762 */
763static inline void
764fst_enable_intr(struct fst_card_info *card)
765{
766 if (card->family == FST_FAMILY_TXU) {
767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 } else {
769 outw(0x0543, card->pci_conf + INTCSR_9052);
770 }
771}
772
773/* Disable card interrupts
774 */
775static inline void
776fst_disable_intr(struct fst_card_info *card)
777{
778 if (card->family == FST_FAMILY_TXU) {
779 outl(0x00000000, card->pci_conf + INTCSR_9054);
780 } else {
781 outw(0x0000, card->pci_conf + INTCSR_9052);
782 }
783}
784
785/* Process the result of trying to pass a received frame up the stack
786 */
787static void
788fst_process_rx_status(int rx_status, char *name)
789{
790 switch (rx_status) {
791 case NET_RX_SUCCESS:
792 {
793 /*
794 * Nothing to do here
795 */
796 break;
797 }
798
799 case NET_RX_CN_LOW:
800 {
801 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
802 break;
803 }
804
805 case NET_RX_CN_MOD:
806 {
807 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
808 break;
809 }
810
811 case NET_RX_CN_HIGH:
812 {
813 dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
814 break;
815 }
816
817 case NET_RX_DROP:
818 {
819 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
820 break;
821 }
822 }
823}
824
825/* Initilaise DMA for PLX 9054
826 */
827static inline void
828fst_init_dma(struct fst_card_info *card)
829{
830 /*
831 * This is only required for the PLX 9054
832 */
833 if (card->family == FST_FAMILY_TXU) {
834 pci_set_master(card->device);
835 outl(0x00020441, card->pci_conf + DMAMODE0);
836 outl(0x00020441, card->pci_conf + DMAMODE1);
837 outl(0x0, card->pci_conf + DMATHR);
838 }
839}
840
841/* Tx dma complete interrupt
842 */
843static void
844fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
845 int len, int txpos)
846{
847 struct net_device *dev = port_to_dev(port);
848 struct net_device_stats *stats = hdlc_stats(dev);
849
850 /*
851 * Everything is now set, just tell the card to go
852 */
853 dbg(DBG_TX, "fst_tx_dma_complete\n");
854 FST_WRB(card, txDescrRing[port->index][txpos].bits,
855 DMA_OWN | TX_STP | TX_ENP);
856 stats->tx_packets++;
857 stats->tx_bytes += len;
858 dev->trans_start = jiffies;
859}
860
861/*
862 * Mark it for our own raw sockets interface
863 */
864static unsigned short farsync_type_trans(struct sk_buff *skb,
865 struct net_device *dev)
866{
867 skb->dev = dev;
868 skb->mac.raw = skb->data;
869 skb->pkt_type = PACKET_HOST;
870 return htons(ETH_P_CUST);
871}
872
873/* Rx dma complete interrupt
874 */
875static void
876fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
877 int len, struct sk_buff *skb, int rxp)
878{
879 struct net_device *dev = port_to_dev(port);
880 struct net_device_stats *stats = hdlc_stats(dev);
881 int pi;
882 int rx_status;
883
884 dbg(DBG_TX, "fst_rx_dma_complete\n");
885 pi = port->index;
886 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
887
888 /* Reset buffer descriptor */
889 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
890
891 /* Update stats */
892 stats->rx_packets++;
893 stats->rx_bytes += len;
894
895 /* Push upstream */
896 dbg(DBG_RX, "Pushing the frame up the stack\n");
897 if (port->mode == FST_RAW)
898 skb->protocol = farsync_type_trans(skb, dev);
899 else
900 skb->protocol = hdlc_type_trans(skb, dev);
901 rx_status = netif_rx(skb);
902 fst_process_rx_status(rx_status, port_to_dev(port)->name);
903 if (rx_status == NET_RX_DROP)
904 stats->rx_dropped++;
905 dev->last_rx = jiffies;
906}
907
908/*
909 * Receive a frame through the DMA
910 */
911static inline void
912fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
913 unsigned char *mem, int len)
914{
915 /*
916 * This routine will setup the DMA and start it
917 */
918
919 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
920 if (card->dmarx_in_progress) {
921 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
922 }
923
924 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
925 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
926 outl(len, card->pci_conf + DMASIZ0); /* for this length */
927 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
928
929 /*
930 * We use the dmarx_in_progress flag to flag the channel as busy
931 */
932 card->dmarx_in_progress = 1;
933 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
934}
935
936/*
937 * Send a frame through the DMA
938 */
939static inline void
940fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
941 unsigned char *mem, int len)
942{
943 /*
944 * This routine will setup the DMA and start it.
945 */
946
947 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
948 if (card->dmatx_in_progress) {
949 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
950 }
951
952 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
953 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
954 outl(len, card->pci_conf + DMASIZ1); /* for this length */
955 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
956
957 /*
958 * We use the dmatx_in_progress to flag the channel as busy
959 */
960 card->dmatx_in_progress = 1;
961 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
962}
963
964/* Issue a Mailbox command for a port.
965 * Note we issue them on a fire and forget basis, not expecting to see an
966 * error and not waiting for completion.
967 */
968static void
969fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
970{
971 struct fst_card_info *card;
972 unsigned short mbval;
973 unsigned long flags;
974 int safety;
975
976 card = port->card;
977 spin_lock_irqsave(&card->card_lock, flags);
978 mbval = FST_RDW(card, portMailbox[port->index][0]);
979
980 safety = 0;
981 /* Wait for any previous command to complete */
982 while (mbval > NAK) {
983 spin_unlock_irqrestore(&card->card_lock, flags);
0da8b145 984 set_current_state(TASK_UNINTERRUPTIBLE);
1da177e4
LT
985 schedule_timeout(1);
986 spin_lock_irqsave(&card->card_lock, flags);
987
988 if (++safety > 2000) {
989 printk_err("Mailbox safety timeout\n");
990 break;
991 }
992
993 mbval = FST_RDW(card, portMailbox[port->index][0]);
994 }
995 if (safety > 0) {
996 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
997 }
998 if (mbval == NAK) {
999 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
1000 }
1001
1002 FST_WRW(card, portMailbox[port->index][0], cmd);
1003
1004 if (cmd == ABORTTX || cmd == STARTPORT) {
1005 port->txpos = 0;
1006 port->txipos = 0;
1007 port->start = 0;
1008 }
1009
1010 spin_unlock_irqrestore(&card->card_lock, flags);
1011}
1012
1013/* Port output signals control
1014 */
1015static inline void
1016fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1017{
1018 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1019 FST_WRL(port->card, v24OpSts[port->index], outputs);
1020
1021 if (port->run)
1022 fst_issue_cmd(port, SETV24O);
1023}
1024
1025static inline void
1026fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1027{
1028 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1029 FST_WRL(port->card, v24OpSts[port->index], outputs);
1030
1031 if (port->run)
1032 fst_issue_cmd(port, SETV24O);
1033}
1034
1035/*
1036 * Setup port Rx buffers
1037 */
1038static void
1039fst_rx_config(struct fst_port_info *port)
1040{
1041 int i;
1042 int pi;
1043 unsigned int offset;
1044 unsigned long flags;
1045 struct fst_card_info *card;
1046
1047 pi = port->index;
1048 card = port->card;
