]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/wimax/i2400m/fw.c
wimax: allow WIMAX_RF_QUERY calls when state is still uninitialized
[mirror_ubuntu-focal-kernel.git] / drivers / net / wimax / i2400m / fw.c
CommitLineData
467cc396
IPG
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
39 *
40 *
41 * THE PROCEDURE
42 *
aba3792a
IPG
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
467cc396
IPG
46 *
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
52 *
aba3792a
IPG
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint. In SDIO we
55 * talk to it via the write address and read from the read address.
56 *
57 * Upon entrance to boot mode, the device sends (preceeded with a few
58 * zero length packets (ZLPs) on the notification endpoint in USB) a
59 * reboot barker (4 le32 words with the same value). We ack it by
60 * sending the same barker to the device. The device acks with a
61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62 * then is fully booted. At this point we can upload the firmware.
63 *
64 * Note that different iterations of the device and EEPROM
65 * configurations will send different [re]boot barkers; these are
66 * collected in i2400m_barker_db along with the firmware
67 * characteristics they require.
467cc396
IPG
68 *
69 * This process is accomplished by the i2400m_bootrom_init()
70 * function. All the device interaction happens through the
71 * i2400m_bm_cmd() [boot mode command]. Special return values will
aba3792a 72 * indicate if the device did reset during the process.
467cc396
IPG
73 *
74 * After this, we read the MAC address and then (if needed)
75 * reinitialize the device. We need to read it ahead of time because
76 * in the future, we might not upload the firmware until userspace
77 * 'ifconfig up's the device.
78 *
79 * We can then upload the firmware file. The file is composed of a BCF
80 * header (basic data, keys and signatures) and a list of write
bfc44187
IPG
81 * commands and payloads. Optionally more BCF headers might follow the
82 * main payload. We first upload the header [i2400m_dnload_init()] and
83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85 * the new firmware [i2400m_dnload_finalize()].
467cc396
IPG
86 *
87 * Once firmware is uploaded, we are good to go :)
88 *
89 * When we don't know in which mode we are, we first try by sending a
90 * warm reset request that will take us to boot-mode. If we time out
91 * waiting for a reboot barker, that means maybe we are already in
92 * boot mode, so we send a reboot barker.
93 *
94 * COMMAND EXECUTION
95 *
96 * This code (and process) is single threaded; for executing commands,
97 * we post a URB to the notification endpoint, post the command, wait
98 * for data on the notification buffer. We don't need to worry about
99 * others as we know we are the only ones in there.
100 *
101 * BACKEND IMPLEMENTATION
102 *
103 * This code is bus-generic; the bus-specific driver provides back end
104 * implementations to send a boot mode command to the device and to
105 * read an acknolwedgement from it (or an asynchronous notification)
106 * from it.
107 *
7b43ca70
IPG
108 * FIRMWARE LOADING
109 *
110 * Note that in some cases, we can't just load a firmware file (for
111 * example, when resuming). For that, we might cache the firmware
112 * file. Thus, when doing the bootstrap, if there is a cache firmware
113 * file, it is used; if not, loading from disk is attempted.
114 *
467cc396
IPG
115 * ROADMAP
116 *
aba3792a
IPG
117 * i2400m_barker_db_init Called by i2400m_driver_init()
118 * i2400m_barker_db_add
119 *
120 * i2400m_barker_db_exit Called by i2400m_driver_exit()
121 *
467cc396
IPG
122 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
123 * request_firmware
7b43ca70
IPG
124 * i2400m_fw_bootstrap
125 * i2400m_fw_check
126 * i2400m_fw_hdr_check
127 * i2400m_fw_dnload
467cc396
IPG
128 * release_firmware
129 *
130 * i2400m_fw_dnload
131 * i2400m_bootrom_init
132 * i2400m_bm_cmd
133 * i2400m->bus_reset
134 * i2400m_dnload_init
135 * i2400m_dnload_init_signed
136 * i2400m_dnload_init_nonsigned
137 * i2400m_download_chunk
138 * i2400m_bm_cmd
139 * i2400m_dnload_bcf
140 * i2400m_bm_cmd
141 * i2400m_dnload_finalize
142 * i2400m_bm_cmd
143 *
144 * i2400m_bm_cmd
145 * i2400m->bus_bm_cmd_send()
146 * i2400m->bus_bm_wait_for_ack
147 * __i2400m_bm_ack_verify
aba3792a 148 * i2400m_is_boot_barker
467cc396
IPG
149 *
150 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
151 * commands before sending
7b43ca70
IPG
152 *
153 * i2400m_pm_notifier Called on Power Management events
154 * i2400m_fw_cache
155 * i2400m_fw_uncache
467cc396
IPG
156 */
157#include <linux/firmware.h>
158#include <linux/sched.h>
159#include <linux/usb.h>
160#include "i2400m.h"
161
162
163#define D_SUBMODULE fw
164#include "debug-levels.h"
165
166
167static const __le32 i2400m_ACK_BARKER[4] = {
ee437770
HH
168 cpu_to_le32(I2400M_ACK_BARKER),
169 cpu_to_le32(I2400M_ACK_BARKER),
170 cpu_to_le32(I2400M_ACK_BARKER),
171 cpu_to_le32(I2400M_ACK_BARKER)
467cc396
IPG
172};
173
174
175/**
176 * Prepare a boot-mode command for delivery
177 *
178 * @cmd: pointer to bootrom header to prepare
179 *
180 * Computes checksum if so needed. After calling this function, DO NOT
181 * modify the command or header as the checksum won't work anymore.
182 *
183 * We do it from here because some times we cannot do it in the
184 * original context the command was sent (it is a const), so when we
185 * copy it to our staging buffer, we add the checksum there.
186 */
187void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
188{
189 if (i2400m_brh_get_use_checksum(cmd)) {
190 int i;
191 u32 checksum = 0;
192 const u32 *checksum_ptr = (void *) cmd->payload;
193 for (i = 0; i < cmd->data_size / 4; i++)
194 checksum += cpu_to_le32(*checksum_ptr++);
195 checksum += cmd->command + cmd->target_addr + cmd->data_size;
196 cmd->block_checksum = cpu_to_le32(checksum);
197 }
198}
199EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
200
201
aba3792a
IPG
202/*
203 * Database of known barkers.
204 *
205 * A barker is what the device sends indicating he is ready to be
206 * bootloaded. Different versions of the device will send different
207 * barkers. Depending on the barker, it might mean the device wants
208 * some kind of firmware or the other.
209 */
210static struct i2400m_barker_db {
211 __le32 data[4];
212} *i2400m_barker_db;
213static size_t i2400m_barker_db_used, i2400m_barker_db_size;
214
215
216static
217int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
218 gfp_t gfp_flags)
219{
220 size_t old_count = *_count,
221 new_count = old_count ? 2 * old_count : 2,
222 old_size = el_size * old_count,
223 new_size = el_size * new_count;
224 void *nptr = krealloc(*ptr, new_size, gfp_flags);
225 if (nptr) {
226 /* zero the other half or the whole thing if old_count
227 * was zero */
228 if (old_size == 0)
229 memset(nptr, 0, new_size);
230 else
231 memset(nptr + old_size, 0, old_size);
232 *_count = new_count;
233 *ptr = nptr;
234 return 0;
235 } else
236 return -ENOMEM;
237}
238
239
240/*
241 * Add a barker to the database
242 *
243 * This cannot used outside of this module and only at at module_init
244 * time. This is to avoid the need to do locking.
