]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/wan/z85230.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / drivers / net / wan / z85230.c
CommitLineData
1da177e4
LT
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
9 *
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
12 *
13 * ChangeLog:
14 *
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
17 *
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
19 * boundary.
20 *
113aa838
AC
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
23 *
24 * Performance
25 *
26 * Z85230:
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
31 *
32 * Z85C30:
33 * 64K will take DMA, 9600 baud X.25 should be ok.
34 *
35 * Z8530:
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
37 */
38
23efcb73
JP
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
1da177e4
LT
41#include <linux/module.h>
42#include <linux/kernel.h>
43#include <linux/mm.h>
44#include <linux/net.h>
45#include <linux/skbuff.h>
46#include <linux/netdevice.h>
47#include <linux/if_arp.h>
48#include <linux/delay.h>
52e8a6a2 49#include <linux/hdlc.h>
1da177e4
LT
50#include <linux/ioport.h>
51#include <linux/init.h>
5a0e3ad6 52#include <linux/gfp.h>
1da177e4
LT
53#include <asm/dma.h>
54#include <asm/io.h>
55#define RT_LOCK
56#define RT_UNLOCK
57#include <linux/spinlock.h>
58
1da177e4
LT
59#include "z85230.h"
60
61
62/**
63 * z8530_read_port - Architecture specific interface function
64 * @p: port to read
65 *
66 * Provided port access methods. The Comtrol SV11 requires no delays
67 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
68 *
69 * In the longer term this should become an architecture specific
70 * section so that this can become a generic driver interface for all
71 * platforms. For now we only handle PC I/O ports with or without the
72 * dread 5uS sanity delay.
73 *
74 * The caller must hold sufficient locks to avoid violating the horrible
75 * 5uS delay rule.
76 */
77
78static inline int z8530_read_port(unsigned long p)
79{
80 u8 r=inb(Z8530_PORT_OF(p));
81 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
82 udelay(5);
83 return r;
84}
85
86/**
87 * z8530_write_port - Architecture specific interface function
88 * @p: port to write
89 * @d: value to write
90 *
91 * Write a value to a port with delays if need be. Note that the
92 * caller must hold locks to avoid read/writes from other contexts
93 * violating the 5uS rule
94 *
95 * In the longer term this should become an architecture specific
96 * section so that this can become a generic driver interface for all
97 * platforms. For now we only handle PC I/O ports with or without the
98 * dread 5uS sanity delay.
99 */
100
101
102static inline void z8530_write_port(unsigned long p, u8 d)
103{
104 outb(d,Z8530_PORT_OF(p));
105 if(p&Z8530_PORT_SLEEP)
106 udelay(5);
107}
108
109
110
111static void z8530_rx_done(struct z8530_channel *c);
112static void z8530_tx_done(struct z8530_channel *c);
113
114
115/**
116 * read_zsreg - Read a register from a Z85230
117 * @c: Z8530 channel to read from (2 per chip)
118 * @reg: Register to read
119 * FIXME: Use a spinlock.
120 *
121 * Most of the Z8530 registers are indexed off the control registers.
122 * A read is done by writing to the control register and reading the
123 * register back. The caller must hold the lock
124 */
125
126static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
127{
128 if(reg)
129 z8530_write_port(c->ctrlio, reg);
130 return z8530_read_port(c->ctrlio);
131}
132
133/**
134 * read_zsdata - Read the data port of a Z8530 channel
135 * @c: The Z8530 channel to read the data port from
136 *
137 * The data port provides fast access to some things. We still
138 * have all the 5uS delays to worry about.
139 */
140
141static inline u8 read_zsdata(struct z8530_channel *c)
142{
143 u8 r;
144 r=z8530_read_port(c->dataio);
145 return r;
146}
147
148/**
149 * write_zsreg - Write to a Z8530 channel register
150 * @c: The Z8530 channel
151 * @reg: Register number
152 * @val: Value to write
153 *
154 * Write a value to an indexed register. The caller must hold the lock
155 * to honour the irritating delay rules. We know about register 0
156 * being fast to access.
157 *
158 * Assumes c->lock is held.
159 */
160static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
161{
162 if(reg)
163 z8530_write_port(c->ctrlio, reg);
164 z8530_write_port(c->ctrlio, val);
165
166}
167
168/**
169 * write_zsctrl - Write to a Z8530 control register
170 * @c: The Z8530 channel
171 * @val: Value to write
172 *
173 * Write directly to the control register on the Z8530
174 */
175
176static inline void write_zsctrl(struct z8530_channel *c, u8 val)
177{
178 z8530_write_port(c->ctrlio, val);
179}
180
181/**
182 * write_zsdata - Write to a Z8530 control register
183 * @c: The Z8530 channel
184 * @val: Value to write
185 *
186 * Write directly to the data register on the Z8530
187 */
188
189
190static inline void write_zsdata(struct z8530_channel *c, u8 val)
191{
192 z8530_write_port(c->dataio, val);
193}
194
195/*
196 * Register loading parameters for a dead port
197 */
198
199u8 z8530_dead_port[]=
200{
201 255
202};
203
204EXPORT_SYMBOL(z8530_dead_port);
205
206/*
207 * Register loading parameters for currently supported circuit types
208 */
209
210
211/*
212 * Data clocked by telco end. This is the correct data for the UK
213 * "kilostream" service, and most other similar services.
214 */
215
216u8 z8530_hdlc_kilostream[]=
217{
218 4, SYNC_ENAB|SDLC|X1CLK,
219 2, 0, /* No vector */
220 1, 0,
221 3, ENT_HM|RxCRC_ENAB|Rx8,
222 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
223 9, 0, /* Disable interrupts */
224 6, 0xFF,
225 7, FLAG,
226 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
227 11, TCTRxCP,
228 14, DISDPLL,
229 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
230 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
231 9, NV|MIE|NORESET,
232 255
233};
234
235EXPORT_SYMBOL(z8530_hdlc_kilostream);
236
237/*
238 * As above but for enhanced chips.
239 */
240
241u8 z8530_hdlc_kilostream_85230[]=
242{
243 4, SYNC_ENAB|SDLC|X1CLK,
244 2, 0, /* No vector */
245 1, 0,
246 3, ENT_HM|RxCRC_ENAB|Rx8,
247 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
248 9, 0, /* Disable interrupts */
249 6, 0xFF,
250 7, FLAG,
251 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
252 11, TCTRxCP,
253 14, DISDPLL,
254 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
255 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
256 9, NV|MIE|NORESET,
257 23, 3, /* Extended mode AUTO TX and EOM*/
258
259 255
260};
261
262EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
263
264/**
265 * z8530_flush_fifo - Flush on chip RX FIFO
266 * @c: Channel to flush
267 *
268 * Flush the receive FIFO. There is no specific option for this, we
269 * blindly read bytes and discard them. Reading when there is no data
270 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
271 *
272 * All locking is handled for the caller. On return data may still be
273 * present if it arrived during the flush.