1049 spin_lock_irqsave(&card->card_lock, flags);
1050 for (i = 0; i < NUM_RX_BUFFER; i++) {
1051 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1052
1053 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1054 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1055 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1056 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1057 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1058 }
1059 port->rxpos = 0;
1060 spin_unlock_irqrestore(&card->card_lock, flags);
1061}
1062
1063/*
1064 * Setup port Tx buffers
1065 */
1066static void
1067fst_tx_config(struct fst_port_info *port)
1068{
1069 int i;
1070 int pi;
1071 unsigned int offset;
1072 unsigned long flags;
1073 struct fst_card_info *card;
1074
1075 pi = port->index;
1076 card = port->card;
1077 spin_lock_irqsave(&card->card_lock, flags);
1078 for (i = 0; i < NUM_TX_BUFFER; i++) {
1079 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1080
1081 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1082 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1083 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1084 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1085 }
1086 port->txpos = 0;
1087 port->txipos = 0;
1088 port->start = 0;
1089 spin_unlock_irqrestore(&card->card_lock, flags);
1090}
1091
1092/* TE1 Alarm change interrupt event
1093 */
1094static void
1095fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1096{
1097 u8 los;
1098 u8 rra;
1099 u8 ais;
1100
1101 los = FST_RDB(card, suStatus.lossOfSignal);
1102 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1103 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1104
1105 if (los) {
1106 /*
1107 * Lost the link
1108 */
1109 if (netif_carrier_ok(port_to_dev(port))) {
1110 dbg(DBG_INTR, "Net carrier off\n");
1111 netif_carrier_off(port_to_dev(port));
1112 }
1113 } else {
1114 /*
1115 * Link available
1116 */
1117 if (!netif_carrier_ok(port_to_dev(port))) {
1118 dbg(DBG_INTR, "Net carrier on\n");
1119 netif_carrier_on(port_to_dev(port));
1120 }
1121 }
1122
1123 if (los)
1124 dbg(DBG_INTR, "Assert LOS Alarm\n");
1125 else
1126 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1127 if (rra)
1128 dbg(DBG_INTR, "Assert RRA Alarm\n");
1129 else
1130 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1131
1132 if (ais)
1133 dbg(DBG_INTR, "Assert AIS Alarm\n");
1134 else
1135 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1136}
1137
1138/* Control signal change interrupt event
1139 */
1140static void
1141fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1142{
1143 int signals;
1144
1145 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1146
1147 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1148 ? IPSTS_INDICATE : IPSTS_DCD)) {
1149 if (!netif_carrier_ok(port_to_dev(port))) {
1150 dbg(DBG_INTR, "DCD active\n");
1151 netif_carrier_on(port_to_dev(port));
1152 }
1153 } else {
1154 if (netif_carrier_ok(port_to_dev(port))) {
1155 dbg(DBG_INTR, "DCD lost\n");
1156 netif_carrier_off(port_to_dev(port));
1157 }
1158 }
1159}
1160
1161/* Log Rx Errors
1162 */
1163static void
1164fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1165 unsigned char dmabits, int rxp, unsigned short len)
1166{
1167 struct net_device *dev = port_to_dev(port);
1168 struct net_device_stats *stats = hdlc_stats(dev);
1169
1170 /*
1171 * Increment the appropriate error counter
1172 */
1173 stats->rx_errors++;
1174 if (dmabits & RX_OFLO) {
1175 stats->rx_fifo_errors++;
1176 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1177 card->card_no, port->index, rxp);
1178 }
1179 if (dmabits & RX_CRC) {
1180 stats->rx_crc_errors++;
1181 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1182 card->card_no, port->index);
1183 }
1184 if (dmabits & RX_FRAM) {
1185 stats->rx_frame_errors++;
1186 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1187 card->card_no, port->index);
1188 }
1189 if (dmabits == (RX_STP | RX_ENP)) {
1190 stats->rx_length_errors++;
1191 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1192 len, card->card_no, port->index);
1193 }
1194}
1195
1196/* Rx Error Recovery
1197 */
1198static void
1199fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1200 unsigned char dmabits, int rxp, unsigned short len)
1201{
1202 int i;
1203 int pi;
1204
1205 pi = port->index;
1206 /*
1207 * Discard buffer descriptors until we see the start of the
1208 * next frame. Note that for long frames this could be in
1209 * a subsequent interrupt.
1210 */
1211 i = 0;
1212 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1213 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1214 rxp = (rxp+1) % NUM_RX_BUFFER;
1215 if (++i > NUM_RX_BUFFER) {
1216 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1217 " than we have\n");
1218 break;
1219 }
1220 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1221 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1222 }
1223 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1224
1225 /* Discard the terminal buffer */
1226 if (!(dmabits & DMA_OWN)) {
1227 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1228 rxp = (rxp+1) % NUM_RX_BUFFER;
1229 }
1230 port->rxpos = rxp;
1231 return;
1232
1233}
1234
1235/* Rx complete interrupt
1236 */
1237static void
1238fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1239{
1240 unsigned char dmabits;
1241 int pi;
1242 int rxp;
1243 int rx_status;
1244 unsigned short len;
1245 struct sk_buff *skb;
1246 struct net_device *dev = port_to_dev(port);
1247 struct net_device_stats *stats = hdlc_stats(dev);
1248
1249 /* Check we have a buffer to process */
1250 pi = port->index;
1251 rxp = port->rxpos;
1252 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1253 if (dmabits & DMA_OWN) {
1254 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1255 pi, rxp);
1256 return;
1257 }
1258 if (card->dmarx_in_progress) {
1259 return;
1260 }
1261
1262 /* Get buffer length */
1263 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1264 /* Discard the CRC */
1265 len -= 2;
1266 if (len == 0) {
1267 /*
1268 * This seems to happen on the TE1 interface sometimes
1269 * so throw the frame away and log the event.
1270 */
1271 printk_err("Frame received with 0 length. Card %d Port %d\n",
1272 card->card_no, port->index);
1273 /* Return descriptor to card */
1274 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276 rxp = (rxp+1) % NUM_RX_BUFFER;
1277 port->rxpos = rxp;
1278 return;
1279 }
1280
1281 /* Check buffer length and for other errors. We insist on one packet
1282 * in one buffer. This simplifies things greatly and since we've
1283 * allocated 8K it shouldn't be a real world limitation
1284 */
1285 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1286 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1287 fst_log_rx_error(card, port, dmabits, rxp, len);
1288 fst_recover_rx_error(card, port, dmabits, rxp, len);
1289 return;
1290 }
1291
1292 /* Allocate SKB */
1293 if ((skb = dev_alloc_skb(len)) == NULL) {
1294 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1295
1296 stats->rx_dropped++;
1297
1298 /* Return descriptor to card */
1299 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1300
1301 rxp = (rxp+1) % NUM_RX_BUFFER;
1302 port->rxpos = rxp;
1303 return;
1304 }
1305
1306 /*
1307 * We know the length we need to receive, len.