245 */
246static
247int i2400m_barker_db_add(u32 barker_id)
248{
249 int result;
250
251 struct i2400m_barker_db *barker;
252 if (i2400m_barker_db_used >= i2400m_barker_db_size) {
253 result = i2400m_zrealloc_2x(
254 (void **) &i2400m_barker_db, &i2400m_barker_db_size,
255 sizeof(i2400m_barker_db[0]), GFP_KERNEL);
256 if (result < 0)
257 return result;
258 }
259 barker = i2400m_barker_db + i2400m_barker_db_used++;
260 barker->data[0] = le32_to_cpu(barker_id);
261 barker->data[1] = le32_to_cpu(barker_id);
262 barker->data[2] = le32_to_cpu(barker_id);
263 barker->data[3] = le32_to_cpu(barker_id);
264 return 0;
265}
266
267
268void i2400m_barker_db_exit(void)
269{
270 kfree(i2400m_barker_db);
271 i2400m_barker_db = NULL;
272 i2400m_barker_db_size = 0;
273 i2400m_barker_db_used = 0;
274}
275
276
277/*
278 * Helper function to add all the known stable barkers to the barker
279 * database.
280 */
281static
282int i2400m_barker_db_known_barkers(void)
283{
284 int result;
285
286 result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
287 if (result < 0)
288 goto error_add;
289 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
290 if (result < 0)
291 goto error_add;
7329012e
DB
292 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
293 if (result < 0)
294 goto error_add;
aba3792a
IPG
295error_add:
296 return result;
297}
298
299
300/*
301 * Initialize the barker database
302 *
303 * This can only be used from the module_init function for this
304 * module; this is to avoid the need to do locking.
305 *
306 * @options: command line argument with extra barkers to
307 * recognize. This is a comma-separated list of 32-bit hex
308 * numbers. They are appended to the existing list. Setting 0
309 * cleans the existing list and starts a new one.
310 */
311int i2400m_barker_db_init(const char *_options)
312{
313 int result;
314 char *options = NULL, *options_orig, *token;
315
316 i2400m_barker_db = NULL;
317 i2400m_barker_db_size = 0;
318 i2400m_barker_db_used = 0;
319
320 result = i2400m_barker_db_known_barkers();
321 if (result < 0)
322 goto error_add;
323 /* parse command line options from i2400m.barkers */
324 if (_options != NULL) {
325 unsigned barker;
326
327 options_orig = kstrdup(_options, GFP_KERNEL);
328 if (options_orig == NULL)
329 goto error_parse;
330 options = options_orig;
331
332 while ((token = strsep(&options, ",")) != NULL) {
333 if (*token == '\0') /* eat joint commas */
334 continue;
335 if (sscanf(token, "%x", &barker) != 1
336 || barker > 0xffffffff) {
337 printk(KERN_ERR "%s: can't recognize "
338 "i2400m.barkers value '%s' as "
339 "a 32-bit number\n",
340 __func__, token);
341 result = -EINVAL;
342 goto error_parse;
343 }
344 if (barker == 0) {
345 /* clean list and start new */
346 i2400m_barker_db_exit();
347 continue;
348 }
349 result = i2400m_barker_db_add(barker);
350 if (result < 0)
351 goto error_add;
352 }
353 kfree(options_orig);
354 }
355 return 0;
356
357error_parse:
358error_add:
359 kfree(i2400m_barker_db);
360 return result;
361}
362
363
364/*
365 * Recognize a boot barker
366 *
367 * @buf: buffer where the boot barker.
368 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
369 * here so the function can check it for the caller.
370 *
371 * Note that as a side effect, upon identifying the obtained boot
372 * barker, this function will set i2400m->barker to point to the right
373 * barker database entry. Subsequent calls to the function will result
374 * in verifying that the same type of boot barker is returned when the
375 * device [re]boots (as long as the same device instance is used).
376 *
377 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
378 * buffer in @buf doesn't match any boot barker in the database or
379 * -EILSEQ if the buffer doesn't have the right size.
380 */
381int i2400m_is_boot_barker(struct i2400m *i2400m,
382 const void *buf, size_t buf_size)
383{
384 int result;
385 struct device *dev = i2400m_dev(i2400m);
386 struct i2400m_barker_db *barker;
387 int i;
388
389 result = -ENOENT;
390 if (buf_size != sizeof(i2400m_barker_db[i].data))
391 return result;
392
393 /* Short circuit if we have already discovered the barker
394 * associated with the device. */
395 if (i2400m->barker
396 && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
397 unsigned index = (i2400m->barker - i2400m_barker_db)
398 / sizeof(*i2400m->barker);
399 d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
400 index, le32_to_cpu(i2400m->barker->data[0]));
401 return 0;
402 }
403
404 for (i = 0; i < i2400m_barker_db_used; i++) {
405 barker = &i2400m_barker_db[i];
406 BUILD_BUG_ON(sizeof(barker->data) != 16);
407 if (memcmp(buf, barker->data, sizeof(barker->data)))
408 continue;
409
410 if (i2400m->barker == NULL) {
411 i2400m->barker = barker;
412 d_printf(1, dev, "boot barker set to #%u/%08x\n",
413 i, le32_to_cpu(barker->data[0]));
414 if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
415 i2400m->sboot = 0;
416 else
417 i2400m->sboot = 1;
418 } else if (i2400m->barker != barker) {
419 dev_err(dev, "HW inconsistency: device "
420 "reports a different boot barker "
421 "than set (from %08x to %08x)\n",
422 le32_to_cpu(i2400m->barker->data[0]),
423 le32_to_cpu(barker->data[0]));
424 result = -EIO;
425 } else
426 d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
427 i, le32_to_cpu(barker->data[0]));
428 result = 0;
429 break;
430 }
431 return result;
432}
433EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
434
435
467cc396
IPG
436/*
437 * Verify the ack data received
438 *
439 * Given a reply to a boot mode command, chew it and verify everything
440 * is ok.
441 *
442 * @opcode: opcode which generated this ack. For error messages.
443 * @ack: pointer to ack data we received
444 * @ack_size: size of that data buffer
445 * @flags: I2400M_BM_CMD_* flags we called the command with.
