]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/wireless/ath/ath9k/ar9003_eeprom.c
mac80211: quiesce vif before suspending
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / ath / ath9k / ar9003_eeprom.c
CommitLineData
15c9ee7a 1/*
5b68138e 2 * Copyright (c) 2010-2011 Atheros Communications Inc.
15c9ee7a
SB
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "ar9003_phy.h"
19#include "ar9003_eeprom.h"
20
21#define COMP_HDR_LEN 4
22#define COMP_CKSUM_LEN 2
23
24#define AR_CH0_TOP (0x00016288)
52a0e247 25#define AR_CH0_TOP_XPABIASLVL (0x300)
15c9ee7a
SB
26#define AR_CH0_TOP_XPABIASLVL_S (8)
27
28#define AR_CH0_THERM (0x00016290)
52a0e247
VT
29#define AR_CH0_THERM_XPABIASLVL_MSB 0x3
30#define AR_CH0_THERM_XPABIASLVL_MSB_S 0
31#define AR_CH0_THERM_XPASHORT2GND 0x4
32#define AR_CH0_THERM_XPASHORT2GND_S 2
15c9ee7a
SB
33
34#define AR_SWITCH_TABLE_COM_ALL (0xffff)
35#define AR_SWITCH_TABLE_COM_ALL_S (0)
36
37#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
38#define AR_SWITCH_TABLE_COM2_ALL_S (0)
39
40#define AR_SWITCH_TABLE_ALL (0xfff)
41#define AR_SWITCH_TABLE_ALL_S (0)
42
ffdc4cbe
FF
43#define LE16(x) __constant_cpu_to_le16(x)
44#define LE32(x) __constant_cpu_to_le32(x)
45
824b185a
LR
46/* Local defines to distinguish between extension and control CTL's */
47#define EXT_ADDITIVE (0x8000)
48#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
49#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
50#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
51#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
52#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
53#define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
54#define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
55#define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
56
57#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
58#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
59
e702ba18
FF
60#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
61
d0ce2d17
VT
62#define EEPROM_DATA_LEN_9485 1088
63
f4475a6e
VT
64static int ar9003_hw_power_interpolate(int32_t x,
65 int32_t *px, int32_t *py, u_int16_t np);
fe6c7915 66
e702ba18 67
15c9ee7a
SB
68static const struct ar9300_eeprom ar9300_default = {
69 .eepromVersion = 2,
70 .templateVersion = 2,
71 .macAddr = {1, 2, 3, 4, 5, 6},
72 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
74 .baseEepHeader = {
ffdc4cbe 75 .regDmn = { LE16(0), LE16(0x1f) },
15c9ee7a
SB
76 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
77 .opCapFlags = {
4ddfcd7d 78 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
15c9ee7a
SB
79 .eepMisc = 0,
80 },
81 .rfSilent = 0,
82 .blueToothOptions = 0,
83 .deviceCap = 0,
84 .deviceType = 5, /* takes lower byte in eeprom location */
85 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
86 .params_for_tuning_caps = {0, 0},
87 .featureEnable = 0x0c,
88 /*
89 * bit0 - enable tx temp comp - disabled
90 * bit1 - enable tx volt comp - disabled
91 * bit2 - enable fastClock - enabled
92 * bit3 - enable doubling - enabled
93 * bit4 - enable internal regulator - disabled
4935250a 94 * bit5 - enable pa predistortion - disabled
15c9ee7a
SB
95 */
96 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
97 .eepromWriteEnableGpio = 3,
98 .wlanDisableGpio = 0,
99 .wlanLedGpio = 8,
100 .rxBandSelectGpio = 0xff,
101 .txrxgain = 0,
102 .swreg = 0,
103 },
104 .modalHeader2G = {
105 /* ar9300_modal_eep_header 2g */
106 /* 4 idle,t1,t2,b(4 bits per setting) */
ffdc4cbe 107 .antCtrlCommon = LE32(0x110),
15c9ee7a 108 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
ffdc4cbe 109 .antCtrlCommon2 = LE32(0x22222),
15c9ee7a
SB
110
111 /*
112 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
113 * rx1, rx12, b (2 bits each)
114 */
ffdc4cbe 115 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
15c9ee7a
SB
116
117 /*
118 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
119 * for ar9280 (0xa20c/b20c 5:0)
120 */
121 .xatten1DB = {0, 0, 0},
122
123 /*
124 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
125 * for ar9280 (0xa20c/b20c 16:12
126 */
127 .xatten1Margin = {0, 0, 0},
128 .tempSlope = 36,
129 .voltSlope = 0,
130
131 /*
132 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
133 * channels in usual fbin coding format
134 */
135 .spurChans = {0, 0, 0, 0, 0},
136
137 /*
138 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
139 * if the register is per chain
140 */
141 .noiseFloorThreshCh = {-1, 0, 0},
142 .ob = {1, 1, 1},/* 3 chain */
143 .db_stage2 = {1, 1, 1}, /* 3 chain */
144 .db_stage3 = {0, 0, 0},
145 .db_stage4 = {0, 0, 0},
146 .xpaBiasLvl = 0,
147 .txFrameToDataStart = 0x0e,
148 .txFrameToPaOn = 0x0e,
149 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
150 .antennaGain = 0,
151 .switchSettling = 0x2c,
152 .adcDesiredSize = -30,
153 .txEndToXpaOff = 0,
154 .txEndToRxOn = 0x2,
155 .txFrameToXpaOn = 0xe,
156 .thresh62 = 28,
3ceb801b
SB
157 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
158 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
4935250a 159 .futureModal = {
b3dd6bc1 160 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15c9ee7a
SB
161 },
162 },
b3dd6bc1
SB
163 .base_ext1 = {
164 .ant_div_control = 0,
165 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
166 },
15c9ee7a
SB
167 .calFreqPier2G = {
168 FREQ2FBIN(2412, 1),
169 FREQ2FBIN(2437, 1),
170 FREQ2FBIN(2472, 1),
171 },
172 /* ar9300_cal_data_per_freq_op_loop 2g */
173 .calPierData2G = {
174 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
175 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
176 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
177 },
178 .calTarget_freqbin_Cck = {
179 FREQ2FBIN(2412, 1),
180 FREQ2FBIN(2484, 1),
181 },
182 .calTarget_freqbin_2G = {
183 FREQ2FBIN(2412, 1),
184 FREQ2FBIN(2437, 1),
185 FREQ2FBIN(2472, 1)
186 },
187 .calTarget_freqbin_2GHT20 = {
188 FREQ2FBIN(2412, 1),
189 FREQ2FBIN(2437, 1),
190 FREQ2FBIN(2472, 1)
191 },
192 .calTarget_freqbin_2GHT40 = {
193 FREQ2FBIN(2412, 1),
194 FREQ2FBIN(2437, 1),
195 FREQ2FBIN(2472, 1)
196 },
197 .calTargetPowerCck = {
198 /* 1L-5L,5S,11L,11S */
199 { {36, 36, 36, 36} },
200 { {36, 36, 36, 36} },
201 },
202 .calTargetPower2G = {
203 /* 6-24,36,48,54 */
204 { {32, 32, 28, 24} },
205 { {32, 32, 28, 24} },
206 { {32, 32, 28, 24} },
207 },
208 .calTargetPower2GHT20 = {
209 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
210 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
211 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
212 },
213 .calTargetPower2GHT40 = {
214 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
215 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
216 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
217 },
218 .ctlIndex_2G = {
219 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
220 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
221 },
222 .ctl_freqbin_2G = {
223 {
224 FREQ2FBIN(2412, 1),
225 FREQ2FBIN(2417, 1),
226 FREQ2FBIN(2457, 1),
227 FREQ2FBIN(2462, 1)
228 },
229 {
230 FREQ2FBIN(2412, 1),
231 FREQ2FBIN(2417, 1),
232 FREQ2FBIN(2462, 1),
233 0xFF,
234 },
235
236 {
237 FREQ2FBIN(2412, 1),
238 FREQ2FBIN(2417, 1),
239 FREQ2FBIN(2462, 1),
240 0xFF,
241 },
242 {
243 FREQ2FBIN(2422, 1),
244 FREQ2FBIN(2427, 1),
245 FREQ2FBIN(2447, 1),
246 FREQ2FBIN(2452, 1)
247 },
248
249 {
250 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
251 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
252 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
253 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
254 },
255
256 {
257 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
258 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
259 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
260 0,
261 },
262
263 {
264 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
265 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
266 FREQ2FBIN(2472, 1),
267 0,
268 },
269
270 {
271 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
272 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
273 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
274 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
275 },
276
277 {
278 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
279 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
280 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
281 },
282
283 {
284 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
285 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
286 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
287 0
288 },
289
290 {
291 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
292 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
293 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
294 0
295 },
296
297 {
298 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
299 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
300 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
b3dd6bc1 301 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
15c9ee7a
SB
302 }
303 },
304 .ctlPowerData_2G = {
fe6c7915
DM
305 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
306 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
307 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
15c9ee7a 308
fe6c7915
DM
309 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
310 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
311 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
15c9ee7a 312
fe6c7915
DM
313 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
314 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
315 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
15c9ee7a 316
fe6c7915
DM
317 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
318 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
319 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
15c9ee7a
SB
320 },
321 .modalHeader5G = {
322 /* 4 idle,t1,t2,b (4 bits per setting) */
ffdc4cbe 323 .antCtrlCommon = LE32(0x110),
15c9ee7a 324 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
ffdc4cbe 325 .antCtrlCommon2 = LE32(0x22222),
15c9ee7a
SB
326 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
327 .antCtrlChain = {
ffdc4cbe 328 LE16(0x000), LE16(0x000), LE16(0x000),
15c9ee7a
SB
329 },
330 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
331 .xatten1DB = {0, 0, 0},
332
333 /*
334 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
335 * for merlin (0xa20c/b20c 16:12
336 */
337 .xatten1Margin = {0, 0, 0},
338 .tempSlope = 68,
339 .voltSlope = 0,
340 /* spurChans spur channels in usual fbin coding format */
341 .spurChans = {0, 0, 0, 0, 0},
342 /* noiseFloorThreshCh Check if the register is per chain */
343 .noiseFloorThreshCh = {-1, 0, 0},
344 .ob = {3, 3, 3}, /* 3 chain */
345 .db_stage2 = {3, 3, 3}, /* 3 chain */
346 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
347 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
348 .xpaBiasLvl = 0,
349 .txFrameToDataStart = 0x0e,
350 .txFrameToPaOn = 0x0e,
351 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
352 .antennaGain = 0,
353 .switchSettling = 0x2d,
354 .adcDesiredSize = -30,
355 .txEndToXpaOff = 0,
356 .txEndToRxOn = 0x2,
357 .txFrameToXpaOn = 0xe,
358 .thresh62 = 28,
3ceb801b
SB
359 .papdRateMaskHt20 = LE32(0x0c80c080),
360 .papdRateMaskHt40 = LE32(0x0080c080),
15c9ee7a 361 .futureModal = {
b3dd6bc1 362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15c9ee7a
SB
363 },
364 },
b3dd6bc1
SB
365 .base_ext2 = {
366 .tempSlopeLow = 0,
367 .tempSlopeHigh = 0,
368 .xatten1DBLow = {0, 0, 0},
369 .xatten1MarginLow = {0, 0, 0},
370 .xatten1DBHigh = {0, 0, 0},
371 .xatten1MarginHigh = {0, 0, 0}
372 },
15c9ee7a
SB
373 .calFreqPier5G = {
374 FREQ2FBIN(5180, 0),
375 FREQ2FBIN(5220, 0),
376 FREQ2FBIN(5320, 0),
377 FREQ2FBIN(5400, 0),
378 FREQ2FBIN(5500, 0),
379 FREQ2FBIN(5600, 0),
380 FREQ2FBIN(5725, 0),
381 FREQ2FBIN(5825, 0)
382 },
383 .calPierData5G = {
384 {
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 {0, 0, 0, 0, 0},
392 {0, 0, 0, 0, 0},
393 },
394 {
395 {0, 0, 0, 0, 0},
396 {0, 0, 0, 0, 0},
397 {0, 0, 0, 0, 0},
398 {0, 0, 0, 0, 0},
399 {0, 0, 0, 0, 0},
400 {0, 0, 0, 0, 0},
401 {0, 0, 0, 0, 0},
402 {0, 0, 0, 0, 0},
403 },
404 {
405 {0, 0, 0, 0, 0},
406 {0, 0, 0, 0, 0},
407 {0, 0, 0, 0, 0},
408 {0, 0, 0, 0, 0},
409 {0, 0, 0, 0, 0},
410 {0, 0, 0, 0, 0},
411 {0, 0, 0, 0, 0},
412 {0, 0, 0, 0, 0},
413 },
414
415 },
416 .calTarget_freqbin_5G = {
417 FREQ2FBIN(5180, 0),
418 FREQ2FBIN(5220, 0),
419 FREQ2FBIN(5320, 0),
420 FREQ2FBIN(5400, 0),
421 FREQ2FBIN(5500, 0),
422 FREQ2FBIN(5600, 0),
423 FREQ2FBIN(5725, 0),
424 FREQ2FBIN(5825, 0)
425 },
426 .calTarget_freqbin_5GHT20 = {
427 FREQ2FBIN(5180, 0),
428 FREQ2FBIN(5240, 0),
429 FREQ2FBIN(5320, 0),
430 FREQ2FBIN(5500, 0),
431 FREQ2FBIN(5700, 0),
432 FREQ2FBIN(5745, 0),
433 FREQ2FBIN(5725, 0),
434 FREQ2FBIN(5825, 0)
435 },
436 .calTarget_freqbin_5GHT40 = {
437 FREQ2FBIN(5180, 0),
438 FREQ2FBIN(5240, 0),
439 FREQ2FBIN(5320, 0),
440 FREQ2FBIN(5500, 0),
441 FREQ2FBIN(5700, 0),
442 FREQ2FBIN(5745, 0),
443 FREQ2FBIN(5725, 0),
444 FREQ2FBIN(5825, 0)
445 },
446 .calTargetPower5G = {
447 /* 6-24,36,48,54 */
448 { {20, 20, 20, 10} },
449 { {20, 20, 20, 10} },
450 { {20, 20, 20, 10} },
451 { {20, 20, 20, 10} },
452 { {20, 20, 20, 10} },
453 { {20, 20, 20, 10} },
454 { {20, 20, 20, 10} },
455 { {20, 20, 20, 10} },
456 },
457 .calTargetPower5GHT20 = {
458 /*
459 * 0_8_16,1-3_9-11_17-19,
460 * 4,5,6,7,12,13,14,15,20,21,22,23
461 */
462 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
465 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
466 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
467 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
468 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
469 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
470 },
471 .calTargetPower5GHT40 = {
472 /*
473 * 0_8_16,1-3_9-11_17-19,
474 * 4,5,6,7,12,13,14,15,20,21,22,23
475 */
476 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
477 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
478 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
479 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
480 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
481 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
482 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
483 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
484 },
485 .ctlIndex_5G = {
486 0x10, 0x16, 0x18, 0x40, 0x46,
487 0x48, 0x30, 0x36, 0x38
488 },
489 .ctl_freqbin_5G = {
490 {
491 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
492 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
493 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
494 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
495 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
496 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
497 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
498 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
499 },
500 {
501 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
503 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
504 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
505 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
506 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
508 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
509 },
510
511 {
512 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
513 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
514 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
515 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
516 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
517 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
518 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
519 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
520 },
521
522 {
523 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
524 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
525 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
526 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
527 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
528 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
529 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
530 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
531 },
532
533 {
534 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
536 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
537 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
538 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
539 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
540 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
541 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
542 },
543
544 {
545 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
546 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
547 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
548 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
549 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
550 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
551 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
552 /* Data[5].ctlEdges[7].bChannel */ 0xFF
553 },
554
555 {
556 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
557 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
558 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
559 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
560 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
561 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
562 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
563 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
564 },
565
566 {
567 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
568 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
569 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
570 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
571 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
572 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
573 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
574 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
575 },
576
577 {
578 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
579 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
580 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
581 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
582 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
583 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
584 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
585 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
586 }
587 },
588 .ctlPowerData_5G = {
589 {
590 {
fe6c7915
DM
591 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
592 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
15c9ee7a
SB
593 }
594 },
595 {
596 {
fe6c7915
DM
597 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
15c9ee7a
SB
599 }
600 },
601 {
602 {
fe6c7915
DM
603 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
604 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
15c9ee7a
SB
605 }
606 },
607 {
608 {
fe6c7915
DM
609 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
610 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
15c9ee7a
SB
611 }
612 },
613 {
614 {
fe6c7915
DM
615 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
616 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
15c9ee7a
SB
617 }
618 },
619 {
620 {
fe6c7915
DM
621 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
622 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
15c9ee7a
SB
623 }
624 },
625 {
626 {
fe6c7915
DM
627 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
628 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
15c9ee7a
SB
629 }
630 },
631 {
632 {
fe6c7915
DM
633 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
634 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
15c9ee7a
SB
635 }
636 },
637 {
638 {
fe6c7915
DM
639 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
640 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
15c9ee7a
SB
641 }
642 },
643 }
644};
645
30923549
SB
646static const struct ar9300_eeprom ar9300_x113 = {
647 .eepromVersion = 2,
648 .templateVersion = 6,
649 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
650 .custData = {"x113-023-f0000"},
651 .baseEepHeader = {
652 .regDmn = { LE16(0), LE16(0x1f) },
653 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
654 .opCapFlags = {
9ba7f4f5 655 .opFlags = AR5416_OPFLAGS_11A,
30923549
SB
656 .eepMisc = 0,
657 },