1308 * It's not worth using the DMA for reads of less than
1309 * FST_MIN_DMA_LEN
1310 */
1311
1312 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1313 memcpy_fromio(skb_put(skb, len),
1314 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1315 len);
1316
1317 /* Reset buffer descriptor */
1318 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1319
1320 /* Update stats */
1321 stats->rx_packets++;
1322 stats->rx_bytes += len;
1323
1324 /* Push upstream */
1325 dbg(DBG_RX, "Pushing frame up the stack\n");
1326 if (port->mode == FST_RAW)
1327 skb->protocol = farsync_type_trans(skb, dev);
1328 else
1329 skb->protocol = hdlc_type_trans(skb, dev);
1330 rx_status = netif_rx(skb);
1331 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1332 if (rx_status == NET_RX_DROP) {
1333 stats->rx_dropped++;
1334 }
1335 dev->last_rx = jiffies;
1336 } else {
1337 card->dma_skb_rx = skb;
1338 card->dma_port_rx = port;
1339 card->dma_len_rx = len;
1340 card->dma_rxpos = rxp;
1341 fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1342 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1343 }
1344 if (rxp != port->rxpos) {
1345 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1346 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1347 }
1348 rxp = (rxp+1) % NUM_RX_BUFFER;
1349 port->rxpos = rxp;
1350}
1351
1352/*
1353 * The bottom halfs to the ISR
1354 *
1355 */
1356
1357static void
1358do_bottom_half_tx(struct fst_card_info *card)
1359{
1360 struct fst_port_info *port;
1361 int pi;
1362 int txq_length;
1363 struct sk_buff *skb;
1364 unsigned long flags;
1365 struct net_device *dev;
1366 struct net_device_stats *stats;
1367
1368 /*
1369 * Find a free buffer for the transmit
1370 * Step through each port on this card
1371 */
1372
1373 dbg(DBG_TX, "do_bottom_half_tx\n");
1374 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1375 if (!port->run)
1376 continue;
1377
1378 dev = port_to_dev(port);
1379 stats = hdlc_stats(dev);
1380 while (!
1381 (FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1382 DMA_OWN)
1383 && !(card->dmatx_in_progress)) {
1384 /*
1385 * There doesn't seem to be a txdone event per-se
1386 * We seem to have to deduce it, by checking the DMA_OWN
1387 * bit on the next buffer we think we can use
1388 */
1389 spin_lock_irqsave(&card->card_lock, flags);
1390 if ((txq_length = port->txqe - port->txqs) < 0) {
1391 /*
1392 * This is the case where one has wrapped and the
1393 * maths gives us a negative number
1394 */
1395 txq_length = txq_length + FST_TXQ_DEPTH;
1396 }
1397 spin_unlock_irqrestore(&card->card_lock, flags);
1398 if (txq_length > 0) {
1399 /*
1400 * There is something to send
1401 */
1402 spin_lock_irqsave(&card->card_lock, flags);
1403 skb = port->txq[port->txqs];
1404 port->txqs++;
1405 if (port->txqs == FST_TXQ_DEPTH) {
1406 port->txqs = 0;
1407 }
1408 spin_unlock_irqrestore(&card->card_lock, flags);
1409 /*
1410 * copy the data and set the required indicators on the
1411 * card.
1412 */
1413 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1414 cnv_bcnt(skb->len));
1415 if ((skb->len < FST_MIN_DMA_LEN)
1416 || (card->family == FST_FAMILY_TXP)) {
1417 /* Enqueue the packet with normal io */
1418 memcpy_toio(card->mem +
1419 BUF_OFFSET(txBuffer[pi]
1420 [port->
1421 txpos][0]),
1422 skb->data, skb->len);
1423 FST_WRB(card,
1424 txDescrRing[pi][port->txpos].
1425 bits,
1426 DMA_OWN | TX_STP | TX_ENP);
1427 stats->tx_packets++;
1428 stats->tx_bytes += skb->len;
1429 dev->trans_start = jiffies;
1430 } else {
1431 /* Or do it through dma */
1432 memcpy(card->tx_dma_handle_host,
1433 skb->data, skb->len);
1434 card->dma_port_tx = port;
1435 card->dma_len_tx = skb->len;
1436 card->dma_txpos = port->txpos;
1437 fst_tx_dma(card,
1438 (char *) card->
1439 tx_dma_handle_card,
1440 (char *)
1441 BUF_OFFSET(txBuffer[pi]
1442 [port->txpos][0]),
1443 skb->len);
1444 }
1445 if (++port->txpos >= NUM_TX_BUFFER)
1446 port->txpos = 0;
1447 /*
1448 * If we have flow control on, can we now release it?
1449 */
1450 if (port->start) {
1451 if (txq_length < fst_txq_low) {
1452 netif_wake_queue(port_to_dev
1453 (port));
1454 port->start = 0;
1455 }
1456 }
1457 dev_kfree_skb(skb);
1458 } else {
1459 /*
1460 * Nothing to send so break out of the while loop
1461 */
1462 break;
1463 }
1464 }
1465 }
1466}
1467
1468static void
1469do_bottom_half_rx(struct fst_card_info *card)
1470{
1471 struct fst_port_info *port;
1472 int pi;
1473 int rx_count = 0;
1474
1475 /* Check for rx completions on all ports on this card */
1476 dbg(DBG_RX, "do_bottom_half_rx\n");
1477 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1478 if (!port->run)
1479 continue;
1480
1481 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1482 & DMA_OWN) && !(card->dmarx_in_progress)) {
1483 if (rx_count > fst_max_reads) {
1484 /*
1485 * Don't spend forever in receive processing
1486 * Schedule another event
1487 */
1488 fst_q_work_item(&fst_work_intq, card->card_no);
1489 tasklet_schedule(&fst_int_task);
1490 break; /* Leave the loop */
1491 }
1492 fst_intr_rx(card, port);
1493 rx_count++;
1494 }
1495 }
1496}
1497
1498/*
1499 * The interrupt service routine
1500 * Dev_id is our fst_card_info pointer
1501 */
1502irqreturn_t
1503fst_intr(int irq, void *dev_id, struct pt_regs *regs)
1504{
1505 struct fst_card_info *card;
1506 struct fst_port_info *port;
1507 int rdidx; /* Event buffer indices */
1508 int wridx;
1509 int event; /* Actual event for processing */
1510 unsigned int dma_intcsr = 0;
1511 unsigned int do_card_interrupt;
1512 unsigned int int_retry_count;
1513
1514 if ((card = dev_id) == NULL) {
1515 dbg(DBG_INTR, "intr: spurious %d\n", irq);
1516 return IRQ_NONE;
1517 }
1518
1519 /*
1520 * Check to see if the interrupt was for this card
1521 * return if not
1522 * Note that the call to clear the interrupt is important