446 *
447 * Way too long function -- maybe it should be further split
448 */
449static
450ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
451 struct i2400m_bootrom_header *ack,
452 size_t ack_size, int flags)
453{
454 ssize_t result = -ENOMEM;
455 struct device *dev = i2400m_dev(i2400m);
456
457 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
458 i2400m, opcode, ack, ack_size);
459 if (ack_size < sizeof(*ack)) {
460 result = -EIO;
461 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
462 "return enough data (%zu bytes vs %zu expected)\n",
463 opcode, ack_size, sizeof(*ack));
464 goto error_ack_short;
465 }
aba3792a
IPG
466 result = i2400m_is_boot_barker(i2400m, ack, ack_size);
467 if (result >= 0) {
467cc396 468 result = -ERESTARTSYS;
aba3792a 469 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
467cc396
IPG
470 goto error_reboot;
471 }
472 if (ack_size == sizeof(i2400m_ACK_BARKER)
473 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
474 result = -EISCONN;
475 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
476 opcode);
477 goto error_reboot_ack;
478 }
479 result = 0;
480 if (flags & I2400M_BM_CMD_RAW)
481 goto out_raw;
482 ack->data_size = le32_to_cpu(ack->data_size);
483 ack->target_addr = le32_to_cpu(ack->target_addr);
484 ack->block_checksum = le32_to_cpu(ack->block_checksum);
485 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
486 "response %u csum %u rr %u da %u\n",
487 opcode, i2400m_brh_get_opcode(ack),
488 i2400m_brh_get_response(ack),
489 i2400m_brh_get_use_checksum(ack),
490 i2400m_brh_get_response_required(ack),
491 i2400m_brh_get_direct_access(ack));
492 result = -EIO;
493 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
494 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
495 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
496 goto error_ack_signature;
497 }
498 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
499 dev_err(dev, "boot-mode cmd %d: HW BUG? "
500 "received response for opcode %u, expected %u\n",
501 opcode, i2400m_brh_get_opcode(ack), opcode);
502 goto error_ack_opcode;
503 }
504 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
505 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
506 opcode, i2400m_brh_get_response(ack));
507 goto error_ack_failed;
508 }
509 if (ack_size < ack->data_size + sizeof(*ack)) {
510 dev_err(dev, "boot-mode cmd %d: SW BUG "
511 "driver provided only %zu bytes for %zu bytes "
512 "of data\n", opcode, ack_size,
513 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
514 goto error_ack_short_buffer;
515 }
516 result = ack_size;
517 /* Don't you love this stack of empty targets? Well, I don't
518 * either, but it helps track exactly who comes in here and
519 * why :) */
520error_ack_short_buffer:
521error_ack_failed:
522error_ack_opcode:
523error_ack_signature:
524out_raw:
525error_reboot_ack:
526error_reboot:
527error_ack_short:
528 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
529 i2400m, opcode, ack, ack_size, (int) result);
530 return result;
531}
532
533
534/**
535 * i2400m_bm_cmd - Execute a boot mode command
536 *
537 * @cmd: buffer containing the command data (pointing at the header).
538 * This data can be ANYWHERE (for USB, we will copy it to an
539 * specific buffer). Make sure everything is in proper little
540 * endian.
541 *
542 * A raw buffer can be also sent, just cast it and set flags to
543 * I2400M_BM_CMD_RAW.
544 *
545 * This function will generate a checksum for you if the
546 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
547 * is set).
548 *
549 * You can use the i2400m->bm_cmd_buf to stage your commands and
550 * send them.
551 *
552 * If NULL, no command is sent (we just wait for an ack).
553 *
554 * @cmd_size: size of the command. Will be auto padded to the
555 * bus-specific drivers padding requirements.
556 *
557 * @ack: buffer where to place the acknowledgement. If it is a regular
558 * command response, all fields will be returned with the right,
559 * native endianess.
560 *
561 * You *cannot* use i2400m->bm_ack_buf for this buffer.
562 *
563 * @ack_size: size of @ack, 16 aligned; you need to provide at least
564 * sizeof(*ack) bytes and then enough to contain the return data
565 * from the command
566 *
567 * @flags: see I2400M_BM_CMD_* above.
568 *
569 * @returns: bytes received by the notification; if < 0, an errno code
570 * denoting an error or:
571 *
572 * -ERESTARTSYS The device has rebooted
573 *
574 * Executes a boot-mode command and waits for a response, doing basic
575 * validation on it; if a zero length response is received, it retries
576 * waiting for a response until a non-zero one is received (timing out
577 * after %I2400M_BOOT_RETRIES retries).
578 */
579static
580ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
581 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
582 struct i2400m_bootrom_header *ack, size_t ack_size,
583 int flags)
584{
585 ssize_t result = -ENOMEM, rx_bytes;
586 struct device *dev = i2400m_dev(i2400m);
587 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
588
589 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
590 i2400m, cmd, cmd_size, ack, ack_size);
591 BUG_ON(ack_size < sizeof(*ack));
592 BUG_ON(i2400m->boot_mode == 0);
593
594 if (cmd != NULL) { /* send the command */
467cc396
IPG
595 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
596 if (result < 0)
597 goto error_cmd_send;
598 if ((flags & I2400M_BM_CMD_RAW) == 0)
599 d_printf(5, dev,
600 "boot-mode cmd %d csum %u rr %u da %u: "
601 "addr 0x%04x size %u block csum 0x%04x\n",
602 opcode, i2400m_brh_get_use_checksum(cmd),
603 i2400m_brh_get_response_required(cmd),
604 i2400m_brh_get_direct_access(cmd),
605 cmd->target_addr, cmd->data_size,
606 cmd->block_checksum);
607 }
608 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
609 if (result < 0) {
610 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
611 opcode, (int) result); /* bah, %zd doesn't work */
612 goto error_wait_for_ack;
613 }
614 rx_bytes = result;
615 /* verify the ack and read more if neccessary [result is the
616 * final amount of bytes we get in the ack] */
617 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
618 if (result < 0)
619 goto error_bad_ack;
620 /* Don't you love this stack of empty targets? Well, I don't
621 * either, but it helps track exactly who comes in here and
622 * why :) */
623 result = rx_bytes;
624error_bad_ack:
625error_wait_for_ack:
626error_cmd_send:
627 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
628 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
629 return result;
630}
631
632
633/**
634 * i2400m_download_chunk - write a single chunk of data to the device's memory
635 *
636 * @i2400m: device descriptor
637 * @buf: the buffer to write
638 * @buf_len: length of the buffer to write
639 * @addr: address in the device memory space
640 * @direct: bootrom write mode
641 * @do_csum: should a checksum validation be performed
642 */
643static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
644 size_t __chunk_len, unsigned long addr,
645 unsigned int direct, unsigned int do_csum)
646{
647 int ret;
8593a196 648 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
467cc396
IPG
649 struct device *dev = i2400m_dev(i2400m);
650 struct {
651 struct i2400m_bootrom_header cmd;
652 u8 cmd_payload[chunk_len];
653 } __attribute__((packed)) *buf;
654 struct i2400m_bootrom_header ack;
655
656 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
657 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
658 addr, direct, do_csum);
659 buf = i2400m->bm_cmd_buf;
660 memcpy(buf->cmd_payload, chunk, __chunk_len);
661 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
662
663 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
664 __chunk_len & 0x3 ? 0 : do_csum,
665 __chunk_len & 0xf ? 0 : direct);
666 buf->cmd.target_addr = cpu_to_le32(addr);
667 buf->cmd.data_size = cpu_to_le32(__chunk_len);
668 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
669 &ack, sizeof(ack), 0);
670 if (ret >= 0)
671 ret = 0;
672 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
673 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
674 addr, direct, do_csum, ret);
675 return ret;
676}
677
678
679/*
680 * Download a BCF file's sections to the device
681 *
682 * @i2400m: device descriptor
10607c86
IPG
683 * @bcf: pointer to firmware data (first header followed by the
684 * payloads). Assumed verified and consistent.