658 .rfSilent = 0,
659 .blueToothOptions = 0,
660 .deviceCap = 0,
661 .deviceType = 5, /* takes lower byte in eeprom location */
662 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
663 .params_for_tuning_caps = {0, 0},
664 .featureEnable = 0x0d,
665 /*
666 * bit0 - enable tx temp comp - disabled
667 * bit1 - enable tx volt comp - disabled
668 * bit2 - enable fastClock - enabled
669 * bit3 - enable doubling - enabled
670 * bit4 - enable internal regulator - disabled
671 * bit5 - enable pa predistortion - disabled
672 */
673 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
674 .eepromWriteEnableGpio = 6,
675 .wlanDisableGpio = 0,
676 .wlanLedGpio = 8,
677 .rxBandSelectGpio = 0xff,
678 .txrxgain = 0x21,
679 .swreg = 0,
680 },
681 .modalHeader2G = {
682 /* ar9300_modal_eep_header 2g */
683 /* 4 idle,t1,t2,b(4 bits per setting) */
684 .antCtrlCommon = LE32(0x110),
685 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
686 .antCtrlCommon2 = LE32(0x44444),
687
688 /*
689 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
690 * rx1, rx12, b (2 bits each)
691 */
692 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
693
694 /*
695 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
696 * for ar9280 (0xa20c/b20c 5:0)
697 */
698 .xatten1DB = {0, 0, 0},
699
700 /*
701 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
702 * for ar9280 (0xa20c/b20c 16:12
703 */
704 .xatten1Margin = {0, 0, 0},
705 .tempSlope = 25,
706 .voltSlope = 0,
707
708 /*
709 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
710 * channels in usual fbin coding format
711 */
712 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
713
714 /*
715 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
716 * if the register is per chain
717 */
718 .noiseFloorThreshCh = {-1, 0, 0},
719 .ob = {1, 1, 1},/* 3 chain */
720 .db_stage2 = {1, 1, 1}, /* 3 chain */
721 .db_stage3 = {0, 0, 0},
722 .db_stage4 = {0, 0, 0},
723 .xpaBiasLvl = 0,
724 .txFrameToDataStart = 0x0e,
725 .txFrameToPaOn = 0x0e,
726 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
727 .antennaGain = 0,
728 .switchSettling = 0x2c,
729 .adcDesiredSize = -30,
730 .txEndToXpaOff = 0,
731 .txEndToRxOn = 0x2,
732 .txFrameToXpaOn = 0xe,
733 .thresh62 = 28,
734 .papdRateMaskHt20 = LE32(0x0c80c080),
735 .papdRateMaskHt40 = LE32(0x0080c080),
736 .futureModal = {
737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
738 },
739 },
740 .base_ext1 = {
741 .ant_div_control = 0,
742 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
743 },
744 .calFreqPier2G = {
745 FREQ2FBIN(2412, 1),
746 FREQ2FBIN(2437, 1),
747 FREQ2FBIN(2472, 1),
748 },
749 /* ar9300_cal_data_per_freq_op_loop 2g */
750 .calPierData2G = {
751 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
752 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
753 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
754 },
755 .calTarget_freqbin_Cck = {
756 FREQ2FBIN(2412, 1),
757 FREQ2FBIN(2472, 1),
758 },
759 .calTarget_freqbin_2G = {
760 FREQ2FBIN(2412, 1),
761 FREQ2FBIN(2437, 1),
762 FREQ2FBIN(2472, 1)
763 },
764 .calTarget_freqbin_2GHT20 = {
765 FREQ2FBIN(2412, 1),
766 FREQ2FBIN(2437, 1),
767 FREQ2FBIN(2472, 1)
768 },
769 .calTarget_freqbin_2GHT40 = {
770 FREQ2FBIN(2412, 1),
771 FREQ2FBIN(2437, 1),
772 FREQ2FBIN(2472, 1)
773 },
774 .calTargetPowerCck = {
775 /* 1L-5L,5S,11L,11S */
776 { {34, 34, 34, 34} },
777 { {34, 34, 34, 34} },
778 },
779 .calTargetPower2G = {
780 /* 6-24,36,48,54 */
781 { {34, 34, 32, 32} },
782 { {34, 34, 32, 32} },
783 { {34, 34, 32, 32} },
784 },
785 .calTargetPower2GHT20 = {
786 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
787 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
788 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
789 },
790 .calTargetPower2GHT40 = {
791 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
792 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
793 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
794 },
795 .ctlIndex_2G = {
796 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
797 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
798 },
799 .ctl_freqbin_2G = {
800 {
801 FREQ2FBIN(2412, 1),
802 FREQ2FBIN(2417, 1),
803 FREQ2FBIN(2457, 1),
804 FREQ2FBIN(2462, 1)
805 },
806 {
807 FREQ2FBIN(2412, 1),
808 FREQ2FBIN(2417, 1),
809 FREQ2FBIN(2462, 1),
810 0xFF,
811 },
812
813 {
814 FREQ2FBIN(2412, 1),
815 FREQ2FBIN(2417, 1),
816 FREQ2FBIN(2462, 1),
817 0xFF,
818 },
819 {
820 FREQ2FBIN(2422, 1),
821 FREQ2FBIN(2427, 1),
822 FREQ2FBIN(2447, 1),
823 FREQ2FBIN(2452, 1)
824 },
825
826 {
827 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
828 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
829 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
830 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
831 },
832
833 {
834 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
835 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
836 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837 0,
838 },
839
840 {
841 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
842 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
843 FREQ2FBIN(2472, 1),
844 0,
845 },
846
847 {
848 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
849 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
850 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
851 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
852 },
853
854 {
855 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
856 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
857 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
858 },
859
860 {
861 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
862 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
863 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
864 0
865 },
866
867 {
868 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
869 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
870 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
871 0
872 },
873
874 {
875 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
876 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
877 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
878 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
879 }
880 },
881 .ctlPowerData_2G = {
fe6c7915
DM
882 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
883 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
884 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
30923549 885
fe6c7915
DM
886 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
887 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
888 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 889
fe6c7915
DM
890 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
891 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
892 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 893
fe6c7915
DM
894 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
895 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
896 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
30923549
SB
897 },
898 .modalHeader5G = {
899 /* 4 idle,t1,t2,b (4 bits per setting) */
900 .antCtrlCommon = LE32(0x220),
901 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
902 .antCtrlCommon2 = LE32(0x11111),
903 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
904 .antCtrlChain = {
905 LE16(0x150), LE16(0x150), LE16(0x150),
906 },
907 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
908 .xatten1DB = {0, 0, 0},
909
910 /*
911 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
912 * for merlin (0xa20c/b20c 16:12
913 */
914 .xatten1Margin = {0, 0, 0},
915 .tempSlope = 68,
916 .voltSlope = 0,
917 /* spurChans spur channels in usual fbin coding format */
918 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
919 /* noiseFloorThreshCh Check if the register is per chain */
920 .noiseFloorThreshCh = {-1, 0, 0},
921 .ob = {3, 3, 3}, /* 3 chain */
922 .db_stage2 = {3, 3, 3}, /* 3 chain */
923 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
924 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
be0e6aa5 925 .xpaBiasLvl = 0xf,
30923549
SB
926 .txFrameToDataStart = 0x0e,
927 .txFrameToPaOn = 0x0e,
928 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
929 .antennaGain = 0,
930 .switchSettling = 0x2d,
931 .adcDesiredSize = -30,
932 .txEndToXpaOff = 0,
933 .txEndToRxOn = 0x2,
934 .txFrameToXpaOn = 0xe,
935 .thresh62 = 28,
936 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
937 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
938 .futureModal = {
939 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
940 },
941 },
942 .base_ext2 = {
943 .tempSlopeLow = 72,
944 .tempSlopeHigh = 105,
945 .xatten1DBLow = {0, 0, 0},
946 .xatten1MarginLow = {0, 0, 0},
947 .xatten1DBHigh = {0, 0, 0},
948 .xatten1MarginHigh = {0, 0, 0}
949 },
950 .calFreqPier5G = {
951 FREQ2FBIN(5180, 0),
952 FREQ2FBIN(5240, 0),
953 FREQ2FBIN(5320, 0),
954 FREQ2FBIN(5400, 0),
955 FREQ2FBIN(5500, 0),
956 FREQ2FBIN(5600, 0),
957 FREQ2FBIN(5745, 0),
958 FREQ2FBIN(5785, 0)
959 },
960 .calPierData5G = {
961 {
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 {0, 0, 0, 0, 0},
965 {0, 0, 0, 0, 0},
966 {0, 0, 0, 0, 0},
967 {0, 0, 0, 0, 0},
968 {0, 0, 0, 0, 0},
969 {0, 0, 0, 0, 0},
970 },
971 {
972 {0, 0, 0, 0, 0},
973 {0, 0, 0, 0, 0},
974 {0, 0, 0, 0, 0},
975 {0, 0, 0, 0, 0},
976 {0, 0, 0, 0, 0},
977 {0, 0, 0, 0, 0},
978 {0, 0, 0, 0, 0},
979 {0, 0, 0, 0, 0},
980 },
981 {
982 {0, 0, 0, 0, 0},
983 {0, 0, 0, 0, 0},
984 {0, 0, 0, 0, 0},
985 {0, 0, 0, 0, 0},
986 {0, 0, 0, 0, 0},
987 {0, 0, 0, 0, 0},
988 {0, 0, 0, 0, 0},
989 {0, 0, 0, 0, 0},
990 },
991
992 },
993 .calTarget_freqbin_5G = {
994 FREQ2FBIN(5180, 0),
995 FREQ2FBIN(5220, 0),
996 FREQ2FBIN(5320, 0),
997 FREQ2FBIN(5400, 0),
998 FREQ2FBIN(5500, 0),
999 FREQ2FBIN(5600, 0),
1000 FREQ2FBIN(5745, 0),
1001 FREQ2FBIN(5785, 0)
1002 },
1003 .calTarget_freqbin_5GHT20 = {
1004 FREQ2FBIN(5180, 0),
1005 FREQ2FBIN(5240, 0),
1006 FREQ2FBIN(5320, 0),
1007 FREQ2FBIN(5400, 0),
1008 FREQ2FBIN(5500, 0),
1009 FREQ2FBIN(5700, 0),
1010 FREQ2FBIN(5745, 0),
1011 FREQ2FBIN(5825, 0)
1012 },
1013 .calTarget_freqbin_5GHT40 = {
1014 FREQ2FBIN(5190, 0),
1015 FREQ2FBIN(5230, 0),
1016 FREQ2FBIN(5320, 0),
1017 FREQ2FBIN(5410, 0),
1018 FREQ2FBIN(5510, 0),
1019 FREQ2FBIN(5670, 0),
1020 FREQ2FBIN(5755, 0),
1021 FREQ2FBIN(5825, 0)
1022 },
1023 .calTargetPower5G = {
1024 /* 6-24,36,48,54 */
1025 { {42, 40, 40, 34} },
1026 { {42, 40, 40, 34} },
1027 { {42, 40, 40, 34} },
1028 { {42, 40, 40, 34} },
1029 { {42, 40, 40, 34} },
1030 { {42, 40, 40, 34} },
1031 { {42, 40, 40, 34} },
1032 { {42, 40, 40, 34} },
1033 },
1034 .calTargetPower5GHT20 = {
1035 /*
1036 * 0_8_16,1-3_9-11_17-19,
1037 * 4,5,6,7,12,13,14,15,20,21,22,23
1038 */
1039 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1040 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1041 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1042 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1043 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1044 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1045 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1046 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1047 },
1048 .calTargetPower5GHT40 = {
1049 /*
1050 * 0_8_16,1-3_9-11_17-19,
1051 * 4,5,6,7,12,13,14,15,20,21,22,23
1052 */
1053 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1054 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1055 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1056 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1057 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1058 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1059 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1060 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1061 },
1062 .ctlIndex_5G = {
1063 0x10, 0x16, 0x18, 0x40, 0x46,
1064 0x48, 0x30, 0x36, 0x38
1065 },
1066 .ctl_freqbin_5G = {
1067 {
1068 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1069 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1070 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1071 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1072 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1073 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1074 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1075 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1076 },
1077 {
1078 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1079 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1080 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1081 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1082 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1083 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1084 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1085 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1086 },
1087
1088 {
1089 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1090 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1091 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1092 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1093 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1094 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1095 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1096 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1097 },
1098
1099 {
1100 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1101 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1102 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1103 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1104 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1105 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1106 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1107 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1108 },
1109
1110 {
1111 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1112 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1113 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1114 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1115 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1116 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1117 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1118 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1119 },
1120
1121 {
1122 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1123 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1124 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1125 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1126 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1127 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1128 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1129 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1130 },
1131
1132 {
1133 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1134 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1135 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1136 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1137 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1138 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1139 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1140 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1141 },
1142
1143 {
1144 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1145 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1146 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1147 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1148 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1149 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1150 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1151 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1152 },
1153
1154 {
1155 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1156 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1157 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1158 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1159 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1160 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1161 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1162 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1163 }
1164 },
1165 .ctlPowerData_5G = {
1166 {
1167 {
fe6c7915
DM
1168 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1169 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
1170 }
1171 },
1172 {
1173 {
fe6c7915
DM
1174 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1175 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
1176 }
1177 },
1178 {
1179 {
fe6c7915
DM
1180 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1181 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
1182 }
1183 },
1184 {
1185 {
fe6c7915
DM
1186 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
1188 }
1189 },
1190 {
1191 {
fe6c7915
DM
1192 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1193 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
1194 }
1195 },
1196 {
1197 {
fe6c7915
DM
1198 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1199 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
1200 }
1201 },
1202 {
1203 {
fe6c7915
DM
1204 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1205 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
1206 }
1207 },
1208 {
1209 {
fe6c7915
DM
1210 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1211 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
1212 }
1213 },
1214 {
1215 {
fe6c7915
DM
1216 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1217 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
30923549
SB
1218 }
1219 },
1220 }
1221};
1222
1223
1224static const struct ar9300_eeprom ar9300_h112 = {
1225 .eepromVersion = 2,
1226 .templateVersion = 3,
1227 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1228 .custData = {"h112-241-f0000"},
1229 .baseEepHeader = {
1230 .regDmn = { LE16(0), LE16(0x1f) },
1231 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1232 .opCapFlags = {
4ddfcd7d 1233 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
30923549
SB
1234 .eepMisc = 0,
1235 },
1236 .rfSilent = 0,
1237 .blueToothOptions = 0,
1238 .deviceCap = 0,
1239 .deviceType = 5, /* takes lower byte in eeprom location */
1240 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1241 .params_for_tuning_caps = {0, 0},
1242 .featureEnable = 0x0d,
1243 /*
1244 * bit0 - enable tx temp comp - disabled
1245 * bit1 - enable tx volt comp - disabled
1246 * bit2 - enable fastClock - enabled
1247 * bit3 - enable doubling - enabled
1248 * bit4 - enable internal regulator - disabled
1249 * bit5 - enable pa predistortion - disabled
1250 */
1251 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1252 .eepromWriteEnableGpio = 6,
1253 .wlanDisableGpio = 0,
1254 .wlanLedGpio = 8,
1255 .rxBandSelectGpio = 0xff,
1256 .txrxgain = 0x10,
1257 .swreg = 0,
1258 },
1259 .modalHeader2G = {
1260 /* ar9300_modal_eep_header 2g */
1261 /* 4 idle,t1,t2,b(4 bits per setting) */
1262 .antCtrlCommon = LE32(0x110),
1263 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1264 .antCtrlCommon2 = LE32(0x44444),
1265
1266 /*
1267 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1268 * rx1, rx12, b (2 bits each)
1269 */
1270 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1271
1272 /*
1273 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1274 * for ar9280 (0xa20c/b20c 5:0)
1275 */
1276 .xatten1DB = {0, 0, 0},
1277
1278 /*
1279 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1280 * for ar9280 (0xa20c/b20c 16:12
1281 */
1282 .xatten1Margin = {0, 0, 0},
1283 .tempSlope = 25,
1284 .voltSlope = 0,
1285
1286 /*
1287 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1288 * channels in usual fbin coding format
1289 */
1290 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1291
1292 /*
1293 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1294 * if the register is per chain
1295 */
1296 .noiseFloorThreshCh = {-1, 0, 0},
1297 .ob = {1, 1, 1},/* 3 chain */
1298 .db_stage2 = {1, 1, 1}, /* 3 chain */
1299 .db_stage3 = {0, 0, 0},
1300 .db_stage4 = {0, 0, 0},
1301 .xpaBiasLvl = 0,
1302 .txFrameToDataStart = 0x0e,
1303 .txFrameToPaOn = 0x0e,
1304 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1305 .antennaGain = 0,
1306 .switchSettling = 0x2c,
1307 .adcDesiredSize = -30,
1308 .txEndToXpaOff = 0,
1309 .txEndToRxOn = 0x2,
1310 .txFrameToXpaOn = 0xe,
1311 .thresh62 = 28,
1312 .papdRateMaskHt20 = LE32(0x80c080),
1313 .papdRateMaskHt40 = LE32(0x80c080),
1314 .futureModal = {