1523 */
1524 dbg(DBG_INTR, "intr: %d %p\n", irq, card);
1525 if (card->state != FST_RUNNING) {
1526 printk_err
1527 ("Interrupt received for card %d in a non running state (%d)\n",
1528 card->card_no, card->state);
1529
1530 /*
1531 * It is possible to really be running, i.e. we have re-loaded
1532 * a running card
1533 * Clear and reprime the interrupt source
1534 */
1535 fst_clear_intr(card);
1536 return IRQ_HANDLED;
1537 }
1538
1539 /* Clear and reprime the interrupt source */
1540 fst_clear_intr(card);
1541
1542 /*
1543 * Is the interrupt for this card (handshake == 1)
1544 */
1545 do_card_interrupt = 0;
1546 if (FST_RDB(card, interruptHandshake) == 1) {
1547 do_card_interrupt += FST_CARD_INT;
1548 /* Set the software acknowledge */
1549 FST_WRB(card, interruptHandshake, 0xEE);
1550 }
1551 if (card->family == FST_FAMILY_TXU) {
1552 /*
1553 * Is it a DMA Interrupt
1554 */
1555 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1556 if (dma_intcsr & 0x00200000) {
1557 /*
1558 * DMA Channel 0 (Rx transfer complete)
1559 */
1560 dbg(DBG_RX, "DMA Rx xfer complete\n");
1561 outb(0x8, card->pci_conf + DMACSR0);
1562 fst_rx_dma_complete(card, card->dma_port_rx,
1563 card->dma_len_rx, card->dma_skb_rx,
1564 card->dma_rxpos);
1565 card->dmarx_in_progress = 0;
1566 do_card_interrupt += FST_RX_DMA_INT;
1567 }
1568 if (dma_intcsr & 0x00400000) {
1569 /*
1570 * DMA Channel 1 (Tx transfer complete)
1571 */
1572 dbg(DBG_TX, "DMA Tx xfer complete\n");
1573 outb(0x8, card->pci_conf + DMACSR1);
1574 fst_tx_dma_complete(card, card->dma_port_tx,
1575 card->dma_len_tx, card->dma_txpos);
1576 card->dmatx_in_progress = 0;
1577 do_card_interrupt += FST_TX_DMA_INT;
1578 }
1579 }
1580
1581 /*
1582 * Have we been missing Interrupts
1583 */
1584 int_retry_count = FST_RDL(card, interruptRetryCount);
1585 if (int_retry_count) {
1586 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1587 card->card_no, int_retry_count);
1588 FST_WRL(card, interruptRetryCount, 0);
1589 }
1590
1591 if (!do_card_interrupt) {
1592 return IRQ_HANDLED;
1593 }
1594
1595 /* Scehdule the bottom half of the ISR */
1596 fst_q_work_item(&fst_work_intq, card->card_no);
1597 tasklet_schedule(&fst_int_task);
1598
1599 /* Drain the event queue */
1600 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1601 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1602 while (rdidx != wridx) {
1603 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1604 port = &card->ports[event & 0x03];
1605
1606 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1607
1608 switch (event) {
1609 case TE1_ALMA:
1610 dbg(DBG_INTR, "TE1 Alarm intr\n");
1611 if (port->run)
1612 fst_intr_te1_alarm(card, port);
1613 break;
1614
1615 case CTLA_CHG:
1616 case CTLB_CHG:
1617 case CTLC_CHG:
1618 case CTLD_CHG:
1619 if (port->run)
1620 fst_intr_ctlchg(card, port);
1621 break;
1622
1623 case ABTA_SENT:
1624 case ABTB_SENT:
1625 case ABTC_SENT:
1626 case ABTD_SENT:
1627 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1628 break;
1629
1630 case TXA_UNDF:
1631 case TXB_UNDF:
1632 case TXC_UNDF:
1633 case TXD_UNDF:
1634 /* Difficult to see how we'd get this given that we
1635 * always load up the entire packet for DMA.
1636 */
1637 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1638 hdlc_stats(port_to_dev(port))->tx_errors++;
1639 hdlc_stats(port_to_dev(port))->tx_fifo_errors++;
1640 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1641 card->card_no, port->index);
1642 break;
1643
1644 case INIT_CPLT:
1645 dbg(DBG_INIT, "Card init OK intr\n");
1646 break;
1647
1648 case INIT_FAIL:
1649 dbg(DBG_INIT, "Card init FAILED intr\n");
1650 card->state = FST_IFAILED;
1651 break;
1652
1653 default:
1654 printk_err("intr: unknown card event %d. ignored\n",
1655 event);
1656 break;
1657 }
1658
1659 /* Bump and wrap the index */
1660 if (++rdidx >= MAX_CIRBUFF)
1661 rdidx = 0;
1662 }
1663 FST_WRB(card, interruptEvent.rdindex, rdidx);
1664 return IRQ_HANDLED;
1665}
1666
1667/* Check that the shared memory configuration is one that we can handle
1668 * and that some basic parameters are correct
1669 */
1670static void
1671check_started_ok(struct fst_card_info *card)
1672{
1673 int i;
1674
1675 /* Check structure version and end marker */
1676 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1677 printk_err("Bad shared memory version %d expected %d\n",
1678 FST_RDW(card, smcVersion), SMC_VERSION);
1679 card->state = FST_BADVERSION;
1680 return;
1681 }
1682 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1683 printk_err("Missing shared memory signature\n");
1684 card->state = FST_BADVERSION;
1685 return;
1686 }
1687 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1688 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1689 card->state = FST_RUNNING;
1690 } else if (i == 0xFF) {
1691 printk_err("Firmware initialisation failed. Card halted\n");
1692 card->state = FST_HALTED;
1693 return;
1694 } else if (i != 0x00) {
1695 printk_err("Unknown firmware status 0x%x\n", i);
1696 card->state = FST_HALTED;
1697 return;
1698 }
1699
1700 /* Finally check the number of ports reported by firmware against the
1701 * number we assumed at card detection. Should never happen with
1702 * existing firmware etc so we just report it for the moment.
1703 */
1704 if (FST_RDL(card, numberOfPorts) != card->nports) {
1705 printk_warn("Port count mismatch on card %d."
1706 " Firmware thinks %d we say %d\n", card->card_no,
1707 FST_RDL(card, numberOfPorts), card->nports);
1708 }
1709}
1710
1711static int
1712set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1713 struct fstioc_info *info)
1714{
1715 int err;
1716 unsigned char my_framing;
1717
1718 /* Set things according to the user set valid flags
1719 * Several of the old options have been invalidated/replaced by the
1720 * generic hdlc package.