467cc396
IPG
685 * @bcf_len: length (in bytes) of the @bcf buffer.
686 *
687 * Returns: < 0 errno code on error or the offset to the jump instruction.
688 *
689 * Given a BCF file, downloads each section (a command and a payload)
690 * to the device's address space. Actually, it just executes each
691 * command i the BCF file.
692 *
693 * The section size has to be aligned to 4 bytes AND the padding has
694 * to be taken from the firmware file, as the signature takes it into
695 * account.
696 */
697static
698ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
699 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
700{
701 ssize_t ret;
702 struct device *dev = i2400m_dev(i2400m);
703 size_t offset, /* iterator offset */
704 data_size, /* Size of the data payload */
705 section_size, /* Size of the whole section (cmd + payload) */
706 section = 1;
707 const struct i2400m_bootrom_header *bh;
708 struct i2400m_bootrom_header ack;
709
710 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
711 i2400m, bcf, bcf_len);
712 /* Iterate over the command blocks in the BCF file that start
713 * after the header */
714 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
715 while (1) { /* start sending the file */
716 bh = (void *) bcf + offset;
717 data_size = le32_to_cpu(bh->data_size);
718 section_size = ALIGN(sizeof(*bh) + data_size, 4);
719 d_printf(7, dev,
720 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
721 section, offset, sizeof(*bh) + data_size,
722 le32_to_cpu(bh->target_addr));
723 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP) {
724 /* Secure boot needs to stop here */
725 d_printf(5, dev, "signed jump found @%zu\n", offset);
726 break;
727 }
728 if (offset + section_size == bcf_len)
729 /* Non-secure boot stops here */
730 break;
731 if (offset + section_size > bcf_len) {
732 dev_err(dev, "fw %s: bad section #%zu, "
733 "end (@%zu) beyond EOF (@%zu)\n",
1039abbc 734 i2400m->fw_name, section,
467cc396
IPG
735 offset + section_size, bcf_len);
736 ret = -EINVAL;
737 goto error_section_beyond_eof;
738 }
739 __i2400m_msleep(20);
740 ret = i2400m_bm_cmd(i2400m, bh, section_size,
741 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
742 if (ret < 0) {
743 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
1039abbc 744 "failed %d\n", i2400m->fw_name, section,
467cc396
IPG
745 offset, sizeof(*bh) + data_size, (int) ret);
746 goto error_send;
747 }
748 offset += section_size;
749 section++;
750 }
751 ret = offset;
752error_section_beyond_eof:
753error_send:
754 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
755 i2400m, bcf, bcf_len, (int) ret);
756 return ret;
757}
758
759
32742e61
IPG
760/*
761 * Indicate if the device emitted a reboot barker that indicates
762 * "signed boot"
763 */
764static
765unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
766{
767 return likely(i2400m->sboot);
768}
769
770
467cc396
IPG
771/*
772 * Do the final steps of uploading firmware
773 *
10607c86
IPG
774 * @bcf_hdr: BCF header we are actually using
775 * @bcf: pointer to the firmware image (which matches the first header
776 * that is followed by the actual payloads).
777 * @offset: [byte] offset into @bcf for the command we need to send.
778 *
467cc396
IPG
779 * Depending on the boot mode (signed vs non-signed), different
780 * actions need to be taken.
781 */
782static
783int i2400m_dnload_finalize(struct i2400m *i2400m,
10607c86 784 const struct i2400m_bcf_hdr *bcf_hdr,
467cc396
IPG
785 const struct i2400m_bcf_hdr *bcf, size_t offset)
786{
787 int ret = 0;
788 struct device *dev = i2400m_dev(i2400m);
789 struct i2400m_bootrom_header *cmd, ack;
790 struct {
791 struct i2400m_bootrom_header cmd;
792 u8 cmd_pl[0];
793 } __attribute__((packed)) *cmd_buf;
794 size_t signature_block_offset, signature_block_size;
795
796 d_fnstart(3, dev, "offset %zu\n", offset);
797 cmd = (void *) bcf + offset;
32742e61 798 if (i2400m_boot_is_signed(i2400m) == 0) {
467cc396 799 struct i2400m_bootrom_header jump_ack;
ead68239 800 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
467cc396 801 le32_to_cpu(cmd->target_addr));
8d8fe198
CK
802 cmd_buf = i2400m->bm_cmd_buf;
803 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
804 cmd = &cmd_buf->cmd;
805 /* now cmd points to the actual bootrom_header in cmd_buf */
467cc396
IPG
806 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
807 cmd->data_size = 0;
808 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
809 &jump_ack, sizeof(jump_ack), 0);
810 } else {
ead68239 811 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
467cc396
IPG
812 le32_to_cpu(cmd->target_addr));
813 cmd_buf = i2400m->bm_cmd_buf;
814 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
815 signature_block_offset =
10607c86
IPG
816 sizeof(*bcf_hdr)
817 + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
818 + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
467cc396 819 signature_block_size =
10607c86
IPG
820 le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
821 memcpy(cmd_buf->cmd_pl,
822 (void *) bcf_hdr + signature_block_offset,
467cc396
IPG
823 signature_block_size);
824 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
825 sizeof(cmd_buf->cmd) + signature_block_size,
826 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
827 }
828 d_fnend(3, dev, "returning %d\n", ret);
829 return ret;
830}
831
832
833/**
834 * i2400m_bootrom_init - Reboots a powered device into boot mode
835 *
836 * @i2400m: device descriptor
837 * @flags:
923d708f 838 * I2400M_BRI_SOFT: a reboot barker has been seen
467cc396
IPG
839 * already, so don't wait for it.
840 *
841 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
842 * for a reboot barker notification. This is a one shot; if
843 * the state machine needs to send a reboot command it will.
844 *
845 * Returns:
846 *
847 * < 0 errno code on error, 0 if ok.
848 *
467cc396
IPG
849 * Description:
850 *
851 * Tries hard enough to put the device in boot-mode. There are two
852 * main phases to this:
853 *
854 * a. (1) send a reboot command and (2) get a reboot barker
923d708f
IPG
855 *
856 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
857 * getting an ack barker in return
467cc396
IPG
858 *
859 * We want to skip (a) in some cases [soft]. The state machine is
860 * horrible, but it is basically: on each phase, send what has to be
861 * sent (if any), wait for the answer and act on the answer. We might
862 * have to backtrack and retry, so we keep a max tries counter for
863 * that.