274 */
275
276static void z8530_flush_fifo(struct z8530_channel *c)
277{
278 read_zsreg(c, R1);
279 read_zsreg(c, R1);
280 read_zsreg(c, R1);
281 read_zsreg(c, R1);
282 if(c->dev->type==Z85230)
283 {
284 read_zsreg(c, R1);
285 read_zsreg(c, R1);
286 read_zsreg(c, R1);
287 read_zsreg(c, R1);
288 }
289}
290
291/**
292 * z8530_rtsdtr - Control the outgoing DTS/RTS line
293 * @c: The Z8530 channel to control;
294 * @set: 1 to set, 0 to clear
295 *
296 * Sets or clears DTR/RTS on the requested line. All locking is handled
297 * by the caller. For now we assume all boards use the actual RTS/DTR
298 * on the chip. Apparently one or two don't. We'll scream about them
299 * later.
300 */
301
302static void z8530_rtsdtr(struct z8530_channel *c, int set)
303{
304 if (set)
305 c->regs[5] |= (RTS | DTR);
306 else
307 c->regs[5] &= ~(RTS | DTR);
308 write_zsreg(c, R5, c->regs[5]);
309}
310
311/**
312 * z8530_rx - Handle a PIO receive event
313 * @c: Z8530 channel to process
314 *
315 * Receive handler for receiving in PIO mode. This is much like the
316 * async one but not quite the same or as complex
317 *
318 * Note: Its intended that this handler can easily be separated from
319 * the main code to run realtime. That'll be needed for some machines
320 * (eg to ever clock 64kbits on a sparc ;)).
321 *
322 * The RT_LOCK macros don't do anything now. Keep the code covered
323 * by them as short as possible in all circumstances - clocks cost
324 * baud. The interrupt handler is assumed to be atomic w.r.t. to
325 * other code - this is true in the RT case too.
326 *
327 * We only cover the sync cases for this. If you want 2Mbit async
328 * do it yourself but consider medical assistance first. This non DMA
329 * synchronous mode is portable code. The DMA mode assumes PCI like
330 * ISA DMA
331 *
332 * Called with the device lock held
333 */
334
335static void z8530_rx(struct z8530_channel *c)
336{
337 u8 ch,stat;
45d3ac4e 338
1da177e4
LT
339 while(1)
340 {
341 /* FIFO empty ? */
342 if(!(read_zsreg(c, R0)&1))
343 break;
344 ch=read_zsdata(c);
345 stat=read_zsreg(c, R1);
346
347 /*
348 * Overrun ?
349 */
350 if(c->count < c->max)
351 {
352 *c->dptr++=ch;
353 c->count++;
354 }
355
356 if(stat&END_FR)
357 {
358
359 /*
360 * Error ?
361 */
362 if(stat&(Rx_OVR|CRC_ERR))
363 {
364 /* Rewind the buffer and return */
365 if(c->skb)
366 c->dptr=c->skb->data;
367 c->count=0;
368 if(stat&Rx_OVR)
369 {
23efcb73 370 pr_warn("%s: overrun\n", c->dev->name);
1da177e4
LT
371 c->rx_overrun++;
372 }
373 if(stat&CRC_ERR)
374 {
375 c->rx_crc_err++;
376 /* printk("crc error\n"); */
377 }
378 /* Shove the frame upstream */
379 }
380 else
381 {
382 /*
383 * Drop the lock for RX processing, or
384 * there are deadlocks
385 */
386 z8530_rx_done(c);
387 write_zsctrl(c, RES_Rx_CRC);
388 }
389 }
390 }
391 /*
392 * Clear irq
393 */
394 write_zsctrl(c, ERR_RES);
395 write_zsctrl(c, RES_H_IUS);
1da177e4
LT
396}
397
398
399/**
400 * z8530_tx - Handle a PIO transmit event
401 * @c: Z8530 channel to process
402 *
403 * Z8530 transmit interrupt handler for the PIO mode. The basic
404 * idea is to attempt to keep the FIFO fed. We fill as many bytes
405 * in as possible, its quite possible that we won't keep up with the
406 * data rate otherwise.
407 */
408
409static void z8530_tx(struct z8530_channel *c)
410{
1da177e4
LT
411 while(c->txcount) {
412 /* FIFO full ? */
413 if(!(read_zsreg(c, R0)&4))
fe797455 414 return;
1da177e4
LT
415 c->txcount--;
416 /*
417 * Shovel out the byte
418 */
419 write_zsreg(c, R8, *c->tx_ptr++);
420 write_zsctrl(c, RES_H_IUS);
421 /* We are about to underflow */
422 if(c->txcount==0)
423 {
424 write_zsctrl(c, RES_EOM_L);
425 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
426 }
427 }
428
429
430 /*
431 * End of frame TX - fire another one
432 */
433
434 write_zsctrl(c, RES_Tx_P);
435
436 z8530_tx_done(c);
437 write_zsctrl(c, RES_H_IUS);
1da177e4
LT
438}
439
440/**
441 * z8530_status - Handle a PIO status exception
442 * @chan: Z8530 channel to process
443 *
444 * A status event occurred in PIO synchronous mode. There are several
445 * reasons the chip will bother us here. A transmit underrun means we
446 * failed to feed the chip fast enough and just broke a packet. A DCD
52e8a6a2 447 * change is a line up or down.
1da177e4
LT
448 */
449
450static void z8530_status(struct z8530_channel *chan)
451{
452 u8 status, altered;
453
52e8a6a2
KH
454 status = read_zsreg(chan, R0);
455 altered = chan->status ^ status;
456
457 chan->status = status;
458
459 if (status & TxEOM) {
1da177e4 460/* printk("%s: Tx underrun.\n", chan->dev->name); */
52e8a6a2 461 chan->netdevice->stats.tx_fifo_errors++;
1da177e4
LT
462 write_zsctrl(chan, ERR_RES);
463 z8530_tx_done(chan);
464 }
52e8a6a2
KH
465
466 if (altered & chan->dcdcheck)
1da177e4 467 {
52e8a6a2 468 if (status & chan->dcdcheck) {
23efcb73 469 pr_info("%s: DCD raised\n", chan->dev->name);
52e8a6a2
KH
470 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
471 if (chan->netdevice)
472 netif_carrier_on(chan->netdevice);
473 } else {
23efcb73 474 pr_info("%s: DCD lost\n", chan->dev->name);
52e8a6a2 475 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
1da177e4 476 z8530_flush_fifo(chan);
52e8a6a2
KH
477 if (chan->netdevice)
478 netif_carrier_off(chan->netdevice);
1da177e4 479 }
52e8a6a2
KH
480
481 }
1da177e4
LT
482 write_zsctrl(chan, RES_EXT_INT);
483 write_zsctrl(chan, RES_H_IUS);
1da177e4
LT
484}
485
52e8a6a2 486struct z8530_irqhandler z8530_sync =
1da177e4
LT
487{
488 z8530_rx,
489 z8530_tx,
490 z8530_status
491};
492
493EXPORT_SYMBOL(z8530_sync);
494
495/**
496 * z8530_dma_rx - Handle a DMA RX event
497 * @chan: Channel to handle
498 *
499 * Non bus mastering DMA interfaces for the Z8x30 devices. This
500 * is really pretty PC specific. The DMA mode means that most receive
501 * events are handled by the DMA hardware. We get a kick here only if
502 * a frame ended.