1721 */
1722 err = 0;
1723 if (info->valid & FSTVAL_PROTO) {
1724 if (info->proto == FST_RAW)
1725 port->mode = FST_RAW;
1726 else
1727 port->mode = FST_GEN_HDLC;
1728 }
1729
1730 if (info->valid & FSTVAL_CABLE)
1731 err = -EINVAL;
1732
1733 if (info->valid & FSTVAL_SPEED)
1734 err = -EINVAL;
1735
1736 if (info->valid & FSTVAL_PHASE)
1737 FST_WRB(card, portConfig[port->index].invertClock,
1738 info->invertClock);
1739 if (info->valid & FSTVAL_MODE)
1740 FST_WRW(card, cardMode, info->cardMode);
1741 if (info->valid & FSTVAL_TE1) {
1742 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1743 FST_WRB(card, suConfig.clocking, info->clockSource);
1744 my_framing = FRAMING_E1;
1745 if (info->framing == E1)
1746 my_framing = FRAMING_E1;
1747 if (info->framing == T1)
1748 my_framing = FRAMING_T1;
1749 if (info->framing == J1)
1750 my_framing = FRAMING_J1;
1751 FST_WRB(card, suConfig.framing, my_framing);
1752 FST_WRB(card, suConfig.structure, info->structure);
1753 FST_WRB(card, suConfig.interface, info->interface);
1754 FST_WRB(card, suConfig.coding, info->coding);
1755 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1756 FST_WRB(card, suConfig.equalizer, info->equalizer);
1757 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1758 FST_WRB(card, suConfig.loopMode, info->loopMode);
1759 FST_WRB(card, suConfig.range, info->range);
1760 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1761 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1762 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1763 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1764 if (info->idleCode)
1765 FST_WRB(card, suConfig.enableIdleCode, 1);
1766 else
1767 FST_WRB(card, suConfig.enableIdleCode, 0);
1768 FST_WRB(card, suConfig.idleCode, info->idleCode);
1769#if FST_DEBUG
1770 if (info->valid & FSTVAL_TE1) {
1771 printk("Setting TE1 data\n");
1772 printk("Line Speed = %d\n", info->lineSpeed);
1773 printk("Start slot = %d\n", info->startingSlot);
1774 printk("Clock source = %d\n", info->clockSource);
1775 printk("Framing = %d\n", my_framing);
1776 printk("Structure = %d\n", info->structure);
1777 printk("interface = %d\n", info->interface);
1778 printk("Coding = %d\n", info->coding);
1779 printk("Line build out = %d\n", info->lineBuildOut);
1780 printk("Equaliser = %d\n", info->equalizer);
1781 printk("Transparent mode = %d\n",
1782 info->transparentMode);
1783 printk("Loop mode = %d\n", info->loopMode);
1784 printk("Range = %d\n", info->range);
1785 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1786 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1787 printk("LOS Threshold = %d\n", info->losThreshold);
1788 printk("Idle Code = %d\n", info->idleCode);
1789 }
1790#endif
1791 }
1792#if FST_DEBUG
1793 if (info->valid & FSTVAL_DEBUG) {
1794 fst_debug_mask = info->debug;
1795 }
1796#endif
1797
1798 return err;
1799}
1800
1801static void
1802gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1803 struct fstioc_info *info)
1804{
1805 int i;
1806
1807 memset(info, 0, sizeof (struct fstioc_info));
1808
1809 i = port->index;
1810 info->kernelVersion = LINUX_VERSION_CODE;
1811 info->nports = card->nports;
1812 info->type = card->type;
1813 info->state = card->state;
1814 info->proto = FST_GEN_HDLC;
1815 info->index = i;
1816#if FST_DEBUG
1817 info->debug = fst_debug_mask;
1818#endif
1819
1820 /* Only mark information as valid if card is running.
1821 * Copy the data anyway in case it is useful for diagnostics
1822 */
1823 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1824#if FST_DEBUG
1825 | FSTVAL_DEBUG
1826#endif
1827 ;
1828
1829 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1830 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1831 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1832 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1833 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1834 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1835 info->clockStatus = FST_RDW(card, clockStatus[i]);
1836 info->cableStatus = FST_RDW(card, cableStatus);
1837 info->cardMode = FST_RDW(card, cardMode);
1838 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1839
1840 /*
1841 * The T2U can report cable presence for both A or B
1842 * in bits 0 and 1 of cableStatus. See which port we are and
1843 * do the mapping.
1844 */
1845 if (card->family == FST_FAMILY_TXU) {
1846 if (port->index == 0) {
1847 /*
1848 * Port A
1849 */
1850 info->cableStatus = info->cableStatus & 1;
1851 } else {
1852 /*
1853 * Port B
1854 */
1855 info->cableStatus = info->cableStatus >> 1;
1856 info->cableStatus = info->cableStatus & 1;
1857 }
1858 }
1859 /*
1860 * Some additional bits if we are TE1
1861 */
1862 if (card->type == FST_TYPE_TE1) {
1863 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1864 info->clockSource = FST_RDB(card, suConfig.clocking);
1865 info->framing = FST_RDB(card, suConfig.framing);
1866 info->structure = FST_RDB(card, suConfig.structure);
1867 info->interface = FST_RDB(card, suConfig.interface);
1868 info->coding = FST_RDB(card, suConfig.coding);
1869 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1870 info->equalizer = FST_RDB(card, suConfig.equalizer);
1871 info->loopMode = FST_RDB(card, suConfig.loopMode);
1872 info->range = FST_RDB(card, suConfig.range);
1873 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1874 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1875 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1876 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1877 if (FST_RDB(card, suConfig.enableIdleCode))
1878 info->idleCode = FST_RDB(card, suConfig.idleCode);
1879 else
1880 info->idleCode = 0;
1881 info->receiveBufferDelay =
1882 FST_RDL(card, suStatus.receiveBufferDelay);
1883 info->framingErrorCount =
1884 FST_RDL(card, suStatus.framingErrorCount);
1885 info->codeViolationCount =
1886 FST_RDL(card, suStatus.codeViolationCount);
1887 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1888 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1889 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1890 info->receiveRemoteAlarm =
1891 FST_RDB(card, suStatus.receiveRemoteAlarm);
1892 info->alarmIndicationSignal =
1893 FST_RDB(card, suStatus.alarmIndicationSignal);
1894 }
1895}
1896
1897static int
1898fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1899 struct ifreq *ifr)
1900{
1901 sync_serial_settings sync;
1902 int i;
1903
1904 if (ifr->ifr_settings.size != sizeof (sync)) {
1905 return -ENOMEM;
1906 }
1907
1908 if (copy_from_user
1909 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1910 return -EFAULT;
1911 }
1912
1913 if (sync.loopback)
1914 return -EINVAL;
1915
1916 i = port->index;
1917
1918 switch (ifr->ifr_settings.type) {
1919 case IF_IFACE_V35:
1920 FST_WRW(card, portConfig[i].lineInterface, V35);
1921 port->hwif = V35;
1922 break;
1923
1924 case IF_IFACE_V24:
1925 FST_WRW(card, portConfig[i].lineInterface, V24);
1926 port->hwif = V24;
1927 break;
1928
1929 case IF_IFACE_X21:
1930 FST_WRW(card, portConfig[i].lineInterface, X21);
1931 port->hwif = X21;
1932 break;
1933
1934 case IF_IFACE_X21D:
1935 FST_WRW(card, portConfig[i].lineInterface, X21D);
1936 port->hwif = X21D;
1937 break;
1938
1939 case IF_IFACE_T1:
1940 FST_WRW(card, portConfig[i].lineInterface, T1);
1941 port->hwif = T1;
1942 break;
1943
1944 case IF_IFACE_E1:
1945 FST_WRW(card, portConfig[i].lineInterface, E1);
1946 port->hwif = E1;
1947 break;
1948
1949 case IF_IFACE_SYNC_SERIAL:
1950 break;
1951
1952 default:
1953 return -EINVAL;
1954 }
1955
1956 switch (sync.clock_type) {
1957 case CLOCK_EXT:
1958 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1959 break;
1960
1961 case CLOCK_INT:
1962 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1963 break;
1964
1965 default:
1966 return -EINVAL;
1967 }
1968 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1969 return 0;
1970}
1971
1972static int
1973fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1974 struct ifreq *ifr)
1975{
1976 sync_serial_settings sync;
1977 int i;
1978
1979 /* First check what line type is set, we'll default to reporting X.21
1980 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1981 * changed
1982 */
1983 switch (port->hwif) {
1984 case E1:
1985 ifr->ifr_settings.type = IF_IFACE_E1;
1986 break;
1987 case T1:
1988 ifr->ifr_settings.type = IF_IFACE_T1;
1989 break;
1990 case V35:
1991 ifr->ifr_settings.type = IF_IFACE_V35;
1992 break;
1993 case V24:
1994 ifr->ifr_settings.type = IF_IFACE_V24;
1995 break;
1996 case X21D:
1997 ifr->ifr_settings.type = IF_IFACE_X21D;
1998 break;
1999 case X21:
2000 default:
2001 ifr->ifr_settings.type = IF_IFACE_X21;
2002 break;
2003 }
2004 if (ifr->ifr_settings.size == 0) {
2005 return 0; /* only type requested */
2006 }
2007 if (ifr->ifr_settings.size < sizeof (sync)) {
2008 return -ENOMEM;
2009 }
2010
2011 i = port->index;
2012 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
2013 /* Lucky card and linux use same encoding here */
2014 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
2015 INTCLK ? CLOCK_INT : CLOCK_EXT;
2016 sync.loopback = 0;
2017
2018 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2019 return -EFAULT;
2020 }
2021
2022 ifr->ifr_settings.size = sizeof (sync);
2023 return 0;
2024}
2025
2026static int
2027fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2028{
2029 struct fst_card_info *card;
2030 struct fst_port_info *port;
2031 struct fstioc_write wrthdr;
2032 struct fstioc_info info;
2033 unsigned long flags;
2034
2035 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2036
2037 port = dev_to_port(dev);
2038 card = port->card;
2039
2040 if (!capable(CAP_NET_ADMIN))
2041 return -EPERM;
2042
2043 switch (cmd) {
2044 case FSTCPURESET:
2045 fst_cpureset(card);
2046 card->state = FST_RESET;
2047 return 0;
2048
2049 case FSTCPURELEASE:
2050 fst_cpurelease(card);
2051 card->state = FST_STARTING;
2052 return 0;
2053
2054 case FSTWRITE: /* Code write (download) */
2055
2056 /* First copy in the header with the length and offset of data
2057 * to write
2058 */
2059 if (ifr->ifr_data == NULL) {
2060 return -EINVAL;
2061 }
2062 if (copy_from_user(&wrthdr, ifr->ifr_data,
2063 sizeof (struct fstioc_write))) {
2064 return -EFAULT;
2065 }
2066
2067 /* Sanity check the parameters. We don't support partial writes
2068 * when going over the top
2069 */
2070 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2071 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2072 return -ENXIO;
2073 }
2074
2075 /* Now copy the data to the card.