864 *
923d708f
IPG
865 * It sucks because we don't know ahead of time which is going to be
866 * the reboot barker (the device might send different ones depending
867 * on its EEPROM config) and once the device reboots and waits for the
868 * echo/ack reboot barker being sent back, it doesn't understand
869 * anything else. So we can be left at the point where we don't know
870 * what to send to it -- cold reset and bus reset seem to have little
871 * effect. So the function iterates (in this case) through all the
872 * known barkers and tries them all until an ACK is
873 * received. Otherwise, it gives up.
874 *
467cc396
IPG
875 * If we get a timeout after sending a warm reset, we do it again.
876 */
877int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
878{
879 int result;
880 struct device *dev = i2400m_dev(i2400m);
881 struct i2400m_bootrom_header *cmd;
882 struct i2400m_bootrom_header ack;
c3083658 883 int count = i2400m->bus_bm_retries;
467cc396 884 int ack_timeout_cnt = 1;
923d708f 885 unsigned i;
467cc396 886
aba3792a 887 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
467cc396
IPG
888 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
889
890 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
891 result = -ENOMEM;
892 cmd = i2400m->bm_cmd_buf;
893 if (flags & I2400M_BRI_SOFT)
894 goto do_reboot_ack;
895do_reboot:
923d708f 896 ack_timeout_cnt = 1;
467cc396
IPG
897 if (--count < 0)
898 goto error_timeout;
899 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
900 count);
901 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
902 i2400m->bus_reset(i2400m, I2400M_RT_WARM);
903 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
904 I2400M_BM_CMD_RAW);
905 flags &= ~I2400M_BRI_NO_REBOOT;
906 switch (result) {
907 case -ERESTARTSYS:
923d708f
IPG
908 /*
909 * at this point, i2400m_bm_cmd(), through
910 * __i2400m_bm_ack_process(), has updated
911 * i2400m->barker and we are good to go.
912 */
467cc396
IPG
913 d_printf(4, dev, "device reboot: got reboot barker\n");
914 break;
915 case -EISCONN: /* we don't know how it got here...but we follow it */
916 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
917 goto do_reboot;
923d708f
IPG
918 case -ETIMEDOUT:
919 /*
920 * Device has timed out, we might be in boot mode
921 * already and expecting an ack; if we don't know what
922 * the barker is, we just send them all. Cold reset
923 * and bus reset don't work. Beats me.
924 */
925 if (i2400m->barker != NULL) {
926 dev_err(dev, "device boot: reboot barker timed out, "
927 "trying (set) %08x echo/ack\n",
928 le32_to_cpu(i2400m->barker->data[0]));
aba3792a
IPG
929 goto do_reboot_ack;
930 }
923d708f
IPG
931 for (i = 0; i < i2400m_barker_db_used; i++) {
932 struct i2400m_barker_db *barker = &i2400m_barker_db[i];
933 memcpy(cmd, barker->data, sizeof(barker->data));
934 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
935 &ack, sizeof(ack),
936 I2400M_BM_CMD_RAW);
937 if (result == -EISCONN) {
938 dev_warn(dev, "device boot: got ack barker "
939 "after sending echo/ack barker "
940 "#%d/%08x; rebooting j.i.c.\n",
941 i, le32_to_cpu(barker->data[0]));
942 flags &= ~I2400M_BRI_NO_REBOOT;
943 goto do_reboot;
944 }
945 }
946 dev_err(dev, "device boot: tried all the echo/acks, could "
947 "not get device to respond; giving up");
948 result = -ESHUTDOWN;
467cc396
IPG
949 case -EPROTO:
950 case -ESHUTDOWN: /* dev is gone */
951 case -EINTR: /* user cancelled */
952 goto error_dev_gone;
953 default:
954 dev_err(dev, "device reboot: error %d while waiting "
955 "for reboot barker - rebooting\n", result);
923d708f 956 d_dump(1, dev, &ack, result);
467cc396
IPG
957 goto do_reboot;
958 }
959 /* At this point we ack back with 4 REBOOT barkers and expect
960 * 4 ACK barkers. This is ugly, as we send a raw command --
961 * hence the cast. _bm_cmd() will catch the reboot ack
962 * notification and report it as -EISCONN. */
963do_reboot_ack:
964 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
aba3792a 965 memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
467cc396
IPG
966 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
967 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
968 switch (result) {
969 case -ERESTARTSYS:
970 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
971 if (--count < 0)
972 goto error_timeout;
973 goto do_reboot_ack;
974 case -EISCONN:
975 d_printf(4, dev, "reboot ack: got ack barker - good\n");
976 break;
977 case -ETIMEDOUT: /* no response, maybe it is the other type? */
aba3792a
IPG
978 if (ack_timeout_cnt-- < 0) {
979 d_printf(4, dev, "reboot ack timedout: retrying\n");
467cc396
IPG
980 goto do_reboot_ack;
981 } else {
982 dev_err(dev, "reboot ack timedout too long: "
983 "trying reboot\n");
984 goto do_reboot;
985 }
986 break;
987 case -EPROTO:
988 case -ESHUTDOWN: /* dev is gone */
989 goto error_dev_gone;
990 default:
991 dev_err(dev, "device reboot ack: error %d while waiting for "
992 "reboot ack barker - rebooting\n", result);
993 goto do_reboot;
994 }
995 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
996 result = 0;
997exit_timeout:
998error_dev_gone:
999 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1000 i2400m, flags, result);
1001 return result;
1002
1003error_timeout:
6e053d6c 1004 dev_err(dev, "Timed out waiting for reboot ack\n");
467cc396
IPG
1005 result = -ETIMEDOUT;
1006 goto exit_timeout;
1007}
1008
1009
1010/*
1011 * Read the MAC addr
1012 *
1013 * The position this function reads is fixed in device memory and
1014 * always available, even without firmware.
1015 *
1016 * Note we specify we want to read only six bytes, but provide space
1017 * for 16, as we always get it rounded up.
1018 */
1019int i2400m_read_mac_addr(struct i2400m *i2400m)
1020{
1021 int result;
1022 struct device *dev = i2400m_dev(i2400m);
1023 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1024 struct i2400m_bootrom_header *cmd;
1025 struct {
1026 struct i2400m_bootrom_header ack;
1027 u8 ack_pl[16];
1028 } __attribute__((packed)) ack_buf;
1029
1030 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1031 cmd = i2400m->bm_cmd_buf;
1032 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1033 cmd->target_addr = cpu_to_le32(0x00203fe8);
1034 cmd->data_size = cpu_to_le32(6);
1035 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1036 &ack_buf.ack, sizeof(ack_buf), 0);
1037 if (result < 0) {
1038 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1039 goto error_read_mac;
1040 }
1041 d_printf(2, dev,
1042 "mac addr is %02x:%02x:%02x:%02x:%02x:%02x\n",
1043 ack_buf.ack_pl[0], ack_buf.ack_pl[1],
1044 ack_buf.ack_pl[2], ack_buf.ack_pl[3],
1045 ack_buf.ack_pl[4], ack_buf.ack_pl[5]);
1046 if (i2400m->bus_bm_mac_addr_impaired == 1) {
1047 ack_buf.ack_pl[0] = 0x00;
1048 ack_buf.ack_pl[1] = 0x16;
1049 ack_buf.ack_pl[2] = 0xd3;
1050 get_random_bytes(&ack_buf.ack_pl[3], 3);
1051 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1052 "mac addr is %02x:%02x:%02x:%02x:%02x:%02x\n",
1053 ack_buf.ack_pl[0], ack_buf.ack_pl[1],
1054 ack_buf.ack_pl[2], ack_buf.ack_pl[3],
1055 ack_buf.ack_pl[4], ack_buf.ack_pl[5]);
1056 result = 0;
1057 }
1058 net_dev->addr_len = ETH_ALEN;
1059 memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1060 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1061error_read_mac:
1062 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1063 return result;
1064}
1065
1066
1067/*
1068 * Initialize a non signed boot
1069 *
1070 * This implies sending some magic values to the device's memory. Note
1071 * we convert the values to little endian in the same array
1072 * declaration.