503 */
504
505static void z8530_dma_rx(struct z8530_channel *chan)
506{
1da177e4
LT
507 if(chan->rxdma_on)
508 {
509 /* Special condition check only */
510 u8 status;
511
512 read_zsreg(chan, R7);
513 read_zsreg(chan, R6);
514
515 status=read_zsreg(chan, R1);
516
517 if(status&END_FR)
518 {
519 z8530_rx_done(chan); /* Fire up the next one */
520 }
521 write_zsctrl(chan, ERR_RES);
522 write_zsctrl(chan, RES_H_IUS);
523 }
524 else
525 {
526 /* DMA is off right now, drain the slow way */
527 z8530_rx(chan);
528 }
1da177e4
LT
529}
530
531/**
532 * z8530_dma_tx - Handle a DMA TX event
533 * @chan: The Z8530 channel to handle
534 *
535 * We have received an interrupt while doing DMA transmissions. It
536 * shouldn't happen. Scream loudly if it does.
537 */
538
539static void z8530_dma_tx(struct z8530_channel *chan)
540{
1da177e4
LT
541 if(!chan->dma_tx)
542 {
23efcb73 543 pr_warn("Hey who turned the DMA off?\n");
1da177e4
LT
544 z8530_tx(chan);
545 return;
546 }
25985edc 547 /* This shouldn't occur in DMA mode */
23efcb73 548 pr_err("DMA tx - bogus event!\n");
1da177e4 549 z8530_tx(chan);
1da177e4
LT
550}
551
552/**
553 * z8530_dma_status - Handle a DMA status exception
554 * @chan: Z8530 channel to process
555 *
556 * A status event occurred on the Z8530. We receive these for two reasons
557 * when in DMA mode. Firstly if we finished a packet transfer we get one
52e8a6a2 558 * and kick the next packet out. Secondly we may see a DCD change.
1da177e4
LT
559 *
560 */
561
562static void z8530_dma_status(struct z8530_channel *chan)
563{
564 u8 status, altered;
565
566 status=read_zsreg(chan, R0);
567 altered=chan->status^status;
568
569 chan->status=status;
570
571
572 if(chan->dma_tx)
573 {
574 if(status&TxEOM)
575 {
576 unsigned long flags;
577
578 flags=claim_dma_lock();
579 disable_dma(chan->txdma);
580 clear_dma_ff(chan->txdma);
581 chan->txdma_on=0;
582 release_dma_lock(flags);
583 z8530_tx_done(chan);
584 }
585 }
586
52e8a6a2 587 if (altered & chan->dcdcheck)
1da177e4 588 {
52e8a6a2 589 if (status & chan->dcdcheck) {
23efcb73 590 pr_info("%s: DCD raised\n", chan->dev->name);
52e8a6a2
KH
591 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
592 if (chan->netdevice)
593 netif_carrier_on(chan->netdevice);
594 } else {
23efcb73 595 pr_info("%s: DCD lost\n", chan->dev->name);
52e8a6a2 596 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
1da177e4 597 z8530_flush_fifo(chan);
52e8a6a2
KH
598 if (chan->netdevice)
599 netif_carrier_off(chan->netdevice);
1da177e4 600 }
52e8a6a2 601 }
1da177e4
LT
602
603 write_zsctrl(chan, RES_EXT_INT);
604 write_zsctrl(chan, RES_H_IUS);
1da177e4
LT
605}
606
62c5345d 607static struct z8530_irqhandler z8530_dma_sync = {
1da177e4
LT
608 z8530_dma_rx,
609 z8530_dma_tx,
610 z8530_dma_status
611};
612
62c5345d 613static struct z8530_irqhandler z8530_txdma_sync = {
1da177e4
LT
614 z8530_rx,
615 z8530_dma_tx,
616 z8530_dma_status
617};
618
1da177e4
LT
619/**
620 * z8530_rx_clear - Handle RX events from a stopped chip
621 * @c: Z8530 channel to shut up
622 *
623 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
624 * For machines with PCI Z85x30 cards, or level triggered interrupts
625 * (eg the MacII) we must clear the interrupt cause or die.
626 */
627
628
629static void z8530_rx_clear(struct z8530_channel *c)
630{
631 /*
632 * Data and status bytes
633 */
634 u8 stat;
635
636 read_zsdata(c);
637 stat=read_zsreg(c, R1);
638
639 if(stat&END_FR)
640 write_zsctrl(c, RES_Rx_CRC);
641 /*
642 * Clear irq
643 */
644 write_zsctrl(c, ERR_RES);
645 write_zsctrl(c, RES_H_IUS);
646}
647
648/**
649 * z8530_tx_clear - Handle TX events from a stopped chip
650 * @c: Z8530 channel to shut up
651 *
652 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
653 * For machines with PCI Z85x30 cards, or level triggered interrupts
654 * (eg the MacII) we must clear the interrupt cause or die.
655 */
656
657static void z8530_tx_clear(struct z8530_channel *c)
658{
659 write_zsctrl(c, RES_Tx_P);
660 write_zsctrl(c, RES_H_IUS);
661}
662
663/**
664 * z8530_status_clear - Handle status events from a stopped chip
665 * @chan: Z8530 channel to shut up
666 *
667 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
668 * For machines with PCI Z85x30 cards, or level triggered interrupts
669 * (eg the MacII) we must clear the interrupt cause or die.
670 */
671
672static void z8530_status_clear(struct z8530_channel *chan)
673{
674 u8 status=read_zsreg(chan, R0);
675 if(status&TxEOM)
676 write_zsctrl(chan, ERR_RES);
677 write_zsctrl(chan, RES_EXT_INT);
678 write_zsctrl(chan, RES_H_IUS);
679}
680
681struct z8530_irqhandler z8530_nop=
682{
683 z8530_rx_clear,
684 z8530_tx_clear,
685 z8530_status_clear
686};
687
688
689EXPORT_SYMBOL(z8530_nop);
690
691/**
692 * z8530_interrupt - Handle an interrupt from a Z8530
693 * @irq: Interrupt number
694 * @dev_id: The Z8530 device that is interrupting.
1da177e4
LT
695 *
696 * A Z85[2]30 device has stuck its hand in the air for attention.
697 * We scan both the channels on the chip for events and then call
698 * the channel specific call backs for each channel that has events.
699 * We have to use callback functions because the two channels can be
700 * in different modes.