2076 * This will probably break on some architectures.
2077 * I'll fix it when I have something to test on.
2078 */
2079 if (copy_from_user(card->mem + wrthdr.offset,
2080 ifr->ifr_data + sizeof (struct fstioc_write),
2081 wrthdr.size)) {
2082 return -EFAULT;
2083 }
2084
2085 /* Writes to the memory of a card in the reset state constitute
2086 * a download
2087 */
2088 if (card->state == FST_RESET) {
2089 card->state = FST_DOWNLOAD;
2090 }
2091 return 0;
2092
2093 case FSTGETCONF:
2094
2095 /* If card has just been started check the shared memory config
2096 * version and marker
2097 */
2098 if (card->state == FST_STARTING) {
2099 check_started_ok(card);
2100
2101 /* If everything checked out enable card interrupts */
2102 if (card->state == FST_RUNNING) {
2103 spin_lock_irqsave(&card->card_lock, flags);
2104 fst_enable_intr(card);
2105 FST_WRB(card, interruptHandshake, 0xEE);
2106 spin_unlock_irqrestore(&card->card_lock, flags);
2107 }
2108 }
2109
2110 if (ifr->ifr_data == NULL) {
2111 return -EINVAL;
2112 }
2113
2114 gather_conf_info(card, port, &info);
2115
2116 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2117 return -EFAULT;
2118 }
2119 return 0;
2120
2121 case FSTSETCONF:
2122
2123 /*
2124 * Most of the settings have been moved to the generic ioctls
2125 * this just covers debug and board ident now
2126 */
2127
2128 if (card->state != FST_RUNNING) {
2129 printk_err
2130 ("Attempt to configure card %d in non-running state (%d)\n",
2131 card->card_no, card->state);
2132 return -EIO;
2133 }
2134 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2135 return -EFAULT;
2136 }
2137
2138 return set_conf_from_info(card, port, &info);
2139
2140 case SIOCWANDEV:
2141 switch (ifr->ifr_settings.type) {
2142 case IF_GET_IFACE:
2143 return fst_get_iface(card, port, ifr);
2144
2145 case IF_IFACE_SYNC_SERIAL:
2146 case IF_IFACE_V35:
2147 case IF_IFACE_V24:
2148 case IF_IFACE_X21:
2149 case IF_IFACE_X21D:
2150 case IF_IFACE_T1:
2151 case IF_IFACE_E1:
2152 return fst_set_iface(card, port, ifr);
2153
2154 case IF_PROTO_RAW:
2155 port->mode = FST_RAW;
2156 return 0;
2157
2158 case IF_GET_PROTO:
2159 if (port->mode == FST_RAW) {
2160 ifr->ifr_settings.type = IF_PROTO_RAW;
2161 return 0;
2162 }
2163 return hdlc_ioctl(dev, ifr, cmd);
2164
2165 default:
2166 port->mode = FST_GEN_HDLC;
2167 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2168 ifr->ifr_settings.type);
2169 return hdlc_ioctl(dev, ifr, cmd);
2170 }
2171
2172 default:
2173 /* Not one of ours. Pass through to HDLC package */
2174 return hdlc_ioctl(dev, ifr, cmd);
2175 }
2176}
2177
2178static void
2179fst_openport(struct fst_port_info *port)
2180{
2181 int signals;
2182 int txq_length;
2183
2184 /* Only init things if card is actually running. This allows open to
2185 * succeed for downloads etc.