1073 */
1074static
1075int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1076{
7308a0c2
DB
1077 unsigned i = 0;
1078 int ret = 0;
467cc396 1079 struct device *dev = i2400m_dev(i2400m);
467cc396 1080 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
7308a0c2
DB
1081 if (i2400m->bus_bm_pokes_table) {
1082 while (i2400m->bus_bm_pokes_table[i].address) {
1083 ret = i2400m_download_chunk(
1084 i2400m,
1085 &i2400m->bus_bm_pokes_table[i].data,
1086 sizeof(i2400m->bus_bm_pokes_table[i].data),
1087 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1088 if (ret < 0)
1089 break;
1090 i++;
1091 }
467cc396
IPG
1092 }
1093 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1094 return ret;
1095}
1096
1097
1098/*
1099 * Initialize the signed boot process
1100 *
1101 * @i2400m: device descriptor
1102 *
1103 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1104 * memory (it has gone through basic validation).
1105 *
1106 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1107 * rebooted.
1108 *
1109 * This writes the firmware BCF header to the device using the
1110 * HASH_PAYLOAD_ONLY command.
1111 */
1112static
1113int i2400m_dnload_init_signed(struct i2400m *i2400m,
1114 const struct i2400m_bcf_hdr *bcf_hdr)
1115{
1116 int ret;
1117 struct device *dev = i2400m_dev(i2400m);
1118 struct {
1119 struct i2400m_bootrom_header cmd;
1120 struct i2400m_bcf_hdr cmd_pl;
1121 } __attribute__((packed)) *cmd_buf;
1122 struct i2400m_bootrom_header ack;
1123
1124 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1125 cmd_buf = i2400m->bm_cmd_buf;
1126 cmd_buf->cmd.command =
1127 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1128 cmd_buf->cmd.target_addr = 0;
1129 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1130 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1131 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1132 &ack, sizeof(ack), 0);
1133 if (ret >= 0)
1134 ret = 0;
1135 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1136 return ret;
1137}
1138
1139
1140/*
1141 * Initialize the firmware download at the device size
1142 *
1143 * Multiplex to the one that matters based on the device's mode
1144 * (signed or non-signed).
1145 */
1146static
10607c86
IPG
1147int i2400m_dnload_init(struct i2400m *i2400m,
1148 const struct i2400m_bcf_hdr *bcf_hdr)
467cc396
IPG
1149{
1150 int result;
1151 struct device *dev = i2400m_dev(i2400m);
467cc396 1152
32742e61
IPG
1153 if (i2400m_boot_is_signed(i2400m)) {
1154 d_printf(1, dev, "signed boot\n");
10607c86 1155 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
467cc396
IPG
1156 if (result == -ERESTARTSYS)
1157 return result;
1158 if (result < 0)
32742e61 1159 dev_err(dev, "firmware %s: signed boot download "
467cc396 1160 "initialization failed: %d\n",
1039abbc 1161 i2400m->fw_name, result);
32742e61
IPG
1162 } else {
1163 /* non-signed boot process without pokes */
1164 d_printf(1, dev, "non-signed boot\n");
1165 result = i2400m_dnload_init_nonsigned(i2400m);
467cc396
IPG
1166 if (result == -ERESTARTSYS)
1167 return result;
1168 if (result < 0)
32742e61 1169 dev_err(dev, "firmware %s: non-signed download "
467cc396 1170 "initialization failed: %d\n",
1039abbc 1171 i2400m->fw_name, result);
467cc396
IPG
1172 }
1173 return result;
1174}
1175
1176
1177/*
bfc44187 1178 * Run consistency tests on the firmware file and load up headers
467cc396
IPG
1179 *
1180 * Check for the firmware being made for the i2400m device,
1181 * etc...These checks are mostly informative, as the device will make
1182 * them too; but the driver's response is more informative on what
1183 * went wrong.
bfc44187
IPG
1184 *
1185 * This will also look at all the headers present on the firmware
1186 * file, and update i2400m->fw_bcf_hdr to point to them.
467cc396
IPG
1187 */
1188static
bfc44187
IPG
1189int i2400m_fw_hdr_check(struct i2400m *i2400m,
1190 const struct i2400m_bcf_hdr *bcf_hdr,
1191 size_t index, size_t offset)
467cc396 1192{
467cc396 1193 struct device *dev = i2400m_dev(i2400m);
bfc44187 1194
467cc396
IPG
1195 unsigned module_type, header_len, major_version, minor_version,
1196 module_id, module_vendor, date, size;
1197
bfc44187
IPG
1198 module_type = bcf_hdr->module_type;
1199 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1200 major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1201 >> 16;
1202 minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1203 module_id = le32_to_cpu(bcf_hdr->module_id);
1204 module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1205 date = le32_to_cpu(bcf_hdr->date);
1206 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1207
10607c86
IPG
1208 d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1209 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
bfc44187
IPG
1210 i2400m->fw_name, index, offset,
1211 module_type, module_vendor, module_id,
1212 major_version, minor_version, header_len, size, date);
1213
1214 /* Hard errors */
1215 if (major_version != 1) {
10607c86 1216 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
bfc44187
IPG
1217 "v%u.%u not supported\n",
1218 i2400m->fw_name, index, offset,
1219 major_version, minor_version);
1220 return -EBADF;
467cc396
IPG
1221 }
1222
467cc396 1223 if (module_type != 6) { /* built for the right hardware? */
10607c86 1224 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
bfc44187
IPG
1225 "type 0x%x; aborting\n",
1226 i2400m->fw_name, index, offset,
1227 module_type);
1228 return -EBADF;
467cc396
IPG
1229 }
1230
bfc44187 1231 if (module_vendor != 0x8086) {
10607c86 1232 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
bfc44187
IPG
1233 "vendor 0x%x; aborting\n",
1234 i2400m->fw_name, index, offset, module_vendor);
1235 return -EBADF;
fabce1a4
IPG
1236 }
1237
467cc396 1238 if (date < 0x20080300)
10607c86 1239 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
bfc44187
IPG
1240 "too old; unsupported\n",
1241 i2400m->fw_name, index, offset, date);
1242 return 0;
1243}
1244
1245
1246/*
1247 * Run consistency tests on the firmware file and load up headers
1248 *
1249 * Check for the firmware being made for the i2400m device,
1250 * etc...These checks are mostly informative, as the device will make
1251 * them too; but the driver's response is more informative on what
1252 * went wrong.