701 *
702 * Locking is done for the handlers. Note that locking is done
703 * at the chip level (the 5uS delay issue is per chip not per
704 * channel). c->lock for both channels points to dev->lock
705 */
706
7d12e780 707irqreturn_t z8530_interrupt(int irq, void *dev_id)
1da177e4
LT
708{
709 struct z8530_dev *dev=dev_id;
4174439e 710 u8 uninitialized_var(intr);
1da177e4
LT
711 static volatile int locker=0;
712 int work=0;
713 struct z8530_irqhandler *irqs;
714
715 if(locker)
716 {
23efcb73 717 pr_err("IRQ re-enter\n");
1da177e4
LT
718 return IRQ_NONE;
719 }
720 locker=1;
721
722 spin_lock(&dev->lock);
723
724 while(++work<5000)
725 {
726
727 intr = read_zsreg(&dev->chanA, R3);
728 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
729 break;
730
731 /* This holds the IRQ status. On the 8530 you must read it from chan
732 A even though it applies to the whole chip */
733
734 /* Now walk the chip and see what it is wanting - it may be
735 an IRQ for someone else remember */
736
737 irqs=dev->chanA.irqs;
738
739 if(intr & (CHARxIP|CHATxIP|CHAEXT))
740 {
741 if(intr&CHARxIP)
742 irqs->rx(&dev->chanA);
743 if(intr&CHATxIP)
744 irqs->tx(&dev->chanA);
745 if(intr&CHAEXT)
746 irqs->status(&dev->chanA);
747 }
748
749 irqs=dev->chanB.irqs;
750
751 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
752 {
753 if(intr&CHBRxIP)
754 irqs->rx(&dev->chanB);
755 if(intr&CHBTxIP)
756 irqs->tx(&dev->chanB);
757 if(intr&CHBEXT)
758 irqs->status(&dev->chanB);
759 }
760 }
761 spin_unlock(&dev->lock);
762 if(work==5000)
23efcb73
JP
763 pr_err("%s: interrupt jammed - abort(0x%X)!\n",
764 dev->name, intr);
1da177e4
LT
765 /* Ok all done */
766 locker=0;
767 return IRQ_HANDLED;
768}
769
770EXPORT_SYMBOL(z8530_interrupt);
771
dcfc5d78 772static const u8 reg_init[16]=
1da177e4
LT
773{
774 0,0,0,0,
775 0,0,0,0,
776 0,0,0,0,
777 0x55,0,0,0
778};
779
780
781/**
782 * z8530_sync_open - Open a Z8530 channel for PIO
783 * @dev: The network interface we are using
784 * @c: The Z8530 channel to open in synchronous PIO mode
785 *
786 * Switch a Z8530 into synchronous mode without DMA assist. We
787 * raise the RTS/DTR and commence network operation.
788 */
789
790int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
791{
792 unsigned long flags;
793
794 spin_lock_irqsave(c->lock, flags);
795
796 c->sync = 1;
797 c->mtu = dev->mtu+64;
798 c->count = 0;
799 c->skb = NULL;
800 c->skb2 = NULL;
801 c->irqs = &z8530_sync;
802
803 /* This loads the double buffer up */
804 z8530_rx_done(c); /* Load the frame ring */
805 z8530_rx_done(c); /* Load the backup frame */
806 z8530_rtsdtr(c,1);
807 c->dma_tx = 0;
808 c->regs[R1]|=TxINT_ENAB;
809 write_zsreg(c, R1, c->regs[R1]);
810 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
811
812 spin_unlock_irqrestore(c->lock, flags);
813 return 0;
814}
815
816
817EXPORT_SYMBOL(z8530_sync_open);
818
819/**
820 * z8530_sync_close - Close a PIO Z8530 channel
821 * @dev: Network device to close
822 * @c: Z8530 channel to disassociate and move to idle
823 *
824 * Close down a Z8530 interface and switch its interrupt handlers
825 * to discard future events.
826 */
827
828int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
829{
830 u8 chk;
831 unsigned long flags;
832
833 spin_lock_irqsave(c->lock, flags);
834 c->irqs = &z8530_nop;
835 c->max = 0;
836 c->sync = 0;
837
838 chk=read_zsreg(c,R0);
839 write_zsreg(c, R3, c->regs[R3]);
840 z8530_rtsdtr(c,0);
841
842 spin_unlock_irqrestore(c->lock, flags);
843 return 0;
844}
845
846EXPORT_SYMBOL(z8530_sync_close);
847
848/**
849 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
850 * @dev: The network device to attach
851 * @c: The Z8530 channel to configure in sync DMA mode.
852 *
853 * Set up a Z85x30 device for synchronous DMA in both directions. Two
854 * ISA DMA channels must be available for this to work. We assume ISA
855 * DMA driven I/O and PC limits on access.
856 */
857
858int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
859{
860 unsigned long cflags, dflags;
861
862 c->sync = 1;
863 c->mtu = dev->mtu+64;
864 c->count = 0;
865 c->skb = NULL;
866 c->skb2 = NULL;
867 /*
868 * Load the DMA interfaces up
869 */
870 c->rxdma_on = 0;
871 c->txdma_on = 0;
872
873 /*
874 * Allocate the DMA flip buffers. Limit by page size.
875 * Everyone runs 1500 mtu or less on wan links so this
876 * should be fine.
877 */
878
879 if(c->mtu > PAGE_SIZE/2)
880 return -EMSGSIZE;
881
882 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
883 if(c->rx_buf[0]==NULL)
884 return -ENOBUFS;
885 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
886
887 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
888 if(c->tx_dma_buf[0]==NULL)
889 {
890 free_page((unsigned long)c->rx_buf[0]);
891 c->rx_buf[0]=NULL;
892 return -ENOBUFS;
893 }
894 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
895
896 c->tx_dma_used=0;
897 c->dma_tx = 1;
898 c->dma_num=0;
899 c->dma_ready=1;
900
901 /*
902 * Enable DMA control mode
903 */
904
905 spin_lock_irqsave(c->lock, cflags);
906
907 /*
908 * TX DMA via DIR/REQ
909 */
910
911 c->regs[R14]|= DTRREQ;
912 write_zsreg(c, R14, c->regs[R14]);
913
914 c->regs[R1]&= ~TxINT_ENAB;
915 write_zsreg(c, R1, c->regs[R1]);
916
917 /*
918 * RX DMA via W/Req
919 */
920
921 c->regs[R1]|= WT_FN_RDYFN;
922 c->regs[R1]|= WT_RDY_RT;
923 c->regs[R1]|= INT_ERR_Rx;
924 c->regs[R1]&= ~TxINT_ENAB;
925 write_zsreg(c, R1, c->regs[R1]);
926 c->regs[R1]|= WT_RDY_ENAB;
927 write_zsreg(c, R1, c->regs[R1]);
928
929 /*
930 * DMA interrupts
931 */
932
933 /*
934 * Set up the DMA configuration
935 */
936
937 dflags=claim_dma_lock();
938
939 disable_dma(c->rxdma);
940 clear_dma_ff(c->rxdma);
941 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
942 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
943 set_dma_count(c->rxdma, c->mtu);
944 enable_dma(c->rxdma);
945
946 disable_dma(c->txdma);
947 clear_dma_ff(c->txdma);
948 set_dma_mode(c->txdma, DMA_MODE_WRITE);
949 disable_dma(c->txdma);
950
951 release_dma_lock(dflags);
952
953 /*
954 * Select the DMA interrupt handlers
955 */
956
957 c->rxdma_on = 1;
958 c->txdma_on = 1;
959 c->tx_dma_used = 1;
960
961 c->irqs = &z8530_dma_sync;
962 z8530_rtsdtr(c,1);
963 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
964
965 spin_unlock_irqrestore(c->lock, cflags);
966
967 return 0;
968}
969
970EXPORT_SYMBOL(z8530_sync_dma_open);
971
972/**
973 * z8530_sync_dma_close - Close down DMA I/O
974 * @dev: Network device to detach
975 * @c: Z8530 channel to move into discard mode
976 *
977 * Shut down a DMA mode synchronous interface. Halt the DMA, and
978 * free the buffers.