1315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1316 },
1317 },
1318 .base_ext1 = {
1319 .ant_div_control = 0,
1320 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1321 },
1322 .calFreqPier2G = {
1323 FREQ2FBIN(2412, 1),
1324 FREQ2FBIN(2437, 1),
1325 FREQ2FBIN(2472, 1),
1326 },
1327 /* ar9300_cal_data_per_freq_op_loop 2g */
1328 .calPierData2G = {
1329 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1330 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1331 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1332 },
1333 .calTarget_freqbin_Cck = {
1334 FREQ2FBIN(2412, 1),
1335 FREQ2FBIN(2484, 1),
1336 },
1337 .calTarget_freqbin_2G = {
1338 FREQ2FBIN(2412, 1),
1339 FREQ2FBIN(2437, 1),
1340 FREQ2FBIN(2472, 1)
1341 },
1342 .calTarget_freqbin_2GHT20 = {
1343 FREQ2FBIN(2412, 1),
1344 FREQ2FBIN(2437, 1),
1345 FREQ2FBIN(2472, 1)
1346 },
1347 .calTarget_freqbin_2GHT40 = {
1348 FREQ2FBIN(2412, 1),
1349 FREQ2FBIN(2437, 1),
1350 FREQ2FBIN(2472, 1)
1351 },
1352 .calTargetPowerCck = {
1353 /* 1L-5L,5S,11L,11S */
1354 { {34, 34, 34, 34} },
1355 { {34, 34, 34, 34} },
1356 },
1357 .calTargetPower2G = {
1358 /* 6-24,36,48,54 */
1359 { {34, 34, 32, 32} },
1360 { {34, 34, 32, 32} },
1361 { {34, 34, 32, 32} },
1362 },
1363 .calTargetPower2GHT20 = {
1364 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1365 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1366 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1367 },
1368 .calTargetPower2GHT40 = {
1369 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1370 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1371 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1372 },
1373 .ctlIndex_2G = {
1374 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1375 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1376 },
1377 .ctl_freqbin_2G = {
1378 {
1379 FREQ2FBIN(2412, 1),
1380 FREQ2FBIN(2417, 1),
1381 FREQ2FBIN(2457, 1),
1382 FREQ2FBIN(2462, 1)
1383 },
1384 {
1385 FREQ2FBIN(2412, 1),
1386 FREQ2FBIN(2417, 1),
1387 FREQ2FBIN(2462, 1),
1388 0xFF,
1389 },
1390
1391 {
1392 FREQ2FBIN(2412, 1),
1393 FREQ2FBIN(2417, 1),
1394 FREQ2FBIN(2462, 1),
1395 0xFF,
1396 },
1397 {
1398 FREQ2FBIN(2422, 1),
1399 FREQ2FBIN(2427, 1),
1400 FREQ2FBIN(2447, 1),
1401 FREQ2FBIN(2452, 1)
1402 },
1403
1404 {
1405 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1409 },
1410
1411 {
1412 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1413 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1414 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1415 0,
1416 },
1417
1418 {
1419 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1420 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1421 FREQ2FBIN(2472, 1),
1422 0,
1423 },
1424
1425 {
1426 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1427 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1428 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1429 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1430 },
1431
1432 {
1433 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1434 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1435 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1436 },
1437
1438 {
1439 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1440 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1441 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1442 0
1443 },
1444
1445 {
1446 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1447 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1448 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1449 0
1450 },
1451
1452 {
1453 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1454 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1455 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1456 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1457 }
1458 },
1459 .ctlPowerData_2G = {
fe6c7915
DM
1460 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1461 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1462 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
30923549 1463
fe6c7915
DM
1464 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
1465 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1466 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 1467
fe6c7915
DM
1468 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1469 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1470 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 1471
fe6c7915
DM
1472 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1473 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1474 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
30923549
SB
1475 },
1476 .modalHeader5G = {
1477 /* 4 idle,t1,t2,b (4 bits per setting) */
1478 .antCtrlCommon = LE32(0x220),
1479 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1480 .antCtrlCommon2 = LE32(0x44444),
1481 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1482 .antCtrlChain = {
1483 LE16(0x150), LE16(0x150), LE16(0x150),
1484 },
1485 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1486 .xatten1DB = {0, 0, 0},
1487
1488 /*
1489 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1490 * for merlin (0xa20c/b20c 16:12
1491 */
1492 .xatten1Margin = {0, 0, 0},
1493 .tempSlope = 45,
1494 .voltSlope = 0,
1495 /* spurChans spur channels in usual fbin coding format */
1496 .spurChans = {0, 0, 0, 0, 0},
1497 /* noiseFloorThreshCh Check if the register is per chain */
1498 .noiseFloorThreshCh = {-1, 0, 0},
1499 .ob = {3, 3, 3}, /* 3 chain */
1500 .db_stage2 = {3, 3, 3}, /* 3 chain */
1501 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
1502 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
1503 .xpaBiasLvl = 0,
1504 .txFrameToDataStart = 0x0e,
1505 .txFrameToPaOn = 0x0e,
1506 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1507 .antennaGain = 0,
1508 .switchSettling = 0x2d,
1509 .adcDesiredSize = -30,
1510 .txEndToXpaOff = 0,
1511 .txEndToRxOn = 0x2,
1512 .txFrameToXpaOn = 0xe,
1513 .thresh62 = 28,
1514 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1515 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1516 .futureModal = {
1517 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1518 },
1519 },
1520 .base_ext2 = {
1521 .tempSlopeLow = 40,
1522 .tempSlopeHigh = 50,
1523 .xatten1DBLow = {0, 0, 0},
1524 .xatten1MarginLow = {0, 0, 0},
1525 .xatten1DBHigh = {0, 0, 0},
1526 .xatten1MarginHigh = {0, 0, 0}
1527 },
1528 .calFreqPier5G = {
1529 FREQ2FBIN(5180, 0),
1530 FREQ2FBIN(5220, 0),
1531 FREQ2FBIN(5320, 0),
1532 FREQ2FBIN(5400, 0),
1533 FREQ2FBIN(5500, 0),
1534 FREQ2FBIN(5600, 0),
1535 FREQ2FBIN(5700, 0),
1536 FREQ2FBIN(5825, 0)
1537 },
1538 .calPierData5G = {
1539 {
1540 {0, 0, 0, 0, 0},
1541 {0, 0, 0, 0, 0},
1542 {0, 0, 0, 0, 0},
1543 {0, 0, 0, 0, 0},
1544 {0, 0, 0, 0, 0},
1545 {0, 0, 0, 0, 0},
1546 {0, 0, 0, 0, 0},
1547 {0, 0, 0, 0, 0},
1548 },
1549 {
1550 {0, 0, 0, 0, 0},
1551 {0, 0, 0, 0, 0},
1552 {0, 0, 0, 0, 0},
1553 {0, 0, 0, 0, 0},
1554 {0, 0, 0, 0, 0},
1555 {0, 0, 0, 0, 0},
1556 {0, 0, 0, 0, 0},
1557 {0, 0, 0, 0, 0},
1558 },
1559 {
1560 {0, 0, 0, 0, 0},
1561 {0, 0, 0, 0, 0},
1562 {0, 0, 0, 0, 0},
1563 {0, 0, 0, 0, 0},
1564 {0, 0, 0, 0, 0},
1565 {0, 0, 0, 0, 0},
1566 {0, 0, 0, 0, 0},
1567 {0, 0, 0, 0, 0},
1568 },
1569
1570 },
1571 .calTarget_freqbin_5G = {
1572 FREQ2FBIN(5180, 0),
1573 FREQ2FBIN(5240, 0),
1574 FREQ2FBIN(5320, 0),
1575 FREQ2FBIN(5400, 0),
1576 FREQ2FBIN(5500, 0),
1577 FREQ2FBIN(5600, 0),
1578 FREQ2FBIN(5700, 0),
1579 FREQ2FBIN(5825, 0)
1580 },
1581 .calTarget_freqbin_5GHT20 = {
1582 FREQ2FBIN(5180, 0),
1583 FREQ2FBIN(5240, 0),
1584 FREQ2FBIN(5320, 0),
1585 FREQ2FBIN(5400, 0),
1586 FREQ2FBIN(5500, 0),
1587 FREQ2FBIN(5700, 0),
1588 FREQ2FBIN(5745, 0),
1589 FREQ2FBIN(5825, 0)
1590 },
1591 .calTarget_freqbin_5GHT40 = {
1592 FREQ2FBIN(5180, 0),
1593 FREQ2FBIN(5240, 0),
1594 FREQ2FBIN(5320, 0),
1595 FREQ2FBIN(5400, 0),
1596 FREQ2FBIN(5500, 0),
1597 FREQ2FBIN(5700, 0),
1598 FREQ2FBIN(5745, 0),
1599 FREQ2FBIN(5825, 0)
1600 },
1601 .calTargetPower5G = {
1602 /* 6-24,36,48,54 */
1603 { {30, 30, 28, 24} },
1604 { {30, 30, 28, 24} },
1605 { {30, 30, 28, 24} },
1606 { {30, 30, 28, 24} },
1607 { {30, 30, 28, 24} },
1608 { {30, 30, 28, 24} },
1609 { {30, 30, 28, 24} },
1610 { {30, 30, 28, 24} },
1611 },
1612 .calTargetPower5GHT20 = {
1613 /*
1614 * 0_8_16,1-3_9-11_17-19,
1615 * 4,5,6,7,12,13,14,15,20,21,22,23
1616 */
1617 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1618 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1619 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1620 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1621 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1622 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1623 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1624 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1625 },
1626 .calTargetPower5GHT40 = {
1627 /*
1628 * 0_8_16,1-3_9-11_17-19,
1629 * 4,5,6,7,12,13,14,15,20,21,22,23
1630 */
1631 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1632 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1633 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1634 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1635 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1636 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1637 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1638 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1639 },
1640 .ctlIndex_5G = {
1641 0x10, 0x16, 0x18, 0x40, 0x46,
1642 0x48, 0x30, 0x36, 0x38
1643 },
1644 .ctl_freqbin_5G = {
1645 {
1646 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1647 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1648 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1649 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1650 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1651 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1652 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1653 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1654 },
1655 {
1656 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1657 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1658 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1659 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1660 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1661 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1662 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1663 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1664 },
1665
1666 {
1667 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1668 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1669 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1670 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1671 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1672 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1673 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1674 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1675 },
1676
1677 {
1678 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1679 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1680 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1681 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1682 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1683 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1684 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1685 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1686 },
1687
1688 {
1689 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1690 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1691 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1692 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1693 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1694 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1695 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1696 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1697 },
1698
1699 {
1700 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1701 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1702 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1703 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1704 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1705 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1706 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1707 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1708 },
1709
1710 {
1711 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1712 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1713 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1714 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1715 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1716 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1717 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1718 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1719 },
1720
1721 {
1722 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1723 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1724 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1725 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1726 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1727 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1728 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1729 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1730 },
1731
1732 {
1733 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1734 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1735 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1736 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1737 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1738 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1739 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1740 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1741 }
1742 },
1743 .ctlPowerData_5G = {
1744 {
1745 {
fe6c7915
DM
1746 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1747 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
1748 }
1749 },
1750 {
1751 {
fe6c7915
DM
1752 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1753 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
1754 }
1755 },
1756 {
1757 {
fe6c7915
DM
1758 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1759 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
1760 }
1761 },
1762 {
1763 {
fe6c7915
DM
1764 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1765 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
1766 }
1767 },
1768 {
1769 {
fe6c7915
DM
1770 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1771 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
1772 }
1773 },
1774 {
1775 {
fe6c7915
DM
1776 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1777 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
1778 }
1779 },
1780 {
1781 {
fe6c7915
DM
1782 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1783 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
1784 }
1785 },
1786 {
1787 {
fe6c7915
DM
1788 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1789 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
1790 }
1791 },
1792 {
1793 {
fe6c7915
DM
1794 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1795 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
30923549
SB
1796 }
1797 },
1798 }
1799};
1800
1801
1802static const struct ar9300_eeprom ar9300_x112 = {
1803 .eepromVersion = 2,
1804 .templateVersion = 5,
1805 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1806 .custData = {"x112-041-f0000"},
1807 .baseEepHeader = {
1808 .regDmn = { LE16(0), LE16(0x1f) },
1809 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1810 .opCapFlags = {
4ddfcd7d 1811 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
30923549
SB
1812 .eepMisc = 0,
1813 },
1814 .rfSilent = 0,
1815 .blueToothOptions = 0,
1816 .deviceCap = 0,
1817 .deviceType = 5, /* takes lower byte in eeprom location */
1818 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1819 .params_for_tuning_caps = {0, 0},
1820 .featureEnable = 0x0d,
1821 /*
1822 * bit0 - enable tx temp comp - disabled
1823 * bit1 - enable tx volt comp - disabled
1824 * bit2 - enable fastclock - enabled
1825 * bit3 - enable doubling - enabled
1826 * bit4 - enable internal regulator - disabled
1827 * bit5 - enable pa predistortion - disabled
1828 */
1829 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1830 .eepromWriteEnableGpio = 6,
1831 .wlanDisableGpio = 0,
1832 .wlanLedGpio = 8,
1833 .rxBandSelectGpio = 0xff,
1834 .txrxgain = 0x0,
1835 .swreg = 0,
1836 },
1837 .modalHeader2G = {
1838 /* ar9300_modal_eep_header 2g */
1839 /* 4 idle,t1,t2,b(4 bits per setting) */
1840 .antCtrlCommon = LE32(0x110),
1841 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1842 .antCtrlCommon2 = LE32(0x22222),
1843
1844 /*
1845 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1846 * rx1, rx12, b (2 bits each)
1847 */
1848 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1849
1850 /*
1851 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1852 * for ar9280 (0xa20c/b20c 5:0)
1853 */
1854 .xatten1DB = {0x1b, 0x1b, 0x1b},
1855
1856 /*
1857 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1858 * for ar9280 (0xa20c/b20c 16:12
1859 */
1860 .xatten1Margin = {0x15, 0x15, 0x15},
1861 .tempSlope = 50,
1862 .voltSlope = 0,
1863
1864 /*
1865 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1866 * channels in usual fbin coding format
1867 */
1868 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1869
1870 /*
1871 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1872 * if the register is per chain
1873 */
1874 .noiseFloorThreshCh = {-1, 0, 0},
1875 .ob = {1, 1, 1},/* 3 chain */
1876 .db_stage2 = {1, 1, 1}, /* 3 chain */
1877 .db_stage3 = {0, 0, 0},
1878 .db_stage4 = {0, 0, 0},
1879 .xpaBiasLvl = 0,
1880 .txFrameToDataStart = 0x0e,
1881 .txFrameToPaOn = 0x0e,
1882 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1883 .antennaGain = 0,
1884 .switchSettling = 0x2c,
1885 .adcDesiredSize = -30,
1886 .txEndToXpaOff = 0,
1887 .txEndToRxOn = 0x2,
1888 .txFrameToXpaOn = 0xe,
1889 .thresh62 = 28,
1890 .papdRateMaskHt20 = LE32(0x0c80c080),
1891 .papdRateMaskHt40 = LE32(0x0080c080),
1892 .futureModal = {
1893 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1894 },
1895 },
1896 .base_ext1 = {
1897 .ant_div_control = 0,
1898 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1899 },
1900 .calFreqPier2G = {
1901 FREQ2FBIN(2412, 1),
1902 FREQ2FBIN(2437, 1),
1903 FREQ2FBIN(2472, 1),
1904 },
1905 /* ar9300_cal_data_per_freq_op_loop 2g */
1906 .calPierData2G = {
1907 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1908 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1909 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1910 },
1911 .calTarget_freqbin_Cck = {
1912 FREQ2FBIN(2412, 1),
1913 FREQ2FBIN(2472, 1),
1914 },
1915 .calTarget_freqbin_2G = {
1916 FREQ2FBIN(2412, 1),
1917 FREQ2FBIN(2437, 1),
1918 FREQ2FBIN(2472, 1)
1919 },
1920 .calTarget_freqbin_2GHT20 = {
1921 FREQ2FBIN(2412, 1),
1922 FREQ2FBIN(2437, 1),
1923 FREQ2FBIN(2472, 1)
1924 },
1925 .calTarget_freqbin_2GHT40 = {
1926 FREQ2FBIN(2412, 1),
1927 FREQ2FBIN(2437, 1),
1928 FREQ2FBIN(2472, 1)
1929 },
1930 .calTargetPowerCck = {
1931 /* 1L-5L,5S,11L,11s */
1932 { {38, 38, 38, 38} },
1933 { {38, 38, 38, 38} },
1934 },
1935 .calTargetPower2G = {
1936 /* 6-24,36,48,54 */
1937 { {38, 38, 36, 34} },
1938 { {38, 38, 36, 34} },
1939 { {38, 38, 34, 32} },
1940 },
1941 .calTargetPower2GHT20 = {
1942 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1943 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1944 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1945 },
1946 .calTargetPower2GHT40 = {
1947 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1948 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1949 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1950 },
1951 .ctlIndex_2G = {
1952 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1953 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1954 },
1955 .ctl_freqbin_2G = {
1956 {
1957 FREQ2FBIN(2412, 1),
1958 FREQ2FBIN(2417, 1),
1959 FREQ2FBIN(2457, 1),
1960 FREQ2FBIN(2462, 1)
1961 },
1962 {
1963 FREQ2FBIN(2412, 1),
1964 FREQ2FBIN(2417, 1),
1965 FREQ2FBIN(2462, 1),
1966 0xFF,
1967 },
1968
1969 {
1970 FREQ2FBIN(2412, 1),
1971 FREQ2FBIN(2417, 1),
1972 FREQ2FBIN(2462, 1),
1973 0xFF,
1974 },
1975 {
1976 FREQ2FBIN(2422, 1),
1977 FREQ2FBIN(2427, 1),
1978 FREQ2FBIN(2447, 1),
1979 FREQ2FBIN(2452, 1)
1980 },
1981
1982 {