1253 *
1254 * This will also look at all the headers present on the firmware
1255 * file, and update i2400m->fw_hdrs to point to them.
1256 */
1257static
1258int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1259{
1260 int result;
1261 struct device *dev = i2400m_dev(i2400m);
1262 size_t headers = 0;
1263 const struct i2400m_bcf_hdr *bcf_hdr;
1264 const void *itr, *next, *top;
10607c86 1265 size_t slots = 0, used_slots = 0;
bfc44187
IPG
1266
1267 for (itr = bcf, top = itr + bcf_size;
1268 itr < top;
1269 headers++, itr = next) {
1270 size_t leftover, offset, header_len, size;
1271
1272 leftover = top - itr;
1273 offset = itr - (const void *) bcf;
1274 if (leftover <= sizeof(*bcf_hdr)) {
10607c86 1275 dev_err(dev, "firmware %s: %zu B left at @%zx, "
bfc44187
IPG
1276 "not enough for BCF header\n",
1277 i2400m->fw_name, leftover, offset);
1278 break;
1279 }
1280 bcf_hdr = itr;
1281 /* Only the first header is supposed to be followed by
1282 * payload */
1283 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1284 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1285 if (headers == 0)
1286 next = itr + size;
1287 else
1288 next = itr + header_len;
1289
1290 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1291 if (result < 0)
1292 continue;
1293 if (used_slots + 1 >= slots) {
1294 /* +1 -> we need to account for the one we'll
1295 * occupy and at least an extra one for
1296 * always being NULL */
1297 result = i2400m_zrealloc_2x(
1298 (void **) &i2400m->fw_hdrs, &slots,
1299 sizeof(i2400m->fw_hdrs[0]),
1300 GFP_KERNEL);
1301 if (result < 0)
1302 goto error_zrealloc;
1303 }
1304 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1305 used_slots++;
1306 }
1307 if (headers == 0) {
1308 dev_err(dev, "firmware %s: no usable headers found\n",
1309 i2400m->fw_name);
1310 result = -EBADF;
1311 } else
1312 result = 0;
1313error_zrealloc:
467cc396
IPG
1314 return result;
1315}
1316
1317
10607c86
IPG
1318/*
1319 * Match a barker to a BCF header module ID
1320 *
1321 * The device sends a barker which tells the firmware loader which
1322 * header in the BCF file has to be used. This does the matching.
1323 */
1324static
1325unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1326 const struct i2400m_bcf_hdr *bcf_hdr)
1327{
1328 u32 barker = le32_to_cpu(i2400m->barker->data[0])
1329 & 0x7fffffff;
1330 u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1331 & 0x7fffffff; /* high bit used for something else */
1332
1333 /* special case for 5x50 */
1334 if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1335 return 1;
1336 if (module_id == barker)
1337 return 1;
1338 return 0;
1339}
1340
1341static
1342const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1343{
1344 struct device *dev = i2400m_dev(i2400m);
1345 const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1346 unsigned i = 0;
1347 u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1348
1349 d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1350 if (barker == I2400M_NBOOT_BARKER) {
1351 bcf_hdr = i2400m->fw_hdrs[0];
1352 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1353 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1354 return bcf_hdr;
1355 }
1356 for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1357 bcf_hdr = *bcf_itr;
1358 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1359 d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1360 i, le32_to_cpu(bcf_hdr->module_id));
1361 return bcf_hdr;
1362 } else
1363 d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1364 i, le32_to_cpu(bcf_hdr->module_id));
1365 }
1366 dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1367 barker);
1368 return NULL;
1369}
1370
1371
467cc396
IPG
1372/*
1373 * Download the firmware to the device
1374 *
1375 * @i2400m: device descriptor
1376 * @bcf: pointer to loaded (and minimally verified for consistency)
1377 * firmware
1378 * @bcf_size: size of the @bcf buffer (header plus payloads)
1379 *
1380 * The process for doing this is described in this file's header.
1381 *
1382 * Note we only reinitialize boot-mode if the flags say so. Some hw
1383 * iterations need it, some don't. In any case, if we loop, we always
1384 * need to reinitialize the boot room, hence the flags modification.
1385 */
1386static
1387int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1388 size_t bcf_size, enum i2400m_bri flags)
1389{
1390 int ret = 0;
1391 struct device *dev = i2400m_dev(i2400m);
ecddfd5e 1392 int count = i2400m->bus_bm_retries;
10607c86 1393 const struct i2400m_bcf_hdr *bcf_hdr;
467cc396
IPG
1394
1395 d_fnstart(5, dev, "(i2400m %p bcf %p size %zu)\n",
1396 i2400m, bcf, bcf_size);
1397 i2400m->boot_mode = 1;
b4013f91 1398 wmb(); /* Make sure other readers see it */
467cc396
IPG
1399hw_reboot:
1400 if (count-- == 0) {
1401 ret = -ERESTARTSYS;
1402 dev_err(dev, "device rebooted too many times, aborting\n");
1403 goto error_too_many_reboots;
1404 }
1405 if (flags & I2400M_BRI_MAC_REINIT) {
1406 ret = i2400m_bootrom_init(i2400m, flags);
1407 if (ret < 0) {
1408 dev_err(dev, "bootrom init failed: %d\n", ret);
1409 goto error_bootrom_init;
1410 }
1411 }
1412 flags |= I2400M_BRI_MAC_REINIT;
1413
1414 /*
1415 * Initialize the download, push the bytes to the device and
1416 * then jump to the new firmware. Note @ret is passed with the
1417 * offset of the jump instruction to _dnload_finalize()
10607c86
IPG
1418 *
1419 * Note we need to use the BCF header in the firmware image
1420 * that matches the barker that the device sent when it
1421 * rebooted, so it has to be passed along.