979 */
980
981int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
982{
983 u8 chk;
984 unsigned long flags;
985
986 c->irqs = &z8530_nop;
987 c->max = 0;
988 c->sync = 0;
989
990 /*
991 * Disable the PC DMA channels
992 */
993
994 flags=claim_dma_lock();
995 disable_dma(c->rxdma);
996 clear_dma_ff(c->rxdma);
997
998 c->rxdma_on = 0;
999
1000 disable_dma(c->txdma);
1001 clear_dma_ff(c->txdma);
1002 release_dma_lock(flags);
1003
1004 c->txdma_on = 0;
1005 c->tx_dma_used = 0;
1006
1007 spin_lock_irqsave(c->lock, flags);
1008
1009 /*
1010 * Disable DMA control mode
1011 */
1012
1013 c->regs[R1]&= ~WT_RDY_ENAB;
1014 write_zsreg(c, R1, c->regs[R1]);
1015 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1016 c->regs[R1]|= INT_ALL_Rx;
1017 write_zsreg(c, R1, c->regs[R1]);
1018 c->regs[R14]&= ~DTRREQ;
1019 write_zsreg(c, R14, c->regs[R14]);
1020
1021 if(c->rx_buf[0])
1022 {
1023 free_page((unsigned long)c->rx_buf[0]);
1024 c->rx_buf[0]=NULL;
1025 }
1026 if(c->tx_dma_buf[0])
1027 {
1028 free_page((unsigned long)c->tx_dma_buf[0]);
1029 c->tx_dma_buf[0]=NULL;
1030 }
1031 chk=read_zsreg(c,R0);
1032 write_zsreg(c, R3, c->regs[R3]);
1033 z8530_rtsdtr(c,0);
1034
1035 spin_unlock_irqrestore(c->lock, flags);
1036
1037 return 0;
1038}
1039
1040EXPORT_SYMBOL(z8530_sync_dma_close);
1041
1042/**
1043 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1044 * @dev: The network device to attach
1045 * @c: The Z8530 channel to configure in sync DMA mode.
1046 *
145c3708 1047 * Set up a Z85x30 device for synchronous DMA transmission. One
1da177e4
LT
1048 * ISA DMA channel must be available for this to work. The receive
1049 * side is run in PIO mode, but then it has the bigger FIFO.
1050 */
1051
1052int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1053{
1054 unsigned long cflags, dflags;
1055
1056 printk("Opening sync interface for TX-DMA\n");
1057 c->sync = 1;
1058 c->mtu = dev->mtu+64;
1059 c->count = 0;
1060 c->skb = NULL;
1061 c->skb2 = NULL;
1062
1063 /*
1064 * Allocate the DMA flip buffers. Limit by page size.
1065 * Everyone runs 1500 mtu or less on wan links so this
1066 * should be fine.
1067 */
1068
1069 if(c->mtu > PAGE_SIZE/2)
1070 return -EMSGSIZE;
1071
1072 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1073 if(c->tx_dma_buf[0]==NULL)
1074 return -ENOBUFS;
1075
1076 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1077
1078
1079 spin_lock_irqsave(c->lock, cflags);
1080
1081 /*
1082 * Load the PIO receive ring
1083 */
1084
1085 z8530_rx_done(c);
1086 z8530_rx_done(c);
1087
1088 /*
1089 * Load the DMA interfaces up
1090 */
1091
1092 c->rxdma_on = 0;
1093 c->txdma_on = 0;
1094
1095 c->tx_dma_used=0;
1096 c->dma_num=0;
1097 c->dma_ready=1;
1098 c->dma_tx = 1;
1099
1100 /*
1101 * Enable DMA control mode
1102 */
1103
1104 /*
1105 * TX DMA via DIR/REQ
1106 */
1107 c->regs[R14]|= DTRREQ;
1108 write_zsreg(c, R14, c->regs[R14]);
1109
1110 c->regs[R1]&= ~TxINT_ENAB;
1111 write_zsreg(c, R1, c->regs[R1]);
1112
1113 /*
1114 * Set up the DMA configuration
1115 */
1116
1117 dflags = claim_dma_lock();
1118
1119 disable_dma(c->txdma);
1120 clear_dma_ff(c->txdma);
1121 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1122 disable_dma(c->txdma);
1123
1124 release_dma_lock(dflags);
1125
1126 /*
1127 * Select the DMA interrupt handlers
1128 */
1129
1130 c->rxdma_on = 0;
1131 c->txdma_on = 1;
1132 c->tx_dma_used = 1;
1133
1134 c->irqs = &z8530_txdma_sync;
1135 z8530_rtsdtr(c,1);
1136 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1137 spin_unlock_irqrestore(c->lock, cflags);
1138
1139 return 0;
1140}
1141
1142EXPORT_SYMBOL(z8530_sync_txdma_open);
1143
1144/**
1145 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1146 * @dev: Network device to detach
1147 * @c: Z8530 channel to move into discard mode
1148 *
1149 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1150 * and free the buffers.