1983 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1984 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1985 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1986 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1987 },
1988
1989 {
1990 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1991 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1992 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1993 0,
1994 },
1995
1996 {
1997 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1998 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1999 FREQ2FBIN(2472, 1),
2000 0,
2001 },
2002
2003 {
2004 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2005 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2006 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2007 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2008 },
2009
2010 {
2011 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2012 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2013 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2014 },
2015
2016 {
2017 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2018 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2019 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2020 0
2021 },
2022
2023 {
2024 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2025 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2026 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2027 0
2028 },
2029
2030 {
2031 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2032 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2033 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2034 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2035 }
2036 },
2037 .ctlPowerData_2G = {
fe6c7915
DM
2038 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2039 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2040 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
30923549 2041
fe6c7915
DM
2042 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
2043 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2044 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 2045
fe6c7915
DM
2046 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2047 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2048 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 2049
fe6c7915
DM
2050 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2051 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2052 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
30923549
SB
2053 },
2054 .modalHeader5G = {
2055 /* 4 idle,t1,t2,b (4 bits per setting) */
2056 .antCtrlCommon = LE32(0x110),
2057 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2058 .antCtrlCommon2 = LE32(0x22222),
2059 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2060 .antCtrlChain = {
2061 LE16(0x0), LE16(0x0), LE16(0x0),
2062 },
2063 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2064 .xatten1DB = {0x13, 0x19, 0x17},
2065
2066 /*
2067 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2068 * for merlin (0xa20c/b20c 16:12
2069 */
2070 .xatten1Margin = {0x19, 0x19, 0x19},
2071 .tempSlope = 70,
2072 .voltSlope = 15,
2073 /* spurChans spur channels in usual fbin coding format */
2074 .spurChans = {0, 0, 0, 0, 0},
2075 /* noiseFloorThreshch check if the register is per chain */
2076 .noiseFloorThreshCh = {-1, 0, 0},
2077 .ob = {3, 3, 3}, /* 3 chain */
2078 .db_stage2 = {3, 3, 3}, /* 3 chain */
2079 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2080 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
2081 .xpaBiasLvl = 0,
2082 .txFrameToDataStart = 0x0e,
2083 .txFrameToPaOn = 0x0e,
2084 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2085 .antennaGain = 0,
2086 .switchSettling = 0x2d,
2087 .adcDesiredSize = -30,
2088 .txEndToXpaOff = 0,
2089 .txEndToRxOn = 0x2,
2090 .txFrameToXpaOn = 0xe,
2091 .thresh62 = 28,
2092 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2093 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2094 .futureModal = {
2095 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2096 },
2097 },
2098 .base_ext2 = {
2099 .tempSlopeLow = 72,
2100 .tempSlopeHigh = 105,
2101 .xatten1DBLow = {0x10, 0x14, 0x10},
2102 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2103 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2104 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2105 },
2106 .calFreqPier5G = {
2107 FREQ2FBIN(5180, 0),
2108 FREQ2FBIN(5220, 0),
2109 FREQ2FBIN(5320, 0),
2110 FREQ2FBIN(5400, 0),
2111 FREQ2FBIN(5500, 0),
2112 FREQ2FBIN(5600, 0),
2113 FREQ2FBIN(5700, 0),
2114 FREQ2FBIN(5785, 0)
2115 },
2116 .calPierData5G = {
2117 {
2118 {0, 0, 0, 0, 0},
2119 {0, 0, 0, 0, 0},
2120 {0, 0, 0, 0, 0},
2121 {0, 0, 0, 0, 0},
2122 {0, 0, 0, 0, 0},
2123 {0, 0, 0, 0, 0},
2124 {0, 0, 0, 0, 0},
2125 {0, 0, 0, 0, 0},
2126 },
2127 {
2128 {0, 0, 0, 0, 0},
2129 {0, 0, 0, 0, 0},
2130 {0, 0, 0, 0, 0},
2131 {0, 0, 0, 0, 0},
2132 {0, 0, 0, 0, 0},
2133 {0, 0, 0, 0, 0},
2134 {0, 0, 0, 0, 0},
2135 {0, 0, 0, 0, 0},
2136 },
2137 {
2138 {0, 0, 0, 0, 0},
2139 {0, 0, 0, 0, 0},
2140 {0, 0, 0, 0, 0},
2141 {0, 0, 0, 0, 0},
2142 {0, 0, 0, 0, 0},
2143 {0, 0, 0, 0, 0},
2144 {0, 0, 0, 0, 0},
2145 {0, 0, 0, 0, 0},
2146 },
2147
2148 },
2149 .calTarget_freqbin_5G = {
2150 FREQ2FBIN(5180, 0),
2151 FREQ2FBIN(5220, 0),
2152 FREQ2FBIN(5320, 0),
2153 FREQ2FBIN(5400, 0),
2154 FREQ2FBIN(5500, 0),
2155 FREQ2FBIN(5600, 0),
2156 FREQ2FBIN(5725, 0),
2157 FREQ2FBIN(5825, 0)
2158 },
2159 .calTarget_freqbin_5GHT20 = {
2160 FREQ2FBIN(5180, 0),
2161 FREQ2FBIN(5220, 0),
2162 FREQ2FBIN(5320, 0),
2163 FREQ2FBIN(5400, 0),
2164 FREQ2FBIN(5500, 0),
2165 FREQ2FBIN(5600, 0),
2166 FREQ2FBIN(5725, 0),
2167 FREQ2FBIN(5825, 0)
2168 },
2169 .calTarget_freqbin_5GHT40 = {
2170 FREQ2FBIN(5180, 0),
2171 FREQ2FBIN(5220, 0),
2172 FREQ2FBIN(5320, 0),
2173 FREQ2FBIN(5400, 0),
2174 FREQ2FBIN(5500, 0),
2175 FREQ2FBIN(5600, 0),
2176 FREQ2FBIN(5725, 0),
2177 FREQ2FBIN(5825, 0)
2178 },
2179 .calTargetPower5G = {
2180 /* 6-24,36,48,54 */
2181 { {32, 32, 28, 26} },
2182 { {32, 32, 28, 26} },
2183 { {32, 32, 28, 26} },
2184 { {32, 32, 26, 24} },
2185 { {32, 32, 26, 24} },
2186 { {32, 32, 24, 22} },
2187 { {30, 30, 24, 22} },
2188 { {30, 30, 24, 22} },
2189 },
2190 .calTargetPower5GHT20 = {
2191 /*
2192 * 0_8_16,1-3_9-11_17-19,
2193 * 4,5,6,7,12,13,14,15,20,21,22,23
2194 */
2195 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2196 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2197 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2198 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2199 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2200 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2201 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2202 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2203 },
2204 .calTargetPower5GHT40 = {
2205 /*
2206 * 0_8_16,1-3_9-11_17-19,
2207 * 4,5,6,7,12,13,14,15,20,21,22,23
2208 */
2209 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2210 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2211 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2212 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2213 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2214 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2215 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2216 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2217 },
2218 .ctlIndex_5G = {
2219 0x10, 0x16, 0x18, 0x40, 0x46,
2220 0x48, 0x30, 0x36, 0x38
2221 },
2222 .ctl_freqbin_5G = {
2223 {
2224 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2225 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2226 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2227 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2228 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2229 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2230 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2231 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2232 },
2233 {
2234 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2235 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2236 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2237 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2238 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2239 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2240 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2241 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2242 },
2243
2244 {
2245 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2246 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2247 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2248 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2249 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2250 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2251 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2252 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2253 },
2254
2255 {
2256 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2257 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2258 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2259 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2260 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2261 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2262 /* Data[3].ctledges[6].bchannel */ 0xFF,
2263 /* Data[3].ctledges[7].bchannel */ 0xFF,
2264 },
2265
2266 {
2267 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2268 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2269 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2270 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2271 /* Data[4].ctledges[4].bchannel */ 0xFF,
2272 /* Data[4].ctledges[5].bchannel */ 0xFF,
2273 /* Data[4].ctledges[6].bchannel */ 0xFF,
2274 /* Data[4].ctledges[7].bchannel */ 0xFF,
2275 },
2276
2277 {
2278 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2279 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2280 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2281 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2282 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2283 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2284 /* Data[5].ctledges[6].bchannel */ 0xFF,
2285 /* Data[5].ctledges[7].bchannel */ 0xFF
2286 },
2287
2288 {
2289 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2290 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2291 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2292 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2293 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2294 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2295 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2296 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2297 },
2298
2299 {
2300 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2301 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2302 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2303 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2304 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2305 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2306 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2307 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2308 },
2309
2310 {
2311 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2312 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2313 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2314 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2315 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2316 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2317 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2318 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2319 }
2320 },
2321 .ctlPowerData_5G = {
2322 {
2323 {
fe6c7915
DM
2324 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2325 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
2326 }
2327 },
2328 {
2329 {
fe6c7915
DM
2330 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2331 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
2332 }
2333 },
2334 {
2335 {
fe6c7915
DM
2336 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2337 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
2338 }
2339 },
2340 {
2341 {
fe6c7915
DM
2342 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2343 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
2344 }
2345 },
2346 {
2347 {
fe6c7915
DM
2348 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2349 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
2350 }
2351 },
2352 {
2353 {
fe6c7915
DM
2354 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2355 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
2356 }
2357 },
2358 {
2359 {
fe6c7915
DM
2360 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2361 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
2362 }
2363 },
2364 {
2365 {
fe6c7915
DM
2366 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2367 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
2368 }
2369 },
2370 {
2371 {
fe6c7915
DM
2372 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2373 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
30923549
SB
2374 }
2375 },
2376 }
2377};
2378
2379static const struct ar9300_eeprom ar9300_h116 = {
2380 .eepromVersion = 2,
2381 .templateVersion = 4,
2382 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2383 .custData = {"h116-041-f0000"},
2384 .baseEepHeader = {
2385 .regDmn = { LE16(0), LE16(0x1f) },
2386 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2387 .opCapFlags = {
4ddfcd7d 2388 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
30923549
SB
2389 .eepMisc = 0,
2390 },
2391 .rfSilent = 0,
2392 .blueToothOptions = 0,
2393 .deviceCap = 0,
2394 .deviceType = 5, /* takes lower byte in eeprom location */
2395 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2396 .params_for_tuning_caps = {0, 0},
2397 .featureEnable = 0x0d,
2398 /*
2399 * bit0 - enable tx temp comp - disabled
2400 * bit1 - enable tx volt comp - disabled
2401 * bit2 - enable fastClock - enabled
2402 * bit3 - enable doubling - enabled
2403 * bit4 - enable internal regulator - disabled
2404 * bit5 - enable pa predistortion - disabled
2405 */
2406 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2407 .eepromWriteEnableGpio = 6,
2408 .wlanDisableGpio = 0,
2409 .wlanLedGpio = 8,
2410 .rxBandSelectGpio = 0xff,
2411 .txrxgain = 0x10,
2412 .swreg = 0,
2413 },
2414 .modalHeader2G = {
2415 /* ar9300_modal_eep_header 2g */
2416 /* 4 idle,t1,t2,b(4 bits per setting) */
2417 .antCtrlCommon = LE32(0x110),
2418 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2419 .antCtrlCommon2 = LE32(0x44444),
2420
2421 /*
2422 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2423 * rx1, rx12, b (2 bits each)
2424 */
2425 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2426
2427 /*
2428 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2429 * for ar9280 (0xa20c/b20c 5:0)
2430 */
2431 .xatten1DB = {0x1f, 0x1f, 0x1f},
2432
2433 /*
2434 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2435 * for ar9280 (0xa20c/b20c 16:12
2436 */
2437 .xatten1Margin = {0x12, 0x12, 0x12},
2438 .tempSlope = 25,
2439 .voltSlope = 0,
2440
2441 /*
2442 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2443 * channels in usual fbin coding format
2444 */
2445 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2446
2447 /*
2448 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2449 * if the register is per chain
2450 */
2451 .noiseFloorThreshCh = {-1, 0, 0},
2452 .ob = {1, 1, 1},/* 3 chain */
2453 .db_stage2 = {1, 1, 1}, /* 3 chain */
2454 .db_stage3 = {0, 0, 0},
2455 .db_stage4 = {0, 0, 0},
2456 .xpaBiasLvl = 0,
2457 .txFrameToDataStart = 0x0e,
2458 .txFrameToPaOn = 0x0e,
2459 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2460 .antennaGain = 0,
2461 .switchSettling = 0x2c,
2462 .adcDesiredSize = -30,
2463 .txEndToXpaOff = 0,
2464 .txEndToRxOn = 0x2,
2465 .txFrameToXpaOn = 0xe,
2466 .thresh62 = 28,
2467 .papdRateMaskHt20 = LE32(0x0c80C080),
2468 .papdRateMaskHt40 = LE32(0x0080C080),
2469 .futureModal = {
2470 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2471 },
2472 },
2473 .base_ext1 = {
2474 .ant_div_control = 0,
2475 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2476 },
2477 .calFreqPier2G = {
2478 FREQ2FBIN(2412, 1),
2479 FREQ2FBIN(2437, 1),
2480 FREQ2FBIN(2472, 1),
2481 },
2482 /* ar9300_cal_data_per_freq_op_loop 2g */
2483 .calPierData2G = {
2484 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2485 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2486 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2487 },
2488 .calTarget_freqbin_Cck = {
2489 FREQ2FBIN(2412, 1),
2490 FREQ2FBIN(2472, 1),
2491 },
2492 .calTarget_freqbin_2G = {
2493 FREQ2FBIN(2412, 1),
2494 FREQ2FBIN(2437, 1),
2495 FREQ2FBIN(2472, 1)
2496 },
2497 .calTarget_freqbin_2GHT20 = {
2498 FREQ2FBIN(2412, 1),
2499 FREQ2FBIN(2437, 1),
2500 FREQ2FBIN(2472, 1)
2501 },
2502 .calTarget_freqbin_2GHT40 = {
2503 FREQ2FBIN(2412, 1),
2504 FREQ2FBIN(2437, 1),
2505 FREQ2FBIN(2472, 1)
2506 },
2507 .calTargetPowerCck = {
2508 /* 1L-5L,5S,11L,11S */
2509 { {34, 34, 34, 34} },
2510 { {34, 34, 34, 34} },
2511 },
2512 .calTargetPower2G = {
2513 /* 6-24,36,48,54 */
2514 { {34, 34, 32, 32} },
2515 { {34, 34, 32, 32} },
2516 { {34, 34, 32, 32} },
2517 },
2518 .calTargetPower2GHT20 = {
2519 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2520 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2521 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2522 },
2523 .calTargetPower2GHT40 = {
2524 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2525 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2526 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2527 },
2528 .ctlIndex_2G = {
2529 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2530 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2531 },
2532 .ctl_freqbin_2G = {
2533 {
2534 FREQ2FBIN(2412, 1),
2535 FREQ2FBIN(2417, 1),
2536 FREQ2FBIN(2457, 1),
2537 FREQ2FBIN(2462, 1)
2538 },
2539 {
2540 FREQ2FBIN(2412, 1),
2541 FREQ2FBIN(2417, 1),
2542 FREQ2FBIN(2462, 1),
2543 0xFF,
2544 },
2545
2546 {
2547 FREQ2FBIN(2412, 1),
2548 FREQ2FBIN(2417, 1),
2549 FREQ2FBIN(2462, 1),
2550 0xFF,
2551 },
2552 {
2553 FREQ2FBIN(2422, 1),
2554 FREQ2FBIN(2427, 1),
2555 FREQ2FBIN(2447, 1),
2556 FREQ2FBIN(2452, 1)
2557 },
2558
2559 {
2560 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2561 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2562 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2563 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2564 },
2565
2566 {
2567 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 0,
2571 },
2572
2573 {
2574 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 FREQ2FBIN(2472, 1),
2577 0,
2578 },
2579
2580 {
2581 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 },
2586
2587 {
2588 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2589 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2590 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2591 },
2592
2593 {
2594 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2595 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2596 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2597 0
2598 },
2599
2600 {
2601 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2602 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2603 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2604 0
2605 },
2606
2607 {
2608 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2609 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2610 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2611 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2612 }
2613 },
2614 .ctlPowerData_2G = {
e702ba18
FF
2615 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2616 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2617 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
30923549 2618
e702ba18
FF
2619 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
2620 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2621 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 2622
e702ba18
FF
2623 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2624 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2625 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
30923549 2626
e702ba18
FF
2627 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2628 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2629 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