2186 */
2187 if (port->card->state == FST_RUNNING) {
2188 if (port->run) {
2189 dbg(DBG_OPEN, "open: found port already running\n");
2190
2191 fst_issue_cmd(port, STOPPORT);
2192 port->run = 0;
2193 }
2194
2195 fst_rx_config(port);
2196 fst_tx_config(port);
2197 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2198
2199 fst_issue_cmd(port, STARTPORT);
2200 port->run = 1;
2201
2202 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2203 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2204 ? IPSTS_INDICATE : IPSTS_DCD))
2205 netif_carrier_on(port_to_dev(port));
2206 else
2207 netif_carrier_off(port_to_dev(port));
2208
2209 txq_length = port->txqe - port->txqs;
2210 port->txqe = 0;
2211 port->txqs = 0;
2212 }
2213
2214}
2215
2216static void
2217fst_closeport(struct fst_port_info *port)
2218{
2219 if (port->card->state == FST_RUNNING) {
2220 if (port->run) {
2221 port->run = 0;
2222 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2223
2224 fst_issue_cmd(port, STOPPORT);
2225 } else {
2226 dbg(DBG_OPEN, "close: port not running\n");
2227 }
2228 }
2229}
2230
2231static int
2232fst_open(struct net_device *dev)
2233{
2234 int err;
2235 struct fst_port_info *port;
2236
2237 port = dev_to_port(dev);
2238 if (!try_module_get(THIS_MODULE))
2239 return -EBUSY;
2240
2241 if (port->mode != FST_RAW) {
2242 err = hdlc_open(dev);
2243 if (err)
2244 return err;
2245 }
2246
2247 fst_openport(port);
2248 netif_wake_queue(dev);
2249 return 0;
2250}
2251
2252static int
2253fst_close(struct net_device *dev)
2254{
2255 struct fst_port_info *port;
2256 struct fst_card_info *card;
2257 unsigned char tx_dma_done;
2258 unsigned char rx_dma_done;
2259
2260 port = dev_to_port(dev);
2261 card = port->card;
2262
2263 tx_dma_done = inb(card->pci_conf + DMACSR1);
2264 rx_dma_done = inb(card->pci_conf + DMACSR0);
2265 dbg(DBG_OPEN,
2266 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2267 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2268 rx_dma_done);
2269
2270 netif_stop_queue(dev);
2271 fst_closeport(dev_to_port(dev));
2272 if (port->mode != FST_RAW) {
2273 hdlc_close(dev);
2274 }
2275 module_put(THIS_MODULE);
2276 return 0;
2277}
2278
2279static int
2280fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2281{
2282 /*
2283 * Setting currently fixed in FarSync card so we check and forget
2284 */
2285 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2286 return -EINVAL;
2287 return 0;
2288}
2289
2290static void
2291fst_tx_timeout(struct net_device *dev)
2292{
2293 struct fst_port_info *port;
2294 struct fst_card_info *card;
2295 struct net_device_stats *stats = hdlc_stats(dev);
2296
2297 port = dev_to_port(dev);
2298 card = port->card;
2299 stats->tx_errors++;
2300 stats->tx_aborted_errors++;
2301 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2302 card->card_no, port->index);
2303 fst_issue_cmd(port, ABORTTX);
2304
2305 dev->trans_start = jiffies;
2306 netif_wake_queue(dev);
2307 port->start = 0;
2308}
2309
2310static int
2311fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2312{
2313 struct fst_card_info *card;
2314 struct fst_port_info *port;
2315 struct net_device_stats *stats = hdlc_stats(dev);
2316 unsigned long flags;
2317 int txq_length;
2318
2319 port = dev_to_port(dev);
2320 card = port->card;
2321 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2322
2323 /* Drop packet with error if we don't have carrier */
2324 if (!netif_carrier_ok(dev)) {
2325 dev_kfree_skb(skb);
2326 stats->tx_errors++;
2327 stats->tx_carrier_errors++;
2328 dbg(DBG_ASS,
2329 "Tried to transmit but no carrier on card %d port %d\n",
2330 card->card_no, port->index);
2331 return 0;
2332 }
2333
2334 /* Drop it if it's too big! MTU failure ? */
2335 if (skb->len > LEN_TX_BUFFER) {
2336 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2337 LEN_TX_BUFFER);
2338 dev_kfree_skb(skb);
2339 stats->tx_errors++;
2340 return 0;
2341 }
2342
2343 /*
2344 * We are always going to queue the packet
2345 * so that the bottom half is the only place we tx from
2346 * Check there is room in the port txq
2347 */
2348 spin_lock_irqsave(&card->card_lock, flags);
2349 if ((txq_length = port->txqe - port->txqs) < 0) {
2350 /*
2351 * This is the case where the next free has wrapped but the
2352 * last used hasn't
2353 */
2354 txq_length = txq_length + FST_TXQ_DEPTH;
2355 }
2356 spin_unlock_irqrestore(&card->card_lock, flags);
2357 if (txq_length > fst_txq_high) {
2358 /*
2359 * We have got enough buffers in the pipeline. Ask the network
2360 * layer to stop sending frames down
2361 */
2362 netif_stop_queue(dev);
2363 port->start = 1; /* I'm using this to signal stop sent up */
2364 }
2365
2366 if (txq_length == FST_TXQ_DEPTH - 1) {
2367 /*
2368 * This shouldn't have happened but such is life
2369 */
2370 dev_kfree_skb(skb);
2371 stats->tx_errors++;
2372 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2373 card->card_no, port->index);
2374 return 0;
2375 }
2376
2377 /*
2378 * queue the buffer
2379 */
2380 spin_lock_irqsave(&card->card_lock, flags);
2381 port->txq[port->txqe] = skb;
2382 port->txqe++;
2383 if (port->txqe == FST_TXQ_DEPTH)
2384 port->txqe = 0;
2385 spin_unlock_irqrestore(&card->card_lock, flags);
2386
2387 /* Scehdule the bottom half which now does transmit processing */
2388 fst_q_work_item(&fst_work_txq, card->card_no);
2389 tasklet_schedule(&fst_tx_task);
2390
2391 return 0;
2392}
2393
2394/*
2395 * Card setup having checked hardware resources.
2396 * Should be pretty bizarre if we get an error here (kernel memory
2397 * exhaustion is one possibility). If we do see a problem we report it
2398 * via a printk and leave the corresponding interface and all that follow
2399 * disabled.
2400 */
2401static char *type_strings[] __devinitdata = {
2402 "no hardware", /* Should never be seen */
2403 "FarSync T2P",
2404 "FarSync T4P",
2405 "FarSync T1U",
2406 "FarSync T2U",
2407 "FarSync T4U",
2408 "FarSync TE1"
2409};
2410
2411static void __devinit
2412fst_init_card(struct fst_card_info *card)
2413{
2414 int i;
2415 int err;
2416
2417 /* We're working on a number of ports based on the card ID. If the
2418 * firmware detects something different later (should never happen)
2419 * we'll have to revise it in some way then.
2420 */
2421 for (i = 0; i < card->nports; i++) {
2422 err = register_hdlc_device(card->ports[i].dev);
2423 if (err < 0) {
2424 int j;
2425 printk_err ("Cannot register HDLC device for port %d"
2426 " (errno %d)\n", i, -err );
2427 for (j = i; j < card->nports; j++) {
2428 free_netdev(card->ports[j].dev);
2429 card->ports[j].dev = NULL;
2430 }
2431 card->nports = i;
2432 break;
2433 }
2434 }
2435
2436 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2437 port_to_dev(&card->ports[0])->name,
2438 port_to_dev(&card->ports[card->nports - 1])->name,
2439 type_strings[card->type], card->irq, card->nports);
2440}
2441
2442/*
2443 * Initialise card when detected.
2444 * Returns 0 to indicate success, or errno otherwise.