1151 */
1152
1153int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1154{
1155 unsigned long dflags, cflags;
1156 u8 chk;
1157
1158
1159 spin_lock_irqsave(c->lock, cflags);
1160
1161 c->irqs = &z8530_nop;
1162 c->max = 0;
1163 c->sync = 0;
1164
1165 /*
1166 * Disable the PC DMA channels
1167 */
1168
1169 dflags = claim_dma_lock();
1170
1171 disable_dma(c->txdma);
1172 clear_dma_ff(c->txdma);
1173 c->txdma_on = 0;
1174 c->tx_dma_used = 0;
1175
1176 release_dma_lock(dflags);
1177
1178 /*
1179 * Disable DMA control mode
1180 */
1181
1182 c->regs[R1]&= ~WT_RDY_ENAB;
1183 write_zsreg(c, R1, c->regs[R1]);
1184 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1185 c->regs[R1]|= INT_ALL_Rx;
1186 write_zsreg(c, R1, c->regs[R1]);
1187 c->regs[R14]&= ~DTRREQ;
1188 write_zsreg(c, R14, c->regs[R14]);
1189
1190 if(c->tx_dma_buf[0])
1191 {
1192 free_page((unsigned long)c->tx_dma_buf[0]);
1193 c->tx_dma_buf[0]=NULL;
1194 }
1195 chk=read_zsreg(c,R0);
1196 write_zsreg(c, R3, c->regs[R3]);
1197 z8530_rtsdtr(c,0);
1198
1199 spin_unlock_irqrestore(c->lock, cflags);
1200 return 0;
1201}
1202
1203
1204EXPORT_SYMBOL(z8530_sync_txdma_close);
1205
1206
1207/*
1208 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1209 * it exists...
1210 */
1211
dcfc5d78 1212static const char *z8530_type_name[]={
1da177e4
LT
1213 "Z8530",
1214 "Z85C30",
1215 "Z85230"
1216};
1217
1218/**
1219 * z8530_describe - Uniformly describe a Z8530 port
1220 * @dev: Z8530 device to describe
1221 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1222 * @io: the port value in question
1223 *
1224 * Describe a Z8530 in a standard format. We must pass the I/O as
25985edc 1225 * the port offset isn't predictable. The main reason for this function
1da177e4
LT
1226 * is to try and get a common format of report.
1227 */
1228
1229void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1230{
23efcb73 1231 pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1da177e4
LT
1232 dev->name,
1233 z8530_type_name[dev->type],
1234 mapping,
1235 Z8530_PORT_OF(io),
1236 dev->irq);
1237}
1238
1239EXPORT_SYMBOL(z8530_describe);
1240
1241/*
1242 * Locked operation part of the z8530 init code
1243 */
1244
1245static inline int do_z8530_init(struct z8530_dev *dev)
1246{
1247 /* NOP the interrupt handlers first - we might get a
1248 floating IRQ transition when we reset the chip */
1249 dev->chanA.irqs=&z8530_nop;
1250 dev->chanB.irqs=&z8530_nop;
1251 dev->chanA.dcdcheck=DCD;
1252 dev->chanB.dcdcheck=DCD;
1253
1254 /* Reset the chip */
1255 write_zsreg(&dev->chanA, R9, 0xC0);
1256 udelay(200);
1257 /* Now check its valid */
1258 write_zsreg(&dev->chanA, R12, 0xAA);
1259 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1260 return -ENODEV;
1261 write_zsreg(&dev->chanA, R12, 0x55);
1262 if(read_zsreg(&dev->chanA, R12)!=0x55)
1263 return -ENODEV;
1264
1265 dev->type=Z8530;
1266
1267 /*
1268 * See the application note.
1269 */
1270
1271 write_zsreg(&dev->chanA, R15, 0x01);
1272
1273 /*
1274 * If we can set the low bit of R15 then
1275 * the chip is enhanced.
1276 */
1277
1278 if(read_zsreg(&dev->chanA, R15)==0x01)
1279 {
1280 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1281 /* Put a char in the fifo */
1282 write_zsreg(&dev->chanA, R8, 0);
1283 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1284 dev->type = Z85230; /* Has a FIFO */
1285 else
1286 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1287 }
1288
1289 /*
1290 * The code assumes R7' and friends are
1291 * off. Use write_zsext() for these and keep
1292 * this bit clear.
1293 */
1294
1295 write_zsreg(&dev->chanA, R15, 0);
1296
1297 /*
1298 * At this point it looks like the chip is behaving
1299 */
1300
1301 memcpy(dev->chanA.regs, reg_init, 16);
1302 memcpy(dev->chanB.regs, reg_init ,16);
1303
1304 return 0;
1305}
1306
1307/**
1308 * z8530_init - Initialise a Z8530 device
1309 * @dev: Z8530 device to initialise.
1310 *
1311 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1312 * is present, identify the type and then program it to hopefully
1313 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1314 * state will sometimes get into stupid modes generating 10Khz
1315 * interrupt streams and the like.
1316 *
1317 * We set the interrupt handler up to discard any events, in case
1318 * we get them during reset or setp.
1319 *
1320 * Return 0 for success, or a negative value indicating the problem
1321 * in errno form.
1322 */
1323
1324int z8530_init(struct z8530_dev *dev)
1325{
1326 unsigned long flags;
1327 int ret;
1328
1329 /* Set up the chip level lock */
1330 spin_lock_init(&dev->lock);
1331 dev->chanA.lock = &dev->lock;
1332 dev->chanB.lock = &dev->lock;
1333
1334 spin_lock_irqsave(&dev->lock, flags);
1335 ret = do_z8530_init(dev);
1336 spin_unlock_irqrestore(&dev->lock, flags);
1337
1338 return ret;
1339}
1340
1341
1342EXPORT_SYMBOL(z8530_init);
1343
1344/**
1345 * z8530_shutdown - Shutdown a Z8530 device
1346 * @dev: The Z8530 chip to shutdown
1347 *
1348 * We set the interrupt handlers to silence any interrupts. We then
1349 * reset the chip and wait 100uS to be sure the reset completed. Just
1350 * in case the caller then tries to do stuff.
1351 *
1352 * This is called without the lock held
1353 */
1354
1355int z8530_shutdown(struct z8530_dev *dev)
1356{
1357 unsigned long flags;
1358 /* Reset the chip */
1359
1360 spin_lock_irqsave(&dev->lock, flags);
1361 dev->chanA.irqs=&z8530_nop;
1362 dev->chanB.irqs=&z8530_nop;
1363 write_zsreg(&dev->chanA, R9, 0xC0);
1364 /* We must lock the udelay, the chip is offlimits here */
1365 udelay(100);
1366 spin_unlock_irqrestore(&dev->lock, flags);
1367 return 0;
1368}
1369
1370EXPORT_SYMBOL(z8530_shutdown);
1371
1372/**
1373 * z8530_channel_load - Load channel data
1374 * @c: Z8530 channel to configure
1375 * @rtable: table of register, value pairs
1376 * FIXME: ioctl to allow user uploaded tables
1377 *
1378 * Load a Z8530 channel up from the system data. We use +16 to
1379 * indicate the "prime" registers. The value 255 terminates the
1380 * table.