30923549
SB
2630 },
2631 .modalHeader5G = {
2632 /* 4 idle,t1,t2,b (4 bits per setting) */
2633 .antCtrlCommon = LE32(0x220),
2634 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2635 .antCtrlCommon2 = LE32(0x44444),
2636 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2637 .antCtrlChain = {
2638 LE16(0x150), LE16(0x150), LE16(0x150),
2639 },
2640 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2641 .xatten1DB = {0x19, 0x19, 0x19},
2642
2643 /*
2644 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2645 * for merlin (0xa20c/b20c 16:12
2646 */
2647 .xatten1Margin = {0x14, 0x14, 0x14},
2648 .tempSlope = 70,
2649 .voltSlope = 0,
2650 /* spurChans spur channels in usual fbin coding format */
2651 .spurChans = {0, 0, 0, 0, 0},
2652 /* noiseFloorThreshCh Check if the register is per chain */
2653 .noiseFloorThreshCh = {-1, 0, 0},
2654 .ob = {3, 3, 3}, /* 3 chain */
2655 .db_stage2 = {3, 3, 3}, /* 3 chain */
2656 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2657 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
2658 .xpaBiasLvl = 0,
2659 .txFrameToDataStart = 0x0e,
2660 .txFrameToPaOn = 0x0e,
2661 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2662 .antennaGain = 0,
2663 .switchSettling = 0x2d,
2664 .adcDesiredSize = -30,
2665 .txEndToXpaOff = 0,
2666 .txEndToRxOn = 0x2,
2667 .txFrameToXpaOn = 0xe,
2668 .thresh62 = 28,
2669 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2670 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2671 .futureModal = {
2672 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2673 },
2674 },
2675 .base_ext2 = {
2676 .tempSlopeLow = 35,
2677 .tempSlopeHigh = 50,
2678 .xatten1DBLow = {0, 0, 0},
2679 .xatten1MarginLow = {0, 0, 0},
2680 .xatten1DBHigh = {0, 0, 0},
2681 .xatten1MarginHigh = {0, 0, 0}
2682 },
2683 .calFreqPier5G = {
2684 FREQ2FBIN(5180, 0),
2685 FREQ2FBIN(5220, 0),
2686 FREQ2FBIN(5320, 0),
2687 FREQ2FBIN(5400, 0),
2688 FREQ2FBIN(5500, 0),
2689 FREQ2FBIN(5600, 0),
2690 FREQ2FBIN(5700, 0),
2691 FREQ2FBIN(5785, 0)
2692 },
2693 .calPierData5G = {
2694 {
2695 {0, 0, 0, 0, 0},
2696 {0, 0, 0, 0, 0},
2697 {0, 0, 0, 0, 0},
2698 {0, 0, 0, 0, 0},
2699 {0, 0, 0, 0, 0},
2700 {0, 0, 0, 0, 0},
2701 {0, 0, 0, 0, 0},
2702 {0, 0, 0, 0, 0},
2703 },
2704 {
2705 {0, 0, 0, 0, 0},
2706 {0, 0, 0, 0, 0},
2707 {0, 0, 0, 0, 0},
2708 {0, 0, 0, 0, 0},
2709 {0, 0, 0, 0, 0},
2710 {0, 0, 0, 0, 0},
2711 {0, 0, 0, 0, 0},
2712 {0, 0, 0, 0, 0},
2713 },
2714 {
2715 {0, 0, 0, 0, 0},
2716 {0, 0, 0, 0, 0},
2717 {0, 0, 0, 0, 0},
2718 {0, 0, 0, 0, 0},
2719 {0, 0, 0, 0, 0},
2720 {0, 0, 0, 0, 0},
2721 {0, 0, 0, 0, 0},
2722 {0, 0, 0, 0, 0},
2723 },
2724
2725 },
2726 .calTarget_freqbin_5G = {
2727 FREQ2FBIN(5180, 0),
2728 FREQ2FBIN(5240, 0),
2729 FREQ2FBIN(5320, 0),
2730 FREQ2FBIN(5400, 0),
2731 FREQ2FBIN(5500, 0),
2732 FREQ2FBIN(5600, 0),
2733 FREQ2FBIN(5700, 0),
2734 FREQ2FBIN(5825, 0)
2735 },
2736 .calTarget_freqbin_5GHT20 = {
2737 FREQ2FBIN(5180, 0),
2738 FREQ2FBIN(5240, 0),
2739 FREQ2FBIN(5320, 0),
2740 FREQ2FBIN(5400, 0),
2741 FREQ2FBIN(5500, 0),
2742 FREQ2FBIN(5700, 0),
2743 FREQ2FBIN(5745, 0),
2744 FREQ2FBIN(5825, 0)
2745 },
2746 .calTarget_freqbin_5GHT40 = {
2747 FREQ2FBIN(5180, 0),
2748 FREQ2FBIN(5240, 0),
2749 FREQ2FBIN(5320, 0),
2750 FREQ2FBIN(5400, 0),
2751 FREQ2FBIN(5500, 0),
2752 FREQ2FBIN(5700, 0),
2753 FREQ2FBIN(5745, 0),
2754 FREQ2FBIN(5825, 0)
2755 },
2756 .calTargetPower5G = {
2757 /* 6-24,36,48,54 */
2758 { {30, 30, 28, 24} },
2759 { {30, 30, 28, 24} },
2760 { {30, 30, 28, 24} },
2761 { {30, 30, 28, 24} },
2762 { {30, 30, 28, 24} },
2763 { {30, 30, 28, 24} },
2764 { {30, 30, 28, 24} },
2765 { {30, 30, 28, 24} },
2766 },
2767 .calTargetPower5GHT20 = {
2768 /*
2769 * 0_8_16,1-3_9-11_17-19,
2770 * 4,5,6,7,12,13,14,15,20,21,22,23
2771 */
2772 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2773 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2774 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2775 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2776 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2777 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2778 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2779 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2780 },
2781 .calTargetPower5GHT40 = {
2782 /*
2783 * 0_8_16,1-3_9-11_17-19,
2784 * 4,5,6,7,12,13,14,15,20,21,22,23
2785 */
2786 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2787 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2788 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2789 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2790 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2791 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2792 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2793 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2794 },
2795 .ctlIndex_5G = {
2796 0x10, 0x16, 0x18, 0x40, 0x46,
2797 0x48, 0x30, 0x36, 0x38
2798 },
2799 .ctl_freqbin_5G = {
2800 {
2801 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2802 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2803 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2804 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2805 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2806 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2807 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2808 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2809 },
2810 {
2811 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2812 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2813 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2814 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2815 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2816 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2817 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2818 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2819 },
2820
2821 {
2822 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2823 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2824 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2825 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2826 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2827 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2828 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2829 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2830 },
2831
2832 {
2833 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2834 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2835 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2836 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2837 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2838 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2839 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2840 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2841 },
2842
2843 {
2844 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2845 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2846 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2847 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2848 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2849 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2850 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2851 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2852 },
2853
2854 {
2855 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2856 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2857 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2858 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2859 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2860 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2861 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2862 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2863 },
2864
2865 {
2866 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2867 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2868 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2869 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2870 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2871 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2872 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2873 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2874 },
2875
2876 {
2877 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2878 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2879 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2880 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2881 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2882 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2883 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2884 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2885 },
2886
2887 {
2888 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2889 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2890 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2891 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2892 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2893 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2894 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2895 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2896 }
2897 },
2898 .ctlPowerData_5G = {
2899 {
2900 {
e702ba18
FF
2901 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2902 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
2903 }
2904 },
2905 {
2906 {
e702ba18
FF
2907 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2908 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
2909 }
2910 },
2911 {
2912 {
e702ba18
FF
2913 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2914 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
2915 }
2916 },
2917 {
2918 {
e702ba18
FF
2919 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2920 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
2921 }
2922 },
2923 {
2924 {
e702ba18
FF
2925 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2926 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
2927 }
2928 },
2929 {
2930 {
e702ba18
FF
2931 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2932 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
30923549
SB
2933 }
2934 },
2935 {
2936 {
e702ba18
FF
2937 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2938 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
30923549
SB
2939 }
2940 },
2941 {
2942 {
e702ba18
FF
2943 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2944 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
30923549
SB
2945 }
2946 },
2947 {
2948 {
e702ba18
FF
2949 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2950 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
30923549
SB
2951 }
2952 },
2953 }
2954};
2955
2956
2957static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2958 &ar9300_default,
2959 &ar9300_x112,
2960 &ar9300_h116,
2961 &ar9300_h112,
2962 &ar9300_x113,
2963};
2964
2965static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2966{
2967#define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2968 int it;
2969
2970 for (it = 0; it < N_LOOP; it++)
2971 if (ar9300_eep_templates[it]->templateVersion == id)
2972 return ar9300_eep_templates[it];
2973 return NULL;
2974#undef N_LOOP
2975}
2976
2977
824b185a
LR
2978static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2979{
4ddfcd7d 2980 if (fbin == AR5416_BCHAN_UNUSED)
824b185a
LR
2981 return fbin;
2982
2983 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2984}
2985
15c9ee7a
SB
2986static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2987{
2988 return 0;
2989}
2990
bc206802
VT
2991static int interpolate(int x, int xa, int xb, int ya, int yb)
2992{
2993 int bf, factor, plus;
2994
2995 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2996 factor = bf / 2;
2997 plus = bf % 2;
2998 return ya + factor + plus;
2999}
3000
15c9ee7a
SB
3001static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
3002 enum eeprom_param param)
3003{
3004 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3005 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3006
3007 switch (param) {
3008 case EEP_MAC_LSW:
3009 return eep->macAddr[0] << 8 | eep->macAddr[1];
3010 case EEP_MAC_MID:
3011 return eep->macAddr[2] << 8 | eep->macAddr[3];
3012 case EEP_MAC_MSW:
3013 return eep->macAddr[4] << 8 | eep->macAddr[5];
3014 case EEP_REG_0:
ffdc4cbe 3015 return le16_to_cpu(pBase->regDmn[0]);
15c9ee7a 3016 case EEP_REG_1:
ffdc4cbe 3017 return le16_to_cpu(pBase->regDmn[1]);
15c9ee7a
SB
3018 case EEP_OP_CAP:
3019 return pBase->deviceCap;
3020 case EEP_OP_MODE:
3021 return pBase->opCapFlags.opFlags;
3022 case EEP_RF_SILENT:
3023 return pBase->rfSilent;
3024 case EEP_TX_MASK:
3025 return (pBase->txrxMask >> 4) & 0xf;
3026 case EEP_RX_MASK:
3027 return pBase->txrxMask & 0xf;
3028 case EEP_DRIVE_STRENGTH:
3029#define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
3030 return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
3031 case EEP_INTERNAL_REGULATOR:
3032 /* Bit 4 is internal regulator flag */
3033 return (pBase->featureEnable & 0x10) >> 4;
3034 case EEP_SWREG:
ffdc4cbe 3035 return le32_to_cpu(pBase->swreg);
4935250a
FF
3036 case EEP_PAPRD:
3037 return !!(pBase->featureEnable & BIT(5));
ea066d5a
MSS
3038 case EEP_CHAIN_MASK_REDUCE:
3039 return (pBase->miscConfiguration >> 0x3) & 0x1;
47e84dfb
VT
3040 case EEP_ANT_DIV_CTL1:
3041 return le32_to_cpu(eep->base_ext1.ant_div_control);
15c9ee7a
SB
3042 default:
3043 return 0;
3044 }
3045}
3046
ffdc4cbe
FF
3047static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3048 u8 *buffer)
15c9ee7a 3049{
ffdc4cbe 3050 u16 val;
0cf31079 3051
ffdc4cbe
FF
3052 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3053 return false;
15c9ee7a 3054
ffdc4cbe
FF
3055 *buffer = (val >> (8 * (address % 2))) & 0xff;
3056 return true;
3057}
15c9ee7a 3058
ffdc4cbe
FF
3059static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3060 u8 *buffer)
3061{
3062 u16 val;
15c9ee7a 3063
ffdc4cbe
FF
3064 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3065 return false;
15c9ee7a 3066
ffdc4cbe
FF
3067 buffer[0] = val >> 8;
3068 buffer[1] = val & 0xff;
15c9ee7a 3069
ffdc4cbe 3070 return true;
15c9ee7a 3071}
15c9ee7a 3072
ffdc4cbe
FF
3073static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3074 int count)
15c9ee7a 3075{
15c9ee7a 3076 struct ath_common *common = ath9k_hw_common(ah);
ffdc4cbe 3077 int i;
15c9ee7a 3078
ffdc4cbe 3079 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
226afe68
JP
3080 ath_dbg(common, ATH_DBG_EEPROM,
3081 "eeprom address not in range\n");
15c9ee7a
SB
3082 return false;
3083 }
3084
ffdc4cbe
FF
3085 /*
3086 * Since we're reading the bytes in reverse order from a little-endian
3087 * word stream, an even address means we only use the lower half of
3088 * the 16-bit word at that address
3089 */
3090 if (address % 2 == 0) {
3091 if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3092 goto error;
3093
3094 count--;
15c9ee7a
SB
3095 }
3096
ffdc4cbe
FF
3097 for (i = 0; i < count / 2; i++) {
3098 if (!ar9300_eeprom_read_word(common, address, buffer))
3099 goto error;
15c9ee7a 3100
ffdc4cbe
FF
3101 address -= 2;
3102 buffer += 2;
3103 }
3104
3105 if (count % 2)
3106 if (!ar9300_eeprom_read_byte(common, address, buffer))
3107 goto error;
15c9ee7a 3108
15c9ee7a 3109 return true;
ffdc4cbe
FF
3110
3111error:
226afe68
JP
3112 ath_dbg(common, ATH_DBG_EEPROM,
3113 "unable to read eeprom region at offset %d\n", address);
ffdc4cbe 3114 return false;
15c9ee7a
SB
3115}
3116
488f6ba7
FF
3117static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3118{
3119 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3120
3121 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3122 AR9300_OTP_STATUS_VALID, 1000))
3123 return false;
3124
3125 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3126 return true;
3127}
3128
3129static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3130 int count)
3131{
3132 u32 data;
3133 int i;
3134
3135 for (i = 0; i < count; i++) {
3136 int offset = 8 * ((address - i) % 4);
3137 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3138 return false;
3139
3140 buffer[i] = (data >> offset) & 0xff;
3141 }
3142
3143 return true;
3144}
3145
3146
15c9ee7a
SB
3147static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3148 int *length, int *major, int *minor)
3149{
3150 unsigned long value[4];
3151
3152 value[0] = best[0];
3153 value[1] = best[1];
3154 value[2] = best[2];
3155 value[3] = best[3];
3156 *code = ((value[0] >> 5) & 0x0007);
3157 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3158 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3159 *major = (value[2] & 0x000f);
3160 *minor = (value[3] & 0x00ff);
3161}
3162
3163static u16 ar9300_comp_cksum(u8 *data, int dsize)
3164{
3165 int it, checksum = 0;
3166
3167 for (it = 0; it < dsize; it++) {
3168 checksum += data[it];
3169 checksum &= 0xffff;
3170 }
3171
3172 return checksum;
3173}
3174
3175static bool ar9300_uncompress_block(struct ath_hw *ah,
3176 u8 *mptr,
3177 int mdataSize,
3178 u8 *block,
3179 int size)
3180{
3181 int it;
3182 int spot;
3183 int offset;
3184 int length;
3185 struct ath_common *common = ath9k_hw_common(ah);
3186
3187 spot = 0;
3188
3189 for (it = 0; it < size; it += (length+2)) {
3190 offset = block[it];
3191 offset &= 0xff;
3192 spot += offset;
3193 length = block[it+1];
3194 length &= 0xff;
3195
803288e6 3196 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
226afe68
JP
3197 ath_dbg(common, ATH_DBG_EEPROM,
3198 "Restore at %d: spot=%d offset=%d length=%d\n",
3199 it, spot, offset, length);
15c9ee7a
SB
3200 memcpy(&mptr[spot], &block[it+2], length);
3201 spot += length;
3202 } else if (length > 0) {
226afe68
JP
3203 ath_dbg(common, ATH_DBG_EEPROM,
3204 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3205 it, spot, offset, length);
15c9ee7a
SB
3206 return false;
3207 }
3208 }
3209 return true;
3210}
3211
3212static int ar9300_compress_decision(struct ath_hw *ah,
3213 int it,
3214 int code,
3215 int reference,
3216 u8 *mptr,
3217 u8 *word, int length, int mdata_size)
3218{
3219 struct ath_common *common = ath9k_hw_common(ah);
30923549 3220 const struct ar9300_eeprom *eep = NULL;
15c9ee7a
SB
3221
3222 switch (code) {
3223 case _CompressNone:
3224 if (length != mdata_size) {
226afe68
JP
3225 ath_dbg(common, ATH_DBG_EEPROM,
3226 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3227 mdata_size, length);
15c9ee7a
SB
3228 return -1;
3229 }
3230 memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
226afe68
JP
3231 ath_dbg(common, ATH_DBG_EEPROM,
3232 "restored eeprom %d: uncompressed, length %d\n",
3233 it, length);
15c9ee7a
SB
3234 break;
3235 case _CompressBlock:
3236 if (reference == 0) {
15c9ee7a 3237 } else {
30923549
SB
3238 eep = ar9003_eeprom_struct_find_by_id(reference);
3239 if (eep == NULL) {
226afe68 3240 ath_dbg(common, ATH_DBG_EEPROM,
25985edc 3241 "can't find reference eeprom struct %d\n",
226afe68 3242 reference);
15c9ee7a
SB
3243 return -1;
3244 }
30923549 3245 memcpy(mptr, eep, mdata_size);
15c9ee7a 3246 }
226afe68
JP
3247 ath_dbg(common, ATH_DBG_EEPROM,
3248 "restore eeprom %d: block, reference %d, length %d\n",
3249 it, reference, length);
15c9ee7a
SB
3250 ar9300_uncompress_block(ah, mptr, mdata_size,
3251 (u8 *) (word + COMP_HDR_LEN), length);
3252 break;
3253 default:
226afe68
JP
3254 ath_dbg(common, ATH_DBG_EEPROM,
3255 "unknown compression code %d\n", code);
15c9ee7a
SB
3256 return -1;
3257 }
3258 return 0;
3259}
3260
488f6ba7
FF
3261typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3262 int count);
3263
3264static bool ar9300_check_header(void *data)
3265{
3266 u32 *word = data;
3267 return !(*word == 0 || *word == ~0);
3268}
3269
3270static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3271 int base_addr)
3272{
3273 u8 header[4];
3274
3275 if (!read(ah, base_addr, header, 4))
3276 return false;
3277
3278 return ar9300_check_header(header);
3279}
3280
aaa13ca2
FF
3281static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3282 int mdata_size)
3283{
3284 struct ath_common *common = ath9k_hw_common(ah);
3285 u16 *data = (u16 *) mptr;
3286 int i;
3287
3288 for (i = 0; i < mdata_size / 2; i++, data++)
3289 ath9k_hw_nvram_read(common, i, data);
3290
3291 return 0;
3292}
15c9ee7a
SB
3293/*
3294 * Read the configuration data from the eeprom.
3295 * The data can be put in any specified memory buffer.
3296 *
3297 * Returns -1 on error.
3298 * Returns address of next memory location on success.