2445 */
2446static int __devinit
2447fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2448{
2449 static int firsttime_done = 0;
2450 static int no_of_cards_added = 0;
2451 struct fst_card_info *card;
2452 int err = 0;
2453 int i;
2454
2455 if (!firsttime_done) {
2456 printk_info("FarSync WAN driver " FST_USER_VERSION
2457 " (c) 2001-2004 FarSite Communications Ltd.\n");
2458 firsttime_done = 1;
2459 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2460 }
2461
2462 /*
2463 * We are going to be clever and allow certain cards not to be
2464 * configured. An exclude list can be provided in /etc/modules.conf
2465 */
2466 if (fst_excluded_cards != 0) {
2467 /*
2468 * There are cards to exclude
2469 *
2470 */
2471 for (i = 0; i < fst_excluded_cards; i++) {
2472 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2473 printk_info("FarSync PCI device %d not assigned\n",
2474 (pdev->devfn) >> 3);
2475 return -EBUSY;
2476 }
2477 }
2478 }
2479
2480 /* Allocate driver private data */
2481 card = kmalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2482 if (card == NULL) {
2483 printk_err("FarSync card found but insufficient memory for"
2484 " driver storage\n");
2485 return -ENOMEM;
2486 }
2487 memset(card, 0, sizeof (struct fst_card_info));
2488
2489 /* Try to enable the device */
2490 if ((err = pci_enable_device(pdev)) != 0) {
2491 printk_err("Failed to enable card. Err %d\n", -err);
2492 kfree(card);
2493 return err;
2494 }
2495
2496 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2497 printk_err("Failed to allocate regions. Err %d\n", -err);
2498 pci_disable_device(pdev);
2499 kfree(card);
2500 return err;
2501 }
2502
2503 /* Get virtual addresses of memory regions */
2504 card->pci_conf = pci_resource_start(pdev, 1);
2505 card->phys_mem = pci_resource_start(pdev, 2);
2506 card->phys_ctlmem = pci_resource_start(pdev, 3);
2507 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2508 printk_err("Physical memory remap failed\n");
2509 pci_release_regions(pdev);
2510 pci_disable_device(pdev);
2511 kfree(card);
2512 return -ENODEV;
2513 }
2514 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2515 printk_err("Control memory remap failed\n");
2516 pci_release_regions(pdev);
2517 pci_disable_device(pdev);
2518 kfree(card);
2519 return -ENODEV;
2520 }
2521 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2522
2523 /* Register the interrupt handler */
2524 if (request_irq(pdev->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card)) {
2525 printk_err("Unable to register interrupt %d\n", card->irq);
2526 pci_release_regions(pdev);
2527 pci_disable_device(pdev);
2528 iounmap(card->ctlmem);
2529 iounmap(card->mem);
2530 kfree(card);
2531 return -ENODEV;
2532 }
2533
2534 /* Record info we need */
2535 card->irq = pdev->irq;
2536 card->type = ent->driver_data;
2537 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2538 (ent->driver_data == FST_TYPE_T4P))
2539 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2540 if ((ent->driver_data == FST_TYPE_T1U) ||
2541 (ent->driver_data == FST_TYPE_TE1))
2542 card->nports = 1;
2543 else
2544 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2545 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2546
2547 card->state = FST_UNINIT;
2548 spin_lock_init ( &card->card_lock );
2549
2550 for ( i = 0 ; i < card->nports ; i++ ) {
2551 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2552 hdlc_device *hdlc;
2553 if (!dev) {
2554 while (i--)
2555 free_netdev(card->ports[i].dev);
2556 printk_err ("FarSync: out of memory\n");
2557 free_irq(card->irq, card);
2558 pci_release_regions(pdev);
2559 pci_disable_device(pdev);
2560 iounmap(card->ctlmem);
2561 iounmap(card->mem);
2562 kfree(card);
2563 return -ENODEV;
2564 }
2565 card->ports[i].dev = dev;
2566 card->ports[i].card = card;
2567 card->ports[i].index = i;
2568 card->ports[i].run = 0;
2569
2570 hdlc = dev_to_hdlc(dev);
2571
2572 /* Fill in the net device info */
2573 /* Since this is a PCI setup this is purely
2574 * informational. Give them the buffer addresses
2575 * and basic card I/O.
2576 */
2577 dev->mem_start = card->phys_mem
2578 + BUF_OFFSET ( txBuffer[i][0][0]);
2579 dev->mem_end = card->phys_mem
2580 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2581 dev->base_addr = card->pci_conf;
2582 dev->irq = card->irq;
2583
2584 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2585 dev->open = fst_open;
2586 dev->stop = fst_close;
2587 dev->do_ioctl = fst_ioctl;
2588 dev->watchdog_timeo = FST_TX_TIMEOUT;
2589 dev->tx_timeout = fst_tx_timeout;
2590 hdlc->attach = fst_attach;
2591 hdlc->xmit = fst_start_xmit;
2592 }
2593
2594 card->device = pdev;
2595
2596 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2597 card->nports, card->irq);
2598 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2599 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2600
2601 /* Reset the card's processor */
2602 fst_cpureset(card);
2603 card->state = FST_RESET;
2604
2605 /* Initialise DMA (if required) */
2606 fst_init_dma(card);
2607
2608 /* Record driver data for later use */
2609 pci_set_drvdata(pdev, card);
2610
2611 /* Remainder of card setup */
2612 fst_card_array[no_of_cards_added] = card;
2613 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2614 fst_init_card(card);
2615 if (card->family == FST_FAMILY_TXU) {
2616 /*
2617 * Allocate a dma buffer for transmit and receives
2618 */
2619 card->rx_dma_handle_host =
2620 pci_alloc_consistent(card->device, FST_MAX_MTU,
2621 &card->rx_dma_handle_card);
2622 if (card->rx_dma_handle_host == NULL) {
2623 printk_err("Could not allocate rx dma buffer\n");
2624 fst_disable_intr(card);
2625 pci_release_regions(pdev);
2626 pci_disable_device(pdev);
2627 iounmap(card->ctlmem);
2628 iounmap(card->mem);
2629 kfree(card);
2630 return -ENOMEM;
2631 }
2632 card->tx_dma_handle_host =
2633 pci_alloc_consistent(card->device, FST_MAX_MTU,
2634 &card->tx_dma_handle_card);
2635 if (card->tx_dma_handle_host == NULL) {
2636 printk_err("Could not allocate tx dma buffer\n");
2637 fst_disable_intr(card);
2638 pci_release_regions(pdev);
2639 pci_disable_device(pdev);
2640 iounmap(card->ctlmem);
2641 iounmap(card->mem);
2642 kfree(card);
2643 return -ENOMEM;
2644 }
2645 }
2646 return 0; /* Success */
2647}
2648
2649/*
2650 * Cleanup and close down a card
2651 */
2652static void __devexit
2653fst_remove_one(struct pci_dev *pdev)
2654{
2655 struct fst_card_info *card;
2656 int i;
2657
2658 card = pci_get_drvdata(pdev);
2659
2660 for (i = 0; i < card->nports; i++) {
2661 struct net_device *dev = port_to_dev(&card->ports[i]);
2662 unregister_hdlc_device(dev);
2663 }
2664
2665 fst_disable_intr(card);
2666 free_irq(card->irq, card);
2667
2668 iounmap(card->ctlmem);
2669 iounmap(card->mem);
2670 pci_release_regions(pdev);
2671 if (card->family == FST_FAMILY_TXU) {
2672 /*
2673 * Free dma buffers
2674 */
2675 pci_free_consistent(card->device, FST_MAX_MTU,
2676 card->rx_dma_handle_host,
2677 card->rx_dma_handle_card);
2678 pci_free_consistent(card->device, FST_MAX_MTU,
2679 card->tx_dma_handle_host,
2680 card->tx_dma_handle_card);
2681 }
2682 fst_card_array[card->card_no] = NULL;
2683}
2684
2685static struct pci_driver fst_driver = {
2686 .name = FST_NAME,
2687 .id_table = fst_pci_dev_id,
2688 .probe = fst_add_one,
2689 .remove = __devexit_p(fst_remove_one),
2690 .suspend = NULL,
2691 .resume = NULL,
2692};
2693
2694static int __init
2695fst_init(void)
2696{
2697 int i;
2698
2699 for (i = 0; i < FST_MAX_CARDS; i++)
2700 fst_card_array[i] = NULL;
2701 spin_lock_init(&fst_work_q_lock);
2702 return pci_module_init(&fst_driver);
2703}
2704
2705static void __exit
2706fst_cleanup_module(void)
2707{
2708 printk_info("FarSync WAN driver unloading\n");
2709 pci_unregister_driver(&fst_driver);
2710}
2711
2712module_init(fst_init);
2713module_exit(fst_cleanup_module);