1381 */
1382
1383int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1384{
1385 unsigned long flags;
1386
1387 spin_lock_irqsave(c->lock, flags);
1388
1389 while(*rtable!=255)
1390 {
1391 int reg=*rtable++;
1392 if(reg>0x0F)
1393 write_zsreg(c, R15, c->regs[15]|1);
1394 write_zsreg(c, reg&0x0F, *rtable);
1395 if(reg>0x0F)
1396 write_zsreg(c, R15, c->regs[15]&~1);
1397 c->regs[reg]=*rtable++;
1398 }
1399 c->rx_function=z8530_null_rx;
1400 c->skb=NULL;
1401 c->tx_skb=NULL;
1402 c->tx_next_skb=NULL;
1403 c->mtu=1500;
1404 c->max=0;
1405 c->count=0;
1406 c->status=read_zsreg(c, R0);
1407 c->sync=1;
1408 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1409
1410 spin_unlock_irqrestore(c->lock, flags);
1411 return 0;
1412}
1413
1414EXPORT_SYMBOL(z8530_channel_load);
1415
1416
1417/**
1418 * z8530_tx_begin - Begin packet transmission
1419 * @c: The Z8530 channel to kick
1420 *
1421 * This is the speed sensitive side of transmission. If we are called
1422 * and no buffer is being transmitted we commence the next buffer. If
1423 * nothing is queued we idle the sync.
1424 *
1425 * Note: We are handling this code path in the interrupt path, keep it
1426 * fast or bad things will happen.
1427 *
1428 * Called with the lock held.
1429 */
1430
1431static void z8530_tx_begin(struct z8530_channel *c)
1432{
1433 unsigned long flags;
1434 if(c->tx_skb)
1435 return;
1436
1437 c->tx_skb=c->tx_next_skb;
1438 c->tx_next_skb=NULL;
1439 c->tx_ptr=c->tx_next_ptr;
1440
1441 if(c->tx_skb==NULL)
1442 {
1443 /* Idle on */
1444 if(c->dma_tx)
1445 {
1446 flags=claim_dma_lock();
1447 disable_dma(c->txdma);
1448 /*
1449 * Check if we crapped out.
1450 */
52e8a6a2 1451 if (get_dma_residue(c->txdma))
1da177e4 1452 {
52e8a6a2
KH
1453 c->netdevice->stats.tx_dropped++;
1454 c->netdevice->stats.tx_fifo_errors++;
1da177e4
LT
1455 }
1456 release_dma_lock(flags);
1457 }
1458 c->txcount=0;
1459 }
1460 else
1461 {
1462 c->txcount=c->tx_skb->len;
1463
1464
1465 if(c->dma_tx)
1466 {
1467 /*
1468 * FIXME. DMA is broken for the original 8530,
1469 * on the older parts we need to set a flag and
1470 * wait for a further TX interrupt to fire this
1471 * stage off
1472 */
1473
1474 flags=claim_dma_lock();
1475 disable_dma(c->txdma);
1476
1477 /*
1478 * These two are needed by the 8530/85C30
1479 * and must be issued when idling.
1480 */
1481
1482 if(c->dev->type!=Z85230)
1483 {
1484 write_zsctrl(c, RES_Tx_CRC);
1485 write_zsctrl(c, RES_EOM_L);
1486 }
1487 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1488 clear_dma_ff(c->txdma);
1489 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1490 set_dma_count(c->txdma, c->txcount);
1491 enable_dma(c->txdma);
1492 release_dma_lock(flags);
1493 write_zsctrl(c, RES_EOM_L);
1494 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1495 }
1496 else
1497 {
1498
1499 /* ABUNDER off */
1500 write_zsreg(c, R10, c->regs[10]);
1501 write_zsctrl(c, RES_Tx_CRC);
1502
1503 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1504 {
1505 write_zsreg(c, R8, *c->tx_ptr++);
1506 c->txcount--;
1507 }
1508
1509 }
1510 }
1511 /*
1512 * Since we emptied tx_skb we can ask for more
1513 */
1514 netif_wake_queue(c->netdevice);
1515}
1516
1517/**
1518 * z8530_tx_done - TX complete callback
1519 * @c: The channel that completed a transmit.
1520 *
1521 * This is called when we complete a packet send. We wake the queue,
1522 * start the next packet going and then free the buffer of the existing
1523 * packet. This code is fairly timing sensitive.
1524 *
1525 * Called with the register lock held.
52e8a6a2
KH
1526 */
1527
1da177e4
LT
1528static void z8530_tx_done(struct z8530_channel *c)
1529{
1530 struct sk_buff *skb;
1531
1532 /* Actually this can happen.*/
52e8a6a2 1533 if (c->tx_skb == NULL)
1da177e4
LT
1534 return;
1535
52e8a6a2
KH
1536 skb = c->tx_skb;
1537 c->tx_skb = NULL;
1da177e4 1538 z8530_tx_begin(c);
52e8a6a2
KH
1539 c->netdevice->stats.tx_packets++;
1540 c->netdevice->stats.tx_bytes += skb->len;
1da177e4
LT
1541 dev_kfree_skb_irq(skb);
1542}
1543
1544/**
1545 * z8530_null_rx - Discard a packet
1546 * @c: The channel the packet arrived on
1547 * @skb: The buffer
1548 *
1549 * We point the receive handler at this function when idle. Instead
52e8a6a2 1550 * of processing the frames we get to throw them away.
1da177e4
LT
1551 */
1552
1553void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1554{
1555 dev_kfree_skb_any(skb);
1556}
1557
1558EXPORT_SYMBOL(z8530_null_rx);
1559
1560/**
1561 * z8530_rx_done - Receive completion callback
1562 * @c: The channel that completed a receive
1563 *
1564 * A new packet is complete. Our goal here is to get back into receive
1565 * mode as fast as possible. On the Z85230 we could change to using
1566 * ESCC mode, but on the older chips we have no choice. We flip to the
1567 * new buffer immediately in DMA mode so that the DMA of the next
1568 * frame can occur while we are copying the previous buffer to an sk_buff
1569 *
1570 * Called with the lock held
1571 */
1572
1573static void z8530_rx_done(struct z8530_channel *c)
1574{
1575 struct sk_buff *skb;
1576 int ct;
1577
1578 /*
1579 * Is our receive engine in DMA mode
1580 */
1581
1582 if(c->rxdma_on)
1583 {
1584 /*
1585 * Save the ready state and the buffer currently
1586 * being used as the DMA target
1587 */
1588
1589 int ready=c->dma_ready;
1590 unsigned char *rxb=c->rx_buf[c->dma_num];
1591 unsigned long flags;
1592
1593 /*
25985edc 1594 * Complete this DMA. Necessary to find the length
1da177e4
LT
1595 */
1596
1597 flags=claim_dma_lock();
1598
1599 disable_dma(c->rxdma);
1600 clear_dma_ff(c->rxdma);
1601 c->rxdma_on=0;
1602 ct=c->mtu-get_dma_residue(c->rxdma);
1603 if(ct<0)
1604 ct=2; /* Shit happens.. */
1605 c->dma_ready=0;
1606
1607 /*
1608 * Normal case: the other slot is free, start the next DMA
1609 * into it immediately.