467cc396 1422 */
10607c86
IPG
1423 ret = -EBADF;
1424 bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1425 if (bcf_hdr == NULL)
1426 goto error_bcf_hdr_find;
1427
1428 ret = i2400m_dnload_init(i2400m, bcf_hdr);
467cc396
IPG
1429 if (ret == -ERESTARTSYS)
1430 goto error_dev_rebooted;
1431 if (ret < 0)
1432 goto error_dnload_init;
1433
1434 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1435 if (ret == -ERESTARTSYS)
1436 goto error_dev_rebooted;
1437 if (ret < 0) {
1438 dev_err(dev, "fw %s: download failed: %d\n",
1039abbc 1439 i2400m->fw_name, ret);
467cc396
IPG
1440 goto error_dnload_bcf;
1441 }
1442
10607c86 1443 ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
467cc396
IPG
1444 if (ret == -ERESTARTSYS)
1445 goto error_dev_rebooted;
1446 if (ret < 0) {
1447 dev_err(dev, "fw %s: "
1448 "download finalization failed: %d\n",
1039abbc 1449 i2400m->fw_name, ret);
467cc396
IPG
1450 goto error_dnload_finalize;
1451 }
1452
1453 d_printf(2, dev, "fw %s successfully uploaded\n",
1039abbc 1454 i2400m->fw_name);
467cc396 1455 i2400m->boot_mode = 0;
b4013f91 1456 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
467cc396
IPG
1457error_dnload_finalize:
1458error_dnload_bcf:
1459error_dnload_init:
10607c86 1460error_bcf_hdr_find:
467cc396
IPG
1461error_bootrom_init:
1462error_too_many_reboots:
1463 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1464 i2400m, bcf, bcf_size, ret);
1465 return ret;
1466
1467error_dev_rebooted:
1468 dev_err(dev, "device rebooted, %d tries left\n", count);
1469 /* we got the notification already, no need to wait for it again */
1470 flags |= I2400M_BRI_SOFT;
1471 goto hw_reboot;
1472}
1473
7b43ca70
IPG
1474static
1475int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1476 enum i2400m_bri flags)
1477{
1478 int ret;
1479 struct device *dev = i2400m_dev(i2400m);
1480 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1481
1482 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1483 bcf = (void *) fw->data;
1484 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1485 if (ret >= 0)
1486 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1487 if (ret < 0)
1488 dev_err(dev, "%s: cannot use: %d, skipping\n",
1489 i2400m->fw_name, ret);
1490 kfree(i2400m->fw_hdrs);
1491 i2400m->fw_hdrs = NULL;
1492 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1493 return ret;
1494}
1495
1496
1497/* Refcounted container for firmware data */
1498struct i2400m_fw {
1499 struct kref kref;
1500 const struct firmware *fw;
1501};
1502
1503
1504static
1505void i2400m_fw_destroy(struct kref *kref)
1506{
1507 struct i2400m_fw *i2400m_fw =
1508 container_of(kref, struct i2400m_fw, kref);
1509 release_firmware(i2400m_fw->fw);
1510 kfree(i2400m_fw);
1511}
1512
1513
1514static
1515struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1516{
1517 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1518 kref_get(&i2400m_fw->kref);
1519 return i2400m_fw;
1520}
1521
1522
1523static
1524void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1525{
1526 kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1527}
1528
467cc396
IPG
1529
1530/**
1531 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1532 *
1533 * @i2400m: device descriptor
1534 *
1535 * Returns: >= 0 if ok, < 0 errno code on error.
1536 *
1537 * This sets up the firmware upload environment, loads the firmware
1538 * file from disk, verifies and then calls the firmware upload process
1539 * per se.
1540 *
1541 * Can be called either from probe, or after a warm reset. Can not be
1542 * called from within an interrupt. All the flow in this code is
1543 * single-threade; all I/Os are synchronous.
1544 */
1545int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1546{
ebc5f62b 1547 int ret, itr;
467cc396 1548 struct device *dev = i2400m_dev(i2400m);
7b43ca70 1549 struct i2400m_fw *i2400m_fw;
467cc396 1550 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
7b43ca70 1551 const struct firmware *fw;
1039abbc 1552 const char *fw_name;
467cc396
IPG
1553
1554 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1039abbc 1555
7b43ca70
IPG
1556 ret = -ENODEV;
1557 spin_lock(&i2400m->rx_lock);
1558 i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1559 spin_unlock(&i2400m->rx_lock);
1560 if (i2400m_fw == (void *) ~0) {
1561 dev_err(dev, "can't load firmware now!");
1562 goto out;
1563 } else if (i2400m_fw != NULL) {
1564 dev_info(dev, "firmware %s: loading from cache\n",
1565 i2400m->fw_name);
1566 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1567 i2400m_fw_put(i2400m_fw);
1568 goto out;
1569 }
1570
467cc396 1571 /* Load firmware files to memory. */
ebc5f62b 1572 for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1039abbc
IPG
1573 fw_name = i2400m->bus_fw_names[itr];
1574 if (fw_name == NULL) {
1575 dev_err(dev, "Could not find a usable firmware image\n");
ebc5f62b 1576 break;
1039abbc 1577 }
ebc5f62b 1578 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1039abbc 1579 ret = request_firmware(&fw, fw_name, dev);
ebc5f62b 1580 if (ret < 0) {
1039abbc
IPG
1581 dev_err(dev, "fw %s: cannot load file: %d\n",
1582 fw_name, ret);
ebc5f62b
IPG
1583 continue;
1584 }
ebc5f62b 1585 i2400m->fw_name = fw_name;
7b43ca70 1586 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
ebc5f62b 1587 release_firmware(fw);
bfc44187
IPG
1588 if (ret >= 0) /* firmware loaded succesfully */
1589 break;
7b43ca70 1590 i2400m->fw_name = NULL;
467cc396 1591 }
7b43ca70 1592out:
467cc396
IPG
1593 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1594 return ret;
1595}
1596EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
7b43ca70
IPG
1597
1598
1599void i2400m_fw_cache(struct i2400m *i2400m)
1600{
1601 int result;
1602 struct i2400m_fw *i2400m_fw;
1603 struct device *dev = i2400m_dev(i2400m);
1604
1605 /* if there is anything there, free it -- now, this'd be weird */
1606 spin_lock(&i2400m->rx_lock);
1607 i2400m_fw = i2400m->fw_cached;
1608 spin_unlock(&i2400m->rx_lock);
1609 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1610 i2400m_fw_put(i2400m_fw);
1611 WARN(1, "%s:%u: still cached fw still present?\n",
1612 __func__, __LINE__);
1613 }
1614
1615 if (i2400m->fw_name == NULL) {
1616 dev_err(dev, "firmware n/a: can't cache\n");
1617 i2400m_fw = (void *) ~0;
1618 goto out;
1619 }
1620
1621 i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1622 if (i2400m_fw == NULL)
1623 goto out;
1624 kref_init(&i2400m_fw->kref);
1625 result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1626 if (result < 0) {
1627 dev_err(dev, "firmware %s: failed to cache: %d\n",
1628 i2400m->fw_name, result);
1629 kfree(i2400m_fw);
1630 i2400m_fw = (void *) ~0;
1631 } else
1632 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1633out:
1634 spin_lock(&i2400m->rx_lock);
1635 i2400m->fw_cached = i2400m_fw;
1636 spin_unlock(&i2400m->rx_lock);
1637}
1638
1639
1640void i2400m_fw_uncache(struct i2400m *i2400m)
1641{
1642 struct i2400m_fw *i2400m_fw;
1643
1644 spin_lock(&i2400m->rx_lock);
1645 i2400m_fw = i2400m->fw_cached;
1646 i2400m->fw_cached = NULL;
1647 spin_unlock(&i2400m->rx_lock);
1648
1649 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1650 i2400m_fw_put(i2400m_fw);
1651}
1652