3299 */
3300static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3301 u8 *mptr, int mdata_size)
3302{
3303#define MDEFAULT 15
3304#define MSTATE 100
3305 int cptr;
3306 u8 *word;
3307 int code;
3308 int reference, length, major, minor;
3309 int osize;
3310 int it;
3311 u16 checksum, mchecksum;
3312 struct ath_common *common = ath9k_hw_common(ah);
488f6ba7 3313 eeprom_read_op read;
15c9ee7a 3314
aaa13ca2
FF
3315 if (ath9k_hw_use_flash(ah))
3316 return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3317
15c9ee7a
SB
3318 word = kzalloc(2048, GFP_KERNEL);
3319 if (!word)
3320 return -1;
3321
3322 memcpy(mptr, &ar9300_default, mdata_size);
3323
488f6ba7 3324 read = ar9300_read_eeprom;
60e0c3a7
VT
3325 if (AR_SREV_9485(ah))
3326 cptr = AR9300_BASE_ADDR_4K;
3327 else
3328 cptr = AR9300_BASE_ADDR;
226afe68 3329 ath_dbg(common, ATH_DBG_EEPROM,
70f23fd6 3330 "Trying EEPROM access at Address 0x%04x\n", cptr);
488f6ba7
FF
3331 if (ar9300_check_eeprom_header(ah, read, cptr))
3332 goto found;
3333
3334 cptr = AR9300_BASE_ADDR_512;
226afe68 3335 ath_dbg(common, ATH_DBG_EEPROM,
70f23fd6 3336 "Trying EEPROM access at Address 0x%04x\n", cptr);
488f6ba7
FF
3337 if (ar9300_check_eeprom_header(ah, read, cptr))
3338 goto found;
3339
3340 read = ar9300_read_otp;
3341 cptr = AR9300_BASE_ADDR;
226afe68 3342 ath_dbg(common, ATH_DBG_EEPROM,
70f23fd6 3343 "Trying OTP access at Address 0x%04x\n", cptr);
488f6ba7
FF
3344 if (ar9300_check_eeprom_header(ah, read, cptr))
3345 goto found;
3346
3347 cptr = AR9300_BASE_ADDR_512;
226afe68 3348 ath_dbg(common, ATH_DBG_EEPROM,
70f23fd6 3349 "Trying OTP access at Address 0x%04x\n", cptr);
488f6ba7
FF
3350 if (ar9300_check_eeprom_header(ah, read, cptr))
3351 goto found;
3352
3353 goto fail;
3354
3355found:
226afe68 3356 ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
488f6ba7 3357
15c9ee7a 3358 for (it = 0; it < MSTATE; it++) {
488f6ba7 3359 if (!read(ah, cptr, word, COMP_HDR_LEN))
15c9ee7a
SB
3360 goto fail;
3361
488f6ba7 3362 if (!ar9300_check_header(word))
15c9ee7a
SB
3363 break;
3364
3365 ar9300_comp_hdr_unpack(word, &code, &reference,
3366 &length, &major, &minor);
226afe68
JP
3367 ath_dbg(common, ATH_DBG_EEPROM,
3368 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3369 cptr, code, reference, length, major, minor);
60e0c3a7 3370 if ((!AR_SREV_9485(ah) && length >= 1024) ||
d0ce2d17 3371 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
226afe68
JP
3372 ath_dbg(common, ATH_DBG_EEPROM,
3373 "Skipping bad header\n");
15c9ee7a
SB
3374 cptr -= COMP_HDR_LEN;
3375 continue;
3376 }
3377
3378 osize = length;
488f6ba7 3379 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
15c9ee7a
SB
3380 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3381 mchecksum = word[COMP_HDR_LEN + osize] |
3382 (word[COMP_HDR_LEN + osize + 1] << 8);
226afe68
JP
3383 ath_dbg(common, ATH_DBG_EEPROM,
3384 "checksum %x %x\n", checksum, mchecksum);
15c9ee7a
SB
3385 if (checksum == mchecksum) {
3386 ar9300_compress_decision(ah, it, code, reference, mptr,
3387 word, length, mdata_size);
3388 } else {
226afe68
JP
3389 ath_dbg(common, ATH_DBG_EEPROM,
3390 "skipping block with bad checksum\n");
15c9ee7a
SB
3391 }
3392 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3393 }
3394
3395 kfree(word);
3396 return cptr;
3397
3398fail:
3399 kfree(word);
3400 return -1;
3401}
3402
3403/*
3404 * Restore the configuration structure by reading the eeprom.
3405 * This function destroys any existing in-memory structure
3406 * content.
3407 */
3408static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3409{
ffdc4cbe 3410 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
15c9ee7a 3411
ffdc4cbe
FF
3412 if (ar9300_eeprom_restore_internal(ah, mptr,
3413 sizeof(struct ar9300_eeprom)) < 0)
3414 return false;
15c9ee7a 3415
ffdc4cbe 3416 return true;
15c9ee7a
SB
3417}
3418
3419/* XXX: review hardware docs */
3420static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3421{
3422 return ah->eeprom.ar9300_eep.eepromVersion;
3423}
3424
3425/* XXX: could be read from the eepromVersion, not sure yet */
3426static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3427{
3428 return 0;
3429}
3430
15c9ee7a
SB
3431static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3432{
3433 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3434
3435 if (is2ghz)
3436 return eep->modalHeader2G.xpaBiasLvl;
3437 else
3438 return eep->modalHeader5G.xpaBiasLvl;
3439}
3440
3441static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3442{
3443 int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
9936e65f 3444
165af96d 3445 if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
9936e65f
VT
3446 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3447 else {
3448 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
165af96d
RM
3449 REG_RMW_FIELD(ah, AR_CH0_THERM,
3450 AR_CH0_THERM_XPABIASLVL_MSB,
3451 bias >> 2);
3452 REG_RMW_FIELD(ah, AR_CH0_THERM,
3453 AR_CH0_THERM_XPASHORT2GND, 1);
9936e65f 3454 }
15c9ee7a
SB
3455}
3456
3457static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3458{
3459 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
ffdc4cbe 3460 __le32 val;
15c9ee7a
SB
3461
3462 if (is2ghz)
ffdc4cbe 3463 val = eep->modalHeader2G.antCtrlCommon;
15c9ee7a 3464 else
ffdc4cbe
FF
3465 val = eep->modalHeader5G.antCtrlCommon;
3466 return le32_to_cpu(val);
15c9ee7a
SB
3467}
3468
3469static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3470{
3471 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
ffdc4cbe 3472 __le32 val;
15c9ee7a
SB
3473
3474 if (is2ghz)
ffdc4cbe 3475 val = eep->modalHeader2G.antCtrlCommon2;
15c9ee7a 3476 else
ffdc4cbe
FF
3477 val = eep->modalHeader5G.antCtrlCommon2;
3478 return le32_to_cpu(val);
15c9ee7a
SB
3479}
3480
3481static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3482 int chain,
3483 bool is2ghz)
3484{
3485 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
ffdc4cbe 3486 __le16 val = 0;
15c9ee7a
SB
3487
3488 if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3489 if (is2ghz)
ffdc4cbe 3490 val = eep->modalHeader2G.antCtrlChain[chain];
15c9ee7a 3491 else
ffdc4cbe 3492 val = eep->modalHeader5G.antCtrlChain[chain];
15c9ee7a
SB
3493 }
3494
ffdc4cbe 3495 return le16_to_cpu(val);
15c9ee7a
SB
3496}
3497
3498static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3499{
2976bc5e 3500 int chain;
842ca780
MSS
3501 u32 regval;
3502 u32 ant_div_ctl1;
2976bc5e
VT
3503 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3504 AR_PHY_SWITCH_CHAIN_0,
3505 AR_PHY_SWITCH_CHAIN_1,
3506 AR_PHY_SWITCH_CHAIN_2,
3507 };
3508
15c9ee7a 3509 u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
2976bc5e 3510
15c9ee7a
SB
3511 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
3512
3513 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3514 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3515
2976bc5e
VT
3516 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3517 if ((ah->rxchainmask & BIT(chain)) ||
3518 (ah->txchainmask & BIT(chain))) {
3519 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3520 is2ghz);
3521 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3522 AR_SWITCH_TABLE_ALL, value);
3523 }
47e84dfb 3524 }
15c9ee7a 3525
47e84dfb
VT
3526 if (AR_SREV_9485(ah)) {
3527 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
842ca780
MSS
3528 /*
3529 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3530 * are the fields present
3531 */
3532 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3533 regval &= (~AR_ANT_DIV_CTRL_ALL);
3534 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3535 /* enable_lnadiv */
3536 regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3537 regval |= ((value >> 6) & 0x1) <<
3538 AR_PHY_9485_ANT_DIV_LNADIV_S;
3539 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3540
3541 /*enable fast_div */
3542 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3543 regval &= (~AR_FAST_DIV_ENABLE);
3544 regval |= ((value >> 7) & 0x1) <<
3545 AR_FAST_DIV_ENABLE_S;
3546 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3547 ant_div_ctl1 =
3548 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3549 /* check whether antenna diversity is enabled */
3550 if ((ant_div_ctl1 >> 0x6) == 0x3) {
3551 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3552 /*
3553 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3554 * main_tb, alt_tb
3555 */
3556 regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3557 AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3558 AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3559 AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3560 /* by default use LNA1 for the main antenna */
3561 regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3562 AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3563 regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3564 AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3565 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3566 }
3567
3568
47e84dfb 3569 }
842ca780 3570
15c9ee7a
SB
3571}
3572
3573static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3574{
3575 int drive_strength;
3576 unsigned long reg;
3577
3578 drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3579
3580 if (!drive_strength)
3581 return;
3582
3583 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3584 reg &= ~0x00ffffc0;
3585 reg |= 0x5 << 21;
3586 reg |= 0x5 << 18;
3587 reg |= 0x5 << 15;
3588 reg |= 0x5 << 12;
3589 reg |= 0x5 << 9;
3590 reg |= 0x5 << 6;
3591 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3592
3593 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3594 reg &= ~0xffffffe0;
3595 reg |= 0x5 << 29;
3596 reg |= 0x5 << 26;
3597 reg |= 0x5 << 23;
3598 reg |= 0x5 << 20;
3599 reg |= 0x5 << 17;
3600 reg |= 0x5 << 14;
3601 reg |= 0x5 << 11;
3602 reg |= 0x5 << 8;
3603 reg |= 0x5 << 5;
3604 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3605
3606 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3607 reg &= ~0xff800000;
3608 reg |= 0x5 << 29;
3609 reg |= 0x5 << 26;
3610 reg |= 0x5 << 23;
3611 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3612}
3613
f4475a6e
VT
3614static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3615 struct ath9k_channel *chan)
3616{
3617 int f[3], t[3];
3618 u16 value;
3619 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3620
3621 if (chain >= 0 && chain < 3) {
3622 if (IS_CHAN_2GHZ(chan))
3623 return eep->modalHeader2G.xatten1DB[chain];
3624 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3625 t[0] = eep->base_ext2.xatten1DBLow[chain];
3626 f[0] = 5180;
3627 t[1] = eep->modalHeader5G.xatten1DB[chain];
3628 f[1] = 5500;
3629 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3630 f[2] = 5785;
3631 value = ar9003_hw_power_interpolate((s32) chan->channel,
3632 f, t, 3);
3633 return value;
3634 } else
3635 return eep->modalHeader5G.xatten1DB[chain];
3636 }
3637
3638 return 0;
3639}
3640
3641
3642static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3643 struct ath9k_channel *chan)
3644{
3645 int f[3], t[3];
3646 u16 value;
3647 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3648
3649 if (chain >= 0 && chain < 3) {
3650 if (IS_CHAN_2GHZ(chan))
3651 return eep->modalHeader2G.xatten1Margin[chain];
3652 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3653 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3654 f[0] = 5180;
3655 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3656 f[1] = 5500;
3657 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3658 f[2] = 5785;
3659 value = ar9003_hw_power_interpolate((s32) chan->channel,
3660 f, t, 3);
3661 return value;
3662 } else
3663 return eep->modalHeader5G.xatten1Margin[chain];
3664 }
3665
3666 return 0;
3667}
3668
3669static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3670{
3671 int i;
3672 u16 value;
3673 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3674 AR_PHY_EXT_ATTEN_CTL_1,
3675 AR_PHY_EXT_ATTEN_CTL_2,
3676 };
3677
3678 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3679 for (i = 0; i < 3; i++) {
2976bc5e
VT
3680 if (ah->txchainmask & BIT(i)) {
3681 value = ar9003_hw_atten_chain_get(ah, i, chan);
3682 REG_RMW_FIELD(ah, ext_atten_reg[i],
3683 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3684
3685 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3686 REG_RMW_FIELD(ah, ext_atten_reg[i],
3687 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3688 value);
3689 }
f4475a6e
VT
3690 }
3691}
3692
ab09b5b4
VT
3693static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3694{
3695 int timeout = 100;
3696
3697 while (pmu_set != REG_READ(ah, pmu_reg)) {
3698 if (timeout-- == 0)
3699 return false;
3700 REG_WRITE(ah, pmu_reg, pmu_set);
3701 udelay(10);
3702 }
3703
3704 return true;
3705}
3706
15c9ee7a
SB
3707static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3708{
3709 int internal_regulator =
3710 ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3711
3712 if (internal_regulator) {
ab09b5b4
VT
3713 if (AR_SREV_9485(ah)) {
3714 int reg_pmu_set;
3715
3716 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3717 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3718 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3719 return;
3720
3721 reg_pmu_set = (5 << 1) | (7 << 4) | (1 << 8) |
ebefce3d 3722 (2 << 14) | (6 << 17) | (1 << 20) |
ab09b5b4
VT
3723 (3 << 24) | (1 << 28);
3724
3725 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3726 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3727 return;
3728
3729 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3730 | (4 << 26);
3731 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3732 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3733 return;
3734
3735 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3736 | (1 << 21);
3737 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3738 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3739 return;
3740 } else {
3741 /* Internal regulator is ON. Write swreg register. */
3742 int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3743 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3744 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3745 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3746 REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
3747 /* Set REG_CONTROL1.SWREG_PROGRAM */
3748 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3749 REG_READ(ah,
3750 AR_RTC_REG_CONTROL1) |
3751 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3752 }
15c9ee7a 3753 } else {
ab09b5b4
VT
3754 if (AR_SREV_9485(ah)) {
3755 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3756 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3757 AR_PHY_PMU2_PGM))
3758 udelay(10);
3759
3760 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3761 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3762 AR_PHY_PMU1_PWD))
3763 udelay(10);
3764 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3765 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3766 AR_PHY_PMU2_PGM))
3767 udelay(10);
3768 } else
3769 REG_WRITE(ah, AR_RTC_SLEEP_CLK,
3770 (REG_READ(ah,
3771 AR_RTC_SLEEP_CLK) |
3772 AR_RTC_FORCE_SWREG_PRD));
15c9ee7a 3773 }
ab09b5b4 3774
15c9ee7a
SB
3775}
3776
dd040f76
VT
3777static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3778{
3779 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3780 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3781
3782 if (eep->baseEepHeader.featureEnable & 0x40) {
3783 tuning_caps_param &= 0x7f;
3784 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3785 tuning_caps_param);
3786 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3787 tuning_caps_param);
15c9ee7a
SB
3788 }
3789}
3790
3791static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3792 struct ath9k_channel *chan)
3793{
3794 ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3795 ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3796 ar9003_hw_drive_strength_apply(ah);
f4475a6e 3797 ar9003_hw_atten_apply(ah, chan);
3594beae
VT
3798 if (!AR_SREV_9340(ah))
3799 ar9003_hw_internal_regulator_apply(ah);
a969c091 3800 if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
dd040f76 3801 ar9003_hw_apply_tuning_caps(ah);
15c9ee7a
SB
3802}
3803
3804static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3805 struct ath9k_channel *chan)
3806{
3807}
3808
3809/*
3810 * Returns the interpolated y value corresponding to the specified x value
3811 * from the np ordered pairs of data (px,py).
3812 * The pairs do not have to be in any order.
3813 * If the specified x value is less than any of the px,
3814 * the returned y value is equal to the py for the lowest px.
3815 * If the specified x value is greater than any of the px,
3816 * the returned y value is equal to the py for the highest px.