1610 */
1611
1612 if(ready)
1613 {
1614 c->dma_num^=1;
1615 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1616 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1617 set_dma_count(c->rxdma, c->mtu);
1618 c->rxdma_on = 1;
1619 enable_dma(c->rxdma);
1620 /* Stop any frames that we missed the head of
1621 from passing */
1622 write_zsreg(c, R0, RES_Rx_CRC);
1623 }
1624 else
1625 /* Can't occur as we dont reenable the DMA irq until
1626 after the flip is done */
23efcb73 1627 netdev_warn(c->netdevice, "DMA flip overrun!\n");
52e8a6a2 1628
1da177e4 1629 release_dma_lock(flags);
52e8a6a2 1630
1da177e4
LT
1631 /*
1632 * Shove the old buffer into an sk_buff. We can't DMA
1633 * directly into one on a PC - it might be above the 16Mb
1634 * boundary. Optimisation - we could check to see if we
1635 * can avoid the copy. Optimisation 2 - make the memcpy
1636 * a copychecksum.
1637 */
52e8a6a2
KH
1638
1639 skb = dev_alloc_skb(ct);
1640 if (skb == NULL) {
1641 c->netdevice->stats.rx_dropped++;
23efcb73 1642 netdev_warn(c->netdevice, "Memory squeeze\n");
52e8a6a2 1643 } else {
1da177e4 1644 skb_put(skb, ct);
27d7ff46 1645 skb_copy_to_linear_data(skb, rxb, ct);
52e8a6a2
KH
1646 c->netdevice->stats.rx_packets++;
1647 c->netdevice->stats.rx_bytes += ct;
1da177e4 1648 }
52e8a6a2
KH
1649 c->dma_ready = 1;
1650 } else {
1651 RT_LOCK;
1652 skb = c->skb;
1653
1da177e4
LT
1654 /*
1655 * The game we play for non DMA is similar. We want to
1656 * get the controller set up for the next packet as fast
1657 * as possible. We potentially only have one byte + the
1658 * fifo length for this. Thus we want to flip to the new
1659 * buffer and then mess around copying and allocating
1660 * things. For the current case it doesn't matter but
25985edc 1661 * if you build a system where the sync irq isn't blocked
1da177e4
LT
1662 * by the kernel IRQ disable then you need only block the
1663 * sync IRQ for the RT_LOCK area.
52e8a6a2 1664 *
1da177e4
LT
1665 */
1666 ct=c->count;
52e8a6a2 1667
1da177e4
LT
1668 c->skb = c->skb2;
1669 c->count = 0;
1670 c->max = c->mtu;
52e8a6a2 1671 if (c->skb) {
1da177e4
LT
1672 c->dptr = c->skb->data;
1673 c->max = c->mtu;
52e8a6a2
KH
1674 } else {
1675 c->count = 0;
1da177e4
LT
1676 c->max = 0;
1677 }
1678 RT_UNLOCK;
1679
1680 c->skb2 = dev_alloc_skb(c->mtu);
52e8a6a2 1681 if (c->skb2 == NULL)
23efcb73 1682 netdev_warn(c->netdevice, "memory squeeze\n");
1da177e4 1683 else
52e8a6a2
KH
1684 skb_put(c->skb2, c->mtu);
1685 c->netdevice->stats.rx_packets++;
1686 c->netdevice->stats.rx_bytes += ct;
1da177e4
LT
1687 }
1688 /*
1689 * If we received a frame we must now process it.
1690 */
52e8a6a2 1691 if (skb) {
1da177e4 1692 skb_trim(skb, ct);
52e8a6a2
KH
1693 c->rx_function(c, skb);
1694 } else {
1695 c->netdevice->stats.rx_dropped++;
23efcb73 1696 netdev_err(c->netdevice, "Lost a frame\n");
1da177e4
LT
1697 }
1698}
1699
1700/**
1701 * spans_boundary - Check a packet can be ISA DMA'd
1702 * @skb: The buffer to check
1703 *
1704 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1705 * thing can only DMA within a 64K block not across the edges of it.
1706 */
52e8a6a2 1707
1da177e4
LT
1708static inline int spans_boundary(struct sk_buff *skb)
1709{
1710 unsigned long a=(unsigned long)skb->data;
1711 a^=(a+skb->len);
1712 if(a&0x00010000) /* If the 64K bit is different.. */
1713 return 1;
1714 return 0;
1715}
1716
1717/**
1718 * z8530_queue_xmit - Queue a packet
1719 * @c: The channel to use
1720 * @skb: The packet to kick down the channel
1721 *
1722 * Queue a packet for transmission. Because we have rather
1723 * hard to hit interrupt latencies for the Z85230 per packet
1724 * even in DMA mode we do the flip to DMA buffer if needed here
1725 * not in the IRQ.
1726 *
1727 * Called from the network code. The lock is not held at this
1728 * point.
1729 */
1730
d71a6749 1731netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1da177e4
LT
1732{
1733 unsigned long flags;
1734
1735 netif_stop_queue(c->netdevice);
1736 if(c->tx_next_skb)
d71a6749
SH
1737 return NETDEV_TX_BUSY;
1738
1da177e4
LT
1739
1740 /* PC SPECIFIC - DMA limits */
1741
1742 /*
1743 * If we will DMA the transmit and its gone over the ISA bus
1744 * limit, then copy to the flip buffer
1745 */
1746
1747 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1748 {
1749 /*
1750 * Send the flip buffer, and flip the flippy bit.
1751 * We don't care which is used when just so long as
1752 * we never use the same buffer twice in a row. Since
1753 * only one buffer can be going out at a time the other
1754 * has to be safe.
1755 */
1756 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1757 c->tx_dma_used^=1; /* Flip temp buffer */
d626f62b 1758 skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1da177e4
LT
1759 }
1760 else
1761 c->tx_next_ptr=skb->data;
1762 RT_LOCK;
1763 c->tx_next_skb=skb;
1764 RT_UNLOCK;
1765
1766 spin_lock_irqsave(c->lock, flags);
1767 z8530_tx_begin(c);
1768 spin_unlock_irqrestore(c->lock, flags);
1769
d71a6749 1770 return NETDEV_TX_OK;
1da177e4
LT
1771}
1772
1773EXPORT_SYMBOL(z8530_queue_xmit);
1774
1da177e4
LT
1775/*
1776 * Module support
1777 */
15c0665c 1778static const char banner[] __initconst =
5ee0d593 1779 KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1da177e4
LT
1780
1781static int __init z85230_init_driver(void)
1782{
1783 printk(banner);
1784 return 0;
1785}
1786module_init(z85230_init_driver);
1787
1788static void __exit z85230_cleanup_driver(void)
1789{
1790}
1791module_exit(z85230_cleanup_driver);
1792
1793MODULE_AUTHOR("Red Hat Inc.");
1794MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1795MODULE_LICENSE("GPL");