3817 */
3818static int ar9003_hw_power_interpolate(int32_t x,
3819 int32_t *px, int32_t *py, u_int16_t np)
3820{
3821 int ip = 0;
3822 int lx = 0, ly = 0, lhave = 0;
3823 int hx = 0, hy = 0, hhave = 0;
3824 int dx = 0;
3825 int y = 0;
3826
3827 lhave = 0;
3828 hhave = 0;
3829
3830 /* identify best lower and higher x calibration measurement */
3831 for (ip = 0; ip < np; ip++) {
3832 dx = x - px[ip];
3833
3834 /* this measurement is higher than our desired x */
3835 if (dx <= 0) {
3836 if (!hhave || dx > (x - hx)) {
3837 /* new best higher x measurement */
3838 hx = px[ip];
3839 hy = py[ip];
3840 hhave = 1;
3841 }
3842 }
3843 /* this measurement is lower than our desired x */
3844 if (dx >= 0) {
3845 if (!lhave || dx < (x - lx)) {
3846 /* new best lower x measurement */
3847 lx = px[ip];
3848 ly = py[ip];
3849 lhave = 1;
3850 }
3851 }
3852 }
3853
3854 /* the low x is good */
3855 if (lhave) {
3856 /* so is the high x */
3857 if (hhave) {
3858 /* they're the same, so just pick one */
3859 if (hx == lx)
3860 y = ly;
3861 else /* interpolate */
bc206802 3862 y = interpolate(x, lx, hx, ly, hy);
15c9ee7a
SB
3863 } else /* only low is good, use it */
3864 y = ly;
3865 } else if (hhave) /* only high is good, use it */
3866 y = hy;
3867 else /* nothing is good,this should never happen unless np=0, ???? */
3868 y = -(1 << 30);
3869 return y;
3870}
3871
3872static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
3873 u16 rateIndex, u16 freq, bool is2GHz)
3874{
3875 u16 numPiers, i;
3876 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3877 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3878 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3879 struct cal_tgt_pow_legacy *pEepromTargetPwr;
3880 u8 *pFreqBin;
3881
3882 if (is2GHz) {
d10baf99 3883 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
15c9ee7a
SB
3884 pEepromTargetPwr = eep->calTargetPower2G;
3885 pFreqBin = eep->calTarget_freqbin_2G;
3886 } else {
3887 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3888 pEepromTargetPwr = eep->calTargetPower5G;
3889 pFreqBin = eep->calTarget_freqbin_5G;
3890 }
3891
3892 /*
3893 * create array of channels and targetpower from
3894 * targetpower piers stored on eeprom
3895 */
3896 for (i = 0; i < numPiers; i++) {
3897 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3898 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3899 }
3900
3901 /* interpolate to get target power for given frequency */
3902 return (u8) ar9003_hw_power_interpolate((s32) freq,
3903 freqArray,
3904 targetPowerArray, numPiers);
3905}
3906
3907static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
3908 u16 rateIndex,
3909 u16 freq, bool is2GHz)
3910{
3911 u16 numPiers, i;
3912 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3913 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3914 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3915 struct cal_tgt_pow_ht *pEepromTargetPwr;
3916 u8 *pFreqBin;
3917
3918 if (is2GHz) {
d10baf99 3919 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
15c9ee7a
SB
3920 pEepromTargetPwr = eep->calTargetPower2GHT20;
3921 pFreqBin = eep->calTarget_freqbin_2GHT20;
3922 } else {
3923 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3924 pEepromTargetPwr = eep->calTargetPower5GHT20;
3925 pFreqBin = eep->calTarget_freqbin_5GHT20;
3926 }
3927
3928 /*
3929 * create array of channels and targetpower
3930 * from targetpower piers stored on eeprom
3931 */
3932 for (i = 0; i < numPiers; i++) {
3933 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3934 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3935 }
3936
3937 /* interpolate to get target power for given frequency */
3938 return (u8) ar9003_hw_power_interpolate((s32) freq,
3939 freqArray,
3940 targetPowerArray, numPiers);
3941}
3942
3943static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
3944 u16 rateIndex,
3945 u16 freq, bool is2GHz)
3946{
3947 u16 numPiers, i;
3948 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
3949 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
3950 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3951 struct cal_tgt_pow_ht *pEepromTargetPwr;
3952 u8 *pFreqBin;
3953
3954 if (is2GHz) {
3955 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
3956 pEepromTargetPwr = eep->calTargetPower2GHT40;
3957 pFreqBin = eep->calTarget_freqbin_2GHT40;
3958 } else {
3959 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
3960 pEepromTargetPwr = eep->calTargetPower5GHT40;
3961 pFreqBin = eep->calTarget_freqbin_5GHT40;
3962 }
3963
3964 /*
3965 * create array of channels and targetpower from
3966 * targetpower piers stored on eeprom
3967 */
3968 for (i = 0; i < numPiers; i++) {
3969 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3970 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3971 }
3972
3973 /* interpolate to get target power for given frequency */
3974 return (u8) ar9003_hw_power_interpolate((s32) freq,
3975 freqArray,
3976 targetPowerArray, numPiers);
3977}
3978
3979static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
3980 u16 rateIndex, u16 freq)
3981{
3982 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
3983 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
3984 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
3985 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3986 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
3987 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
3988
3989 /*
3990 * create array of channels and targetpower from
3991 * targetpower piers stored on eeprom
3992 */
3993 for (i = 0; i < numPiers; i++) {
3994 freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
3995 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3996 }
3997
3998 /* interpolate to get target power for given frequency */
3999 return (u8) ar9003_hw_power_interpolate((s32) freq,
4000 freqArray,
4001 targetPowerArray, numPiers);
4002}
4003
4004/* Set tx power registers to array of values passed in */
4005static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4006{
4007#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4008 /* make sure forced gain is not set */
4a4fdf2e 4009 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
15c9ee7a
SB
4010
4011 /* Write the OFDM power per rate set */
4012
4013 /* 6 (LSB), 9, 12, 18 (MSB) */
4a4fdf2e 4014 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
15c9ee7a
SB
4015 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4016 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4017 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4018 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4019
4020 /* 24 (LSB), 36, 48, 54 (MSB) */
4a4fdf2e 4021 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
15c9ee7a
SB
4022 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4023 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4024 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4025 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4026
4027 /* Write the CCK power per rate set */
4028
4029 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4a4fdf2e 4030 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
15c9ee7a
SB
4031 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4032 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4033 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4034 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4035
4036 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4a4fdf2e 4037 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
15c9ee7a
SB
4038 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4039 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4040 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4041 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4042 );
4043
cf3a03b9
LR
4044 /* Write the power for duplicated frames - HT40 */
4045
4046 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4047 REG_WRITE(ah, 0xa3e0,
4048 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4049 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4050 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4051 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4052 );
4053
15c9ee7a
SB
4054 /* Write the HT20 power per rate set */
4055
4056 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4a4fdf2e 4057 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
15c9ee7a
SB
4058 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4059 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4060 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4061 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4062 );
4063
4064 /* 6 (LSB), 7, 12, 13 (MSB) */
4a4fdf2e 4065 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
15c9ee7a
SB
4066 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4067 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4068 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4069 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4070 );
4071
4072 /* 14 (LSB), 15, 20, 21 */
4a4fdf2e 4073 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
15c9ee7a
SB
4074 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4075 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4076 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4077 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4078 );
4079
4080 /* Mixed HT20 and HT40 rates */
4081
4082 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4a4fdf2e 4083 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
15c9ee7a
SB
4084 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4085 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4086 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4087 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4088 );
4089
4090 /*
4091 * Write the HT40 power per rate set
4092 * correct PAR difference between HT40 and HT20/LEGACY
4093 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4094 */
4a4fdf2e 4095 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
15c9ee7a
SB
4096 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4097 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4098 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4099 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4100 );
4101
4102 /* 6 (LSB), 7, 12, 13 (MSB) */
4a4fdf2e 4103 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
15c9ee7a
SB
4104 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4105 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4106 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4107 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4108 );
4109
4110 /* 14 (LSB), 15, 20, 21 */
4a4fdf2e 4111 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
15c9ee7a
SB
4112 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4113 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4114 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4115 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4116 );
4117
4118 return 0;
4119#undef POW_SM
4120}
4121
824b185a
LR
4122static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4123 u8 *targetPowerValT2)
15c9ee7a 4124{
15c9ee7a
SB
4125 /* XXX: hard code for now, need to get from eeprom struct */
4126 u8 ht40PowerIncForPdadc = 0;
4127 bool is2GHz = false;
4128 unsigned int i = 0;
4129 struct ath_common *common = ath9k_hw_common(ah);
4130
4131 if (freq < 4000)
4132 is2GHz = true;
4133
4134 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4135 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4136 is2GHz);
4137 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4138 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4139 is2GHz);
4140 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4141 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4142 is2GHz);
4143 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4144 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4145 is2GHz);
4146 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4147 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4148 freq);
4149 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4150 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4151 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4152 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4153 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4154 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4155 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4156 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4157 is2GHz);
4158 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4159 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4160 freq, is2GHz);
4161 targetPowerValT2[ALL_TARGET_HT20_4] =
4162 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4163 is2GHz);
4164 targetPowerValT2[ALL_TARGET_HT20_5] =
4165 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4166 is2GHz);
4167 targetPowerValT2[ALL_TARGET_HT20_6] =
4168 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4169 is2GHz);
4170 targetPowerValT2[ALL_TARGET_HT20_7] =
4171 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4172 is2GHz);
4173 targetPowerValT2[ALL_TARGET_HT20_12] =
4174 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4175 is2GHz);
4176 targetPowerValT2[ALL_TARGET_HT20_13] =
4177 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4178 is2GHz);
4179 targetPowerValT2[ALL_TARGET_HT20_14] =
4180 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4181 is2GHz);
4182 targetPowerValT2[ALL_TARGET_HT20_15] =
4183 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4184 is2GHz);
4185 targetPowerValT2[ALL_TARGET_HT20_20] =
4186 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4187 is2GHz);
4188 targetPowerValT2[ALL_TARGET_HT20_21] =
4189 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4190 is2GHz);
4191 targetPowerValT2[ALL_TARGET_HT20_22] =
4192 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4193 is2GHz);
4194 targetPowerValT2[ALL_TARGET_HT20_23] =
4195 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4196 is2GHz);
4197 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4198 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4199 is2GHz) + ht40PowerIncForPdadc;
4200 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4201 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4202 freq,
4203 is2GHz) + ht40PowerIncForPdadc;
4204 targetPowerValT2[ALL_TARGET_HT40_4] =
4205 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4206 is2GHz) + ht40PowerIncForPdadc;
4207 targetPowerValT2[ALL_TARGET_HT40_5] =
4208 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4209 is2GHz) + ht40PowerIncForPdadc;
4210 targetPowerValT2[ALL_TARGET_HT40_6] =
4211 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4212 is2GHz) + ht40PowerIncForPdadc;
4213 targetPowerValT2[ALL_TARGET_HT40_7] =
4214 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4215 is2GHz) + ht40PowerIncForPdadc;
4216 targetPowerValT2[ALL_TARGET_HT40_12] =
4217 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4218 is2GHz) + ht40PowerIncForPdadc;
4219 targetPowerValT2[ALL_TARGET_HT40_13] =
4220 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4221 is2GHz) + ht40PowerIncForPdadc;
4222 targetPowerValT2[ALL_TARGET_HT40_14] =
4223 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4224 is2GHz) + ht40PowerIncForPdadc;
4225 targetPowerValT2[ALL_TARGET_HT40_15] =
4226 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4227 is2GHz) + ht40PowerIncForPdadc;
4228 targetPowerValT2[ALL_TARGET_HT40_20] =
4229 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4230 is2GHz) + ht40PowerIncForPdadc;
4231 targetPowerValT2[ALL_TARGET_HT40_21] =
4232 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4233 is2GHz) + ht40PowerIncForPdadc;
4234 targetPowerValT2[ALL_TARGET_HT40_22] =
4235 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4236 is2GHz) + ht40PowerIncForPdadc;
4237 targetPowerValT2[ALL_TARGET_HT40_23] =
4238 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4239 is2GHz) + ht40PowerIncForPdadc;
4240
a1cbc7a8 4241 for (i = 0; i < ar9300RateSize; i++) {
226afe68
JP
4242 ath_dbg(common, ATH_DBG_EEPROM,
4243 "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
15c9ee7a 4244 }
15c9ee7a
SB
4245}
4246
4247static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4248 int mode,
4249 int ipier,
4250 int ichain,
4251 int *pfrequency,
4252 int *pcorrection,
4253 int *ptemperature, int *pvoltage)
4254{
4255 u8 *pCalPier;
4256 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4257 int is2GHz;
4258 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4259 struct ath_common *common = ath9k_hw_common(ah);
4260
4261 if (ichain >= AR9300_MAX_CHAINS) {
226afe68
JP
4262 ath_dbg(common, ATH_DBG_EEPROM,
4263 "Invalid chain index, must be less than %d\n",
4264 AR9300_MAX_CHAINS);
15c9ee7a
SB
4265 return -1;
4266 }
4267
4268 if (mode) { /* 5GHz */
4269 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
226afe68
JP
4270 ath_dbg(common, ATH_DBG_EEPROM,
4271 "Invalid 5GHz cal pier index, must be less than %d\n",
4272 AR9300_NUM_5G_CAL_PIERS);
15c9ee7a
SB
4273 return -1;
4274 }
4275 pCalPier = &(eep->calFreqPier5G[ipier]);
4276 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4277 is2GHz = 0;
4278 } else {
4279 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
226afe68
JP
4280 ath_dbg(common, ATH_DBG_EEPROM,
4281 "Invalid 2GHz cal pier index, must be less than %d\n",
4282 AR9300_NUM_2G_CAL_PIERS);
15c9ee7a
SB
4283 return -1;
4284 }
4285
4286 pCalPier = &(eep->calFreqPier2G[ipier]);
4287 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4288 is2GHz = 1;
4289 }
4290
4291 *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4292 *pcorrection = pCalPierStruct->refPower;
4293 *ptemperature = pCalPierStruct->tempMeas;
4294 *pvoltage = pCalPierStruct->voltMeas;
4295
4296 return 0;
4297}
4298
4299static int ar9003_hw_power_control_override(struct ath_hw *ah,
4300 int frequency,
4301 int *correction,
4302 int *voltage, int *temperature)
4303{
4304 int tempSlope = 0;
4305 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
15cbbc44 4306 int f[3], t[3];
15c9ee7a
SB
4307
4308 REG_RMW(ah, AR_PHY_TPC_11_B0,
4309 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4310 AR_PHY_TPC_OLPC_GAIN_DELTA);
5f139eba
VT
4311 if (ah->caps.tx_chainmask & BIT(1))
4312 REG_RMW(ah, AR_PHY_TPC_11_B1,
4313 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4314 AR_PHY_TPC_OLPC_GAIN_DELTA);
4315 if (ah->caps.tx_chainmask & BIT(2))
4316 REG_RMW(ah, AR_PHY_TPC_11_B2,
4317 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4318 AR_PHY_TPC_OLPC_GAIN_DELTA);
15c9ee7a
SB
4319
4320 /* enable open loop power control on chip */
4321 REG_RMW(ah, AR_PHY_TPC_6_B0,
4322 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4323 AR_PHY_TPC_6_ERROR_EST_MODE);
5f139eba
VT
4324 if (ah->caps.tx_chainmask & BIT(1))
4325 REG_RMW(ah, AR_PHY_TPC_6_B1,
4326 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4327 AR_PHY_TPC_6_ERROR_EST_MODE);
4328 if (ah->caps.tx_chainmask & BIT(2))
4329 REG_RMW(ah, AR_PHY_TPC_6_B2,
4330 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4331 AR_PHY_TPC_6_ERROR_EST_MODE);
15c9ee7a
SB
4332
4333 /*
4334 * enable temperature compensation
4335 * Need to use register names
4336 */
4337 if (frequency < 4000)
4338 tempSlope = eep->modalHeader2G.tempSlope;
15cbbc44
VT
4339 else if (eep->base_ext2.tempSlopeLow != 0) {
4340 t[0] = eep->base_ext2.tempSlopeLow;
4341 f[0] = 5180;
4342 t[1] = eep->modalHeader5G.tempSlope;
4343 f[1] = 5500;
4344 t[2] = eep->base_ext2.tempSlopeHigh;
4345 f[2] = 5785;
4346 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4347 f, t, 3);
4348 } else
15c9ee7a
SB
4349 tempSlope = eep->modalHeader5G.tempSlope;
4350
4351 REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4352 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4353 temperature[0]);
4354
4355 return 0;
4356}
4357
4358/* Apply the recorded correction values. */
4359static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4360{
4361 int ichain, ipier, npier;
4362 int mode;
4363 int lfrequency[AR9300_MAX_CHAINS],
4364 lcorrection[AR9300_MAX_CHAINS],
4365 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4366 int hfrequency[AR9300_MAX_CHAINS],
4367 hcorrection[AR9300_MAX_CHAINS],
4368 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4369 int fdiff;
4370 int correction[AR9300_MAX_CHAINS],
4371 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4372 int pfrequency, pcorrection, ptemperature, pvoltage;
4373 struct ath_common *common = ath9k_hw_common(ah);
4374
4375 mode = (frequency >= 4000);
4376 if (mode)
4377 npier = AR9300_NUM_5G_CAL_PIERS;
4378 else
4379 npier = AR9300_NUM_2G_CAL_PIERS;
4380
4381 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4382 lfrequency[ichain] = 0;
4383 hfrequency[ichain] = 100000;
4384 }
4385 /* identify best lower and higher frequency calibration measurement */
4386 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4387 for (ipier = 0; ipier < npier; ipier++) {
4388 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4389 &pfrequency, &pcorrection,
4390 &ptemperature, &pvoltage)) {
4391 fdiff = frequency - pfrequency;
4392
4393 /*
4394 * this measurement is higher than
4395 * our desired frequency
4396 */
4397 if (fdiff <= 0) {
4398 if (hfrequency[ichain] <= 0 ||
4399 hfrequency[ichain] >= 100000 ||
4400 fdiff >
4401 (frequency - hfrequency[ichain])) {
4402 /*
4403 * new best higher
4404 * frequency measurement
4405 */
4406 hfrequency[ichain] = pfrequency;
4407 hcorrection[ichain] =
4408 pcorrection;
4409 htemperature[ichain] =
4410 ptemperature;
4411 hvoltage[ichain] = pvoltage;
4412 }
4413 }
4414 if (fdiff >= 0) {
4415 if (lfrequency[ichain] <= 0
4416 || fdiff <
4417 (frequency - lfrequency[ichain])) {
4418 /*
4419 * new best lower
4420 * frequency measurement
4421 */
4422 lfrequency[ichain] = pfrequency;
4423 lcorrection[ichain] =
4424 pcorrection;
4425 ltemperature[ichain] =
4426 ptemperature;
4427 lvoltage[ichain] = pvoltage;
4428 }
4429 }
4430 }
4431 }
4432 }
4433
4434 /* interpolate */
4435 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
226afe68
JP
4436 ath_dbg(common, ATH_DBG_EEPROM,
4437 "ch=%d f=%d low=%d %d h=%d %d\n",
4438 ichain, frequency, lfrequency[ichain],
4439 lcorrection[ichain], hfrequency[ichain],
4440 hcorrection[ichain]);
15c9ee7a
SB
4441 /* they're the same, so just pick one */
4442 if (hfrequency[ichain] == lfrequency[ichain]) {
4443 correction[ichain] = lcorrection[ichain];
4444 voltage[ichain] = lvoltage[ichain];
4445 temperature[ichain] = ltemperature[ichain];
4446 }
4447 /* the low frequency is good */
4448 else if (frequency - lfrequency[ichain] < 1000) {
4449 /* so is the high frequency, interpolate */
4450 if (hfrequency[ichain] - frequency < 1000) {
4451
bc206802
VT
4452 correction[ichain] = interpolate(frequency,
4453 lfrequency[ichain],
4454 hfrequency[ichain],
4455 lcorrection[ichain],
4456 hcorrection[ichain]);
4457
4458 temperature[ichain] = interpolate(frequency,
4459 lfrequency[ichain],
4460 hfrequency[ichain],
4461 ltemperature[ichain],
4462 htemperature[ichain]);
4463
4464 voltage[ichain] = interpolate(frequency,
4465 lfrequency[ichain],
4466 hfrequency[ichain],
4467 lvoltage[ichain],
4468 hvoltage[ichain]);
15c9ee7a
SB
4469 }
4470 /* only low is good, use it */
4471 else {
4472 correction[ichain] = lcorrection[ichain];
4473 temperature[ichain] = ltemperature[ichain];
4474 voltage[ichain] = lvoltage[ichain];
4475 }
4476 }
4477 /* only high is good, use it */
4478 else if (hfrequency[ichain] - frequency < 1000) {
4479 correction[ichain] = hcorrection[ichain];
4480 temperature[ichain] = htemperature[ichain];
4481 voltage[ichain] = hvoltage[ichain];
4482 } else { /* nothing is good, presume 0???? */
4483 correction[ichain] = 0;
4484 temperature[ichain] = 0;
4485 voltage[ichain] = 0;
4486 }
4487 }
4488
4489 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4490 temperature);
4491
226afe68
JP
4492 ath_dbg(common, ATH_DBG_EEPROM,
4493 "for frequency=%d, calibration correction = %d %d %d\n",
4494 frequency, correction[0], correction[1], correction[2]);
15c9ee7a
SB
4495
4496 return 0;
4497}
4498
824b185a
LR
4499static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4500 int idx,
4501 int edge,
4502 bool is2GHz)
4503{
4504 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4505 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4506
4507 if (is2GHz)
e702ba18 4508 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
824b185a 4509 else
e702ba18 4510 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
824b185a
LR
4511}
4512
4513static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4514 int idx,
4515 unsigned int edge,
4516 u16 freq,
4517 bool is2GHz)
4518{
4519 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4520 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4521
4522 u8 *ctl_freqbin = is2GHz ?
4523 &eep->ctl_freqbin_2G[idx][0] :
4524 &eep->ctl_freqbin_5G[idx][0];
4525
4526 if (is2GHz) {
4527 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
e702ba18
FF
4528 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4529 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
824b185a
LR
4530 } else {
4531 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
e702ba18
FF
4532 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4533 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
824b185a
LR
4534 }
4535
4ddfcd7d 4536 return MAX_RATE_POWER;
824b185a
LR
4537}
4538
4539/*
4540 * Find the maximum conformance test limit for the given channel and CTL info
4541 */
4542static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4543 u16 freq, int idx, bool is2GHz)
4544{
4ddfcd7d 4545 u16 twiceMaxEdgePower = MAX_RATE_POWER;
824b185a
LR
4546 u8 *ctl_freqbin = is2GHz ?
4547 &eep->ctl_freqbin_2G[idx][0] :
4548 &eep->ctl_freqbin_5G[idx][0];
4549 u16 num_edges = is2GHz ?
4550 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4551 unsigned int edge;
4552
4553 /* Get the edge power */
4554 for (edge = 0;
4ddfcd7d 4555 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
824b185a
LR
4556 edge++) {
4557 /*
4558 * If there's an exact channel match or an inband flag set
4559 * on the lower channel use the given rdEdgePower
4560 */
4561 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4562 twiceMaxEdgePower =
4563 ar9003_hw_get_direct_edge_power(eep, idx,
4564 edge, is2GHz);
4565 break;
4566 } else if ((edge > 0) &&
4567 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4568 is2GHz))) {
4569 twiceMaxEdgePower =
4570 ar9003_hw_get_indirect_edge_power(eep, idx,
4571 edge, freq,
4572 is2GHz);
4573 /*
4574 * Leave loop - no more affecting edges possible in
4575 * this monotonic increasing list
4576 */
4577 break;
4578 }
4579 }
4580 return twiceMaxEdgePower;
4581}
4582
4583static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4584 struct ath9k_channel *chan,
4585 u8 *pPwrArray, u16 cfgCtl,
4586 u8 twiceAntennaReduction,
4587 u8 twiceMaxRegulatoryPower,
4588 u16 powerLimit)
4589{
4590 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4591 struct ath_common *common = ath9k_hw_common(ah);
4592 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4ddfcd7d 4593 u16 twiceMaxEdgePower = MAX_RATE_POWER;
824b185a 4594 static const u16 tpScaleReductionTable[5] = {
4ddfcd7d 4595 0, 3, 6, 9, MAX_RATE_POWER
824b185a
LR
4596 };
4597 int i;
4598 int16_t twiceLargestAntenna;
4599 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
07b2fa5a 4600 static const u16 ctlModesFor11a[] = {
824b185a
LR
4601 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4602 };
07b2fa5a 4603 static const u16 ctlModesFor11g[] = {
824b185a
LR
4604 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4605 CTL_11G_EXT, CTL_2GHT40
4606 };
07b2fa5a
JP
4607 u16 numCtlModes;
4608 const u16 *pCtlMode;
4609 u16 ctlMode, freq;
824b185a
LR
4610 struct chan_centers centers;
4611 u8 *ctlIndex;
4612 u8 ctlNum;
4613 u16 twiceMinEdgePower;
4614 bool is2ghz = IS_CHAN_2GHZ(chan);
4615
4616 ath9k_hw_get_channel_centers(ah, chan, &centers);
4617
4618 /* Compute TxPower reduction due to Antenna Gain */
4619 if (is2ghz)
4620 twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
4621 else
4622 twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
4623
4624 twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
4625 twiceLargestAntenna, 0);
4626
4627 /*
4628 * scaledPower is the minimum of the user input power level
4629 * and the regulatory allowed power level
4630 */
4631 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4632
4633 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
4634 maxRegAllowedPower -=
4635 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
4636 }
4637
4638 scaledPower = min(powerLimit, maxRegAllowedPower);
4639
4640 /*
4641 * Reduce scaled Power by number of chains active to get
4642 * to per chain tx power level
4643 */
4644 switch (ar5416_get_ntxchains(ah->txchainmask)) {
4645 case 1:
4646 break;
4647 case 2:
21fdc872
DH
4648 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4649 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4650 else
4651 scaledPower = 0;
824b185a
LR
4652 break;
4653 case 3:
21fdc872
DH
4654 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4655 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4656 else
4657 scaledPower = 0;
824b185a
LR
4658 break;
4659 }
4660
4661 scaledPower = max((u16)0, scaledPower);
4662
4663 /*
4664 * Get target powers from EEPROM - our baseline for TX Power
4665 */
4666 if (is2ghz) {
4667 /* Setup for CTL modes */
4668 /* CTL_11B, CTL_11G, CTL_2GHT20 */
4669 numCtlModes =
4670 ARRAY_SIZE(ctlModesFor11g) -
4671 SUB_NUM_CTL_MODES_AT_2G_40;
4672 pCtlMode = ctlModesFor11g;
4673 if (IS_CHAN_HT40(chan))
4674 /* All 2G CTL's */
4675 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4676 } else {
4677 /* Setup for CTL modes */
4678 /* CTL_11A, CTL_5GHT20 */
4679 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4680 SUB_NUM_CTL_MODES_AT_5G_40;
4681 pCtlMode = ctlModesFor11a;
4682 if (IS_CHAN_HT40(chan))
4683 /* All 5G CTL's */
4684 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4685 }
4686
4687 /*
4688 * For MIMO, need to apply regulatory caps individually across
4689 * dynamically running modes: CCK, OFDM, HT20, HT40
4690 *
4691 * The outer loop walks through each possible applicable runtime mode.
4692 * The inner loop walks through each ctlIndex entry in EEPROM.
4693 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4694 */
4695 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4696 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4697 (pCtlMode[ctlMode] == CTL_2GHT40);
4698 if (isHt40CtlMode)
4699 freq = centers.synth_center;
4700 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4701 freq = centers.ext_center;
4702 else
4703 freq = centers.ctl_center;
4704
226afe68
JP
4705 ath_dbg(common, ATH_DBG_REGULATORY,
4706 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4707 ctlMode, numCtlModes, isHt40CtlMode,
4708 (pCtlMode[ctlMode] & EXT_ADDITIVE));
824b185a
LR
4709
4710 /* walk through each CTL index stored in EEPROM */
4711 if (is2ghz) {
4712 ctlIndex = pEepData->ctlIndex_2G;
4713 ctlNum = AR9300_NUM_CTLS_2G;
4714 } else {
4715 ctlIndex = pEepData->ctlIndex_5G;
4716 ctlNum = AR9300_NUM_CTLS_5G;
4717 }
4718
4719 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
226afe68
JP
4720 ath_dbg(common, ATH_DBG_REGULATORY,
4721 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4722 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4723 chan->channel);
824b185a
LR
4724
4725 /*
4726 * compare test group from regulatory
4727 * channel list with test mode from pCtlMode
4728 * list
4729 */
4730 if ((((cfgCtl & ~CTL_MODE_M) |
4731 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4732 ctlIndex[i]) ||
4733 (((cfgCtl & ~CTL_MODE_M) |
4734 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4735 ((ctlIndex[i] & CTL_MODE_M) |
4736 SD_NO_CTL))) {
4737 twiceMinEdgePower =
4738 ar9003_hw_get_max_edge_power(pEepData,
4739 freq, i,
4740 is2ghz);
4741
4742 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4743 /*
4744 * Find the minimum of all CTL
4745 * edge powers that apply to
4746 * this channel
4747 */
4748 twiceMaxEdgePower =
4749 min(twiceMaxEdgePower,
4750 twiceMinEdgePower);
4751 else {
4752 /* specific */
4753 twiceMaxEdgePower =
4754 twiceMinEdgePower;
4755 break;
4756 }
4757 }
4758 }
4759
4760 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4761
226afe68
JP
4762 ath_dbg(common, ATH_DBG_REGULATORY,
4763 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4764 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4765 scaledPower, minCtlPower);
824b185a
LR
4766
4767 /* Apply ctl mode to correct target power set */
4768 switch (pCtlMode[ctlMode]) {
4769 case CTL_11B:
4770 for (i = ALL_TARGET_LEGACY_1L_5L;
4771 i <= ALL_TARGET_LEGACY_11S; i++)
4772 pPwrArray[i] =
4773 (u8)min((u16)pPwrArray[i],
4774 minCtlPower);
4775 break;
4776 case CTL_11A:
4777 case CTL_11G:
4778 for (i = ALL_TARGET_LEGACY_6_24;
4779 i <= ALL_TARGET_LEGACY_54; i++)
4780 pPwrArray[i] =
4781 (u8)min((u16)pPwrArray[i],
4782 minCtlPower);
4783 break;
4784 case CTL_5GHT20:
4785 case CTL_2GHT20:
4786 for (i = ALL_TARGET_HT20_0_8_16;
4787 i <= ALL_TARGET_HT20_21; i++)
4788 pPwrArray[i] =
4789 (u8)min((u16)pPwrArray[i],
4790 minCtlPower);
4791 pPwrArray[ALL_TARGET_HT20_22] =
4792 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4793 minCtlPower);
4794 pPwrArray[ALL_TARGET_HT20_23] =
4795 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4796 minCtlPower);
4797 break;
4798 case CTL_5GHT40:
4799 case CTL_2GHT40:
4800 for (i = ALL_TARGET_HT40_0_8_16;
4801 i <= ALL_TARGET_HT40_23; i++)
4802 pPwrArray[i] =
4803 (u8)min((u16)pPwrArray[i],
4804 minCtlPower);
4805 break;
4806 default:
4807 break;
4808 }
4809 } /* end ctl mode checking */
4810}
4811
45ef6a0b
VT
4812static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4813{
4814 u8 mod_idx = mcs_idx % 8;
4815
4816 if (mod_idx <= 3)
4817 return mod_idx ? (base_pwridx + 1) : base_pwridx;
4818 else
4819 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4820}
4821
15c9ee7a
SB
4822static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4823 struct ath9k_channel *chan, u16 cfgCtl,
4824 u8 twiceAntennaReduction,
4825 u8 twiceMaxRegulatoryPower,
de40f316 4826 u8 powerLimit, bool test)
15c9ee7a 4827{
6b7b6cf5 4828 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
824b185a 4829 struct ath_common *common = ath9k_hw_common(ah);
7072bf62 4830 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
f1a8abb0 4831 struct ar9300_modal_eep_header *modal_hdr;
824b185a 4832 u8 targetPowerValT2[ar9300RateSize];
7072bf62
VT
4833 u8 target_power_val_t2_eep[ar9300RateSize];
4834 unsigned int i = 0, paprd_scale_factor = 0;
45ef6a0b 4835 u8 pwr_idx, min_pwridx = 0;
824b185a
LR
4836
4837 ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
7072bf62
VT
4838
4839 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4840 if (IS_CHAN_2GHZ(chan))
f1a8abb0 4841 modal_hdr = &eep->modalHeader2G;
7072bf62 4842 else
f1a8abb0
FF
4843 modal_hdr = &eep->modalHeader5G;
4844
4845 ah->paprd_ratemask =
4846 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
4847 AR9300_PAPRD_RATE_MASK;
4848
4849 ah->paprd_ratemask_ht40 =
4850 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
4851 AR9300_PAPRD_RATE_MASK;
7072bf62 4852
45ef6a0b
VT
4853 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
4854 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
4855 ALL_TARGET_HT20_0_8_16;
4856
4857 if (!ah->paprd_table_write_done) {
4858 memcpy(target_power_val_t2_eep, targetPowerValT2,
4859 sizeof(targetPowerValT2));
4860 for (i = 0; i < 24; i++) {
4861 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
4862 if (ah->paprd_ratemask & (1 << i)) {
4863 if (targetPowerValT2[pwr_idx] &&
4864 targetPowerValT2[pwr_idx] ==
4865 target_power_val_t2_eep[pwr_idx])
4866 targetPowerValT2[pwr_idx] -=
4867 paprd_scale_factor;
4868 }
4869 }
4870 }
7072bf62
VT
4871 memcpy(target_power_val_t2_eep, targetPowerValT2,
4872 sizeof(targetPowerValT2));
4873 }
4874
824b185a
LR
4875 ar9003_hw_set_power_per_rate_table(ah, chan,
4876 targetPowerValT2, cfgCtl,
4877 twiceAntennaReduction,
4878 twiceMaxRegulatoryPower,
4879 powerLimit);
4880
7072bf62 4881 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
7072bf62
VT
4882 for (i = 0; i < ar9300RateSize; i++) {
4883 if ((ah->paprd_ratemask & (1 << i)) &&
4884 (abs(targetPowerValT2[i] -
4885 target_power_val_t2_eep[i]) >
4886 paprd_scale_factor)) {
4887 ah->paprd_ratemask &= ~(1 << i);
4888 ath_dbg(common, ATH_DBG_EEPROM,
4889 "paprd disabled for mcs %d\n", i);
4890 }
4891 }
4892 }
4893
de40f316
FF
4894 regulatory->max_power_level = 0;
4895 for (i = 0; i < ar9300RateSize; i++) {
4896 if (targetPowerValT2[i] > regulatory->max_power_level)
4897 regulatory->max_power_level = targetPowerValT2[i];
4898 }
4899
4900 if (test)
4901 return;
4902
4903 for (i = 0; i < ar9300RateSize; i++) {
226afe68 4904 ath_dbg(common, ATH_DBG_EEPROM,
a1cbc7a8 4905 "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
824b185a
LR
4906 }
4907
824b185a
LR
4908 /*
4909 * This is the TX power we send back to driver core,
4910 * and it can use to pass to userspace to display our
4911 * currently configured TX power setting.
4912 *
4913 * Since power is rate dependent, use one of the indices
4914 * from the AR9300_Rates enum to select an entry from
4915 * targetPowerValT2[] to report. Currently returns the
4916 * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
4917 * as CCK power is less interesting (?).
4918 */
4919 i = ALL_TARGET_LEGACY_6_24; /* legacy */
4920 if (IS_CHAN_HT40(chan))
4921 i = ALL_TARGET_HT40_0_8_16; /* ht40 */
4922 else if (IS_CHAN_HT20(chan))
4923 i = ALL_TARGET_HT20_0_8_16; /* ht20 */
4924
4925 ah->txpower_limit = targetPowerValT2[i];
de40f316 4926 regulatory->max_power_level = targetPowerValT2[i];
824b185a 4927
de40f316
FF
4928 /* Write target power array to registers */
4929 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
15c9ee7a 4930 ar9003_hw_calibration_apply(ah, chan->channel);
1bf38661
FF
4931
4932 if (IS_CHAN_2GHZ(chan)) {
4933 if (IS_CHAN_HT40(chan))
4934 i = ALL_TARGET_HT40_0_8_16;
4935 else
4936 i = ALL_TARGET_HT20_0_8_16;
4937 } else {
4938 if (IS_CHAN_HT40(chan))
4939 i = ALL_TARGET_HT40_7;
4940 else
4941 i = ALL_TARGET_HT20_7;
4942 }
4943 ah->paprd_target_power = targetPowerValT2[i];
15c9ee7a
SB
4944}
4945
4946static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
4947 u16 i, bool is2GHz)
4948{
4949 return AR_NO_SPUR;
4950}
4951
c14a85da
LR
4952s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
4953{
4954 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4955
4956 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
4957}
4958
4959s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
4960{
4961 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4962
4963 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
4964}
4965
272ceba8
VT
4966u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
4967{
4968 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4969
4970 if (is_2ghz)
4971 return eep->modalHeader2G.spurChans;
4972 else
4973 return eep->modalHeader5G.spurChans;
4974}
4975
8698bca6
VT
4976unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
4977 struct ath9k_channel *chan)
4978{
4979 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4980
4981 if (IS_CHAN_2GHZ(chan))
4982 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
4983 AR9300_PAPRD_SCALE_1);
4984 else {
4985 if (chan->channel >= 5700)
4986 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
4987 AR9300_PAPRD_SCALE_1);
4988 else if (chan->channel >= 5400)
4989 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
4990 AR9300_PAPRD_SCALE_2);
4991 else
4992 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
4993 AR9300_PAPRD_SCALE_1);
4994 }
4995}
4996
15c9ee7a
SB
4997const struct eeprom_ops eep_ar9300_ops = {
4998 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
4999 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5000 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5001 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5002 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
15c9ee7a
SB
5003 .set_board_values = ath9k_hw_ar9300_set_board_values,
5004 .set_addac = ath9k_hw_ar9300_set_addac,
5005 .set_txpower = ath9k_hw_ar9300_set_txpower,
5006 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5007};